diff options
author | Samuel Thibault <samuel.thibault@ens-lyon.org> | 2013-07-27 22:07:53 +0000 |
---|---|---|
committer | Samuel Thibault <samuel.thibault@ens-lyon.org> | 2013-07-27 22:07:53 +0000 |
commit | 4fbe7358c7747a9165f776eb19addbb9baf7def2 (patch) | |
tree | bc7076b4f6d10c2cc2942539bb666e50f0b66954 /libdde_linux26/contrib/lib/bitmap.c | |
parent | 21adb5284111190057db245cfc2b54091920c373 (diff) |
rename libdde_linux26 into libdde-linux26 to make dpkg-source happy
Diffstat (limited to 'libdde_linux26/contrib/lib/bitmap.c')
-rw-r--r-- | libdde_linux26/contrib/lib/bitmap.c | 1020 |
1 files changed, 0 insertions, 1020 deletions
diff --git a/libdde_linux26/contrib/lib/bitmap.c b/libdde_linux26/contrib/lib/bitmap.c deleted file mode 100644 index 35a1f7ff..00000000 --- a/libdde_linux26/contrib/lib/bitmap.c +++ /dev/null @@ -1,1020 +0,0 @@ -/* - * lib/bitmap.c - * Helper functions for bitmap.h. - * - * This source code is licensed under the GNU General Public License, - * Version 2. See the file COPYING for more details. - */ -#include <linux/module.h> -#include <linux/ctype.h> -#include <linux/errno.h> -#include <linux/bitmap.h> -#include <linux/bitops.h> -#include <asm/uaccess.h> - -/* - * bitmaps provide an array of bits, implemented using an an - * array of unsigned longs. The number of valid bits in a - * given bitmap does _not_ need to be an exact multiple of - * BITS_PER_LONG. - * - * The possible unused bits in the last, partially used word - * of a bitmap are 'don't care'. The implementation makes - * no particular effort to keep them zero. It ensures that - * their value will not affect the results of any operation. - * The bitmap operations that return Boolean (bitmap_empty, - * for example) or scalar (bitmap_weight, for example) results - * carefully filter out these unused bits from impacting their - * results. - * - * These operations actually hold to a slightly stronger rule: - * if you don't input any bitmaps to these ops that have some - * unused bits set, then they won't output any set unused bits - * in output bitmaps. - * - * The byte ordering of bitmaps is more natural on little - * endian architectures. See the big-endian headers - * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h - * for the best explanations of this ordering. - */ - -int __bitmap_empty(const unsigned long *bitmap, int bits) -{ - int k, lim = bits/BITS_PER_LONG; - for (k = 0; k < lim; ++k) - if (bitmap[k]) - return 0; - - if (bits % BITS_PER_LONG) - if (bitmap[k] & BITMAP_LAST_WORD_MASK(bits)) - return 0; - - return 1; -} -EXPORT_SYMBOL(__bitmap_empty); - -int __bitmap_full(const unsigned long *bitmap, int bits) -{ - int k, lim = bits/BITS_PER_LONG; - for (k = 0; k < lim; ++k) - if (~bitmap[k]) - return 0; - - if (bits % BITS_PER_LONG) - if (~bitmap[k] & BITMAP_LAST_WORD_MASK(bits)) - return 0; - - return 1; -} -EXPORT_SYMBOL(__bitmap_full); - -int __bitmap_equal(const unsigned long *bitmap1, - const unsigned long *bitmap2, int bits) -{ - int k, lim = bits/BITS_PER_LONG; - for (k = 0; k < lim; ++k) - if (bitmap1[k] != bitmap2[k]) - return 0; - - if (bits % BITS_PER_LONG) - if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) - return 0; - - return 1; -} -EXPORT_SYMBOL(__bitmap_equal); - -void __bitmap_complement(unsigned long *dst, const unsigned long *src, int bits) -{ - int k, lim = bits/BITS_PER_LONG; - for (k = 0; k < lim; ++k) - dst[k] = ~src[k]; - - if (bits % BITS_PER_LONG) - dst[k] = ~src[k] & BITMAP_LAST_WORD_MASK(bits); -} -EXPORT_SYMBOL(__bitmap_complement); - -/** - * __bitmap_shift_right - logical right shift of the bits in a bitmap - * @dst : destination bitmap - * @src : source bitmap - * @shift : shift by this many bits - * @bits : bitmap size, in bits - * - * Shifting right (dividing) means moving bits in the MS -> LS bit - * direction. Zeros are fed into the vacated MS positions and the - * LS bits shifted off the bottom are lost. - */ -void __bitmap_shift_right(unsigned long *dst, - const unsigned long *src, int shift, int bits) -{ - int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG; - int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG; - unsigned long mask = (1UL << left) - 1; - for (k = 0; off + k < lim; ++k) { - unsigned long upper, lower; - - /* - * If shift is not word aligned, take lower rem bits of - * word above and make them the top rem bits of result. - */ - if (!rem || off + k + 1 >= lim) - upper = 0; - else { - upper = src[off + k + 1]; - if (off + k + 1 == lim - 1 && left) - upper &= mask; - } - lower = src[off + k]; - if (left && off + k == lim - 1) - lower &= mask; - dst[k] = upper << (BITS_PER_LONG - rem) | lower >> rem; - if (left && k == lim - 1) - dst[k] &= mask; - } - if (off) - memset(&dst[lim - off], 0, off*sizeof(unsigned long)); -} -EXPORT_SYMBOL(__bitmap_shift_right); - - -/** - * __bitmap_shift_left - logical left shift of the bits in a bitmap - * @dst : destination bitmap - * @src : source bitmap - * @shift : shift by this many bits - * @bits : bitmap size, in bits - * - * Shifting left (multiplying) means moving bits in the LS -> MS - * direction. Zeros are fed into the vacated LS bit positions - * and those MS bits shifted off the top are lost. - */ - -void __bitmap_shift_left(unsigned long *dst, - const unsigned long *src, int shift, int bits) -{ - int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG; - int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG; - for (k = lim - off - 1; k >= 0; --k) { - unsigned long upper, lower; - - /* - * If shift is not word aligned, take upper rem bits of - * word below and make them the bottom rem bits of result. - */ - if (rem && k > 0) - lower = src[k - 1]; - else - lower = 0; - upper = src[k]; - if (left && k == lim - 1) - upper &= (1UL << left) - 1; - dst[k + off] = lower >> (BITS_PER_LONG - rem) | upper << rem; - if (left && k + off == lim - 1) - dst[k + off] &= (1UL << left) - 1; - } - if (off) - memset(dst, 0, off*sizeof(unsigned long)); -} -EXPORT_SYMBOL(__bitmap_shift_left); - -void __bitmap_and(unsigned long *dst, const unsigned long *bitmap1, - const unsigned long *bitmap2, int bits) -{ - int k; - int nr = BITS_TO_LONGS(bits); - - for (k = 0; k < nr; k++) - dst[k] = bitmap1[k] & bitmap2[k]; -} -EXPORT_SYMBOL(__bitmap_and); - -void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1, - const unsigned long *bitmap2, int bits) -{ - int k; - int nr = BITS_TO_LONGS(bits); - - for (k = 0; k < nr; k++) - dst[k] = bitmap1[k] | bitmap2[k]; -} -EXPORT_SYMBOL(__bitmap_or); - -void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1, - const unsigned long *bitmap2, int bits) -{ - int k; - int nr = BITS_TO_LONGS(bits); - - for (k = 0; k < nr; k++) - dst[k] = bitmap1[k] ^ bitmap2[k]; -} -EXPORT_SYMBOL(__bitmap_xor); - -void __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1, - const unsigned long *bitmap2, int bits) -{ - int k; - int nr = BITS_TO_LONGS(bits); - - for (k = 0; k < nr; k++) - dst[k] = bitmap1[k] & ~bitmap2[k]; -} -EXPORT_SYMBOL(__bitmap_andnot); - -int __bitmap_intersects(const unsigned long *bitmap1, - const unsigned long *bitmap2, int bits) -{ - int k, lim = bits/BITS_PER_LONG; - for (k = 0; k < lim; ++k) - if (bitmap1[k] & bitmap2[k]) - return 1; - - if (bits % BITS_PER_LONG) - if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) - return 1; - return 0; -} -EXPORT_SYMBOL(__bitmap_intersects); - -int __bitmap_subset(const unsigned long *bitmap1, - const unsigned long *bitmap2, int bits) -{ - int k, lim = bits/BITS_PER_LONG; - for (k = 0; k < lim; ++k) - if (bitmap1[k] & ~bitmap2[k]) - return 0; - - if (bits % BITS_PER_LONG) - if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) - return 0; - return 1; -} -EXPORT_SYMBOL(__bitmap_subset); - -int __bitmap_weight(const unsigned long *bitmap, int bits) -{ - int k, w = 0, lim = bits/BITS_PER_LONG; - - for (k = 0; k < lim; k++) - w += hweight_long(bitmap[k]); - - if (bits % BITS_PER_LONG) - w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits)); - - return w; -} -EXPORT_SYMBOL(__bitmap_weight); - -/* - * Bitmap printing & parsing functions: first version by Bill Irwin, - * second version by Paul Jackson, third by Joe Korty. - */ - -#define CHUNKSZ 32 -#define nbits_to_hold_value(val) fls(val) -#define unhex(c) (isdigit(c) ? (c - '0') : (toupper(c) - 'A' + 10)) -#define BASEDEC 10 /* fancier cpuset lists input in decimal */ - -/** - * bitmap_scnprintf - convert bitmap to an ASCII hex string. - * @buf: byte buffer into which string is placed - * @buflen: reserved size of @buf, in bytes - * @maskp: pointer to bitmap to convert - * @nmaskbits: size of bitmap, in bits - * - * Exactly @nmaskbits bits are displayed. Hex digits are grouped into - * comma-separated sets of eight digits per set. - */ -int bitmap_scnprintf(char *buf, unsigned int buflen, - const unsigned long *maskp, int nmaskbits) -{ - int i, word, bit, len = 0; - unsigned long val; - const char *sep = ""; - int chunksz; - u32 chunkmask; - - chunksz = nmaskbits & (CHUNKSZ - 1); - if (chunksz == 0) - chunksz = CHUNKSZ; - - i = ALIGN(nmaskbits, CHUNKSZ) - CHUNKSZ; - for (; i >= 0; i -= CHUNKSZ) { - chunkmask = ((1ULL << chunksz) - 1); - word = i / BITS_PER_LONG; - bit = i % BITS_PER_LONG; - val = (maskp[word] >> bit) & chunkmask; - len += scnprintf(buf+len, buflen-len, "%s%0*lx", sep, - (chunksz+3)/4, val); - chunksz = CHUNKSZ; - sep = ","; - } - return len; -} -EXPORT_SYMBOL(bitmap_scnprintf); - -/** - * __bitmap_parse - convert an ASCII hex string into a bitmap. - * @buf: pointer to buffer containing string. - * @buflen: buffer size in bytes. If string is smaller than this - * then it must be terminated with a \0. - * @is_user: location of buffer, 0 indicates kernel space - * @maskp: pointer to bitmap array that will contain result. - * @nmaskbits: size of bitmap, in bits. - * - * Commas group hex digits into chunks. Each chunk defines exactly 32 - * bits of the resultant bitmask. No chunk may specify a value larger - * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value - * then leading 0-bits are prepended. %-EINVAL is returned for illegal - * characters and for grouping errors such as "1,,5", ",44", "," and "". - * Leading and trailing whitespace accepted, but not embedded whitespace. - */ -int __bitmap_parse(const char *buf, unsigned int buflen, - int is_user, unsigned long *maskp, - int nmaskbits) -{ - int c, old_c, totaldigits, ndigits, nchunks, nbits; - u32 chunk; - const char __user *ubuf = buf; - - bitmap_zero(maskp, nmaskbits); - - nchunks = nbits = totaldigits = c = 0; - do { - chunk = ndigits = 0; - - /* Get the next chunk of the bitmap */ - while (buflen) { - old_c = c; - if (is_user) { - if (__get_user(c, ubuf++)) - return -EFAULT; - } - else - c = *buf++; - buflen--; - if (isspace(c)) - continue; - - /* - * If the last character was a space and the current - * character isn't '\0', we've got embedded whitespace. - * This is a no-no, so throw an error. - */ - if (totaldigits && c && isspace(old_c)) - return -EINVAL; - - /* A '\0' or a ',' signal the end of the chunk */ - if (c == '\0' || c == ',') - break; - - if (!isxdigit(c)) - return -EINVAL; - - /* - * Make sure there are at least 4 free bits in 'chunk'. - * If not, this hexdigit will overflow 'chunk', so - * throw an error. - */ - if (chunk & ~((1UL << (CHUNKSZ - 4)) - 1)) - return -EOVERFLOW; - - chunk = (chunk << 4) | unhex(c); - ndigits++; totaldigits++; - } - if (ndigits == 0) - return -EINVAL; - if (nchunks == 0 && chunk == 0) - continue; - - __bitmap_shift_left(maskp, maskp, CHUNKSZ, nmaskbits); - *maskp |= chunk; - nchunks++; - nbits += (nchunks == 1) ? nbits_to_hold_value(chunk) : CHUNKSZ; - if (nbits > nmaskbits) - return -EOVERFLOW; - } while (buflen && c == ','); - - return 0; -} -EXPORT_SYMBOL(__bitmap_parse); - -/** - * bitmap_parse_user() - * - * @ubuf: pointer to user buffer containing string. - * @ulen: buffer size in bytes. If string is smaller than this - * then it must be terminated with a \0. - * @maskp: pointer to bitmap array that will contain result. - * @nmaskbits: size of bitmap, in bits. - * - * Wrapper for __bitmap_parse(), providing it with user buffer. - * - * We cannot have this as an inline function in bitmap.h because it needs - * linux/uaccess.h to get the access_ok() declaration and this causes - * cyclic dependencies. - */ -int bitmap_parse_user(const char __user *ubuf, - unsigned int ulen, unsigned long *maskp, - int nmaskbits) -{ - if (!access_ok(VERIFY_READ, ubuf, ulen)) - return -EFAULT; - return __bitmap_parse((const char *)ubuf, ulen, 1, maskp, nmaskbits); -} -EXPORT_SYMBOL(bitmap_parse_user); - -/* - * bscnl_emit(buf, buflen, rbot, rtop, bp) - * - * Helper routine for bitmap_scnlistprintf(). Write decimal number - * or range to buf, suppressing output past buf+buflen, with optional - * comma-prefix. Return len of what would be written to buf, if it - * all fit. - */ -static inline int bscnl_emit(char *buf, int buflen, int rbot, int rtop, int len) -{ - if (len > 0) - len += scnprintf(buf + len, buflen - len, ","); - if (rbot == rtop) - len += scnprintf(buf + len, buflen - len, "%d", rbot); - else - len += scnprintf(buf + len, buflen - len, "%d-%d", rbot, rtop); - return len; -} - -/** - * bitmap_scnlistprintf - convert bitmap to list format ASCII string - * @buf: byte buffer into which string is placed - * @buflen: reserved size of @buf, in bytes - * @maskp: pointer to bitmap to convert - * @nmaskbits: size of bitmap, in bits - * - * Output format is a comma-separated list of decimal numbers and - * ranges. Consecutively set bits are shown as two hyphen-separated - * decimal numbers, the smallest and largest bit numbers set in - * the range. Output format is compatible with the format - * accepted as input by bitmap_parselist(). - * - * The return value is the number of characters which would be - * generated for the given input, excluding the trailing '\0', as - * per ISO C99. - */ -int bitmap_scnlistprintf(char *buf, unsigned int buflen, - const unsigned long *maskp, int nmaskbits) -{ - int len = 0; - /* current bit is 'cur', most recently seen range is [rbot, rtop] */ - int cur, rbot, rtop; - - if (buflen == 0) - return 0; - buf[0] = 0; - - rbot = cur = find_first_bit(maskp, nmaskbits); - while (cur < nmaskbits) { - rtop = cur; - cur = find_next_bit(maskp, nmaskbits, cur+1); - if (cur >= nmaskbits || cur > rtop + 1) { - len = bscnl_emit(buf, buflen, rbot, rtop, len); - rbot = cur; - } - } - return len; -} -EXPORT_SYMBOL(bitmap_scnlistprintf); - -/** - * bitmap_parselist - convert list format ASCII string to bitmap - * @bp: read nul-terminated user string from this buffer - * @maskp: write resulting mask here - * @nmaskbits: number of bits in mask to be written - * - * Input format is a comma-separated list of decimal numbers and - * ranges. Consecutively set bits are shown as two hyphen-separated - * decimal numbers, the smallest and largest bit numbers set in - * the range. - * - * Returns 0 on success, -errno on invalid input strings. - * Error values: - * %-EINVAL: second number in range smaller than first - * %-EINVAL: invalid character in string - * %-ERANGE: bit number specified too large for mask - */ -int bitmap_parselist(const char *bp, unsigned long *maskp, int nmaskbits) -{ - unsigned a, b; - - bitmap_zero(maskp, nmaskbits); - do { - if (!isdigit(*bp)) - return -EINVAL; - b = a = simple_strtoul(bp, (char **)&bp, BASEDEC); - if (*bp == '-') { - bp++; - if (!isdigit(*bp)) - return -EINVAL; - b = simple_strtoul(bp, (char **)&bp, BASEDEC); - } - if (!(a <= b)) - return -EINVAL; - if (b >= nmaskbits) - return -ERANGE; - while (a <= b) { - set_bit(a, maskp); - a++; - } - if (*bp == ',') - bp++; - } while (*bp != '\0' && *bp != '\n'); - return 0; -} -EXPORT_SYMBOL(bitmap_parselist); - -/** - * bitmap_pos_to_ord(buf, pos, bits) - * @buf: pointer to a bitmap - * @pos: a bit position in @buf (0 <= @pos < @bits) - * @bits: number of valid bit positions in @buf - * - * Map the bit at position @pos in @buf (of length @bits) to the - * ordinal of which set bit it is. If it is not set or if @pos - * is not a valid bit position, map to -1. - * - * If for example, just bits 4 through 7 are set in @buf, then @pos - * values 4 through 7 will get mapped to 0 through 3, respectively, - * and other @pos values will get mapped to 0. When @pos value 7 - * gets mapped to (returns) @ord value 3 in this example, that means - * that bit 7 is the 3rd (starting with 0th) set bit in @buf. - * - * The bit positions 0 through @bits are valid positions in @buf. - */ -static int bitmap_pos_to_ord(const unsigned long *buf, int pos, int bits) -{ - int i, ord; - - if (pos < 0 || pos >= bits || !test_bit(pos, buf)) - return -1; - - i = find_first_bit(buf, bits); - ord = 0; - while (i < pos) { - i = find_next_bit(buf, bits, i + 1); - ord++; - } - BUG_ON(i != pos); - - return ord; -} - -/** - * bitmap_ord_to_pos(buf, ord, bits) - * @buf: pointer to bitmap - * @ord: ordinal bit position (n-th set bit, n >= 0) - * @bits: number of valid bit positions in @buf - * - * Map the ordinal offset of bit @ord in @buf to its position in @buf. - * Value of @ord should be in range 0 <= @ord < weight(buf), else - * results are undefined. - * - * If for example, just bits 4 through 7 are set in @buf, then @ord - * values 0 through 3 will get mapped to 4 through 7, respectively, - * and all other @ord values return undefined values. When @ord value 3 - * gets mapped to (returns) @pos value 7 in this example, that means - * that the 3rd set bit (starting with 0th) is at position 7 in @buf. - * - * The bit positions 0 through @bits are valid positions in @buf. - */ -static int bitmap_ord_to_pos(const unsigned long *buf, int ord, int bits) -{ - int pos = 0; - - if (ord >= 0 && ord < bits) { - int i; - - for (i = find_first_bit(buf, bits); - i < bits && ord > 0; - i = find_next_bit(buf, bits, i + 1)) - ord--; - if (i < bits && ord == 0) - pos = i; - } - - return pos; -} - -/** - * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap - * @dst: remapped result - * @src: subset to be remapped - * @old: defines domain of map - * @new: defines range of map - * @bits: number of bits in each of these bitmaps - * - * Let @old and @new define a mapping of bit positions, such that - * whatever position is held by the n-th set bit in @old is mapped - * to the n-th set bit in @new. In the more general case, allowing - * for the possibility that the weight 'w' of @new is less than the - * weight of @old, map the position of the n-th set bit in @old to - * the position of the m-th set bit in @new, where m == n % w. - * - * If either of the @old and @new bitmaps are empty, or if @src and - * @dst point to the same location, then this routine copies @src - * to @dst. - * - * The positions of unset bits in @old are mapped to themselves - * (the identify map). - * - * Apply the above specified mapping to @src, placing the result in - * @dst, clearing any bits previously set in @dst. - * - * For example, lets say that @old has bits 4 through 7 set, and - * @new has bits 12 through 15 set. This defines the mapping of bit - * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other - * bit positions unchanged. So if say @src comes into this routine - * with bits 1, 5 and 7 set, then @dst should leave with bits 1, - * 13 and 15 set. - */ -void bitmap_remap(unsigned long *dst, const unsigned long *src, - const unsigned long *old, const unsigned long *new, - int bits) -{ - int oldbit, w; - - if (dst == src) /* following doesn't handle inplace remaps */ - return; - bitmap_zero(dst, bits); - - w = bitmap_weight(new, bits); - for (oldbit = find_first_bit(src, bits); - oldbit < bits; - oldbit = find_next_bit(src, bits, oldbit + 1)) { - int n = bitmap_pos_to_ord(old, oldbit, bits); - if (n < 0 || w == 0) - set_bit(oldbit, dst); /* identity map */ - else - set_bit(bitmap_ord_to_pos(new, n % w, bits), dst); - } -} -EXPORT_SYMBOL(bitmap_remap); - -/** - * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit - * @oldbit: bit position to be mapped - * @old: defines domain of map - * @new: defines range of map - * @bits: number of bits in each of these bitmaps - * - * Let @old and @new define a mapping of bit positions, such that - * whatever position is held by the n-th set bit in @old is mapped - * to the n-th set bit in @new. In the more general case, allowing - * for the possibility that the weight 'w' of @new is less than the - * weight of @old, map the position of the n-th set bit in @old to - * the position of the m-th set bit in @new, where m == n % w. - * - * The positions of unset bits in @old are mapped to themselves - * (the identify map). - * - * Apply the above specified mapping to bit position @oldbit, returning - * the new bit position. - * - * For example, lets say that @old has bits 4 through 7 set, and - * @new has bits 12 through 15 set. This defines the mapping of bit - * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other - * bit positions unchanged. So if say @oldbit is 5, then this routine - * returns 13. - */ -int bitmap_bitremap(int oldbit, const unsigned long *old, - const unsigned long *new, int bits) -{ - int w = bitmap_weight(new, bits); - int n = bitmap_pos_to_ord(old, oldbit, bits); - if (n < 0 || w == 0) - return oldbit; - else - return bitmap_ord_to_pos(new, n % w, bits); -} -EXPORT_SYMBOL(bitmap_bitremap); - -/** - * bitmap_onto - translate one bitmap relative to another - * @dst: resulting translated bitmap - * @orig: original untranslated bitmap - * @relmap: bitmap relative to which translated - * @bits: number of bits in each of these bitmaps - * - * Set the n-th bit of @dst iff there exists some m such that the - * n-th bit of @relmap is set, the m-th bit of @orig is set, and - * the n-th bit of @relmap is also the m-th _set_ bit of @relmap. - * (If you understood the previous sentence the first time your - * read it, you're overqualified for your current job.) - * - * In other words, @orig is mapped onto (surjectively) @dst, - * using the the map { <n, m> | the n-th bit of @relmap is the - * m-th set bit of @relmap }. - * - * Any set bits in @orig above bit number W, where W is the - * weight of (number of set bits in) @relmap are mapped nowhere. - * In particular, if for all bits m set in @orig, m >= W, then - * @dst will end up empty. In situations where the possibility - * of such an empty result is not desired, one way to avoid it is - * to use the bitmap_fold() operator, below, to first fold the - * @orig bitmap over itself so that all its set bits x are in the - * range 0 <= x < W. The bitmap_fold() operator does this by - * setting the bit (m % W) in @dst, for each bit (m) set in @orig. - * - * Example [1] for bitmap_onto(): - * Let's say @relmap has bits 30-39 set, and @orig has bits - * 1, 3, 5, 7, 9 and 11 set. Then on return from this routine, - * @dst will have bits 31, 33, 35, 37 and 39 set. - * - * When bit 0 is set in @orig, it means turn on the bit in - * @dst corresponding to whatever is the first bit (if any) - * that is turned on in @relmap. Since bit 0 was off in the - * above example, we leave off that bit (bit 30) in @dst. - * - * When bit 1 is set in @orig (as in the above example), it - * means turn on the bit in @dst corresponding to whatever - * is the second bit that is turned on in @relmap. The second - * bit in @relmap that was turned on in the above example was - * bit 31, so we turned on bit 31 in @dst. - * - * Similarly, we turned on bits 33, 35, 37 and 39 in @dst, - * because they were the 4th, 6th, 8th and 10th set bits - * set in @relmap, and the 4th, 6th, 8th and 10th bits of - * @orig (i.e. bits 3, 5, 7 and 9) were also set. - * - * When bit 11 is set in @orig, it means turn on the bit in - * @dst corresponding to whatever is the twelth bit that is - * turned on in @relmap. In the above example, there were - * only ten bits turned on in @relmap (30..39), so that bit - * 11 was set in @orig had no affect on @dst. - * - * Example [2] for bitmap_fold() + bitmap_onto(): - * Let's say @relmap has these ten bits set: - * 40 41 42 43 45 48 53 61 74 95 - * (for the curious, that's 40 plus the first ten terms of the - * Fibonacci sequence.) - * - * Further lets say we use the following code, invoking - * bitmap_fold() then bitmap_onto, as suggested above to - * avoid the possitility of an empty @dst result: - * - * unsigned long *tmp; // a temporary bitmap's bits - * - * bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits); - * bitmap_onto(dst, tmp, relmap, bits); - * - * Then this table shows what various values of @dst would be, for - * various @orig's. I list the zero-based positions of each set bit. - * The tmp column shows the intermediate result, as computed by - * using bitmap_fold() to fold the @orig bitmap modulo ten - * (the weight of @relmap). - * - * @orig tmp @dst - * 0 0 40 - * 1 1 41 - * 9 9 95 - * 10 0 40 (*) - * 1 3 5 7 1 3 5 7 41 43 48 61 - * 0 1 2 3 4 0 1 2 3 4 40 41 42 43 45 - * 0 9 18 27 0 9 8 7 40 61 74 95 - * 0 10 20 30 0 40 - * 0 11 22 33 0 1 2 3 40 41 42 43 - * 0 12 24 36 0 2 4 6 40 42 45 53 - * 78 102 211 1 2 8 41 42 74 (*) - * - * (*) For these marked lines, if we hadn't first done bitmap_fold() - * into tmp, then the @dst result would have been empty. - * - * If either of @orig or @relmap is empty (no set bits), then @dst - * will be returned empty. - * - * If (as explained above) the only set bits in @orig are in positions - * m where m >= W, (where W is the weight of @relmap) then @dst will - * once again be returned empty. - * - * All bits in @dst not set by the above rule are cleared. - */ -void bitmap_onto(unsigned long *dst, const unsigned long *orig, - const unsigned long *relmap, int bits) -{ - int n, m; /* same meaning as in above comment */ - - if (dst == orig) /* following doesn't handle inplace mappings */ - return; - bitmap_zero(dst, bits); - - /* - * The following code is a more efficient, but less - * obvious, equivalent to the loop: - * for (m = 0; m < bitmap_weight(relmap, bits); m++) { - * n = bitmap_ord_to_pos(orig, m, bits); - * if (test_bit(m, orig)) - * set_bit(n, dst); - * } - */ - - m = 0; - for (n = find_first_bit(relmap, bits); - n < bits; - n = find_next_bit(relmap, bits, n + 1)) { - /* m == bitmap_pos_to_ord(relmap, n, bits) */ - if (test_bit(m, orig)) - set_bit(n, dst); - m++; - } -} -EXPORT_SYMBOL(bitmap_onto); - -/** - * bitmap_fold - fold larger bitmap into smaller, modulo specified size - * @dst: resulting smaller bitmap - * @orig: original larger bitmap - * @sz: specified size - * @bits: number of bits in each of these bitmaps - * - * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst. - * Clear all other bits in @dst. See further the comment and - * Example [2] for bitmap_onto() for why and how to use this. - */ -void bitmap_fold(unsigned long *dst, const unsigned long *orig, - int sz, int bits) -{ - int oldbit; - - if (dst == orig) /* following doesn't handle inplace mappings */ - return; - bitmap_zero(dst, bits); - - for (oldbit = find_first_bit(orig, bits); - oldbit < bits; - oldbit = find_next_bit(orig, bits, oldbit + 1)) - set_bit(oldbit % sz, dst); -} -EXPORT_SYMBOL(bitmap_fold); - -/* - * Common code for bitmap_*_region() routines. - * bitmap: array of unsigned longs corresponding to the bitmap - * pos: the beginning of the region - * order: region size (log base 2 of number of bits) - * reg_op: operation(s) to perform on that region of bitmap - * - * Can set, verify and/or release a region of bits in a bitmap, - * depending on which combination of REG_OP_* flag bits is set. - * - * A region of a bitmap is a sequence of bits in the bitmap, of - * some size '1 << order' (a power of two), aligned to that same - * '1 << order' power of two. - * - * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits). - * Returns 0 in all other cases and reg_ops. - */ - -enum { - REG_OP_ISFREE, /* true if region is all zero bits */ - REG_OP_ALLOC, /* set all bits in region */ - REG_OP_RELEASE, /* clear all bits in region */ -}; - -static int __reg_op(unsigned long *bitmap, int pos, int order, int reg_op) -{ - int nbits_reg; /* number of bits in region */ - int index; /* index first long of region in bitmap */ - int offset; /* bit offset region in bitmap[index] */ - int nlongs_reg; /* num longs spanned by region in bitmap */ - int nbitsinlong; /* num bits of region in each spanned long */ - unsigned long mask; /* bitmask for one long of region */ - int i; /* scans bitmap by longs */ - int ret = 0; /* return value */ - - /* - * Either nlongs_reg == 1 (for small orders that fit in one long) - * or (offset == 0 && mask == ~0UL) (for larger multiword orders.) - */ - nbits_reg = 1 << order; - index = pos / BITS_PER_LONG; - offset = pos - (index * BITS_PER_LONG); - nlongs_reg = BITS_TO_LONGS(nbits_reg); - nbitsinlong = min(nbits_reg, BITS_PER_LONG); - - /* - * Can't do "mask = (1UL << nbitsinlong) - 1", as that - * overflows if nbitsinlong == BITS_PER_LONG. - */ - mask = (1UL << (nbitsinlong - 1)); - mask += mask - 1; - mask <<= offset; - - switch (reg_op) { - case REG_OP_ISFREE: - for (i = 0; i < nlongs_reg; i++) { - if (bitmap[index + i] & mask) - goto done; - } - ret = 1; /* all bits in region free (zero) */ - break; - - case REG_OP_ALLOC: - for (i = 0; i < nlongs_reg; i++) - bitmap[index + i] |= mask; - break; - - case REG_OP_RELEASE: - for (i = 0; i < nlongs_reg; i++) - bitmap[index + i] &= ~mask; - break; - } -done: - return ret; -} - -/** - * bitmap_find_free_region - find a contiguous aligned mem region - * @bitmap: array of unsigned longs corresponding to the bitmap - * @bits: number of bits in the bitmap - * @order: region size (log base 2 of number of bits) to find - * - * Find a region of free (zero) bits in a @bitmap of @bits bits and - * allocate them (set them to one). Only consider regions of length - * a power (@order) of two, aligned to that power of two, which - * makes the search algorithm much faster. - * - * Return the bit offset in bitmap of the allocated region, - * or -errno on failure. - */ -int bitmap_find_free_region(unsigned long *bitmap, int bits, int order) -{ - int pos, end; /* scans bitmap by regions of size order */ - - for (pos = 0 ; (end = pos + (1 << order)) <= bits; pos = end) { - if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE)) - continue; - __reg_op(bitmap, pos, order, REG_OP_ALLOC); - return pos; - } - return -ENOMEM; -} -EXPORT_SYMBOL(bitmap_find_free_region); - -/** - * bitmap_release_region - release allocated bitmap region - * @bitmap: array of unsigned longs corresponding to the bitmap - * @pos: beginning of bit region to release - * @order: region size (log base 2 of number of bits) to release - * - * This is the complement to __bitmap_find_free_region() and releases - * the found region (by clearing it in the bitmap). - * - * No return value. - */ -void bitmap_release_region(unsigned long *bitmap, int pos, int order) -{ - __reg_op(bitmap, pos, order, REG_OP_RELEASE); -} -EXPORT_SYMBOL(bitmap_release_region); - -/** - * bitmap_allocate_region - allocate bitmap region - * @bitmap: array of unsigned longs corresponding to the bitmap - * @pos: beginning of bit region to allocate - * @order: region size (log base 2 of number of bits) to allocate - * - * Allocate (set bits in) a specified region of a bitmap. - * - * Return 0 on success, or %-EBUSY if specified region wasn't - * free (not all bits were zero). - */ -int bitmap_allocate_region(unsigned long *bitmap, int pos, int order) -{ - if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE)) - return -EBUSY; - __reg_op(bitmap, pos, order, REG_OP_ALLOC); - return 0; -} -EXPORT_SYMBOL(bitmap_allocate_region); - -/** - * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order. - * @dst: destination buffer - * @src: bitmap to copy - * @nbits: number of bits in the bitmap - * - * Require nbits % BITS_PER_LONG == 0. - */ -void bitmap_copy_le(void *dst, const unsigned long *src, int nbits) -{ - unsigned long *d = dst; - int i; - - for (i = 0; i < nbits/BITS_PER_LONG; i++) { - if (BITS_PER_LONG == 64) - d[i] = cpu_to_le64(src[i]); - else - d[i] = cpu_to_le32(src[i]); - } -} -EXPORT_SYMBOL(bitmap_copy_le); |