summaryrefslogtreecommitdiff
path: root/libdde_linux26/contrib/lib
diff options
context:
space:
mode:
authorSamuel Thibault <samuel.thibault@ens-lyon.org>2013-07-27 22:07:53 +0000
committerSamuel Thibault <samuel.thibault@ens-lyon.org>2013-07-27 22:07:53 +0000
commit4fbe7358c7747a9165f776eb19addbb9baf7def2 (patch)
treebc7076b4f6d10c2cc2942539bb666e50f0b66954 /libdde_linux26/contrib/lib
parent21adb5284111190057db245cfc2b54091920c373 (diff)
rename libdde_linux26 into libdde-linux26 to make dpkg-source happy
Diffstat (limited to 'libdde_linux26/contrib/lib')
-rw-r--r--libdde_linux26/contrib/lib/bitmap.c1020
-rw-r--r--libdde_linux26/contrib/lib/bitrev.c59
-rw-r--r--libdde_linux26/contrib/lib/cpumask.c172
-rw-r--r--libdde_linux26/contrib/lib/crc32.c501
-rw-r--r--libdde_linux26/contrib/lib/crc32defs.h32
-rw-r--r--libdde_linux26/contrib/lib/ctype.c36
-rw-r--r--libdde_linux26/contrib/lib/find_next_bit.c275
-rw-r--r--libdde_linux26/contrib/lib/gen_crc32table.c82
-rw-r--r--libdde_linux26/contrib/lib/hexdump.c201
-rw-r--r--libdde_linux26/contrib/lib/hweight.c59
-rw-r--r--libdde_linux26/contrib/lib/idr.c890
-rw-r--r--libdde_linux26/contrib/lib/kasprintf.c44
-rw-r--r--libdde_linux26/contrib/lib/kernel_lock.c133
-rw-r--r--libdde_linux26/contrib/lib/klist.c365
-rw-r--r--libdde_linux26/contrib/lib/kobject.c850
-rw-r--r--libdde_linux26/contrib/lib/kref.c77
-rw-r--r--libdde_linux26/contrib/lib/parser.c228
-rw-r--r--libdde_linux26/contrib/lib/proportions.c407
-rw-r--r--libdde_linux26/contrib/lib/radix-tree.c1240
-rw-r--r--libdde_linux26/contrib/lib/rbtree.c397
-rw-r--r--libdde_linux26/contrib/lib/rwsem-spinlock.c316
-rw-r--r--libdde_linux26/contrib/lib/rwsem.c257
-rw-r--r--libdde_linux26/contrib/lib/scatterlist.c484
-rw-r--r--libdde_linux26/contrib/lib/sha1.c95
-rw-r--r--libdde_linux26/contrib/lib/string.c689
-rw-r--r--libdde_linux26/contrib/lib/vsprintf.c1305
26 files changed, 0 insertions, 10214 deletions
diff --git a/libdde_linux26/contrib/lib/bitmap.c b/libdde_linux26/contrib/lib/bitmap.c
deleted file mode 100644
index 35a1f7ff..00000000
--- a/libdde_linux26/contrib/lib/bitmap.c
+++ /dev/null
@@ -1,1020 +0,0 @@
-/*
- * lib/bitmap.c
- * Helper functions for bitmap.h.
- *
- * This source code is licensed under the GNU General Public License,
- * Version 2. See the file COPYING for more details.
- */
-#include <linux/module.h>
-#include <linux/ctype.h>
-#include <linux/errno.h>
-#include <linux/bitmap.h>
-#include <linux/bitops.h>
-#include <asm/uaccess.h>
-
-/*
- * bitmaps provide an array of bits, implemented using an an
- * array of unsigned longs. The number of valid bits in a
- * given bitmap does _not_ need to be an exact multiple of
- * BITS_PER_LONG.
- *
- * The possible unused bits in the last, partially used word
- * of a bitmap are 'don't care'. The implementation makes
- * no particular effort to keep them zero. It ensures that
- * their value will not affect the results of any operation.
- * The bitmap operations that return Boolean (bitmap_empty,
- * for example) or scalar (bitmap_weight, for example) results
- * carefully filter out these unused bits from impacting their
- * results.
- *
- * These operations actually hold to a slightly stronger rule:
- * if you don't input any bitmaps to these ops that have some
- * unused bits set, then they won't output any set unused bits
- * in output bitmaps.
- *
- * The byte ordering of bitmaps is more natural on little
- * endian architectures. See the big-endian headers
- * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
- * for the best explanations of this ordering.
- */
-
-int __bitmap_empty(const unsigned long *bitmap, int bits)
-{
- int k, lim = bits/BITS_PER_LONG;
- for (k = 0; k < lim; ++k)
- if (bitmap[k])
- return 0;
-
- if (bits % BITS_PER_LONG)
- if (bitmap[k] & BITMAP_LAST_WORD_MASK(bits))
- return 0;
-
- return 1;
-}
-EXPORT_SYMBOL(__bitmap_empty);
-
-int __bitmap_full(const unsigned long *bitmap, int bits)
-{
- int k, lim = bits/BITS_PER_LONG;
- for (k = 0; k < lim; ++k)
- if (~bitmap[k])
- return 0;
-
- if (bits % BITS_PER_LONG)
- if (~bitmap[k] & BITMAP_LAST_WORD_MASK(bits))
- return 0;
-
- return 1;
-}
-EXPORT_SYMBOL(__bitmap_full);
-
-int __bitmap_equal(const unsigned long *bitmap1,
- const unsigned long *bitmap2, int bits)
-{
- int k, lim = bits/BITS_PER_LONG;
- for (k = 0; k < lim; ++k)
- if (bitmap1[k] != bitmap2[k])
- return 0;
-
- if (bits % BITS_PER_LONG)
- if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
- return 0;
-
- return 1;
-}
-EXPORT_SYMBOL(__bitmap_equal);
-
-void __bitmap_complement(unsigned long *dst, const unsigned long *src, int bits)
-{
- int k, lim = bits/BITS_PER_LONG;
- for (k = 0; k < lim; ++k)
- dst[k] = ~src[k];
-
- if (bits % BITS_PER_LONG)
- dst[k] = ~src[k] & BITMAP_LAST_WORD_MASK(bits);
-}
-EXPORT_SYMBOL(__bitmap_complement);
-
-/**
- * __bitmap_shift_right - logical right shift of the bits in a bitmap
- * @dst : destination bitmap
- * @src : source bitmap
- * @shift : shift by this many bits
- * @bits : bitmap size, in bits
- *
- * Shifting right (dividing) means moving bits in the MS -> LS bit
- * direction. Zeros are fed into the vacated MS positions and the
- * LS bits shifted off the bottom are lost.
- */
-void __bitmap_shift_right(unsigned long *dst,
- const unsigned long *src, int shift, int bits)
-{
- int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG;
- int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
- unsigned long mask = (1UL << left) - 1;
- for (k = 0; off + k < lim; ++k) {
- unsigned long upper, lower;
-
- /*
- * If shift is not word aligned, take lower rem bits of
- * word above and make them the top rem bits of result.
- */
- if (!rem || off + k + 1 >= lim)
- upper = 0;
- else {
- upper = src[off + k + 1];
- if (off + k + 1 == lim - 1 && left)
- upper &= mask;
- }
- lower = src[off + k];
- if (left && off + k == lim - 1)
- lower &= mask;
- dst[k] = upper << (BITS_PER_LONG - rem) | lower >> rem;
- if (left && k == lim - 1)
- dst[k] &= mask;
- }
- if (off)
- memset(&dst[lim - off], 0, off*sizeof(unsigned long));
-}
-EXPORT_SYMBOL(__bitmap_shift_right);
-
-
-/**
- * __bitmap_shift_left - logical left shift of the bits in a bitmap
- * @dst : destination bitmap
- * @src : source bitmap
- * @shift : shift by this many bits
- * @bits : bitmap size, in bits
- *
- * Shifting left (multiplying) means moving bits in the LS -> MS
- * direction. Zeros are fed into the vacated LS bit positions
- * and those MS bits shifted off the top are lost.
- */
-
-void __bitmap_shift_left(unsigned long *dst,
- const unsigned long *src, int shift, int bits)
-{
- int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG;
- int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
- for (k = lim - off - 1; k >= 0; --k) {
- unsigned long upper, lower;
-
- /*
- * If shift is not word aligned, take upper rem bits of
- * word below and make them the bottom rem bits of result.
- */
- if (rem && k > 0)
- lower = src[k - 1];
- else
- lower = 0;
- upper = src[k];
- if (left && k == lim - 1)
- upper &= (1UL << left) - 1;
- dst[k + off] = lower >> (BITS_PER_LONG - rem) | upper << rem;
- if (left && k + off == lim - 1)
- dst[k + off] &= (1UL << left) - 1;
- }
- if (off)
- memset(dst, 0, off*sizeof(unsigned long));
-}
-EXPORT_SYMBOL(__bitmap_shift_left);
-
-void __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
- const unsigned long *bitmap2, int bits)
-{
- int k;
- int nr = BITS_TO_LONGS(bits);
-
- for (k = 0; k < nr; k++)
- dst[k] = bitmap1[k] & bitmap2[k];
-}
-EXPORT_SYMBOL(__bitmap_and);
-
-void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
- const unsigned long *bitmap2, int bits)
-{
- int k;
- int nr = BITS_TO_LONGS(bits);
-
- for (k = 0; k < nr; k++)
- dst[k] = bitmap1[k] | bitmap2[k];
-}
-EXPORT_SYMBOL(__bitmap_or);
-
-void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
- const unsigned long *bitmap2, int bits)
-{
- int k;
- int nr = BITS_TO_LONGS(bits);
-
- for (k = 0; k < nr; k++)
- dst[k] = bitmap1[k] ^ bitmap2[k];
-}
-EXPORT_SYMBOL(__bitmap_xor);
-
-void __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
- const unsigned long *bitmap2, int bits)
-{
- int k;
- int nr = BITS_TO_LONGS(bits);
-
- for (k = 0; k < nr; k++)
- dst[k] = bitmap1[k] & ~bitmap2[k];
-}
-EXPORT_SYMBOL(__bitmap_andnot);
-
-int __bitmap_intersects(const unsigned long *bitmap1,
- const unsigned long *bitmap2, int bits)
-{
- int k, lim = bits/BITS_PER_LONG;
- for (k = 0; k < lim; ++k)
- if (bitmap1[k] & bitmap2[k])
- return 1;
-
- if (bits % BITS_PER_LONG)
- if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
- return 1;
- return 0;
-}
-EXPORT_SYMBOL(__bitmap_intersects);
-
-int __bitmap_subset(const unsigned long *bitmap1,
- const unsigned long *bitmap2, int bits)
-{
- int k, lim = bits/BITS_PER_LONG;
- for (k = 0; k < lim; ++k)
- if (bitmap1[k] & ~bitmap2[k])
- return 0;
-
- if (bits % BITS_PER_LONG)
- if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
- return 0;
- return 1;
-}
-EXPORT_SYMBOL(__bitmap_subset);
-
-int __bitmap_weight(const unsigned long *bitmap, int bits)
-{
- int k, w = 0, lim = bits/BITS_PER_LONG;
-
- for (k = 0; k < lim; k++)
- w += hweight_long(bitmap[k]);
-
- if (bits % BITS_PER_LONG)
- w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
-
- return w;
-}
-EXPORT_SYMBOL(__bitmap_weight);
-
-/*
- * Bitmap printing & parsing functions: first version by Bill Irwin,
- * second version by Paul Jackson, third by Joe Korty.
- */
-
-#define CHUNKSZ 32
-#define nbits_to_hold_value(val) fls(val)
-#define unhex(c) (isdigit(c) ? (c - '0') : (toupper(c) - 'A' + 10))
-#define BASEDEC 10 /* fancier cpuset lists input in decimal */
-
-/**
- * bitmap_scnprintf - convert bitmap to an ASCII hex string.
- * @buf: byte buffer into which string is placed
- * @buflen: reserved size of @buf, in bytes
- * @maskp: pointer to bitmap to convert
- * @nmaskbits: size of bitmap, in bits
- *
- * Exactly @nmaskbits bits are displayed. Hex digits are grouped into
- * comma-separated sets of eight digits per set.
- */
-int bitmap_scnprintf(char *buf, unsigned int buflen,
- const unsigned long *maskp, int nmaskbits)
-{
- int i, word, bit, len = 0;
- unsigned long val;
- const char *sep = "";
- int chunksz;
- u32 chunkmask;
-
- chunksz = nmaskbits & (CHUNKSZ - 1);
- if (chunksz == 0)
- chunksz = CHUNKSZ;
-
- i = ALIGN(nmaskbits, CHUNKSZ) - CHUNKSZ;
- for (; i >= 0; i -= CHUNKSZ) {
- chunkmask = ((1ULL << chunksz) - 1);
- word = i / BITS_PER_LONG;
- bit = i % BITS_PER_LONG;
- val = (maskp[word] >> bit) & chunkmask;
- len += scnprintf(buf+len, buflen-len, "%s%0*lx", sep,
- (chunksz+3)/4, val);
- chunksz = CHUNKSZ;
- sep = ",";
- }
- return len;
-}
-EXPORT_SYMBOL(bitmap_scnprintf);
-
-/**
- * __bitmap_parse - convert an ASCII hex string into a bitmap.
- * @buf: pointer to buffer containing string.
- * @buflen: buffer size in bytes. If string is smaller than this
- * then it must be terminated with a \0.
- * @is_user: location of buffer, 0 indicates kernel space
- * @maskp: pointer to bitmap array that will contain result.
- * @nmaskbits: size of bitmap, in bits.
- *
- * Commas group hex digits into chunks. Each chunk defines exactly 32
- * bits of the resultant bitmask. No chunk may specify a value larger
- * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
- * then leading 0-bits are prepended. %-EINVAL is returned for illegal
- * characters and for grouping errors such as "1,,5", ",44", "," and "".
- * Leading and trailing whitespace accepted, but not embedded whitespace.
- */
-int __bitmap_parse(const char *buf, unsigned int buflen,
- int is_user, unsigned long *maskp,
- int nmaskbits)
-{
- int c, old_c, totaldigits, ndigits, nchunks, nbits;
- u32 chunk;
- const char __user *ubuf = buf;
-
- bitmap_zero(maskp, nmaskbits);
-
- nchunks = nbits = totaldigits = c = 0;
- do {
- chunk = ndigits = 0;
-
- /* Get the next chunk of the bitmap */
- while (buflen) {
- old_c = c;
- if (is_user) {
- if (__get_user(c, ubuf++))
- return -EFAULT;
- }
- else
- c = *buf++;
- buflen--;
- if (isspace(c))
- continue;
-
- /*
- * If the last character was a space and the current
- * character isn't '\0', we've got embedded whitespace.
- * This is a no-no, so throw an error.
- */
- if (totaldigits && c && isspace(old_c))
- return -EINVAL;
-
- /* A '\0' or a ',' signal the end of the chunk */
- if (c == '\0' || c == ',')
- break;
-
- if (!isxdigit(c))
- return -EINVAL;
-
- /*
- * Make sure there are at least 4 free bits in 'chunk'.
- * If not, this hexdigit will overflow 'chunk', so
- * throw an error.
- */
- if (chunk & ~((1UL << (CHUNKSZ - 4)) - 1))
- return -EOVERFLOW;
-
- chunk = (chunk << 4) | unhex(c);
- ndigits++; totaldigits++;
- }
- if (ndigits == 0)
- return -EINVAL;
- if (nchunks == 0 && chunk == 0)
- continue;
-
- __bitmap_shift_left(maskp, maskp, CHUNKSZ, nmaskbits);
- *maskp |= chunk;
- nchunks++;
- nbits += (nchunks == 1) ? nbits_to_hold_value(chunk) : CHUNKSZ;
- if (nbits > nmaskbits)
- return -EOVERFLOW;
- } while (buflen && c == ',');
-
- return 0;
-}
-EXPORT_SYMBOL(__bitmap_parse);
-
-/**
- * bitmap_parse_user()
- *
- * @ubuf: pointer to user buffer containing string.
- * @ulen: buffer size in bytes. If string is smaller than this
- * then it must be terminated with a \0.
- * @maskp: pointer to bitmap array that will contain result.
- * @nmaskbits: size of bitmap, in bits.
- *
- * Wrapper for __bitmap_parse(), providing it with user buffer.
- *
- * We cannot have this as an inline function in bitmap.h because it needs
- * linux/uaccess.h to get the access_ok() declaration and this causes
- * cyclic dependencies.
- */
-int bitmap_parse_user(const char __user *ubuf,
- unsigned int ulen, unsigned long *maskp,
- int nmaskbits)
-{
- if (!access_ok(VERIFY_READ, ubuf, ulen))
- return -EFAULT;
- return __bitmap_parse((const char *)ubuf, ulen, 1, maskp, nmaskbits);
-}
-EXPORT_SYMBOL(bitmap_parse_user);
-
-/*
- * bscnl_emit(buf, buflen, rbot, rtop, bp)
- *
- * Helper routine for bitmap_scnlistprintf(). Write decimal number
- * or range to buf, suppressing output past buf+buflen, with optional
- * comma-prefix. Return len of what would be written to buf, if it
- * all fit.
- */
-static inline int bscnl_emit(char *buf, int buflen, int rbot, int rtop, int len)
-{
- if (len > 0)
- len += scnprintf(buf + len, buflen - len, ",");
- if (rbot == rtop)
- len += scnprintf(buf + len, buflen - len, "%d", rbot);
- else
- len += scnprintf(buf + len, buflen - len, "%d-%d", rbot, rtop);
- return len;
-}
-
-/**
- * bitmap_scnlistprintf - convert bitmap to list format ASCII string
- * @buf: byte buffer into which string is placed
- * @buflen: reserved size of @buf, in bytes
- * @maskp: pointer to bitmap to convert
- * @nmaskbits: size of bitmap, in bits
- *
- * Output format is a comma-separated list of decimal numbers and
- * ranges. Consecutively set bits are shown as two hyphen-separated
- * decimal numbers, the smallest and largest bit numbers set in
- * the range. Output format is compatible with the format
- * accepted as input by bitmap_parselist().
- *
- * The return value is the number of characters which would be
- * generated for the given input, excluding the trailing '\0', as
- * per ISO C99.
- */
-int bitmap_scnlistprintf(char *buf, unsigned int buflen,
- const unsigned long *maskp, int nmaskbits)
-{
- int len = 0;
- /* current bit is 'cur', most recently seen range is [rbot, rtop] */
- int cur, rbot, rtop;
-
- if (buflen == 0)
- return 0;
- buf[0] = 0;
-
- rbot = cur = find_first_bit(maskp, nmaskbits);
- while (cur < nmaskbits) {
- rtop = cur;
- cur = find_next_bit(maskp, nmaskbits, cur+1);
- if (cur >= nmaskbits || cur > rtop + 1) {
- len = bscnl_emit(buf, buflen, rbot, rtop, len);
- rbot = cur;
- }
- }
- return len;
-}
-EXPORT_SYMBOL(bitmap_scnlistprintf);
-
-/**
- * bitmap_parselist - convert list format ASCII string to bitmap
- * @bp: read nul-terminated user string from this buffer
- * @maskp: write resulting mask here
- * @nmaskbits: number of bits in mask to be written
- *
- * Input format is a comma-separated list of decimal numbers and
- * ranges. Consecutively set bits are shown as two hyphen-separated
- * decimal numbers, the smallest and largest bit numbers set in
- * the range.
- *
- * Returns 0 on success, -errno on invalid input strings.
- * Error values:
- * %-EINVAL: second number in range smaller than first
- * %-EINVAL: invalid character in string
- * %-ERANGE: bit number specified too large for mask
- */
-int bitmap_parselist(const char *bp, unsigned long *maskp, int nmaskbits)
-{
- unsigned a, b;
-
- bitmap_zero(maskp, nmaskbits);
- do {
- if (!isdigit(*bp))
- return -EINVAL;
- b = a = simple_strtoul(bp, (char **)&bp, BASEDEC);
- if (*bp == '-') {
- bp++;
- if (!isdigit(*bp))
- return -EINVAL;
- b = simple_strtoul(bp, (char **)&bp, BASEDEC);
- }
- if (!(a <= b))
- return -EINVAL;
- if (b >= nmaskbits)
- return -ERANGE;
- while (a <= b) {
- set_bit(a, maskp);
- a++;
- }
- if (*bp == ',')
- bp++;
- } while (*bp != '\0' && *bp != '\n');
- return 0;
-}
-EXPORT_SYMBOL(bitmap_parselist);
-
-/**
- * bitmap_pos_to_ord(buf, pos, bits)
- * @buf: pointer to a bitmap
- * @pos: a bit position in @buf (0 <= @pos < @bits)
- * @bits: number of valid bit positions in @buf
- *
- * Map the bit at position @pos in @buf (of length @bits) to the
- * ordinal of which set bit it is. If it is not set or if @pos
- * is not a valid bit position, map to -1.
- *
- * If for example, just bits 4 through 7 are set in @buf, then @pos
- * values 4 through 7 will get mapped to 0 through 3, respectively,
- * and other @pos values will get mapped to 0. When @pos value 7
- * gets mapped to (returns) @ord value 3 in this example, that means
- * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
- *
- * The bit positions 0 through @bits are valid positions in @buf.
- */
-static int bitmap_pos_to_ord(const unsigned long *buf, int pos, int bits)
-{
- int i, ord;
-
- if (pos < 0 || pos >= bits || !test_bit(pos, buf))
- return -1;
-
- i = find_first_bit(buf, bits);
- ord = 0;
- while (i < pos) {
- i = find_next_bit(buf, bits, i + 1);
- ord++;
- }
- BUG_ON(i != pos);
-
- return ord;
-}
-
-/**
- * bitmap_ord_to_pos(buf, ord, bits)
- * @buf: pointer to bitmap
- * @ord: ordinal bit position (n-th set bit, n >= 0)
- * @bits: number of valid bit positions in @buf
- *
- * Map the ordinal offset of bit @ord in @buf to its position in @buf.
- * Value of @ord should be in range 0 <= @ord < weight(buf), else
- * results are undefined.
- *
- * If for example, just bits 4 through 7 are set in @buf, then @ord
- * values 0 through 3 will get mapped to 4 through 7, respectively,
- * and all other @ord values return undefined values. When @ord value 3
- * gets mapped to (returns) @pos value 7 in this example, that means
- * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
- *
- * The bit positions 0 through @bits are valid positions in @buf.
- */
-static int bitmap_ord_to_pos(const unsigned long *buf, int ord, int bits)
-{
- int pos = 0;
-
- if (ord >= 0 && ord < bits) {
- int i;
-
- for (i = find_first_bit(buf, bits);
- i < bits && ord > 0;
- i = find_next_bit(buf, bits, i + 1))
- ord--;
- if (i < bits && ord == 0)
- pos = i;
- }
-
- return pos;
-}
-
-/**
- * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
- * @dst: remapped result
- * @src: subset to be remapped
- * @old: defines domain of map
- * @new: defines range of map
- * @bits: number of bits in each of these bitmaps
- *
- * Let @old and @new define a mapping of bit positions, such that
- * whatever position is held by the n-th set bit in @old is mapped
- * to the n-th set bit in @new. In the more general case, allowing
- * for the possibility that the weight 'w' of @new is less than the
- * weight of @old, map the position of the n-th set bit in @old to
- * the position of the m-th set bit in @new, where m == n % w.
- *
- * If either of the @old and @new bitmaps are empty, or if @src and
- * @dst point to the same location, then this routine copies @src
- * to @dst.
- *
- * The positions of unset bits in @old are mapped to themselves
- * (the identify map).
- *
- * Apply the above specified mapping to @src, placing the result in
- * @dst, clearing any bits previously set in @dst.
- *
- * For example, lets say that @old has bits 4 through 7 set, and
- * @new has bits 12 through 15 set. This defines the mapping of bit
- * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
- * bit positions unchanged. So if say @src comes into this routine
- * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
- * 13 and 15 set.
- */
-void bitmap_remap(unsigned long *dst, const unsigned long *src,
- const unsigned long *old, const unsigned long *new,
- int bits)
-{
- int oldbit, w;
-
- if (dst == src) /* following doesn't handle inplace remaps */
- return;
- bitmap_zero(dst, bits);
-
- w = bitmap_weight(new, bits);
- for (oldbit = find_first_bit(src, bits);
- oldbit < bits;
- oldbit = find_next_bit(src, bits, oldbit + 1)) {
- int n = bitmap_pos_to_ord(old, oldbit, bits);
- if (n < 0 || w == 0)
- set_bit(oldbit, dst); /* identity map */
- else
- set_bit(bitmap_ord_to_pos(new, n % w, bits), dst);
- }
-}
-EXPORT_SYMBOL(bitmap_remap);
-
-/**
- * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
- * @oldbit: bit position to be mapped
- * @old: defines domain of map
- * @new: defines range of map
- * @bits: number of bits in each of these bitmaps
- *
- * Let @old and @new define a mapping of bit positions, such that
- * whatever position is held by the n-th set bit in @old is mapped
- * to the n-th set bit in @new. In the more general case, allowing
- * for the possibility that the weight 'w' of @new is less than the
- * weight of @old, map the position of the n-th set bit in @old to
- * the position of the m-th set bit in @new, where m == n % w.
- *
- * The positions of unset bits in @old are mapped to themselves
- * (the identify map).
- *
- * Apply the above specified mapping to bit position @oldbit, returning
- * the new bit position.
- *
- * For example, lets say that @old has bits 4 through 7 set, and
- * @new has bits 12 through 15 set. This defines the mapping of bit
- * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
- * bit positions unchanged. So if say @oldbit is 5, then this routine
- * returns 13.
- */
-int bitmap_bitremap(int oldbit, const unsigned long *old,
- const unsigned long *new, int bits)
-{
- int w = bitmap_weight(new, bits);
- int n = bitmap_pos_to_ord(old, oldbit, bits);
- if (n < 0 || w == 0)
- return oldbit;
- else
- return bitmap_ord_to_pos(new, n % w, bits);
-}
-EXPORT_SYMBOL(bitmap_bitremap);
-
-/**
- * bitmap_onto - translate one bitmap relative to another
- * @dst: resulting translated bitmap
- * @orig: original untranslated bitmap
- * @relmap: bitmap relative to which translated
- * @bits: number of bits in each of these bitmaps
- *
- * Set the n-th bit of @dst iff there exists some m such that the
- * n-th bit of @relmap is set, the m-th bit of @orig is set, and
- * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
- * (If you understood the previous sentence the first time your
- * read it, you're overqualified for your current job.)
- *
- * In other words, @orig is mapped onto (surjectively) @dst,
- * using the the map { <n, m> | the n-th bit of @relmap is the
- * m-th set bit of @relmap }.
- *
- * Any set bits in @orig above bit number W, where W is the
- * weight of (number of set bits in) @relmap are mapped nowhere.
- * In particular, if for all bits m set in @orig, m >= W, then
- * @dst will end up empty. In situations where the possibility
- * of such an empty result is not desired, one way to avoid it is
- * to use the bitmap_fold() operator, below, to first fold the
- * @orig bitmap over itself so that all its set bits x are in the
- * range 0 <= x < W. The bitmap_fold() operator does this by
- * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
- *
- * Example [1] for bitmap_onto():
- * Let's say @relmap has bits 30-39 set, and @orig has bits
- * 1, 3, 5, 7, 9 and 11 set. Then on return from this routine,
- * @dst will have bits 31, 33, 35, 37 and 39 set.
- *
- * When bit 0 is set in @orig, it means turn on the bit in
- * @dst corresponding to whatever is the first bit (if any)
- * that is turned on in @relmap. Since bit 0 was off in the
- * above example, we leave off that bit (bit 30) in @dst.
- *
- * When bit 1 is set in @orig (as in the above example), it
- * means turn on the bit in @dst corresponding to whatever
- * is the second bit that is turned on in @relmap. The second
- * bit in @relmap that was turned on in the above example was
- * bit 31, so we turned on bit 31 in @dst.
- *
- * Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
- * because they were the 4th, 6th, 8th and 10th set bits
- * set in @relmap, and the 4th, 6th, 8th and 10th bits of
- * @orig (i.e. bits 3, 5, 7 and 9) were also set.
- *
- * When bit 11 is set in @orig, it means turn on the bit in
- * @dst corresponding to whatever is the twelth bit that is
- * turned on in @relmap. In the above example, there were
- * only ten bits turned on in @relmap (30..39), so that bit
- * 11 was set in @orig had no affect on @dst.
- *
- * Example [2] for bitmap_fold() + bitmap_onto():
- * Let's say @relmap has these ten bits set:
- * 40 41 42 43 45 48 53 61 74 95
- * (for the curious, that's 40 plus the first ten terms of the
- * Fibonacci sequence.)
- *
- * Further lets say we use the following code, invoking
- * bitmap_fold() then bitmap_onto, as suggested above to
- * avoid the possitility of an empty @dst result:
- *
- * unsigned long *tmp; // a temporary bitmap's bits
- *
- * bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
- * bitmap_onto(dst, tmp, relmap, bits);
- *
- * Then this table shows what various values of @dst would be, for
- * various @orig's. I list the zero-based positions of each set bit.
- * The tmp column shows the intermediate result, as computed by
- * using bitmap_fold() to fold the @orig bitmap modulo ten
- * (the weight of @relmap).
- *
- * @orig tmp @dst
- * 0 0 40
- * 1 1 41
- * 9 9 95
- * 10 0 40 (*)
- * 1 3 5 7 1 3 5 7 41 43 48 61
- * 0 1 2 3 4 0 1 2 3 4 40 41 42 43 45
- * 0 9 18 27 0 9 8 7 40 61 74 95
- * 0 10 20 30 0 40
- * 0 11 22 33 0 1 2 3 40 41 42 43
- * 0 12 24 36 0 2 4 6 40 42 45 53
- * 78 102 211 1 2 8 41 42 74 (*)
- *
- * (*) For these marked lines, if we hadn't first done bitmap_fold()
- * into tmp, then the @dst result would have been empty.
- *
- * If either of @orig or @relmap is empty (no set bits), then @dst
- * will be returned empty.
- *
- * If (as explained above) the only set bits in @orig are in positions
- * m where m >= W, (where W is the weight of @relmap) then @dst will
- * once again be returned empty.
- *
- * All bits in @dst not set by the above rule are cleared.
- */
-void bitmap_onto(unsigned long *dst, const unsigned long *orig,
- const unsigned long *relmap, int bits)
-{
- int n, m; /* same meaning as in above comment */
-
- if (dst == orig) /* following doesn't handle inplace mappings */
- return;
- bitmap_zero(dst, bits);
-
- /*
- * The following code is a more efficient, but less
- * obvious, equivalent to the loop:
- * for (m = 0; m < bitmap_weight(relmap, bits); m++) {
- * n = bitmap_ord_to_pos(orig, m, bits);
- * if (test_bit(m, orig))
- * set_bit(n, dst);
- * }
- */
-
- m = 0;
- for (n = find_first_bit(relmap, bits);
- n < bits;
- n = find_next_bit(relmap, bits, n + 1)) {
- /* m == bitmap_pos_to_ord(relmap, n, bits) */
- if (test_bit(m, orig))
- set_bit(n, dst);
- m++;
- }
-}
-EXPORT_SYMBOL(bitmap_onto);
-
-/**
- * bitmap_fold - fold larger bitmap into smaller, modulo specified size
- * @dst: resulting smaller bitmap
- * @orig: original larger bitmap
- * @sz: specified size
- * @bits: number of bits in each of these bitmaps
- *
- * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
- * Clear all other bits in @dst. See further the comment and
- * Example [2] for bitmap_onto() for why and how to use this.
- */
-void bitmap_fold(unsigned long *dst, const unsigned long *orig,
- int sz, int bits)
-{
- int oldbit;
-
- if (dst == orig) /* following doesn't handle inplace mappings */
- return;
- bitmap_zero(dst, bits);
-
- for (oldbit = find_first_bit(orig, bits);
- oldbit < bits;
- oldbit = find_next_bit(orig, bits, oldbit + 1))
- set_bit(oldbit % sz, dst);
-}
-EXPORT_SYMBOL(bitmap_fold);
-
-/*
- * Common code for bitmap_*_region() routines.
- * bitmap: array of unsigned longs corresponding to the bitmap
- * pos: the beginning of the region
- * order: region size (log base 2 of number of bits)
- * reg_op: operation(s) to perform on that region of bitmap
- *
- * Can set, verify and/or release a region of bits in a bitmap,
- * depending on which combination of REG_OP_* flag bits is set.
- *
- * A region of a bitmap is a sequence of bits in the bitmap, of
- * some size '1 << order' (a power of two), aligned to that same
- * '1 << order' power of two.
- *
- * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
- * Returns 0 in all other cases and reg_ops.
- */
-
-enum {
- REG_OP_ISFREE, /* true if region is all zero bits */
- REG_OP_ALLOC, /* set all bits in region */
- REG_OP_RELEASE, /* clear all bits in region */
-};
-
-static int __reg_op(unsigned long *bitmap, int pos, int order, int reg_op)
-{
- int nbits_reg; /* number of bits in region */
- int index; /* index first long of region in bitmap */
- int offset; /* bit offset region in bitmap[index] */
- int nlongs_reg; /* num longs spanned by region in bitmap */
- int nbitsinlong; /* num bits of region in each spanned long */
- unsigned long mask; /* bitmask for one long of region */
- int i; /* scans bitmap by longs */
- int ret = 0; /* return value */
-
- /*
- * Either nlongs_reg == 1 (for small orders that fit in one long)
- * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
- */
- nbits_reg = 1 << order;
- index = pos / BITS_PER_LONG;
- offset = pos - (index * BITS_PER_LONG);
- nlongs_reg = BITS_TO_LONGS(nbits_reg);
- nbitsinlong = min(nbits_reg, BITS_PER_LONG);
-
- /*
- * Can't do "mask = (1UL << nbitsinlong) - 1", as that
- * overflows if nbitsinlong == BITS_PER_LONG.
- */
- mask = (1UL << (nbitsinlong - 1));
- mask += mask - 1;
- mask <<= offset;
-
- switch (reg_op) {
- case REG_OP_ISFREE:
- for (i = 0; i < nlongs_reg; i++) {
- if (bitmap[index + i] & mask)
- goto done;
- }
- ret = 1; /* all bits in region free (zero) */
- break;
-
- case REG_OP_ALLOC:
- for (i = 0; i < nlongs_reg; i++)
- bitmap[index + i] |= mask;
- break;
-
- case REG_OP_RELEASE:
- for (i = 0; i < nlongs_reg; i++)
- bitmap[index + i] &= ~mask;
- break;
- }
-done:
- return ret;
-}
-
-/**
- * bitmap_find_free_region - find a contiguous aligned mem region
- * @bitmap: array of unsigned longs corresponding to the bitmap
- * @bits: number of bits in the bitmap
- * @order: region size (log base 2 of number of bits) to find
- *
- * Find a region of free (zero) bits in a @bitmap of @bits bits and
- * allocate them (set them to one). Only consider regions of length
- * a power (@order) of two, aligned to that power of two, which
- * makes the search algorithm much faster.
- *
- * Return the bit offset in bitmap of the allocated region,
- * or -errno on failure.
- */
-int bitmap_find_free_region(unsigned long *bitmap, int bits, int order)
-{
- int pos, end; /* scans bitmap by regions of size order */
-
- for (pos = 0 ; (end = pos + (1 << order)) <= bits; pos = end) {
- if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
- continue;
- __reg_op(bitmap, pos, order, REG_OP_ALLOC);
- return pos;
- }
- return -ENOMEM;
-}
-EXPORT_SYMBOL(bitmap_find_free_region);
-
-/**
- * bitmap_release_region - release allocated bitmap region
- * @bitmap: array of unsigned longs corresponding to the bitmap
- * @pos: beginning of bit region to release
- * @order: region size (log base 2 of number of bits) to release
- *
- * This is the complement to __bitmap_find_free_region() and releases
- * the found region (by clearing it in the bitmap).
- *
- * No return value.
- */
-void bitmap_release_region(unsigned long *bitmap, int pos, int order)
-{
- __reg_op(bitmap, pos, order, REG_OP_RELEASE);
-}
-EXPORT_SYMBOL(bitmap_release_region);
-
-/**
- * bitmap_allocate_region - allocate bitmap region
- * @bitmap: array of unsigned longs corresponding to the bitmap
- * @pos: beginning of bit region to allocate
- * @order: region size (log base 2 of number of bits) to allocate
- *
- * Allocate (set bits in) a specified region of a bitmap.
- *
- * Return 0 on success, or %-EBUSY if specified region wasn't
- * free (not all bits were zero).
- */
-int bitmap_allocate_region(unsigned long *bitmap, int pos, int order)
-{
- if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
- return -EBUSY;
- __reg_op(bitmap, pos, order, REG_OP_ALLOC);
- return 0;
-}
-EXPORT_SYMBOL(bitmap_allocate_region);
-
-/**
- * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
- * @dst: destination buffer
- * @src: bitmap to copy
- * @nbits: number of bits in the bitmap
- *
- * Require nbits % BITS_PER_LONG == 0.
- */
-void bitmap_copy_le(void *dst, const unsigned long *src, int nbits)
-{
- unsigned long *d = dst;
- int i;
-
- for (i = 0; i < nbits/BITS_PER_LONG; i++) {
- if (BITS_PER_LONG == 64)
- d[i] = cpu_to_le64(src[i]);
- else
- d[i] = cpu_to_le32(src[i]);
- }
-}
-EXPORT_SYMBOL(bitmap_copy_le);
diff --git a/libdde_linux26/contrib/lib/bitrev.c b/libdde_linux26/contrib/lib/bitrev.c
deleted file mode 100644
index 39562034..00000000
--- a/libdde_linux26/contrib/lib/bitrev.c
+++ /dev/null
@@ -1,59 +0,0 @@
-#include <linux/types.h>
-#include <linux/module.h>
-#include <linux/bitrev.h>
-
-MODULE_AUTHOR("Akinobu Mita <akinobu.mita@gmail.com>");
-MODULE_DESCRIPTION("Bit ordering reversal functions");
-MODULE_LICENSE("GPL");
-
-const u8 byte_rev_table[256] = {
- 0x00, 0x80, 0x40, 0xc0, 0x20, 0xa0, 0x60, 0xe0,
- 0x10, 0x90, 0x50, 0xd0, 0x30, 0xb0, 0x70, 0xf0,
- 0x08, 0x88, 0x48, 0xc8, 0x28, 0xa8, 0x68, 0xe8,
- 0x18, 0x98, 0x58, 0xd8, 0x38, 0xb8, 0x78, 0xf8,
- 0x04, 0x84, 0x44, 0xc4, 0x24, 0xa4, 0x64, 0xe4,
- 0x14, 0x94, 0x54, 0xd4, 0x34, 0xb4, 0x74, 0xf4,
- 0x0c, 0x8c, 0x4c, 0xcc, 0x2c, 0xac, 0x6c, 0xec,
- 0x1c, 0x9c, 0x5c, 0xdc, 0x3c, 0xbc, 0x7c, 0xfc,
- 0x02, 0x82, 0x42, 0xc2, 0x22, 0xa2, 0x62, 0xe2,
- 0x12, 0x92, 0x52, 0xd2, 0x32, 0xb2, 0x72, 0xf2,
- 0x0a, 0x8a, 0x4a, 0xca, 0x2a, 0xaa, 0x6a, 0xea,
- 0x1a, 0x9a, 0x5a, 0xda, 0x3a, 0xba, 0x7a, 0xfa,
- 0x06, 0x86, 0x46, 0xc6, 0x26, 0xa6, 0x66, 0xe6,
- 0x16, 0x96, 0x56, 0xd6, 0x36, 0xb6, 0x76, 0xf6,
- 0x0e, 0x8e, 0x4e, 0xce, 0x2e, 0xae, 0x6e, 0xee,
- 0x1e, 0x9e, 0x5e, 0xde, 0x3e, 0xbe, 0x7e, 0xfe,
- 0x01, 0x81, 0x41, 0xc1, 0x21, 0xa1, 0x61, 0xe1,
- 0x11, 0x91, 0x51, 0xd1, 0x31, 0xb1, 0x71, 0xf1,
- 0x09, 0x89, 0x49, 0xc9, 0x29, 0xa9, 0x69, 0xe9,
- 0x19, 0x99, 0x59, 0xd9, 0x39, 0xb9, 0x79, 0xf9,
- 0x05, 0x85, 0x45, 0xc5, 0x25, 0xa5, 0x65, 0xe5,
- 0x15, 0x95, 0x55, 0xd5, 0x35, 0xb5, 0x75, 0xf5,
- 0x0d, 0x8d, 0x4d, 0xcd, 0x2d, 0xad, 0x6d, 0xed,
- 0x1d, 0x9d, 0x5d, 0xdd, 0x3d, 0xbd, 0x7d, 0xfd,
- 0x03, 0x83, 0x43, 0xc3, 0x23, 0xa3, 0x63, 0xe3,
- 0x13, 0x93, 0x53, 0xd3, 0x33, 0xb3, 0x73, 0xf3,
- 0x0b, 0x8b, 0x4b, 0xcb, 0x2b, 0xab, 0x6b, 0xeb,
- 0x1b, 0x9b, 0x5b, 0xdb, 0x3b, 0xbb, 0x7b, 0xfb,
- 0x07, 0x87, 0x47, 0xc7, 0x27, 0xa7, 0x67, 0xe7,
- 0x17, 0x97, 0x57, 0xd7, 0x37, 0xb7, 0x77, 0xf7,
- 0x0f, 0x8f, 0x4f, 0xcf, 0x2f, 0xaf, 0x6f, 0xef,
- 0x1f, 0x9f, 0x5f, 0xdf, 0x3f, 0xbf, 0x7f, 0xff,
-};
-EXPORT_SYMBOL_GPL(byte_rev_table);
-
-u16 bitrev16(u16 x)
-{
- return (bitrev8(x & 0xff) << 8) | bitrev8(x >> 8);
-}
-EXPORT_SYMBOL(bitrev16);
-
-/**
- * bitrev32 - reverse the order of bits in a u32 value
- * @x: value to be bit-reversed
- */
-u32 bitrev32(u32 x)
-{
- return (bitrev16(x & 0xffff) << 16) | bitrev16(x >> 16);
-}
-EXPORT_SYMBOL(bitrev32);
diff --git a/libdde_linux26/contrib/lib/cpumask.c b/libdde_linux26/contrib/lib/cpumask.c
deleted file mode 100644
index 3389e244..00000000
--- a/libdde_linux26/contrib/lib/cpumask.c
+++ /dev/null
@@ -1,172 +0,0 @@
-#include <linux/kernel.h>
-#include <linux/bitops.h>
-#include <linux/cpumask.h>
-#include <linux/module.h>
-#include <linux/bootmem.h>
-
-int __first_cpu(const cpumask_t *srcp)
-{
- return min_t(int, NR_CPUS, find_first_bit(srcp->bits, NR_CPUS));
-}
-EXPORT_SYMBOL(__first_cpu);
-
-int __next_cpu(int n, const cpumask_t *srcp)
-{
- return min_t(int, NR_CPUS, find_next_bit(srcp->bits, NR_CPUS, n+1));
-}
-EXPORT_SYMBOL(__next_cpu);
-
-#if NR_CPUS > 64
-int __next_cpu_nr(int n, const cpumask_t *srcp)
-{
- return min_t(int, nr_cpu_ids,
- find_next_bit(srcp->bits, nr_cpu_ids, n+1));
-}
-EXPORT_SYMBOL(__next_cpu_nr);
-#endif
-
-int __any_online_cpu(const cpumask_t *mask)
-{
- int cpu;
-
- for_each_cpu_mask(cpu, *mask) {
- if (cpu_online(cpu))
- break;
- }
- return cpu;
-}
-EXPORT_SYMBOL(__any_online_cpu);
-
-/**
- * cpumask_next_and - get the next cpu in *src1p & *src2p
- * @n: the cpu prior to the place to search (ie. return will be > @n)
- * @src1p: the first cpumask pointer
- * @src2p: the second cpumask pointer
- *
- * Returns >= nr_cpu_ids if no further cpus set in both.
- */
-int cpumask_next_and(int n, const struct cpumask *src1p,
- const struct cpumask *src2p)
-{
- while ((n = cpumask_next(n, src1p)) < nr_cpu_ids)
- if (cpumask_test_cpu(n, src2p))
- break;
- return n;
-}
-EXPORT_SYMBOL(cpumask_next_and);
-
-/**
- * cpumask_any_but - return a "random" in a cpumask, but not this one.
- * @mask: the cpumask to search
- * @cpu: the cpu to ignore.
- *
- * Often used to find any cpu but smp_processor_id() in a mask.
- * Returns >= nr_cpu_ids if no cpus set.
- */
-int cpumask_any_but(const struct cpumask *mask, unsigned int cpu)
-{
- unsigned int i;
-
- cpumask_check(cpu);
- for_each_cpu(i, mask)
- if (i != cpu)
- break;
- return i;
-}
-
-/* These are not inline because of header tangles. */
-#ifdef CONFIG_CPUMASK_OFFSTACK
-/**
- * alloc_cpumask_var_node - allocate a struct cpumask on a given node
- * @mask: pointer to cpumask_var_t where the cpumask is returned
- * @flags: GFP_ flags
- *
- * Only defined when CONFIG_CPUMASK_OFFSTACK=y, otherwise is
- * a nop returning a constant 1 (in <linux/cpumask.h>)
- * Returns TRUE if memory allocation succeeded, FALSE otherwise.
- *
- * In addition, mask will be NULL if this fails. Note that gcc is
- * usually smart enough to know that mask can never be NULL if
- * CONFIG_CPUMASK_OFFSTACK=n, so does code elimination in that case
- * too.
- */
-bool alloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags, int node)
-{
- if (likely(slab_is_available()))
- *mask = kmalloc_node(cpumask_size(), flags, node);
- else {
-#ifdef CONFIG_DEBUG_PER_CPU_MAPS
- printk(KERN_ERR
- "=> alloc_cpumask_var: kmalloc not available!\n");
-#endif
- *mask = NULL;
- }
-#ifdef CONFIG_DEBUG_PER_CPU_MAPS
- if (!*mask) {
- printk(KERN_ERR "=> alloc_cpumask_var: failed!\n");
- dump_stack();
- }
-#endif
- /* FIXME: Bandaid to save us from old primitives which go to NR_CPUS. */
- if (*mask) {
- unsigned int tail;
- tail = BITS_TO_LONGS(NR_CPUS - nr_cpumask_bits) * sizeof(long);
- memset(cpumask_bits(*mask) + cpumask_size() - tail,
- 0, tail);
- }
-
- return *mask != NULL;
-}
-EXPORT_SYMBOL(alloc_cpumask_var_node);
-
-/**
- * alloc_cpumask_var - allocate a struct cpumask
- * @mask: pointer to cpumask_var_t where the cpumask is returned
- * @flags: GFP_ flags
- *
- * Only defined when CONFIG_CPUMASK_OFFSTACK=y, otherwise is
- * a nop returning a constant 1 (in <linux/cpumask.h>).
- *
- * See alloc_cpumask_var_node.
- */
-bool alloc_cpumask_var(cpumask_var_t *mask, gfp_t flags)
-{
- return alloc_cpumask_var_node(mask, flags, numa_node_id());
-}
-EXPORT_SYMBOL(alloc_cpumask_var);
-
-/**
- * alloc_bootmem_cpumask_var - allocate a struct cpumask from the bootmem arena.
- * @mask: pointer to cpumask_var_t where the cpumask is returned
- *
- * Only defined when CONFIG_CPUMASK_OFFSTACK=y, otherwise is
- * a nop (in <linux/cpumask.h>).
- * Either returns an allocated (zero-filled) cpumask, or causes the
- * system to panic.
- */
-void __init alloc_bootmem_cpumask_var(cpumask_var_t *mask)
-{
- *mask = alloc_bootmem(cpumask_size());
-}
-
-/**
- * free_cpumask_var - frees memory allocated for a struct cpumask.
- * @mask: cpumask to free
- *
- * This is safe on a NULL mask.
- */
-void free_cpumask_var(cpumask_var_t mask)
-{
- kfree(mask);
-}
-EXPORT_SYMBOL(free_cpumask_var);
-
-/**
- * free_bootmem_cpumask_var - frees result of alloc_bootmem_cpumask_var
- * @mask: cpumask to free
- */
-void __init free_bootmem_cpumask_var(cpumask_var_t mask)
-{
- free_bootmem((unsigned long)mask, cpumask_size());
-}
-#endif
diff --git a/libdde_linux26/contrib/lib/crc32.c b/libdde_linux26/contrib/lib/crc32.c
deleted file mode 100644
index 49d1c9e3..00000000
--- a/libdde_linux26/contrib/lib/crc32.c
+++ /dev/null
@@ -1,501 +0,0 @@
-/*
- * Oct 15, 2000 Matt Domsch <Matt_Domsch@dell.com>
- * Nicer crc32 functions/docs submitted by linux@horizon.com. Thanks!
- * Code was from the public domain, copyright abandoned. Code was
- * subsequently included in the kernel, thus was re-licensed under the
- * GNU GPL v2.
- *
- * Oct 12, 2000 Matt Domsch <Matt_Domsch@dell.com>
- * Same crc32 function was used in 5 other places in the kernel.
- * I made one version, and deleted the others.
- * There are various incantations of crc32(). Some use a seed of 0 or ~0.
- * Some xor at the end with ~0. The generic crc32() function takes
- * seed as an argument, and doesn't xor at the end. Then individual
- * users can do whatever they need.
- * drivers/net/smc9194.c uses seed ~0, doesn't xor with ~0.
- * fs/jffs2 uses seed 0, doesn't xor with ~0.
- * fs/partitions/efi.c uses seed ~0, xor's with ~0.
- *
- * This source code is licensed under the GNU General Public License,
- * Version 2. See the file COPYING for more details.
- */
-
-#include <linux/crc32.h>
-#include <linux/kernel.h>
-#include <linux/module.h>
-#include <linux/compiler.h>
-#include <linux/types.h>
-#include <linux/slab.h>
-#include <linux/init.h>
-#include <asm/atomic.h>
-#include "crc32defs.h"
-#if CRC_LE_BITS == 8
-#define tole(x) __constant_cpu_to_le32(x)
-#define tobe(x) __constant_cpu_to_be32(x)
-#else
-#define tole(x) (x)
-#define tobe(x) (x)
-#endif
-#include "crc32table.h"
-
-MODULE_AUTHOR("Matt Domsch <Matt_Domsch@dell.com>");
-MODULE_DESCRIPTION("Ethernet CRC32 calculations");
-MODULE_LICENSE("GPL");
-
-/**
- * crc32_le() - Calculate bitwise little-endian Ethernet AUTODIN II CRC32
- * @crc: seed value for computation. ~0 for Ethernet, sometimes 0 for
- * other uses, or the previous crc32 value if computing incrementally.
- * @p: pointer to buffer over which CRC is run
- * @len: length of buffer @p
- */
-u32 __pure crc32_le(u32 crc, unsigned char const *p, size_t len);
-
-#if CRC_LE_BITS == 1
-/*
- * In fact, the table-based code will work in this case, but it can be
- * simplified by inlining the table in ?: form.
- */
-
-u32 __pure crc32_le(u32 crc, unsigned char const *p, size_t len)
-{
- int i;
- while (len--) {
- crc ^= *p++;
- for (i = 0; i < 8; i++)
- crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_LE : 0);
- }
- return crc;
-}
-#else /* Table-based approach */
-
-u32 __pure crc32_le(u32 crc, unsigned char const *p, size_t len)
-{
-# if CRC_LE_BITS == 8
- const u32 *b =(u32 *)p;
- const u32 *tab = crc32table_le;
-
-# ifdef __LITTLE_ENDIAN
-# define DO_CRC(x) crc = tab[ (crc ^ (x)) & 255 ] ^ (crc>>8)
-# else
-# define DO_CRC(x) crc = tab[ ((crc >> 24) ^ (x)) & 255] ^ (crc<<8)
-# endif
-
- crc = __cpu_to_le32(crc);
- /* Align it */
- if(unlikely(((long)b)&3 && len)){
- do {
- u8 *p = (u8 *)b;
- DO_CRC(*p++);
- b = (void *)p;
- } while ((--len) && ((long)b)&3 );
- }
- if(likely(len >= 4)){
- /* load data 32 bits wide, xor data 32 bits wide. */
- size_t save_len = len & 3;
- len = len >> 2;
- --b; /* use pre increment below(*++b) for speed */
- do {
- crc ^= *++b;
- DO_CRC(0);
- DO_CRC(0);
- DO_CRC(0);
- DO_CRC(0);
- } while (--len);
- b++; /* point to next byte(s) */
- len = save_len;
- }
- /* And the last few bytes */
- if(len){
- do {
- u8 *p = (u8 *)b;
- DO_CRC(*p++);
- b = (void *)p;
- } while (--len);
- }
-
- return __le32_to_cpu(crc);
-#undef ENDIAN_SHIFT
-#undef DO_CRC
-
-# elif CRC_LE_BITS == 4
- while (len--) {
- crc ^= *p++;
- crc = (crc >> 4) ^ crc32table_le[crc & 15];
- crc = (crc >> 4) ^ crc32table_le[crc & 15];
- }
- return crc;
-# elif CRC_LE_BITS == 2
- while (len--) {
- crc ^= *p++;
- crc = (crc >> 2) ^ crc32table_le[crc & 3];
- crc = (crc >> 2) ^ crc32table_le[crc & 3];
- crc = (crc >> 2) ^ crc32table_le[crc & 3];
- crc = (crc >> 2) ^ crc32table_le[crc & 3];
- }
- return crc;
-# endif
-}
-#endif
-
-/**
- * crc32_be() - Calculate bitwise big-endian Ethernet AUTODIN II CRC32
- * @crc: seed value for computation. ~0 for Ethernet, sometimes 0 for
- * other uses, or the previous crc32 value if computing incrementally.
- * @p: pointer to buffer over which CRC is run
- * @len: length of buffer @p
- */
-u32 __pure crc32_be(u32 crc, unsigned char const *p, size_t len);
-
-#if CRC_BE_BITS == 1
-/*
- * In fact, the table-based code will work in this case, but it can be
- * simplified by inlining the table in ?: form.
- */
-
-u32 __pure crc32_be(u32 crc, unsigned char const *p, size_t len)
-{
- int i;
- while (len--) {
- crc ^= *p++ << 24;
- for (i = 0; i < 8; i++)
- crc =
- (crc << 1) ^ ((crc & 0x80000000) ? CRCPOLY_BE :
- 0);
- }
- return crc;
-}
-
-#else /* Table-based approach */
-u32 __pure crc32_be(u32 crc, unsigned char const *p, size_t len)
-{
-# if CRC_BE_BITS == 8
- const u32 *b =(u32 *)p;
- const u32 *tab = crc32table_be;
-
-# ifdef __LITTLE_ENDIAN
-# define DO_CRC(x) crc = tab[ (crc ^ (x)) & 255 ] ^ (crc>>8)
-# else
-# define DO_CRC(x) crc = tab[ ((crc >> 24) ^ (x)) & 255] ^ (crc<<8)
-# endif
-
- crc = __cpu_to_be32(crc);
- /* Align it */
- if(unlikely(((long)b)&3 && len)){
- do {
- u8 *p = (u8 *)b;
- DO_CRC(*p++);
- b = (u32 *)p;
- } while ((--len) && ((long)b)&3 );
- }
- if(likely(len >= 4)){
- /* load data 32 bits wide, xor data 32 bits wide. */
- size_t save_len = len & 3;
- len = len >> 2;
- --b; /* use pre increment below(*++b) for speed */
- do {
- crc ^= *++b;
- DO_CRC(0);
- DO_CRC(0);
- DO_CRC(0);
- DO_CRC(0);
- } while (--len);
- b++; /* point to next byte(s) */
- len = save_len;
- }
- /* And the last few bytes */
- if(len){
- do {
- u8 *p = (u8 *)b;
- DO_CRC(*p++);
- b = (void *)p;
- } while (--len);
- }
- return __be32_to_cpu(crc);
-#undef ENDIAN_SHIFT
-#undef DO_CRC
-
-# elif CRC_BE_BITS == 4
- while (len--) {
- crc ^= *p++ << 24;
- crc = (crc << 4) ^ crc32table_be[crc >> 28];
- crc = (crc << 4) ^ crc32table_be[crc >> 28];
- }
- return crc;
-# elif CRC_BE_BITS == 2
- while (len--) {
- crc ^= *p++ << 24;
- crc = (crc << 2) ^ crc32table_be[crc >> 30];
- crc = (crc << 2) ^ crc32table_be[crc >> 30];
- crc = (crc << 2) ^ crc32table_be[crc >> 30];
- crc = (crc << 2) ^ crc32table_be[crc >> 30];
- }
- return crc;
-# endif
-}
-#endif
-
-EXPORT_SYMBOL(crc32_le);
-EXPORT_SYMBOL(crc32_be);
-
-/*
- * A brief CRC tutorial.
- *
- * A CRC is a long-division remainder. You add the CRC to the message,
- * and the whole thing (message+CRC) is a multiple of the given
- * CRC polynomial. To check the CRC, you can either check that the
- * CRC matches the recomputed value, *or* you can check that the
- * remainder computed on the message+CRC is 0. This latter approach
- * is used by a lot of hardware implementations, and is why so many
- * protocols put the end-of-frame flag after the CRC.
- *
- * It's actually the same long division you learned in school, except that
- * - We're working in binary, so the digits are only 0 and 1, and
- * - When dividing polynomials, there are no carries. Rather than add and
- * subtract, we just xor. Thus, we tend to get a bit sloppy about
- * the difference between adding and subtracting.
- *
- * A 32-bit CRC polynomial is actually 33 bits long. But since it's
- * 33 bits long, bit 32 is always going to be set, so usually the CRC
- * is written in hex with the most significant bit omitted. (If you're
- * familiar with the IEEE 754 floating-point format, it's the same idea.)
- *
- * Note that a CRC is computed over a string of *bits*, so you have
- * to decide on the endianness of the bits within each byte. To get
- * the best error-detecting properties, this should correspond to the
- * order they're actually sent. For example, standard RS-232 serial is
- * little-endian; the most significant bit (sometimes used for parity)
- * is sent last. And when appending a CRC word to a message, you should
- * do it in the right order, matching the endianness.
- *
- * Just like with ordinary division, the remainder is always smaller than
- * the divisor (the CRC polynomial) you're dividing by. Each step of the
- * division, you take one more digit (bit) of the dividend and append it
- * to the current remainder. Then you figure out the appropriate multiple
- * of the divisor to subtract to being the remainder back into range.
- * In binary, it's easy - it has to be either 0 or 1, and to make the
- * XOR cancel, it's just a copy of bit 32 of the remainder.
- *
- * When computing a CRC, we don't care about the quotient, so we can
- * throw the quotient bit away, but subtract the appropriate multiple of
- * the polynomial from the remainder and we're back to where we started,
- * ready to process the next bit.
- *
- * A big-endian CRC written this way would be coded like:
- * for (i = 0; i < input_bits; i++) {
- * multiple = remainder & 0x80000000 ? CRCPOLY : 0;
- * remainder = (remainder << 1 | next_input_bit()) ^ multiple;
- * }
- * Notice how, to get at bit 32 of the shifted remainder, we look
- * at bit 31 of the remainder *before* shifting it.
- *
- * But also notice how the next_input_bit() bits we're shifting into
- * the remainder don't actually affect any decision-making until
- * 32 bits later. Thus, the first 32 cycles of this are pretty boring.
- * Also, to add the CRC to a message, we need a 32-bit-long hole for it at
- * the end, so we have to add 32 extra cycles shifting in zeros at the
- * end of every message,
- *
- * So the standard trick is to rearrage merging in the next_input_bit()
- * until the moment it's needed. Then the first 32 cycles can be precomputed,
- * and merging in the final 32 zero bits to make room for the CRC can be
- * skipped entirely.
- * This changes the code to:
- * for (i = 0; i < input_bits; i++) {
- * remainder ^= next_input_bit() << 31;
- * multiple = (remainder & 0x80000000) ? CRCPOLY : 0;
- * remainder = (remainder << 1) ^ multiple;
- * }
- * With this optimization, the little-endian code is simpler:
- * for (i = 0; i < input_bits; i++) {
- * remainder ^= next_input_bit();
- * multiple = (remainder & 1) ? CRCPOLY : 0;
- * remainder = (remainder >> 1) ^ multiple;
- * }
- *
- * Note that the other details of endianness have been hidden in CRCPOLY
- * (which must be bit-reversed) and next_input_bit().
- *
- * However, as long as next_input_bit is returning the bits in a sensible
- * order, we can actually do the merging 8 or more bits at a time rather
- * than one bit at a time:
- * for (i = 0; i < input_bytes; i++) {
- * remainder ^= next_input_byte() << 24;
- * for (j = 0; j < 8; j++) {
- * multiple = (remainder & 0x80000000) ? CRCPOLY : 0;
- * remainder = (remainder << 1) ^ multiple;
- * }
- * }
- * Or in little-endian:
- * for (i = 0; i < input_bytes; i++) {
- * remainder ^= next_input_byte();
- * for (j = 0; j < 8; j++) {
- * multiple = (remainder & 1) ? CRCPOLY : 0;
- * remainder = (remainder << 1) ^ multiple;
- * }
- * }
- * If the input is a multiple of 32 bits, you can even XOR in a 32-bit
- * word at a time and increase the inner loop count to 32.
- *
- * You can also mix and match the two loop styles, for example doing the
- * bulk of a message byte-at-a-time and adding bit-at-a-time processing
- * for any fractional bytes at the end.
- *
- * The only remaining optimization is to the byte-at-a-time table method.
- * Here, rather than just shifting one bit of the remainder to decide
- * in the correct multiple to subtract, we can shift a byte at a time.
- * This produces a 40-bit (rather than a 33-bit) intermediate remainder,
- * but again the multiple of the polynomial to subtract depends only on
- * the high bits, the high 8 bits in this case.
- *
- * The multiple we need in that case is the low 32 bits of a 40-bit
- * value whose high 8 bits are given, and which is a multiple of the
- * generator polynomial. This is simply the CRC-32 of the given
- * one-byte message.
- *
- * Two more details: normally, appending zero bits to a message which
- * is already a multiple of a polynomial produces a larger multiple of that
- * polynomial. To enable a CRC to detect this condition, it's common to
- * invert the CRC before appending it. This makes the remainder of the
- * message+crc come out not as zero, but some fixed non-zero value.
- *
- * The same problem applies to zero bits prepended to the message, and
- * a similar solution is used. Instead of starting with a remainder of
- * 0, an initial remainder of all ones is used. As long as you start
- * the same way on decoding, it doesn't make a difference.
- */
-
-#ifdef UNITTEST
-
-#include <stdlib.h>
-#include <stdio.h>
-
-#if 0 /*Not used at present */
-static void
-buf_dump(char const *prefix, unsigned char const *buf, size_t len)
-{
- fputs(prefix, stdout);
- while (len--)
- printf(" %02x", *buf++);
- putchar('\n');
-
-}
-#endif
-
-static void bytereverse(unsigned char *buf, size_t len)
-{
- while (len--) {
- unsigned char x = bitrev8(*buf);
- *buf++ = x;
- }
-}
-
-static void random_garbage(unsigned char *buf, size_t len)
-{
- while (len--)
- *buf++ = (unsigned char) random();
-}
-
-#if 0 /* Not used at present */
-static void store_le(u32 x, unsigned char *buf)
-{
- buf[0] = (unsigned char) x;
- buf[1] = (unsigned char) (x >> 8);
- buf[2] = (unsigned char) (x >> 16);
- buf[3] = (unsigned char) (x >> 24);
-}
-#endif
-
-static void store_be(u32 x, unsigned char *buf)
-{
- buf[0] = (unsigned char) (x >> 24);
- buf[1] = (unsigned char) (x >> 16);
- buf[2] = (unsigned char) (x >> 8);
- buf[3] = (unsigned char) x;
-}
-
-/*
- * This checks that CRC(buf + CRC(buf)) = 0, and that
- * CRC commutes with bit-reversal. This has the side effect
- * of bytewise bit-reversing the input buffer, and returns
- * the CRC of the reversed buffer.
- */
-static u32 test_step(u32 init, unsigned char *buf, size_t len)
-{
- u32 crc1, crc2;
- size_t i;
-
- crc1 = crc32_be(init, buf, len);
- store_be(crc1, buf + len);
- crc2 = crc32_be(init, buf, len + 4);
- if (crc2)
- printf("\nCRC cancellation fail: 0x%08x should be 0\n",
- crc2);
-
- for (i = 0; i <= len + 4; i++) {
- crc2 = crc32_be(init, buf, i);
- crc2 = crc32_be(crc2, buf + i, len + 4 - i);
- if (crc2)
- printf("\nCRC split fail: 0x%08x\n", crc2);
- }
-
- /* Now swap it around for the other test */
-
- bytereverse(buf, len + 4);
- init = bitrev32(init);
- crc2 = bitrev32(crc1);
- if (crc1 != bitrev32(crc2))
- printf("\nBit reversal fail: 0x%08x -> 0x%08x -> 0x%08x\n",
- crc1, crc2, bitrev32(crc2));
- crc1 = crc32_le(init, buf, len);
- if (crc1 != crc2)
- printf("\nCRC endianness fail: 0x%08x != 0x%08x\n", crc1,
- crc2);
- crc2 = crc32_le(init, buf, len + 4);
- if (crc2)
- printf("\nCRC cancellation fail: 0x%08x should be 0\n",
- crc2);
-
- for (i = 0; i <= len + 4; i++) {
- crc2 = crc32_le(init, buf, i);
- crc2 = crc32_le(crc2, buf + i, len + 4 - i);
- if (crc2)
- printf("\nCRC split fail: 0x%08x\n", crc2);
- }
-
- return crc1;
-}
-
-#define SIZE 64
-#define INIT1 0
-#define INIT2 0
-
-int main(void)
-{
- unsigned char buf1[SIZE + 4];
- unsigned char buf2[SIZE + 4];
- unsigned char buf3[SIZE + 4];
- int i, j;
- u32 crc1, crc2, crc3;
-
- for (i = 0; i <= SIZE; i++) {
- printf("\rTesting length %d...", i);
- fflush(stdout);
- random_garbage(buf1, i);
- random_garbage(buf2, i);
- for (j = 0; j < i; j++)
- buf3[j] = buf1[j] ^ buf2[j];
-
- crc1 = test_step(INIT1, buf1, i);
- crc2 = test_step(INIT2, buf2, i);
- /* Now check that CRC(buf1 ^ buf2) = CRC(buf1) ^ CRC(buf2) */
- crc3 = test_step(INIT1 ^ INIT2, buf3, i);
- if (crc3 != (crc1 ^ crc2))
- printf("CRC XOR fail: 0x%08x != 0x%08x ^ 0x%08x\n",
- crc3, crc1, crc2);
- }
- printf("\nAll test complete. No failures expected.\n");
- return 0;
-}
-
-#endif /* UNITTEST */
diff --git a/libdde_linux26/contrib/lib/crc32defs.h b/libdde_linux26/contrib/lib/crc32defs.h
deleted file mode 100644
index 9b6773d7..00000000
--- a/libdde_linux26/contrib/lib/crc32defs.h
+++ /dev/null
@@ -1,32 +0,0 @@
-/*
- * There are multiple 16-bit CRC polynomials in common use, but this is
- * *the* standard CRC-32 polynomial, first popularized by Ethernet.
- * x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x^1+x^0
- */
-#define CRCPOLY_LE 0xedb88320
-#define CRCPOLY_BE 0x04c11db7
-
-/* How many bits at a time to use. Requires a table of 4<<CRC_xx_BITS bytes. */
-/* For less performance-sensitive, use 4 */
-#ifndef CRC_LE_BITS
-# define CRC_LE_BITS 8
-#endif
-#ifndef CRC_BE_BITS
-# define CRC_BE_BITS 8
-#endif
-
-/*
- * Little-endian CRC computation. Used with serial bit streams sent
- * lsbit-first. Be sure to use cpu_to_le32() to append the computed CRC.
- */
-#if CRC_LE_BITS > 8 || CRC_LE_BITS < 1 || CRC_LE_BITS & CRC_LE_BITS-1
-# error CRC_LE_BITS must be a power of 2 between 1 and 8
-#endif
-
-/*
- * Big-endian CRC computation. Used with serial bit streams sent
- * msbit-first. Be sure to use cpu_to_be32() to append the computed CRC.
- */
-#if CRC_BE_BITS > 8 || CRC_BE_BITS < 1 || CRC_BE_BITS & CRC_BE_BITS-1
-# error CRC_BE_BITS must be a power of 2 between 1 and 8
-#endif
diff --git a/libdde_linux26/contrib/lib/ctype.c b/libdde_linux26/contrib/lib/ctype.c
deleted file mode 100644
index d02ace14..00000000
--- a/libdde_linux26/contrib/lib/ctype.c
+++ /dev/null
@@ -1,36 +0,0 @@
-/*
- * linux/lib/ctype.c
- *
- * Copyright (C) 1991, 1992 Linus Torvalds
- */
-
-#include <linux/ctype.h>
-#include <linux/module.h>
-
-unsigned char _ctype[] = {
-_C,_C,_C,_C,_C,_C,_C,_C, /* 0-7 */
-_C,_C|_S,_C|_S,_C|_S,_C|_S,_C|_S,_C,_C, /* 8-15 */
-_C,_C,_C,_C,_C,_C,_C,_C, /* 16-23 */
-_C,_C,_C,_C,_C,_C,_C,_C, /* 24-31 */
-_S|_SP,_P,_P,_P,_P,_P,_P,_P, /* 32-39 */
-_P,_P,_P,_P,_P,_P,_P,_P, /* 40-47 */
-_D,_D,_D,_D,_D,_D,_D,_D, /* 48-55 */
-_D,_D,_P,_P,_P,_P,_P,_P, /* 56-63 */
-_P,_U|_X,_U|_X,_U|_X,_U|_X,_U|_X,_U|_X,_U, /* 64-71 */
-_U,_U,_U,_U,_U,_U,_U,_U, /* 72-79 */
-_U,_U,_U,_U,_U,_U,_U,_U, /* 80-87 */
-_U,_U,_U,_P,_P,_P,_P,_P, /* 88-95 */
-_P,_L|_X,_L|_X,_L|_X,_L|_X,_L|_X,_L|_X,_L, /* 96-103 */
-_L,_L,_L,_L,_L,_L,_L,_L, /* 104-111 */
-_L,_L,_L,_L,_L,_L,_L,_L, /* 112-119 */
-_L,_L,_L,_P,_P,_P,_P,_C, /* 120-127 */
-0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 128-143 */
-0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 144-159 */
-_S|_SP,_P,_P,_P,_P,_P,_P,_P,_P,_P,_P,_P,_P,_P,_P,_P, /* 160-175 */
-_P,_P,_P,_P,_P,_P,_P,_P,_P,_P,_P,_P,_P,_P,_P,_P, /* 176-191 */
-_U,_U,_U,_U,_U,_U,_U,_U,_U,_U,_U,_U,_U,_U,_U,_U, /* 192-207 */
-_U,_U,_U,_U,_U,_U,_U,_P,_U,_U,_U,_U,_U,_U,_U,_L, /* 208-223 */
-_L,_L,_L,_L,_L,_L,_L,_L,_L,_L,_L,_L,_L,_L,_L,_L, /* 224-239 */
-_L,_L,_L,_L,_L,_L,_L,_P,_L,_L,_L,_L,_L,_L,_L,_L}; /* 240-255 */
-
-EXPORT_SYMBOL(_ctype);
diff --git a/libdde_linux26/contrib/lib/find_next_bit.c b/libdde_linux26/contrib/lib/find_next_bit.c
deleted file mode 100644
index 24c59ded..00000000
--- a/libdde_linux26/contrib/lib/find_next_bit.c
+++ /dev/null
@@ -1,275 +0,0 @@
-/* find_next_bit.c: fallback find next bit implementation
- *
- * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved.
- * Written by David Howells (dhowells@redhat.com)
- *
- * This program is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public License
- * as published by the Free Software Foundation; either version
- * 2 of the License, or (at your option) any later version.
- */
-
-#include <linux/bitops.h>
-#include <linux/module.h>
-#include <asm/types.h>
-#include <asm/byteorder.h>
-
-#define BITOP_WORD(nr) ((nr) / BITS_PER_LONG)
-
-#ifdef CONFIG_GENERIC_FIND_NEXT_BIT
-/*
- * Find the next set bit in a memory region.
- */
-unsigned long find_next_bit(const unsigned long *addr, unsigned long size,
- unsigned long offset)
-{
- const unsigned long *p = addr + BITOP_WORD(offset);
- unsigned long result = offset & ~(BITS_PER_LONG-1);
- unsigned long tmp;
-
- if (offset >= size)
- return size;
- size -= result;
- offset %= BITS_PER_LONG;
- if (offset) {
- tmp = *(p++);
- tmp &= (~0UL << offset);
- if (size < BITS_PER_LONG)
- goto found_first;
- if (tmp)
- goto found_middle;
- size -= BITS_PER_LONG;
- result += BITS_PER_LONG;
- }
- while (size & ~(BITS_PER_LONG-1)) {
- if ((tmp = *(p++)))
- goto found_middle;
- result += BITS_PER_LONG;
- size -= BITS_PER_LONG;
- }
- if (!size)
- return result;
- tmp = *p;
-
-found_first:
- tmp &= (~0UL >> (BITS_PER_LONG - size));
- if (tmp == 0UL) /* Are any bits set? */
- return result + size; /* Nope. */
-found_middle:
- return result + __ffs(tmp);
-}
-EXPORT_SYMBOL(find_next_bit);
-
-/*
- * This implementation of find_{first,next}_zero_bit was stolen from
- * Linus' asm-alpha/bitops.h.
- */
-unsigned long find_next_zero_bit(const unsigned long *addr, unsigned long size,
- unsigned long offset)
-{
- const unsigned long *p = addr + BITOP_WORD(offset);
- unsigned long result = offset & ~(BITS_PER_LONG-1);
- unsigned long tmp;
-
- if (offset >= size)
- return size;
- size -= result;
- offset %= BITS_PER_LONG;
- if (offset) {
- tmp = *(p++);
- tmp |= ~0UL >> (BITS_PER_LONG - offset);
- if (size < BITS_PER_LONG)
- goto found_first;
- if (~tmp)
- goto found_middle;
- size -= BITS_PER_LONG;
- result += BITS_PER_LONG;
- }
- while (size & ~(BITS_PER_LONG-1)) {
- if (~(tmp = *(p++)))
- goto found_middle;
- result += BITS_PER_LONG;
- size -= BITS_PER_LONG;
- }
- if (!size)
- return result;
- tmp = *p;
-
-found_first:
- tmp |= ~0UL << size;
- if (tmp == ~0UL) /* Are any bits zero? */
- return result + size; /* Nope. */
-found_middle:
- return result + ffz(tmp);
-}
-EXPORT_SYMBOL(find_next_zero_bit);
-#endif /* CONFIG_GENERIC_FIND_NEXT_BIT */
-
-#ifdef CONFIG_GENERIC_FIND_FIRST_BIT
-/*
- * Find the first set bit in a memory region.
- */
-unsigned long find_first_bit(const unsigned long *addr, unsigned long size)
-{
- const unsigned long *p = addr;
- unsigned long result = 0;
- unsigned long tmp;
-
- while (size & ~(BITS_PER_LONG-1)) {
- if ((tmp = *(p++)))
- goto found;
- result += BITS_PER_LONG;
- size -= BITS_PER_LONG;
- }
- if (!size)
- return result;
-
- tmp = (*p) & (~0UL >> (BITS_PER_LONG - size));
- if (tmp == 0UL) /* Are any bits set? */
- return result + size; /* Nope. */
-found:
- return result + __ffs(tmp);
-}
-EXPORT_SYMBOL(find_first_bit);
-
-/*
- * Find the first cleared bit in a memory region.
- */
-unsigned long find_first_zero_bit(const unsigned long *addr, unsigned long size)
-{
- const unsigned long *p = addr;
- unsigned long result = 0;
- unsigned long tmp;
-
- while (size & ~(BITS_PER_LONG-1)) {
- if (~(tmp = *(p++)))
- goto found;
- result += BITS_PER_LONG;
- size -= BITS_PER_LONG;
- }
- if (!size)
- return result;
-
- tmp = (*p) | (~0UL << size);
- if (tmp == ~0UL) /* Are any bits zero? */
- return result + size; /* Nope. */
-found:
- return result + ffz(tmp);
-}
-EXPORT_SYMBOL(find_first_zero_bit);
-#endif /* CONFIG_GENERIC_FIND_FIRST_BIT */
-
-#ifdef __BIG_ENDIAN
-
-/* include/linux/byteorder does not support "unsigned long" type */
-static inline unsigned long ext2_swabp(const unsigned long * x)
-{
-#if BITS_PER_LONG == 64
- return (unsigned long) __swab64p((u64 *) x);
-#elif BITS_PER_LONG == 32
- return (unsigned long) __swab32p((u32 *) x);
-#else
-#error BITS_PER_LONG not defined
-#endif
-}
-
-/* include/linux/byteorder doesn't support "unsigned long" type */
-static inline unsigned long ext2_swab(const unsigned long y)
-{
-#if BITS_PER_LONG == 64
- return (unsigned long) __swab64((u64) y);
-#elif BITS_PER_LONG == 32
- return (unsigned long) __swab32((u32) y);
-#else
-#error BITS_PER_LONG not defined
-#endif
-}
-
-unsigned long generic_find_next_zero_le_bit(const unsigned long *addr, unsigned
- long size, unsigned long offset)
-{
- const unsigned long *p = addr + BITOP_WORD(offset);
- unsigned long result = offset & ~(BITS_PER_LONG - 1);
- unsigned long tmp;
-
- if (offset >= size)
- return size;
- size -= result;
- offset &= (BITS_PER_LONG - 1UL);
- if (offset) {
- tmp = ext2_swabp(p++);
- tmp |= (~0UL >> (BITS_PER_LONG - offset));
- if (size < BITS_PER_LONG)
- goto found_first;
- if (~tmp)
- goto found_middle;
- size -= BITS_PER_LONG;
- result += BITS_PER_LONG;
- }
-
- while (size & ~(BITS_PER_LONG - 1)) {
- if (~(tmp = *(p++)))
- goto found_middle_swap;
- result += BITS_PER_LONG;
- size -= BITS_PER_LONG;
- }
- if (!size)
- return result;
- tmp = ext2_swabp(p);
-found_first:
- tmp |= ~0UL << size;
- if (tmp == ~0UL) /* Are any bits zero? */
- return result + size; /* Nope. Skip ffz */
-found_middle:
- return result + ffz(tmp);
-
-found_middle_swap:
- return result + ffz(ext2_swab(tmp));
-}
-
-EXPORT_SYMBOL(generic_find_next_zero_le_bit);
-
-unsigned long generic_find_next_le_bit(const unsigned long *addr, unsigned
- long size, unsigned long offset)
-{
- const unsigned long *p = addr + BITOP_WORD(offset);
- unsigned long result = offset & ~(BITS_PER_LONG - 1);
- unsigned long tmp;
-
- if (offset >= size)
- return size;
- size -= result;
- offset &= (BITS_PER_LONG - 1UL);
- if (offset) {
- tmp = ext2_swabp(p++);
- tmp &= (~0UL << offset);
- if (size < BITS_PER_LONG)
- goto found_first;
- if (tmp)
- goto found_middle;
- size -= BITS_PER_LONG;
- result += BITS_PER_LONG;
- }
-
- while (size & ~(BITS_PER_LONG - 1)) {
- tmp = *(p++);
- if (tmp)
- goto found_middle_swap;
- result += BITS_PER_LONG;
- size -= BITS_PER_LONG;
- }
- if (!size)
- return result;
- tmp = ext2_swabp(p);
-found_first:
- tmp &= (~0UL >> (BITS_PER_LONG - size));
- if (tmp == 0UL) /* Are any bits set? */
- return result + size; /* Nope. */
-found_middle:
- return result + __ffs(tmp);
-
-found_middle_swap:
- return result + __ffs(ext2_swab(tmp));
-}
-EXPORT_SYMBOL(generic_find_next_le_bit);
-#endif /* __BIG_ENDIAN */
diff --git a/libdde_linux26/contrib/lib/gen_crc32table.c b/libdde_linux26/contrib/lib/gen_crc32table.c
deleted file mode 100644
index bea5d97d..00000000
--- a/libdde_linux26/contrib/lib/gen_crc32table.c
+++ /dev/null
@@ -1,82 +0,0 @@
-#include <stdio.h>
-#include "crc32defs.h"
-#include <inttypes.h>
-
-#define ENTRIES_PER_LINE 4
-
-#define LE_TABLE_SIZE (1 << CRC_LE_BITS)
-#define BE_TABLE_SIZE (1 << CRC_BE_BITS)
-
-static uint32_t crc32table_le[LE_TABLE_SIZE];
-static uint32_t crc32table_be[BE_TABLE_SIZE];
-
-/**
- * crc32init_le() - allocate and initialize LE table data
- *
- * crc is the crc of the byte i; other entries are filled in based on the
- * fact that crctable[i^j] = crctable[i] ^ crctable[j].
- *
- */
-static void crc32init_le(void)
-{
- unsigned i, j;
- uint32_t crc = 1;
-
- crc32table_le[0] = 0;
-
- for (i = 1 << (CRC_LE_BITS - 1); i; i >>= 1) {
- crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_LE : 0);
- for (j = 0; j < LE_TABLE_SIZE; j += 2 * i)
- crc32table_le[i + j] = crc ^ crc32table_le[j];
- }
-}
-
-/**
- * crc32init_be() - allocate and initialize BE table data
- */
-static void crc32init_be(void)
-{
- unsigned i, j;
- uint32_t crc = 0x80000000;
-
- crc32table_be[0] = 0;
-
- for (i = 1; i < BE_TABLE_SIZE; i <<= 1) {
- crc = (crc << 1) ^ ((crc & 0x80000000) ? CRCPOLY_BE : 0);
- for (j = 0; j < i; j++)
- crc32table_be[i + j] = crc ^ crc32table_be[j];
- }
-}
-
-static void output_table(uint32_t table[], int len, char *trans)
-{
- int i;
-
- for (i = 0; i < len - 1; i++) {
- if (i % ENTRIES_PER_LINE == 0)
- printf("\n");
- printf("%s(0x%8.8xL), ", trans, table[i]);
- }
- printf("%s(0x%8.8xL)\n", trans, table[len - 1]);
-}
-
-int main(int argc, char** argv)
-{
- printf("/* this file is generated - do not edit */\n\n");
-
- if (CRC_LE_BITS > 1) {
- crc32init_le();
- printf("static const u32 crc32table_le[] = {");
- output_table(crc32table_le, LE_TABLE_SIZE, "tole");
- printf("};\n");
- }
-
- if (CRC_BE_BITS > 1) {
- crc32init_be();
- printf("static const u32 crc32table_be[] = {");
- output_table(crc32table_be, BE_TABLE_SIZE, "tobe");
- printf("};\n");
- }
-
- return 0;
-}
diff --git a/libdde_linux26/contrib/lib/hexdump.c b/libdde_linux26/contrib/lib/hexdump.c
deleted file mode 100644
index f07c0db8..00000000
--- a/libdde_linux26/contrib/lib/hexdump.c
+++ /dev/null
@@ -1,201 +0,0 @@
-/*
- * lib/hexdump.c
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 as
- * published by the Free Software Foundation. See README and COPYING for
- * more details.
- */
-
-#include <linux/types.h>
-#include <linux/ctype.h>
-#include <linux/kernel.h>
-#include <linux/module.h>
-
-const char hex_asc[] = "0123456789abcdef";
-EXPORT_SYMBOL(hex_asc);
-
-/**
- * hex_dump_to_buffer - convert a blob of data to "hex ASCII" in memory
- * @buf: data blob to dump
- * @len: number of bytes in the @buf
- * @rowsize: number of bytes to print per line; must be 16 or 32
- * @groupsize: number of bytes to print at a time (1, 2, 4, 8; default = 1)
- * @linebuf: where to put the converted data
- * @linebuflen: total size of @linebuf, including space for terminating NUL
- * @ascii: include ASCII after the hex output
- *
- * hex_dump_to_buffer() works on one "line" of output at a time, i.e.,
- * 16 or 32 bytes of input data converted to hex + ASCII output.
- *
- * Given a buffer of u8 data, hex_dump_to_buffer() converts the input data
- * to a hex + ASCII dump at the supplied memory location.
- * The converted output is always NUL-terminated.
- *
- * E.g.:
- * hex_dump_to_buffer(frame->data, frame->len, 16, 1,
- * linebuf, sizeof(linebuf), 1);
- *
- * example output buffer:
- * 40 41 42 43 44 45 46 47 48 49 4a 4b 4c 4d 4e 4f @ABCDEFGHIJKLMNO
- */
-void hex_dump_to_buffer(const void *buf, size_t len, int rowsize,
- int groupsize, char *linebuf, size_t linebuflen,
- bool ascii)
-{
- const u8 *ptr = buf;
- u8 ch;
- int j, lx = 0;
- int ascii_column;
-
- if (rowsize != 16 && rowsize != 32)
- rowsize = 16;
-
- if (!len)
- goto nil;
- if (len > rowsize) /* limit to one line at a time */
- len = rowsize;
- if ((len % groupsize) != 0) /* no mixed size output */
- groupsize = 1;
-
- switch (groupsize) {
- case 8: {
- const u64 *ptr8 = buf;
- int ngroups = len / groupsize;
-
- for (j = 0; j < ngroups; j++)
- lx += scnprintf(linebuf + lx, linebuflen - lx,
- "%16.16llx ", (unsigned long long)*(ptr8 + j));
- ascii_column = 17 * ngroups + 2;
- break;
- }
-
- case 4: {
- const u32 *ptr4 = buf;
- int ngroups = len / groupsize;
-
- for (j = 0; j < ngroups; j++)
- lx += scnprintf(linebuf + lx, linebuflen - lx,
- "%8.8x ", *(ptr4 + j));
- ascii_column = 9 * ngroups + 2;
- break;
- }
-
- case 2: {
- const u16 *ptr2 = buf;
- int ngroups = len / groupsize;
-
- for (j = 0; j < ngroups; j++)
- lx += scnprintf(linebuf + lx, linebuflen - lx,
- "%4.4x ", *(ptr2 + j));
- ascii_column = 5 * ngroups + 2;
- break;
- }
-
- default:
- for (j = 0; (j < rowsize) && (j < len) && (lx + 4) < linebuflen;
- j++) {
- ch = ptr[j];
- linebuf[lx++] = hex_asc_hi(ch);
- linebuf[lx++] = hex_asc_lo(ch);
- linebuf[lx++] = ' ';
- }
- ascii_column = 3 * rowsize + 2;
- break;
- }
- if (!ascii)
- goto nil;
-
- while (lx < (linebuflen - 1) && lx < (ascii_column - 1))
- linebuf[lx++] = ' ';
- for (j = 0; (j < rowsize) && (j < len) && (lx + 2) < linebuflen; j++)
- linebuf[lx++] = (isascii(ptr[j]) && isprint(ptr[j])) ? ptr[j]
- : '.';
-nil:
- linebuf[lx++] = '\0';
-}
-EXPORT_SYMBOL(hex_dump_to_buffer);
-
-/**
- * print_hex_dump - print a text hex dump to syslog for a binary blob of data
- * @level: kernel log level (e.g. KERN_DEBUG)
- * @prefix_str: string to prefix each line with;
- * caller supplies trailing spaces for alignment if desired
- * @prefix_type: controls whether prefix of an offset, address, or none
- * is printed (%DUMP_PREFIX_OFFSET, %DUMP_PREFIX_ADDRESS, %DUMP_PREFIX_NONE)
- * @rowsize: number of bytes to print per line; must be 16 or 32
- * @groupsize: number of bytes to print at a time (1, 2, 4, 8; default = 1)
- * @buf: data blob to dump
- * @len: number of bytes in the @buf
- * @ascii: include ASCII after the hex output
- *
- * Given a buffer of u8 data, print_hex_dump() prints a hex + ASCII dump
- * to the kernel log at the specified kernel log level, with an optional
- * leading prefix.
- *
- * print_hex_dump() works on one "line" of output at a time, i.e.,
- * 16 or 32 bytes of input data converted to hex + ASCII output.
- * print_hex_dump() iterates over the entire input @buf, breaking it into
- * "line size" chunks to format and print.
- *
- * E.g.:
- * print_hex_dump(KERN_DEBUG, "raw data: ", DUMP_PREFIX_ADDRESS,
- * 16, 1, frame->data, frame->len, 1);
- *
- * Example output using %DUMP_PREFIX_OFFSET and 1-byte mode:
- * 0009ab42: 40 41 42 43 44 45 46 47 48 49 4a 4b 4c 4d 4e 4f @ABCDEFGHIJKLMNO
- * Example output using %DUMP_PREFIX_ADDRESS and 4-byte mode:
- * ffffffff88089af0: 73727170 77767574 7b7a7978 7f7e7d7c pqrstuvwxyz{|}~.
- */
-void print_hex_dump(const char *level, const char *prefix_str, int prefix_type,
- int rowsize, int groupsize,
- const void *buf, size_t len, bool ascii)
-{
- const u8 *ptr = buf;
- int i, linelen, remaining = len;
- unsigned char linebuf[200];
-
- if (rowsize != 16 && rowsize != 32)
- rowsize = 16;
-
- for (i = 0; i < len; i += rowsize) {
- linelen = min(remaining, rowsize);
- remaining -= rowsize;
- hex_dump_to_buffer(ptr + i, linelen, rowsize, groupsize,
- linebuf, sizeof(linebuf), ascii);
-
- switch (prefix_type) {
- case DUMP_PREFIX_ADDRESS:
- printk("%s%s%*p: %s\n", level, prefix_str,
- (int)(2 * sizeof(void *)), ptr + i, linebuf);
- break;
- case DUMP_PREFIX_OFFSET:
- printk("%s%s%.8x: %s\n", level, prefix_str, i, linebuf);
- break;
- default:
- printk("%s%s%s\n", level, prefix_str, linebuf);
- break;
- }
- }
-}
-EXPORT_SYMBOL(print_hex_dump);
-
-/**
- * print_hex_dump_bytes - shorthand form of print_hex_dump() with default params
- * @prefix_str: string to prefix each line with;
- * caller supplies trailing spaces for alignment if desired
- * @prefix_type: controls whether prefix of an offset, address, or none
- * is printed (%DUMP_PREFIX_OFFSET, %DUMP_PREFIX_ADDRESS, %DUMP_PREFIX_NONE)
- * @buf: data blob to dump
- * @len: number of bytes in the @buf
- *
- * Calls print_hex_dump(), with log level of KERN_DEBUG,
- * rowsize of 16, groupsize of 1, and ASCII output included.
- */
-void print_hex_dump_bytes(const char *prefix_str, int prefix_type,
- const void *buf, size_t len)
-{
- print_hex_dump(KERN_DEBUG, prefix_str, prefix_type, 16, 1,
- buf, len, 1);
-}
-EXPORT_SYMBOL(print_hex_dump_bytes);
diff --git a/libdde_linux26/contrib/lib/hweight.c b/libdde_linux26/contrib/lib/hweight.c
deleted file mode 100644
index 389424ec..00000000
--- a/libdde_linux26/contrib/lib/hweight.c
+++ /dev/null
@@ -1,59 +0,0 @@
-#include <linux/module.h>
-#include <linux/bitops.h>
-#include <asm/types.h>
-
-/**
- * hweightN - returns the hamming weight of a N-bit word
- * @x: the word to weigh
- *
- * The Hamming Weight of a number is the total number of bits set in it.
- */
-
-unsigned int hweight32(unsigned int w)
-{
- unsigned int res = w - ((w >> 1) & 0x55555555);
- res = (res & 0x33333333) + ((res >> 2) & 0x33333333);
- res = (res + (res >> 4)) & 0x0F0F0F0F;
- res = res + (res >> 8);
- return (res + (res >> 16)) & 0x000000FF;
-}
-EXPORT_SYMBOL(hweight32);
-
-unsigned int hweight16(unsigned int w)
-{
- unsigned int res = w - ((w >> 1) & 0x5555);
- res = (res & 0x3333) + ((res >> 2) & 0x3333);
- res = (res + (res >> 4)) & 0x0F0F;
- return (res + (res >> 8)) & 0x00FF;
-}
-EXPORT_SYMBOL(hweight16);
-
-unsigned int hweight8(unsigned int w)
-{
- unsigned int res = w - ((w >> 1) & 0x55);
- res = (res & 0x33) + ((res >> 2) & 0x33);
- return (res + (res >> 4)) & 0x0F;
-}
-EXPORT_SYMBOL(hweight8);
-
-unsigned long hweight64(__u64 w)
-{
-#if BITS_PER_LONG == 32
- return hweight32((unsigned int)(w >> 32)) + hweight32((unsigned int)w);
-#elif BITS_PER_LONG == 64
-#ifdef ARCH_HAS_FAST_MULTIPLIER
- w -= (w >> 1) & 0x5555555555555555ul;
- w = (w & 0x3333333333333333ul) + ((w >> 2) & 0x3333333333333333ul);
- w = (w + (w >> 4)) & 0x0f0f0f0f0f0f0f0ful;
- return (w * 0x0101010101010101ul) >> 56;
-#else
- __u64 res = w - ((w >> 1) & 0x5555555555555555ul);
- res = (res & 0x3333333333333333ul) + ((res >> 2) & 0x3333333333333333ul);
- res = (res + (res >> 4)) & 0x0F0F0F0F0F0F0F0Ful;
- res = res + (res >> 8);
- res = res + (res >> 16);
- return (res + (res >> 32)) & 0x00000000000000FFul;
-#endif
-#endif
-}
-EXPORT_SYMBOL(hweight64);
diff --git a/libdde_linux26/contrib/lib/idr.c b/libdde_linux26/contrib/lib/idr.c
deleted file mode 100644
index dca3e14e..00000000
--- a/libdde_linux26/contrib/lib/idr.c
+++ /dev/null
@@ -1,890 +0,0 @@
-/*
- * 2002-10-18 written by Jim Houston jim.houston@ccur.com
- * Copyright (C) 2002 by Concurrent Computer Corporation
- * Distributed under the GNU GPL license version 2.
- *
- * Modified by George Anzinger to reuse immediately and to use
- * find bit instructions. Also removed _irq on spinlocks.
- *
- * Modified by Nadia Derbey to make it RCU safe.
- *
- * Small id to pointer translation service.
- *
- * It uses a radix tree like structure as a sparse array indexed
- * by the id to obtain the pointer. The bitmap makes allocating
- * a new id quick.
- *
- * You call it to allocate an id (an int) an associate with that id a
- * pointer or what ever, we treat it as a (void *). You can pass this
- * id to a user for him to pass back at a later time. You then pass
- * that id to this code and it returns your pointer.
-
- * You can release ids at any time. When all ids are released, most of
- * the memory is returned (we keep IDR_FREE_MAX) in a local pool so we
- * don't need to go to the memory "store" during an id allocate, just
- * so you don't need to be too concerned about locking and conflicts
- * with the slab allocator.
- */
-
-#ifndef TEST // to test in user space...
-#include <linux/slab.h>
-#include <linux/init.h>
-#include <linux/module.h>
-#endif
-#include <linux/err.h>
-#include <linux/string.h>
-#include <linux/idr.h>
-
-static struct kmem_cache *idr_layer_cache;
-
-static struct idr_layer *get_from_free_list(struct idr *idp)
-{
- struct idr_layer *p;
- unsigned long flags;
-
- spin_lock_irqsave(&idp->lock, flags);
- if ((p = idp->id_free)) {
- idp->id_free = p->ary[0];
- idp->id_free_cnt--;
- p->ary[0] = NULL;
- }
- spin_unlock_irqrestore(&idp->lock, flags);
- return(p);
-}
-
-static void idr_layer_rcu_free(struct rcu_head *head)
-{
- struct idr_layer *layer;
-
- layer = container_of(head, struct idr_layer, rcu_head);
- kmem_cache_free(idr_layer_cache, layer);
-}
-
-static inline void free_layer(struct idr_layer *p)
-{
-#ifndef DDE_LINUX
- call_rcu(&p->rcu_head, idr_layer_rcu_free);
-#else
- idr_layer_rcu_free(&p->rcu_head);
-#endif
-}
-
-/* only called when idp->lock is held */
-static void __move_to_free_list(struct idr *idp, struct idr_layer *p)
-{
- p->ary[0] = idp->id_free;
- idp->id_free = p;
- idp->id_free_cnt++;
-}
-
-static void move_to_free_list(struct idr *idp, struct idr_layer *p)
-{
- unsigned long flags;
-
- /*
- * Depends on the return element being zeroed.
- */
- spin_lock_irqsave(&idp->lock, flags);
- __move_to_free_list(idp, p);
- spin_unlock_irqrestore(&idp->lock, flags);
-}
-
-static void idr_mark_full(struct idr_layer **pa, int id)
-{
- struct idr_layer *p = pa[0];
- int l = 0;
-
- __set_bit(id & IDR_MASK, &p->bitmap);
- /*
- * If this layer is full mark the bit in the layer above to
- * show that this part of the radix tree is full. This may
- * complete the layer above and require walking up the radix
- * tree.
- */
- while (p->bitmap == IDR_FULL) {
- if (!(p = pa[++l]))
- break;
- id = id >> IDR_BITS;
- __set_bit((id & IDR_MASK), &p->bitmap);
- }
-}
-
-/**
- * idr_pre_get - reserver resources for idr allocation
- * @idp: idr handle
- * @gfp_mask: memory allocation flags
- *
- * This function should be called prior to locking and calling the
- * idr_get_new* functions. It preallocates enough memory to satisfy
- * the worst possible allocation.
- *
- * If the system is REALLY out of memory this function returns 0,
- * otherwise 1.
- */
-int idr_pre_get(struct idr *idp, gfp_t gfp_mask)
-{
- while (idp->id_free_cnt < IDR_FREE_MAX) {
- struct idr_layer *new;
- new = kmem_cache_zalloc(idr_layer_cache, gfp_mask);
- if (new == NULL)
- return (0);
- move_to_free_list(idp, new);
- }
- return 1;
-}
-EXPORT_SYMBOL(idr_pre_get);
-
-static int sub_alloc(struct idr *idp, int *starting_id, struct idr_layer **pa)
-{
- int n, m, sh;
- struct idr_layer *p, *new;
- int l, id, oid;
- unsigned long bm;
-
- id = *starting_id;
- restart:
- p = idp->top;
- l = idp->layers;
- pa[l--] = NULL;
- while (1) {
- /*
- * We run around this while until we reach the leaf node...
- */
- n = (id >> (IDR_BITS*l)) & IDR_MASK;
- bm = ~p->bitmap;
- m = find_next_bit(&bm, IDR_SIZE, n);
- if (m == IDR_SIZE) {
- /* no space available go back to previous layer. */
- l++;
- oid = id;
- id = (id | ((1 << (IDR_BITS * l)) - 1)) + 1;
-
- /* if already at the top layer, we need to grow */
- if (!(p = pa[l])) {
- *starting_id = id;
- return IDR_NEED_TO_GROW;
- }
-
- /* If we need to go up one layer, continue the
- * loop; otherwise, restart from the top.
- */
- sh = IDR_BITS * (l + 1);
- if (oid >> sh == id >> sh)
- continue;
- else
- goto restart;
- }
- if (m != n) {
- sh = IDR_BITS*l;
- id = ((id >> sh) ^ n ^ m) << sh;
- }
- if ((id >= MAX_ID_BIT) || (id < 0))
- return IDR_NOMORE_SPACE;
- if (l == 0)
- break;
- /*
- * Create the layer below if it is missing.
- */
- if (!p->ary[m]) {
- new = get_from_free_list(idp);
- if (!new)
- return -1;
- new->layer = l-1;
- rcu_assign_pointer(p->ary[m], new);
- p->count++;
- }
- pa[l--] = p;
- p = p->ary[m];
- }
-
- pa[l] = p;
- return id;
-}
-
-static int idr_get_empty_slot(struct idr *idp, int starting_id,
- struct idr_layer **pa)
-{
- struct idr_layer *p, *new;
- int layers, v, id;
- unsigned long flags;
-
- id = starting_id;
-build_up:
- p = idp->top;
- layers = idp->layers;
- if (unlikely(!p)) {
- if (!(p = get_from_free_list(idp)))
- return -1;
- p->layer = 0;
- layers = 1;
- }
- /*
- * Add a new layer to the top of the tree if the requested
- * id is larger than the currently allocated space.
- */
- while ((layers < (MAX_LEVEL - 1)) && (id >= (1 << (layers*IDR_BITS)))) {
- layers++;
- if (!p->count) {
- /* special case: if the tree is currently empty,
- * then we grow the tree by moving the top node
- * upwards.
- */
- p->layer++;
- continue;
- }
- if (!(new = get_from_free_list(idp))) {
- /*
- * The allocation failed. If we built part of
- * the structure tear it down.
- */
- spin_lock_irqsave(&idp->lock, flags);
- for (new = p; p && p != idp->top; new = p) {
- p = p->ary[0];
- new->ary[0] = NULL;
- new->bitmap = new->count = 0;
- __move_to_free_list(idp, new);
- }
- spin_unlock_irqrestore(&idp->lock, flags);
- return -1;
- }
- new->ary[0] = p;
- new->count = 1;
- new->layer = layers-1;
- if (p->bitmap == IDR_FULL)
- __set_bit(0, &new->bitmap);
- p = new;
- }
- rcu_assign_pointer(idp->top, p);
- idp->layers = layers;
- v = sub_alloc(idp, &id, pa);
- if (v == IDR_NEED_TO_GROW)
- goto build_up;
- return(v);
-}
-
-static int idr_get_new_above_int(struct idr *idp, void *ptr, int starting_id)
-{
- struct idr_layer *pa[MAX_LEVEL];
- int id;
-
- id = idr_get_empty_slot(idp, starting_id, pa);
- if (id >= 0) {
- /*
- * Successfully found an empty slot. Install the user
- * pointer and mark the slot full.
- */
- rcu_assign_pointer(pa[0]->ary[id & IDR_MASK],
- (struct idr_layer *)ptr);
- pa[0]->count++;
- idr_mark_full(pa, id);
- }
-
- return id;
-}
-
-/**
- * idr_get_new_above - allocate new idr entry above or equal to a start id
- * @idp: idr handle
- * @ptr: pointer you want associated with the ide
- * @start_id: id to start search at
- * @id: pointer to the allocated handle
- *
- * This is the allocate id function. It should be called with any
- * required locks.
- *
- * If memory is required, it will return -EAGAIN, you should unlock
- * and go back to the idr_pre_get() call. If the idr is full, it will
- * return -ENOSPC.
- *
- * @id returns a value in the range @starting_id ... 0x7fffffff
- */
-int idr_get_new_above(struct idr *idp, void *ptr, int starting_id, int *id)
-{
- int rv;
-
- rv = idr_get_new_above_int(idp, ptr, starting_id);
- /*
- * This is a cheap hack until the IDR code can be fixed to
- * return proper error values.
- */
- if (rv < 0)
- return _idr_rc_to_errno(rv);
- *id = rv;
- return 0;
-}
-EXPORT_SYMBOL(idr_get_new_above);
-
-/**
- * idr_get_new - allocate new idr entry
- * @idp: idr handle
- * @ptr: pointer you want associated with the ide
- * @id: pointer to the allocated handle
- *
- * This is the allocate id function. It should be called with any
- * required locks.
- *
- * If memory is required, it will return -EAGAIN, you should unlock
- * and go back to the idr_pre_get() call. If the idr is full, it will
- * return -ENOSPC.
- *
- * @id returns a value in the range 0 ... 0x7fffffff
- */
-int idr_get_new(struct idr *idp, void *ptr, int *id)
-{
- int rv;
-
- rv = idr_get_new_above_int(idp, ptr, 0);
- /*
- * This is a cheap hack until the IDR code can be fixed to
- * return proper error values.
- */
- if (rv < 0)
- return _idr_rc_to_errno(rv);
- *id = rv;
- return 0;
-}
-EXPORT_SYMBOL(idr_get_new);
-
-static void idr_remove_warning(int id)
-{
- printk(KERN_WARNING
- "idr_remove called for id=%d which is not allocated.\n", id);
- dump_stack();
-}
-
-static void sub_remove(struct idr *idp, int shift, int id)
-{
- struct idr_layer *p = idp->top;
- struct idr_layer **pa[MAX_LEVEL];
- struct idr_layer ***paa = &pa[0];
- struct idr_layer *to_free;
- int n;
-
- *paa = NULL;
- *++paa = &idp->top;
-
- while ((shift > 0) && p) {
- n = (id >> shift) & IDR_MASK;
- __clear_bit(n, &p->bitmap);
- *++paa = &p->ary[n];
- p = p->ary[n];
- shift -= IDR_BITS;
- }
- n = id & IDR_MASK;
- if (likely(p != NULL && test_bit(n, &p->bitmap))){
- __clear_bit(n, &p->bitmap);
- rcu_assign_pointer(p->ary[n], NULL);
- to_free = NULL;
- while(*paa && ! --((**paa)->count)){
- if (to_free)
- free_layer(to_free);
- to_free = **paa;
- **paa-- = NULL;
- }
- if (!*paa)
- idp->layers = 0;
- if (to_free)
- free_layer(to_free);
- } else
- idr_remove_warning(id);
-}
-
-/**
- * idr_remove - remove the given id and free it's slot
- * @idp: idr handle
- * @id: unique key
- */
-void idr_remove(struct idr *idp, int id)
-{
- struct idr_layer *p;
- struct idr_layer *to_free;
-
- /* Mask off upper bits we don't use for the search. */
- id &= MAX_ID_MASK;
-
- sub_remove(idp, (idp->layers - 1) * IDR_BITS, id);
- if (idp->top && idp->top->count == 1 && (idp->layers > 1) &&
- idp->top->ary[0]) {
- /*
- * Single child at leftmost slot: we can shrink the tree.
- * This level is not needed anymore since when layers are
- * inserted, they are inserted at the top of the existing
- * tree.
- */
- to_free = idp->top;
- p = idp->top->ary[0];
- rcu_assign_pointer(idp->top, p);
- --idp->layers;
- to_free->bitmap = to_free->count = 0;
- free_layer(to_free);
- }
- while (idp->id_free_cnt >= IDR_FREE_MAX) {
- p = get_from_free_list(idp);
- /*
- * Note: we don't call the rcu callback here, since the only
- * layers that fall into the freelist are those that have been
- * preallocated.
- */
- kmem_cache_free(idr_layer_cache, p);
- }
- return;
-}
-EXPORT_SYMBOL(idr_remove);
-
-/**
- * idr_remove_all - remove all ids from the given idr tree
- * @idp: idr handle
- *
- * idr_destroy() only frees up unused, cached idp_layers, but this
- * function will remove all id mappings and leave all idp_layers
- * unused.
- *
- * A typical clean-up sequence for objects stored in an idr tree, will
- * use idr_for_each() to free all objects, if necessay, then
- * idr_remove_all() to remove all ids, and idr_destroy() to free
- * up the cached idr_layers.
- */
-void idr_remove_all(struct idr *idp)
-{
- int n, id, max;
- struct idr_layer *p;
- struct idr_layer *pa[MAX_LEVEL];
- struct idr_layer **paa = &pa[0];
-
- n = idp->layers * IDR_BITS;
- p = idp->top;
- rcu_assign_pointer(idp->top, NULL);
- max = 1 << n;
-
- id = 0;
- while (id < max) {
- while (n > IDR_BITS && p) {
- n -= IDR_BITS;
- *paa++ = p;
- p = p->ary[(id >> n) & IDR_MASK];
- }
-
- id += 1 << n;
- while (n < fls(id)) {
- if (p)
- free_layer(p);
- n += IDR_BITS;
- p = *--paa;
- }
- }
- idp->layers = 0;
-}
-EXPORT_SYMBOL(idr_remove_all);
-
-/**
- * idr_destroy - release all cached layers within an idr tree
- * idp: idr handle
- */
-void idr_destroy(struct idr *idp)
-{
- while (idp->id_free_cnt) {
- struct idr_layer *p = get_from_free_list(idp);
- kmem_cache_free(idr_layer_cache, p);
- }
-}
-EXPORT_SYMBOL(idr_destroy);
-
-/**
- * idr_find - return pointer for given id
- * @idp: idr handle
- * @id: lookup key
- *
- * Return the pointer given the id it has been registered with. A %NULL
- * return indicates that @id is not valid or you passed %NULL in
- * idr_get_new().
- *
- * This function can be called under rcu_read_lock(), given that the leaf
- * pointers lifetimes are correctly managed.
- */
-void *idr_find(struct idr *idp, int id)
-{
- int n;
- struct idr_layer *p;
-
- p = rcu_dereference(idp->top);
- if (!p)
- return NULL;
- n = (p->layer+1) * IDR_BITS;
-
- /* Mask off upper bits we don't use for the search. */
- id &= MAX_ID_MASK;
-
- if (id >= (1 << n))
- return NULL;
- BUG_ON(n == 0);
-
- while (n > 0 && p) {
- n -= IDR_BITS;
- BUG_ON(n != p->layer*IDR_BITS);
- p = rcu_dereference(p->ary[(id >> n) & IDR_MASK]);
- }
- return((void *)p);
-}
-EXPORT_SYMBOL(idr_find);
-
-/**
- * idr_for_each - iterate through all stored pointers
- * @idp: idr handle
- * @fn: function to be called for each pointer
- * @data: data passed back to callback function
- *
- * Iterate over the pointers registered with the given idr. The
- * callback function will be called for each pointer currently
- * registered, passing the id, the pointer and the data pointer passed
- * to this function. It is not safe to modify the idr tree while in
- * the callback, so functions such as idr_get_new and idr_remove are
- * not allowed.
- *
- * We check the return of @fn each time. If it returns anything other
- * than 0, we break out and return that value.
- *
- * The caller must serialize idr_for_each() vs idr_get_new() and idr_remove().
- */
-int idr_for_each(struct idr *idp,
- int (*fn)(int id, void *p, void *data), void *data)
-{
- int n, id, max, error = 0;
- struct idr_layer *p;
- struct idr_layer *pa[MAX_LEVEL];
- struct idr_layer **paa = &pa[0];
-
- n = idp->layers * IDR_BITS;
- p = rcu_dereference(idp->top);
- max = 1 << n;
-
- id = 0;
- while (id < max) {
- while (n > 0 && p) {
- n -= IDR_BITS;
- *paa++ = p;
- p = rcu_dereference(p->ary[(id >> n) & IDR_MASK]);
- }
-
- if (p) {
- error = fn(id, (void *)p, data);
- if (error)
- break;
- }
-
- id += 1 << n;
- while (n < fls(id)) {
- n += IDR_BITS;
- p = *--paa;
- }
- }
-
- return error;
-}
-EXPORT_SYMBOL(idr_for_each);
-
-/**
- * idr_replace - replace pointer for given id
- * @idp: idr handle
- * @ptr: pointer you want associated with the id
- * @id: lookup key
- *
- * Replace the pointer registered with an id and return the old value.
- * A -ENOENT return indicates that @id was not found.
- * A -EINVAL return indicates that @id was not within valid constraints.
- *
- * The caller must serialize with writers.
- */
-void *idr_replace(struct idr *idp, void *ptr, int id)
-{
- int n;
- struct idr_layer *p, *old_p;
-
- p = idp->top;
- if (!p)
- return ERR_PTR(-EINVAL);
-
- n = (p->layer+1) * IDR_BITS;
-
- id &= MAX_ID_MASK;
-
- if (id >= (1 << n))
- return ERR_PTR(-EINVAL);
-
- n -= IDR_BITS;
- while ((n > 0) && p) {
- p = p->ary[(id >> n) & IDR_MASK];
- n -= IDR_BITS;
- }
-
- n = id & IDR_MASK;
- if (unlikely(p == NULL || !test_bit(n, &p->bitmap)))
- return ERR_PTR(-ENOENT);
-
- old_p = p->ary[n];
- rcu_assign_pointer(p->ary[n], ptr);
-
- return old_p;
-}
-EXPORT_SYMBOL(idr_replace);
-
-void __init idr_init_cache(void)
-{
- idr_layer_cache = kmem_cache_create("idr_layer_cache",
- sizeof(struct idr_layer), 0, SLAB_PANIC, NULL);
-}
-
-/**
- * idr_init - initialize idr handle
- * @idp: idr handle
- *
- * This function is use to set up the handle (@idp) that you will pass
- * to the rest of the functions.
- */
-void idr_init(struct idr *idp)
-{
- memset(idp, 0, sizeof(struct idr));
- spin_lock_init(&idp->lock);
-}
-EXPORT_SYMBOL(idr_init);
-
-
-/*
- * IDA - IDR based ID allocator
- *
- * this is id allocator without id -> pointer translation. Memory
- * usage is much lower than full blown idr because each id only
- * occupies a bit. ida uses a custom leaf node which contains
- * IDA_BITMAP_BITS slots.
- *
- * 2007-04-25 written by Tejun Heo <htejun@gmail.com>
- */
-
-static void free_bitmap(struct ida *ida, struct ida_bitmap *bitmap)
-{
- unsigned long flags;
-
- if (!ida->free_bitmap) {
- spin_lock_irqsave(&ida->idr.lock, flags);
- if (!ida->free_bitmap) {
- ida->free_bitmap = bitmap;
- bitmap = NULL;
- }
- spin_unlock_irqrestore(&ida->idr.lock, flags);
- }
-
- kfree(bitmap);
-}
-
-/**
- * ida_pre_get - reserve resources for ida allocation
- * @ida: ida handle
- * @gfp_mask: memory allocation flag
- *
- * This function should be called prior to locking and calling the
- * following function. It preallocates enough memory to satisfy the
- * worst possible allocation.
- *
- * If the system is REALLY out of memory this function returns 0,
- * otherwise 1.
- */
-int ida_pre_get(struct ida *ida, gfp_t gfp_mask)
-{
- /* allocate idr_layers */
- if (!idr_pre_get(&ida->idr, gfp_mask))
- return 0;
-
- /* allocate free_bitmap */
- if (!ida->free_bitmap) {
- struct ida_bitmap *bitmap;
-
- bitmap = kmalloc(sizeof(struct ida_bitmap), gfp_mask);
- if (!bitmap)
- return 0;
-
- free_bitmap(ida, bitmap);
- }
-
- return 1;
-}
-EXPORT_SYMBOL(ida_pre_get);
-
-/**
- * ida_get_new_above - allocate new ID above or equal to a start id
- * @ida: ida handle
- * @staring_id: id to start search at
- * @p_id: pointer to the allocated handle
- *
- * Allocate new ID above or equal to @ida. It should be called with
- * any required locks.
- *
- * If memory is required, it will return -EAGAIN, you should unlock
- * and go back to the ida_pre_get() call. If the ida is full, it will
- * return -ENOSPC.
- *
- * @p_id returns a value in the range @starting_id ... 0x7fffffff.
- */
-int ida_get_new_above(struct ida *ida, int starting_id, int *p_id)
-{
- struct idr_layer *pa[MAX_LEVEL];
- struct ida_bitmap *bitmap;
- unsigned long flags;
- int idr_id = starting_id / IDA_BITMAP_BITS;
- int offset = starting_id % IDA_BITMAP_BITS;
- int t, id;
-
- restart:
- /* get vacant slot */
- t = idr_get_empty_slot(&ida->idr, idr_id, pa);
- if (t < 0)
- return _idr_rc_to_errno(t);
-
- if (t * IDA_BITMAP_BITS >= MAX_ID_BIT)
- return -ENOSPC;
-
- if (t != idr_id)
- offset = 0;
- idr_id = t;
-
- /* if bitmap isn't there, create a new one */
- bitmap = (void *)pa[0]->ary[idr_id & IDR_MASK];
- if (!bitmap) {
- spin_lock_irqsave(&ida->idr.lock, flags);
- bitmap = ida->free_bitmap;
- ida->free_bitmap = NULL;
- spin_unlock_irqrestore(&ida->idr.lock, flags);
-
- if (!bitmap)
- return -EAGAIN;
-
- memset(bitmap, 0, sizeof(struct ida_bitmap));
- rcu_assign_pointer(pa[0]->ary[idr_id & IDR_MASK],
- (void *)bitmap);
- pa[0]->count++;
- }
-
- /* lookup for empty slot */
- t = find_next_zero_bit(bitmap->bitmap, IDA_BITMAP_BITS, offset);
- if (t == IDA_BITMAP_BITS) {
- /* no empty slot after offset, continue to the next chunk */
- idr_id++;
- offset = 0;
- goto restart;
- }
-
- id = idr_id * IDA_BITMAP_BITS + t;
- if (id >= MAX_ID_BIT)
- return -ENOSPC;
-
- __set_bit(t, bitmap->bitmap);
- if (++bitmap->nr_busy == IDA_BITMAP_BITS)
- idr_mark_full(pa, idr_id);
-
- *p_id = id;
-
- /* Each leaf node can handle nearly a thousand slots and the
- * whole idea of ida is to have small memory foot print.
- * Throw away extra resources one by one after each successful
- * allocation.
- */
- if (ida->idr.id_free_cnt || ida->free_bitmap) {
- struct idr_layer *p = get_from_free_list(&ida->idr);
- if (p)
- kmem_cache_free(idr_layer_cache, p);
- }
-
- return 0;
-}
-EXPORT_SYMBOL(ida_get_new_above);
-
-/**
- * ida_get_new - allocate new ID
- * @ida: idr handle
- * @p_id: pointer to the allocated handle
- *
- * Allocate new ID. It should be called with any required locks.
- *
- * If memory is required, it will return -EAGAIN, you should unlock
- * and go back to the idr_pre_get() call. If the idr is full, it will
- * return -ENOSPC.
- *
- * @id returns a value in the range 0 ... 0x7fffffff.
- */
-int ida_get_new(struct ida *ida, int *p_id)
-{
- return ida_get_new_above(ida, 0, p_id);
-}
-EXPORT_SYMBOL(ida_get_new);
-
-/**
- * ida_remove - remove the given ID
- * @ida: ida handle
- * @id: ID to free
- */
-void ida_remove(struct ida *ida, int id)
-{
- struct idr_layer *p = ida->idr.top;
- int shift = (ida->idr.layers - 1) * IDR_BITS;
- int idr_id = id / IDA_BITMAP_BITS;
- int offset = id % IDA_BITMAP_BITS;
- int n;
- struct ida_bitmap *bitmap;
-
- /* clear full bits while looking up the leaf idr_layer */
- while ((shift > 0) && p) {
- n = (idr_id >> shift) & IDR_MASK;
- __clear_bit(n, &p->bitmap);
- p = p->ary[n];
- shift -= IDR_BITS;
- }
-
- if (p == NULL)
- goto err;
-
- n = idr_id & IDR_MASK;
- __clear_bit(n, &p->bitmap);
-
- bitmap = (void *)p->ary[n];
- if (!test_bit(offset, bitmap->bitmap))
- goto err;
-
- /* update bitmap and remove it if empty */
- __clear_bit(offset, bitmap->bitmap);
- if (--bitmap->nr_busy == 0) {
- __set_bit(n, &p->bitmap); /* to please idr_remove() */
- idr_remove(&ida->idr, idr_id);
- free_bitmap(ida, bitmap);
- }
-
- return;
-
- err:
- printk(KERN_WARNING
- "ida_remove called for id=%d which is not allocated.\n", id);
-}
-EXPORT_SYMBOL(ida_remove);
-
-/**
- * ida_destroy - release all cached layers within an ida tree
- * ida: ida handle
- */
-void ida_destroy(struct ida *ida)
-{
- idr_destroy(&ida->idr);
- kfree(ida->free_bitmap);
-}
-EXPORT_SYMBOL(ida_destroy);
-
-/**
- * ida_init - initialize ida handle
- * @ida: ida handle
- *
- * This function is use to set up the handle (@ida) that you will pass
- * to the rest of the functions.
- */
-void ida_init(struct ida *ida)
-{
- memset(ida, 0, sizeof(struct ida));
- idr_init(&ida->idr);
-
-}
-EXPORT_SYMBOL(ida_init);
diff --git a/libdde_linux26/contrib/lib/kasprintf.c b/libdde_linux26/contrib/lib/kasprintf.c
deleted file mode 100644
index c5ff1fd1..00000000
--- a/libdde_linux26/contrib/lib/kasprintf.c
+++ /dev/null
@@ -1,44 +0,0 @@
-/*
- * linux/lib/kasprintf.c
- *
- * Copyright (C) 1991, 1992 Linus Torvalds
- */
-
-#include <stdarg.h>
-#include <linux/module.h>
-#include <linux/types.h>
-#include <linux/string.h>
-
-/* Simplified asprintf. */
-char *kvasprintf(gfp_t gfp, const char *fmt, va_list ap)
-{
- unsigned int len;
- char *p;
- va_list aq;
-
- va_copy(aq, ap);
- len = vsnprintf(NULL, 0, fmt, aq);
- va_end(aq);
-
- p = kmalloc(len+1, gfp);
- if (!p)
- return NULL;
-
- vsnprintf(p, len+1, fmt, ap);
-
- return p;
-}
-EXPORT_SYMBOL(kvasprintf);
-
-char *kasprintf(gfp_t gfp, const char *fmt, ...)
-{
- va_list ap;
- char *p;
-
- va_start(ap, fmt);
- p = kvasprintf(gfp, fmt, ap);
- va_end(ap);
-
- return p;
-}
-EXPORT_SYMBOL(kasprintf);
diff --git a/libdde_linux26/contrib/lib/kernel_lock.c b/libdde_linux26/contrib/lib/kernel_lock.c
deleted file mode 100644
index 01a3c22c..00000000
--- a/libdde_linux26/contrib/lib/kernel_lock.c
+++ /dev/null
@@ -1,133 +0,0 @@
-/*
- * lib/kernel_lock.c
- *
- * This is the traditional BKL - big kernel lock. Largely
- * relegated to obsolescence, but used by various less
- * important (or lazy) subsystems.
- */
-#include <linux/smp_lock.h>
-#include <linux/module.h>
-#include <linux/kallsyms.h>
-#include <linux/semaphore.h>
-
-/*
- * The 'big kernel lock'
- *
- * This spinlock is taken and released recursively by lock_kernel()
- * and unlock_kernel(). It is transparently dropped and reacquired
- * over schedule(). It is used to protect legacy code that hasn't
- * been migrated to a proper locking design yet.
- *
- * Don't use in new code.
- */
-static __cacheline_aligned_in_smp DEFINE_SPINLOCK(kernel_flag);
-
-
-/*
- * Acquire/release the underlying lock from the scheduler.
- *
- * This is called with preemption disabled, and should
- * return an error value if it cannot get the lock and
- * TIF_NEED_RESCHED gets set.
- *
- * If it successfully gets the lock, it should increment
- * the preemption count like any spinlock does.
- *
- * (This works on UP too - _raw_spin_trylock will never
- * return false in that case)
- */
-int __lockfunc __reacquire_kernel_lock(void)
-{
- while (!_raw_spin_trylock(&kernel_flag)) {
- if (test_thread_flag(TIF_NEED_RESCHED))
- return -EAGAIN;
- cpu_relax();
- }
- preempt_disable();
- return 0;
-}
-
-void __lockfunc __release_kernel_lock(void)
-{
- _raw_spin_unlock(&kernel_flag);
- preempt_enable_no_resched();
-}
-
-/*
- * These are the BKL spinlocks - we try to be polite about preemption.
- * If SMP is not on (ie UP preemption), this all goes away because the
- * _raw_spin_trylock() will always succeed.
- */
-#ifdef CONFIG_PREEMPT
-static inline void __lock_kernel(void)
-{
- preempt_disable();
- if (unlikely(!_raw_spin_trylock(&kernel_flag))) {
- /*
- * If preemption was disabled even before this
- * was called, there's nothing we can be polite
- * about - just spin.
- */
- if (preempt_count() > 1) {
- _raw_spin_lock(&kernel_flag);
- return;
- }
-
- /*
- * Otherwise, let's wait for the kernel lock
- * with preemption enabled..
- */
- do {
- preempt_enable();
- while (spin_is_locked(&kernel_flag))
- cpu_relax();
- preempt_disable();
- } while (!_raw_spin_trylock(&kernel_flag));
- }
-}
-
-#else
-
-/*
- * Non-preemption case - just get the spinlock
- */
-static inline void __lock_kernel(void)
-{
- _raw_spin_lock(&kernel_flag);
-}
-#endif
-
-static inline void __unlock_kernel(void)
-{
- /*
- * the BKL is not covered by lockdep, so we open-code the
- * unlocking sequence (and thus avoid the dep-chain ops):
- */
- _raw_spin_unlock(&kernel_flag);
- preempt_enable();
-}
-
-/*
- * Getting the big kernel lock.
- *
- * This cannot happen asynchronously, so we only need to
- * worry about other CPU's.
- */
-void __lockfunc lock_kernel(void)
-{
- int depth = current->lock_depth+1;
- if (likely(!depth))
- __lock_kernel();
- current->lock_depth = depth;
-}
-
-void __lockfunc unlock_kernel(void)
-{
- BUG_ON(current->lock_depth < 0);
- if (likely(--current->lock_depth < 0))
- __unlock_kernel();
-}
-
-EXPORT_SYMBOL(lock_kernel);
-EXPORT_SYMBOL(unlock_kernel);
-
diff --git a/libdde_linux26/contrib/lib/klist.c b/libdde_linux26/contrib/lib/klist.c
deleted file mode 100644
index 573d6068..00000000
--- a/libdde_linux26/contrib/lib/klist.c
+++ /dev/null
@@ -1,365 +0,0 @@
-/*
- * klist.c - Routines for manipulating klists.
- *
- * Copyright (C) 2005 Patrick Mochel
- *
- * This file is released under the GPL v2.
- *
- * This klist interface provides a couple of structures that wrap around
- * struct list_head to provide explicit list "head" (struct klist) and list
- * "node" (struct klist_node) objects. For struct klist, a spinlock is
- * included that protects access to the actual list itself. struct
- * klist_node provides a pointer to the klist that owns it and a kref
- * reference count that indicates the number of current users of that node
- * in the list.
- *
- * The entire point is to provide an interface for iterating over a list
- * that is safe and allows for modification of the list during the
- * iteration (e.g. insertion and removal), including modification of the
- * current node on the list.
- *
- * It works using a 3rd object type - struct klist_iter - that is declared
- * and initialized before an iteration. klist_next() is used to acquire the
- * next element in the list. It returns NULL if there are no more items.
- * Internally, that routine takes the klist's lock, decrements the
- * reference count of the previous klist_node and increments the count of
- * the next klist_node. It then drops the lock and returns.
- *
- * There are primitives for adding and removing nodes to/from a klist.
- * When deleting, klist_del() will simply decrement the reference count.
- * Only when the count goes to 0 is the node removed from the list.
- * klist_remove() will try to delete the node from the list and block until
- * it is actually removed. This is useful for objects (like devices) that
- * have been removed from the system and must be freed (but must wait until
- * all accessors have finished).
- */
-
-#include <linux/klist.h>
-#include <linux/module.h>
-#include <linux/sched.h>
-
-/*
- * Use the lowest bit of n_klist to mark deleted nodes and exclude
- * dead ones from iteration.
- */
-#define KNODE_DEAD 1LU
-#define KNODE_KLIST_MASK ~KNODE_DEAD
-
-static struct klist *knode_klist(struct klist_node *knode)
-{
- return (struct klist *)
- ((unsigned long)knode->n_klist & KNODE_KLIST_MASK);
-}
-
-static bool knode_dead(struct klist_node *knode)
-{
- return (unsigned long)knode->n_klist & KNODE_DEAD;
-}
-
-static void knode_set_klist(struct klist_node *knode, struct klist *klist)
-{
- knode->n_klist = klist;
- /* no knode deserves to start its life dead */
- WARN_ON(knode_dead(knode));
-}
-
-static void knode_kill(struct klist_node *knode)
-{
- /* and no knode should die twice ever either, see we're very humane */
- WARN_ON(knode_dead(knode));
- *(unsigned long *)&knode->n_klist |= KNODE_DEAD;
-}
-
-/**
- * klist_init - Initialize a klist structure.
- * @k: The klist we're initializing.
- * @get: The get function for the embedding object (NULL if none)
- * @put: The put function for the embedding object (NULL if none)
- *
- * Initialises the klist structure. If the klist_node structures are
- * going to be embedded in refcounted objects (necessary for safe
- * deletion) then the get/put arguments are used to initialise
- * functions that take and release references on the embedding
- * objects.
- */
-void klist_init(struct klist *k, void (*get)(struct klist_node *),
- void (*put)(struct klist_node *))
-{
- INIT_LIST_HEAD(&k->k_list);
- spin_lock_init(&k->k_lock);
- k->get = get;
- k->put = put;
-}
-EXPORT_SYMBOL_GPL(klist_init);
-
-static void add_head(struct klist *k, struct klist_node *n)
-{
- spin_lock(&k->k_lock);
- list_add(&n->n_node, &k->k_list);
- spin_unlock(&k->k_lock);
-}
-
-static void add_tail(struct klist *k, struct klist_node *n)
-{
- spin_lock(&k->k_lock);
- list_add_tail(&n->n_node, &k->k_list);
- spin_unlock(&k->k_lock);
-}
-
-static void klist_node_init(struct klist *k, struct klist_node *n)
-{
- INIT_LIST_HEAD(&n->n_node);
- kref_init(&n->n_ref);
- knode_set_klist(n, k);
- if (k->get)
- k->get(n);
-}
-
-/**
- * klist_add_head - Initialize a klist_node and add it to front.
- * @n: node we're adding.
- * @k: klist it's going on.
- */
-void klist_add_head(struct klist_node *n, struct klist *k)
-{
- klist_node_init(k, n);
- add_head(k, n);
-}
-EXPORT_SYMBOL_GPL(klist_add_head);
-
-/**
- * klist_add_tail - Initialize a klist_node and add it to back.
- * @n: node we're adding.
- * @k: klist it's going on.
- */
-void klist_add_tail(struct klist_node *n, struct klist *k)
-{
- klist_node_init(k, n);
- add_tail(k, n);
-}
-EXPORT_SYMBOL_GPL(klist_add_tail);
-
-/**
- * klist_add_after - Init a klist_node and add it after an existing node
- * @n: node we're adding.
- * @pos: node to put @n after
- */
-void klist_add_after(struct klist_node *n, struct klist_node *pos)
-{
- struct klist *k = knode_klist(pos);
-
- klist_node_init(k, n);
- spin_lock(&k->k_lock);
- list_add(&n->n_node, &pos->n_node);
- spin_unlock(&k->k_lock);
-}
-EXPORT_SYMBOL_GPL(klist_add_after);
-
-/**
- * klist_add_before - Init a klist_node and add it before an existing node
- * @n: node we're adding.
- * @pos: node to put @n after
- */
-void klist_add_before(struct klist_node *n, struct klist_node *pos)
-{
- struct klist *k = knode_klist(pos);
-
- klist_node_init(k, n);
- spin_lock(&k->k_lock);
- list_add_tail(&n->n_node, &pos->n_node);
- spin_unlock(&k->k_lock);
-}
-EXPORT_SYMBOL_GPL(klist_add_before);
-
-struct klist_waiter {
- struct list_head list;
- struct klist_node *node;
- struct task_struct *process;
- int woken;
-};
-
-static DEFINE_SPINLOCK(klist_remove_lock);
-static LIST_HEAD(klist_remove_waiters);
-
-static void klist_release(struct kref *kref)
-{
- struct klist_waiter *waiter, *tmp;
- struct klist_node *n = container_of(kref, struct klist_node, n_ref);
-
- WARN_ON(!knode_dead(n));
- list_del(&n->n_node);
- spin_lock(&klist_remove_lock);
- list_for_each_entry_safe(waiter, tmp, &klist_remove_waiters, list) {
- if (waiter->node != n)
- continue;
-
- waiter->woken = 1;
- mb();
- wake_up_process(waiter->process);
- list_del(&waiter->list);
- }
- spin_unlock(&klist_remove_lock);
- knode_set_klist(n, NULL);
-}
-
-static int klist_dec_and_del(struct klist_node *n)
-{
- return kref_put(&n->n_ref, klist_release);
-}
-
-static void klist_put(struct klist_node *n, bool kill)
-{
- struct klist *k = knode_klist(n);
- void (*put)(struct klist_node *) = k->put;
-
- spin_lock(&k->k_lock);
- if (kill)
- knode_kill(n);
- if (!klist_dec_and_del(n))
- put = NULL;
- spin_unlock(&k->k_lock);
- if (put)
- put(n);
-}
-
-/**
- * klist_del - Decrement the reference count of node and try to remove.
- * @n: node we're deleting.
- */
-void klist_del(struct klist_node *n)
-{
- klist_put(n, true);
-}
-EXPORT_SYMBOL_GPL(klist_del);
-
-/**
- * klist_remove - Decrement the refcount of node and wait for it to go away.
- * @n: node we're removing.
- */
-void klist_remove(struct klist_node *n)
-{
- struct klist_waiter waiter;
-
- waiter.node = n;
- waiter.process = current;
- waiter.woken = 0;
- spin_lock(&klist_remove_lock);
- list_add(&waiter.list, &klist_remove_waiters);
- spin_unlock(&klist_remove_lock);
-
- klist_del(n);
-
- for (;;) {
- set_current_state(TASK_UNINTERRUPTIBLE);
- if (waiter.woken)
- break;
- schedule();
- }
- __set_current_state(TASK_RUNNING);
-}
-EXPORT_SYMBOL_GPL(klist_remove);
-
-/**
- * klist_node_attached - Say whether a node is bound to a list or not.
- * @n: Node that we're testing.
- */
-int klist_node_attached(struct klist_node *n)
-{
- return (n->n_klist != NULL);
-}
-EXPORT_SYMBOL_GPL(klist_node_attached);
-
-/**
- * klist_iter_init_node - Initialize a klist_iter structure.
- * @k: klist we're iterating.
- * @i: klist_iter we're filling.
- * @n: node to start with.
- *
- * Similar to klist_iter_init(), but starts the action off with @n,
- * instead of with the list head.
- */
-void klist_iter_init_node(struct klist *k, struct klist_iter *i,
- struct klist_node *n)
-{
- i->i_klist = k;
- i->i_cur = n;
- if (n)
- kref_get(&n->n_ref);
-}
-EXPORT_SYMBOL_GPL(klist_iter_init_node);
-
-/**
- * klist_iter_init - Iniitalize a klist_iter structure.
- * @k: klist we're iterating.
- * @i: klist_iter structure we're filling.
- *
- * Similar to klist_iter_init_node(), but start with the list head.
- */
-void klist_iter_init(struct klist *k, struct klist_iter *i)
-{
- klist_iter_init_node(k, i, NULL);
-}
-EXPORT_SYMBOL_GPL(klist_iter_init);
-
-/**
- * klist_iter_exit - Finish a list iteration.
- * @i: Iterator structure.
- *
- * Must be called when done iterating over list, as it decrements the
- * refcount of the current node. Necessary in case iteration exited before
- * the end of the list was reached, and always good form.
- */
-void klist_iter_exit(struct klist_iter *i)
-{
- if (i->i_cur) {
- klist_put(i->i_cur, false);
- i->i_cur = NULL;
- }
-}
-EXPORT_SYMBOL_GPL(klist_iter_exit);
-
-static struct klist_node *to_klist_node(struct list_head *n)
-{
- return container_of(n, struct klist_node, n_node);
-}
-
-/**
- * klist_next - Ante up next node in list.
- * @i: Iterator structure.
- *
- * First grab list lock. Decrement the reference count of the previous
- * node, if there was one. Grab the next node, increment its reference
- * count, drop the lock, and return that next node.
- */
-struct klist_node *klist_next(struct klist_iter *i)
-{
- void (*put)(struct klist_node *) = i->i_klist->put;
- struct klist_node *last = i->i_cur;
- struct klist_node *next;
-
- spin_lock(&i->i_klist->k_lock);
-
- if (last) {
- next = to_klist_node(last->n_node.next);
- if (!klist_dec_and_del(last))
- put = NULL;
- } else
- next = to_klist_node(i->i_klist->k_list.next);
-
- i->i_cur = NULL;
- while (next != to_klist_node(&i->i_klist->k_list)) {
- if (likely(!knode_dead(next))) {
- kref_get(&next->n_ref);
- i->i_cur = next;
- break;
- }
- next = to_klist_node(next->n_node.next);
- }
-
- spin_unlock(&i->i_klist->k_lock);
-
- if (put && last)
- put(last);
- return i->i_cur;
-}
-EXPORT_SYMBOL_GPL(klist_next);
diff --git a/libdde_linux26/contrib/lib/kobject.c b/libdde_linux26/contrib/lib/kobject.c
deleted file mode 100644
index 0487d1f6..00000000
--- a/libdde_linux26/contrib/lib/kobject.c
+++ /dev/null
@@ -1,850 +0,0 @@
-/*
- * kobject.c - library routines for handling generic kernel objects
- *
- * Copyright (c) 2002-2003 Patrick Mochel <mochel@osdl.org>
- * Copyright (c) 2006-2007 Greg Kroah-Hartman <greg@kroah.com>
- * Copyright (c) 2006-2007 Novell Inc.
- *
- * This file is released under the GPLv2.
- *
- *
- * Please see the file Documentation/kobject.txt for critical information
- * about using the kobject interface.
- */
-
-#include <linux/kobject.h>
-#include <linux/string.h>
-#include <linux/module.h>
-#include <linux/stat.h>
-#include <linux/slab.h>
-
-/*
- * populate_dir - populate directory with attributes.
- * @kobj: object we're working on.
- *
- * Most subsystems have a set of default attributes that are associated
- * with an object that registers with them. This is a helper called during
- * object registration that loops through the default attributes of the
- * subsystem and creates attributes files for them in sysfs.
- */
-static int populate_dir(struct kobject *kobj)
-{
- struct kobj_type *t = get_ktype(kobj);
- struct attribute *attr;
- int error = 0;
- int i;
-
- if (t && t->default_attrs) {
- for (i = 0; (attr = t->default_attrs[i]) != NULL; i++) {
- error = sysfs_create_file(kobj, attr);
- if (error)
- break;
- }
- }
- return error;
-}
-
-static int create_dir(struct kobject *kobj)
-{
- int error = 0;
- if (kobject_name(kobj)) {
- error = sysfs_create_dir(kobj);
- if (!error) {
- error = populate_dir(kobj);
- if (error)
- sysfs_remove_dir(kobj);
- }
- }
- return error;
-}
-
-static int get_kobj_path_length(struct kobject *kobj)
-{
- int length = 1;
- struct kobject *parent = kobj;
-
- /* walk up the ancestors until we hit the one pointing to the
- * root.
- * Add 1 to strlen for leading '/' of each level.
- */
- do {
- if (kobject_name(parent) == NULL)
- return 0;
- length += strlen(kobject_name(parent)) + 1;
- parent = parent->parent;
- } while (parent);
- return length;
-}
-
-static void fill_kobj_path(struct kobject *kobj, char *path, int length)
-{
- struct kobject *parent;
-
- --length;
- for (parent = kobj; parent; parent = parent->parent) {
- int cur = strlen(kobject_name(parent));
- /* back up enough to print this name with '/' */
- length -= cur;
- strncpy(path + length, kobject_name(parent), cur);
- *(path + --length) = '/';
- }
-
- pr_debug("kobject: '%s' (%p): %s: path = '%s'\n", kobject_name(kobj),
- kobj, __func__, path);
-}
-
-/**
- * kobject_get_path - generate and return the path associated with a given kobj and kset pair.
- *
- * @kobj: kobject in question, with which to build the path
- * @gfp_mask: the allocation type used to allocate the path
- *
- * The result must be freed by the caller with kfree().
- */
-char *kobject_get_path(struct kobject *kobj, gfp_t gfp_mask)
-{
- char *path;
- int len;
-
- len = get_kobj_path_length(kobj);
- if (len == 0)
- return NULL;
- path = kzalloc(len, gfp_mask);
- if (!path)
- return NULL;
- fill_kobj_path(kobj, path, len);
-
- return path;
-}
-EXPORT_SYMBOL_GPL(kobject_get_path);
-
-/* add the kobject to its kset's list */
-static void kobj_kset_join(struct kobject *kobj)
-{
- if (!kobj->kset)
- return;
-
- kset_get(kobj->kset);
- spin_lock(&kobj->kset->list_lock);
- list_add_tail(&kobj->entry, &kobj->kset->list);
- spin_unlock(&kobj->kset->list_lock);
-}
-
-/* remove the kobject from its kset's list */
-static void kobj_kset_leave(struct kobject *kobj)
-{
- if (!kobj->kset)
- return;
-
- spin_lock(&kobj->kset->list_lock);
- list_del_init(&kobj->entry);
- spin_unlock(&kobj->kset->list_lock);
- kset_put(kobj->kset);
-}
-
-static void kobject_init_internal(struct kobject *kobj)
-{
- if (!kobj)
- return;
- kref_init(&kobj->kref);
- INIT_LIST_HEAD(&kobj->entry);
- kobj->state_in_sysfs = 0;
- kobj->state_add_uevent_sent = 0;
- kobj->state_remove_uevent_sent = 0;
- kobj->state_initialized = 1;
-}
-
-
-static int kobject_add_internal(struct kobject *kobj)
-{
- int error = 0;
- struct kobject *parent;
-
- if (!kobj)
- return -ENOENT;
-
- if (!kobj->name || !kobj->name[0]) {
- WARN(1, "kobject: (%p): attempted to be registered with empty "
- "name!\n", kobj);
- return -EINVAL;
- }
-
- parent = kobject_get(kobj->parent);
-
- /* join kset if set, use it as parent if we do not already have one */
- if (kobj->kset) {
- if (!parent)
- parent = kobject_get(&kobj->kset->kobj);
- kobj_kset_join(kobj);
- kobj->parent = parent;
- }
-
- pr_debug("kobject: '%s' (%p): %s: parent: '%s', set: '%s'\n",
- kobject_name(kobj), kobj, __func__,
- parent ? kobject_name(parent) : "<NULL>",
- kobj->kset ? kobject_name(&kobj->kset->kobj) : "<NULL>");
-
- error = create_dir(kobj);
- if (error) {
- kobj_kset_leave(kobj);
- kobject_put(parent);
- kobj->parent = NULL;
-
- /* be noisy on error issues */
- if (error == -EEXIST)
- printk(KERN_ERR "%s failed for %s with "
- "-EEXIST, don't try to register things with "
- "the same name in the same directory.\n",
- __func__, kobject_name(kobj));
- else
- printk(KERN_ERR "%s failed for %s (%d)\n",
- __func__, kobject_name(kobj), error);
- dump_stack();
- } else
- kobj->state_in_sysfs = 1;
-
- return error;
-}
-
-/**
- * kobject_set_name_vargs - Set the name of an kobject
- * @kobj: struct kobject to set the name of
- * @fmt: format string used to build the name
- * @vargs: vargs to format the string.
- */
-static int kobject_set_name_vargs(struct kobject *kobj, const char *fmt,
- va_list vargs)
-{
- const char *old_name = kobj->name;
- char *s;
-
- kobj->name = kvasprintf(GFP_KERNEL, fmt, vargs);
- if (!kobj->name)
- return -ENOMEM;
-
- /* ewww... some of these buggers have '/' in the name ... */
- while ((s = strchr(kobj->name, '/')))
- s[0] = '!';
-
- kfree(old_name);
- return 0;
-}
-
-/**
- * kobject_set_name - Set the name of a kobject
- * @kobj: struct kobject to set the name of
- * @fmt: format string used to build the name
- *
- * This sets the name of the kobject. If you have already added the
- * kobject to the system, you must call kobject_rename() in order to
- * change the name of the kobject.
- */
-int kobject_set_name(struct kobject *kobj, const char *fmt, ...)
-{
- va_list vargs;
- int retval;
-
- va_start(vargs, fmt);
- retval = kobject_set_name_vargs(kobj, fmt, vargs);
- va_end(vargs);
-
- return retval;
-}
-EXPORT_SYMBOL(kobject_set_name);
-
-/**
- * kobject_init - initialize a kobject structure
- * @kobj: pointer to the kobject to initialize
- * @ktype: pointer to the ktype for this kobject.
- *
- * This function will properly initialize a kobject such that it can then
- * be passed to the kobject_add() call.
- *
- * After this function is called, the kobject MUST be cleaned up by a call
- * to kobject_put(), not by a call to kfree directly to ensure that all of
- * the memory is cleaned up properly.
- */
-void kobject_init(struct kobject *kobj, struct kobj_type *ktype)
-{
- char *err_str;
-
- if (!kobj) {
- err_str = "invalid kobject pointer!";
- goto error;
- }
- if (!ktype) {
- err_str = "must have a ktype to be initialized properly!\n";
- goto error;
- }
- if (kobj->state_initialized) {
- /* do not error out as sometimes we can recover */
- printk(KERN_ERR "kobject (%p): tried to init an initialized "
- "object, something is seriously wrong.\n", kobj);
- dump_stack();
- }
-
- kobject_init_internal(kobj);
- kobj->ktype = ktype;
- return;
-
-error:
- printk(KERN_ERR "kobject (%p): %s\n", kobj, err_str);
- dump_stack();
-}
-EXPORT_SYMBOL(kobject_init);
-
-static int kobject_add_varg(struct kobject *kobj, struct kobject *parent,
- const char *fmt, va_list vargs)
-{
- int retval;
-
- retval = kobject_set_name_vargs(kobj, fmt, vargs);
- if (retval) {
- printk(KERN_ERR "kobject: can not set name properly!\n");
- return retval;
- }
- kobj->parent = parent;
- return kobject_add_internal(kobj);
-}
-
-/**
- * kobject_add - the main kobject add function
- * @kobj: the kobject to add
- * @parent: pointer to the parent of the kobject.
- * @fmt: format to name the kobject with.
- *
- * The kobject name is set and added to the kobject hierarchy in this
- * function.
- *
- * If @parent is set, then the parent of the @kobj will be set to it.
- * If @parent is NULL, then the parent of the @kobj will be set to the
- * kobject associted with the kset assigned to this kobject. If no kset
- * is assigned to the kobject, then the kobject will be located in the
- * root of the sysfs tree.
- *
- * If this function returns an error, kobject_put() must be called to
- * properly clean up the memory associated with the object.
- * Under no instance should the kobject that is passed to this function
- * be directly freed with a call to kfree(), that can leak memory.
- *
- * Note, no "add" uevent will be created with this call, the caller should set
- * up all of the necessary sysfs files for the object and then call
- * kobject_uevent() with the UEVENT_ADD parameter to ensure that
- * userspace is properly notified of this kobject's creation.
- */
-int kobject_add(struct kobject *kobj, struct kobject *parent,
- const char *fmt, ...)
-{
- va_list args;
- int retval;
-
- if (!kobj)
- return -EINVAL;
-
- if (!kobj->state_initialized) {
- printk(KERN_ERR "kobject '%s' (%p): tried to add an "
- "uninitialized object, something is seriously wrong.\n",
- kobject_name(kobj), kobj);
- dump_stack();
- return -EINVAL;
- }
- va_start(args, fmt);
- retval = kobject_add_varg(kobj, parent, fmt, args);
- va_end(args);
-
- return retval;
-}
-EXPORT_SYMBOL(kobject_add);
-
-/**
- * kobject_init_and_add - initialize a kobject structure and add it to the kobject hierarchy
- * @kobj: pointer to the kobject to initialize
- * @ktype: pointer to the ktype for this kobject.
- * @parent: pointer to the parent of this kobject.
- * @fmt: the name of the kobject.
- *
- * This function combines the call to kobject_init() and
- * kobject_add(). The same type of error handling after a call to
- * kobject_add() and kobject lifetime rules are the same here.
- */
-int kobject_init_and_add(struct kobject *kobj, struct kobj_type *ktype,
- struct kobject *parent, const char *fmt, ...)
-{
- va_list args;
- int retval;
-
- kobject_init(kobj, ktype);
-
- va_start(args, fmt);
- retval = kobject_add_varg(kobj, parent, fmt, args);
- va_end(args);
-
- return retval;
-}
-EXPORT_SYMBOL_GPL(kobject_init_and_add);
-
-/**
- * kobject_rename - change the name of an object
- * @kobj: object in question.
- * @new_name: object's new name
- *
- * It is the responsibility of the caller to provide mutual
- * exclusion between two different calls of kobject_rename
- * on the same kobject and to ensure that new_name is valid and
- * won't conflict with other kobjects.
- */
-int kobject_rename(struct kobject *kobj, const char *new_name)
-{
- int error = 0;
- const char *devpath = NULL;
- const char *dup_name = NULL, *name;
- char *devpath_string = NULL;
- char *envp[2];
-
- kobj = kobject_get(kobj);
- if (!kobj)
- return -EINVAL;
- if (!kobj->parent)
- return -EINVAL;
-
- devpath = kobject_get_path(kobj, GFP_KERNEL);
- if (!devpath) {
- error = -ENOMEM;
- goto out;
- }
- devpath_string = kmalloc(strlen(devpath) + 15, GFP_KERNEL);
- if (!devpath_string) {
- error = -ENOMEM;
- goto out;
- }
- sprintf(devpath_string, "DEVPATH_OLD=%s", devpath);
- envp[0] = devpath_string;
- envp[1] = NULL;
-
- name = dup_name = kstrdup(new_name, GFP_KERNEL);
- if (!name) {
- error = -ENOMEM;
- goto out;
- }
-
- error = sysfs_rename_dir(kobj, new_name);
- if (error)
- goto out;
-
- /* Install the new kobject name */
- dup_name = kobj->name;
- kobj->name = name;
-
- /* This function is mostly/only used for network interface.
- * Some hotplug package track interfaces by their name and
- * therefore want to know when the name is changed by the user. */
- kobject_uevent_env(kobj, KOBJ_MOVE, envp);
-
-out:
- kfree(dup_name);
- kfree(devpath_string);
- kfree(devpath);
- kobject_put(kobj);
-
- return error;
-}
-EXPORT_SYMBOL_GPL(kobject_rename);
-
-/**
- * kobject_move - move object to another parent
- * @kobj: object in question.
- * @new_parent: object's new parent (can be NULL)
- */
-int kobject_move(struct kobject *kobj, struct kobject *new_parent)
-{
- int error;
- struct kobject *old_parent;
- const char *devpath = NULL;
- char *devpath_string = NULL;
- char *envp[2];
-
- kobj = kobject_get(kobj);
- if (!kobj)
- return -EINVAL;
- new_parent = kobject_get(new_parent);
- if (!new_parent) {
- if (kobj->kset)
- new_parent = kobject_get(&kobj->kset->kobj);
- }
- /* old object path */
- devpath = kobject_get_path(kobj, GFP_KERNEL);
- if (!devpath) {
- error = -ENOMEM;
- goto out;
- }
- devpath_string = kmalloc(strlen(devpath) + 15, GFP_KERNEL);
- if (!devpath_string) {
- error = -ENOMEM;
- goto out;
- }
- sprintf(devpath_string, "DEVPATH_OLD=%s", devpath);
- envp[0] = devpath_string;
- envp[1] = NULL;
- error = sysfs_move_dir(kobj, new_parent);
- if (error)
- goto out;
- old_parent = kobj->parent;
- kobj->parent = new_parent;
- new_parent = NULL;
- kobject_put(old_parent);
- kobject_uevent_env(kobj, KOBJ_MOVE, envp);
-out:
- kobject_put(new_parent);
- kobject_put(kobj);
- kfree(devpath_string);
- kfree(devpath);
- return error;
-}
-
-/**
- * kobject_del - unlink kobject from hierarchy.
- * @kobj: object.
- */
-void kobject_del(struct kobject *kobj)
-{
- if (!kobj)
- return;
-
- sysfs_remove_dir(kobj);
- kobj->state_in_sysfs = 0;
- kobj_kset_leave(kobj);
- kobject_put(kobj->parent);
- kobj->parent = NULL;
-}
-
-/**
- * kobject_get - increment refcount for object.
- * @kobj: object.
- */
-struct kobject *kobject_get(struct kobject *kobj)
-{
- if (kobj)
- kref_get(&kobj->kref);
- return kobj;
-}
-
-/*
- * kobject_cleanup - free kobject resources.
- * @kobj: object to cleanup
- */
-static void kobject_cleanup(struct kobject *kobj)
-{
- struct kobj_type *t = get_ktype(kobj);
- const char *name = kobj->name;
-
- pr_debug("kobject: '%s' (%p): %s\n",
- kobject_name(kobj), kobj, __func__);
-
- if (t && !t->release)
- pr_debug("kobject: '%s' (%p): does not have a release() "
- "function, it is broken and must be fixed.\n",
- kobject_name(kobj), kobj);
-
- /* send "remove" if the caller did not do it but sent "add" */
- if (kobj->state_add_uevent_sent && !kobj->state_remove_uevent_sent) {
- pr_debug("kobject: '%s' (%p): auto cleanup 'remove' event\n",
- kobject_name(kobj), kobj);
- kobject_uevent(kobj, KOBJ_REMOVE);
- }
-
- /* remove from sysfs if the caller did not do it */
- if (kobj->state_in_sysfs) {
- pr_debug("kobject: '%s' (%p): auto cleanup kobject_del\n",
- kobject_name(kobj), kobj);
- kobject_del(kobj);
- }
-
- if (t && t->release) {
- pr_debug("kobject: '%s' (%p): calling ktype release\n",
- kobject_name(kobj), kobj);
- t->release(kobj);
- }
-
- /* free name if we allocated it */
- if (name) {
- pr_debug("kobject: '%s': free name\n", name);
- kfree(name);
- }
-}
-
-static void kobject_release(struct kref *kref)
-{
- kobject_cleanup(container_of(kref, struct kobject, kref));
-}
-
-/**
- * kobject_put - decrement refcount for object.
- * @kobj: object.
- *
- * Decrement the refcount, and if 0, call kobject_cleanup().
- */
-void kobject_put(struct kobject *kobj)
-{
- if (kobj) {
- if (!kobj->state_initialized)
- WARN(1, KERN_WARNING "kobject: '%s' (%p): is not "
- "initialized, yet kobject_put() is being "
- "called.\n", kobject_name(kobj), kobj);
- kref_put(&kobj->kref, kobject_release);
- }
-}
-
-static void dynamic_kobj_release(struct kobject *kobj)
-{
- pr_debug("kobject: (%p): %s\n", kobj, __func__);
- kfree(kobj);
-}
-
-static struct kobj_type dynamic_kobj_ktype = {
- .release = dynamic_kobj_release,
- .sysfs_ops = &kobj_sysfs_ops,
-};
-
-/**
- * kobject_create - create a struct kobject dynamically
- *
- * This function creates a kobject structure dynamically and sets it up
- * to be a "dynamic" kobject with a default release function set up.
- *
- * If the kobject was not able to be created, NULL will be returned.
- * The kobject structure returned from here must be cleaned up with a
- * call to kobject_put() and not kfree(), as kobject_init() has
- * already been called on this structure.
- */
-struct kobject *kobject_create(void)
-{
- struct kobject *kobj;
-
- kobj = kzalloc(sizeof(*kobj), GFP_KERNEL);
- if (!kobj)
- return NULL;
-
- kobject_init(kobj, &dynamic_kobj_ktype);
- return kobj;
-}
-
-/**
- * kobject_create_and_add - create a struct kobject dynamically and register it with sysfs
- *
- * @name: the name for the kset
- * @parent: the parent kobject of this kobject, if any.
- *
- * This function creates a kobject structure dynamically and registers it
- * with sysfs. When you are finished with this structure, call
- * kobject_put() and the structure will be dynamically freed when
- * it is no longer being used.
- *
- * If the kobject was not able to be created, NULL will be returned.
- */
-struct kobject *kobject_create_and_add(const char *name, struct kobject *parent)
-{
- struct kobject *kobj;
- int retval;
-
- kobj = kobject_create();
- if (!kobj)
- return NULL;
-
- retval = kobject_add(kobj, parent, "%s", name);
- if (retval) {
- printk(KERN_WARNING "%s: kobject_add error: %d\n",
- __func__, retval);
- kobject_put(kobj);
- kobj = NULL;
- }
- return kobj;
-}
-EXPORT_SYMBOL_GPL(kobject_create_and_add);
-
-/**
- * kset_init - initialize a kset for use
- * @k: kset
- */
-void kset_init(struct kset *k)
-{
- kobject_init_internal(&k->kobj);
- INIT_LIST_HEAD(&k->list);
- spin_lock_init(&k->list_lock);
-}
-
-/* default kobject attribute operations */
-static ssize_t kobj_attr_show(struct kobject *kobj, struct attribute *attr,
- char *buf)
-{
- struct kobj_attribute *kattr;
- ssize_t ret = -EIO;
-
- kattr = container_of(attr, struct kobj_attribute, attr);
- if (kattr->show)
- ret = kattr->show(kobj, kattr, buf);
- return ret;
-}
-
-static ssize_t kobj_attr_store(struct kobject *kobj, struct attribute *attr,
- const char *buf, size_t count)
-{
- struct kobj_attribute *kattr;
- ssize_t ret = -EIO;
-
- kattr = container_of(attr, struct kobj_attribute, attr);
- if (kattr->store)
- ret = kattr->store(kobj, kattr, buf, count);
- return ret;
-}
-
-struct sysfs_ops kobj_sysfs_ops = {
- .show = kobj_attr_show,
- .store = kobj_attr_store,
-};
-
-/**
- * kset_register - initialize and add a kset.
- * @k: kset.
- */
-int kset_register(struct kset *k)
-{
- int err;
-
- if (!k)
- return -EINVAL;
-
- kset_init(k);
- err = kobject_add_internal(&k->kobj);
- if (err)
- return err;
- kobject_uevent(&k->kobj, KOBJ_ADD);
- return 0;
-}
-
-/**
- * kset_unregister - remove a kset.
- * @k: kset.
- */
-void kset_unregister(struct kset *k)
-{
- if (!k)
- return;
- kobject_put(&k->kobj);
-}
-
-/**
- * kset_find_obj - search for object in kset.
- * @kset: kset we're looking in.
- * @name: object's name.
- *
- * Lock kset via @kset->subsys, and iterate over @kset->list,
- * looking for a matching kobject. If matching object is found
- * take a reference and return the object.
- */
-struct kobject *kset_find_obj(struct kset *kset, const char *name)
-{
- struct kobject *k;
- struct kobject *ret = NULL;
-
- spin_lock(&kset->list_lock);
- list_for_each_entry(k, &kset->list, entry) {
- if (kobject_name(k) && !strcmp(kobject_name(k), name)) {
- ret = kobject_get(k);
- break;
- }
- }
- spin_unlock(&kset->list_lock);
- return ret;
-}
-
-static void kset_release(struct kobject *kobj)
-{
- struct kset *kset = container_of(kobj, struct kset, kobj);
- pr_debug("kobject: '%s' (%p): %s\n",
- kobject_name(kobj), kobj, __func__);
- kfree(kset);
-}
-
-static struct kobj_type kset_ktype = {
- .sysfs_ops = &kobj_sysfs_ops,
- .release = kset_release,
-};
-
-/**
- * kset_create - create a struct kset dynamically
- *
- * @name: the name for the kset
- * @uevent_ops: a struct kset_uevent_ops for the kset
- * @parent_kobj: the parent kobject of this kset, if any.
- *
- * This function creates a kset structure dynamically. This structure can
- * then be registered with the system and show up in sysfs with a call to
- * kset_register(). When you are finished with this structure, if
- * kset_register() has been called, call kset_unregister() and the
- * structure will be dynamically freed when it is no longer being used.
- *
- * If the kset was not able to be created, NULL will be returned.
- */
-static struct kset *kset_create(const char *name,
- struct kset_uevent_ops *uevent_ops,
- struct kobject *parent_kobj)
-{
- struct kset *kset;
-
- kset = kzalloc(sizeof(*kset), GFP_KERNEL);
- if (!kset)
- return NULL;
- kobject_set_name(&kset->kobj, name);
- kset->uevent_ops = uevent_ops;
- kset->kobj.parent = parent_kobj;
-
- /*
- * The kobject of this kset will have a type of kset_ktype and belong to
- * no kset itself. That way we can properly free it when it is
- * finished being used.
- */
- kset->kobj.ktype = &kset_ktype;
- kset->kobj.kset = NULL;
-
- return kset;
-}
-
-/**
- * kset_create_and_add - create a struct kset dynamically and add it to sysfs
- *
- * @name: the name for the kset
- * @uevent_ops: a struct kset_uevent_ops for the kset
- * @parent_kobj: the parent kobject of this kset, if any.
- *
- * This function creates a kset structure dynamically and registers it
- * with sysfs. When you are finished with this structure, call
- * kset_unregister() and the structure will be dynamically freed when it
- * is no longer being used.
- *
- * If the kset was not able to be created, NULL will be returned.
- */
-struct kset *kset_create_and_add(const char *name,
- struct kset_uevent_ops *uevent_ops,
- struct kobject *parent_kobj)
-{
- struct kset *kset;
- int error;
-
- kset = kset_create(name, uevent_ops, parent_kobj);
- if (!kset)
- return NULL;
- error = kset_register(kset);
- if (error) {
- kfree(kset);
- return NULL;
- }
- return kset;
-}
-EXPORT_SYMBOL_GPL(kset_create_and_add);
-
-EXPORT_SYMBOL(kobject_get);
-EXPORT_SYMBOL(kobject_put);
-EXPORT_SYMBOL(kobject_del);
-
-EXPORT_SYMBOL(kset_register);
-EXPORT_SYMBOL(kset_unregister);
diff --git a/libdde_linux26/contrib/lib/kref.c b/libdde_linux26/contrib/lib/kref.c
deleted file mode 100644
index 9ecd6e86..00000000
--- a/libdde_linux26/contrib/lib/kref.c
+++ /dev/null
@@ -1,77 +0,0 @@
-/*
- * kref.c - library routines for handling generic reference counted objects
- *
- * Copyright (C) 2004 Greg Kroah-Hartman <greg@kroah.com>
- * Copyright (C) 2004 IBM Corp.
- *
- * based on lib/kobject.c which was:
- * Copyright (C) 2002-2003 Patrick Mochel <mochel@osdl.org>
- *
- * This file is released under the GPLv2.
- *
- */
-
-#include <linux/kref.h>
-#include <linux/module.h>
-
-/**
- * kref_set - initialize object and set refcount to requested number.
- * @kref: object in question.
- * @num: initial reference counter
- */
-void kref_set(struct kref *kref, int num)
-{
- atomic_set(&kref->refcount, num);
- smp_mb();
-}
-
-/**
- * kref_init - initialize object.
- * @kref: object in question.
- */
-void kref_init(struct kref *kref)
-{
- kref_set(kref, 1);
-}
-
-/**
- * kref_get - increment refcount for object.
- * @kref: object.
- */
-void kref_get(struct kref *kref)
-{
- WARN_ON(!atomic_read(&kref->refcount));
- atomic_inc(&kref->refcount);
- smp_mb__after_atomic_inc();
-}
-
-/**
- * kref_put - decrement refcount for object.
- * @kref: object.
- * @release: pointer to the function that will clean up the object when the
- * last reference to the object is released.
- * This pointer is required, and it is not acceptable to pass kfree
- * in as this function.
- *
- * Decrement the refcount, and if 0, call release().
- * Return 1 if the object was removed, otherwise return 0. Beware, if this
- * function returns 0, you still can not count on the kref from remaining in
- * memory. Only use the return value if you want to see if the kref is now
- * gone, not present.
- */
-int kref_put(struct kref *kref, void (*release)(struct kref *kref))
-{
- WARN_ON(release == NULL);
- WARN_ON(release == (void (*)(struct kref *))kfree);
-
- if (atomic_dec_and_test(&kref->refcount)) {
- release(kref);
- return 1;
- }
- return 0;
-}
-
-EXPORT_SYMBOL(kref_set);
-EXPORT_SYMBOL(kref_init);
-EXPORT_SYMBOL(kref_get);
-EXPORT_SYMBOL(kref_put);
diff --git a/libdde_linux26/contrib/lib/parser.c b/libdde_linux26/contrib/lib/parser.c
deleted file mode 100644
index b00d0205..00000000
--- a/libdde_linux26/contrib/lib/parser.c
+++ /dev/null
@@ -1,228 +0,0 @@
-/*
- * lib/parser.c - simple parser for mount, etc. options.
- *
- * This source code is licensed under the GNU General Public License,
- * Version 2. See the file COPYING for more details.
- */
-
-#include <linux/ctype.h>
-#include <linux/module.h>
-#include <linux/parser.h>
-#include <linux/slab.h>
-#include <linux/string.h>
-
-/**
- * match_one: - Determines if a string matches a simple pattern
- * @s: the string to examine for presense of the pattern
- * @p: the string containing the pattern
- * @args: array of %MAX_OPT_ARGS &substring_t elements. Used to return match
- * locations.
- *
- * Description: Determines if the pattern @p is present in string @s. Can only
- * match extremely simple token=arg style patterns. If the pattern is found,
- * the location(s) of the arguments will be returned in the @args array.
- */
-static int match_one(char *s, const char *p, substring_t args[])
-{
- char *meta;
- int argc = 0;
-
- if (!p)
- return 1;
-
- while(1) {
- int len = -1;
- meta = strchr(p, '%');
- if (!meta)
- return strcmp(p, s) == 0;
-
- if (strncmp(p, s, meta-p))
- return 0;
-
- s += meta - p;
- p = meta + 1;
-
- if (isdigit(*p))
- len = simple_strtoul(p, (char **) &p, 10);
- else if (*p == '%') {
- if (*s++ != '%')
- return 0;
- p++;
- continue;
- }
-
- if (argc >= MAX_OPT_ARGS)
- return 0;
-
- args[argc].from = s;
- switch (*p++) {
- case 's':
- if (strlen(s) == 0)
- return 0;
- else if (len == -1 || len > strlen(s))
- len = strlen(s);
- args[argc].to = s + len;
- break;
- case 'd':
- simple_strtol(s, &args[argc].to, 0);
- goto num;
- case 'u':
- simple_strtoul(s, &args[argc].to, 0);
- goto num;
- case 'o':
- simple_strtoul(s, &args[argc].to, 8);
- goto num;
- case 'x':
- simple_strtoul(s, &args[argc].to, 16);
- num:
- if (args[argc].to == args[argc].from)
- return 0;
- break;
- default:
- return 0;
- }
- s = args[argc].to;
- argc++;
- }
-}
-
-/**
- * match_token: - Find a token (and optional args) in a string
- * @s: the string to examine for token/argument pairs
- * @table: match_table_t describing the set of allowed option tokens and the
- * arguments that may be associated with them. Must be terminated with a
- * &struct match_token whose pattern is set to the NULL pointer.
- * @args: array of %MAX_OPT_ARGS &substring_t elements. Used to return match
- * locations.
- *
- * Description: Detects which if any of a set of token strings has been passed
- * to it. Tokens can include up to MAX_OPT_ARGS instances of basic c-style
- * format identifiers which will be taken into account when matching the
- * tokens, and whose locations will be returned in the @args array.
- */
-int match_token(char *s, const match_table_t table, substring_t args[])
-{
- const struct match_token *p;
-
- for (p = table; !match_one(s, p->pattern, args) ; p++)
- ;
-
- return p->token;
-}
-
-/**
- * match_number: scan a number in the given base from a substring_t
- * @s: substring to be scanned
- * @result: resulting integer on success
- * @base: base to use when converting string
- *
- * Description: Given a &substring_t and a base, attempts to parse the substring
- * as a number in that base. On success, sets @result to the integer represented
- * by the string and returns 0. Returns either -ENOMEM or -EINVAL on failure.
- */
-static int match_number(substring_t *s, int *result, int base)
-{
- char *endp;
- char *buf;
- int ret;
-
- buf = kmalloc(s->to - s->from + 1, GFP_KERNEL);
- if (!buf)
- return -ENOMEM;
- memcpy(buf, s->from, s->to - s->from);
- buf[s->to - s->from] = '\0';
- *result = simple_strtol(buf, &endp, base);
- ret = 0;
- if (endp == buf)
- ret = -EINVAL;
- kfree(buf);
- return ret;
-}
-
-/**
- * match_int: - scan a decimal representation of an integer from a substring_t
- * @s: substring_t to be scanned
- * @result: resulting integer on success
- *
- * Description: Attempts to parse the &substring_t @s as a decimal integer. On
- * success, sets @result to the integer represented by the string and returns 0.
- * Returns either -ENOMEM or -EINVAL on failure.
- */
-int match_int(substring_t *s, int *result)
-{
- return match_number(s, result, 0);
-}
-
-/**
- * match_octal: - scan an octal representation of an integer from a substring_t
- * @s: substring_t to be scanned
- * @result: resulting integer on success
- *
- * Description: Attempts to parse the &substring_t @s as an octal integer. On
- * success, sets @result to the integer represented by the string and returns
- * 0. Returns either -ENOMEM or -EINVAL on failure.
- */
-int match_octal(substring_t *s, int *result)
-{
- return match_number(s, result, 8);
-}
-
-/**
- * match_hex: - scan a hex representation of an integer from a substring_t
- * @s: substring_t to be scanned
- * @result: resulting integer on success
- *
- * Description: Attempts to parse the &substring_t @s as a hexadecimal integer.
- * On success, sets @result to the integer represented by the string and
- * returns 0. Returns either -ENOMEM or -EINVAL on failure.
- */
-int match_hex(substring_t *s, int *result)
-{
- return match_number(s, result, 16);
-}
-
-/**
- * match_strlcpy: - Copy the characters from a substring_t to a sized buffer
- * @dest: where to copy to
- * @src: &substring_t to copy
- * @size: size of destination buffer
- *
- * Description: Copy the characters in &substring_t @src to the
- * c-style string @dest. Copy no more than @size - 1 characters, plus
- * the terminating NUL. Return length of @src.
- */
-size_t match_strlcpy(char *dest, const substring_t *src, size_t size)
-{
- size_t ret = src->to - src->from;
-
- if (size) {
- size_t len = ret >= size ? size - 1 : ret;
- memcpy(dest, src->from, len);
- dest[len] = '\0';
- }
- return ret;
-}
-
-/**
- * match_strdup: - allocate a new string with the contents of a substring_t
- * @s: &substring_t to copy
- *
- * Description: Allocates and returns a string filled with the contents of
- * the &substring_t @s. The caller is responsible for freeing the returned
- * string with kfree().
- */
-char *match_strdup(const substring_t *s)
-{
- size_t sz = s->to - s->from + 1;
- char *p = kmalloc(sz, GFP_KERNEL);
- if (p)
- match_strlcpy(p, s, sz);
- return p;
-}
-
-EXPORT_SYMBOL(match_token);
-EXPORT_SYMBOL(match_int);
-EXPORT_SYMBOL(match_octal);
-EXPORT_SYMBOL(match_hex);
-EXPORT_SYMBOL(match_strlcpy);
-EXPORT_SYMBOL(match_strdup);
diff --git a/libdde_linux26/contrib/lib/proportions.c b/libdde_linux26/contrib/lib/proportions.c
deleted file mode 100644
index d50746a7..00000000
--- a/libdde_linux26/contrib/lib/proportions.c
+++ /dev/null
@@ -1,407 +0,0 @@
-/*
- * Floating proportions
- *
- * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
- *
- * Description:
- *
- * The floating proportion is a time derivative with an exponentially decaying
- * history:
- *
- * p_{j} = \Sum_{i=0} (dx_{j}/dt_{-i}) / 2^(1+i)
- *
- * Where j is an element from {prop_local}, x_{j} is j's number of events,
- * and i the time period over which the differential is taken. So d/dt_{-i} is
- * the differential over the i-th last period.
- *
- * The decaying history gives smooth transitions. The time differential carries
- * the notion of speed.
- *
- * The denominator is 2^(1+i) because we want the series to be normalised, ie.
- *
- * \Sum_{i=0} 1/2^(1+i) = 1
- *
- * Further more, if we measure time (t) in the same events as x; so that:
- *
- * t = \Sum_{j} x_{j}
- *
- * we get that:
- *
- * \Sum_{j} p_{j} = 1
- *
- * Writing this in an iterative fashion we get (dropping the 'd's):
- *
- * if (++x_{j}, ++t > period)
- * t /= 2;
- * for_each (j)
- * x_{j} /= 2;
- *
- * so that:
- *
- * p_{j} = x_{j} / t;
- *
- * We optimize away the '/= 2' for the global time delta by noting that:
- *
- * if (++t > period) t /= 2:
- *
- * Can be approximated by:
- *
- * period/2 + (++t % period/2)
- *
- * [ Furthermore, when we choose period to be 2^n it can be written in terms of
- * binary operations and wraparound artefacts disappear. ]
- *
- * Also note that this yields a natural counter of the elapsed periods:
- *
- * c = t / (period/2)
- *
- * [ Its monotonic increasing property can be applied to mitigate the wrap-
- * around issue. ]
- *
- * This allows us to do away with the loop over all prop_locals on each period
- * expiration. By remembering the period count under which it was last accessed
- * as c_{j}, we can obtain the number of 'missed' cycles from:
- *
- * c - c_{j}
- *
- * We can then lazily catch up to the global period count every time we are
- * going to use x_{j}, by doing:
- *
- * x_{j} /= 2^(c - c_{j}), c_{j} = c
- */
-
-#include <linux/proportions.h>
-#include <linux/rcupdate.h>
-
-int prop_descriptor_init(struct prop_descriptor *pd, int shift)
-{
- int err;
-
- if (shift > PROP_MAX_SHIFT)
- shift = PROP_MAX_SHIFT;
-
- pd->index = 0;
- pd->pg[0].shift = shift;
- mutex_init(&pd->mutex);
- err = percpu_counter_init(&pd->pg[0].events, 0);
- if (err)
- goto out;
-
- err = percpu_counter_init(&pd->pg[1].events, 0);
- if (err)
- percpu_counter_destroy(&pd->pg[0].events);
-
-out:
- return err;
-}
-
-/*
- * We have two copies, and flip between them to make it seem like an atomic
- * update. The update is not really atomic wrt the events counter, but
- * it is internally consistent with the bit layout depending on shift.
- *
- * We copy the events count, move the bits around and flip the index.
- */
-void prop_change_shift(struct prop_descriptor *pd, int shift)
-{
- int index;
- int offset;
- u64 events;
- unsigned long flags;
-
- if (shift > PROP_MAX_SHIFT)
- shift = PROP_MAX_SHIFT;
-
- mutex_lock(&pd->mutex);
-
- index = pd->index ^ 1;
- offset = pd->pg[pd->index].shift - shift;
- if (!offset)
- goto out;
-
- pd->pg[index].shift = shift;
-
- local_irq_save(flags);
- events = percpu_counter_sum(&pd->pg[pd->index].events);
- if (offset < 0)
- events <<= -offset;
- else
- events >>= offset;
- percpu_counter_set(&pd->pg[index].events, events);
-
- /*
- * ensure the new pg is fully written before the switch
- */
- smp_wmb();
- pd->index = index;
- local_irq_restore(flags);
-
- synchronize_rcu();
-
-out:
- mutex_unlock(&pd->mutex);
-}
-
-/*
- * wrap the access to the data in an rcu_read_lock() section;
- * this is used to track the active references.
- */
-static struct prop_global *prop_get_global(struct prop_descriptor *pd)
-__acquires(RCU)
-{
- int index;
-
- rcu_read_lock();
- index = pd->index;
- /*
- * match the wmb from vcd_flip()
- */
- smp_rmb();
- return &pd->pg[index];
-}
-
-static void prop_put_global(struct prop_descriptor *pd, struct prop_global *pg)
-__releases(RCU)
-{
- rcu_read_unlock();
-}
-
-static void
-prop_adjust_shift(int *pl_shift, unsigned long *pl_period, int new_shift)
-{
- int offset = *pl_shift - new_shift;
-
- if (!offset)
- return;
-
- if (offset < 0)
- *pl_period <<= -offset;
- else
- *pl_period >>= offset;
-
- *pl_shift = new_shift;
-}
-
-/*
- * PERCPU
- */
-
-#define PROP_BATCH (8*(1+ilog2(nr_cpu_ids)))
-
-int prop_local_init_percpu(struct prop_local_percpu *pl)
-{
- spin_lock_init(&pl->lock);
- pl->shift = 0;
- pl->period = 0;
- return percpu_counter_init(&pl->events, 0);
-}
-
-void prop_local_destroy_percpu(struct prop_local_percpu *pl)
-{
- percpu_counter_destroy(&pl->events);
-}
-
-/*
- * Catch up with missed period expirations.
- *
- * until (c_{j} == c)
- * x_{j} -= x_{j}/2;
- * c_{j}++;
- */
-static
-void prop_norm_percpu(struct prop_global *pg, struct prop_local_percpu *pl)
-{
- unsigned long period = 1UL << (pg->shift - 1);
- unsigned long period_mask = ~(period - 1);
- unsigned long global_period;
- unsigned long flags;
-
- global_period = percpu_counter_read(&pg->events);
- global_period &= period_mask;
-
- /*
- * Fast path - check if the local and global period count still match
- * outside of the lock.
- */
- if (pl->period == global_period)
- return;
-
- spin_lock_irqsave(&pl->lock, flags);
- prop_adjust_shift(&pl->shift, &pl->period, pg->shift);
-
- /*
- * For each missed period, we half the local counter.
- * basically:
- * pl->events >> (global_period - pl->period);
- */
- period = (global_period - pl->period) >> (pg->shift - 1);
- if (period < BITS_PER_LONG) {
- s64 val = percpu_counter_read(&pl->events);
-
- if (val < (nr_cpu_ids * PROP_BATCH))
- val = percpu_counter_sum(&pl->events);
-
- __percpu_counter_add(&pl->events, -val + (val >> period),
- PROP_BATCH);
- } else
- percpu_counter_set(&pl->events, 0);
-
- pl->period = global_period;
- spin_unlock_irqrestore(&pl->lock, flags);
-}
-
-/*
- * ++x_{j}, ++t
- */
-void __prop_inc_percpu(struct prop_descriptor *pd, struct prop_local_percpu *pl)
-{
- struct prop_global *pg = prop_get_global(pd);
-
- prop_norm_percpu(pg, pl);
- __percpu_counter_add(&pl->events, 1, PROP_BATCH);
- percpu_counter_add(&pg->events, 1);
- prop_put_global(pd, pg);
-}
-
-/*
- * identical to __prop_inc_percpu, except that it limits this pl's fraction to
- * @frac/PROP_FRAC_BASE by ignoring events when this limit has been exceeded.
- */
-void __prop_inc_percpu_max(struct prop_descriptor *pd,
- struct prop_local_percpu *pl, long frac)
-{
- struct prop_global *pg = prop_get_global(pd);
-
- prop_norm_percpu(pg, pl);
-
- if (unlikely(frac != PROP_FRAC_BASE)) {
- unsigned long period_2 = 1UL << (pg->shift - 1);
- unsigned long counter_mask = period_2 - 1;
- unsigned long global_count;
- long numerator, denominator;
-
- numerator = percpu_counter_read_positive(&pl->events);
- global_count = percpu_counter_read(&pg->events);
- denominator = period_2 + (global_count & counter_mask);
-
- if (numerator > ((denominator * frac) >> PROP_FRAC_SHIFT))
- goto out_put;
- }
-
- percpu_counter_add(&pl->events, 1);
- percpu_counter_add(&pg->events, 1);
-
-out_put:
- prop_put_global(pd, pg);
-}
-
-/*
- * Obtain a fraction of this proportion
- *
- * p_{j} = x_{j} / (period/2 + t % period/2)
- */
-void prop_fraction_percpu(struct prop_descriptor *pd,
- struct prop_local_percpu *pl,
- long *numerator, long *denominator)
-{
- struct prop_global *pg = prop_get_global(pd);
- unsigned long period_2 = 1UL << (pg->shift - 1);
- unsigned long counter_mask = period_2 - 1;
- unsigned long global_count;
-
- prop_norm_percpu(pg, pl);
- *numerator = percpu_counter_read_positive(&pl->events);
-
- global_count = percpu_counter_read(&pg->events);
- *denominator = period_2 + (global_count & counter_mask);
-
- prop_put_global(pd, pg);
-}
-
-/*
- * SINGLE
- */
-
-int prop_local_init_single(struct prop_local_single *pl)
-{
- spin_lock_init(&pl->lock);
- pl->shift = 0;
- pl->period = 0;
- pl->events = 0;
- return 0;
-}
-
-void prop_local_destroy_single(struct prop_local_single *pl)
-{
-}
-
-/*
- * Catch up with missed period expirations.
- */
-static
-void prop_norm_single(struct prop_global *pg, struct prop_local_single *pl)
-{
- unsigned long period = 1UL << (pg->shift - 1);
- unsigned long period_mask = ~(period - 1);
- unsigned long global_period;
- unsigned long flags;
-
- global_period = percpu_counter_read(&pg->events);
- global_period &= period_mask;
-
- /*
- * Fast path - check if the local and global period count still match
- * outside of the lock.
- */
- if (pl->period == global_period)
- return;
-
- spin_lock_irqsave(&pl->lock, flags);
- prop_adjust_shift(&pl->shift, &pl->period, pg->shift);
- /*
- * For each missed period, we half the local counter.
- */
- period = (global_period - pl->period) >> (pg->shift - 1);
- if (likely(period < BITS_PER_LONG))
- pl->events >>= period;
- else
- pl->events = 0;
- pl->period = global_period;
- spin_unlock_irqrestore(&pl->lock, flags);
-}
-
-/*
- * ++x_{j}, ++t
- */
-void __prop_inc_single(struct prop_descriptor *pd, struct prop_local_single *pl)
-{
- struct prop_global *pg = prop_get_global(pd);
-
- prop_norm_single(pg, pl);
- pl->events++;
- percpu_counter_add(&pg->events, 1);
- prop_put_global(pd, pg);
-}
-
-/*
- * Obtain a fraction of this proportion
- *
- * p_{j} = x_{j} / (period/2 + t % period/2)
- */
-void prop_fraction_single(struct prop_descriptor *pd,
- struct prop_local_single *pl,
- long *numerator, long *denominator)
-{
- struct prop_global *pg = prop_get_global(pd);
- unsigned long period_2 = 1UL << (pg->shift - 1);
- unsigned long counter_mask = period_2 - 1;
- unsigned long global_count;
-
- prop_norm_single(pg, pl);
- *numerator = pl->events;
-
- global_count = percpu_counter_read(&pg->events);
- *denominator = period_2 + (global_count & counter_mask);
-
- prop_put_global(pd, pg);
-}
diff --git a/libdde_linux26/contrib/lib/radix-tree.c b/libdde_linux26/contrib/lib/radix-tree.c
deleted file mode 100644
index 4bb42a03..00000000
--- a/libdde_linux26/contrib/lib/radix-tree.c
+++ /dev/null
@@ -1,1240 +0,0 @@
-/*
- * Copyright (C) 2001 Momchil Velikov
- * Portions Copyright (C) 2001 Christoph Hellwig
- * Copyright (C) 2005 SGI, Christoph Lameter
- * Copyright (C) 2006 Nick Piggin
- *
- * This program is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public License as
- * published by the Free Software Foundation; either version 2, or (at
- * your option) any later version.
- *
- * This program is distributed in the hope that it will be useful, but
- * WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
- */
-
-#include <linux/errno.h>
-#include <linux/init.h>
-#include <linux/kernel.h>
-#include <linux/module.h>
-#include <linux/radix-tree.h>
-#include <linux/percpu.h>
-#include <linux/slab.h>
-#include <linux/notifier.h>
-#include <linux/cpu.h>
-#include <linux/gfp.h>
-#include <linux/string.h>
-#include <linux/bitops.h>
-#include <linux/rcupdate.h>
-
-
-#ifdef __KERNEL__
-#define RADIX_TREE_MAP_SHIFT (CONFIG_BASE_SMALL ? 4 : 6)
-#else
-#define RADIX_TREE_MAP_SHIFT 3 /* For more stressful testing */
-#endif
-
-#define RADIX_TREE_MAP_SIZE (1UL << RADIX_TREE_MAP_SHIFT)
-#define RADIX_TREE_MAP_MASK (RADIX_TREE_MAP_SIZE-1)
-
-#define RADIX_TREE_TAG_LONGS \
- ((RADIX_TREE_MAP_SIZE + BITS_PER_LONG - 1) / BITS_PER_LONG)
-
-struct radix_tree_node {
- unsigned int height; /* Height from the bottom */
- unsigned int count;
- struct rcu_head rcu_head;
- void *slots[RADIX_TREE_MAP_SIZE];
- unsigned long tags[RADIX_TREE_MAX_TAGS][RADIX_TREE_TAG_LONGS];
-};
-
-struct radix_tree_path {
- struct radix_tree_node *node;
- int offset;
-};
-
-#define RADIX_TREE_INDEX_BITS (8 /* CHAR_BIT */ * sizeof(unsigned long))
-#define RADIX_TREE_MAX_PATH (DIV_ROUND_UP(RADIX_TREE_INDEX_BITS, \
- RADIX_TREE_MAP_SHIFT))
-
-/*
- * The height_to_maxindex array needs to be one deeper than the maximum
- * path as height 0 holds only 1 entry.
- */
-static unsigned long height_to_maxindex[RADIX_TREE_MAX_PATH + 1] __read_mostly;
-
-/*
- * Radix tree node cache.
- */
-static struct kmem_cache *radix_tree_node_cachep;
-
-/*
- * Per-cpu pool of preloaded nodes
- */
-struct radix_tree_preload {
- int nr;
- struct radix_tree_node *nodes[RADIX_TREE_MAX_PATH];
-};
-static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, };
-
-static inline gfp_t root_gfp_mask(struct radix_tree_root *root)
-{
- return root->gfp_mask & __GFP_BITS_MASK;
-}
-
-static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
- int offset)
-{
- __set_bit(offset, node->tags[tag]);
-}
-
-static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
- int offset)
-{
- __clear_bit(offset, node->tags[tag]);
-}
-
-static inline int tag_get(struct radix_tree_node *node, unsigned int tag,
- int offset)
-{
- return test_bit(offset, node->tags[tag]);
-}
-
-static inline void root_tag_set(struct radix_tree_root *root, unsigned int tag)
-{
- root->gfp_mask |= (__force gfp_t)(1 << (tag + __GFP_BITS_SHIFT));
-}
-
-static inline void root_tag_clear(struct radix_tree_root *root, unsigned int tag)
-{
- root->gfp_mask &= (__force gfp_t)~(1 << (tag + __GFP_BITS_SHIFT));
-}
-
-static inline void root_tag_clear_all(struct radix_tree_root *root)
-{
- root->gfp_mask &= __GFP_BITS_MASK;
-}
-
-static inline int root_tag_get(struct radix_tree_root *root, unsigned int tag)
-{
- return (__force unsigned)root->gfp_mask & (1 << (tag + __GFP_BITS_SHIFT));
-}
-
-/*
- * Returns 1 if any slot in the node has this tag set.
- * Otherwise returns 0.
- */
-static inline int any_tag_set(struct radix_tree_node *node, unsigned int tag)
-{
- int idx;
- for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
- if (node->tags[tag][idx])
- return 1;
- }
- return 0;
-}
-/*
- * This assumes that the caller has performed appropriate preallocation, and
- * that the caller has pinned this thread of control to the current CPU.
- */
-static struct radix_tree_node *
-radix_tree_node_alloc(struct radix_tree_root *root)
-{
- struct radix_tree_node *ret = NULL;
- gfp_t gfp_mask = root_gfp_mask(root);
-
- if (!(gfp_mask & __GFP_WAIT)) {
- struct radix_tree_preload *rtp;
-
- /*
- * Provided the caller has preloaded here, we will always
- * succeed in getting a node here (and never reach
- * kmem_cache_alloc)
- */
- rtp = &__get_cpu_var(radix_tree_preloads);
- if (rtp->nr) {
- ret = rtp->nodes[rtp->nr - 1];
- rtp->nodes[rtp->nr - 1] = NULL;
- rtp->nr--;
- }
- }
- if (ret == NULL)
- ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
-
- BUG_ON(radix_tree_is_indirect_ptr(ret));
- return ret;
-}
-
-static void radix_tree_node_rcu_free(struct rcu_head *head)
-{
- struct radix_tree_node *node =
- container_of(head, struct radix_tree_node, rcu_head);
-
- /*
- * must only free zeroed nodes into the slab. radix_tree_shrink
- * can leave us with a non-NULL entry in the first slot, so clear
- * that here to make sure.
- */
- tag_clear(node, 0, 0);
- tag_clear(node, 1, 0);
- node->slots[0] = NULL;
- node->count = 0;
-
- kmem_cache_free(radix_tree_node_cachep, node);
-}
-
-static inline void
-radix_tree_node_free(struct radix_tree_node *node)
-{
- call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
-}
-
-/*
- * Load up this CPU's radix_tree_node buffer with sufficient objects to
- * ensure that the addition of a single element in the tree cannot fail. On
- * success, return zero, with preemption disabled. On error, return -ENOMEM
- * with preemption not disabled.
- */
-int radix_tree_preload(gfp_t gfp_mask)
-{
- struct radix_tree_preload *rtp;
- struct radix_tree_node *node;
- int ret = -ENOMEM;
-
- preempt_disable();
- rtp = &__get_cpu_var(radix_tree_preloads);
- while (rtp->nr < ARRAY_SIZE(rtp->nodes)) {
- preempt_enable();
- node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
- if (node == NULL)
- goto out;
- preempt_disable();
- rtp = &__get_cpu_var(radix_tree_preloads);
- if (rtp->nr < ARRAY_SIZE(rtp->nodes))
- rtp->nodes[rtp->nr++] = node;
- else
- kmem_cache_free(radix_tree_node_cachep, node);
- }
- ret = 0;
-out:
- return ret;
-}
-EXPORT_SYMBOL(radix_tree_preload);
-
-/*
- * Return the maximum key which can be store into a
- * radix tree with height HEIGHT.
- */
-static inline unsigned long radix_tree_maxindex(unsigned int height)
-{
- return height_to_maxindex[height];
-}
-
-/*
- * Extend a radix tree so it can store key @index.
- */
-static int radix_tree_extend(struct radix_tree_root *root, unsigned long index)
-{
- struct radix_tree_node *node;
- unsigned int height;
- int tag;
-
- /* Figure out what the height should be. */
- height = root->height + 1;
- while (index > radix_tree_maxindex(height))
- height++;
-
- if (root->rnode == NULL) {
- root->height = height;
- goto out;
- }
-
- do {
- unsigned int newheight;
- if (!(node = radix_tree_node_alloc(root)))
- return -ENOMEM;
-
- /* Increase the height. */
- node->slots[0] = radix_tree_indirect_to_ptr(root->rnode);
-
- /* Propagate the aggregated tag info into the new root */
- for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
- if (root_tag_get(root, tag))
- tag_set(node, tag, 0);
- }
-
- newheight = root->height+1;
- node->height = newheight;
- node->count = 1;
- node = radix_tree_ptr_to_indirect(node);
- rcu_assign_pointer(root->rnode, node);
- root->height = newheight;
- } while (height > root->height);
-out:
- return 0;
-}
-
-/**
- * radix_tree_insert - insert into a radix tree
- * @root: radix tree root
- * @index: index key
- * @item: item to insert
- *
- * Insert an item into the radix tree at position @index.
- */
-int radix_tree_insert(struct radix_tree_root *root,
- unsigned long index, void *item)
-{
- struct radix_tree_node *node = NULL, *slot;
- unsigned int height, shift;
- int offset;
- int error;
-
- BUG_ON(radix_tree_is_indirect_ptr(item));
-
- /* Make sure the tree is high enough. */
- if (index > radix_tree_maxindex(root->height)) {
- error = radix_tree_extend(root, index);
- if (error)
- return error;
- }
-
- slot = radix_tree_indirect_to_ptr(root->rnode);
-
- height = root->height;
- shift = (height-1) * RADIX_TREE_MAP_SHIFT;
-
- offset = 0; /* uninitialised var warning */
- while (height > 0) {
- if (slot == NULL) {
- /* Have to add a child node. */
- if (!(slot = radix_tree_node_alloc(root)))
- return -ENOMEM;
- slot->height = height;
- if (node) {
- rcu_assign_pointer(node->slots[offset], slot);
- node->count++;
- } else
- rcu_assign_pointer(root->rnode,
- radix_tree_ptr_to_indirect(slot));
- }
-
- /* Go a level down */
- offset = (index >> shift) & RADIX_TREE_MAP_MASK;
- node = slot;
- slot = node->slots[offset];
- shift -= RADIX_TREE_MAP_SHIFT;
- height--;
- }
-
- if (slot != NULL)
- return -EEXIST;
-
- if (node) {
- node->count++;
- rcu_assign_pointer(node->slots[offset], item);
- BUG_ON(tag_get(node, 0, offset));
- BUG_ON(tag_get(node, 1, offset));
- } else {
- rcu_assign_pointer(root->rnode, item);
- BUG_ON(root_tag_get(root, 0));
- BUG_ON(root_tag_get(root, 1));
- }
-
- return 0;
-}
-EXPORT_SYMBOL(radix_tree_insert);
-
-/**
- * radix_tree_lookup_slot - lookup a slot in a radix tree
- * @root: radix tree root
- * @index: index key
- *
- * Returns: the slot corresponding to the position @index in the
- * radix tree @root. This is useful for update-if-exists operations.
- *
- * This function can be called under rcu_read_lock iff the slot is not
- * modified by radix_tree_replace_slot, otherwise it must be called
- * exclusive from other writers. Any dereference of the slot must be done
- * using radix_tree_deref_slot.
- */
-void **radix_tree_lookup_slot(struct radix_tree_root *root, unsigned long index)
-{
- unsigned int height, shift;
- struct radix_tree_node *node, **slot;
-
- node = rcu_dereference(root->rnode);
- if (node == NULL)
- return NULL;
-
- if (!radix_tree_is_indirect_ptr(node)) {
- if (index > 0)
- return NULL;
- return (void **)&root->rnode;
- }
- node = radix_tree_indirect_to_ptr(node);
-
- height = node->height;
- if (index > radix_tree_maxindex(height))
- return NULL;
-
- shift = (height-1) * RADIX_TREE_MAP_SHIFT;
-
- do {
- slot = (struct radix_tree_node **)
- (node->slots + ((index>>shift) & RADIX_TREE_MAP_MASK));
- node = rcu_dereference(*slot);
- if (node == NULL)
- return NULL;
-
- shift -= RADIX_TREE_MAP_SHIFT;
- height--;
- } while (height > 0);
-
- return (void **)slot;
-}
-EXPORT_SYMBOL(radix_tree_lookup_slot);
-
-/**
- * radix_tree_lookup - perform lookup operation on a radix tree
- * @root: radix tree root
- * @index: index key
- *
- * Lookup the item at the position @index in the radix tree @root.
- *
- * This function can be called under rcu_read_lock, however the caller
- * must manage lifetimes of leaf nodes (eg. RCU may also be used to free
- * them safely). No RCU barriers are required to access or modify the
- * returned item, however.
- */
-void *radix_tree_lookup(struct radix_tree_root *root, unsigned long index)
-{
- unsigned int height, shift;
- struct radix_tree_node *node, **slot;
-
- node = rcu_dereference(root->rnode);
- if (node == NULL)
- return NULL;
-
- if (!radix_tree_is_indirect_ptr(node)) {
- if (index > 0)
- return NULL;
- return node;
- }
- node = radix_tree_indirect_to_ptr(node);
-
- height = node->height;
- if (index > radix_tree_maxindex(height))
- return NULL;
-
- shift = (height-1) * RADIX_TREE_MAP_SHIFT;
-
- do {
- slot = (struct radix_tree_node **)
- (node->slots + ((index>>shift) & RADIX_TREE_MAP_MASK));
- node = rcu_dereference(*slot);
- if (node == NULL)
- return NULL;
-
- shift -= RADIX_TREE_MAP_SHIFT;
- height--;
- } while (height > 0);
-
- return node;
-}
-EXPORT_SYMBOL(radix_tree_lookup);
-
-/**
- * radix_tree_tag_set - set a tag on a radix tree node
- * @root: radix tree root
- * @index: index key
- * @tag: tag index
- *
- * Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
- * corresponding to @index in the radix tree. From
- * the root all the way down to the leaf node.
- *
- * Returns the address of the tagged item. Setting a tag on a not-present
- * item is a bug.
- */
-void *radix_tree_tag_set(struct radix_tree_root *root,
- unsigned long index, unsigned int tag)
-{
- unsigned int height, shift;
- struct radix_tree_node *slot;
-
- height = root->height;
- BUG_ON(index > radix_tree_maxindex(height));
-
- slot = radix_tree_indirect_to_ptr(root->rnode);
- shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
-
- while (height > 0) {
- int offset;
-
- offset = (index >> shift) & RADIX_TREE_MAP_MASK;
- if (!tag_get(slot, tag, offset))
- tag_set(slot, tag, offset);
- slot = slot->slots[offset];
- BUG_ON(slot == NULL);
- shift -= RADIX_TREE_MAP_SHIFT;
- height--;
- }
-
- /* set the root's tag bit */
- if (slot && !root_tag_get(root, tag))
- root_tag_set(root, tag);
-
- return slot;
-}
-EXPORT_SYMBOL(radix_tree_tag_set);
-
-/**
- * radix_tree_tag_clear - clear a tag on a radix tree node
- * @root: radix tree root
- * @index: index key
- * @tag: tag index
- *
- * Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
- * corresponding to @index in the radix tree. If
- * this causes the leaf node to have no tags set then clear the tag in the
- * next-to-leaf node, etc.
- *
- * Returns the address of the tagged item on success, else NULL. ie:
- * has the same return value and semantics as radix_tree_lookup().
- */
-void *radix_tree_tag_clear(struct radix_tree_root *root,
- unsigned long index, unsigned int tag)
-{
- /*
- * The radix tree path needs to be one longer than the maximum path
- * since the "list" is null terminated.
- */
- struct radix_tree_path path[RADIX_TREE_MAX_PATH + 1], *pathp = path;
- struct radix_tree_node *slot = NULL;
- unsigned int height, shift;
-
- height = root->height;
- if (index > radix_tree_maxindex(height))
- goto out;
-
- shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
- pathp->node = NULL;
- slot = radix_tree_indirect_to_ptr(root->rnode);
-
- while (height > 0) {
- int offset;
-
- if (slot == NULL)
- goto out;
-
- offset = (index >> shift) & RADIX_TREE_MAP_MASK;
- pathp[1].offset = offset;
- pathp[1].node = slot;
- slot = slot->slots[offset];
- pathp++;
- shift -= RADIX_TREE_MAP_SHIFT;
- height--;
- }
-
- if (slot == NULL)
- goto out;
-
- while (pathp->node) {
- if (!tag_get(pathp->node, tag, pathp->offset))
- goto out;
- tag_clear(pathp->node, tag, pathp->offset);
- if (any_tag_set(pathp->node, tag))
- goto out;
- pathp--;
- }
-
- /* clear the root's tag bit */
- if (root_tag_get(root, tag))
- root_tag_clear(root, tag);
-
-out:
- return slot;
-}
-EXPORT_SYMBOL(radix_tree_tag_clear);
-
-#ifndef __KERNEL__ /* Only the test harness uses this at present */
-/**
- * radix_tree_tag_get - get a tag on a radix tree node
- * @root: radix tree root
- * @index: index key
- * @tag: tag index (< RADIX_TREE_MAX_TAGS)
- *
- * Return values:
- *
- * 0: tag not present or not set
- * 1: tag set
- */
-int radix_tree_tag_get(struct radix_tree_root *root,
- unsigned long index, unsigned int tag)
-{
- unsigned int height, shift;
- struct radix_tree_node *node;
- int saw_unset_tag = 0;
-
- /* check the root's tag bit */
- if (!root_tag_get(root, tag))
- return 0;
-
- node = rcu_dereference(root->rnode);
- if (node == NULL)
- return 0;
-
- if (!radix_tree_is_indirect_ptr(node))
- return (index == 0);
- node = radix_tree_indirect_to_ptr(node);
-
- height = node->height;
- if (index > radix_tree_maxindex(height))
- return 0;
-
- shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
-
- for ( ; ; ) {
- int offset;
-
- if (node == NULL)
- return 0;
-
- offset = (index >> shift) & RADIX_TREE_MAP_MASK;
-
- /*
- * This is just a debug check. Later, we can bale as soon as
- * we see an unset tag.
- */
- if (!tag_get(node, tag, offset))
- saw_unset_tag = 1;
- if (height == 1) {
- int ret = tag_get(node, tag, offset);
-
- BUG_ON(ret && saw_unset_tag);
- return !!ret;
- }
- node = rcu_dereference(node->slots[offset]);
- shift -= RADIX_TREE_MAP_SHIFT;
- height--;
- }
-}
-EXPORT_SYMBOL(radix_tree_tag_get);
-#endif
-
-/**
- * radix_tree_next_hole - find the next hole (not-present entry)
- * @root: tree root
- * @index: index key
- * @max_scan: maximum range to search
- *
- * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the lowest
- * indexed hole.
- *
- * Returns: the index of the hole if found, otherwise returns an index
- * outside of the set specified (in which case 'return - index >= max_scan'
- * will be true). In rare cases of index wrap-around, 0 will be returned.
- *
- * radix_tree_next_hole may be called under rcu_read_lock. However, like
- * radix_tree_gang_lookup, this will not atomically search a snapshot of
- * the tree at a single point in time. For example, if a hole is created
- * at index 5, then subsequently a hole is created at index 10,
- * radix_tree_next_hole covering both indexes may return 10 if called
- * under rcu_read_lock.
- */
-unsigned long radix_tree_next_hole(struct radix_tree_root *root,
- unsigned long index, unsigned long max_scan)
-{
- unsigned long i;
-
- for (i = 0; i < max_scan; i++) {
- if (!radix_tree_lookup(root, index))
- break;
- index++;
- if (index == 0)
- break;
- }
-
- return index;
-}
-EXPORT_SYMBOL(radix_tree_next_hole);
-
-static unsigned int
-__lookup(struct radix_tree_node *slot, void ***results, unsigned long index,
- unsigned int max_items, unsigned long *next_index)
-{
- unsigned int nr_found = 0;
- unsigned int shift, height;
- unsigned long i;
-
- height = slot->height;
- if (height == 0)
- goto out;
- shift = (height-1) * RADIX_TREE_MAP_SHIFT;
-
- for ( ; height > 1; height--) {
- i = (index >> shift) & RADIX_TREE_MAP_MASK;
- for (;;) {
- if (slot->slots[i] != NULL)
- break;
- index &= ~((1UL << shift) - 1);
- index += 1UL << shift;
- if (index == 0)
- goto out; /* 32-bit wraparound */
- i++;
- if (i == RADIX_TREE_MAP_SIZE)
- goto out;
- }
-
- shift -= RADIX_TREE_MAP_SHIFT;
- slot = rcu_dereference(slot->slots[i]);
- if (slot == NULL)
- goto out;
- }
-
- /* Bottom level: grab some items */
- for (i = index & RADIX_TREE_MAP_MASK; i < RADIX_TREE_MAP_SIZE; i++) {
- index++;
- if (slot->slots[i]) {
- results[nr_found++] = &(slot->slots[i]);
- if (nr_found == max_items)
- goto out;
- }
- }
-out:
- *next_index = index;
- return nr_found;
-}
-
-/**
- * radix_tree_gang_lookup - perform multiple lookup on a radix tree
- * @root: radix tree root
- * @results: where the results of the lookup are placed
- * @first_index: start the lookup from this key
- * @max_items: place up to this many items at *results
- *
- * Performs an index-ascending scan of the tree for present items. Places
- * them at *@results and returns the number of items which were placed at
- * *@results.
- *
- * The implementation is naive.
- *
- * Like radix_tree_lookup, radix_tree_gang_lookup may be called under
- * rcu_read_lock. In this case, rather than the returned results being
- * an atomic snapshot of the tree at a single point in time, the semantics
- * of an RCU protected gang lookup are as though multiple radix_tree_lookups
- * have been issued in individual locks, and results stored in 'results'.
- */
-unsigned int
-radix_tree_gang_lookup(struct radix_tree_root *root, void **results,
- unsigned long first_index, unsigned int max_items)
-{
- unsigned long max_index;
- struct radix_tree_node *node;
- unsigned long cur_index = first_index;
- unsigned int ret;
-
- node = rcu_dereference(root->rnode);
- if (!node)
- return 0;
-
- if (!radix_tree_is_indirect_ptr(node)) {
- if (first_index > 0)
- return 0;
- results[0] = node;
- return 1;
- }
- node = radix_tree_indirect_to_ptr(node);
-
- max_index = radix_tree_maxindex(node->height);
-
- ret = 0;
- while (ret < max_items) {
- unsigned int nr_found, slots_found, i;
- unsigned long next_index; /* Index of next search */
-
- if (cur_index > max_index)
- break;
- slots_found = __lookup(node, (void ***)results + ret, cur_index,
- max_items - ret, &next_index);
- nr_found = 0;
- for (i = 0; i < slots_found; i++) {
- struct radix_tree_node *slot;
- slot = *(((void ***)results)[ret + i]);
- if (!slot)
- continue;
- results[ret + nr_found] = rcu_dereference(slot);
- nr_found++;
- }
- ret += nr_found;
- if (next_index == 0)
- break;
- cur_index = next_index;
- }
-
- return ret;
-}
-EXPORT_SYMBOL(radix_tree_gang_lookup);
-
-/**
- * radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree
- * @root: radix tree root
- * @results: where the results of the lookup are placed
- * @first_index: start the lookup from this key
- * @max_items: place up to this many items at *results
- *
- * Performs an index-ascending scan of the tree for present items. Places
- * their slots at *@results and returns the number of items which were
- * placed at *@results.
- *
- * The implementation is naive.
- *
- * Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must
- * be dereferenced with radix_tree_deref_slot, and if using only RCU
- * protection, radix_tree_deref_slot may fail requiring a retry.
- */
-unsigned int
-radix_tree_gang_lookup_slot(struct radix_tree_root *root, void ***results,
- unsigned long first_index, unsigned int max_items)
-{
- unsigned long max_index;
- struct radix_tree_node *node;
- unsigned long cur_index = first_index;
- unsigned int ret;
-
- node = rcu_dereference(root->rnode);
- if (!node)
- return 0;
-
- if (!radix_tree_is_indirect_ptr(node)) {
- if (first_index > 0)
- return 0;
- results[0] = (void **)&root->rnode;
- return 1;
- }
- node = radix_tree_indirect_to_ptr(node);
-
- max_index = radix_tree_maxindex(node->height);
-
- ret = 0;
- while (ret < max_items) {
- unsigned int slots_found;
- unsigned long next_index; /* Index of next search */
-
- if (cur_index > max_index)
- break;
- slots_found = __lookup(node, results + ret, cur_index,
- max_items - ret, &next_index);
- ret += slots_found;
- if (next_index == 0)
- break;
- cur_index = next_index;
- }
-
- return ret;
-}
-EXPORT_SYMBOL(radix_tree_gang_lookup_slot);
-
-/*
- * FIXME: the two tag_get()s here should use find_next_bit() instead of
- * open-coding the search.
- */
-static unsigned int
-__lookup_tag(struct radix_tree_node *slot, void ***results, unsigned long index,
- unsigned int max_items, unsigned long *next_index, unsigned int tag)
-{
- unsigned int nr_found = 0;
- unsigned int shift, height;
-
- height = slot->height;
- if (height == 0)
- goto out;
- shift = (height-1) * RADIX_TREE_MAP_SHIFT;
-
- while (height > 0) {
- unsigned long i = (index >> shift) & RADIX_TREE_MAP_MASK ;
-
- for (;;) {
- if (tag_get(slot, tag, i))
- break;
- index &= ~((1UL << shift) - 1);
- index += 1UL << shift;
- if (index == 0)
- goto out; /* 32-bit wraparound */
- i++;
- if (i == RADIX_TREE_MAP_SIZE)
- goto out;
- }
- height--;
- if (height == 0) { /* Bottom level: grab some items */
- unsigned long j = index & RADIX_TREE_MAP_MASK;
-
- for ( ; j < RADIX_TREE_MAP_SIZE; j++) {
- index++;
- if (!tag_get(slot, tag, j))
- continue;
- /*
- * Even though the tag was found set, we need to
- * recheck that we have a non-NULL node, because
- * if this lookup is lockless, it may have been
- * subsequently deleted.
- *
- * Similar care must be taken in any place that
- * lookup ->slots[x] without a lock (ie. can't
- * rely on its value remaining the same).
- */
- if (slot->slots[j]) {
- results[nr_found++] = &(slot->slots[j]);
- if (nr_found == max_items)
- goto out;
- }
- }
- }
- shift -= RADIX_TREE_MAP_SHIFT;
- slot = rcu_dereference(slot->slots[i]);
- if (slot == NULL)
- break;
- }
-out:
- *next_index = index;
- return nr_found;
-}
-
-/**
- * radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
- * based on a tag
- * @root: radix tree root
- * @results: where the results of the lookup are placed
- * @first_index: start the lookup from this key
- * @max_items: place up to this many items at *results
- * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
- *
- * Performs an index-ascending scan of the tree for present items which
- * have the tag indexed by @tag set. Places the items at *@results and
- * returns the number of items which were placed at *@results.
- */
-unsigned int
-radix_tree_gang_lookup_tag(struct radix_tree_root *root, void **results,
- unsigned long first_index, unsigned int max_items,
- unsigned int tag)
-{
- struct radix_tree_node *node;
- unsigned long max_index;
- unsigned long cur_index = first_index;
- unsigned int ret;
-
- /* check the root's tag bit */
- if (!root_tag_get(root, tag))
- return 0;
-
- node = rcu_dereference(root->rnode);
- if (!node)
- return 0;
-
- if (!radix_tree_is_indirect_ptr(node)) {
- if (first_index > 0)
- return 0;
- results[0] = node;
- return 1;
- }
- node = radix_tree_indirect_to_ptr(node);
-
- max_index = radix_tree_maxindex(node->height);
-
- ret = 0;
- while (ret < max_items) {
- unsigned int nr_found, slots_found, i;
- unsigned long next_index; /* Index of next search */
-
- if (cur_index > max_index)
- break;
- slots_found = __lookup_tag(node, (void ***)results + ret,
- cur_index, max_items - ret, &next_index, tag);
- nr_found = 0;
- for (i = 0; i < slots_found; i++) {
- struct radix_tree_node *slot;
- slot = *(((void ***)results)[ret + i]);
- if (!slot)
- continue;
- results[ret + nr_found] = rcu_dereference(slot);
- nr_found++;
- }
- ret += nr_found;
- if (next_index == 0)
- break;
- cur_index = next_index;
- }
-
- return ret;
-}
-EXPORT_SYMBOL(radix_tree_gang_lookup_tag);
-
-/**
- * radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
- * radix tree based on a tag
- * @root: radix tree root
- * @results: where the results of the lookup are placed
- * @first_index: start the lookup from this key
- * @max_items: place up to this many items at *results
- * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
- *
- * Performs an index-ascending scan of the tree for present items which
- * have the tag indexed by @tag set. Places the slots at *@results and
- * returns the number of slots which were placed at *@results.
- */
-unsigned int
-radix_tree_gang_lookup_tag_slot(struct radix_tree_root *root, void ***results,
- unsigned long first_index, unsigned int max_items,
- unsigned int tag)
-{
- struct radix_tree_node *node;
- unsigned long max_index;
- unsigned long cur_index = first_index;
- unsigned int ret;
-
- /* check the root's tag bit */
- if (!root_tag_get(root, tag))
- return 0;
-
- node = rcu_dereference(root->rnode);
- if (!node)
- return 0;
-
- if (!radix_tree_is_indirect_ptr(node)) {
- if (first_index > 0)
- return 0;
- results[0] = (void **)&root->rnode;
- return 1;
- }
- node = radix_tree_indirect_to_ptr(node);
-
- max_index = radix_tree_maxindex(node->height);
-
- ret = 0;
- while (ret < max_items) {
- unsigned int slots_found;
- unsigned long next_index; /* Index of next search */
-
- if (cur_index > max_index)
- break;
- slots_found = __lookup_tag(node, results + ret,
- cur_index, max_items - ret, &next_index, tag);
- ret += slots_found;
- if (next_index == 0)
- break;
- cur_index = next_index;
- }
-
- return ret;
-}
-EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot);
-
-
-/**
- * radix_tree_shrink - shrink height of a radix tree to minimal
- * @root radix tree root
- */
-static inline void radix_tree_shrink(struct radix_tree_root *root)
-{
- /* try to shrink tree height */
- while (root->height > 0) {
- struct radix_tree_node *to_free = root->rnode;
- void *newptr;
-
- BUG_ON(!radix_tree_is_indirect_ptr(to_free));
- to_free = radix_tree_indirect_to_ptr(to_free);
-
- /*
- * The candidate node has more than one child, or its child
- * is not at the leftmost slot, we cannot shrink.
- */
- if (to_free->count != 1)
- break;
- if (!to_free->slots[0])
- break;
-
- /*
- * We don't need rcu_assign_pointer(), since we are simply
- * moving the node from one part of the tree to another. If
- * it was safe to dereference the old pointer to it
- * (to_free->slots[0]), it will be safe to dereference the new
- * one (root->rnode).
- */
- newptr = to_free->slots[0];
- if (root->height > 1)
- newptr = radix_tree_ptr_to_indirect(newptr);
- root->rnode = newptr;
- root->height--;
- radix_tree_node_free(to_free);
- }
-}
-
-/**
- * radix_tree_delete - delete an item from a radix tree
- * @root: radix tree root
- * @index: index key
- *
- * Remove the item at @index from the radix tree rooted at @root.
- *
- * Returns the address of the deleted item, or NULL if it was not present.
- */
-void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
-{
- /*
- * The radix tree path needs to be one longer than the maximum path
- * since the "list" is null terminated.
- */
- struct radix_tree_path path[RADIX_TREE_MAX_PATH + 1], *pathp = path;
- struct radix_tree_node *slot = NULL;
- struct radix_tree_node *to_free;
- unsigned int height, shift;
- int tag;
- int offset;
-
- height = root->height;
- if (index > radix_tree_maxindex(height))
- goto out;
-
- slot = root->rnode;
- if (height == 0) {
- root_tag_clear_all(root);
- root->rnode = NULL;
- goto out;
- }
- slot = radix_tree_indirect_to_ptr(slot);
-
- shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
- pathp->node = NULL;
-
- do {
- if (slot == NULL)
- goto out;
-
- pathp++;
- offset = (index >> shift) & RADIX_TREE_MAP_MASK;
- pathp->offset = offset;
- pathp->node = slot;
- slot = slot->slots[offset];
- shift -= RADIX_TREE_MAP_SHIFT;
- height--;
- } while (height > 0);
-
- if (slot == NULL)
- goto out;
-
- /*
- * Clear all tags associated with the just-deleted item
- */
- for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
- if (tag_get(pathp->node, tag, pathp->offset))
- radix_tree_tag_clear(root, index, tag);
- }
-
- to_free = NULL;
- /* Now free the nodes we do not need anymore */
- while (pathp->node) {
- pathp->node->slots[pathp->offset] = NULL;
- pathp->node->count--;
- /*
- * Queue the node for deferred freeing after the
- * last reference to it disappears (set NULL, above).
- */
- if (to_free)
- radix_tree_node_free(to_free);
-
- if (pathp->node->count) {
- if (pathp->node ==
- radix_tree_indirect_to_ptr(root->rnode))
- radix_tree_shrink(root);
- goto out;
- }
-
- /* Node with zero slots in use so free it */
- to_free = pathp->node;
- pathp--;
-
- }
- root_tag_clear_all(root);
- root->height = 0;
- root->rnode = NULL;
- if (to_free)
- radix_tree_node_free(to_free);
-
-out:
- return slot;
-}
-EXPORT_SYMBOL(radix_tree_delete);
-
-/**
- * radix_tree_tagged - test whether any items in the tree are tagged
- * @root: radix tree root
- * @tag: tag to test
- */
-int radix_tree_tagged(struct radix_tree_root *root, unsigned int tag)
-{
- return root_tag_get(root, tag);
-}
-EXPORT_SYMBOL(radix_tree_tagged);
-
-static void
-radix_tree_node_ctor(void *node)
-{
- memset(node, 0, sizeof(struct radix_tree_node));
-}
-
-static __init unsigned long __maxindex(unsigned int height)
-{
- unsigned int width = height * RADIX_TREE_MAP_SHIFT;
- int shift = RADIX_TREE_INDEX_BITS - width;
-
- if (shift < 0)
- return ~0UL;
- if (shift >= BITS_PER_LONG)
- return 0UL;
- return ~0UL >> shift;
-}
-
-static __init void radix_tree_init_maxindex(void)
-{
- unsigned int i;
-
- for (i = 0; i < ARRAY_SIZE(height_to_maxindex); i++)
- height_to_maxindex[i] = __maxindex(i);
-}
-
-static int radix_tree_callback(struct notifier_block *nfb,
- unsigned long action,
- void *hcpu)
-{
- int cpu = (long)hcpu;
- struct radix_tree_preload *rtp;
-
- /* Free per-cpu pool of perloaded nodes */
- if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
- rtp = &per_cpu(radix_tree_preloads, cpu);
- while (rtp->nr) {
- kmem_cache_free(radix_tree_node_cachep,
- rtp->nodes[rtp->nr-1]);
- rtp->nodes[rtp->nr-1] = NULL;
- rtp->nr--;
- }
- }
- return NOTIFY_OK;
-}
-
-void __init radix_tree_init(void)
-{
- radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
- sizeof(struct radix_tree_node), 0,
- SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
- radix_tree_node_ctor);
- radix_tree_init_maxindex();
- hotcpu_notifier(radix_tree_callback, 0);
-}
diff --git a/libdde_linux26/contrib/lib/rbtree.c b/libdde_linux26/contrib/lib/rbtree.c
deleted file mode 100644
index 9956b996..00000000
--- a/libdde_linux26/contrib/lib/rbtree.c
+++ /dev/null
@@ -1,397 +0,0 @@
-/*
- Red Black Trees
- (C) 1999 Andrea Arcangeli <andrea@suse.de>
- (C) 2002 David Woodhouse <dwmw2@infradead.org>
-
- This program is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 2 of the License, or
- (at your option) any later version.
-
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with this program; if not, write to the Free Software
- Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
-
- linux/lib/rbtree.c
-*/
-
-#include <linux/rbtree.h>
-#include <linux/module.h>
-
-static void __rb_rotate_left(struct rb_node *node, struct rb_root *root)
-{
- struct rb_node *right = node->rb_right;
- struct rb_node *parent = rb_parent(node);
-
- if ((node->rb_right = right->rb_left))
- rb_set_parent(right->rb_left, node);
- right->rb_left = node;
-
- rb_set_parent(right, parent);
-
- if (parent)
- {
- if (node == parent->rb_left)
- parent->rb_left = right;
- else
- parent->rb_right = right;
- }
- else
- root->rb_node = right;
- rb_set_parent(node, right);
-}
-
-static void __rb_rotate_right(struct rb_node *node, struct rb_root *root)
-{
- struct rb_node *left = node->rb_left;
- struct rb_node *parent = rb_parent(node);
-
- if ((node->rb_left = left->rb_right))
- rb_set_parent(left->rb_right, node);
- left->rb_right = node;
-
- rb_set_parent(left, parent);
-
- if (parent)
- {
- if (node == parent->rb_right)
- parent->rb_right = left;
- else
- parent->rb_left = left;
- }
- else
- root->rb_node = left;
- rb_set_parent(node, left);
-}
-
-void rb_insert_color(struct rb_node *node, struct rb_root *root)
-{
- struct rb_node *parent, *gparent;
-
- while ((parent = rb_parent(node)) && rb_is_red(parent))
- {
- gparent = rb_parent(parent);
-
- if (parent == gparent->rb_left)
- {
- {
- register struct rb_node *uncle = gparent->rb_right;
- if (uncle && rb_is_red(uncle))
- {
- rb_set_black(uncle);
- rb_set_black(parent);
- rb_set_red(gparent);
- node = gparent;
- continue;
- }
- }
-
- if (parent->rb_right == node)
- {
- register struct rb_node *tmp;
- __rb_rotate_left(parent, root);
- tmp = parent;
- parent = node;
- node = tmp;
- }
-
- rb_set_black(parent);
- rb_set_red(gparent);
- __rb_rotate_right(gparent, root);
- } else {
- {
- register struct rb_node *uncle = gparent->rb_left;
- if (uncle && rb_is_red(uncle))
- {
- rb_set_black(uncle);
- rb_set_black(parent);
- rb_set_red(gparent);
- node = gparent;
- continue;
- }
- }
-
- if (parent->rb_left == node)
- {
- register struct rb_node *tmp;
- __rb_rotate_right(parent, root);
- tmp = parent;
- parent = node;
- node = tmp;
- }
-
- rb_set_black(parent);
- rb_set_red(gparent);
- __rb_rotate_left(gparent, root);
- }
- }
-
- rb_set_black(root->rb_node);
-}
-EXPORT_SYMBOL(rb_insert_color);
-
-static void __rb_erase_color(struct rb_node *node, struct rb_node *parent,
- struct rb_root *root)
-{
- struct rb_node *other;
-
- while ((!node || rb_is_black(node)) && node != root->rb_node)
- {
- if (parent->rb_left == node)
- {
- other = parent->rb_right;
- if (rb_is_red(other))
- {
- rb_set_black(other);
- rb_set_red(parent);
- __rb_rotate_left(parent, root);
- other = parent->rb_right;
- }
- if ((!other->rb_left || rb_is_black(other->rb_left)) &&
- (!other->rb_right || rb_is_black(other->rb_right)))
- {
- rb_set_red(other);
- node = parent;
- parent = rb_parent(node);
- }
- else
- {
- if (!other->rb_right || rb_is_black(other->rb_right))
- {
- struct rb_node *o_left;
- if ((o_left = other->rb_left))
- rb_set_black(o_left);
- rb_set_red(other);
- __rb_rotate_right(other, root);
- other = parent->rb_right;
- }
- rb_set_color(other, rb_color(parent));
- rb_set_black(parent);
- if (other->rb_right)
- rb_set_black(other->rb_right);
- __rb_rotate_left(parent, root);
- node = root->rb_node;
- break;
- }
- }
- else
- {
- other = parent->rb_left;
- if (rb_is_red(other))
- {
- rb_set_black(other);
- rb_set_red(parent);
- __rb_rotate_right(parent, root);
- other = parent->rb_left;
- }
- if ((!other->rb_left || rb_is_black(other->rb_left)) &&
- (!other->rb_right || rb_is_black(other->rb_right)))
- {
- rb_set_red(other);
- node = parent;
- parent = rb_parent(node);
- }
- else
- {
- if (!other->rb_left || rb_is_black(other->rb_left))
- {
- register struct rb_node *o_right;
- if ((o_right = other->rb_right))
- rb_set_black(o_right);
- rb_set_red(other);
- __rb_rotate_left(other, root);
- other = parent->rb_left;
- }
- rb_set_color(other, rb_color(parent));
- rb_set_black(parent);
- if (other->rb_left)
- rb_set_black(other->rb_left);
- __rb_rotate_right(parent, root);
- node = root->rb_node;
- break;
- }
- }
- }
- if (node)
- rb_set_black(node);
-}
-
-void rb_erase(struct rb_node *node, struct rb_root *root)
-{
- struct rb_node *child, *parent;
- int color;
-
- if (!node->rb_left)
- child = node->rb_right;
- else if (!node->rb_right)
- child = node->rb_left;
- else
- {
- struct rb_node *old = node, *left;
-
- node = node->rb_right;
- while ((left = node->rb_left) != NULL)
- node = left;
- child = node->rb_right;
- parent = rb_parent(node);
- color = rb_color(node);
-
- if (child)
- rb_set_parent(child, parent);
- if (parent == old) {
- parent->rb_right = child;
- parent = node;
- } else
- parent->rb_left = child;
-
- node->rb_parent_color = old->rb_parent_color;
- node->rb_right = old->rb_right;
- node->rb_left = old->rb_left;
-
- if (rb_parent(old))
- {
- if (rb_parent(old)->rb_left == old)
- rb_parent(old)->rb_left = node;
- else
- rb_parent(old)->rb_right = node;
- } else
- root->rb_node = node;
-
- rb_set_parent(old->rb_left, node);
- if (old->rb_right)
- rb_set_parent(old->rb_right, node);
- goto color;
- }
-
- parent = rb_parent(node);
- color = rb_color(node);
-
- if (child)
- rb_set_parent(child, parent);
- if (parent)
- {
- if (parent->rb_left == node)
- parent->rb_left = child;
- else
- parent->rb_right = child;
- }
- else
- root->rb_node = child;
-
- color:
- if (color == RB_BLACK)
- __rb_erase_color(child, parent, root);
-}
-EXPORT_SYMBOL(rb_erase);
-
-/*
- * This function returns the first node (in sort order) of the tree.
- */
-struct rb_node *rb_first(const struct rb_root *root)
-{
- struct rb_node *n;
-
- n = root->rb_node;
- if (!n)
- return NULL;
- while (n->rb_left)
- n = n->rb_left;
- return n;
-}
-EXPORT_SYMBOL(rb_first);
-
-struct rb_node *rb_last(const struct rb_root *root)
-{
- struct rb_node *n;
-
- n = root->rb_node;
- if (!n)
- return NULL;
- while (n->rb_right)
- n = n->rb_right;
- return n;
-}
-EXPORT_SYMBOL(rb_last);
-
-struct rb_node *rb_next(const struct rb_node *node)
-{
- struct rb_node *parent;
-
- if (rb_parent(node) == node)
- return NULL;
-
- /* If we have a right-hand child, go down and then left as far
- as we can. */
- if (node->rb_right) {
- node = node->rb_right;
- while (node->rb_left)
- node=node->rb_left;
- return (struct rb_node *)node;
- }
-
- /* No right-hand children. Everything down and left is
- smaller than us, so any 'next' node must be in the general
- direction of our parent. Go up the tree; any time the
- ancestor is a right-hand child of its parent, keep going
- up. First time it's a left-hand child of its parent, said
- parent is our 'next' node. */
- while ((parent = rb_parent(node)) && node == parent->rb_right)
- node = parent;
-
- return parent;
-}
-EXPORT_SYMBOL(rb_next);
-
-struct rb_node *rb_prev(const struct rb_node *node)
-{
- struct rb_node *parent;
-
- if (rb_parent(node) == node)
- return NULL;
-
- /* If we have a left-hand child, go down and then right as far
- as we can. */
- if (node->rb_left) {
- node = node->rb_left;
- while (node->rb_right)
- node=node->rb_right;
- return (struct rb_node *)node;
- }
-
- /* No left-hand children. Go up till we find an ancestor which
- is a right-hand child of its parent */
- while ((parent = rb_parent(node)) && node == parent->rb_left)
- node = parent;
-
- return parent;
-}
-EXPORT_SYMBOL(rb_prev);
-
-void rb_replace_node(struct rb_node *victim, struct rb_node *new,
- struct rb_root *root)
-{
- struct rb_node *parent = rb_parent(victim);
-
- /* Set the surrounding nodes to point to the replacement */
- if (parent) {
- if (victim == parent->rb_left)
- parent->rb_left = new;
- else
- parent->rb_right = new;
- } else {
- root->rb_node = new;
- }
- if (victim->rb_left)
- rb_set_parent(victim->rb_left, new);
- if (victim->rb_right)
- rb_set_parent(victim->rb_right, new);
-
- /* Copy the pointers/colour from the victim to the replacement */
- *new = *victim;
-}
-EXPORT_SYMBOL(rb_replace_node);
diff --git a/libdde_linux26/contrib/lib/rwsem-spinlock.c b/libdde_linux26/contrib/lib/rwsem-spinlock.c
deleted file mode 100644
index 9df3ca56..00000000
--- a/libdde_linux26/contrib/lib/rwsem-spinlock.c
+++ /dev/null
@@ -1,316 +0,0 @@
-/* rwsem-spinlock.c: R/W semaphores: contention handling functions for
- * generic spinlock implementation
- *
- * Copyright (c) 2001 David Howells (dhowells@redhat.com).
- * - Derived partially from idea by Andrea Arcangeli <andrea@suse.de>
- * - Derived also from comments by Linus
- */
-#include <linux/rwsem.h>
-#include <linux/sched.h>
-#include <linux/module.h>
-
-struct rwsem_waiter {
- struct list_head list;
- struct task_struct *task;
- unsigned int flags;
-#define RWSEM_WAITING_FOR_READ 0x00000001
-#define RWSEM_WAITING_FOR_WRITE 0x00000002
-};
-
-/*
- * initialise the semaphore
- */
-void __init_rwsem(struct rw_semaphore *sem, const char *name,
- struct lock_class_key *key)
-{
-#ifdef CONFIG_DEBUG_LOCK_ALLOC
- /*
- * Make sure we are not reinitializing a held semaphore:
- */
- debug_check_no_locks_freed((void *)sem, sizeof(*sem));
- lockdep_init_map(&sem->dep_map, name, key, 0);
-#endif
- sem->activity = 0;
- spin_lock_init(&sem->wait_lock);
- INIT_LIST_HEAD(&sem->wait_list);
-}
-
-/*
- * handle the lock release when processes blocked on it that can now run
- * - if we come here, then:
- * - the 'active count' _reached_ zero
- * - the 'waiting count' is non-zero
- * - the spinlock must be held by the caller
- * - woken process blocks are discarded from the list after having task zeroed
- * - writers are only woken if wakewrite is non-zero
- */
-static inline struct rw_semaphore *
-__rwsem_do_wake(struct rw_semaphore *sem, int wakewrite)
-{
- struct rwsem_waiter *waiter;
- struct task_struct *tsk;
- int woken;
-
- waiter = list_entry(sem->wait_list.next, struct rwsem_waiter, list);
-
- if (!wakewrite) {
- if (waiter->flags & RWSEM_WAITING_FOR_WRITE)
- goto out;
- goto dont_wake_writers;
- }
-
- /* if we are allowed to wake writers try to grant a single write lock
- * if there's a writer at the front of the queue
- * - we leave the 'waiting count' incremented to signify potential
- * contention
- */
- if (waiter->flags & RWSEM_WAITING_FOR_WRITE) {
- sem->activity = -1;
- list_del(&waiter->list);
- tsk = waiter->task;
- /* Don't touch waiter after ->task has been NULLed */
- smp_mb();
- waiter->task = NULL;
- wake_up_process(tsk);
- put_task_struct(tsk);
- goto out;
- }
-
- /* grant an infinite number of read locks to the front of the queue */
- dont_wake_writers:
- woken = 0;
- while (waiter->flags & RWSEM_WAITING_FOR_READ) {
- struct list_head *next = waiter->list.next;
-
- list_del(&waiter->list);
- tsk = waiter->task;
- smp_mb();
- waiter->task = NULL;
- wake_up_process(tsk);
- put_task_struct(tsk);
- woken++;
- if (list_empty(&sem->wait_list))
- break;
- waiter = list_entry(next, struct rwsem_waiter, list);
- }
-
- sem->activity += woken;
-
- out:
- return sem;
-}
-
-/*
- * wake a single writer
- */
-static inline struct rw_semaphore *
-__rwsem_wake_one_writer(struct rw_semaphore *sem)
-{
- struct rwsem_waiter *waiter;
- struct task_struct *tsk;
-
- sem->activity = -1;
-
- waiter = list_entry(sem->wait_list.next, struct rwsem_waiter, list);
- list_del(&waiter->list);
-
- tsk = waiter->task;
- smp_mb();
- waiter->task = NULL;
- wake_up_process(tsk);
- put_task_struct(tsk);
- return sem;
-}
-
-/*
- * get a read lock on the semaphore
- */
-void __sched __down_read(struct rw_semaphore *sem)
-{
- struct rwsem_waiter waiter;
- struct task_struct *tsk;
-
- spin_lock_irq(&sem->wait_lock);
-
- if (sem->activity >= 0 && list_empty(&sem->wait_list)) {
- /* granted */
- sem->activity++;
- spin_unlock_irq(&sem->wait_lock);
- goto out;
- }
-
- tsk = current;
- set_task_state(tsk, TASK_UNINTERRUPTIBLE);
-
- /* set up my own style of waitqueue */
- waiter.task = tsk;
- waiter.flags = RWSEM_WAITING_FOR_READ;
- get_task_struct(tsk);
-
- list_add_tail(&waiter.list, &sem->wait_list);
-
- /* we don't need to touch the semaphore struct anymore */
- spin_unlock_irq(&sem->wait_lock);
-
- /* wait to be given the lock */
- for (;;) {
- if (!waiter.task)
- break;
- schedule();
- set_task_state(tsk, TASK_UNINTERRUPTIBLE);
- }
-
- tsk->state = TASK_RUNNING;
- out:
- ;
-}
-
-/*
- * trylock for reading -- returns 1 if successful, 0 if contention
- */
-int __down_read_trylock(struct rw_semaphore *sem)
-{
- unsigned long flags;
- int ret = 0;
-
-
- spin_lock_irqsave(&sem->wait_lock, flags);
-
- if (sem->activity >= 0 && list_empty(&sem->wait_list)) {
- /* granted */
- sem->activity++;
- ret = 1;
- }
-
- spin_unlock_irqrestore(&sem->wait_lock, flags);
-
- return ret;
-}
-
-/*
- * get a write lock on the semaphore
- * - we increment the waiting count anyway to indicate an exclusive lock
- */
-void __sched __down_write_nested(struct rw_semaphore *sem, int subclass)
-{
- struct rwsem_waiter waiter;
- struct task_struct *tsk;
-
- spin_lock_irq(&sem->wait_lock);
-
- if (sem->activity == 0 && list_empty(&sem->wait_list)) {
- /* granted */
- sem->activity = -1;
- spin_unlock_irq(&sem->wait_lock);
- goto out;
- }
-
- tsk = current;
- set_task_state(tsk, TASK_UNINTERRUPTIBLE);
-
- /* set up my own style of waitqueue */
- waiter.task = tsk;
- waiter.flags = RWSEM_WAITING_FOR_WRITE;
- get_task_struct(tsk);
-
- list_add_tail(&waiter.list, &sem->wait_list);
-
- /* we don't need to touch the semaphore struct anymore */
- spin_unlock_irq(&sem->wait_lock);
-
- /* wait to be given the lock */
- for (;;) {
- if (!waiter.task)
- break;
- schedule();
- set_task_state(tsk, TASK_UNINTERRUPTIBLE);
- }
-
- tsk->state = TASK_RUNNING;
- out:
- ;
-}
-
-void __sched __down_write(struct rw_semaphore *sem)
-{
- __down_write_nested(sem, 0);
-}
-
-/*
- * trylock for writing -- returns 1 if successful, 0 if contention
- */
-int __down_write_trylock(struct rw_semaphore *sem)
-{
- unsigned long flags;
- int ret = 0;
-
- spin_lock_irqsave(&sem->wait_lock, flags);
-
- if (sem->activity == 0 && list_empty(&sem->wait_list)) {
- /* granted */
- sem->activity = -1;
- ret = 1;
- }
-
- spin_unlock_irqrestore(&sem->wait_lock, flags);
-
- return ret;
-}
-
-/*
- * release a read lock on the semaphore
- */
-void __up_read(struct rw_semaphore *sem)
-{
- unsigned long flags;
-
- spin_lock_irqsave(&sem->wait_lock, flags);
-
- if (--sem->activity == 0 && !list_empty(&sem->wait_list))
- sem = __rwsem_wake_one_writer(sem);
-
- spin_unlock_irqrestore(&sem->wait_lock, flags);
-}
-
-/*
- * release a write lock on the semaphore
- */
-void __up_write(struct rw_semaphore *sem)
-{
- unsigned long flags;
-
- spin_lock_irqsave(&sem->wait_lock, flags);
-
- sem->activity = 0;
- if (!list_empty(&sem->wait_list))
- sem = __rwsem_do_wake(sem, 1);
-
- spin_unlock_irqrestore(&sem->wait_lock, flags);
-}
-
-/*
- * downgrade a write lock into a read lock
- * - just wake up any readers at the front of the queue
- */
-void __downgrade_write(struct rw_semaphore *sem)
-{
- unsigned long flags;
-
- spin_lock_irqsave(&sem->wait_lock, flags);
-
- sem->activity = 1;
- if (!list_empty(&sem->wait_list))
- sem = __rwsem_do_wake(sem, 0);
-
- spin_unlock_irqrestore(&sem->wait_lock, flags);
-}
-
-EXPORT_SYMBOL(__init_rwsem);
-EXPORT_SYMBOL(__down_read);
-EXPORT_SYMBOL(__down_read_trylock);
-EXPORT_SYMBOL(__down_write_nested);
-EXPORT_SYMBOL(__down_write);
-EXPORT_SYMBOL(__down_write_trylock);
-EXPORT_SYMBOL(__up_read);
-EXPORT_SYMBOL(__up_write);
-EXPORT_SYMBOL(__downgrade_write);
diff --git a/libdde_linux26/contrib/lib/rwsem.c b/libdde_linux26/contrib/lib/rwsem.c
deleted file mode 100644
index 3e3365e5..00000000
--- a/libdde_linux26/contrib/lib/rwsem.c
+++ /dev/null
@@ -1,257 +0,0 @@
-/* rwsem.c: R/W semaphores: contention handling functions
- *
- * Written by David Howells (dhowells@redhat.com).
- * Derived from arch/i386/kernel/semaphore.c
- */
-#include <linux/rwsem.h>
-#include <linux/sched.h>
-#include <linux/init.h>
-#include <linux/module.h>
-
-/*
- * Initialize an rwsem:
- */
-void __init_rwsem(struct rw_semaphore *sem, const char *name,
- struct lock_class_key *key)
-{
-#ifdef CONFIG_DEBUG_LOCK_ALLOC
- /*
- * Make sure we are not reinitializing a held semaphore:
- */
- debug_check_no_locks_freed((void *)sem, sizeof(*sem));
- lockdep_init_map(&sem->dep_map, name, key, 0);
-#endif
- sem->count = RWSEM_UNLOCKED_VALUE;
- spin_lock_init(&sem->wait_lock);
- INIT_LIST_HEAD(&sem->wait_list);
-}
-
-EXPORT_SYMBOL(__init_rwsem);
-
-struct rwsem_waiter {
- struct list_head list;
- struct task_struct *task;
- unsigned int flags;
-#define RWSEM_WAITING_FOR_READ 0x00000001
-#define RWSEM_WAITING_FOR_WRITE 0x00000002
-};
-
-/*
- * handle the lock release when processes blocked on it that can now run
- * - if we come here from up_xxxx(), then:
- * - the 'active part' of count (&0x0000ffff) reached 0 (but may have changed)
- * - the 'waiting part' of count (&0xffff0000) is -ve (and will still be so)
- * - there must be someone on the queue
- * - the spinlock must be held by the caller
- * - woken process blocks are discarded from the list after having task zeroed
- * - writers are only woken if downgrading is false
- */
-static inline struct rw_semaphore *
-__rwsem_do_wake(struct rw_semaphore *sem, int downgrading)
-{
- struct rwsem_waiter *waiter;
- struct task_struct *tsk;
- struct list_head *next;
- signed long oldcount, woken, loop;
-
- if (downgrading)
- goto dont_wake_writers;
-
- /* if we came through an up_xxxx() call, we only only wake someone up
- * if we can transition the active part of the count from 0 -> 1
- */
- try_again:
- oldcount = rwsem_atomic_update(RWSEM_ACTIVE_BIAS, sem)
- - RWSEM_ACTIVE_BIAS;
- if (oldcount & RWSEM_ACTIVE_MASK)
- goto undo;
-
- waiter = list_entry(sem->wait_list.next, struct rwsem_waiter, list);
-
- /* try to grant a single write lock if there's a writer at the front
- * of the queue - note we leave the 'active part' of the count
- * incremented by 1 and the waiting part incremented by 0x00010000
- */
- if (!(waiter->flags & RWSEM_WAITING_FOR_WRITE))
- goto readers_only;
-
- /* We must be careful not to touch 'waiter' after we set ->task = NULL.
- * It is an allocated on the waiter's stack and may become invalid at
- * any time after that point (due to a wakeup from another source).
- */
- list_del(&waiter->list);
- tsk = waiter->task;
- smp_mb();
- waiter->task = NULL;
- wake_up_process(tsk);
- put_task_struct(tsk);
- goto out;
-
- /* don't want to wake any writers */
- dont_wake_writers:
- waiter = list_entry(sem->wait_list.next, struct rwsem_waiter, list);
- if (waiter->flags & RWSEM_WAITING_FOR_WRITE)
- goto out;
-
- /* grant an infinite number of read locks to the readers at the front
- * of the queue
- * - note we increment the 'active part' of the count by the number of
- * readers before waking any processes up
- */
- readers_only:
- woken = 0;
- do {
- woken++;
-
- if (waiter->list.next == &sem->wait_list)
- break;
-
- waiter = list_entry(waiter->list.next,
- struct rwsem_waiter, list);
-
- } while (waiter->flags & RWSEM_WAITING_FOR_READ);
-
- loop = woken;
- woken *= RWSEM_ACTIVE_BIAS - RWSEM_WAITING_BIAS;
- if (!downgrading)
- /* we'd already done one increment earlier */
- woken -= RWSEM_ACTIVE_BIAS;
-
- rwsem_atomic_add(woken, sem);
-
- next = sem->wait_list.next;
- for (; loop > 0; loop--) {
- waiter = list_entry(next, struct rwsem_waiter, list);
- next = waiter->list.next;
- tsk = waiter->task;
- smp_mb();
- waiter->task = NULL;
- wake_up_process(tsk);
- put_task_struct(tsk);
- }
-
- sem->wait_list.next = next;
- next->prev = &sem->wait_list;
-
- out:
- return sem;
-
- /* undo the change to count, but check for a transition 1->0 */
- undo:
- if (rwsem_atomic_update(-RWSEM_ACTIVE_BIAS, sem) != 0)
- goto out;
- goto try_again;
-}
-
-/*
- * wait for a lock to be granted
- */
-static struct rw_semaphore __sched *
-rwsem_down_failed_common(struct rw_semaphore *sem,
- struct rwsem_waiter *waiter, signed long adjustment)
-{
- struct task_struct *tsk = current;
- signed long count;
-
- set_task_state(tsk, TASK_UNINTERRUPTIBLE);
-
- /* set up my own style of waitqueue */
- spin_lock_irq(&sem->wait_lock);
- waiter->task = tsk;
- get_task_struct(tsk);
-
- list_add_tail(&waiter->list, &sem->wait_list);
-
- /* we're now waiting on the lock, but no longer actively read-locking */
- count = rwsem_atomic_update(adjustment, sem);
-
- /* if there are no active locks, wake the front queued process(es) up */
- if (!(count & RWSEM_ACTIVE_MASK))
- sem = __rwsem_do_wake(sem, 0);
-
- spin_unlock_irq(&sem->wait_lock);
-
- /* wait to be given the lock */
- for (;;) {
- if (!waiter->task)
- break;
- schedule();
- set_task_state(tsk, TASK_UNINTERRUPTIBLE);
- }
-
- tsk->state = TASK_RUNNING;
-
- return sem;
-}
-
-/*
- * wait for the read lock to be granted
- */
-asmregparm struct rw_semaphore __sched *
-rwsem_down_read_failed(struct rw_semaphore *sem)
-{
- struct rwsem_waiter waiter;
-
- waiter.flags = RWSEM_WAITING_FOR_READ;
- rwsem_down_failed_common(sem, &waiter,
- RWSEM_WAITING_BIAS - RWSEM_ACTIVE_BIAS);
- return sem;
-}
-
-/*
- * wait for the write lock to be granted
- */
-asmregparm struct rw_semaphore __sched *
-rwsem_down_write_failed(struct rw_semaphore *sem)
-{
- struct rwsem_waiter waiter;
-
- waiter.flags = RWSEM_WAITING_FOR_WRITE;
- rwsem_down_failed_common(sem, &waiter, -RWSEM_ACTIVE_BIAS);
-
- return sem;
-}
-
-/*
- * handle waking up a waiter on the semaphore
- * - up_read/up_write has decremented the active part of count if we come here
- */
-asmregparm struct rw_semaphore *rwsem_wake(struct rw_semaphore *sem)
-{
- unsigned long flags;
-
- spin_lock_irqsave(&sem->wait_lock, flags);
-
- /* do nothing if list empty */
- if (!list_empty(&sem->wait_list))
- sem = __rwsem_do_wake(sem, 0);
-
- spin_unlock_irqrestore(&sem->wait_lock, flags);
-
- return sem;
-}
-
-/*
- * downgrade a write lock into a read lock
- * - caller incremented waiting part of count and discovered it still negative
- * - just wake up any readers at the front of the queue
- */
-asmregparm struct rw_semaphore *rwsem_downgrade_wake(struct rw_semaphore *sem)
-{
- unsigned long flags;
-
- spin_lock_irqsave(&sem->wait_lock, flags);
-
- /* do nothing if list empty */
- if (!list_empty(&sem->wait_list))
- sem = __rwsem_do_wake(sem, 1);
-
- spin_unlock_irqrestore(&sem->wait_lock, flags);
-
- return sem;
-}
-
-EXPORT_SYMBOL(rwsem_down_read_failed);
-EXPORT_SYMBOL(rwsem_down_write_failed);
-EXPORT_SYMBOL(rwsem_wake);
-EXPORT_SYMBOL(rwsem_downgrade_wake);
diff --git a/libdde_linux26/contrib/lib/scatterlist.c b/libdde_linux26/contrib/lib/scatterlist.c
deleted file mode 100644
index b7b449da..00000000
--- a/libdde_linux26/contrib/lib/scatterlist.c
+++ /dev/null
@@ -1,484 +0,0 @@
-/*
- * Copyright (C) 2007 Jens Axboe <jens.axboe@oracle.com>
- *
- * Scatterlist handling helpers.
- *
- * This source code is licensed under the GNU General Public License,
- * Version 2. See the file COPYING for more details.
- */
-#include <linux/module.h>
-#include <linux/scatterlist.h>
-#include <linux/highmem.h>
-
-/**
- * sg_next - return the next scatterlist entry in a list
- * @sg: The current sg entry
- *
- * Description:
- * Usually the next entry will be @sg@ + 1, but if this sg element is part
- * of a chained scatterlist, it could jump to the start of a new
- * scatterlist array.
- *
- **/
-struct scatterlist *sg_next(struct scatterlist *sg)
-{
-#ifdef CONFIG_DEBUG_SG
- BUG_ON(sg->sg_magic != SG_MAGIC);
-#endif
- if (sg_is_last(sg))
- return NULL;
-
- sg++;
- if (unlikely(sg_is_chain(sg)))
- sg = sg_chain_ptr(sg);
-
- return sg;
-}
-EXPORT_SYMBOL(sg_next);
-
-/**
- * sg_last - return the last scatterlist entry in a list
- * @sgl: First entry in the scatterlist
- * @nents: Number of entries in the scatterlist
- *
- * Description:
- * Should only be used casually, it (currently) scans the entire list
- * to get the last entry.
- *
- * Note that the @sgl@ pointer passed in need not be the first one,
- * the important bit is that @nents@ denotes the number of entries that
- * exist from @sgl@.
- *
- **/
-struct scatterlist *sg_last(struct scatterlist *sgl, unsigned int nents)
-{
-#ifndef ARCH_HAS_SG_CHAIN
- struct scatterlist *ret = &sgl[nents - 1];
-#else
- struct scatterlist *sg, *ret = NULL;
- unsigned int i;
-
- for_each_sg(sgl, sg, nents, i)
- ret = sg;
-
-#endif
-#ifdef CONFIG_DEBUG_SG
- BUG_ON(sgl[0].sg_magic != SG_MAGIC);
- BUG_ON(!sg_is_last(ret));
-#endif
- return ret;
-}
-EXPORT_SYMBOL(sg_last);
-
-/**
- * sg_init_table - Initialize SG table
- * @sgl: The SG table
- * @nents: Number of entries in table
- *
- * Notes:
- * If this is part of a chained sg table, sg_mark_end() should be
- * used only on the last table part.
- *
- **/
-void sg_init_table(struct scatterlist *sgl, unsigned int nents)
-{
- memset(sgl, 0, sizeof(*sgl) * nents);
-#ifdef CONFIG_DEBUG_SG
- {
- unsigned int i;
- for (i = 0; i < nents; i++)
- sgl[i].sg_magic = SG_MAGIC;
- }
-#endif
- sg_mark_end(&sgl[nents - 1]);
-}
-EXPORT_SYMBOL(sg_init_table);
-
-/**
- * sg_init_one - Initialize a single entry sg list
- * @sg: SG entry
- * @buf: Virtual address for IO
- * @buflen: IO length
- *
- **/
-void sg_init_one(struct scatterlist *sg, const void *buf, unsigned int buflen)
-{
- sg_init_table(sg, 1);
- sg_set_buf(sg, buf, buflen);
-}
-EXPORT_SYMBOL(sg_init_one);
-
-/*
- * The default behaviour of sg_alloc_table() is to use these kmalloc/kfree
- * helpers.
- */
-static struct scatterlist *sg_kmalloc(unsigned int nents, gfp_t gfp_mask)
-{
- if (nents == SG_MAX_SINGLE_ALLOC)
- return (struct scatterlist *) __get_free_page(gfp_mask);
- else
- return kmalloc(nents * sizeof(struct scatterlist), gfp_mask);
-}
-
-static void sg_kfree(struct scatterlist *sg, unsigned int nents)
-{
- if (nents == SG_MAX_SINGLE_ALLOC)
- free_page((unsigned long) sg);
- else
- kfree(sg);
-}
-
-/**
- * __sg_free_table - Free a previously mapped sg table
- * @table: The sg table header to use
- * @max_ents: The maximum number of entries per single scatterlist
- * @free_fn: Free function
- *
- * Description:
- * Free an sg table previously allocated and setup with
- * __sg_alloc_table(). The @max_ents value must be identical to
- * that previously used with __sg_alloc_table().
- *
- **/
-void __sg_free_table(struct sg_table *table, unsigned int max_ents,
- sg_free_fn *free_fn)
-{
- struct scatterlist *sgl, *next;
-
- if (unlikely(!table->sgl))
- return;
-
- sgl = table->sgl;
- while (table->orig_nents) {
- unsigned int alloc_size = table->orig_nents;
- unsigned int sg_size;
-
- /*
- * If we have more than max_ents segments left,
- * then assign 'next' to the sg table after the current one.
- * sg_size is then one less than alloc size, since the last
- * element is the chain pointer.
- */
- if (alloc_size > max_ents) {
- next = sg_chain_ptr(&sgl[max_ents - 1]);
- alloc_size = max_ents;
- sg_size = alloc_size - 1;
- } else {
- sg_size = alloc_size;
- next = NULL;
- }
-
- table->orig_nents -= sg_size;
- free_fn(sgl, alloc_size);
- sgl = next;
- }
-
- table->sgl = NULL;
-}
-EXPORT_SYMBOL(__sg_free_table);
-
-/**
- * sg_free_table - Free a previously allocated sg table
- * @table: The mapped sg table header
- *
- **/
-void sg_free_table(struct sg_table *table)
-{
- __sg_free_table(table, SG_MAX_SINGLE_ALLOC, sg_kfree);
-}
-EXPORT_SYMBOL(sg_free_table);
-
-/**
- * __sg_alloc_table - Allocate and initialize an sg table with given allocator
- * @table: The sg table header to use
- * @nents: Number of entries in sg list
- * @max_ents: The maximum number of entries the allocator returns per call
- * @gfp_mask: GFP allocation mask
- * @alloc_fn: Allocator to use
- *
- * Description:
- * This function returns a @table @nents long. The allocator is
- * defined to return scatterlist chunks of maximum size @max_ents.
- * Thus if @nents is bigger than @max_ents, the scatterlists will be
- * chained in units of @max_ents.
- *
- * Notes:
- * If this function returns non-0 (eg failure), the caller must call
- * __sg_free_table() to cleanup any leftover allocations.
- *
- **/
-int __sg_alloc_table(struct sg_table *table, unsigned int nents,
- unsigned int max_ents, gfp_t gfp_mask,
- sg_alloc_fn *alloc_fn)
-{
- struct scatterlist *sg, *prv;
- unsigned int left;
-
-#ifndef ARCH_HAS_SG_CHAIN
- BUG_ON(nents > max_ents);
-#endif
-
- memset(table, 0, sizeof(*table));
-
- left = nents;
- prv = NULL;
- do {
- unsigned int sg_size, alloc_size = left;
-
- if (alloc_size > max_ents) {
- alloc_size = max_ents;
- sg_size = alloc_size - 1;
- } else
- sg_size = alloc_size;
-
- left -= sg_size;
-
- sg = alloc_fn(alloc_size, gfp_mask);
- if (unlikely(!sg))
- return -ENOMEM;
-
- sg_init_table(sg, alloc_size);
- table->nents = table->orig_nents += sg_size;
-
- /*
- * If this is the first mapping, assign the sg table header.
- * If this is not the first mapping, chain previous part.
- */
- if (prv)
- sg_chain(prv, max_ents, sg);
- else
- table->sgl = sg;
-
- /*
- * If no more entries after this one, mark the end
- */
- if (!left)
- sg_mark_end(&sg[sg_size - 1]);
-
- /*
- * only really needed for mempool backed sg allocations (like
- * SCSI), a possible improvement here would be to pass the
- * table pointer into the allocator and let that clear these
- * flags
- */
- gfp_mask &= ~__GFP_WAIT;
- gfp_mask |= __GFP_HIGH;
- prv = sg;
- } while (left);
-
- return 0;
-}
-EXPORT_SYMBOL(__sg_alloc_table);
-
-/**
- * sg_alloc_table - Allocate and initialize an sg table
- * @table: The sg table header to use
- * @nents: Number of entries in sg list
- * @gfp_mask: GFP allocation mask
- *
- * Description:
- * Allocate and initialize an sg table. If @nents@ is larger than
- * SG_MAX_SINGLE_ALLOC a chained sg table will be setup.
- *
- **/
-int sg_alloc_table(struct sg_table *table, unsigned int nents, gfp_t gfp_mask)
-{
- int ret;
-
- ret = __sg_alloc_table(table, nents, SG_MAX_SINGLE_ALLOC,
- gfp_mask, sg_kmalloc);
- if (unlikely(ret))
- __sg_free_table(table, SG_MAX_SINGLE_ALLOC, sg_kfree);
-
- return ret;
-}
-EXPORT_SYMBOL(sg_alloc_table);
-
-/**
- * sg_miter_start - start mapping iteration over a sg list
- * @miter: sg mapping iter to be started
- * @sgl: sg list to iterate over
- * @nents: number of sg entries
- *
- * Description:
- * Starts mapping iterator @miter.
- *
- * Context:
- * Don't care.
- */
-void sg_miter_start(struct sg_mapping_iter *miter, struct scatterlist *sgl,
- unsigned int nents, unsigned int flags)
-{
- memset(miter, 0, sizeof(struct sg_mapping_iter));
-
- miter->__sg = sgl;
- miter->__nents = nents;
- miter->__offset = 0;
- miter->__flags = flags;
-}
-EXPORT_SYMBOL(sg_miter_start);
-
-/**
- * sg_miter_next - proceed mapping iterator to the next mapping
- * @miter: sg mapping iter to proceed
- *
- * Description:
- * Proceeds @miter@ to the next mapping. @miter@ should have been
- * started using sg_miter_start(). On successful return,
- * @miter@->page, @miter@->addr and @miter@->length point to the
- * current mapping.
- *
- * Context:
- * IRQ disabled if SG_MITER_ATOMIC. IRQ must stay disabled till
- * @miter@ is stopped. May sleep if !SG_MITER_ATOMIC.
- *
- * Returns:
- * true if @miter contains the next mapping. false if end of sg
- * list is reached.
- */
-bool sg_miter_next(struct sg_mapping_iter *miter)
-{
- unsigned int off, len;
-
- /* check for end and drop resources from the last iteration */
- if (!miter->__nents)
- return false;
-
- sg_miter_stop(miter);
-
- /* get to the next sg if necessary. __offset is adjusted by stop */
- if (miter->__offset == miter->__sg->length && --miter->__nents) {
- miter->__sg = sg_next(miter->__sg);
- miter->__offset = 0;
- }
-
- /* map the next page */
- off = miter->__sg->offset + miter->__offset;
- len = miter->__sg->length - miter->__offset;
-
- miter->page = nth_page(sg_page(miter->__sg), off >> PAGE_SHIFT);
- off &= ~PAGE_MASK;
- miter->length = min_t(unsigned int, len, PAGE_SIZE - off);
- miter->consumed = miter->length;
-
- if (miter->__flags & SG_MITER_ATOMIC)
- miter->addr = kmap_atomic(miter->page, KM_BIO_SRC_IRQ) + off;
- else
- miter->addr = kmap(miter->page) + off;
-
- return true;
-}
-EXPORT_SYMBOL(sg_miter_next);
-
-/**
- * sg_miter_stop - stop mapping iteration
- * @miter: sg mapping iter to be stopped
- *
- * Description:
- * Stops mapping iterator @miter. @miter should have been started
- * started using sg_miter_start(). A stopped iteration can be
- * resumed by calling sg_miter_next() on it. This is useful when
- * resources (kmap) need to be released during iteration.
- *
- * Context:
- * IRQ disabled if the SG_MITER_ATOMIC is set. Don't care otherwise.
- */
-void sg_miter_stop(struct sg_mapping_iter *miter)
-{
- WARN_ON(miter->consumed > miter->length);
-
- /* drop resources from the last iteration */
- if (miter->addr) {
- miter->__offset += miter->consumed;
-
- if (miter->__flags & SG_MITER_ATOMIC) {
- WARN_ON(!irqs_disabled());
- kunmap_atomic(miter->addr, KM_BIO_SRC_IRQ);
- } else
- kunmap(miter->page);
-
- miter->page = NULL;
- miter->addr = NULL;
- miter->length = 0;
- miter->consumed = 0;
- }
-}
-EXPORT_SYMBOL(sg_miter_stop);
-
-/**
- * sg_copy_buffer - Copy data between a linear buffer and an SG list
- * @sgl: The SG list
- * @nents: Number of SG entries
- * @buf: Where to copy from
- * @buflen: The number of bytes to copy
- * @to_buffer: transfer direction (non zero == from an sg list to a
- * buffer, 0 == from a buffer to an sg list
- *
- * Returns the number of copied bytes.
- *
- **/
-static size_t sg_copy_buffer(struct scatterlist *sgl, unsigned int nents,
- void *buf, size_t buflen, int to_buffer)
-{
- unsigned int offset = 0;
- struct sg_mapping_iter miter;
- unsigned long flags;
-
- sg_miter_start(&miter, sgl, nents, SG_MITER_ATOMIC);
-
- local_irq_save(flags);
-
- while (sg_miter_next(&miter) && offset < buflen) {
- unsigned int len;
-
- len = min(miter.length, buflen - offset);
-
- if (to_buffer)
- memcpy(buf + offset, miter.addr, len);
- else {
- memcpy(miter.addr, buf + offset, len);
- flush_kernel_dcache_page(miter.page);
- }
-
- offset += len;
- }
-
- sg_miter_stop(&miter);
-
- local_irq_restore(flags);
- return offset;
-}
-
-/**
- * sg_copy_from_buffer - Copy from a linear buffer to an SG list
- * @sgl: The SG list
- * @nents: Number of SG entries
- * @buf: Where to copy from
- * @buflen: The number of bytes to copy
- *
- * Returns the number of copied bytes.
- *
- **/
-size_t sg_copy_from_buffer(struct scatterlist *sgl, unsigned int nents,
- void *buf, size_t buflen)
-{
- return sg_copy_buffer(sgl, nents, buf, buflen, 0);
-}
-EXPORT_SYMBOL(sg_copy_from_buffer);
-
-/**
- * sg_copy_to_buffer - Copy from an SG list to a linear buffer
- * @sgl: The SG list
- * @nents: Number of SG entries
- * @buf: Where to copy to
- * @buflen: The number of bytes to copy
- *
- * Returns the number of copied bytes.
- *
- **/
-size_t sg_copy_to_buffer(struct scatterlist *sgl, unsigned int nents,
- void *buf, size_t buflen)
-{
- return sg_copy_buffer(sgl, nents, buf, buflen, 1);
-}
-EXPORT_SYMBOL(sg_copy_to_buffer);
diff --git a/libdde_linux26/contrib/lib/sha1.c b/libdde_linux26/contrib/lib/sha1.c
deleted file mode 100644
index 4c45fd50..00000000
--- a/libdde_linux26/contrib/lib/sha1.c
+++ /dev/null
@@ -1,95 +0,0 @@
-/*
- * SHA transform algorithm, originally taken from code written by
- * Peter Gutmann, and placed in the public domain.
- */
-
-#include <linux/kernel.h>
-#include <linux/module.h>
-#include <linux/cryptohash.h>
-
-/* The SHA f()-functions. */
-
-#define f1(x,y,z) (z ^ (x & (y ^ z))) /* x ? y : z */
-#define f2(x,y,z) (x ^ y ^ z) /* XOR */
-#define f3(x,y,z) ((x & y) + (z & (x ^ y))) /* majority */
-
-/* The SHA Mysterious Constants */
-
-#define K1 0x5A827999L /* Rounds 0-19: sqrt(2) * 2^30 */
-#define K2 0x6ED9EBA1L /* Rounds 20-39: sqrt(3) * 2^30 */
-#define K3 0x8F1BBCDCL /* Rounds 40-59: sqrt(5) * 2^30 */
-#define K4 0xCA62C1D6L /* Rounds 60-79: sqrt(10) * 2^30 */
-
-/**
- * sha_transform - single block SHA1 transform
- *
- * @digest: 160 bit digest to update
- * @data: 512 bits of data to hash
- * @W: 80 words of workspace (see note)
- *
- * This function generates a SHA1 digest for a single 512-bit block.
- * Be warned, it does not handle padding and message digest, do not
- * confuse it with the full FIPS 180-1 digest algorithm for variable
- * length messages.
- *
- * Note: If the hash is security sensitive, the caller should be sure
- * to clear the workspace. This is left to the caller to avoid
- * unnecessary clears between chained hashing operations.
- */
-void sha_transform(__u32 *digest, const char *in, __u32 *W)
-{
- __u32 a, b, c, d, e, t, i;
-
- for (i = 0; i < 16; i++)
- W[i] = be32_to_cpu(((const __be32 *)in)[i]);
-
- for (i = 0; i < 64; i++)
- W[i+16] = rol32(W[i+13] ^ W[i+8] ^ W[i+2] ^ W[i], 1);
-
- a = digest[0];
- b = digest[1];
- c = digest[2];
- d = digest[3];
- e = digest[4];
-
- for (i = 0; i < 20; i++) {
- t = f1(b, c, d) + K1 + rol32(a, 5) + e + W[i];
- e = d; d = c; c = rol32(b, 30); b = a; a = t;
- }
-
- for (; i < 40; i ++) {
- t = f2(b, c, d) + K2 + rol32(a, 5) + e + W[i];
- e = d; d = c; c = rol32(b, 30); b = a; a = t;
- }
-
- for (; i < 60; i ++) {
- t = f3(b, c, d) + K3 + rol32(a, 5) + e + W[i];
- e = d; d = c; c = rol32(b, 30); b = a; a = t;
- }
-
- for (; i < 80; i ++) {
- t = f2(b, c, d) + K4 + rol32(a, 5) + e + W[i];
- e = d; d = c; c = rol32(b, 30); b = a; a = t;
- }
-
- digest[0] += a;
- digest[1] += b;
- digest[2] += c;
- digest[3] += d;
- digest[4] += e;
-}
-EXPORT_SYMBOL(sha_transform);
-
-/**
- * sha_init - initialize the vectors for a SHA1 digest
- * @buf: vector to initialize
- */
-void sha_init(__u32 *buf)
-{
- buf[0] = 0x67452301;
- buf[1] = 0xefcdab89;
- buf[2] = 0x98badcfe;
- buf[3] = 0x10325476;
- buf[4] = 0xc3d2e1f0;
-}
-
diff --git a/libdde_linux26/contrib/lib/string.c b/libdde_linux26/contrib/lib/string.c
deleted file mode 100644
index b19b87af..00000000
--- a/libdde_linux26/contrib/lib/string.c
+++ /dev/null
@@ -1,689 +0,0 @@
-/*
- * linux/lib/string.c
- *
- * Copyright (C) 1991, 1992 Linus Torvalds
- */
-
-/*
- * stupid library routines.. The optimized versions should generally be found
- * as inline code in <asm-xx/string.h>
- *
- * These are buggy as well..
- *
- * * Fri Jun 25 1999, Ingo Oeser <ioe@informatik.tu-chemnitz.de>
- * - Added strsep() which will replace strtok() soon (because strsep() is
- * reentrant and should be faster). Use only strsep() in new code, please.
- *
- * * Sat Feb 09 2002, Jason Thomas <jason@topic.com.au>,
- * Matthew Hawkins <matt@mh.dropbear.id.au>
- * - Kissed strtok() goodbye
- */
-
-#include <linux/types.h>
-#include <linux/string.h>
-#include <linux/ctype.h>
-#include <linux/module.h>
-
-#ifndef __HAVE_ARCH_STRNICMP
-/**
- * strnicmp - Case insensitive, length-limited string comparison
- * @s1: One string
- * @s2: The other string
- * @len: the maximum number of characters to compare
- */
-int strnicmp(const char *s1, const char *s2, size_t len)
-{
- /* Yes, Virginia, it had better be unsigned */
- unsigned char c1, c2;
-
- c1 = c2 = 0;
- if (len) {
- do {
- c1 = *s1;
- c2 = *s2;
- s1++;
- s2++;
- if (!c1)
- break;
- if (!c2)
- break;
- if (c1 == c2)
- continue;
- c1 = tolower(c1);
- c2 = tolower(c2);
- if (c1 != c2)
- break;
- } while (--len);
- }
- return (int)c1 - (int)c2;
-}
-EXPORT_SYMBOL(strnicmp);
-#endif
-
-#ifndef __HAVE_ARCH_STRCASECMP
-int strcasecmp(const char *s1, const char *s2)
-{
- int c1, c2;
-
- do {
- c1 = tolower(*s1++);
- c2 = tolower(*s2++);
- } while (c1 == c2 && c1 != 0);
- return c1 - c2;
-}
-EXPORT_SYMBOL(strcasecmp);
-#endif
-
-#ifndef __HAVE_ARCH_STRNCASECMP
-int strncasecmp(const char *s1, const char *s2, size_t n)
-{
- int c1, c2;
-
- do {
- c1 = tolower(*s1++);
- c2 = tolower(*s2++);
- } while ((--n > 0) && c1 == c2 && c1 != 0);
- return c1 - c2;
-}
-EXPORT_SYMBOL(strncasecmp);
-#endif
-
-#ifndef __HAVE_ARCH_STRCPY
-/**
- * strcpy - Copy a %NUL terminated string
- * @dest: Where to copy the string to
- * @src: Where to copy the string from
- */
-#undef strcpy
-char *strcpy(char *dest, const char *src)
-{
- char *tmp = dest;
-
- while ((*dest++ = *src++) != '\0')
- /* nothing */;
- return tmp;
-}
-EXPORT_SYMBOL(strcpy);
-#endif
-
-#ifndef __HAVE_ARCH_STRNCPY
-/**
- * strncpy - Copy a length-limited, %NUL-terminated string
- * @dest: Where to copy the string to
- * @src: Where to copy the string from
- * @count: The maximum number of bytes to copy
- *
- * The result is not %NUL-terminated if the source exceeds
- * @count bytes.
- *
- * In the case where the length of @src is less than that of
- * count, the remainder of @dest will be padded with %NUL.
- *
- */
-char *strncpy(char *dest, const char *src, size_t count)
-{
- char *tmp = dest;
-
- while (count) {
- if ((*tmp = *src) != 0)
- src++;
- tmp++;
- count--;
- }
- return dest;
-}
-EXPORT_SYMBOL(strncpy);
-#endif
-
-#ifndef __HAVE_ARCH_STRLCPY
-/**
- * strlcpy - Copy a %NUL terminated string into a sized buffer
- * @dest: Where to copy the string to
- * @src: Where to copy the string from
- * @size: size of destination buffer
- *
- * Compatible with *BSD: the result is always a valid
- * NUL-terminated string that fits in the buffer (unless,
- * of course, the buffer size is zero). It does not pad
- * out the result like strncpy() does.
- */
-size_t strlcpy(char *dest, const char *src, size_t size)
-{
- size_t ret = strlen(src);
-
- if (size) {
- size_t len = (ret >= size) ? size - 1 : ret;
- memcpy(dest, src, len);
- dest[len] = '\0';
- }
- return ret;
-}
-EXPORT_SYMBOL(strlcpy);
-#endif
-
-#ifndef __HAVE_ARCH_STRCAT
-/**
- * strcat - Append one %NUL-terminated string to another
- * @dest: The string to be appended to
- * @src: The string to append to it
- */
-#undef strcat
-char *strcat(char *dest, const char *src)
-{
- char *tmp = dest;
-
- while (*dest)
- dest++;
- while ((*dest++ = *src++) != '\0')
- ;
- return tmp;
-}
-EXPORT_SYMBOL(strcat);
-#endif
-
-#ifndef __HAVE_ARCH_STRNCAT
-/**
- * strncat - Append a length-limited, %NUL-terminated string to another
- * @dest: The string to be appended to
- * @src: The string to append to it
- * @count: The maximum numbers of bytes to copy
- *
- * Note that in contrast to strncpy(), strncat() ensures the result is
- * terminated.
- */
-char *strncat(char *dest, const char *src, size_t count)
-{
- char *tmp = dest;
-
- if (count) {
- while (*dest)
- dest++;
- while ((*dest++ = *src++) != 0) {
- if (--count == 0) {
- *dest = '\0';
- break;
- }
- }
- }
- return tmp;
-}
-EXPORT_SYMBOL(strncat);
-#endif
-
-#ifndef __HAVE_ARCH_STRLCAT
-/**
- * strlcat - Append a length-limited, %NUL-terminated string to another
- * @dest: The string to be appended to
- * @src: The string to append to it
- * @count: The size of the destination buffer.
- */
-size_t strlcat(char *dest, const char *src, size_t count)
-{
- size_t dsize = strlen(dest);
- size_t len = strlen(src);
- size_t res = dsize + len;
-
- /* This would be a bug */
- BUG_ON(dsize >= count);
-
- dest += dsize;
- count -= dsize;
- if (len >= count)
- len = count-1;
- memcpy(dest, src, len);
- dest[len] = 0;
- return res;
-}
-EXPORT_SYMBOL(strlcat);
-#endif
-
-#ifndef __HAVE_ARCH_STRCMP
-/**
- * strcmp - Compare two strings
- * @cs: One string
- * @ct: Another string
- */
-#undef strcmp
-int strcmp(const char *cs, const char *ct)
-{
- signed char __res;
-
- while (1) {
- if ((__res = *cs - *ct++) != 0 || !*cs++)
- break;
- }
- return __res;
-}
-EXPORT_SYMBOL(strcmp);
-#endif
-
-#ifndef __HAVE_ARCH_STRNCMP
-/**
- * strncmp - Compare two length-limited strings
- * @cs: One string
- * @ct: Another string
- * @count: The maximum number of bytes to compare
- */
-int strncmp(const char *cs, const char *ct, size_t count)
-{
- signed char __res = 0;
-
- while (count) {
- if ((__res = *cs - *ct++) != 0 || !*cs++)
- break;
- count--;
- }
- return __res;
-}
-EXPORT_SYMBOL(strncmp);
-#endif
-
-#ifndef __HAVE_ARCH_STRCHR
-/**
- * strchr - Find the first occurrence of a character in a string
- * @s: The string to be searched
- * @c: The character to search for
- */
-char *strchr(const char *s, int c)
-{
- for (; *s != (char)c; ++s)
- if (*s == '\0')
- return NULL;
- return (char *)s;
-}
-EXPORT_SYMBOL(strchr);
-#endif
-
-#ifndef __HAVE_ARCH_STRRCHR
-/**
- * strrchr - Find the last occurrence of a character in a string
- * @s: The string to be searched
- * @c: The character to search for
- */
-char *strrchr(const char *s, int c)
-{
- const char *p = s + strlen(s);
- do {
- if (*p == (char)c)
- return (char *)p;
- } while (--p >= s);
- return NULL;
-}
-EXPORT_SYMBOL(strrchr);
-#endif
-
-#ifndef __HAVE_ARCH_STRNCHR
-/**
- * strnchr - Find a character in a length limited string
- * @s: The string to be searched
- * @count: The number of characters to be searched
- * @c: The character to search for
- */
-char *strnchr(const char *s, size_t count, int c)
-{
- for (; count-- && *s != '\0'; ++s)
- if (*s == (char)c)
- return (char *)s;
- return NULL;
-}
-EXPORT_SYMBOL(strnchr);
-#endif
-
-/**
- * strstrip - Removes leading and trailing whitespace from @s.
- * @s: The string to be stripped.
- *
- * Note that the first trailing whitespace is replaced with a %NUL-terminator
- * in the given string @s. Returns a pointer to the first non-whitespace
- * character in @s.
- */
-char *strstrip(char *s)
-{
- size_t size;
- char *end;
-
- size = strlen(s);
-
- if (!size)
- return s;
-
- end = s + size - 1;
- while (end >= s && isspace(*end))
- end--;
- *(end + 1) = '\0';
-
- while (*s && isspace(*s))
- s++;
-
- return s;
-}
-EXPORT_SYMBOL(strstrip);
-
-#ifndef __HAVE_ARCH_STRLEN
-/**
- * strlen - Find the length of a string
- * @s: The string to be sized
- */
-size_t strlen(const char *s)
-{
- const char *sc;
-
- for (sc = s; *sc != '\0'; ++sc)
- /* nothing */;
- return sc - s;
-}
-EXPORT_SYMBOL(strlen);
-#endif
-
-#ifndef __HAVE_ARCH_STRNLEN
-/**
- * strnlen - Find the length of a length-limited string
- * @s: The string to be sized
- * @count: The maximum number of bytes to search
- */
-size_t strnlen(const char *s, size_t count)
-{
- const char *sc;
-
- for (sc = s; count-- && *sc != '\0'; ++sc)
- /* nothing */;
- return sc - s;
-}
-EXPORT_SYMBOL(strnlen);
-#endif
-
-#ifndef __HAVE_ARCH_STRSPN
-/**
- * strspn - Calculate the length of the initial substring of @s which only contain letters in @accept
- * @s: The string to be searched
- * @accept: The string to search for
- */
-size_t strspn(const char *s, const char *accept)
-{
- const char *p;
- const char *a;
- size_t count = 0;
-
- for (p = s; *p != '\0'; ++p) {
- for (a = accept; *a != '\0'; ++a) {
- if (*p == *a)
- break;
- }
- if (*a == '\0')
- return count;
- ++count;
- }
- return count;
-}
-
-EXPORT_SYMBOL(strspn);
-#endif
-
-#ifndef __HAVE_ARCH_STRCSPN
-/**
- * strcspn - Calculate the length of the initial substring of @s which does not contain letters in @reject
- * @s: The string to be searched
- * @reject: The string to avoid
- */
-size_t strcspn(const char *s, const char *reject)
-{
- const char *p;
- const char *r;
- size_t count = 0;
-
- for (p = s; *p != '\0'; ++p) {
- for (r = reject; *r != '\0'; ++r) {
- if (*p == *r)
- return count;
- }
- ++count;
- }
- return count;
-}
-EXPORT_SYMBOL(strcspn);
-#endif
-
-#ifndef __HAVE_ARCH_STRPBRK
-/**
- * strpbrk - Find the first occurrence of a set of characters
- * @cs: The string to be searched
- * @ct: The characters to search for
- */
-char *strpbrk(const char *cs, const char *ct)
-{
- const char *sc1, *sc2;
-
- for (sc1 = cs; *sc1 != '\0'; ++sc1) {
- for (sc2 = ct; *sc2 != '\0'; ++sc2) {
- if (*sc1 == *sc2)
- return (char *)sc1;
- }
- }
- return NULL;
-}
-EXPORT_SYMBOL(strpbrk);
-#endif
-
-#ifndef __HAVE_ARCH_STRSEP
-/**
- * strsep - Split a string into tokens
- * @s: The string to be searched
- * @ct: The characters to search for
- *
- * strsep() updates @s to point after the token, ready for the next call.
- *
- * It returns empty tokens, too, behaving exactly like the libc function
- * of that name. In fact, it was stolen from glibc2 and de-fancy-fied.
- * Same semantics, slimmer shape. ;)
- */
-char *strsep(char **s, const char *ct)
-{
- char *sbegin = *s;
- char *end;
-
- if (sbegin == NULL)
- return NULL;
-
- end = strpbrk(sbegin, ct);
- if (end)
- *end++ = '\0';
- *s = end;
- return sbegin;
-}
-EXPORT_SYMBOL(strsep);
-#endif
-
-/**
- * sysfs_streq - return true if strings are equal, modulo trailing newline
- * @s1: one string
- * @s2: another string
- *
- * This routine returns true iff two strings are equal, treating both
- * NUL and newline-then-NUL as equivalent string terminations. It's
- * geared for use with sysfs input strings, which generally terminate
- * with newlines but are compared against values without newlines.
- */
-bool sysfs_streq(const char *s1, const char *s2)
-{
- while (*s1 && *s1 == *s2) {
- s1++;
- s2++;
- }
-
- if (*s1 == *s2)
- return true;
- if (!*s1 && *s2 == '\n' && !s2[1])
- return true;
- if (*s1 == '\n' && !s1[1] && !*s2)
- return true;
- return false;
-}
-EXPORT_SYMBOL(sysfs_streq);
-
-#ifndef __HAVE_ARCH_MEMSET
-/**
- * memset - Fill a region of memory with the given value
- * @s: Pointer to the start of the area.
- * @c: The byte to fill the area with
- * @count: The size of the area.
- *
- * Do not use memset() to access IO space, use memset_io() instead.
- */
-void *memset(void *s, int c, size_t count)
-{
- char *xs = s;
-
- while (count--)
- *xs++ = c;
- return s;
-}
-EXPORT_SYMBOL(memset);
-#endif
-
-#ifndef __HAVE_ARCH_MEMCPY
-/**
- * memcpy - Copy one area of memory to another
- * @dest: Where to copy to
- * @src: Where to copy from
- * @count: The size of the area.
- *
- * You should not use this function to access IO space, use memcpy_toio()
- * or memcpy_fromio() instead.
- */
-void *memcpy(void *dest, const void *src, size_t count)
-{
- char *tmp = dest;
- const char *s = src;
-
- while (count--)
- *tmp++ = *s++;
- return dest;
-}
-EXPORT_SYMBOL(memcpy);
-#endif
-
-#ifndef __HAVE_ARCH_MEMMOVE
-/**
- * memmove - Copy one area of memory to another
- * @dest: Where to copy to
- * @src: Where to copy from
- * @count: The size of the area.
- *
- * Unlike memcpy(), memmove() copes with overlapping areas.
- */
-void *memmove(void *dest, const void *src, size_t count)
-{
- char *tmp;
- const char *s;
-
- if (dest <= src) {
- tmp = dest;
- s = src;
- while (count--)
- *tmp++ = *s++;
- } else {
- tmp = dest;
- tmp += count;
- s = src;
- s += count;
- while (count--)
- *--tmp = *--s;
- }
- return dest;
-}
-EXPORT_SYMBOL(memmove);
-#endif
-
-#ifndef __HAVE_ARCH_MEMCMP
-/**
- * memcmp - Compare two areas of memory
- * @cs: One area of memory
- * @ct: Another area of memory
- * @count: The size of the area.
- */
-#undef memcmp
-int memcmp(const void *cs, const void *ct, size_t count)
-{
- const unsigned char *su1, *su2;
- int res = 0;
-
- for (su1 = cs, su2 = ct; 0 < count; ++su1, ++su2, count--)
- if ((res = *su1 - *su2) != 0)
- break;
- return res;
-}
-EXPORT_SYMBOL(memcmp);
-#endif
-
-#ifndef __HAVE_ARCH_MEMSCAN
-/**
- * memscan - Find a character in an area of memory.
- * @addr: The memory area
- * @c: The byte to search for
- * @size: The size of the area.
- *
- * returns the address of the first occurrence of @c, or 1 byte past
- * the area if @c is not found
- */
-void *memscan(void *addr, int c, size_t size)
-{
- unsigned char *p = addr;
-
- while (size) {
- if (*p == c)
- return (void *)p;
- p++;
- size--;
- }
- return (void *)p;
-}
-EXPORT_SYMBOL(memscan);
-#endif
-
-#ifndef __HAVE_ARCH_STRSTR
-/**
- * strstr - Find the first substring in a %NUL terminated string
- * @s1: The string to be searched
- * @s2: The string to search for
- */
-char *strstr(const char *s1, const char *s2)
-{
- int l1, l2;
-
- l2 = strlen(s2);
- if (!l2)
- return (char *)s1;
- l1 = strlen(s1);
- while (l1 >= l2) {
- l1--;
- if (!memcmp(s1, s2, l2))
- return (char *)s1;
- s1++;
- }
- return NULL;
-}
-EXPORT_SYMBOL(strstr);
-#endif
-
-#ifndef __HAVE_ARCH_MEMCHR
-/**
- * memchr - Find a character in an area of memory.
- * @s: The memory area
- * @c: The byte to search for
- * @n: The size of the area.
- *
- * returns the address of the first occurrence of @c, or %NULL
- * if @c is not found
- */
-void *memchr(const void *s, int c, size_t n)
-{
- const unsigned char *p = s;
- while (n-- != 0) {
- if ((unsigned char)c == *p++) {
- return (void *)(p - 1);
- }
- }
- return NULL;
-}
-EXPORT_SYMBOL(memchr);
-#endif
diff --git a/libdde_linux26/contrib/lib/vsprintf.c b/libdde_linux26/contrib/lib/vsprintf.c
deleted file mode 100644
index 0fbd0121..00000000
--- a/libdde_linux26/contrib/lib/vsprintf.c
+++ /dev/null
@@ -1,1305 +0,0 @@
-/*
- * linux/lib/vsprintf.c
- *
- * Copyright (C) 1991, 1992 Linus Torvalds
- */
-
-/* vsprintf.c -- Lars Wirzenius & Linus Torvalds. */
-/*
- * Wirzenius wrote this portably, Torvalds fucked it up :-)
- */
-
-/*
- * Fri Jul 13 2001 Crutcher Dunnavant <crutcher+kernel@datastacks.com>
- * - changed to provide snprintf and vsnprintf functions
- * So Feb 1 16:51:32 CET 2004 Juergen Quade <quade@hsnr.de>
- * - scnprintf and vscnprintf
- */
-
-#include <stdarg.h>
-#include <linux/module.h>
-#include <linux/types.h>
-#include <linux/string.h>
-#include <linux/ctype.h>
-#include <linux/kernel.h>
-#include <linux/kallsyms.h>
-#include <linux/uaccess.h>
-#include <linux/ioport.h>
-
-#include <asm/page.h> /* for PAGE_SIZE */
-#include <asm/div64.h>
-#include <asm/sections.h> /* for dereference_function_descriptor() */
-
-/* Works only for digits and letters, but small and fast */
-#define TOLOWER(x) ((x) | 0x20)
-
-static unsigned int simple_guess_base(const char *cp)
-{
- if (cp[0] == '0') {
- if (TOLOWER(cp[1]) == 'x' && isxdigit(cp[2]))
- return 16;
- else
- return 8;
- } else {
- return 10;
- }
-}
-
-/**
- * simple_strtoul - convert a string to an unsigned long
- * @cp: The start of the string
- * @endp: A pointer to the end of the parsed string will be placed here
- * @base: The number base to use
- */
-unsigned long simple_strtoul(const char *cp, char **endp, unsigned int base)
-{
- unsigned long result = 0;
-
- if (!base)
- base = simple_guess_base(cp);
-
- if (base == 16 && cp[0] == '0' && TOLOWER(cp[1]) == 'x')
- cp += 2;
-
- while (isxdigit(*cp)) {
- unsigned int value;
-
- value = isdigit(*cp) ? *cp - '0' : TOLOWER(*cp) - 'a' + 10;
- if (value >= base)
- break;
- result = result * base + value;
- cp++;
- }
-
- if (endp)
- *endp = (char *)cp;
- return result;
-}
-EXPORT_SYMBOL(simple_strtoul);
-
-/**
- * simple_strtol - convert a string to a signed long
- * @cp: The start of the string
- * @endp: A pointer to the end of the parsed string will be placed here
- * @base: The number base to use
- */
-long simple_strtol(const char *cp, char **endp, unsigned int base)
-{
- if(*cp == '-')
- return -simple_strtoul(cp + 1, endp, base);
- return simple_strtoul(cp, endp, base);
-}
-EXPORT_SYMBOL(simple_strtol);
-
-/**
- * simple_strtoull - convert a string to an unsigned long long
- * @cp: The start of the string
- * @endp: A pointer to the end of the parsed string will be placed here
- * @base: The number base to use
- */
-unsigned long long simple_strtoull(const char *cp, char **endp, unsigned int base)
-{
- unsigned long long result = 0;
-
- if (!base)
- base = simple_guess_base(cp);
-
- if (base == 16 && cp[0] == '0' && TOLOWER(cp[1]) == 'x')
- cp += 2;
-
- while (isxdigit(*cp)) {
- unsigned int value;
-
- value = isdigit(*cp) ? *cp - '0' : TOLOWER(*cp) - 'a' + 10;
- if (value >= base)
- break;
- result = result * base + value;
- cp++;
- }
-
- if (endp)
- *endp = (char *)cp;
- return result;
-}
-EXPORT_SYMBOL(simple_strtoull);
-
-/**
- * simple_strtoll - convert a string to a signed long long
- * @cp: The start of the string
- * @endp: A pointer to the end of the parsed string will be placed here
- * @base: The number base to use
- */
-long long simple_strtoll(const char *cp, char **endp, unsigned int base)
-{
- if(*cp=='-')
- return -simple_strtoull(cp + 1, endp, base);
- return simple_strtoull(cp, endp, base);
-}
-
-/**
- * strict_strtoul - convert a string to an unsigned long strictly
- * @cp: The string to be converted
- * @base: The number base to use
- * @res: The converted result value
- *
- * strict_strtoul converts a string to an unsigned long only if the
- * string is really an unsigned long string, any string containing
- * any invalid char at the tail will be rejected and -EINVAL is returned,
- * only a newline char at the tail is acceptible because people generally
- * change a module parameter in the following way:
- *
- * echo 1024 > /sys/module/e1000/parameters/copybreak
- *
- * echo will append a newline to the tail.
- *
- * It returns 0 if conversion is successful and *res is set to the converted
- * value, otherwise it returns -EINVAL and *res is set to 0.
- *
- * simple_strtoul just ignores the successive invalid characters and
- * return the converted value of prefix part of the string.
- */
-int strict_strtoul(const char *cp, unsigned int base, unsigned long *res)
-{
- char *tail;
- unsigned long val;
- size_t len;
-
- *res = 0;
- len = strlen(cp);
- if (len == 0)
- return -EINVAL;
-
- val = simple_strtoul(cp, &tail, base);
- if (tail == cp)
- return -EINVAL;
- if ((*tail == '\0') ||
- ((len == (size_t)(tail - cp) + 1) && (*tail == '\n'))) {
- *res = val;
- return 0;
- }
-
- return -EINVAL;
-}
-EXPORT_SYMBOL(strict_strtoul);
-
-/**
- * strict_strtol - convert a string to a long strictly
- * @cp: The string to be converted
- * @base: The number base to use
- * @res: The converted result value
- *
- * strict_strtol is similiar to strict_strtoul, but it allows the first
- * character of a string is '-'.
- *
- * It returns 0 if conversion is successful and *res is set to the converted
- * value, otherwise it returns -EINVAL and *res is set to 0.
- */
-int strict_strtol(const char *cp, unsigned int base, long *res)
-{
- int ret;
- if (*cp == '-') {
- ret = strict_strtoul(cp + 1, base, (unsigned long *)res);
- if (!ret)
- *res = -(*res);
- } else {
- ret = strict_strtoul(cp, base, (unsigned long *)res);
- }
-
- return ret;
-}
-EXPORT_SYMBOL(strict_strtol);
-
-/**
- * strict_strtoull - convert a string to an unsigned long long strictly
- * @cp: The string to be converted
- * @base: The number base to use
- * @res: The converted result value
- *
- * strict_strtoull converts a string to an unsigned long long only if the
- * string is really an unsigned long long string, any string containing
- * any invalid char at the tail will be rejected and -EINVAL is returned,
- * only a newline char at the tail is acceptible because people generally
- * change a module parameter in the following way:
- *
- * echo 1024 > /sys/module/e1000/parameters/copybreak
- *
- * echo will append a newline to the tail of the string.
- *
- * It returns 0 if conversion is successful and *res is set to the converted
- * value, otherwise it returns -EINVAL and *res is set to 0.
- *
- * simple_strtoull just ignores the successive invalid characters and
- * return the converted value of prefix part of the string.
- */
-int strict_strtoull(const char *cp, unsigned int base, unsigned long long *res)
-{
- char *tail;
- unsigned long long val;
- size_t len;
-
- *res = 0;
- len = strlen(cp);
- if (len == 0)
- return -EINVAL;
-
- val = simple_strtoull(cp, &tail, base);
- if (tail == cp)
- return -EINVAL;
- if ((*tail == '\0') ||
- ((len == (size_t)(tail - cp) + 1) && (*tail == '\n'))) {
- *res = val;
- return 0;
- }
-
- return -EINVAL;
-}
-EXPORT_SYMBOL(strict_strtoull);
-
-/**
- * strict_strtoll - convert a string to a long long strictly
- * @cp: The string to be converted
- * @base: The number base to use
- * @res: The converted result value
- *
- * strict_strtoll is similiar to strict_strtoull, but it allows the first
- * character of a string is '-'.
- *
- * It returns 0 if conversion is successful and *res is set to the converted
- * value, otherwise it returns -EINVAL and *res is set to 0.
- */
-int strict_strtoll(const char *cp, unsigned int base, long long *res)
-{
- int ret;
- if (*cp == '-') {
- ret = strict_strtoull(cp + 1, base, (unsigned long long *)res);
- if (!ret)
- *res = -(*res);
- } else {
- ret = strict_strtoull(cp, base, (unsigned long long *)res);
- }
-
- return ret;
-}
-EXPORT_SYMBOL(strict_strtoll);
-
-static int skip_atoi(const char **s)
-{
- int i=0;
-
- while (isdigit(**s))
- i = i*10 + *((*s)++) - '0';
- return i;
-}
-
-/* Decimal conversion is by far the most typical, and is used
- * for /proc and /sys data. This directly impacts e.g. top performance
- * with many processes running. We optimize it for speed
- * using code from
- * http://www.cs.uiowa.edu/~jones/bcd/decimal.html
- * (with permission from the author, Douglas W. Jones). */
-
-/* Formats correctly any integer in [0,99999].
- * Outputs from one to five digits depending on input.
- * On i386 gcc 4.1.2 -O2: ~250 bytes of code. */
-static char* put_dec_trunc(char *buf, unsigned q)
-{
- unsigned d3, d2, d1, d0;
- d1 = (q>>4) & 0xf;
- d2 = (q>>8) & 0xf;
- d3 = (q>>12);
-
- d0 = 6*(d3 + d2 + d1) + (q & 0xf);
- q = (d0 * 0xcd) >> 11;
- d0 = d0 - 10*q;
- *buf++ = d0 + '0'; /* least significant digit */
- d1 = q + 9*d3 + 5*d2 + d1;
- if (d1 != 0) {
- q = (d1 * 0xcd) >> 11;
- d1 = d1 - 10*q;
- *buf++ = d1 + '0'; /* next digit */
-
- d2 = q + 2*d2;
- if ((d2 != 0) || (d3 != 0)) {
- q = (d2 * 0xd) >> 7;
- d2 = d2 - 10*q;
- *buf++ = d2 + '0'; /* next digit */
-
- d3 = q + 4*d3;
- if (d3 != 0) {
- q = (d3 * 0xcd) >> 11;
- d3 = d3 - 10*q;
- *buf++ = d3 + '0'; /* next digit */
- if (q != 0)
- *buf++ = q + '0'; /* most sign. digit */
- }
- }
- }
- return buf;
-}
-/* Same with if's removed. Always emits five digits */
-static char* put_dec_full(char *buf, unsigned q)
-{
- /* BTW, if q is in [0,9999], 8-bit ints will be enough, */
- /* but anyway, gcc produces better code with full-sized ints */
- unsigned d3, d2, d1, d0;
- d1 = (q>>4) & 0xf;
- d2 = (q>>8) & 0xf;
- d3 = (q>>12);
-
- /* Possible ways to approx. divide by 10 */
- /* gcc -O2 replaces multiply with shifts and adds */
- // (x * 0xcd) >> 11: 11001101 - shorter code than * 0x67 (on i386)
- // (x * 0x67) >> 10: 1100111
- // (x * 0x34) >> 9: 110100 - same
- // (x * 0x1a) >> 8: 11010 - same
- // (x * 0x0d) >> 7: 1101 - same, shortest code (on i386)
-
- d0 = 6*(d3 + d2 + d1) + (q & 0xf);
- q = (d0 * 0xcd) >> 11;
- d0 = d0 - 10*q;
- *buf++ = d0 + '0';
- d1 = q + 9*d3 + 5*d2 + d1;
- q = (d1 * 0xcd) >> 11;
- d1 = d1 - 10*q;
- *buf++ = d1 + '0';
-
- d2 = q + 2*d2;
- q = (d2 * 0xd) >> 7;
- d2 = d2 - 10*q;
- *buf++ = d2 + '0';
-
- d3 = q + 4*d3;
- q = (d3 * 0xcd) >> 11; /* - shorter code */
- /* q = (d3 * 0x67) >> 10; - would also work */
- d3 = d3 - 10*q;
- *buf++ = d3 + '0';
- *buf++ = q + '0';
- return buf;
-}
-/* No inlining helps gcc to use registers better */
-static noinline char* put_dec(char *buf, unsigned long long num)
-{
- while (1) {
- unsigned rem;
- if (num < 100000)
- return put_dec_trunc(buf, num);
- rem = do_div(num, 100000);
- buf = put_dec_full(buf, rem);
- }
-}
-
-#define ZEROPAD 1 /* pad with zero */
-#define SIGN 2 /* unsigned/signed long */
-#define PLUS 4 /* show plus */
-#define SPACE 8 /* space if plus */
-#define LEFT 16 /* left justified */
-#define SMALL 32 /* Must be 32 == 0x20 */
-#define SPECIAL 64 /* 0x */
-
-static char *number(char *buf, char *end, unsigned long long num, int base, int size, int precision, int type)
-{
- /* we are called with base 8, 10 or 16, only, thus don't need "G..." */
- static const char digits[16] = "0123456789ABCDEF"; /* "GHIJKLMNOPQRSTUVWXYZ"; */
-
- char tmp[66];
- char sign;
- char locase;
- int need_pfx = ((type & SPECIAL) && base != 10);
- int i;
-
- /* locase = 0 or 0x20. ORing digits or letters with 'locase'
- * produces same digits or (maybe lowercased) letters */
- locase = (type & SMALL);
- if (type & LEFT)
- type &= ~ZEROPAD;
- sign = 0;
- if (type & SIGN) {
- if ((signed long long) num < 0) {
- sign = '-';
- num = - (signed long long) num;
- size--;
- } else if (type & PLUS) {
- sign = '+';
- size--;
- } else if (type & SPACE) {
- sign = ' ';
- size--;
- }
- }
- if (need_pfx) {
- size--;
- if (base == 16)
- size--;
- }
-
- /* generate full string in tmp[], in reverse order */
- i = 0;
- if (num == 0)
- tmp[i++] = '0';
- /* Generic code, for any base:
- else do {
- tmp[i++] = (digits[do_div(num,base)] | locase);
- } while (num != 0);
- */
- else if (base != 10) { /* 8 or 16 */
- int mask = base - 1;
- int shift = 3;
- if (base == 16) shift = 4;
- do {
- tmp[i++] = (digits[((unsigned char)num) & mask] | locase);
- num >>= shift;
- } while (num);
- } else { /* base 10 */
- i = put_dec(tmp, num) - tmp;
- }
-
- /* printing 100 using %2d gives "100", not "00" */
- if (i > precision)
- precision = i;
- /* leading space padding */
- size -= precision;
- if (!(type & (ZEROPAD+LEFT))) {
- while(--size >= 0) {
- if (buf < end)
- *buf = ' ';
- ++buf;
- }
- }
- /* sign */
- if (sign) {
- if (buf < end)
- *buf = sign;
- ++buf;
- }
- /* "0x" / "0" prefix */
- if (need_pfx) {
- if (buf < end)
- *buf = '0';
- ++buf;
- if (base == 16) {
- if (buf < end)
- *buf = ('X' | locase);
- ++buf;
- }
- }
- /* zero or space padding */
- if (!(type & LEFT)) {
- char c = (type & ZEROPAD) ? '0' : ' ';
- while (--size >= 0) {
- if (buf < end)
- *buf = c;
- ++buf;
- }
- }
- /* hmm even more zero padding? */
- while (i <= --precision) {
- if (buf < end)
- *buf = '0';
- ++buf;
- }
- /* actual digits of result */
- while (--i >= 0) {
- if (buf < end)
- *buf = tmp[i];
- ++buf;
- }
- /* trailing space padding */
- while (--size >= 0) {
- if (buf < end)
- *buf = ' ';
- ++buf;
- }
- return buf;
-}
-
-static char *string(char *buf, char *end, char *s, int field_width, int precision, int flags)
-{
- int len, i;
-
- if ((unsigned long)s < PAGE_SIZE)
- s = "<NULL>";
-
- len = strnlen(s, precision);
-
- if (!(flags & LEFT)) {
- while (len < field_width--) {
- if (buf < end)
- *buf = ' ';
- ++buf;
- }
- }
- for (i = 0; i < len; ++i) {
- if (buf < end)
- *buf = *s;
- ++buf; ++s;
- }
- while (len < field_width--) {
- if (buf < end)
- *buf = ' ';
- ++buf;
- }
- return buf;
-}
-
-static char *symbol_string(char *buf, char *end, void *ptr, int field_width, int precision, int flags)
-{
- unsigned long value = (unsigned long) ptr;
-#ifdef CONFIG_KALLSYMS
- char sym[KSYM_SYMBOL_LEN];
- sprint_symbol(sym, value);
- return string(buf, end, sym, field_width, precision, flags);
-#else
- field_width = 2*sizeof(void *);
- flags |= SPECIAL | SMALL | ZEROPAD;
- return number(buf, end, value, 16, field_width, precision, flags);
-#endif
-}
-
-static char *resource_string(char *buf, char *end, struct resource *res, int field_width, int precision, int flags)
-{
-#ifndef IO_RSRC_PRINTK_SIZE
-#define IO_RSRC_PRINTK_SIZE 4
-#endif
-
-#ifndef MEM_RSRC_PRINTK_SIZE
-#define MEM_RSRC_PRINTK_SIZE 8
-#endif
-
- /* room for the actual numbers, the two "0x", -, [, ] and the final zero */
- char sym[4*sizeof(resource_size_t) + 8];
- char *p = sym, *pend = sym + sizeof(sym);
- int size = -1;
-
- if (res->flags & IORESOURCE_IO)
- size = IO_RSRC_PRINTK_SIZE;
- else if (res->flags & IORESOURCE_MEM)
- size = MEM_RSRC_PRINTK_SIZE;
-
- *p++ = '[';
- p = number(p, pend, res->start, 16, size, -1, SPECIAL | SMALL | ZEROPAD);
- *p++ = '-';
- p = number(p, pend, res->end, 16, size, -1, SPECIAL | SMALL | ZEROPAD);
- *p++ = ']';
- *p = 0;
-
- return string(buf, end, sym, field_width, precision, flags);
-}
-
-static char *mac_address_string(char *buf, char *end, u8 *addr, int field_width,
- int precision, int flags)
-{
- char mac_addr[6 * 3]; /* (6 * 2 hex digits), 5 colons and trailing zero */
- char *p = mac_addr;
- int i;
-
- for (i = 0; i < 6; i++) {
- p = pack_hex_byte(p, addr[i]);
- if (!(flags & SPECIAL) && i != 5)
- *p++ = ':';
- }
- *p = '\0';
-
- return string(buf, end, mac_addr, field_width, precision, flags & ~SPECIAL);
-}
-
-static char *ip6_addr_string(char *buf, char *end, u8 *addr, int field_width,
- int precision, int flags)
-{
- char ip6_addr[8 * 5]; /* (8 * 4 hex digits), 7 colons and trailing zero */
- char *p = ip6_addr;
- int i;
-
- for (i = 0; i < 8; i++) {
- p = pack_hex_byte(p, addr[2 * i]);
- p = pack_hex_byte(p, addr[2 * i + 1]);
- if (!(flags & SPECIAL) && i != 7)
- *p++ = ':';
- }
- *p = '\0';
-
- return string(buf, end, ip6_addr, field_width, precision, flags & ~SPECIAL);
-}
-
-static char *ip4_addr_string(char *buf, char *end, u8 *addr, int field_width,
- int precision, int flags)
-{
- char ip4_addr[4 * 4]; /* (4 * 3 decimal digits), 3 dots and trailing zero */
- char temp[3]; /* hold each IP quad in reverse order */
- char *p = ip4_addr;
- int i, digits;
-
- for (i = 0; i < 4; i++) {
- digits = put_dec_trunc(temp, addr[i]) - temp;
- /* reverse the digits in the quad */
- while (digits--)
- *p++ = temp[digits];
- if (i != 3)
- *p++ = '.';
- }
- *p = '\0';
-
- return string(buf, end, ip4_addr, field_width, precision, flags & ~SPECIAL);
-}
-
-/*
- * Show a '%p' thing. A kernel extension is that the '%p' is followed
- * by an extra set of alphanumeric characters that are extended format
- * specifiers.
- *
- * Right now we handle:
- *
- * - 'F' For symbolic function descriptor pointers
- * - 'S' For symbolic direct pointers
- * - 'R' For a struct resource pointer, it prints the range of
- * addresses (not the name nor the flags)
- * - 'M' For a 6-byte MAC address, it prints the address in the
- * usual colon-separated hex notation
- * - 'I' [46] for IPv4/IPv6 addresses printed in the usual way (dot-separated
- * decimal for v4 and colon separated network-order 16 bit hex for v6)
- * - 'i' [46] for 'raw' IPv4/IPv6 addresses, IPv6 omits the colons, IPv4 is
- * currently the same
- *
- * Note: The difference between 'S' and 'F' is that on ia64 and ppc64
- * function pointers are really function descriptors, which contain a
- * pointer to the real address.
- */
-static char *pointer(const char *fmt, char *buf, char *end, void *ptr, int field_width, int precision, int flags)
-{
- if (!ptr)
- return string(buf, end, "(null)", field_width, precision, flags);
-
- switch (*fmt) {
- case 'F':
- ptr = dereference_function_descriptor(ptr);
- /* Fallthrough */
- case 'S':
- return symbol_string(buf, end, ptr, field_width, precision, flags);
- case 'R':
- return resource_string(buf, end, ptr, field_width, precision, flags);
- case 'm':
- flags |= SPECIAL;
- /* Fallthrough */
- case 'M':
- return mac_address_string(buf, end, ptr, field_width, precision, flags);
- case 'i':
- flags |= SPECIAL;
- /* Fallthrough */
- case 'I':
- if (fmt[1] == '6')
- return ip6_addr_string(buf, end, ptr, field_width, precision, flags);
- if (fmt[1] == '4')
- return ip4_addr_string(buf, end, ptr, field_width, precision, flags);
- flags &= ~SPECIAL;
- break;
- }
- flags |= SMALL;
- if (field_width == -1) {
- field_width = 2*sizeof(void *);
- flags |= ZEROPAD;
- }
- return number(buf, end, (unsigned long) ptr, 16, field_width, precision, flags);
-}
-
-/**
- * vsnprintf - Format a string and place it in a buffer
- * @buf: The buffer to place the result into
- * @size: The size of the buffer, including the trailing null space
- * @fmt: The format string to use
- * @args: Arguments for the format string
- *
- * This function follows C99 vsnprintf, but has some extensions:
- * %pS output the name of a text symbol
- * %pF output the name of a function pointer
- * %pR output the address range in a struct resource
- *
- * The return value is the number of characters which would
- * be generated for the given input, excluding the trailing
- * '\0', as per ISO C99. If you want to have the exact
- * number of characters written into @buf as return value
- * (not including the trailing '\0'), use vscnprintf(). If the
- * return is greater than or equal to @size, the resulting
- * string is truncated.
- *
- * Call this function if you are already dealing with a va_list.
- * You probably want snprintf() instead.
- */
-int vsnprintf(char *buf, size_t size, const char *fmt, va_list args)
-{
- unsigned long long num;
- int base;
- char *str, *end, c;
-
- int flags; /* flags to number() */
-
- int field_width; /* width of output field */
- int precision; /* min. # of digits for integers; max
- number of chars for from string */
- int qualifier; /* 'h', 'l', or 'L' for integer fields */
- /* 'z' support added 23/7/1999 S.H. */
- /* 'z' changed to 'Z' --davidm 1/25/99 */
- /* 't' added for ptrdiff_t */
-
- /* Reject out-of-range values early. Large positive sizes are
- used for unknown buffer sizes. */
- if (unlikely((int) size < 0)) {
- /* There can be only one.. */
- static char warn = 1;
- WARN_ON(warn);
- warn = 0;
- return 0;
- }
-
- str = buf;
- end = buf + size;
-
- /* Make sure end is always >= buf */
- if (end < buf) {
- end = ((void *)-1);
- size = end - buf;
- }
-
- for (; *fmt ; ++fmt) {
- if (*fmt != '%') {
- if (str < end)
- *str = *fmt;
- ++str;
- continue;
- }
-
- /* process flags */
- flags = 0;
- repeat:
- ++fmt; /* this also skips first '%' */
- switch (*fmt) {
- case '-': flags |= LEFT; goto repeat;
- case '+': flags |= PLUS; goto repeat;
- case ' ': flags |= SPACE; goto repeat;
- case '#': flags |= SPECIAL; goto repeat;
- case '0': flags |= ZEROPAD; goto repeat;
- }
-
- /* get field width */
- field_width = -1;
- if (isdigit(*fmt))
- field_width = skip_atoi(&fmt);
- else if (*fmt == '*') {
- ++fmt;
- /* it's the next argument */
- field_width = va_arg(args, int);
- if (field_width < 0) {
- field_width = -field_width;
- flags |= LEFT;
- }
- }
-
- /* get the precision */
- precision = -1;
- if (*fmt == '.') {
- ++fmt;
- if (isdigit(*fmt))
- precision = skip_atoi(&fmt);
- else if (*fmt == '*') {
- ++fmt;
- /* it's the next argument */
- precision = va_arg(args, int);
- }
- if (precision < 0)
- precision = 0;
- }
-
- /* get the conversion qualifier */
- qualifier = -1;
- if (*fmt == 'h' || *fmt == 'l' || *fmt == 'L' ||
- *fmt =='Z' || *fmt == 'z' || *fmt == 't') {
- qualifier = *fmt;
- ++fmt;
- if (qualifier == 'l' && *fmt == 'l') {
- qualifier = 'L';
- ++fmt;
- }
- }
-
- /* default base */
- base = 10;
-
- switch (*fmt) {
- case 'c':
- if (!(flags & LEFT)) {
- while (--field_width > 0) {
- if (str < end)
- *str = ' ';
- ++str;
- }
- }
- c = (unsigned char) va_arg(args, int);
- if (str < end)
- *str = c;
- ++str;
- while (--field_width > 0) {
- if (str < end)
- *str = ' ';
- ++str;
- }
- continue;
-
- case 's':
- str = string(str, end, va_arg(args, char *), field_width, precision, flags);
- continue;
-
- case 'p':
- str = pointer(fmt+1, str, end,
- va_arg(args, void *),
- field_width, precision, flags);
- /* Skip all alphanumeric pointer suffixes */
- while (isalnum(fmt[1]))
- fmt++;
- continue;
-
- case 'n':
- /* FIXME:
- * What does C99 say about the overflow case here? */
- if (qualifier == 'l') {
- long * ip = va_arg(args, long *);
- *ip = (str - buf);
- } else if (qualifier == 'Z' || qualifier == 'z') {
- size_t * ip = va_arg(args, size_t *);
- *ip = (str - buf);
- } else {
- int * ip = va_arg(args, int *);
- *ip = (str - buf);
- }
- continue;
-
- case '%':
- if (str < end)
- *str = '%';
- ++str;
- continue;
-
- /* integer number formats - set up the flags and "break" */
- case 'o':
- base = 8;
- break;
-
- case 'x':
- flags |= SMALL;
- case 'X':
- base = 16;
- break;
-
- case 'd':
- case 'i':
- flags |= SIGN;
- case 'u':
- break;
-
- default:
- if (str < end)
- *str = '%';
- ++str;
- if (*fmt) {
- if (str < end)
- *str = *fmt;
- ++str;
- } else {
- --fmt;
- }
- continue;
- }
- if (qualifier == 'L')
- num = va_arg(args, long long);
- else if (qualifier == 'l') {
- num = va_arg(args, unsigned long);
- if (flags & SIGN)
- num = (signed long) num;
- } else if (qualifier == 'Z' || qualifier == 'z') {
- num = va_arg(args, size_t);
- } else if (qualifier == 't') {
- num = va_arg(args, ptrdiff_t);
- } else if (qualifier == 'h') {
- num = (unsigned short) va_arg(args, int);
- if (flags & SIGN)
- num = (signed short) num;
- } else {
- num = va_arg(args, unsigned int);
- if (flags & SIGN)
- num = (signed int) num;
- }
- str = number(str, end, num, base,
- field_width, precision, flags);
- }
- if (size > 0) {
- if (str < end)
- *str = '\0';
- else
- end[-1] = '\0';
- }
- /* the trailing null byte doesn't count towards the total */
- return str-buf;
-}
-EXPORT_SYMBOL(vsnprintf);
-
-/**
- * vscnprintf - Format a string and place it in a buffer
- * @buf: The buffer to place the result into
- * @size: The size of the buffer, including the trailing null space
- * @fmt: The format string to use
- * @args: Arguments for the format string
- *
- * The return value is the number of characters which have been written into
- * the @buf not including the trailing '\0'. If @size is <= 0 the function
- * returns 0.
- *
- * Call this function if you are already dealing with a va_list.
- * You probably want scnprintf() instead.
- *
- * See the vsnprintf() documentation for format string extensions over C99.
- */
-int vscnprintf(char *buf, size_t size, const char *fmt, va_list args)
-{
- int i;
-
- i=vsnprintf(buf,size,fmt,args);
- return (i >= size) ? (size - 1) : i;
-}
-EXPORT_SYMBOL(vscnprintf);
-
-/**
- * snprintf - Format a string and place it in a buffer
- * @buf: The buffer to place the result into
- * @size: The size of the buffer, including the trailing null space
- * @fmt: The format string to use
- * @...: Arguments for the format string
- *
- * The return value is the number of characters which would be
- * generated for the given input, excluding the trailing null,
- * as per ISO C99. If the return is greater than or equal to
- * @size, the resulting string is truncated.
- *
- * See the vsnprintf() documentation for format string extensions over C99.
- */
-int snprintf(char * buf, size_t size, const char *fmt, ...)
-{
- va_list args;
- int i;
-
- va_start(args, fmt);
- i=vsnprintf(buf,size,fmt,args);
- va_end(args);
- return i;
-}
-EXPORT_SYMBOL(snprintf);
-
-/**
- * scnprintf - Format a string and place it in a buffer
- * @buf: The buffer to place the result into
- * @size: The size of the buffer, including the trailing null space
- * @fmt: The format string to use
- * @...: Arguments for the format string
- *
- * The return value is the number of characters written into @buf not including
- * the trailing '\0'. If @size is <= 0 the function returns 0.
- */
-
-int scnprintf(char * buf, size_t size, const char *fmt, ...)
-{
- va_list args;
- int i;
-
- va_start(args, fmt);
- i = vsnprintf(buf, size, fmt, args);
- va_end(args);
- return (i >= size) ? (size - 1) : i;
-}
-EXPORT_SYMBOL(scnprintf);
-
-/**
- * vsprintf - Format a string and place it in a buffer
- * @buf: The buffer to place the result into
- * @fmt: The format string to use
- * @args: Arguments for the format string
- *
- * The function returns the number of characters written
- * into @buf. Use vsnprintf() or vscnprintf() in order to avoid
- * buffer overflows.
- *
- * Call this function if you are already dealing with a va_list.
- * You probably want sprintf() instead.
- *
- * See the vsnprintf() documentation for format string extensions over C99.
- */
-int vsprintf(char *buf, const char *fmt, va_list args)
-{
- return vsnprintf(buf, INT_MAX, fmt, args);
-}
-EXPORT_SYMBOL(vsprintf);
-
-/**
- * sprintf - Format a string and place it in a buffer
- * @buf: The buffer to place the result into
- * @fmt: The format string to use
- * @...: Arguments for the format string
- *
- * The function returns the number of characters written
- * into @buf. Use snprintf() or scnprintf() in order to avoid
- * buffer overflows.
- *
- * See the vsnprintf() documentation for format string extensions over C99.
- */
-int sprintf(char * buf, const char *fmt, ...)
-{
- va_list args;
- int i;
-
- va_start(args, fmt);
- i=vsnprintf(buf, INT_MAX, fmt, args);
- va_end(args);
- return i;
-}
-EXPORT_SYMBOL(sprintf);
-
-/**
- * vsscanf - Unformat a buffer into a list of arguments
- * @buf: input buffer
- * @fmt: format of buffer
- * @args: arguments
- */
-int vsscanf(const char * buf, const char * fmt, va_list args)
-{
- const char *str = buf;
- char *next;
- char digit;
- int num = 0;
- int qualifier;
- int base;
- int field_width;
- int is_sign = 0;
-
- while(*fmt && *str) {
- /* skip any white space in format */
- /* white space in format matchs any amount of
- * white space, including none, in the input.
- */
- if (isspace(*fmt)) {
- while (isspace(*fmt))
- ++fmt;
- while (isspace(*str))
- ++str;
- }
-
- /* anything that is not a conversion must match exactly */
- if (*fmt != '%' && *fmt) {
- if (*fmt++ != *str++)
- break;
- continue;
- }
-
- if (!*fmt)
- break;
- ++fmt;
-
- /* skip this conversion.
- * advance both strings to next white space
- */
- if (*fmt == '*') {
- while (!isspace(*fmt) && *fmt)
- fmt++;
- while (!isspace(*str) && *str)
- str++;
- continue;
- }
-
- /* get field width */
- field_width = -1;
- if (isdigit(*fmt))
- field_width = skip_atoi(&fmt);
-
- /* get conversion qualifier */
- qualifier = -1;
- if (*fmt == 'h' || *fmt == 'l' || *fmt == 'L' ||
- *fmt == 'Z' || *fmt == 'z') {
- qualifier = *fmt++;
- if (unlikely(qualifier == *fmt)) {
- if (qualifier == 'h') {
- qualifier = 'H';
- fmt++;
- } else if (qualifier == 'l') {
- qualifier = 'L';
- fmt++;
- }
- }
- }
- base = 10;
- is_sign = 0;
-
- if (!*fmt || !*str)
- break;
-
- switch(*fmt++) {
- case 'c':
- {
- char *s = (char *) va_arg(args,char*);
- if (field_width == -1)
- field_width = 1;
- do {
- *s++ = *str++;
- } while (--field_width > 0 && *str);
- num++;
- }
- continue;
- case 's':
- {
- char *s = (char *) va_arg(args, char *);
- if(field_width == -1)
- field_width = INT_MAX;
- /* first, skip leading white space in buffer */
- while (isspace(*str))
- str++;
-
- /* now copy until next white space */
- while (*str && !isspace(*str) && field_width--) {
- *s++ = *str++;
- }
- *s = '\0';
- num++;
- }
- continue;
- case 'n':
- /* return number of characters read so far */
- {
- int *i = (int *)va_arg(args,int*);
- *i = str - buf;
- }
- continue;
- case 'o':
- base = 8;
- break;
- case 'x':
- case 'X':
- base = 16;
- break;
- case 'i':
- base = 0;
- case 'd':
- is_sign = 1;
- case 'u':
- break;
- case '%':
- /* looking for '%' in str */
- if (*str++ != '%')
- return num;
- continue;
- default:
- /* invalid format; stop here */
- return num;
- }
-
- /* have some sort of integer conversion.
- * first, skip white space in buffer.
- */
- while (isspace(*str))
- str++;
-
- digit = *str;
- if (is_sign && digit == '-')
- digit = *(str + 1);
-
- if (!digit
- || (base == 16 && !isxdigit(digit))
- || (base == 10 && !isdigit(digit))
- || (base == 8 && (!isdigit(digit) || digit > '7'))
- || (base == 0 && !isdigit(digit)))
- break;
-
- switch(qualifier) {
- case 'H': /* that's 'hh' in format */
- if (is_sign) {
- signed char *s = (signed char *) va_arg(args,signed char *);
- *s = (signed char) simple_strtol(str,&next,base);
- } else {
- unsigned char *s = (unsigned char *) va_arg(args, unsigned char *);
- *s = (unsigned char) simple_strtoul(str, &next, base);
- }
- break;
- case 'h':
- if (is_sign) {
- short *s = (short *) va_arg(args,short *);
- *s = (short) simple_strtol(str,&next,base);
- } else {
- unsigned short *s = (unsigned short *) va_arg(args, unsigned short *);
- *s = (unsigned short) simple_strtoul(str, &next, base);
- }
- break;
- case 'l':
- if (is_sign) {
- long *l = (long *) va_arg(args,long *);
- *l = simple_strtol(str,&next,base);
- } else {
- unsigned long *l = (unsigned long*) va_arg(args,unsigned long*);
- *l = simple_strtoul(str,&next,base);
- }
- break;
- case 'L':
- if (is_sign) {
- long long *l = (long long*) va_arg(args,long long *);
- *l = simple_strtoll(str,&next,base);
- } else {
- unsigned long long *l = (unsigned long long*) va_arg(args,unsigned long long*);
- *l = simple_strtoull(str,&next,base);
- }
- break;
- case 'Z':
- case 'z':
- {
- size_t *s = (size_t*) va_arg(args,size_t*);
- *s = (size_t) simple_strtoul(str,&next,base);
- }
- break;
- default:
- if (is_sign) {
- int *i = (int *) va_arg(args, int*);
- *i = (int) simple_strtol(str,&next,base);
- } else {
- unsigned int *i = (unsigned int*) va_arg(args, unsigned int*);
- *i = (unsigned int) simple_strtoul(str,&next,base);
- }
- break;
- }
- num++;
-
- if (!next)
- break;
- str = next;
- }
-
- /*
- * Now we've come all the way through so either the input string or the
- * format ended. In the former case, there can be a %n at the current
- * position in the format that needs to be filled.
- */
- if (*fmt == '%' && *(fmt + 1) == 'n') {
- int *p = (int *)va_arg(args, int *);
- *p = str - buf;
- }
-
- return num;
-}
-EXPORT_SYMBOL(vsscanf);
-
-/**
- * sscanf - Unformat a buffer into a list of arguments
- * @buf: input buffer
- * @fmt: formatting of buffer
- * @...: resulting arguments
- */
-int sscanf(const char * buf, const char * fmt, ...)
-{
- va_list args;
- int i;
-
- va_start(args,fmt);
- i = vsscanf(buf,fmt,args);
- va_end(args);
- return i;
-}
-EXPORT_SYMBOL(sscanf);