summaryrefslogtreecommitdiff
path: root/ufs/alloc.c
diff options
context:
space:
mode:
Diffstat (limited to 'ufs/alloc.c')
-rw-r--r--ufs/alloc.c1703
1 files changed, 1703 insertions, 0 deletions
diff --git a/ufs/alloc.c b/ufs/alloc.c
new file mode 100644
index 00000000..48ee60cc
--- /dev/null
+++ b/ufs/alloc.c
@@ -0,0 +1,1703 @@
+/* Disk allocation routines
+ Copyright (C) 1993,94,95,96,98,2002 Free Software Foundation, Inc.
+
+This file is part of the GNU Hurd.
+
+The GNU Hurd is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2, or (at your option)
+any later version.
+
+The GNU Hurd is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with the GNU Hurd; see the file COPYING. If not, write to
+the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
+
+/* Modified from UCB by Michael I. Bushnell. */
+/*
+ * Copyright (c) 1982, 1986, 1989, 1993
+ * The Regents of the University of California. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. All advertising materials mentioning features or use of this software
+ * must display the following acknowledgement:
+ * This product includes software developed by the University of
+ * California, Berkeley and its contributors.
+ * 4. Neither the name of the University nor the names of its contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ *
+ * @(#)ffs_alloc.c 8.8 (Berkeley) 2/21/94
+ */
+
+#include "ufs.h"
+#include <stdio.h>
+#include <string.h>
+
+
+/* These don't work *at all* here; don't even try setting them. */
+#undef DIAGNOSTIC
+#undef QUOTA
+
+extern u_long nextgennumber;
+
+spin_lock_t alloclock = SPIN_LOCK_INITIALIZER;
+
+/* Forward declarations */
+static u_long ffs_hashalloc (struct node *, int, long, int,
+ u_long (*)(struct node *, int, daddr_t, int));
+static u_long ffs_alloccg (struct node *, int, daddr_t, int);
+static daddr_t ffs_fragextend (struct node *, int, long, int, int);
+static ino_t ffs_dirpref (struct fs *);
+static u_long ffs_nodealloccg (struct node *, int, daddr_t, int);
+static daddr_t ffs_alloccgblk (struct fs *, struct cg *, daddr_t);
+static daddr_t ffs_mapsearch (struct fs *, struct cg *, daddr_t, int);
+static void ffs_clusteracct (struct fs *, struct cg *, daddr_t, int);
+
+/* Sync all allocation information and nod eNP if diskfs_synchronous. */
+inline void
+alloc_sync (struct node *np)
+{
+ if (diskfs_synchronous)
+ {
+ if (np)
+ diskfs_node_update (np, 1);
+ copy_sblock ();
+ diskfs_set_hypermetadata (1, 0);
+ sync_disk (1);
+ }
+}
+
+/* Byteswap everything in CGP. */
+void
+swab_cg (struct cg *cg)
+{
+ int i, j;
+
+ if (swab_long (cg->cg_magic) == CG_MAGIC
+ || cg->cg_magic == CG_MAGIC)
+ {
+ cg->cg_magic = swab_long (cg->cg_magic);
+ cg->cg_time = swab_long (cg->cg_time);
+ cg->cg_cgx = swab_long (cg->cg_cgx);
+ cg->cg_ncyl = swab_short (cg->cg_ncyl);
+ cg->cg_niblk = swab_short (cg->cg_niblk);
+ cg->cg_cs.cs_ndir = swab_long (cg->cg_cs.cs_ndir);
+ cg->cg_cs.cs_nbfree = swab_long (cg->cg_cs.cs_nbfree);
+ cg->cg_cs.cs_nifree = swab_long (cg->cg_cs.cs_nifree);
+ cg->cg_cs.cs_nffree = swab_long (cg->cg_cs.cs_nffree);
+ cg->cg_rotor = swab_long (cg->cg_rotor);
+ cg->cg_irotor = swab_long (cg->cg_irotor);
+ for (i = 0; i < MAXFRAG; i++)
+ cg->cg_frsum[i] = swab_long (cg->cg_frsum[i]);
+ cg->cg_btotoff = swab_long (cg->cg_btotoff);
+ cg->cg_boff = swab_long (cg->cg_boff);
+ cg->cg_iusedoff = swab_long (cg->cg_iusedoff);
+ cg->cg_freeoff = swab_long (cg->cg_freeoff);
+ cg->cg_nextfreeoff = swab_long (cg->cg_nextfreeoff);
+ cg->cg_clustersumoff = swab_long (cg->cg_clustersumoff);
+ cg->cg_clusteroff = swab_long (cg->cg_clusteroff);
+ cg->cg_nclusterblks = swab_long (cg->cg_nclusterblks);
+
+ /* blktot map */
+ for (i = 0; i < cg->cg_ncyl; i++)
+ cg_blktot(cg)[i] = swab_long (cg_blktot(cg)[i]);
+
+ /* blks map */
+ for (i = 0; i < cg->cg_ncyl; i++)
+ for (j = 0; j < sblock->fs_nrpos; j++)
+ cg_blks(sblock, cg, i)[j] = swab_short (cg_blks (sblock, cg, i)[j]);
+
+ for (i = 0; i < sblock->fs_contigsumsize; i++)
+ cg_clustersum(cg)[i] = swab_long (cg_clustersum(cg)[i]);
+
+ /* inosused, blksfree, and cg_clustersfree are char arrays */
+ }
+ else
+ {
+ /* Old format cylinder group... */
+ struct ocg *ocg = (struct ocg *) cg;
+
+ if (swab_long (ocg->cg_magic) != CG_MAGIC
+ && ocg->cg_magic != CG_MAGIC)
+ return;
+
+ ocg->cg_time = swab_long (ocg->cg_time);
+ ocg->cg_cgx = swab_long (ocg->cg_cgx);
+ ocg->cg_ncyl = swab_short (ocg->cg_ncyl);
+ ocg->cg_niblk = swab_short (ocg->cg_niblk);
+ ocg->cg_ndblk = swab_long (ocg->cg_ndblk);
+ ocg->cg_cs.cs_ndir = swab_long (ocg->cg_cs.cs_ndir);
+ ocg->cg_cs.cs_nbfree = swab_long (ocg->cg_cs.cs_nbfree);
+ ocg->cg_cs.cs_nifree = swab_long (ocg->cg_cs.cs_nifree);
+ ocg->cg_cs.cs_nffree = swab_long (ocg->cg_cs.cs_nffree);
+ ocg->cg_rotor = swab_long (ocg->cg_rotor);
+ ocg->cg_frotor = swab_long (ocg->cg_frotor);
+ ocg->cg_irotor = swab_long (ocg->cg_irotor);
+ for (i = 0; i < 8; i++)
+ ocg->cg_frsum[i] = swab_long (ocg->cg_frsum[i]);
+ for (i = 0; i < 32; i++)
+ ocg->cg_btot[i] = swab_long (ocg->cg_btot[i]);
+ for (i = 0; i < 32; i++)
+ for (j = 0; j < 8; j++)
+ ocg->cg_b[i][j] = swab_short (ocg->cg_b[i][j]);
+ ocg->cg_magic = swab_long (ocg->cg_magic);
+ }
+}
+
+
+/* Read cylinder group indexed CG. Set *CGPP to point at it.
+ Return 1 if caller should call release_cgp when we're done with it;
+ otherwise zero. */
+int
+read_cg (int cg, struct cg **cgpp)
+{
+ struct cg *diskcg = cg_locate (cg);
+
+ if (swab_disk)
+ {
+ *cgpp = malloc (sblock->fs_cgsize);
+ bcopy (diskcg, *cgpp, sblock->fs_cgsize);
+ swab_cg (*cgpp);
+ return 1;
+ }
+ else
+ {
+ *cgpp = diskcg;
+ return 0;
+ }
+}
+
+/* Caller of read_cg is done with cg; write it back to disk (swapping it
+ along the way) and free the memory allocated in read_cg. */
+void
+release_cg (struct cg *cgp)
+{
+ int cgx = cgp->cg_cgx;
+ swab_cg (cgp);
+ bcopy (cgp, cg_locate (cgx), sblock->fs_cgsize);
+ free (cgp);
+}
+
+
+/*
+ * Allocate a block in the file system.
+ *
+ * The size of the requested block is given, which must be some
+ * multiple of fs_fsize and <= fs_bsize.
+ * A preference may be optionally specified. If a preference is given
+ * the following hierarchy is used to allocate a block:
+ * 1) allocate the requested block.
+ * 2) allocate a rotationally optimal block in the same cylinder.
+ * 3) allocate a block in the same cylinder group.
+ * 4) quadradically rehash into other cylinder groups, until an
+ * available block is located.
+ * If no block preference is given the following heirarchy is used
+ * to allocate a block:
+ * 1) allocate a block in the cylinder group that contains the
+ * inode for the file.
+ * 2) quadradically rehash into other cylinder groups, until an
+ * available block is located.
+ */
+error_t
+ffs_alloc(register struct node *np,
+ daddr_t lbn,
+ daddr_t bpref,
+ int size,
+ daddr_t *bnp,
+ struct protid *cred)
+{
+ register struct fs *fs;
+ daddr_t bno;
+ int cg;
+
+ *bnp = 0;
+ fs = sblock;
+#ifdef DIAGNOSTIC
+ if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
+ printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n",
+ ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt);
+ panic("ffs_alloc: bad size");
+ }
+ assert (cred);
+#endif /* DIAGNOSTIC */
+ spin_lock (&alloclock);
+ if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
+ goto nospace;
+ if (cred && !idvec_contains (cred->user->uids, 0)
+ && freespace(fs, fs->fs_minfree) <= 0)
+ goto nospace;
+#ifdef QUOTA
+ if (error = chkdq(ip, (long)btodb(size), cred, 0))
+ return (error);
+#endif
+ if (bpref >= fs->fs_size)
+ bpref = 0;
+ if (bpref == 0)
+ cg = ino_to_cg(fs, np->dn->number);
+ else
+ cg = dtog(fs, bpref);
+ bno = (daddr_t)ffs_hashalloc(np, cg, (long)bpref, size,
+ (u_long (*)())ffs_alloccg);
+ if (bno > 0) {
+ spin_unlock (&alloclock);
+ np->dn_stat.st_blocks += btodb(size);
+ np->dn_set_ctime = 1;
+ np->dn_set_mtime = 1;
+ *bnp = bno;
+ alloc_sync (np);
+ return (0);
+ }
+#ifdef QUOTA
+ /*
+ * Restore user's disk quota because allocation failed.
+ */
+ (void) chkdq(ip, (long)-btodb(size), cred, FORCE);
+#endif
+nospace:
+ spin_unlock (&alloclock);
+ printf ("file system full");
+/* ffs_fserr(fs, cred->cr_uid, "file system full"); */
+/* uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt); */
+ return (ENOSPC);
+}
+
+/*
+ * Reallocate a fragment to a bigger size
+ *
+ * The number and size of the old block is given, and a preference
+ * and new size is also specified. The allocator attempts to extend
+ * the original block. Failing that, the regular block allocator is
+ * invoked to get an appropriate block.
+ */
+error_t
+ffs_realloccg(register struct node *np,
+ daddr_t lbprev,
+ volatile daddr_t bpref,
+ int osize,
+ int nsize,
+ daddr_t *pbn,
+ struct protid *cred)
+{
+ register struct fs *fs;
+ int cg, error;
+ volatile int request;
+ daddr_t bprev, bno;
+
+ *pbn = 0;
+ fs = sblock;
+#ifdef DIAGNOSTIC
+ if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
+ (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
+ printf(
+ "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
+ ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt);
+ panic("ffs_realloccg: bad size");
+ }
+ if (cred == NOCRED)
+ panic("ffs_realloccg: missing credential\n");
+#endif /* DIAGNOSTIC */
+
+ spin_lock (&alloclock);
+
+ if (!idvec_contains (cred->user->uids, 0)
+ && freespace(fs, fs->fs_minfree) <= 0)
+ goto nospace;
+ error = diskfs_catch_exception ();
+ if (error)
+ return error;
+ bprev = read_disk_entry ((dino (np->dn->number))->di_db[lbprev]);
+ diskfs_end_catch_exception ();
+ assert ("old block not allocated" && bprev);
+
+#if 0 /* Not needed in GNU Hurd ufs */
+ /*
+ * Allocate the extra space in the buffer.
+ */
+ if (error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp)) {
+ brelse(bp);
+ return (error);
+ }
+#ifdef QUOTA
+ if (error = chkdq(ip, (long)btodb(nsize - osize), cred, 0)) {
+ brelse(bp);
+ return (error);
+ }
+#endif
+#endif /* 0 */
+
+ /*
+ * Check for extension in the existing location.
+ */
+ cg = dtog(fs, bprev);
+ bno = ffs_fragextend(np, cg, (long)bprev, osize, nsize);
+ if (bno) {
+ assert (bno == bprev);
+ spin_unlock (&alloclock);
+ np->dn_stat.st_blocks += btodb(nsize - osize);
+ np->dn_set_ctime = 1;
+ np->dn_set_mtime = 1;
+ *pbn = bno;
+#if 0 /* Not done this way in GNU Hurd ufs. */
+ allocbuf(bp, nsize);
+ bp->b_flags |= B_DONE;
+ bzero((char *)bp->b_data + osize, (u_int)nsize - osize);
+ *bpp = bp;
+#endif
+ alloc_sync (np);
+ return (0);
+ }
+ /*
+ * Allocate a new disk location.
+ */
+ if (bpref >= fs->fs_size)
+ bpref = 0;
+ switch ((int)fs->fs_optim) {
+ case FS_OPTSPACE:
+ /*
+ * Allocate an exact sized fragment. Although this makes
+ * best use of space, we will waste time relocating it if
+ * the file continues to grow. If the fragmentation is
+ * less than half of the minimum free reserve, we choose
+ * to begin optimizing for time.
+ */
+ request = nsize;
+ if (fs->fs_minfree < 5 ||
+ fs->fs_cstotal.cs_nffree >
+ fs->fs_dsize * fs->fs_minfree / (2 * 100))
+ break;
+ printf ("%s: optimization changed from SPACE to TIME\n",
+ fs->fs_fsmnt);
+ fs->fs_optim = FS_OPTTIME;
+ break;
+ case FS_OPTTIME:
+ /*
+ * At this point we have discovered a file that is trying to
+ * grow a small fragment to a larger fragment. To save time,
+ * we allocate a full sized block, then free the unused portion.
+ * If the file continues to grow, the `ffs_fragextend' call
+ * above will be able to grow it in place without further
+ * copying. If aberrant programs cause disk fragmentation to
+ * grow within 2% of the free reserve, we choose to begin
+ * optimizing for space.
+ */
+ request = fs->fs_bsize;
+ if (fs->fs_cstotal.cs_nffree <
+ fs->fs_dsize * (fs->fs_minfree - 2) / 100)
+ break;
+ printf ("%s: optimization changed from TIME to SPACE\n",
+ fs->fs_fsmnt);
+ fs->fs_optim = FS_OPTSPACE;
+ break;
+ default:
+ assert (0);
+ /* NOTREACHED */
+ }
+ bno = (daddr_t)ffs_hashalloc(np, cg, (long)bpref, request,
+ (u_long (*)())ffs_alloccg);
+ if (bno > 0) {
+#if 0 /* Not necessary in GNU Hurd ufs */
+ bp->b_blkno = fsbtodb(fs, bno);
+ (void) vnode_pager_uncache(ITOV(ip));
+#endif
+/* Commented out here for Hurd; we don't want to free this until we've
+ saved the old contents. Callers are responsible for freeing the
+ block when they are done with it. */
+/* ffs_blkfree(np, bprev, (long)osize); */
+ if (nsize < request)
+ ffs_blkfree(np, bno + numfrags(fs, nsize),
+ (long)(request - nsize));
+ spin_unlock (&alloclock);
+ np->dn_stat.st_blocks += btodb(nsize - osize);
+ np->dn_set_mtime = 1;
+ np->dn_set_ctime = 1;
+ *pbn = bno;
+#if 0 /* Not done this way in GNU Hurd ufs */
+ allocbuf(bp, nsize);
+ bp->b_flags |= B_DONE;
+ bzero((char *)bp->b_data + osize, (u_int)nsize - osize);
+ *bpp = bp;
+#endif /* 0 */
+ alloc_sync (np);
+ return (0);
+ }
+#ifdef QUOTA
+ /*
+ * Restore user's disk quota because allocation failed.
+ */
+ (void) chkdq(ip, (long)-btodb(nsize - osize), cred, FORCE);
+#endif
+#if 0 /* Not necesarry in GNU Hurd ufs */
+ brelse(bp);
+#endif
+nospace:
+ /*
+ * no space available
+ */
+ spin_unlock (&alloclock);
+ printf ("file system full");
+/* ffs_fserr(fs, cred->cr_uid, "file system full"); */
+/* uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt); */
+ return (ENOSPC);
+}
+
+#if 0 /* Not used (yet?) in GNU Hurd ufs */
+/*
+ * Reallocate a sequence of blocks into a contiguous sequence of blocks.
+ *
+ * The vnode and an array of buffer pointers for a range of sequential
+ * logical blocks to be made contiguous is given. The allocator attempts
+ * to find a range of sequential blocks starting as close as possible to
+ * an fs_rotdelay offset from the end of the allocation for the logical
+ * block immediately preceeding the current range. If successful, the
+ * physical block numbers in the buffer pointers and in the inode are
+ * changed to reflect the new allocation. If unsuccessful, the allocation
+ * is left unchanged. The success in doing the reallocation is returned.
+ * Note that the error return is not reflected back to the user. Rather
+ * the previous block allocation will be used.
+ */
+#include <sys/sysctl.h>
+int doasyncfree = 1;
+struct ctldebug debug14 = { "doasyncfree", &doasyncfree };
+int
+ffs_reallocblks(ap)
+ struct vop_reallocblks_args /* {
+ struct vnode *a_vp;
+ struct cluster_save *a_buflist;
+ } */ *ap;
+{
+ struct fs *fs;
+ struct inode *ip;
+ struct vnode *vp;
+ struct buf *sbp, *ebp;
+ daddr_t *bap, *sbap, *ebap;
+ struct cluster_save *buflist;
+ daddr_t start_lbn, end_lbn, soff, eoff, newblk, blkno;
+ struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
+ int i, len, start_lvl, end_lvl, pref, ssize;
+
+ vp = ap->a_vp;
+ ip = VTOI(vp);
+ fs = ip->i_fs;
+ if (fs->fs_contigsumsize <= 0)
+ return (ENOSPC);
+ buflist = ap->a_buflist;
+ len = buflist->bs_nchildren;
+ start_lbn = buflist->bs_children[0]->b_lblkno;
+ end_lbn = start_lbn + len - 1;
+#ifdef DIAGNOSTIC
+ for (i = 1; i < len; i++)
+ if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
+ panic("ffs_reallocblks: non-cluster");
+#endif
+ /*
+ * If the latest allocation is in a new cylinder group, assume that
+ * the filesystem has decided to move and do not force it back to
+ * the previous cylinder group.
+ */
+ if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
+ dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
+ return (ENOSPC);
+ if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
+ ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
+ return (ENOSPC);
+ /*
+ * Get the starting offset and block map for the first block.
+ */
+ if (start_lvl == 0) {
+ sbap = &ip->i_db[0];
+ soff = start_lbn;
+ } else {
+ idp = &start_ap[start_lvl - 1];
+ if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
+ brelse(sbp);
+ return (ENOSPC);
+ }
+ sbap = (daddr_t *)sbp->b_data;
+ soff = idp->in_off;
+ }
+ /*
+ * Find the preferred location for the cluster.
+ */
+ pref = ffs_blkpref(ip, start_lbn, soff, sbap);
+ /*
+ * If the block range spans two block maps, get the second map.
+ */
+ if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
+ ssize = len;
+ } else {
+#ifdef DIAGNOSTIC
+ if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
+ panic("ffs_reallocblk: start == end");
+#endif
+ ssize = len - (idp->in_off + 1);
+ if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
+ goto fail;
+ ebap = (daddr_t *)ebp->b_data;
+ }
+ /*
+ * Search the block map looking for an allocation of the desired size.
+ */
+ if ((newblk = (daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
+ len, (u_long (*)())ffs_clusteralloc)) == 0)
+ goto fail;
+ /*
+ * We have found a new contiguous block.
+ *
+ * First we have to replace the old block pointers with the new
+ * block pointers in the inode and indirect blocks associated
+ * with the file.
+ */
+ blkno = newblk;
+ for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
+ if (i == ssize)
+ bap = ebap;
+#ifdef DIAGNOSTIC
+ if (buflist->bs_children[i]->b_blkno != fsbtodb(fs, *bap))
+ panic("ffs_reallocblks: alloc mismatch");
+#endif
+ *bap++ = blkno;
+ }
+ /*
+ * Next we must write out the modified inode and indirect blocks.
+ * For strict correctness, the writes should be synchronous since
+ * the old block values may have been written to disk. In practise
+ * they are almost never written, but if we are concerned about
+ * strict correctness, the `doasyncfree' flag should be set to zero.
+ *
+ * The test on `doasyncfree' should be changed to test a flag
+ * that shows whether the associated buffers and inodes have
+ * been written. The flag should be set when the cluster is
+ * started and cleared whenever the buffer or inode is flushed.
+ * We can then check below to see if it is set, and do the
+ * synchronous write only when it has been cleared.
+ */
+ if (sbap != &ip->i_db[0]) {
+ if (doasyncfree)
+ bdwrite(sbp);
+ else
+ bwrite(sbp);
+ } else {
+ ip->i_flag |= IN_CHANGE | IN_UPDATE;
+ if (!doasyncfree)
+ VOP_UPDATE(vp, &time, &time, MNT_WAIT);
+ }
+ if (ssize < len)
+ if (doasyncfree)
+ bdwrite(ebp);
+ else
+ bwrite(ebp);
+ /*
+ * Last, free the old blocks and assign the new blocks to the buffers.
+ */
+ for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
+ ffs_blkfree(ip, dbtofsb(fs, buflist->bs_children[i]->b_blkno),
+ fs->fs_bsize);
+ buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
+ }
+ return (0);
+
+fail:
+ if (ssize < len)
+ brelse(ebp);
+ if (sbap != &ip->i_db[0])
+ brelse(sbp);
+ return (ENOSPC);
+}
+#endif /* 0 */
+
+/*
+ * Allocate an inode in the file system.
+ *
+ * If allocating a directory, use ffs_dirpref to select the inode.
+ * If allocating in a directory, the following hierarchy is followed:
+ * 1) allocate the preferred inode.
+ * 2) allocate an inode in the same cylinder group.
+ * 3) quadradically rehash into other cylinder groups, until an
+ * available inode is located.
+ * If no inode preference is given the following heirarchy is used
+ * to allocate an inode:
+ * 1) allocate an inode in cylinder group 0.
+ * 2) quadradically rehash into other cylinder groups, until an
+ * available inode is located.
+ */
+/* This is now the diskfs_alloc_node callback from the diskfs library
+ (described in <hurd/diskfs.h>). It used to be ffs_valloc in BSD. */
+error_t
+diskfs_alloc_node (struct node *dir,
+ mode_t mode,
+ struct node **npp)
+{
+ register struct fs *fs;
+ struct node *np;
+ ino_t ino, ipref;
+ int cg, error;
+ int sex;
+
+ fs = sblock;
+
+
+ spin_lock (&alloclock);
+
+ if (fs->fs_cstotal.cs_nifree == 0)
+ {
+ spin_unlock (&alloclock);
+ goto noinodes;
+ }
+
+ if (S_ISDIR (mode))
+ ipref = ffs_dirpref(fs);
+ else
+ ipref = dir->dn->number;
+
+ if (ipref >= fs->fs_ncg * fs->fs_ipg)
+ ipref = 0;
+ cg = ino_to_cg(fs, ipref);
+ ino = (ino_t)ffs_hashalloc(dir, cg, (long)ipref,
+ mode, ffs_nodealloccg);
+ spin_unlock (&alloclock);
+ if (ino == 0)
+ goto noinodes;
+ error = diskfs_cached_lookup (ino, &np);
+ assert ("duplicate allocation" && !np->dn_stat.st_mode);
+ assert (! (np->dn_stat.st_mode & S_IPTRANS));
+ if (np->dn_stat.st_blocks) {
+ printf("free inode %Ld had %Ld blocks\n",
+ ino, np->dn_stat.st_blocks);
+ np->dn_stat.st_blocks = 0;
+ np->dn_set_ctime = 1;
+ }
+ np->dn_stat.st_flags = 0;
+ /*
+ * Set up a new generation number for this inode.
+ */
+ spin_lock (&gennumberlock);
+ sex = diskfs_mtime->seconds;
+ if (++nextgennumber < (u_long)sex)
+ nextgennumber = sex;
+ np->dn_stat.st_gen = nextgennumber;
+ spin_unlock (&gennumberlock);
+
+ *npp = np;
+ alloc_sync (np);
+ return (0);
+noinodes:
+ printf ("out of inodes");
+/* ffs_fserr(fs, ap->a_cred->cr_uid, "out of inodes"); */
+/* uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);*/
+ return (ENOSPC);
+}
+
+/*
+ * Find a cylinder to place a directory.
+ *
+ * The policy implemented by this algorithm is to select from
+ * among those cylinder groups with above the average number of
+ * free inodes, the one with the smallest number of directories.
+ */
+static ino_t
+ffs_dirpref(register struct fs *fs)
+{
+ int cg, minndir, mincg, avgifree;
+
+ avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
+ minndir = fs->fs_ipg;
+ mincg = 0;
+ for (cg = 0; cg < fs->fs_ncg; cg++)
+ if (csum[cg].cs_ndir < minndir &&
+ csum[cg].cs_nifree >= avgifree) {
+ mincg = cg;
+ minndir = csum[cg].cs_ndir;
+ }
+ return ((ino_t)(fs->fs_ipg * mincg));
+}
+
+/*
+ * Select the desired position for the next block in a file. The file is
+ * logically divided into sections. The first section is composed of the
+ * direct blocks. Each additional section contains fs_maxbpg blocks.
+ *
+ * If no blocks have been allocated in the first section, the policy is to
+ * request a block in the same cylinder group as the inode that describes
+ * the file. If no blocks have been allocated in any other section, the
+ * policy is to place the section in a cylinder group with a greater than
+ * average number of free blocks. An appropriate cylinder group is found
+ * by using a rotor that sweeps the cylinder groups. When a new group of
+ * blocks is needed, the sweep begins in the cylinder group following the
+ * cylinder group from which the previous allocation was made. The sweep
+ * continues until a cylinder group with greater than the average number
+ * of free blocks is found. If the allocation is for the first block in an
+ * indirect block, the information on the previous allocation is unavailable;
+ * here a best guess is made based upon the logical block number being
+ * allocated.
+ *
+ * If a section is already partially allocated, the policy is to
+ * contiguously allocate fs_maxcontig blocks. The end of one of these
+ * contiguous blocks and the beginning of the next is physically separated
+ * so that the disk head will be in transit between them for at least
+ * fs_rotdelay milliseconds. This is to allow time for the processor to
+ * schedule another I/O transfer.
+ */
+daddr_t
+ffs_blkpref(struct node *np,
+ daddr_t lbn,
+ int indx,
+ daddr_t *bap)
+{
+ register struct fs *fs;
+ register int cg;
+ int avgbfree, startcg;
+ daddr_t nextblk;
+
+ fs = sblock;
+ spin_lock (&alloclock);
+ if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
+ if (lbn < NDADDR) {
+ cg = ino_to_cg(fs, np->dn->number);
+ spin_unlock (&alloclock);
+ return (fs->fs_fpg * cg + fs->fs_frag);
+ }
+ /*
+ * Find a cylinder with greater than average number of
+ * unused data blocks.
+ */
+ if (indx == 0 || bap[indx - 1] == 0)
+ startcg =
+ (ino_to_cg(fs, np->dn->number)
+ + lbn / fs->fs_maxbpg);
+ else
+ startcg = dtog(fs,
+ read_disk_entry (bap[indx - 1])) + 1;
+ startcg %= fs->fs_ncg;
+ avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
+ for (cg = startcg; cg < fs->fs_ncg; cg++)
+ if (csum[cg].cs_nbfree >= avgbfree) {
+ fs->fs_cgrotor = cg;
+ spin_unlock (&alloclock);
+ return (fs->fs_fpg * cg + fs->fs_frag);
+ }
+ for (cg = 0; cg <= startcg; cg++)
+ if (csum[cg].cs_nbfree >= avgbfree) {
+ fs->fs_cgrotor = cg;
+ spin_unlock (&alloclock);
+ return (fs->fs_fpg * cg + fs->fs_frag);
+ }
+ spin_unlock (&alloclock);
+ return 0;
+ }
+ spin_unlock (&alloclock);
+ /*
+ * One or more previous blocks have been laid out. If less
+ * than fs_maxcontig previous blocks are contiguous, the
+ * next block is requested contiguously, otherwise it is
+ * requested rotationally delayed by fs_rotdelay milliseconds.
+ */
+ nextblk = read_disk_entry (bap[indx - 1]) + fs->fs_frag;
+ if (indx < fs->fs_maxcontig
+ || (read_disk_entry (bap[indx - fs->fs_maxcontig]) +
+ blkstofrags(fs, fs->fs_maxcontig) != nextblk))
+ {
+ return (nextblk);
+ }
+ if (fs->fs_rotdelay != 0)
+ /*
+ * Here we convert ms of delay to frags as:
+ * (frags) = (ms) * (rev/sec) * (sect/rev) /
+ * ((sect/frag) * (ms/sec))
+ * then round up to the next block.
+ */
+ nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect /
+ (NSPF(fs) * 1000), fs->fs_frag);
+ return (nextblk);
+}
+
+/*
+ * Implement the cylinder overflow algorithm.
+ *
+ * The policy implemented by this algorithm is:
+ * 1) allocate the block in its requested cylinder group.
+ * 2) quadradically rehash on the cylinder group number.
+ * 3) brute force search for a free block.
+ */
+/*VARARGS5*/
+static u_long
+ffs_hashalloc(struct node *np,
+ int cg,
+ long pref,
+ int size, /* size for data blocks, mode for inodes */
+ u_long (*allocator)())
+{
+ register struct fs *fs;
+ long result;
+ int i, icg = cg;
+
+ fs = sblock;
+ /*
+ * 1: preferred cylinder group
+ */
+ result = (*allocator)(np, cg, pref, size);
+ if (result)
+ return (result);
+ /*
+ * 2: quadratic rehash
+ */
+ for (i = 1; i < fs->fs_ncg; i *= 2) {
+ cg += i;
+ if (cg >= fs->fs_ncg)
+ cg -= fs->fs_ncg;
+ result = (*allocator)(np, cg, 0, size);
+ if (result)
+ return (result);
+ }
+ /*
+ * 3: brute force search
+ * Note that we start at i == 2, since 0 was checked initially,
+ * and 1 is always checked in the quadratic rehash.
+ */
+ cg = (icg + 2) % fs->fs_ncg;
+ for (i = 2; i < fs->fs_ncg; i++) {
+ result = (*allocator)(np, cg, 0, size);
+ if (result)
+ return (result);
+ cg++;
+ if (cg == fs->fs_ncg)
+ cg = 0;
+ }
+ return 0;
+}
+
+/*
+ * Determine whether a fragment can be extended.
+ *
+ * Check to see if the necessary fragments are available, and
+ * if they are, allocate them.
+ */
+static daddr_t
+ffs_fragextend(struct node *np,
+ int cg,
+ long bprev,
+ int osize,
+ int nsize)
+{
+ register struct fs *fs;
+ struct cg *cgp;
+ long bno;
+ int frags, bbase;
+ int i;
+ int releasecg;
+
+ fs = sblock;
+ if (csum[cg].cs_nffree < numfrags(fs, nsize - osize))
+ return 0;
+ frags = numfrags(fs, nsize);
+ bbase = fragnum(fs, bprev);
+ if (bbase > fragnum(fs, (bprev + frags - 1))) {
+ /* cannot extend across a block boundary */
+ return 0;
+ }
+#if 0 /* Wrong for GNU Hurd ufs */
+ error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
+ (int)fs->fs_cgsize, NOCRED, &bp);
+ if (error) {
+ brelse(bp);
+ return (NULL);
+ }
+ cgp = (struct cg *)bp->b_data;
+#else
+ releasecg = read_cg (cg, &cgp);
+#endif
+ if (!cg_chkmagic(cgp)) {
+/* brelse(bp); */
+ if (releasecg)
+ release_cg (cgp);
+ return 0;
+ }
+ cgp->cg_time = diskfs_mtime->seconds;
+ bno = dtogd(fs, bprev);
+ for (i = numfrags(fs, osize); i < frags; i++)
+ if (isclr(cg_blksfree(cgp), bno + i)) {
+/* brelse(bp); */
+ if (releasecg)
+ release_cg (cgp);
+ return 0;
+ }
+ /*
+ * the current fragment can be extended
+ * deduct the count on fragment being extended into
+ * increase the count on the remaining fragment (if any)
+ * allocate the extended piece
+ */
+ for (i = frags; i < fs->fs_frag - bbase; i++)
+ if (isclr(cg_blksfree(cgp), bno + i))
+ break;
+ cgp->cg_frsum[i - numfrags(fs, osize)]--;
+ if (i != frags)
+ cgp->cg_frsum[i - frags]++;
+ for (i = numfrags(fs, osize); i < frags; i++) {
+ clrbit(cg_blksfree(cgp), bno + i);
+ cgp->cg_cs.cs_nffree--;
+ fs->fs_cstotal.cs_nffree--;
+ csum[cg].cs_nffree--;
+ }
+ if (releasecg)
+ release_cg (cgp);
+ record_poke (cgp, sblock->fs_cgsize);
+ csum_dirty = 1;
+ sblock_dirty = 1;
+ fs->fs_fmod = 1;
+/* bdwrite(bp); */
+ return (bprev);
+}
+
+/*
+ * Determine whether a block can be allocated.
+ *
+ * Check to see if a block of the appropriate size is available,
+ * and if it is, allocate it.
+ */
+static u_long
+ffs_alloccg(struct node *np,
+ int cg,
+ daddr_t bpref,
+ int size)
+{
+ register struct fs *fs;
+ struct cg *cgp;
+ register int i;
+ int bno, frags, allocsiz;
+ int releasecg;
+
+ fs = sblock;
+ if (csum[cg].cs_nbfree == 0 && size == fs->fs_bsize)
+ return 0;
+#if 0 /* Not this way in GNU Hurd ufs */
+ error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
+ (int)fs->fs_cgsize, NOCRED, &bp);
+ if (error) {
+ brelse(bp);
+ return (NULL);
+ }
+ cgp = (struct cg *)bp->b_data;
+#else
+ releasecg = read_cg (cg, &cgp);
+#endif
+ if (!cg_chkmagic(cgp) ||
+ (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
+/* brelse(bp); */
+ if (releasecg)
+ release_cg (cgp);
+ return 0;
+ }
+ cgp->cg_time = diskfs_mtime->seconds;
+ if (size == fs->fs_bsize) {
+ bno = ffs_alloccgblk(fs, cgp, bpref);
+/* bdwrite(bp); */
+ if (releasecg)
+ release_cg (cgp);
+ return (bno);
+ }
+ /*
+ * check to see if any fragments are already available
+ * allocsiz is the size which will be allocated, hacking
+ * it down to a smaller size if necessary
+ */
+ frags = numfrags(fs, size);
+ for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
+ if (cgp->cg_frsum[allocsiz] != 0)
+ break;
+ if (allocsiz == fs->fs_frag) {
+ /*
+ * no fragments were available, so a block will be
+ * allocated, and hacked up
+ */
+ if (cgp->cg_cs.cs_nbfree == 0) {
+/* brelse(bp); */
+ if (releasecg)
+ release_cg (cgp);
+ return 0;
+ }
+ bno = ffs_alloccgblk(fs, cgp, bpref);
+ bpref = dtogd(fs, bno);
+ for (i = frags; i < fs->fs_frag; i++)
+ setbit(cg_blksfree(cgp), bpref + i);
+ i = fs->fs_frag - frags;
+ cgp->cg_cs.cs_nffree += i;
+ fs->fs_cstotal.cs_nffree += i;
+ csum[cg].cs_nffree += i;
+ fs->fs_fmod = 1;
+ cgp->cg_frsum[i]++;
+
+ if (releasecg)
+ release_cg (cgp);
+ record_poke (cgp, sblock->fs_cgsize);
+ csum_dirty = 1;
+ sblock_dirty = 1;
+/* bdwrite(bp); */
+ return (bno);
+ }
+ bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
+ if (bno < 0) {
+/* brelse(bp); */
+ if (releasecg)
+ release_cg (cgp);
+ return 0;
+ }
+ for (i = 0; i < frags; i++)
+ clrbit(cg_blksfree(cgp), bno + i);
+ cgp->cg_cs.cs_nffree -= frags;
+ fs->fs_cstotal.cs_nffree -= frags;
+ csum[cg].cs_nffree -= frags;
+ fs->fs_fmod = 1;
+ cgp->cg_frsum[allocsiz]--;
+ if (frags != allocsiz)
+ cgp->cg_frsum[allocsiz - frags]++;
+ if (releasecg)
+ release_cg (cgp);
+ record_poke (cgp, sblock->fs_cgsize);
+ csum_dirty = 1;
+ sblock_dirty = 1;
+/* bdwrite(bp); */
+ return (cg * fs->fs_fpg + bno);
+}
+
+/*
+ * Allocate a block in a cylinder group.
+ *
+ * This algorithm implements the following policy:
+ * 1) allocate the requested block.
+ * 2) allocate a rotationally optimal block in the same cylinder.
+ * 3) allocate the next available block on the block rotor for the
+ * specified cylinder group.
+ * Note that this routine only allocates fs_bsize blocks; these
+ * blocks may be fragmented by the routine that allocates them.
+ */
+static daddr_t
+ffs_alloccgblk(register struct fs *fs,
+ register struct cg *cgp,
+ daddr_t bpref)
+{
+ daddr_t bno, blkno;
+ int cylno, pos, delta;
+ short *cylbp;
+ register int i;
+
+ if (bpref == 0 || dtog(fs, bpref) != cgp->cg_cgx) {
+ bpref = cgp->cg_rotor;
+ goto norot;
+ }
+ bpref = blknum(fs, bpref);
+ bpref = dtogd(fs, bpref);
+ /*
+ * if the requested block is available, use it
+ */
+ if (ffs_isblock(fs, cg_blksfree(cgp), fragstoblks(fs, bpref))) {
+ bno = bpref;
+ goto gotit;
+ }
+ /*
+ * check for a block available on the same cylinder
+ */
+ cylno = cbtocylno(fs, bpref);
+ if (cg_blktot(cgp)[cylno] == 0)
+ goto norot;
+ if (fs->fs_cpc == 0) {
+ /*
+ * Block layout information is not available.
+ * Leaving bpref unchanged means we take the
+ * next available free block following the one
+ * we just allocated. Hopefully this will at
+ * least hit a track cache on drives of unknown
+ * geometry (e.g. SCSI).
+ */
+ goto norot;
+ }
+ /*
+ * check the summary information to see if a block is
+ * available in the requested cylinder starting at the
+ * requested rotational position and proceeding around.
+ */
+ cylbp = cg_blks(fs, cgp, cylno);
+ pos = cbtorpos(fs, bpref);
+ for (i = pos; i < fs->fs_nrpos; i++)
+ if (cylbp[i] > 0)
+ break;
+ if (i == fs->fs_nrpos)
+ for (i = 0; i < pos; i++)
+ if (cylbp[i] > 0)
+ break;
+ if (cylbp[i] > 0) {
+ /*
+ * found a rotational position, now find the actual
+ * block. A panic if none is actually there.
+ */
+ pos = cylno % fs->fs_cpc;
+ bno = (cylno - pos) * fs->fs_spc / NSPB(fs);
+ assert (fs_postbl(fs, pos)[i] != -1);
+ for (i = fs_postbl(fs, pos)[i];; ) {
+ if (ffs_isblock(fs, cg_blksfree(cgp), bno + i)) {
+ bno = blkstofrags(fs, (bno + i));
+ goto gotit;
+ }
+ delta = fs_rotbl(fs)[i];
+ if (delta <= 0 ||
+ delta + i > fragstoblks(fs, fs->fs_fpg))
+ break;
+ i += delta;
+ }
+ printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt);
+ assert (0);
+ }
+norot:
+ /*
+ * no blocks in the requested cylinder, so take next
+ * available one in this cylinder group.
+ */
+ bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
+ if (bno < 0)
+ return 0;
+ cgp->cg_rotor = bno;
+gotit:
+ blkno = fragstoblks(fs, bno);
+ ffs_clrblock(fs, cg_blksfree(cgp), (long)blkno);
+ ffs_clusteracct(fs, cgp, blkno, -1);
+ cgp->cg_cs.cs_nbfree--;
+ fs->fs_cstotal.cs_nbfree--;
+ csum[cgp->cg_cgx].cs_nbfree--;
+ cylno = cbtocylno(fs, bno);
+ cg_blks(fs, cgp, cylno)[cbtorpos(fs, bno)]--;
+ cg_blktot(cgp)[cylno]--;
+ fs->fs_fmod = 1;
+ record_poke (cgp, sblock->fs_cgsize);
+ csum_dirty = 1;
+ sblock_dirty = 1;
+ return (cgp->cg_cgx * fs->fs_fpg + bno);
+}
+
+#if 0 /* Not needed in GNU Hurd ufs (yet?) */
+/*
+ * Determine whether a cluster can be allocated.
+ *
+ * We do not currently check for optimal rotational layout if there
+ * are multiple choices in the same cylinder group. Instead we just
+ * take the first one that we find following bpref.
+ */
+static daddr_t
+ffs_clusteralloc(ip, cg, bpref, len)
+ struct inode *ip;
+ int cg;
+ daddr_t bpref;
+ int len;
+{
+ register struct fs *fs;
+ register struct cg *cgp;
+ struct buf *bp;
+ int i, run, bno, bit, map;
+ u_char *mapp;
+
+ fs = ip->i_fs;
+ if (fs->fs_cs(fs, cg).cs_nbfree < len)
+ return (NULL);
+ if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
+ NOCRED, &bp))
+ goto fail;
+ cgp = (struct cg *)bp->b_data;
+ if (!cg_chkmagic(cgp))
+ goto fail;
+ /*
+ * Check to see if a cluster of the needed size (or bigger) is
+ * available in this cylinder group.
+ */
+ for (i = len; i <= fs->fs_contigsumsize; i++)
+ if (cg_clustersum(cgp)[i] > 0)
+ break;
+ if (i > fs->fs_contigsumsize)
+ goto fail;
+ /*
+ * Search the cluster map to find a big enough cluster.
+ * We take the first one that we find, even if it is larger
+ * than we need as we prefer to get one close to the previous
+ * block allocation. We do not search before the current
+ * preference point as we do not want to allocate a block
+ * that is allocated before the previous one (as we will
+ * then have to wait for another pass of the elevator
+ * algorithm before it will be read). We prefer to fail and
+ * be recalled to try an allocation in the next cylinder group.
+ */
+ if (dtog(fs, bpref) != cg)
+ bpref = 0;
+ else
+ bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
+ mapp = &cg_clustersfree(cgp)[bpref / NBBY];
+ map = *mapp++;
+ bit = 1 << (bpref % NBBY);
+ for (run = 0, i = bpref; i < cgp->cg_nclusterblks; i++) {
+ if ((map & bit) == 0) {
+ run = 0;
+ } else {
+ run++;
+ if (run == len)
+ break;
+ }
+ if ((i & (NBBY - 1)) != (NBBY - 1)) {
+ bit <<= 1;
+ } else {
+ map = *mapp++;
+ bit = 1;
+ }
+ }
+ if (i == cgp->cg_nclusterblks)
+ goto fail;
+ /*
+ * Allocate the cluster that we have found.
+ */
+ bno = cg * fs->fs_fpg + blkstofrags(fs, i - run + 1);
+ len = blkstofrags(fs, len);
+ for (i = 0; i < len; i += fs->fs_frag)
+ if (ffs_alloccgblk(fs, cgp, bno + i) != bno + i)
+ panic("ffs_clusteralloc: lost block");
+ brelse(bp);
+ return (bno);
+
+fail:
+ brelse(bp);
+ return (0);
+}
+#endif
+
+/*
+ * Determine whether an inode can be allocated.
+ *
+ * Check to see if an inode is available, and if it is,
+ * allocate it using the following policy:
+ * 1) allocate the requested inode.
+ * 2) allocate the next available inode after the requested
+ * inode in the specified cylinder group.
+ */
+static u_long
+ffs_nodealloccg(struct node *np,
+ int cg,
+ daddr_t ipref,
+ int mode)
+{
+ register struct fs *fs;
+ struct cg *cgp;
+ int start, len, loc, map, i;
+ int releasecg;
+
+ fs = sblock;
+ if (csum[cg].cs_nifree == 0)
+ return 0;
+#if 0 /* Not this way in GNU Hurd ufs */
+ error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
+ (int)fs->fs_cgsize, NOCRED, &bp);
+ if (error) {
+ brelse(bp);
+ return (NULL);
+ }
+ cgp = (struct cg *)bp->b_data;
+#else
+ releasecg = read_cg (cg, &cgp);
+#endif
+ if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) {
+/* brelse(bp); */
+ if (releasecg)
+ release_cg (cgp);
+ return 0;
+ }
+ cgp->cg_time = diskfs_mtime->seconds;
+ if (ipref) {
+ ipref %= fs->fs_ipg;
+ if (isclr(cg_inosused(cgp), ipref))
+ goto gotit;
+ }
+ start = cgp->cg_irotor / NBBY;
+ len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY);
+ loc = skpc(0xff, len, &cg_inosused(cgp)[start]);
+ if (loc == 0) {
+ len = start + 1;
+ start = 0;
+ loc = skpc(0xff, len, &cg_inosused(cgp)[0]);
+ assert (loc != 0);
+ }
+ i = start + len - loc;
+ map = cg_inosused(cgp)[i];
+ ipref = i * NBBY;
+ for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
+ if ((map & i) == 0) {
+ cgp->cg_irotor = ipref;
+ goto gotit;
+ }
+ }
+ assert (0);
+ /* NOTREACHED */
+gotit:
+ setbit(cg_inosused(cgp), ipref);
+ cgp->cg_cs.cs_nifree--;
+ fs->fs_cstotal.cs_nifree--;
+ csum[cg].cs_nifree--;
+ fs->fs_fmod = 1;
+ if ((mode & IFMT) == IFDIR) {
+ cgp->cg_cs.cs_ndir++;
+ fs->fs_cstotal.cs_ndir++;
+ csum[cg].cs_ndir++;
+ }
+ if (releasecg)
+ release_cg (cgp);
+ record_poke (cgp, sblock->fs_cgsize);
+ csum_dirty = 1;
+ sblock_dirty = 1;
+/* bdwrite(bp); */
+ return (cg * fs->fs_ipg + ipref);
+}
+
+/*
+ * Free a block or fragment.
+ *
+ * The specified block or fragment is placed back in the
+ * free map. If a fragment is deallocated, a possible
+ * block reassembly is checked.
+ */
+void
+ffs_blkfree(register struct node *np,
+ daddr_t bno,
+ long size)
+{
+ register struct fs *fs;
+ struct cg *cgp;
+ daddr_t blkno;
+ int i, cg, blk, frags, bbase;
+ int releasecg;
+
+ fs = sblock;
+ assert ((u_int)size <= fs->fs_bsize && !fragoff (fs, size));
+ cg = dtog(fs, bno);
+ if ((u_int)bno >= fs->fs_size) {
+ printf("bad block %ld, ino %Ld\n", bno, np->dn->number);
+/* ffs_fserr(fs, ip->i_uid, "bad block"); */
+ return;
+ }
+#if 0 /* Not this way in GNU Hurd ufs */
+ error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
+ (int)fs->fs_cgsize, NOCRED, &bp);
+ if (error) {
+ brelse(bp);
+ return;
+ }
+ cgp = (struct cg *)bp->b_data;
+#else
+ releasecg = read_cg (cg, &cgp);
+#endif
+ if (!cg_chkmagic(cgp)) {
+/* brelse(bp); */
+ if (releasecg)
+ release_cg (cgp);
+ return;
+ }
+ cgp->cg_time = diskfs_mtime->seconds;
+ bno = dtogd(fs, bno);
+ if (size == fs->fs_bsize) {
+ blkno = fragstoblks(fs, bno);
+ assert (!ffs_isblock(fs, cg_blksfree (cgp), blkno));
+ ffs_setblock(fs, cg_blksfree(cgp), blkno);
+ ffs_clusteracct(fs, cgp, blkno, 1);
+ cgp->cg_cs.cs_nbfree++;
+ fs->fs_cstotal.cs_nbfree++;
+ csum[cg].cs_nbfree++;
+ i = cbtocylno(fs, bno);
+ cg_blks(fs, cgp, i)[cbtorpos(fs, bno)]++;
+ cg_blktot(cgp)[i]++;
+ } else {
+ bbase = bno - fragnum(fs, bno);
+ /*
+ * decrement the counts associated with the old frags
+ */
+ blk = blkmap(fs, cg_blksfree(cgp), bbase);
+ ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
+ /*
+ * deallocate the fragment
+ */
+ frags = numfrags(fs, size);
+ for (i = 0; i < frags; i++) {
+ assert (!isset (cg_blksfree(cgp), bno + i));
+ setbit(cg_blksfree(cgp), bno + i);
+ }
+ cgp->cg_cs.cs_nffree += i;
+ fs->fs_cstotal.cs_nffree += i;
+ csum[cg].cs_nffree += i;
+ /*
+ * add back in counts associated with the new frags
+ */
+ blk = blkmap(fs, cg_blksfree(cgp), bbase);
+ ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
+ /*
+ * if a complete block has been reassembled, account for it
+ */
+ blkno = fragstoblks(fs, bbase);
+ if (ffs_isblock(fs, cg_blksfree(cgp), blkno)) {
+ cgp->cg_cs.cs_nffree -= fs->fs_frag;
+ fs->fs_cstotal.cs_nffree -= fs->fs_frag;
+ csum[cg].cs_nffree -= fs->fs_frag;
+ ffs_clusteracct(fs, cgp, blkno, 1);
+ cgp->cg_cs.cs_nbfree++;
+ fs->fs_cstotal.cs_nbfree++;
+ csum[cg].cs_nbfree++;
+ i = cbtocylno(fs, bbase);
+ cg_blks(fs, cgp, i)[cbtorpos(fs, bbase)]++;
+ cg_blktot(cgp)[i]++;
+ }
+ }
+ if (releasecg)
+ release_cg (cgp);
+ record_poke (cgp, sblock->fs_cgsize);
+ csum_dirty = 1;
+ sblock_dirty = 1;
+ fs->fs_fmod = 1;
+ alloc_sync (np);
+/* bdwrite(bp); */
+}
+
+/*
+ * Free an inode.
+ *
+ * The specified inode is placed back in the free map.
+ */
+/* Implement diskfs call back diskfs_free_node (described in
+ <hurd/diskfs.h>. This was called ffs_vfree in BSD. */
+void
+diskfs_free_node (struct node *np, mode_t mode)
+{
+ register struct fs *fs;
+ struct cg *cgp;
+ ino_t ino = np->dn->number;
+ int cg;
+ int releasecg;
+
+ fs = sblock;
+ assert (ino < fs->fs_ipg * fs->fs_ncg);
+ cg = ino_to_cg(fs, ino);
+#if 0 /* Not this way in GNU Hurd ufs */
+ error = bread(pip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
+ (int)fs->fs_cgsize, NOCRED, &bp);
+ if (error) {
+ brelse(bp);
+ return (0);
+ }
+ cgp = (struct cg *)bp->b_data;
+#else
+ releasecg = read_cg (cg, &cgp);
+#endif
+ if (!cg_chkmagic(cgp)) {
+/* brelse(bp); */
+ if (releasecg)
+ release_cg (cgp);
+ return;
+ }
+ cgp->cg_time = diskfs_mtime->seconds;
+ ino %= fs->fs_ipg;
+ if (isclr(cg_inosused(cgp), ino)) {
+/* printf("dev = 0x%x, ino = %Ld, fs = %s\n",
+ pip->i_dev, ino, fs->fs_fsmnt); */
+ assert (diskfs_readonly);
+ }
+ clrbit(cg_inosused(cgp), ino);
+ if (ino < cgp->cg_irotor)
+ cgp->cg_irotor = ino;
+ cgp->cg_cs.cs_nifree++;
+ fs->fs_cstotal.cs_nifree++;
+ csum[cg].cs_nifree++;
+ if ((mode & IFMT) == IFDIR) {
+ cgp->cg_cs.cs_ndir--;
+ fs->fs_cstotal.cs_ndir--;
+ csum[cg].cs_ndir--;
+ }
+ if (releasecg)
+ release_cg (cgp);
+ record_poke (cgp, sblock->fs_cgsize);
+ csum_dirty = 1;
+ sblock_dirty = 1;
+ fs->fs_fmod = 1;
+ alloc_sync (np);
+/* bdwrite(bp); */
+}
+
+/*
+ * Find a block of the specified size in the specified cylinder group.
+ *
+ * It is a panic if a request is made to find a block if none are
+ * available.
+ */
+static daddr_t
+ffs_mapsearch(register struct fs *fs,
+ register struct cg *cgp,
+ daddr_t bpref,
+ int allocsiz)
+{
+ daddr_t bno;
+ int start, len, loc, i;
+ int blk, field, subfield, pos;
+
+ /*
+ * find the fragment by searching through the free block
+ * map for an appropriate bit pattern
+ */
+ if (bpref)
+ start = dtogd(fs, bpref) / NBBY;
+ else
+ start = cgp->cg_frotor / NBBY;
+ len = howmany(fs->fs_fpg, NBBY) - start;
+ loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp)[start],
+ (u_char *)fragtbl[fs->fs_frag],
+ (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
+ if (loc == 0) {
+ len = start + 1;
+ start = 0;
+ loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp)[0],
+ (u_char *)fragtbl[fs->fs_frag],
+ (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
+ assert (loc);
+
+ }
+ bno = (start + len - loc) * NBBY;
+ cgp->cg_frotor = bno;
+ /*
+ * found the byte in the map
+ * sift through the bits to find the selected frag
+ */
+ for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
+ blk = blkmap(fs, cg_blksfree(cgp), bno);
+ blk <<= 1;
+ field = around[allocsiz];
+ subfield = inside[allocsiz];
+ for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
+ if ((blk & field) == subfield)
+ return (bno + pos);
+ field <<= 1;
+ subfield <<= 1;
+ }
+ }
+ assert (0);
+ return (-1);
+}
+
+/*
+ * Update the cluster map because of an allocation or free.
+ *
+ * Cnt == 1 means free; cnt == -1 means allocating.
+ */
+static void
+ffs_clusteracct(struct fs *fs,
+ struct cg *cgp,
+ daddr_t blkno,
+ int cnt)
+{
+ long *sump;
+ u_char *freemapp, *mapp;
+ int i, start, end, forw, back, map, bit;
+
+ if (fs->fs_contigsumsize <= 0)
+ return;
+ freemapp = cg_clustersfree(cgp);
+ sump = cg_clustersum(cgp);
+ /*
+ * Allocate or clear the actual block.
+ */
+ if (cnt > 0)
+ setbit(freemapp, blkno);
+ else
+ clrbit(freemapp, blkno);
+ /*
+ * Find the size of the cluster going forward.
+ */
+ start = blkno + 1;
+ end = start + fs->fs_contigsumsize;
+ if (end >= cgp->cg_nclusterblks)
+ end = cgp->cg_nclusterblks;
+ mapp = &freemapp[start / NBBY];
+ map = *mapp++;
+ bit = 1 << (start % NBBY);
+ for (i = start; i < end; i++) {
+ if ((map & bit) == 0)
+ break;
+ if ((i & (NBBY - 1)) != (NBBY - 1)) {
+ bit <<= 1;
+ } else {
+ map = *mapp++;
+ bit = 1;
+ }
+ }
+ forw = i - start;
+ /*
+ * Find the size of the cluster going backward.
+ */
+ start = blkno - 1;
+ end = start - fs->fs_contigsumsize;
+ if (end < 0)
+ end = -1;
+ mapp = &freemapp[start / NBBY];
+ map = *mapp--;
+ bit = 1 << (start % NBBY);
+ for (i = start; i > end; i--) {
+ if ((map & bit) == 0)
+ break;
+ if ((i & (NBBY - 1)) != 0) {
+ bit >>= 1;
+ } else {
+ map = *mapp--;
+ bit = 1 << (NBBY - 1);
+ }
+ }
+ back = start - i;
+ /*
+ * Account for old cluster and the possibly new forward and
+ * back clusters.
+ */
+ i = back + forw + 1;
+ if (i > fs->fs_contigsumsize)
+ i = fs->fs_contigsumsize;
+ sump[i] += cnt;
+ if (back > 0)
+ sump[back] -= cnt;
+ if (forw > 0)
+ sump[forw] -= cnt;
+}
+
+#if 0
+/*
+ * Fserr prints the name of a file system with an error diagnostic.
+ *
+ * The form of the error message is:
+ * fs: error message
+ */
+static void
+ffs_fserr(fs, uid, cp)
+ struct fs *fs;
+ u_int uid;
+ char *cp;
+{
+
+ log(LOG_ERR, "uid %d on %s: %s\n", uid, fs->fs_fsmnt, cp);
+}
+#endif