diff options
| author | Samuel Thibault <samuel.thibault@ens-lyon.org> | 2011-05-08 23:11:02 +0200 |
|---|---|---|
| committer | Samuel Thibault <samuel.thibault@ens-lyon.org> | 2011-05-08 23:11:02 +0200 |
| commit | cded208c7ea6d107dcbfdb2e2d4622daf41c2886 (patch) | |
| tree | a04a03736b0a928c2954382f924aadb105ee39cc /libdde_linux26/lib/src/mm | |
| parent | fc82e00ca1e174cb961dea6ad37622e9b26cd899 (diff) | |
remove .svn directories
Diffstat (limited to 'libdde_linux26/lib/src/mm')
| -rw-r--r-- | libdde_linux26/lib/src/mm/.svn/all-wcprops | 17 | ||||
| -rw-r--r-- | libdde_linux26/lib/src/mm/.svn/entries | 96 | ||||
| -rw-r--r-- | libdde_linux26/lib/src/mm/.svn/format | 1 | ||||
| -rw-r--r-- | libdde_linux26/lib/src/mm/.svn/text-base/memory.c.svn-base | 3203 | ||||
| -rw-r--r-- | libdde_linux26/lib/src/mm/.svn/text-base/page-writeback.c.svn-base | 1468 |
5 files changed, 0 insertions, 4785 deletions
diff --git a/libdde_linux26/lib/src/mm/.svn/all-wcprops b/libdde_linux26/lib/src/mm/.svn/all-wcprops deleted file mode 100644 index 3d4115f7..00000000 --- a/libdde_linux26/lib/src/mm/.svn/all-wcprops +++ /dev/null @@ -1,17 +0,0 @@ -K 25 -svn:wc:ra_dav:version-url -V 61 -/repos/tudos/!svn/ver/455/trunk/l4/pkg/dde/linux26/lib/src/mm -END -page-writeback.c -K 25 -svn:wc:ra_dav:version-url -V 78 -/repos/tudos/!svn/ver/455/trunk/l4/pkg/dde/linux26/lib/src/mm/page-writeback.c -END -memory.c -K 25 -svn:wc:ra_dav:version-url -V 70 -/repos/tudos/!svn/ver/455/trunk/l4/pkg/dde/linux26/lib/src/mm/memory.c -END diff --git a/libdde_linux26/lib/src/mm/.svn/entries b/libdde_linux26/lib/src/mm/.svn/entries deleted file mode 100644 index ec9bd239..00000000 --- a/libdde_linux26/lib/src/mm/.svn/entries +++ /dev/null @@ -1,96 +0,0 @@ -9 - -dir -465 -http://svn.tudos.org/repos/tudos/trunk/l4/pkg/dde/linux26/lib/src/mm -http://svn.tudos.org/repos/tudos - - - -2009-05-20T14:32:55.606606Z -455 -l4check - - -svn:special svn:externals svn:needs-lock - - - - - - - - - - - -a704ac0b-3a55-4d43-a2a9-7be6f07c34fb - -page-writeback.c -file - - - - -2009-11-15T17:17:11.000000Z -d99c926612eb64c2f3836de532c5bcba -2009-05-20T14:32:55.606606Z -455 -l4check - - - - - - - - - - - - - - - - - - - - - -40747 - -memory.c -file - - - - -2009-11-15T17:17:11.000000Z -aba936f07e9929520b9fcb9bcdf42c30 -2009-05-20T14:32:55.606606Z -455 -l4check - - - - - - - - - - - - - - - - - - - - - -88290 - diff --git a/libdde_linux26/lib/src/mm/.svn/format b/libdde_linux26/lib/src/mm/.svn/format deleted file mode 100644 index ec635144..00000000 --- a/libdde_linux26/lib/src/mm/.svn/format +++ /dev/null @@ -1 +0,0 @@ -9 diff --git a/libdde_linux26/lib/src/mm/.svn/text-base/memory.c.svn-base b/libdde_linux26/lib/src/mm/.svn/text-base/memory.c.svn-base deleted file mode 100644 index a4d66f50..00000000 --- a/libdde_linux26/lib/src/mm/.svn/text-base/memory.c.svn-base +++ /dev/null @@ -1,3203 +0,0 @@ -/* - * linux/mm/memory.c - * - * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds - */ - -/* - * demand-loading started 01.12.91 - seems it is high on the list of - * things wanted, and it should be easy to implement. - Linus - */ - -/* - * Ok, demand-loading was easy, shared pages a little bit tricker. Shared - * pages started 02.12.91, seems to work. - Linus. - * - * Tested sharing by executing about 30 /bin/sh: under the old kernel it - * would have taken more than the 6M I have free, but it worked well as - * far as I could see. - * - * Also corrected some "invalidate()"s - I wasn't doing enough of them. - */ - -/* - * Real VM (paging to/from disk) started 18.12.91. Much more work and - * thought has to go into this. Oh, well.. - * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. - * Found it. Everything seems to work now. - * 20.12.91 - Ok, making the swap-device changeable like the root. - */ - -/* - * 05.04.94 - Multi-page memory management added for v1.1. - * Idea by Alex Bligh (alex@cconcepts.co.uk) - * - * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG - * (Gerhard.Wichert@pdb.siemens.de) - * - * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) - */ - -#include <linux/kernel_stat.h> -#include <linux/mm.h> -#include <linux/hugetlb.h> -#include <linux/mman.h> -#include <linux/swap.h> -#include <linux/highmem.h> -#include <linux/pagemap.h> -#ifndef DDE_LINUX -#include <linux/rmap.h> -#endif -#include <linux/module.h> -#include <linux/delayacct.h> -#include <linux/init.h> -#include <linux/writeback.h> -#include <linux/memcontrol.h> -#include <linux/mmu_notifier.h> -#include <linux/kallsyms.h> -#include <linux/swapops.h> -#include <linux/elf.h> - -#include <asm/pgalloc.h> -#include <asm/uaccess.h> -#include <asm/tlb.h> -#include <asm/tlbflush.h> -#include <asm/pgtable.h> - -#include "internal.h" - -#ifndef CONFIG_NEED_MULTIPLE_NODES -/* use the per-pgdat data instead for discontigmem - mbligh */ -unsigned long max_mapnr; -#ifndef DDE_LINUX -struct page *mem_map; -#endif - -EXPORT_SYMBOL(max_mapnr); -#ifndef DDE_LINUX -EXPORT_SYMBOL(mem_map); -#endif -#endif - -unsigned long num_physpages; -/* - * A number of key systems in x86 including ioremap() rely on the assumption - * that high_memory defines the upper bound on direct map memory, then end - * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and - * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL - * and ZONE_HIGHMEM. - */ -void * high_memory; - -EXPORT_SYMBOL(num_physpages); -EXPORT_SYMBOL(high_memory); - -/* - * Randomize the address space (stacks, mmaps, brk, etc.). - * - * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, - * as ancient (libc5 based) binaries can segfault. ) - */ -int randomize_va_space __read_mostly = -#ifdef CONFIG_COMPAT_BRK - 1; -#else - 2; -#endif - -#ifndef DDE_LINUX -static int __init disable_randmaps(char *s) -{ - randomize_va_space = 0; - return 1; -} -__setup("norandmaps", disable_randmaps); - - -/* - * If a p?d_bad entry is found while walking page tables, report - * the error, before resetting entry to p?d_none. Usually (but - * very seldom) called out from the p?d_none_or_clear_bad macros. - */ - -void pgd_clear_bad(pgd_t *pgd) -{ - pgd_ERROR(*pgd); - pgd_clear(pgd); -} - -void pud_clear_bad(pud_t *pud) -{ - pud_ERROR(*pud); - pud_clear(pud); -} - -void pmd_clear_bad(pmd_t *pmd) -{ - pmd_ERROR(*pmd); - pmd_clear(pmd); -} - -/* - * Note: this doesn't free the actual pages themselves. That - * has been handled earlier when unmapping all the memory regions. - */ -static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd) -{ - pgtable_t token = pmd_pgtable(*pmd); - pmd_clear(pmd); - pte_free_tlb(tlb, token); - tlb->mm->nr_ptes--; -} - -static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, - unsigned long addr, unsigned long end, - unsigned long floor, unsigned long ceiling) -{ - pmd_t *pmd; - unsigned long next; - unsigned long start; - - start = addr; - pmd = pmd_offset(pud, addr); - do { - next = pmd_addr_end(addr, end); - if (pmd_none_or_clear_bad(pmd)) - continue; - free_pte_range(tlb, pmd); - } while (pmd++, addr = next, addr != end); - - start &= PUD_MASK; - if (start < floor) - return; - if (ceiling) { - ceiling &= PUD_MASK; - if (!ceiling) - return; - } - if (end - 1 > ceiling - 1) - return; - - pmd = pmd_offset(pud, start); - pud_clear(pud); - pmd_free_tlb(tlb, pmd); -} - -static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, - unsigned long addr, unsigned long end, - unsigned long floor, unsigned long ceiling) -{ - pud_t *pud; - unsigned long next; - unsigned long start; - - start = addr; - pud = pud_offset(pgd, addr); - do { - next = pud_addr_end(addr, end); - if (pud_none_or_clear_bad(pud)) - continue; - free_pmd_range(tlb, pud, addr, next, floor, ceiling); - } while (pud++, addr = next, addr != end); - - start &= PGDIR_MASK; - if (start < floor) - return; - if (ceiling) { - ceiling &= PGDIR_MASK; - if (!ceiling) - return; - } - if (end - 1 > ceiling - 1) - return; - - pud = pud_offset(pgd, start); - pgd_clear(pgd); - pud_free_tlb(tlb, pud); -} - -/* - * This function frees user-level page tables of a process. - * - * Must be called with pagetable lock held. - */ -void free_pgd_range(struct mmu_gather *tlb, - unsigned long addr, unsigned long end, - unsigned long floor, unsigned long ceiling) -{ - pgd_t *pgd; - unsigned long next; - unsigned long start; - - /* - * The next few lines have given us lots of grief... - * - * Why are we testing PMD* at this top level? Because often - * there will be no work to do at all, and we'd prefer not to - * go all the way down to the bottom just to discover that. - * - * Why all these "- 1"s? Because 0 represents both the bottom - * of the address space and the top of it (using -1 for the - * top wouldn't help much: the masks would do the wrong thing). - * The rule is that addr 0 and floor 0 refer to the bottom of - * the address space, but end 0 and ceiling 0 refer to the top - * Comparisons need to use "end - 1" and "ceiling - 1" (though - * that end 0 case should be mythical). - * - * Wherever addr is brought up or ceiling brought down, we must - * be careful to reject "the opposite 0" before it confuses the - * subsequent tests. But what about where end is brought down - * by PMD_SIZE below? no, end can't go down to 0 there. - * - * Whereas we round start (addr) and ceiling down, by different - * masks at different levels, in order to test whether a table - * now has no other vmas using it, so can be freed, we don't - * bother to round floor or end up - the tests don't need that. - */ - - addr &= PMD_MASK; - if (addr < floor) { - addr += PMD_SIZE; - if (!addr) - return; - } - if (ceiling) { - ceiling &= PMD_MASK; - if (!ceiling) - return; - } - if (end - 1 > ceiling - 1) - end -= PMD_SIZE; - if (addr > end - 1) - return; - - start = addr; - pgd = pgd_offset(tlb->mm, addr); - do { - next = pgd_addr_end(addr, end); - if (pgd_none_or_clear_bad(pgd)) - continue; - free_pud_range(tlb, pgd, addr, next, floor, ceiling); - } while (pgd++, addr = next, addr != end); -} - -void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, - unsigned long floor, unsigned long ceiling) -{ - while (vma) { - struct vm_area_struct *next = vma->vm_next; - unsigned long addr = vma->vm_start; - - /* - * Hide vma from rmap and vmtruncate before freeing pgtables - */ - anon_vma_unlink(vma); - unlink_file_vma(vma); - - if (is_vm_hugetlb_page(vma)) { - hugetlb_free_pgd_range(tlb, addr, vma->vm_end, - floor, next? next->vm_start: ceiling); - } else { - /* - * Optimization: gather nearby vmas into one call down - */ - while (next && next->vm_start <= vma->vm_end + PMD_SIZE - && !is_vm_hugetlb_page(next)) { - vma = next; - next = vma->vm_next; - anon_vma_unlink(vma); - unlink_file_vma(vma); - } - free_pgd_range(tlb, addr, vma->vm_end, - floor, next? next->vm_start: ceiling); - } - vma = next; - } -} - -int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address) -{ - pgtable_t new = pte_alloc_one(mm, address); - if (!new) - return -ENOMEM; - - /* - * Ensure all pte setup (eg. pte page lock and page clearing) are - * visible before the pte is made visible to other CPUs by being - * put into page tables. - * - * The other side of the story is the pointer chasing in the page - * table walking code (when walking the page table without locking; - * ie. most of the time). Fortunately, these data accesses consist - * of a chain of data-dependent loads, meaning most CPUs (alpha - * being the notable exception) will already guarantee loads are - * seen in-order. See the alpha page table accessors for the - * smp_read_barrier_depends() barriers in page table walking code. - */ - smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ - - spin_lock(&mm->page_table_lock); - if (!pmd_present(*pmd)) { /* Has another populated it ? */ - mm->nr_ptes++; - pmd_populate(mm, pmd, new); - new = NULL; - } - spin_unlock(&mm->page_table_lock); - if (new) - pte_free(mm, new); - return 0; -} - -int __pte_alloc_kernel(pmd_t *pmd, unsigned long address) -{ - pte_t *new = pte_alloc_one_kernel(&init_mm, address); - if (!new) - return -ENOMEM; - - smp_wmb(); /* See comment in __pte_alloc */ - - spin_lock(&init_mm.page_table_lock); - if (!pmd_present(*pmd)) { /* Has another populated it ? */ - pmd_populate_kernel(&init_mm, pmd, new); - new = NULL; - } - spin_unlock(&init_mm.page_table_lock); - if (new) - pte_free_kernel(&init_mm, new); - return 0; -} - -static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss) -{ - if (file_rss) - add_mm_counter(mm, file_rss, file_rss); - if (anon_rss) - add_mm_counter(mm, anon_rss, anon_rss); -} - -/* - * This function is called to print an error when a bad pte - * is found. For example, we might have a PFN-mapped pte in - * a region that doesn't allow it. - * - * The calling function must still handle the error. - */ -static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, - pte_t pte, struct page *page) -{ - pgd_t *pgd = pgd_offset(vma->vm_mm, addr); - pud_t *pud = pud_offset(pgd, addr); - pmd_t *pmd = pmd_offset(pud, addr); - struct address_space *mapping; - pgoff_t index; - static unsigned long resume; - static unsigned long nr_shown; - static unsigned long nr_unshown; - - /* - * Allow a burst of 60 reports, then keep quiet for that minute; - * or allow a steady drip of one report per second. - */ - if (nr_shown == 60) { - if (time_before(jiffies, resume)) { - nr_unshown++; - return; - } - if (nr_unshown) { - printk(KERN_ALERT - "BUG: Bad page map: %lu messages suppressed\n", - nr_unshown); - nr_unshown = 0; - } - nr_shown = 0; - } - if (nr_shown++ == 0) - resume = jiffies + 60 * HZ; - - mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; - index = linear_page_index(vma, addr); - - printk(KERN_ALERT - "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", - current->comm, - (long long)pte_val(pte), (long long)pmd_val(*pmd)); - if (page) { - printk(KERN_ALERT - "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n", - page, (void *)page->flags, page_count(page), - page_mapcount(page), page->mapping, page->index); - } - printk(KERN_ALERT - "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n", - (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); - /* - * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y - */ - if (vma->vm_ops) - print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n", - (unsigned long)vma->vm_ops->fault); - if (vma->vm_file && vma->vm_file->f_op) - print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n", - (unsigned long)vma->vm_file->f_op->mmap); - dump_stack(); - add_taint(TAINT_BAD_PAGE); -} - -static inline int is_cow_mapping(unsigned int flags) -{ - return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; -} - -/* - * vm_normal_page -- This function gets the "struct page" associated with a pte. - * - * "Special" mappings do not wish to be associated with a "struct page" (either - * it doesn't exist, or it exists but they don't want to touch it). In this - * case, NULL is returned here. "Normal" mappings do have a struct page. - * - * There are 2 broad cases. Firstly, an architecture may define a pte_special() - * pte bit, in which case this function is trivial. Secondly, an architecture - * may not have a spare pte bit, which requires a more complicated scheme, - * described below. - * - * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a - * special mapping (even if there are underlying and valid "struct pages"). - * COWed pages of a VM_PFNMAP are always normal. - * - * The way we recognize COWed pages within VM_PFNMAP mappings is through the - * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit - * set, and the vm_pgoff will point to the first PFN mapped: thus every special - * mapping will always honor the rule - * - * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) - * - * And for normal mappings this is false. - * - * This restricts such mappings to be a linear translation from virtual address - * to pfn. To get around this restriction, we allow arbitrary mappings so long - * as the vma is not a COW mapping; in that case, we know that all ptes are - * special (because none can have been COWed). - * - * - * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. - * - * VM_MIXEDMAP mappings can likewise contain memory with or without "struct - * page" backing, however the difference is that _all_ pages with a struct - * page (that is, those where pfn_valid is true) are refcounted and considered - * normal pages by the VM. The disadvantage is that pages are refcounted - * (which can be slower and simply not an option for some PFNMAP users). The - * advantage is that we don't have to follow the strict linearity rule of - * PFNMAP mappings in order to support COWable mappings. - * - */ -#ifdef __HAVE_ARCH_PTE_SPECIAL -# define HAVE_PTE_SPECIAL 1 -#else -# define HAVE_PTE_SPECIAL 0 -#endif -struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, - pte_t pte) -{ - unsigned long pfn = pte_pfn(pte); - - if (HAVE_PTE_SPECIAL) { - if (likely(!pte_special(pte))) - goto check_pfn; - if (!(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))) - print_bad_pte(vma, addr, pte, NULL); - return NULL; - } - - /* !HAVE_PTE_SPECIAL case follows: */ - - if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { - if (vma->vm_flags & VM_MIXEDMAP) { - if (!pfn_valid(pfn)) - return NULL; - goto out; - } else { - unsigned long off; - off = (addr - vma->vm_start) >> PAGE_SHIFT; - if (pfn == vma->vm_pgoff + off) - return NULL; - if (!is_cow_mapping(vma->vm_flags)) - return NULL; - } - } - -check_pfn: - if (unlikely(pfn > highest_memmap_pfn)) { - print_bad_pte(vma, addr, pte, NULL); - return NULL; - } -#endif - - /* - * NOTE! We still have PageReserved() pages in the page tables. - * eg. VDSO mappings can cause them to exist. - */ -out: - return pfn_to_page(pfn); -} - -/* - * copy one vm_area from one task to the other. Assumes the page tables - * already present in the new task to be cleared in the whole range - * covered by this vma. - */ - -static inline void -copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, - pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, - unsigned long addr, int *rss) -{ - unsigned long vm_flags = vma->vm_flags; - pte_t pte = *src_pte; - struct page *page; - - /* pte contains position in swap or file, so copy. */ - if (unlikely(!pte_present(pte))) { - if (!pte_file(pte)) { - swp_entry_t entry = pte_to_swp_entry(pte); - - swap_duplicate(entry); - /* make sure dst_mm is on swapoff's mmlist. */ - if (unlikely(list_empty(&dst_mm->mmlist))) { - spin_lock(&mmlist_lock); - if (list_empty(&dst_mm->mmlist)) - list_add(&dst_mm->mmlist, - &src_mm->mmlist); - spin_unlock(&mmlist_lock); - } - if (is_write_migration_entry(entry) && - is_cow_mapping(vm_flags)) { - /* - * COW mappings require pages in both parent - * and child to be set to read. - */ - make_migration_entry_read(&entry); - pte = swp_entry_to_pte(entry); - set_pte_at(src_mm, addr, src_pte, pte); - } - } - goto out_set_pte; - } - - /* - * If it's a COW mapping, write protect it both - * in the parent and the child - */ - if (is_cow_mapping(vm_flags)) { - ptep_set_wrprotect(src_mm, addr, src_pte); - pte = pte_wrprotect(pte); - } - - /* - * If it's a shared mapping, mark it clean in - * the child - */ - if (vm_flags & VM_SHARED) - pte = pte_mkclean(pte); - pte = pte_mkold(pte); - - page = vm_normal_page(vma, addr, pte); - if (page) { - get_page(page); - page_dup_rmap(page, vma, addr); - rss[!!PageAnon(page)]++; - } - -out_set_pte: - set_pte_at(dst_mm, addr, dst_pte, pte); -} - -static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, - pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, - unsigned long addr, unsigned long end) -{ - pte_t *src_pte, *dst_pte; - spinlock_t *src_ptl, *dst_ptl; - int progress = 0; - int rss[2]; - -again: - rss[1] = rss[0] = 0; - dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); - if (!dst_pte) - return -ENOMEM; - src_pte = pte_offset_map_nested(src_pmd, addr); - src_ptl = pte_lockptr(src_mm, src_pmd); - spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); - arch_enter_lazy_mmu_mode(); - - do { - /* - * We are holding two locks at this point - either of them - * could generate latencies in another task on another CPU. - */ - if (progress >= 32) { - progress = 0; - if (need_resched() || - spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) - break; - } - if (pte_none(*src_pte)) { - progress++; - continue; - } - copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss); - progress += 8; - } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); - - arch_leave_lazy_mmu_mode(); - spin_unlock(src_ptl); - pte_unmap_nested(src_pte - 1); - add_mm_rss(dst_mm, rss[0], rss[1]); - pte_unmap_unlock(dst_pte - 1, dst_ptl); - cond_resched(); - if (addr != end) - goto again; - return 0; -} - -static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, - pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, - unsigned long addr, unsigned long end) -{ - pmd_t *src_pmd, *dst_pmd; - unsigned long next; - - dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); - if (!dst_pmd) - return -ENOMEM; - src_pmd = pmd_offset(src_pud, addr); - do { - next = pmd_addr_end(addr, end); - if (pmd_none_or_clear_bad(src_pmd)) - continue; - if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, - vma, addr, next)) - return -ENOMEM; - } while (dst_pmd++, src_pmd++, addr = next, addr != end); - return 0; -} - -static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, - pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, - unsigned long addr, unsigned long end) -{ - pud_t *src_pud, *dst_pud; - unsigned long next; - - dst_pud = pud_alloc(dst_mm, dst_pgd, addr); - if (!dst_pud) - return -ENOMEM; - src_pud = pud_offset(src_pgd, addr); - do { - next = pud_addr_end(addr, end); - if (pud_none_or_clear_bad(src_pud)) - continue; - if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, - vma, addr, next)) - return -ENOMEM; - } while (dst_pud++, src_pud++, addr = next, addr != end); - return 0; -} - -int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, - struct vm_area_struct *vma) -{ - pgd_t *src_pgd, *dst_pgd; - unsigned long next; - unsigned long addr = vma->vm_start; - unsigned long end = vma->vm_end; - int ret; - - /* - * Don't copy ptes where a page fault will fill them correctly. - * Fork becomes much lighter when there are big shared or private - * readonly mappings. The tradeoff is that copy_page_range is more - * efficient than faulting. - */ - if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) { - if (!vma->anon_vma) - return 0; - } - - if (is_vm_hugetlb_page(vma)) - return copy_hugetlb_page_range(dst_mm, src_mm, vma); - - if (unlikely(is_pfn_mapping(vma))) { - /* - * We do not free on error cases below as remove_vma - * gets called on error from higher level routine - */ - ret = track_pfn_vma_copy(vma); - if (ret) - return ret; - } - - /* - * We need to invalidate the secondary MMU mappings only when - * there could be a permission downgrade on the ptes of the - * parent mm. And a permission downgrade will only happen if - * is_cow_mapping() returns true. - */ - if (is_cow_mapping(vma->vm_flags)) - mmu_notifier_invalidate_range_start(src_mm, addr, end); - - ret = 0; - dst_pgd = pgd_offset(dst_mm, addr); - src_pgd = pgd_offset(src_mm, addr); - do { - next = pgd_addr_end(addr, end); - if (pgd_none_or_clear_bad(src_pgd)) - continue; - if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd, - vma, addr, next))) { - ret = -ENOMEM; - break; - } - } while (dst_pgd++, src_pgd++, addr = next, addr != end); - - if (is_cow_mapping(vma->vm_flags)) - mmu_notifier_invalidate_range_end(src_mm, - vma->vm_start, end); - return ret; -} - -static unsigned long zap_pte_range(struct mmu_gather *tlb, - struct vm_area_struct *vma, pmd_t *pmd, - unsigned long addr, unsigned long end, - long *zap_work, struct zap_details *details) -{ - struct mm_struct *mm = tlb->mm; - pte_t *pte; - spinlock_t *ptl; - int file_rss = 0; - int anon_rss = 0; - - pte = pte_offset_map_lock(mm, pmd, addr, &ptl); - arch_enter_lazy_mmu_mode(); - do { - pte_t ptent = *pte; - if (pte_none(ptent)) { - (*zap_work)--; - continue; - } - - (*zap_work) -= PAGE_SIZE; - - if (pte_present(ptent)) { - struct page *page; - - page = vm_normal_page(vma, addr, ptent); - if (unlikely(details) && page) { - /* - * unmap_shared_mapping_pages() wants to - * invalidate cache without truncating: - * unmap shared but keep private pages. - */ - if (details->check_mapping && - details->check_mapping != page->mapping) - continue; - /* - * Each page->index must be checked when - * invalidating or truncating nonlinear. - */ - if (details->nonlinear_vma && - (page->index < details->first_index || - page->index > details->last_index)) - continue; - } - ptent = ptep_get_and_clear_full(mm, addr, pte, - tlb->fullmm); - tlb_remove_tlb_entry(tlb, pte, addr); - if (unlikely(!page)) - continue; - if (unlikely(details) && details->nonlinear_vma - && linear_page_index(details->nonlinear_vma, - addr) != page->index) - set_pte_at(mm, addr, pte, - pgoff_to_pte(page->index)); - if (PageAnon(page)) - anon_rss--; - else { - if (pte_dirty(ptent)) - set_page_dirty(page); - if (pte_young(ptent) && - likely(!VM_SequentialReadHint(vma))) - mark_page_accessed(page); - file_rss--; - } - page_remove_rmap(page); - if (unlikely(page_mapcount(page) < 0)) - print_bad_pte(vma, addr, ptent, page); - tlb_remove_page(tlb, page); - continue; - } - /* - * If details->check_mapping, we leave swap entries; - * if details->nonlinear_vma, we leave file entries. - */ - if (unlikely(details)) - continue; - if (pte_file(ptent)) { - if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) - print_bad_pte(vma, addr, ptent, NULL); - } else if - (unlikely(!free_swap_and_cache(pte_to_swp_entry(ptent)))) - print_bad_pte(vma, addr, ptent, NULL); - pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); - } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0)); - - add_mm_rss(mm, file_rss, anon_rss); - arch_leave_lazy_mmu_mode(); - pte_unmap_unlock(pte - 1, ptl); - - return addr; -} - -static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, - struct vm_area_struct *vma, pud_t *pud, - unsigned long addr, unsigned long end, - long *zap_work, struct zap_details *details) -{ - pmd_t *pmd; - unsigned long next; - - pmd = pmd_offset(pud, addr); - do { - next = pmd_addr_end(addr, end); - if (pmd_none_or_clear_bad(pmd)) { - (*zap_work)--; - continue; - } - next = zap_pte_range(tlb, vma, pmd, addr, next, - zap_work, details); - } while (pmd++, addr = next, (addr != end && *zap_work > 0)); - - return addr; -} - -static inline unsigned long zap_pud_range(struct mmu_gather *tlb, - struct vm_area_struct *vma, pgd_t *pgd, - unsigned long addr, unsigned long end, - long *zap_work, struct zap_details *details) -{ - pud_t *pud; - unsigned long next; - - pud = pud_offset(pgd, addr); - do { - next = pud_addr_end(addr, end); - if (pud_none_or_clear_bad(pud)) { - (*zap_work)--; - continue; - } - next = zap_pmd_range(tlb, vma, pud, addr, next, - zap_work, details); - } while (pud++, addr = next, (addr != end && *zap_work > 0)); - - return addr; -} - -static unsigned long unmap_page_range(struct mmu_gather *tlb, - struct vm_area_struct *vma, - unsigned long addr, unsigned long end, - long *zap_work, struct zap_details *details) -{ - pgd_t *pgd; - unsigned long next; - - if (details && !details->check_mapping && !details->nonlinear_vma) - details = NULL; - - BUG_ON(addr >= end); - tlb_start_vma(tlb, vma); - pgd = pgd_offset(vma->vm_mm, addr); - do { - next = pgd_addr_end(addr, end); - if (pgd_none_or_clear_bad(pgd)) { - (*zap_work)--; - continue; - } - next = zap_pud_range(tlb, vma, pgd, addr, next, - zap_work, details); - } while (pgd++, addr = next, (addr != end && *zap_work > 0)); - tlb_end_vma(tlb, vma); - - return addr; -} - -#ifdef CONFIG_PREEMPT -# define ZAP_BLOCK_SIZE (8 * PAGE_SIZE) -#else -/* No preempt: go for improved straight-line efficiency */ -# define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE) -#endif - -/** - * unmap_vmas - unmap a range of memory covered by a list of vma's - * @tlbp: address of the caller's struct mmu_gather - * @vma: the starting vma - * @start_addr: virtual address at which to start unmapping - * @end_addr: virtual address at which to end unmapping - * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here - * @details: details of nonlinear truncation or shared cache invalidation - * - * Returns the end address of the unmapping (restart addr if interrupted). - * - * Unmap all pages in the vma list. - * - * We aim to not hold locks for too long (for scheduling latency reasons). - * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to - * return the ending mmu_gather to the caller. - * - * Only addresses between `start' and `end' will be unmapped. - * - * The VMA list must be sorted in ascending virtual address order. - * - * unmap_vmas() assumes that the caller will flush the whole unmapped address - * range after unmap_vmas() returns. So the only responsibility here is to - * ensure that any thus-far unmapped pages are flushed before unmap_vmas() - * drops the lock and schedules. - */ -unsigned long unmap_vmas(struct mmu_gather **tlbp, - struct vm_area_struct *vma, unsigned long start_addr, - unsigned long end_addr, unsigned long *nr_accounted, - struct zap_details *details) -{ - long zap_work = ZAP_BLOCK_SIZE; - unsigned long tlb_start = 0; /* For tlb_finish_mmu */ - int tlb_start_valid = 0; - unsigned long start = start_addr; - spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL; - int fullmm = (*tlbp)->fullmm; - struct mm_struct *mm = vma->vm_mm; - - mmu_notifier_invalidate_range_start(mm, start_addr, end_addr); - for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) { - unsigned long end; - - start = max(vma->vm_start, start_addr); - if (start >= vma->vm_end) - continue; - end = min(vma->vm_end, end_addr); - if (end <= vma->vm_start) - continue; - - if (vma->vm_flags & VM_ACCOUNT) - *nr_accounted += (end - start) >> PAGE_SHIFT; - - if (unlikely(is_pfn_mapping(vma))) - untrack_pfn_vma(vma, 0, 0); - - while (start != end) { - if (!tlb_start_valid) { - tlb_start = start; - tlb_start_valid = 1; - } - - if (unlikely(is_vm_hugetlb_page(vma))) { - /* - * It is undesirable to test vma->vm_file as it - * should be non-null for valid hugetlb area. - * However, vm_file will be NULL in the error - * cleanup path of do_mmap_pgoff. When - * hugetlbfs ->mmap method fails, - * do_mmap_pgoff() nullifies vma->vm_file - * before calling this function to clean up. - * Since no pte has actually been setup, it is - * safe to do nothing in this case. - */ - if (vma->vm_file) { - unmap_hugepage_range(vma, start, end, NULL); - zap_work -= (end - start) / - pages_per_huge_page(hstate_vma(vma)); - } - - start = end; - } else - start = unmap_page_range(*tlbp, vma, - start, end, &zap_work, details); - - if (zap_work > 0) { - BUG_ON(start != end); - break; - } - - tlb_finish_mmu(*tlbp, tlb_start, start); - - if (need_resched() || - (i_mmap_lock && spin_needbreak(i_mmap_lock))) { - if (i_mmap_lock) { - *tlbp = NULL; - goto out; - } - cond_resched(); - } - - *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm); - tlb_start_valid = 0; - zap_work = ZAP_BLOCK_SIZE; - } - } -out: - mmu_notifier_invalidate_range_end(mm, start_addr, end_addr); - return start; /* which is now the end (or restart) address */ -} - -/** - * zap_page_range - remove user pages in a given range - * @vma: vm_area_struct holding the applicable pages - * @address: starting address of pages to zap - * @size: number of bytes to zap - * @details: details of nonlinear truncation or shared cache invalidation - */ -unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, - unsigned long size, struct zap_details *details) -{ - struct mm_struct *mm = vma->vm_mm; - struct mmu_gather *tlb; - unsigned long end = address + size; - unsigned long nr_accounted = 0; - - lru_add_drain(); - tlb = tlb_gather_mmu(mm, 0); - update_hiwater_rss(mm); - end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details); - if (tlb) - tlb_finish_mmu(tlb, address, end); - return end; -} - -/** - * zap_vma_ptes - remove ptes mapping the vma - * @vma: vm_area_struct holding ptes to be zapped - * @address: starting address of pages to zap - * @size: number of bytes to zap - * - * This function only unmaps ptes assigned to VM_PFNMAP vmas. - * - * The entire address range must be fully contained within the vma. - * - * Returns 0 if successful. - */ -int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, - unsigned long size) -{ - if (address < vma->vm_start || address + size > vma->vm_end || - !(vma->vm_flags & VM_PFNMAP)) - return -1; - zap_page_range(vma, address, size, NULL); - return 0; -} -EXPORT_SYMBOL_GPL(zap_vma_ptes); - -/* - * Do a quick page-table lookup for a single page. - */ -struct page *follow_page(struct vm_area_struct *vma, unsigned long address, - unsigned int flags) -{ - pgd_t *pgd; - pud_t *pud; - pmd_t *pmd; - pte_t *ptep, pte; - spinlock_t *ptl; - struct page *page; - struct mm_struct *mm = vma->vm_mm; - - page = follow_huge_addr(mm, address, flags & FOLL_WRITE); - if (!IS_ERR(page)) { - BUG_ON(flags & FOLL_GET); - goto out; - } - - page = NULL; - pgd = pgd_offset(mm, address); - if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) - goto no_page_table; - - pud = pud_offset(pgd, address); - if (pud_none(*pud)) - goto no_page_table; - if (pud_huge(*pud)) { - BUG_ON(flags & FOLL_GET); - page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE); - goto out; - } - if (unlikely(pud_bad(*pud))) - goto no_page_table; - - pmd = pmd_offset(pud, address); - if (pmd_none(*pmd)) - goto no_page_table; - if (pmd_huge(*pmd)) { - BUG_ON(flags & FOLL_GET); - page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE); - goto out; - } - if (unlikely(pmd_bad(*pmd))) - goto no_page_table; - - ptep = pte_offset_map_lock(mm, pmd, address, &ptl); - - pte = *ptep; - if (!pte_present(pte)) - goto no_page; - if ((flags & FOLL_WRITE) && !pte_write(pte)) - goto unlock; - page = vm_normal_page(vma, address, pte); - if (unlikely(!page)) - goto bad_page; - - if (flags & FOLL_GET) - get_page(page); - if (flags & FOLL_TOUCH) { - if ((flags & FOLL_WRITE) && - !pte_dirty(pte) && !PageDirty(page)) - set_page_dirty(page); - mark_page_accessed(page); - } -unlock: - pte_unmap_unlock(ptep, ptl); -out: - return page; - -bad_page: - pte_unmap_unlock(ptep, ptl); - return ERR_PTR(-EFAULT); - -no_page: - pte_unmap_unlock(ptep, ptl); - if (!pte_none(pte)) - return page; - /* Fall through to ZERO_PAGE handling */ -no_page_table: - /* - * When core dumping an enormous anonymous area that nobody - * has touched so far, we don't want to allocate page tables. - */ - if (flags & FOLL_ANON) { - page = ZERO_PAGE(0); - if (flags & FOLL_GET) - get_page(page); - BUG_ON(flags & FOLL_WRITE); - } - return page; -} - -/* Can we do the FOLL_ANON optimization? */ -static inline int use_zero_page(struct vm_area_struct *vma) -{ - /* - * We don't want to optimize FOLL_ANON for make_pages_present() - * when it tries to page in a VM_LOCKED region. As to VM_SHARED, - * we want to get the page from the page tables to make sure - * that we serialize and update with any other user of that - * mapping. - */ - if (vma->vm_flags & (VM_LOCKED | VM_SHARED)) - return 0; - /* - * And if we have a fault routine, it's not an anonymous region. - */ - return !vma->vm_ops || !vma->vm_ops->fault; -} - - - -int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, - unsigned long start, int len, int flags, - struct page **pages, struct vm_area_struct **vmas) -{ - int i; - unsigned int vm_flags = 0; - int write = !!(flags & GUP_FLAGS_WRITE); - int force = !!(flags & GUP_FLAGS_FORCE); - int ignore = !!(flags & GUP_FLAGS_IGNORE_VMA_PERMISSIONS); - int ignore_sigkill = !!(flags & GUP_FLAGS_IGNORE_SIGKILL); - - if (len <= 0) - return 0; - /* - * Require read or write permissions. - * If 'force' is set, we only require the "MAY" flags. - */ - vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); - vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); - i = 0; - - do { - struct vm_area_struct *vma; - unsigned int foll_flags; - - vma = find_extend_vma(mm, start); - if (!vma && in_gate_area(tsk, start)) { - unsigned long pg = start & PAGE_MASK; - struct vm_area_struct *gate_vma = get_gate_vma(tsk); - pgd_t *pgd; - pud_t *pud; - pmd_t *pmd; - pte_t *pte; - - /* user gate pages are read-only */ - if (!ignore && write) - return i ? : -EFAULT; - if (pg > TASK_SIZE) - pgd = pgd_offset_k(pg); - else - pgd = pgd_offset_gate(mm, pg); - BUG_ON(pgd_none(*pgd)); - pud = pud_offset(pgd, pg); - BUG_ON(pud_none(*pud)); - pmd = pmd_offset(pud, pg); - if (pmd_none(*pmd)) - return i ? : -EFAULT; - pte = pte_offset_map(pmd, pg); - if (pte_none(*pte)) { - pte_unmap(pte); - return i ? : -EFAULT; - } - if (pages) { - struct page *page = vm_normal_page(gate_vma, start, *pte); - pages[i] = page; - if (page) - get_page(page); - } - pte_unmap(pte); - if (vmas) - vmas[i] = gate_vma; - i++; - start += PAGE_SIZE; - len--; - continue; - } - - if (!vma || - (vma->vm_flags & (VM_IO | VM_PFNMAP)) || - (!ignore && !(vm_flags & vma->vm_flags))) - return i ? : -EFAULT; - - if (is_vm_hugetlb_page(vma)) { - i = follow_hugetlb_page(mm, vma, pages, vmas, - &start, &len, i, write); - continue; - } - - foll_flags = FOLL_TOUCH; - if (pages) - foll_flags |= FOLL_GET; - if (!write && use_zero_page(vma)) - foll_flags |= FOLL_ANON; - - do { - struct page *page; - - /* - * If we have a pending SIGKILL, don't keep faulting - * pages and potentially allocating memory, unless - * current is handling munlock--e.g., on exit. In - * that case, we are not allocating memory. Rather, - * we're only unlocking already resident/mapped pages. - */ - if (unlikely(!ignore_sigkill && - fatal_signal_pending(current))) - return i ? i : -ERESTARTSYS; - - if (write) - foll_flags |= FOLL_WRITE; - - cond_resched(); - while (!(page = follow_page(vma, start, foll_flags))) { - int ret; - ret = handle_mm_fault(mm, vma, start, - foll_flags & FOLL_WRITE); - if (ret & VM_FAULT_ERROR) { - if (ret & VM_FAULT_OOM) - return i ? i : -ENOMEM; - else if (ret & VM_FAULT_SIGBUS) - return i ? i : -EFAULT; - BUG(); - } - if (ret & VM_FAULT_MAJOR) - tsk->maj_flt++; - else - tsk->min_flt++; - - /* - * The VM_FAULT_WRITE bit tells us that - * do_wp_page has broken COW when necessary, - * even if maybe_mkwrite decided not to set - * pte_write. We can thus safely do subsequent - * page lookups as if they were reads. But only - * do so when looping for pte_write is futile: - * in some cases userspace may also be wanting - * to write to the gotten user page, which a - * read fault here might prevent (a readonly - * page might get reCOWed by userspace write). - */ - if ((ret & VM_FAULT_WRITE) && - !(vma->vm_flags & VM_WRITE)) - foll_flags &= ~FOLL_WRITE; - - cond_resched(); - } - if (IS_ERR(page)) - return i ? i : PTR_ERR(page); - if (pages) { - pages[i] = page; - - flush_anon_page(vma, page, start); - flush_dcache_page(page); - } - if (vmas) - vmas[i] = vma; - i++; - start += PAGE_SIZE; - len--; - } while (len && start < vma->vm_end); - } while (len); - return i; -} - -int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, - unsigned long start, int len, int write, int force, - struct page **pages, struct vm_area_struct **vmas) -{ - int flags = 0; - - if (write) - flags |= GUP_FLAGS_WRITE; - if (force) - flags |= GUP_FLAGS_FORCE; - - return __get_user_pages(tsk, mm, - start, len, flags, - pages, vmas); -} - -EXPORT_SYMBOL(get_user_pages); - -pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, - spinlock_t **ptl) -{ - pgd_t * pgd = pgd_offset(mm, addr); - pud_t * pud = pud_alloc(mm, pgd, addr); - if (pud) { - pmd_t * pmd = pmd_alloc(mm, pud, addr); - if (pmd) - return pte_alloc_map_lock(mm, pmd, addr, ptl); - } - return NULL; -} - -/* - * This is the old fallback for page remapping. - * - * For historical reasons, it only allows reserved pages. Only - * old drivers should use this, and they needed to mark their - * pages reserved for the old functions anyway. - */ -static int insert_page(struct vm_area_struct *vma, unsigned long addr, - struct page *page, pgprot_t prot) -{ - struct mm_struct *mm = vma->vm_mm; - int retval; - pte_t *pte; - spinlock_t *ptl; - - retval = -EINVAL; - if (PageAnon(page)) - goto out; - retval = -ENOMEM; - flush_dcache_page(page); - pte = get_locked_pte(mm, addr, &ptl); - if (!pte) - goto out; - retval = -EBUSY; - if (!pte_none(*pte)) - goto out_unlock; - - /* Ok, finally just insert the thing.. */ - get_page(page); - inc_mm_counter(mm, file_rss); - page_add_file_rmap(page); - set_pte_at(mm, addr, pte, mk_pte(page, prot)); - - retval = 0; - pte_unmap_unlock(pte, ptl); - return retval; -out_unlock: - pte_unmap_unlock(pte, ptl); -out: - return retval; -} - -/** - * vm_insert_page - insert single page into user vma - * @vma: user vma to map to - * @addr: target user address of this page - * @page: source kernel page - * - * This allows drivers to insert individual pages they've allocated - * into a user vma. - * - * The page has to be a nice clean _individual_ kernel allocation. - * If you allocate a compound page, you need to have marked it as - * such (__GFP_COMP), or manually just split the page up yourself - * (see split_page()). - * - * NOTE! Traditionally this was done with "remap_pfn_range()" which - * took an arbitrary page protection parameter. This doesn't allow - * that. Your vma protection will have to be set up correctly, which - * means that if you want a shared writable mapping, you'd better - * ask for a shared writable mapping! - * - * The page does not need to be reserved. - */ -int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, - struct page *page) -{ - if (addr < vma->vm_start || addr >= vma->vm_end) - return -EFAULT; - if (!page_count(page)) - return -EINVAL; - vma->vm_flags |= VM_INSERTPAGE; - return insert_page(vma, addr, page, vma->vm_page_prot); -} -EXPORT_SYMBOL(vm_insert_page); - -static int insert_pfn(struct vm_area_struct *vma, unsigned long addr, - unsigned long pfn, pgprot_t prot) -{ - struct mm_struct *mm = vma->vm_mm; - int retval; - pte_t *pte, entry; - spinlock_t *ptl; - - retval = -ENOMEM; - pte = get_locked_pte(mm, addr, &ptl); - if (!pte) - goto out; - retval = -EBUSY; - if (!pte_none(*pte)) - goto out_unlock; - - /* Ok, finally just insert the thing.. */ - entry = pte_mkspecial(pfn_pte(pfn, prot)); - set_pte_at(mm, addr, pte, entry); - update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */ - - retval = 0; -out_unlock: - pte_unmap_unlock(pte, ptl); -out: - return retval; -} - -/** - * vm_insert_pfn - insert single pfn into user vma - * @vma: user vma to map to - * @addr: target user address of this page - * @pfn: source kernel pfn - * - * Similar to vm_inert_page, this allows drivers to insert individual pages - * they've allocated into a user vma. Same comments apply. - * - * This function should only be called from a vm_ops->fault handler, and - * in that case the handler should return NULL. - * - * vma cannot be a COW mapping. - * - * As this is called only for pages that do not currently exist, we - * do not need to flush old virtual caches or the TLB. - */ -int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, - unsigned long pfn) -{ - int ret; - pgprot_t pgprot = vma->vm_page_prot; - /* - * Technically, architectures with pte_special can avoid all these - * restrictions (same for remap_pfn_range). However we would like - * consistency in testing and feature parity among all, so we should - * try to keep these invariants in place for everybody. - */ - BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); - BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == - (VM_PFNMAP|VM_MIXEDMAP)); - BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); - BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); - - if (addr < vma->vm_start || addr >= vma->vm_end) - return -EFAULT; - if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE)) - return -EINVAL; - - ret = insert_pfn(vma, addr, pfn, pgprot); - - if (ret) - untrack_pfn_vma(vma, pfn, PAGE_SIZE); - - return ret; -} -EXPORT_SYMBOL(vm_insert_pfn); - -int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, - unsigned long pfn) -{ - BUG_ON(!(vma->vm_flags & VM_MIXEDMAP)); - - if (addr < vma->vm_start || addr >= vma->vm_end) - return -EFAULT; - - /* - * If we don't have pte special, then we have to use the pfn_valid() - * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* - * refcount the page if pfn_valid is true (hence insert_page rather - * than insert_pfn). - */ - if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) { - struct page *page; - - page = pfn_to_page(pfn); - return insert_page(vma, addr, page, vma->vm_page_prot); - } - return insert_pfn(vma, addr, pfn, vma->vm_page_prot); -} -EXPORT_SYMBOL(vm_insert_mixed); - -/* - * maps a range of physical memory into the requested pages. the old - * mappings are removed. any references to nonexistent pages results - * in null mappings (currently treated as "copy-on-access") - */ -static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, - unsigned long addr, unsigned long end, - unsigned long pfn, pgprot_t prot) -{ - pte_t *pte; - spinlock_t *ptl; - - pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); - if (!pte) - return -ENOMEM; - arch_enter_lazy_mmu_mode(); - do { - BUG_ON(!pte_none(*pte)); - set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); - pfn++; - } while (pte++, addr += PAGE_SIZE, addr != end); - arch_leave_lazy_mmu_mode(); - pte_unmap_unlock(pte - 1, ptl); - return 0; -} - -static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, - unsigned long addr, unsigned long end, - unsigned long pfn, pgprot_t prot) -{ - pmd_t *pmd; - unsigned long next; - - pfn -= addr >> PAGE_SHIFT; - pmd = pmd_alloc(mm, pud, addr); - if (!pmd) - return -ENOMEM; - do { - next = pmd_addr_end(addr, end); - if (remap_pte_range(mm, pmd, addr, next, - pfn + (addr >> PAGE_SHIFT), prot)) - return -ENOMEM; - } while (pmd++, addr = next, addr != end); - return 0; -} - -static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd, - unsigned long addr, unsigned long end, - unsigned long pfn, pgprot_t prot) -{ - pud_t *pud; - unsigned long next; - - pfn -= addr >> PAGE_SHIFT; - pud = pud_alloc(mm, pgd, addr); - if (!pud) - return -ENOMEM; - do { - next = pud_addr_end(addr, end); - if (remap_pmd_range(mm, pud, addr, next, - pfn + (addr >> PAGE_SHIFT), prot)) - return -ENOMEM; - } while (pud++, addr = next, addr != end); - return 0; -} - -/** - * remap_pfn_range - remap kernel memory to userspace - * @vma: user vma to map to - * @addr: target user address to start at - * @pfn: physical address of kernel memory - * @size: size of map area - * @prot: page protection flags for this mapping - * - * Note: this is only safe if the mm semaphore is held when called. - */ -int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, - unsigned long pfn, unsigned long size, pgprot_t prot) -{ - pgd_t *pgd; - unsigned long next; - unsigned long end = addr + PAGE_ALIGN(size); - struct mm_struct *mm = vma->vm_mm; - int err; - - /* - * Physically remapped pages are special. Tell the - * rest of the world about it: - * VM_IO tells people not to look at these pages - * (accesses can have side effects). - * VM_RESERVED is specified all over the place, because - * in 2.4 it kept swapout's vma scan off this vma; but - * in 2.6 the LRU scan won't even find its pages, so this - * flag means no more than count its pages in reserved_vm, - * and omit it from core dump, even when VM_IO turned off. - * VM_PFNMAP tells the core MM that the base pages are just - * raw PFN mappings, and do not have a "struct page" associated - * with them. - * - * There's a horrible special case to handle copy-on-write - * behaviour that some programs depend on. We mark the "original" - * un-COW'ed pages by matching them up with "vma->vm_pgoff". - */ - if (addr == vma->vm_start && end == vma->vm_end) - vma->vm_pgoff = pfn; - else if (is_cow_mapping(vma->vm_flags)) - return -EINVAL; - - vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP; - - err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size)); - if (err) { - /* - * To indicate that track_pfn related cleanup is not - * needed from higher level routine calling unmap_vmas - */ - vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP); - return -EINVAL; - } - - BUG_ON(addr >= end); - pfn -= addr >> PAGE_SHIFT; - pgd = pgd_offset(mm, addr); - flush_cache_range(vma, addr, end); - do { - next = pgd_addr_end(addr, end); - err = remap_pud_range(mm, pgd, addr, next, - pfn + (addr >> PAGE_SHIFT), prot); - if (err) - break; - } while (pgd++, addr = next, addr != end); - - if (err) - untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size)); - - return err; -} -EXPORT_SYMBOL(remap_pfn_range); - -static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, - unsigned long addr, unsigned long end, - pte_fn_t fn, void *data) -{ - pte_t *pte; - int err; - pgtable_t token; - spinlock_t *uninitialized_var(ptl); - - pte = (mm == &init_mm) ? - pte_alloc_kernel(pmd, addr) : - pte_alloc_map_lock(mm, pmd, addr, &ptl); - if (!pte) - return -ENOMEM; - - BUG_ON(pmd_huge(*pmd)); - - arch_enter_lazy_mmu_mode(); - - token = pmd_pgtable(*pmd); - - do { - err = fn(pte, token, addr, data); - if (err) - break; - } while (pte++, addr += PAGE_SIZE, addr != end); - - arch_leave_lazy_mmu_mode(); - - if (mm != &init_mm) - pte_unmap_unlock(pte-1, ptl); - return err; -} - -static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, - unsigned long addr, unsigned long end, - pte_fn_t fn, void *data) -{ - pmd_t *pmd; - unsigned long next; - int err; - - BUG_ON(pud_huge(*pud)); - - pmd = pmd_alloc(mm, pud, addr); - if (!pmd) - return -ENOMEM; - do { - next = pmd_addr_end(addr, end); - err = apply_to_pte_range(mm, pmd, addr, next, fn, data); - if (err) - break; - } while (pmd++, addr = next, addr != end); - return err; -} - -static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd, - unsigned long addr, unsigned long end, - pte_fn_t fn, void *data) -{ - pud_t *pud; - unsigned long next; - int err; - - pud = pud_alloc(mm, pgd, addr); - if (!pud) - return -ENOMEM; - do { - next = pud_addr_end(addr, end); - err = apply_to_pmd_range(mm, pud, addr, next, fn, data); - if (err) - break; - } while (pud++, addr = next, addr != end); - return err; -} - -/* - * Scan a region of virtual memory, filling in page tables as necessary - * and calling a provided function on each leaf page table. - */ -int apply_to_page_range(struct mm_struct *mm, unsigned long addr, - unsigned long size, pte_fn_t fn, void *data) -{ - pgd_t *pgd; - unsigned long next; - unsigned long start = addr, end = addr + size; - int err; - - BUG_ON(addr >= end); - mmu_notifier_invalidate_range_start(mm, start, end); - pgd = pgd_offset(mm, addr); - do { - next = pgd_addr_end(addr, end); - err = apply_to_pud_range(mm, pgd, addr, next, fn, data); - if (err) - break; - } while (pgd++, addr = next, addr != end); - mmu_notifier_invalidate_range_end(mm, start, end); - return err; -} -EXPORT_SYMBOL_GPL(apply_to_page_range); - -/* - * handle_pte_fault chooses page fault handler according to an entry - * which was read non-atomically. Before making any commitment, on - * those architectures or configurations (e.g. i386 with PAE) which - * might give a mix of unmatched parts, do_swap_page and do_file_page - * must check under lock before unmapping the pte and proceeding - * (but do_wp_page is only called after already making such a check; - * and do_anonymous_page and do_no_page can safely check later on). - */ -static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, - pte_t *page_table, pte_t orig_pte) -{ - int same = 1; -#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) - if (sizeof(pte_t) > sizeof(unsigned long)) { - spinlock_t *ptl = pte_lockptr(mm, pmd); - spin_lock(ptl); - same = pte_same(*page_table, orig_pte); - spin_unlock(ptl); - } -#endif - pte_unmap(page_table); - return same; -} - -/* - * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when - * servicing faults for write access. In the normal case, do always want - * pte_mkwrite. But get_user_pages can cause write faults for mappings - * that do not have writing enabled, when used by access_process_vm. - */ -static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) -{ - if (likely(vma->vm_flags & VM_WRITE)) - pte = pte_mkwrite(pte); - return pte; -} - -static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) -{ - /* - * If the source page was a PFN mapping, we don't have - * a "struct page" for it. We do a best-effort copy by - * just copying from the original user address. If that - * fails, we just zero-fill it. Live with it. - */ - if (unlikely(!src)) { - void *kaddr = kmap_atomic(dst, KM_USER0); - void __user *uaddr = (void __user *)(va & PAGE_MASK); - - /* - * This really shouldn't fail, because the page is there - * in the page tables. But it might just be unreadable, - * in which case we just give up and fill the result with - * zeroes. - */ - if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) - memset(kaddr, 0, PAGE_SIZE); - kunmap_atomic(kaddr, KM_USER0); - flush_dcache_page(dst); - } else - copy_user_highpage(dst, src, va, vma); -} - -/* - * This routine handles present pages, when users try to write - * to a shared page. It is done by copying the page to a new address - * and decrementing the shared-page counter for the old page. - * - * Note that this routine assumes that the protection checks have been - * done by the caller (the low-level page fault routine in most cases). - * Thus we can safely just mark it writable once we've done any necessary - * COW. - * - * We also mark the page dirty at this point even though the page will - * change only once the write actually happens. This avoids a few races, - * and potentially makes it more efficient. - * - * We enter with non-exclusive mmap_sem (to exclude vma changes, - * but allow concurrent faults), with pte both mapped and locked. - * We return with mmap_sem still held, but pte unmapped and unlocked. - */ -static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, - unsigned long address, pte_t *page_table, pmd_t *pmd, - spinlock_t *ptl, pte_t orig_pte) -{ - struct page *old_page, *new_page; - pte_t entry; - int reuse = 0, ret = 0; - int page_mkwrite = 0; - struct page *dirty_page = NULL; - - old_page = vm_normal_page(vma, address, orig_pte); - if (!old_page) { - /* - * VM_MIXEDMAP !pfn_valid() case - * - * We should not cow pages in a shared writeable mapping. - * Just mark the pages writable as we can't do any dirty - * accounting on raw pfn maps. - */ - if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == - (VM_WRITE|VM_SHARED)) - goto reuse; - goto gotten; - } - - /* - * Take out anonymous pages first, anonymous shared vmas are - * not dirty accountable. - */ - if (PageAnon(old_page)) { - if (!trylock_page(old_page)) { - page_cache_get(old_page); - pte_unmap_unlock(page_table, ptl); - lock_page(old_page); - page_table = pte_offset_map_lock(mm, pmd, address, - &ptl); - if (!pte_same(*page_table, orig_pte)) { - unlock_page(old_page); - page_cache_release(old_page); - goto unlock; - } - page_cache_release(old_page); - } - reuse = reuse_swap_page(old_page); - unlock_page(old_page); - } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == - (VM_WRITE|VM_SHARED))) { - /* - * Only catch write-faults on shared writable pages, - * read-only shared pages can get COWed by - * get_user_pages(.write=1, .force=1). - */ - if (vma->vm_ops && vma->vm_ops->page_mkwrite) { - /* - * Notify the address space that the page is about to - * become writable so that it can prohibit this or wait - * for the page to get into an appropriate state. - * - * We do this without the lock held, so that it can - * sleep if it needs to. - */ - page_cache_get(old_page); - pte_unmap_unlock(page_table, ptl); - - if (vma->vm_ops->page_mkwrite(vma, old_page) < 0) - goto unwritable_page; - - /* - * Since we dropped the lock we need to revalidate - * the PTE as someone else may have changed it. If - * they did, we just return, as we can count on the - * MMU to tell us if they didn't also make it writable. - */ - page_table = pte_offset_map_lock(mm, pmd, address, - &ptl); - page_cache_release(old_page); - if (!pte_same(*page_table, orig_pte)) - goto unlock; - - page_mkwrite = 1; - } - dirty_page = old_page; - get_page(dirty_page); - reuse = 1; - } - - if (reuse) { -reuse: - flush_cache_page(vma, address, pte_pfn(orig_pte)); - entry = pte_mkyoung(orig_pte); - entry = maybe_mkwrite(pte_mkdirty(entry), vma); - if (ptep_set_access_flags(vma, address, page_table, entry,1)) - update_mmu_cache(vma, address, entry); - ret |= VM_FAULT_WRITE; - goto unlock; - } - - /* - * Ok, we need to copy. Oh, well.. - */ - page_cache_get(old_page); -gotten: - pte_unmap_unlock(page_table, ptl); - - if (unlikely(anon_vma_prepare(vma))) - goto oom; - VM_BUG_ON(old_page == ZERO_PAGE(0)); - new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); - if (!new_page) - goto oom; - /* - * Don't let another task, with possibly unlocked vma, - * keep the mlocked page. - */ - if ((vma->vm_flags & VM_LOCKED) && old_page) { - lock_page(old_page); /* for LRU manipulation */ - clear_page_mlock(old_page); - unlock_page(old_page); - } - cow_user_page(new_page, old_page, address, vma); - __SetPageUptodate(new_page); - - if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)) - goto oom_free_new; - - /* - * Re-check the pte - we dropped the lock - */ - page_table = pte_offset_map_lock(mm, pmd, address, &ptl); - if (likely(pte_same(*page_table, orig_pte))) { - if (old_page) { - if (!PageAnon(old_page)) { - dec_mm_counter(mm, file_rss); - inc_mm_counter(mm, anon_rss); - } - } else - inc_mm_counter(mm, anon_rss); - flush_cache_page(vma, address, pte_pfn(orig_pte)); - entry = mk_pte(new_page, vma->vm_page_prot); - entry = maybe_mkwrite(pte_mkdirty(entry), vma); - /* - * Clear the pte entry and flush it first, before updating the - * pte with the new entry. This will avoid a race condition - * seen in the presence of one thread doing SMC and another - * thread doing COW. - */ - ptep_clear_flush_notify(vma, address, page_table); - page_add_new_anon_rmap(new_page, vma, address); - set_pte_at(mm, address, page_table, entry); - update_mmu_cache(vma, address, entry); - if (old_page) { - /* - * Only after switching the pte to the new page may - * we remove the mapcount here. Otherwise another - * process may come and find the rmap count decremented - * before the pte is switched to the new page, and - * "reuse" the old page writing into it while our pte - * here still points into it and can be read by other - * threads. - * - * The critical issue is to order this - * page_remove_rmap with the ptp_clear_flush above. - * Those stores are ordered by (if nothing else,) - * the barrier present in the atomic_add_negative - * in page_remove_rmap. - * - * Then the TLB flush in ptep_clear_flush ensures that - * no process can access the old page before the - * decremented mapcount is visible. And the old page - * cannot be reused until after the decremented - * mapcount is visible. So transitively, TLBs to - * old page will be flushed before it can be reused. - */ - page_remove_rmap(old_page); - } - - /* Free the old page.. */ - new_page = old_page; - ret |= VM_FAULT_WRITE; - } else - mem_cgroup_uncharge_page(new_page); - - if (new_page) - page_cache_release(new_page); - if (old_page) - page_cache_release(old_page); -unlock: - pte_unmap_unlock(page_table, ptl); - if (dirty_page) { - if (vma->vm_file) - file_update_time(vma->vm_file); - - /* - * Yes, Virginia, this is actually required to prevent a race - * with clear_page_dirty_for_io() from clearing the page dirty - * bit after it clear all dirty ptes, but before a racing - * do_wp_page installs a dirty pte. - * - * do_no_page is protected similarly. - */ - wait_on_page_locked(dirty_page); - set_page_dirty_balance(dirty_page, page_mkwrite); - put_page(dirty_page); - } - return ret; -oom_free_new: - page_cache_release(new_page); -oom: - if (old_page) - page_cache_release(old_page); - return VM_FAULT_OOM; - -unwritable_page: - page_cache_release(old_page); - return VM_FAULT_SIGBUS; -} - -/* - * Helper functions for unmap_mapping_range(). - * - * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __ - * - * We have to restart searching the prio_tree whenever we drop the lock, - * since the iterator is only valid while the lock is held, and anyway - * a later vma might be split and reinserted earlier while lock dropped. - * - * The list of nonlinear vmas could be handled more efficiently, using - * a placeholder, but handle it in the same way until a need is shown. - * It is important to search the prio_tree before nonlinear list: a vma - * may become nonlinear and be shifted from prio_tree to nonlinear list - * while the lock is dropped; but never shifted from list to prio_tree. - * - * In order to make forward progress despite restarting the search, - * vm_truncate_count is used to mark a vma as now dealt with, so we can - * quickly skip it next time around. Since the prio_tree search only - * shows us those vmas affected by unmapping the range in question, we - * can't efficiently keep all vmas in step with mapping->truncate_count: - * so instead reset them all whenever it wraps back to 0 (then go to 1). - * mapping->truncate_count and vma->vm_truncate_count are protected by - * i_mmap_lock. - * - * In order to make forward progress despite repeatedly restarting some - * large vma, note the restart_addr from unmap_vmas when it breaks out: - * and restart from that address when we reach that vma again. It might - * have been split or merged, shrunk or extended, but never shifted: so - * restart_addr remains valid so long as it remains in the vma's range. - * unmap_mapping_range forces truncate_count to leap over page-aligned - * values so we can save vma's restart_addr in its truncate_count field. - */ -#define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK)) - -static void reset_vma_truncate_counts(struct address_space *mapping) -{ - struct vm_area_struct *vma; - struct prio_tree_iter iter; - - vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX) - vma->vm_truncate_count = 0; - list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list) - vma->vm_truncate_count = 0; -} - -static int unmap_mapping_range_vma(struct vm_area_struct *vma, - unsigned long start_addr, unsigned long end_addr, - struct zap_details *details) -{ - unsigned long restart_addr; - int need_break; - - /* - * files that support invalidating or truncating portions of the - * file from under mmaped areas must have their ->fault function - * return a locked page (and set VM_FAULT_LOCKED in the return). - * This provides synchronisation against concurrent unmapping here. - */ - -again: - restart_addr = vma->vm_truncate_count; - if (is_restart_addr(restart_addr) && start_addr < restart_addr) { - start_addr = restart_addr; - if (start_addr >= end_addr) { - /* Top of vma has been split off since last time */ - vma->vm_truncate_count = details->truncate_count; - return 0; - } - } - - restart_addr = zap_page_range(vma, start_addr, - end_addr - start_addr, details); - need_break = need_resched() || spin_needbreak(details->i_mmap_lock); - - if (restart_addr >= end_addr) { - /* We have now completed this vma: mark it so */ - vma->vm_truncate_count = details->truncate_count; - if (!need_break) - return 0; - } else { - /* Note restart_addr in vma's truncate_count field */ - vma->vm_truncate_count = restart_addr; - if (!need_break) - goto again; - } - - spin_unlock(details->i_mmap_lock); - cond_resched(); - spin_lock(details->i_mmap_lock); - return -EINTR; -} - -static inline void unmap_mapping_range_tree(struct prio_tree_root *root, - struct zap_details *details) -{ - struct vm_area_struct *vma; - struct prio_tree_iter iter; - pgoff_t vba, vea, zba, zea; - -restart: - vma_prio_tree_foreach(vma, &iter, root, - details->first_index, details->last_index) { - /* Skip quickly over those we have already dealt with */ - if (vma->vm_truncate_count == details->truncate_count) - continue; - - vba = vma->vm_pgoff; - vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1; - /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */ - zba = details->first_index; - if (zba < vba) - zba = vba; - zea = details->last_index; - if (zea > vea) - zea = vea; - - if (unmap_mapping_range_vma(vma, - ((zba - vba) << PAGE_SHIFT) + vma->vm_start, - ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, - details) < 0) - goto restart; - } -} - -static inline void unmap_mapping_range_list(struct list_head *head, - struct zap_details *details) -{ - struct vm_area_struct *vma; - - /* - * In nonlinear VMAs there is no correspondence between virtual address - * offset and file offset. So we must perform an exhaustive search - * across *all* the pages in each nonlinear VMA, not just the pages - * whose virtual address lies outside the file truncation point. - */ -restart: - list_for_each_entry(vma, head, shared.vm_set.list) { - /* Skip quickly over those we have already dealt with */ - if (vma->vm_truncate_count == details->truncate_count) - continue; - details->nonlinear_vma = vma; - if (unmap_mapping_range_vma(vma, vma->vm_start, - vma->vm_end, details) < 0) - goto restart; - } -} - -/** - * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file. - * @mapping: the address space containing mmaps to be unmapped. - * @holebegin: byte in first page to unmap, relative to the start of - * the underlying file. This will be rounded down to a PAGE_SIZE - * boundary. Note that this is different from vmtruncate(), which - * must keep the partial page. In contrast, we must get rid of - * partial pages. - * @holelen: size of prospective hole in bytes. This will be rounded - * up to a PAGE_SIZE boundary. A holelen of zero truncates to the - * end of the file. - * @even_cows: 1 when truncating a file, unmap even private COWed pages; - * but 0 when invalidating pagecache, don't throw away private data. - */ -void unmap_mapping_range(struct address_space *mapping, - loff_t const holebegin, loff_t const holelen, int even_cows) -{ - struct zap_details details; - pgoff_t hba = holebegin >> PAGE_SHIFT; - pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; - - /* Check for overflow. */ - if (sizeof(holelen) > sizeof(hlen)) { - long long holeend = - (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; - if (holeend & ~(long long)ULONG_MAX) - hlen = ULONG_MAX - hba + 1; - } - - details.check_mapping = even_cows? NULL: mapping; - details.nonlinear_vma = NULL; - details.first_index = hba; - details.last_index = hba + hlen - 1; - if (details.last_index < details.first_index) - details.last_index = ULONG_MAX; - details.i_mmap_lock = &mapping->i_mmap_lock; - - spin_lock(&mapping->i_mmap_lock); - - /* Protect against endless unmapping loops */ - mapping->truncate_count++; - if (unlikely(is_restart_addr(mapping->truncate_count))) { - if (mapping->truncate_count == 0) - reset_vma_truncate_counts(mapping); - mapping->truncate_count++; - } - details.truncate_count = mapping->truncate_count; - - if (unlikely(!prio_tree_empty(&mapping->i_mmap))) - unmap_mapping_range_tree(&mapping->i_mmap, &details); - if (unlikely(!list_empty(&mapping->i_mmap_nonlinear))) - unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details); - spin_unlock(&mapping->i_mmap_lock); -} -EXPORT_SYMBOL(unmap_mapping_range); - -/** - * vmtruncate - unmap mappings "freed" by truncate() syscall - * @inode: inode of the file used - * @offset: file offset to start truncating - * - * NOTE! We have to be ready to update the memory sharing - * between the file and the memory map for a potential last - * incomplete page. Ugly, but necessary. - */ -int vmtruncate(struct inode * inode, loff_t offset) -{ - if (inode->i_size < offset) { - unsigned long limit; - - limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur; - if (limit != RLIM_INFINITY && offset > limit) - goto out_sig; - if (offset > inode->i_sb->s_maxbytes) - goto out_big; - i_size_write(inode, offset); - } else { - struct address_space *mapping = inode->i_mapping; - - /* - * truncation of in-use swapfiles is disallowed - it would - * cause subsequent swapout to scribble on the now-freed - * blocks. - */ - if (IS_SWAPFILE(inode)) - return -ETXTBSY; - i_size_write(inode, offset); - - /* - * unmap_mapping_range is called twice, first simply for - * efficiency so that truncate_inode_pages does fewer - * single-page unmaps. However after this first call, and - * before truncate_inode_pages finishes, it is possible for - * private pages to be COWed, which remain after - * truncate_inode_pages finishes, hence the second - * unmap_mapping_range call must be made for correctness. - */ - unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1); - truncate_inode_pages(mapping, offset); - unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1); - } - - if (inode->i_op->truncate) - inode->i_op->truncate(inode); - return 0; - -out_sig: - send_sig(SIGXFSZ, current, 0); -out_big: - return -EFBIG; -} -EXPORT_SYMBOL(vmtruncate); - -int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end) -{ - struct address_space *mapping = inode->i_mapping; - - /* - * If the underlying filesystem is not going to provide - * a way to truncate a range of blocks (punch a hole) - - * we should return failure right now. - */ - if (!inode->i_op->truncate_range) - return -ENOSYS; - - mutex_lock(&inode->i_mutex); - down_write(&inode->i_alloc_sem); - unmap_mapping_range(mapping, offset, (end - offset), 1); - truncate_inode_pages_range(mapping, offset, end); - unmap_mapping_range(mapping, offset, (end - offset), 1); - inode->i_op->truncate_range(inode, offset, end); - up_write(&inode->i_alloc_sem); - mutex_unlock(&inode->i_mutex); - - return 0; -} - -/* - * We enter with non-exclusive mmap_sem (to exclude vma changes, - * but allow concurrent faults), and pte mapped but not yet locked. - * We return with mmap_sem still held, but pte unmapped and unlocked. - */ -static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma, - unsigned long address, pte_t *page_table, pmd_t *pmd, - int write_access, pte_t orig_pte) -{ - spinlock_t *ptl; - struct page *page; - swp_entry_t entry; - pte_t pte; - struct mem_cgroup *ptr = NULL; - int ret = 0; - - if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) - goto out; - - entry = pte_to_swp_entry(orig_pte); - if (is_migration_entry(entry)) { - migration_entry_wait(mm, pmd, address); - goto out; - } - delayacct_set_flag(DELAYACCT_PF_SWAPIN); - page = lookup_swap_cache(entry); - if (!page) { - grab_swap_token(); /* Contend for token _before_ read-in */ - page = swapin_readahead(entry, - GFP_HIGHUSER_MOVABLE, vma, address); - if (!page) { - /* - * Back out if somebody else faulted in this pte - * while we released the pte lock. - */ - page_table = pte_offset_map_lock(mm, pmd, address, &ptl); - if (likely(pte_same(*page_table, orig_pte))) - ret = VM_FAULT_OOM; - delayacct_clear_flag(DELAYACCT_PF_SWAPIN); - goto unlock; - } - - /* Had to read the page from swap area: Major fault */ - ret = VM_FAULT_MAJOR; - count_vm_event(PGMAJFAULT); - } - - mark_page_accessed(page); - - lock_page(page); - delayacct_clear_flag(DELAYACCT_PF_SWAPIN); - - if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) { - ret = VM_FAULT_OOM; - unlock_page(page); - goto out; - } - - /* - * Back out if somebody else already faulted in this pte. - */ - page_table = pte_offset_map_lock(mm, pmd, address, &ptl); - if (unlikely(!pte_same(*page_table, orig_pte))) - goto out_nomap; - - if (unlikely(!PageUptodate(page))) { - ret = VM_FAULT_SIGBUS; - goto out_nomap; - } - - /* - * The page isn't present yet, go ahead with the fault. - * - * Be careful about the sequence of operations here. - * To get its accounting right, reuse_swap_page() must be called - * while the page is counted on swap but not yet in mapcount i.e. - * before page_add_anon_rmap() and swap_free(); try_to_free_swap() - * must be called after the swap_free(), or it will never succeed. - * Because delete_from_swap_page() may be called by reuse_swap_page(), - * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry - * in page->private. In this case, a record in swap_cgroup is silently - * discarded at swap_free(). - */ - - inc_mm_counter(mm, anon_rss); - pte = mk_pte(page, vma->vm_page_prot); - if (write_access && reuse_swap_page(page)) { - pte = maybe_mkwrite(pte_mkdirty(pte), vma); - write_access = 0; - } - flush_icache_page(vma, page); - set_pte_at(mm, address, page_table, pte); - page_add_anon_rmap(page, vma, address); - /* It's better to call commit-charge after rmap is established */ - mem_cgroup_commit_charge_swapin(page, ptr); - - swap_free(entry); - if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) - try_to_free_swap(page); - unlock_page(page); - - if (write_access) { - ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte); - if (ret & VM_FAULT_ERROR) - ret &= VM_FAULT_ERROR; - goto out; - } - - /* No need to invalidate - it was non-present before */ - update_mmu_cache(vma, address, pte); -unlock: - pte_unmap_unlock(page_table, ptl); -out: - return ret; -out_nomap: - mem_cgroup_cancel_charge_swapin(ptr); - pte_unmap_unlock(page_table, ptl); - unlock_page(page); - page_cache_release(page); - return ret; -} - -/* - * We enter with non-exclusive mmap_sem (to exclude vma changes, - * but allow concurrent faults), and pte mapped but not yet locked. - * We return with mmap_sem still held, but pte unmapped and unlocked. - */ -static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, - unsigned long address, pte_t *page_table, pmd_t *pmd, - int write_access) -{ - struct page *page; - spinlock_t *ptl; - pte_t entry; - - /* Allocate our own private page. */ - pte_unmap(page_table); - - if (unlikely(anon_vma_prepare(vma))) - goto oom; - page = alloc_zeroed_user_highpage_movable(vma, address); - if (!page) - goto oom; - __SetPageUptodate(page); - - if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) - goto oom_free_page; - - entry = mk_pte(page, vma->vm_page_prot); - entry = maybe_mkwrite(pte_mkdirty(entry), vma); - - page_table = pte_offset_map_lock(mm, pmd, address, &ptl); - if (!pte_none(*page_table)) - goto release; - inc_mm_counter(mm, anon_rss); - page_add_new_anon_rmap(page, vma, address); - set_pte_at(mm, address, page_table, entry); - - /* No need to invalidate - it was non-present before */ - update_mmu_cache(vma, address, entry); -unlock: - pte_unmap_unlock(page_table, ptl); - return 0; -release: - mem_cgroup_uncharge_page(page); - page_cache_release(page); - goto unlock; -oom_free_page: - page_cache_release(page); -oom: - return VM_FAULT_OOM; -} - -/* - * __do_fault() tries to create a new page mapping. It aggressively - * tries to share with existing pages, but makes a separate copy if - * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid - * the next page fault. - * - * As this is called only for pages that do not currently exist, we - * do not need to flush old virtual caches or the TLB. - * - * We enter with non-exclusive mmap_sem (to exclude vma changes, - * but allow concurrent faults), and pte neither mapped nor locked. - * We return with mmap_sem still held, but pte unmapped and unlocked. - */ -static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma, - unsigned long address, pmd_t *pmd, - pgoff_t pgoff, unsigned int flags, pte_t orig_pte) -{ - pte_t *page_table; - spinlock_t *ptl; - struct page *page; - pte_t entry; - int anon = 0; - int charged = 0; - struct page *dirty_page = NULL; - struct vm_fault vmf; - int ret; - int page_mkwrite = 0; - - vmf.virtual_address = (void __user *)(address & PAGE_MASK); - vmf.pgoff = pgoff; - vmf.flags = flags; - vmf.page = NULL; - - ret = vma->vm_ops->fault(vma, &vmf); - if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) - return ret; - - /* - * For consistency in subsequent calls, make the faulted page always - * locked. - */ - if (unlikely(!(ret & VM_FAULT_LOCKED))) - lock_page(vmf.page); - else - VM_BUG_ON(!PageLocked(vmf.page)); - - /* - * Should we do an early C-O-W break? - */ - page = vmf.page; - if (flags & FAULT_FLAG_WRITE) { - if (!(vma->vm_flags & VM_SHARED)) { - anon = 1; - if (unlikely(anon_vma_prepare(vma))) { - ret = VM_FAULT_OOM; - goto out; - } - page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, - vma, address); - if (!page) { - ret = VM_FAULT_OOM; - goto out; - } - if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) { - ret = VM_FAULT_OOM; - page_cache_release(page); - goto out; - } - charged = 1; - /* - * Don't let another task, with possibly unlocked vma, - * keep the mlocked page. - */ - if (vma->vm_flags & VM_LOCKED) - clear_page_mlock(vmf.page); - copy_user_highpage(page, vmf.page, address, vma); - __SetPageUptodate(page); - } else { - /* - * If the page will be shareable, see if the backing - * address space wants to know that the page is about - * to become writable - */ - if (vma->vm_ops->page_mkwrite) { - unlock_page(page); - if (vma->vm_ops->page_mkwrite(vma, page) < 0) { - ret = VM_FAULT_SIGBUS; - anon = 1; /* no anon but release vmf.page */ - goto out_unlocked; - } - lock_page(page); - /* - * XXX: this is not quite right (racy vs - * invalidate) to unlock and relock the page - * like this, however a better fix requires - * reworking page_mkwrite locking API, which - * is better done later. - */ - if (!page->mapping) { - ret = 0; - anon = 1; /* no anon but release vmf.page */ - goto out; - } - page_mkwrite = 1; - } - } - - } - - page_table = pte_offset_map_lock(mm, pmd, address, &ptl); - - /* - * This silly early PAGE_DIRTY setting removes a race - * due to the bad i386 page protection. But it's valid - * for other architectures too. - * - * Note that if write_access is true, we either now have - * an exclusive copy of the page, or this is a shared mapping, - * so we can make it writable and dirty to avoid having to - * handle that later. - */ - /* Only go through if we didn't race with anybody else... */ - if (likely(pte_same(*page_table, orig_pte))) { - flush_icache_page(vma, page); - entry = mk_pte(page, vma->vm_page_prot); - if (flags & FAULT_FLAG_WRITE) - entry = maybe_mkwrite(pte_mkdirty(entry), vma); - if (anon) { - inc_mm_counter(mm, anon_rss); - page_add_new_anon_rmap(page, vma, address); - } else { - inc_mm_counter(mm, file_rss); - page_add_file_rmap(page); - if (flags & FAULT_FLAG_WRITE) { - dirty_page = page; - get_page(dirty_page); - } - } - set_pte_at(mm, address, page_table, entry); - - /* no need to invalidate: a not-present page won't be cached */ - update_mmu_cache(vma, address, entry); - } else { - if (charged) - mem_cgroup_uncharge_page(page); - if (anon) - page_cache_release(page); - else - anon = 1; /* no anon but release faulted_page */ - } - - pte_unmap_unlock(page_table, ptl); - -out: - unlock_page(vmf.page); -out_unlocked: - if (anon) - page_cache_release(vmf.page); - else if (dirty_page) { - if (vma->vm_file) - file_update_time(vma->vm_file); - - set_page_dirty_balance(dirty_page, page_mkwrite); - put_page(dirty_page); - } - - return ret; -} - -static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma, - unsigned long address, pte_t *page_table, pmd_t *pmd, - int write_access, pte_t orig_pte) -{ - pgoff_t pgoff = (((address & PAGE_MASK) - - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; - unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0); - - pte_unmap(page_table); - return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); -} - -/* - * Fault of a previously existing named mapping. Repopulate the pte - * from the encoded file_pte if possible. This enables swappable - * nonlinear vmas. - * - * We enter with non-exclusive mmap_sem (to exclude vma changes, - * but allow concurrent faults), and pte mapped but not yet locked. - * We return with mmap_sem still held, but pte unmapped and unlocked. - */ -static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma, - unsigned long address, pte_t *page_table, pmd_t *pmd, - int write_access, pte_t orig_pte) -{ - unsigned int flags = FAULT_FLAG_NONLINEAR | - (write_access ? FAULT_FLAG_WRITE : 0); - pgoff_t pgoff; - - if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) - return 0; - - if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) { - /* - * Page table corrupted: show pte and kill process. - */ - print_bad_pte(vma, address, orig_pte, NULL); - return VM_FAULT_OOM; - } - - pgoff = pte_to_pgoff(orig_pte); - return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); -} - -/* - * These routines also need to handle stuff like marking pages dirty - * and/or accessed for architectures that don't do it in hardware (most - * RISC architectures). The early dirtying is also good on the i386. - * - * There is also a hook called "update_mmu_cache()" that architectures - * with external mmu caches can use to update those (ie the Sparc or - * PowerPC hashed page tables that act as extended TLBs). - * - * We enter with non-exclusive mmap_sem (to exclude vma changes, - * but allow concurrent faults), and pte mapped but not yet locked. - * We return with mmap_sem still held, but pte unmapped and unlocked. - */ -static inline int handle_pte_fault(struct mm_struct *mm, - struct vm_area_struct *vma, unsigned long address, - pte_t *pte, pmd_t *pmd, int write_access) -{ - pte_t entry; - spinlock_t *ptl; - - entry = *pte; - if (!pte_present(entry)) { - if (pte_none(entry)) { - if (vma->vm_ops) { - if (likely(vma->vm_ops->fault)) - return do_linear_fault(mm, vma, address, - pte, pmd, write_access, entry); - } - return do_anonymous_page(mm, vma, address, - pte, pmd, write_access); - } - if (pte_file(entry)) - return do_nonlinear_fault(mm, vma, address, - pte, pmd, write_access, entry); - return do_swap_page(mm, vma, address, - pte, pmd, write_access, entry); - } - - ptl = pte_lockptr(mm, pmd); - spin_lock(ptl); - if (unlikely(!pte_same(*pte, entry))) - goto unlock; - if (write_access) { - if (!pte_write(entry)) - return do_wp_page(mm, vma, address, - pte, pmd, ptl, entry); - entry = pte_mkdirty(entry); - } - entry = pte_mkyoung(entry); - if (ptep_set_access_flags(vma, address, pte, entry, write_access)) { - update_mmu_cache(vma, address, entry); - } else { - /* - * This is needed only for protection faults but the arch code - * is not yet telling us if this is a protection fault or not. - * This still avoids useless tlb flushes for .text page faults - * with threads. - */ - if (write_access) - flush_tlb_page(vma, address); - } -unlock: - pte_unmap_unlock(pte, ptl); - return 0; -} - -/* - * By the time we get here, we already hold the mm semaphore - */ -int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, - unsigned long address, int write_access) -{ - pgd_t *pgd; - pud_t *pud; - pmd_t *pmd; - pte_t *pte; - - __set_current_state(TASK_RUNNING); - - count_vm_event(PGFAULT); - - if (unlikely(is_vm_hugetlb_page(vma))) - return hugetlb_fault(mm, vma, address, write_access); - - pgd = pgd_offset(mm, address); - pud = pud_alloc(mm, pgd, address); - if (!pud) - return VM_FAULT_OOM; - pmd = pmd_alloc(mm, pud, address); - if (!pmd) - return VM_FAULT_OOM; - pte = pte_alloc_map(mm, pmd, address); - if (!pte) - return VM_FAULT_OOM; - - return handle_pte_fault(mm, vma, address, pte, pmd, write_access); -} - -#ifndef __PAGETABLE_PUD_FOLDED -/* - * Allocate page upper directory. - * We've already handled the fast-path in-line. - */ -int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) -{ - pud_t *new = pud_alloc_one(mm, address); - if (!new) - return -ENOMEM; - - smp_wmb(); /* See comment in __pte_alloc */ - - spin_lock(&mm->page_table_lock); - if (pgd_present(*pgd)) /* Another has populated it */ - pud_free(mm, new); - else - pgd_populate(mm, pgd, new); - spin_unlock(&mm->page_table_lock); - return 0; -} -#endif /* __PAGETABLE_PUD_FOLDED */ - -#ifndef __PAGETABLE_PMD_FOLDED -/* - * Allocate page middle directory. - * We've already handled the fast-path in-line. - */ -int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) -{ - pmd_t *new = pmd_alloc_one(mm, address); - if (!new) - return -ENOMEM; - - smp_wmb(); /* See comment in __pte_alloc */ - - spin_lock(&mm->page_table_lock); -#ifndef __ARCH_HAS_4LEVEL_HACK - if (pud_present(*pud)) /* Another has populated it */ - pmd_free(mm, new); - else - pud_populate(mm, pud, new); -#else - if (pgd_present(*pud)) /* Another has populated it */ - pmd_free(mm, new); - else - pgd_populate(mm, pud, new); -#endif /* __ARCH_HAS_4LEVEL_HACK */ - spin_unlock(&mm->page_table_lock); - return 0; -} -#endif /* __PAGETABLE_PMD_FOLDED */ - -int make_pages_present(unsigned long addr, unsigned long end) -{ - int ret, len, write; - struct vm_area_struct * vma; - - vma = find_vma(current->mm, addr); - if (!vma) - return -ENOMEM; - write = (vma->vm_flags & VM_WRITE) != 0; - BUG_ON(addr >= end); - BUG_ON(end > vma->vm_end); - len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE; - ret = get_user_pages(current, current->mm, addr, - len, write, 0, NULL, NULL); - if (ret < 0) - return ret; - return ret == len ? 0 : -EFAULT; -} - -#if !defined(__HAVE_ARCH_GATE_AREA) - -#if defined(AT_SYSINFO_EHDR) -static struct vm_area_struct gate_vma; - -static int __init gate_vma_init(void) -{ - gate_vma.vm_mm = NULL; - gate_vma.vm_start = FIXADDR_USER_START; - gate_vma.vm_end = FIXADDR_USER_END; - gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC; - gate_vma.vm_page_prot = __P101; - /* - * Make sure the vDSO gets into every core dump. - * Dumping its contents makes post-mortem fully interpretable later - * without matching up the same kernel and hardware config to see - * what PC values meant. - */ - gate_vma.vm_flags |= VM_ALWAYSDUMP; - return 0; -} -__initcall(gate_vma_init); -#endif - -struct vm_area_struct *get_gate_vma(struct task_struct *tsk) -{ -#ifdef AT_SYSINFO_EHDR - return &gate_vma; -#else - return NULL; -#endif -} - -int in_gate_area_no_task(unsigned long addr) -{ -#ifdef AT_SYSINFO_EHDR - if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END)) - return 1; -#endif - return 0; -} - -#endif /* __HAVE_ARCH_GATE_AREA */ - -#ifdef CONFIG_HAVE_IOREMAP_PROT -int follow_phys(struct vm_area_struct *vma, - unsigned long address, unsigned int flags, - unsigned long *prot, resource_size_t *phys) -{ - pgd_t *pgd; - pud_t *pud; - pmd_t *pmd; - pte_t *ptep, pte; - spinlock_t *ptl; - resource_size_t phys_addr = 0; - struct mm_struct *mm = vma->vm_mm; - int ret = -EINVAL; - - if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) - goto out; - - pgd = pgd_offset(mm, address); - if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) - goto out; - - pud = pud_offset(pgd, address); - if (pud_none(*pud) || unlikely(pud_bad(*pud))) - goto out; - - pmd = pmd_offset(pud, address); - if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) - goto out; - - /* We cannot handle huge page PFN maps. Luckily they don't exist. */ - if (pmd_huge(*pmd)) - goto out; - - ptep = pte_offset_map_lock(mm, pmd, address, &ptl); - if (!ptep) - goto out; - - pte = *ptep; - if (!pte_present(pte)) - goto unlock; - if ((flags & FOLL_WRITE) && !pte_write(pte)) - goto unlock; - phys_addr = pte_pfn(pte); - phys_addr <<= PAGE_SHIFT; /* Shift here to avoid overflow on PAE */ - - *prot = pgprot_val(pte_pgprot(pte)); - *phys = phys_addr; - ret = 0; - -unlock: - pte_unmap_unlock(ptep, ptl); -out: - return ret; -} - -int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, - void *buf, int len, int write) -{ - resource_size_t phys_addr; - unsigned long prot = 0; - void __iomem *maddr; - int offset = addr & (PAGE_SIZE-1); - - if (follow_phys(vma, addr, write, &prot, &phys_addr)) - return -EINVAL; - - maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot); - if (write) - memcpy_toio(maddr + offset, buf, len); - else - memcpy_fromio(buf, maddr + offset, len); - iounmap(maddr); - - return len; -} -#endif - -/* - * Access another process' address space. - * Source/target buffer must be kernel space, - * Do not walk the page table directly, use get_user_pages - */ -int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write) -{ - struct mm_struct *mm; - struct vm_area_struct *vma; - void *old_buf = buf; - - mm = get_task_mm(tsk); - if (!mm) - return 0; - - down_read(&mm->mmap_sem); - /* ignore errors, just check how much was successfully transferred */ - while (len) { - int bytes, ret, offset; - void *maddr; - struct page *page = NULL; - - ret = get_user_pages(tsk, mm, addr, 1, - write, 1, &page, &vma); - if (ret <= 0) { - /* - * Check if this is a VM_IO | VM_PFNMAP VMA, which - * we can access using slightly different code. - */ -#ifdef CONFIG_HAVE_IOREMAP_PROT - vma = find_vma(mm, addr); - if (!vma) - break; - if (vma->vm_ops && vma->vm_ops->access) - ret = vma->vm_ops->access(vma, addr, buf, - len, write); - if (ret <= 0) -#endif - break; - bytes = ret; - } else { - bytes = len; - offset = addr & (PAGE_SIZE-1); - if (bytes > PAGE_SIZE-offset) - bytes = PAGE_SIZE-offset; - - maddr = kmap(page); - if (write) { - copy_to_user_page(vma, page, addr, - maddr + offset, buf, bytes); - set_page_dirty_lock(page); - } else { - copy_from_user_page(vma, page, addr, - buf, maddr + offset, bytes); - } - kunmap(page); - page_cache_release(page); - } - len -= bytes; - buf += bytes; - addr += bytes; - } - up_read(&mm->mmap_sem); - mmput(mm); - - return buf - old_buf; -} - -/* - * Print the name of a VMA. - */ -void print_vma_addr(char *prefix, unsigned long ip) -{ - struct mm_struct *mm = current->mm; - struct vm_area_struct *vma; - - /* - * Do not print if we are in atomic - * contexts (in exception stacks, etc.): - */ - if (preempt_count()) - return; - - down_read(&mm->mmap_sem); - vma = find_vma(mm, ip); - if (vma && vma->vm_file) { - struct file *f = vma->vm_file; - char *buf = (char *)__get_free_page(GFP_KERNEL); - if (buf) { - char *p, *s; - - p = d_path(&f->f_path, buf, PAGE_SIZE); - if (IS_ERR(p)) - p = "?"; - s = strrchr(p, '/'); - if (s) - p = s+1; - printk("%s%s[%lx+%lx]", prefix, p, - vma->vm_start, - vma->vm_end - vma->vm_start); - free_page((unsigned long)buf); - } - } - up_read(¤t->mm->mmap_sem); -} - -#ifdef CONFIG_PROVE_LOCKING -void might_fault(void) -{ - /* - * Some code (nfs/sunrpc) uses socket ops on kernel memory while - * holding the mmap_sem, this is safe because kernel memory doesn't - * get paged out, therefore we'll never actually fault, and the - * below annotations will generate false positives. - */ - if (segment_eq(get_fs(), KERNEL_DS)) - return; - - might_sleep(); - /* - * it would be nicer only to annotate paths which are not under - * pagefault_disable, however that requires a larger audit and - * providing helpers like get_user_atomic. - */ - if (!in_atomic() && current->mm) - might_lock_read(¤t->mm->mmap_sem); -} -EXPORT_SYMBOL(might_fault); -#endif -#endif /* DDE_LINUX */ diff --git a/libdde_linux26/lib/src/mm/.svn/text-base/page-writeback.c.svn-base b/libdde_linux26/lib/src/mm/.svn/text-base/page-writeback.c.svn-base deleted file mode 100644 index 8a325e2a..00000000 --- a/libdde_linux26/lib/src/mm/.svn/text-base/page-writeback.c.svn-base +++ /dev/null @@ -1,1468 +0,0 @@ -/* - * mm/page-writeback.c - * - * Copyright (C) 2002, Linus Torvalds. - * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> - * - * Contains functions related to writing back dirty pages at the - * address_space level. - * - * 10Apr2002 Andrew Morton - * Initial version - */ - -#include <linux/kernel.h> -#include <linux/module.h> -#include <linux/spinlock.h> -#include <linux/fs.h> -#include <linux/mm.h> -#include <linux/swap.h> -#include <linux/slab.h> -#include <linux/pagemap.h> -#include <linux/writeback.h> -#include <linux/init.h> -#include <linux/backing-dev.h> -#include <linux/task_io_accounting_ops.h> -#include <linux/blkdev.h> -#include <linux/mpage.h> -#include <linux/rmap.h> -#include <linux/percpu.h> -#include <linux/notifier.h> -#include <linux/smp.h> -#include <linux/sysctl.h> -#include <linux/cpu.h> -#include <linux/syscalls.h> -#include <linux/buffer_head.h> -#include <linux/pagevec.h> - -/* - * The maximum number of pages to writeout in a single bdflush/kupdate - * operation. We do this so we don't hold I_SYNC against an inode for - * enormous amounts of time, which would block a userspace task which has - * been forced to throttle against that inode. Also, the code reevaluates - * the dirty each time it has written this many pages. - */ -#define MAX_WRITEBACK_PAGES 1024 - -/* - * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited - * will look to see if it needs to force writeback or throttling. - */ -static long ratelimit_pages = 32; - -/* - * When balance_dirty_pages decides that the caller needs to perform some - * non-background writeback, this is how many pages it will attempt to write. - * It should be somewhat larger than RATELIMIT_PAGES to ensure that reasonably - * large amounts of I/O are submitted. - */ -static inline long sync_writeback_pages(void) -{ - return ratelimit_pages + ratelimit_pages / 2; -} - -/* The following parameters are exported via /proc/sys/vm */ - -/* - * Start background writeback (via pdflush) at this percentage - */ -int dirty_background_ratio = 5; - -/* - * dirty_background_bytes starts at 0 (disabled) so that it is a function of - * dirty_background_ratio * the amount of dirtyable memory - */ -unsigned long dirty_background_bytes; - -/* - * free highmem will not be subtracted from the total free memory - * for calculating free ratios if vm_highmem_is_dirtyable is true - */ -int vm_highmem_is_dirtyable; - -/* - * The generator of dirty data starts writeback at this percentage - */ -int vm_dirty_ratio = 10; - -/* - * vm_dirty_bytes starts at 0 (disabled) so that it is a function of - * vm_dirty_ratio * the amount of dirtyable memory - */ -unsigned long vm_dirty_bytes; - -/* - * The interval between `kupdate'-style writebacks, in jiffies - */ -#ifndef DDE_LINUX -int dirty_writeback_interval = 5 * HZ; -#else -int dirty_writeback_interval = 1250; -#endif - -#ifndef DDE_LINUX -/* - * The longest number of jiffies for which data is allowed to remain dirty - */ -int dirty_expire_interval = 30 * HZ; -#else -int dirty_expire_interval = 7500; -#endif - -/* - * Flag that makes the machine dump writes/reads and block dirtyings. - */ -int block_dump; - -/* - * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies: - * a full sync is triggered after this time elapses without any disk activity. - */ -int laptop_mode; - -EXPORT_SYMBOL(laptop_mode); - -/* End of sysctl-exported parameters */ - - -static void background_writeout(unsigned long _min_pages); - -/* - * Scale the writeback cache size proportional to the relative writeout speeds. - * - * We do this by keeping a floating proportion between BDIs, based on page - * writeback completions [end_page_writeback()]. Those devices that write out - * pages fastest will get the larger share, while the slower will get a smaller - * share. - * - * We use page writeout completions because we are interested in getting rid of - * dirty pages. Having them written out is the primary goal. - * - * We introduce a concept of time, a period over which we measure these events, - * because demand can/will vary over time. The length of this period itself is - * measured in page writeback completions. - * - */ -static struct prop_descriptor vm_completions; -static struct prop_descriptor vm_dirties; - -/* - * couple the period to the dirty_ratio: - * - * period/2 ~ roundup_pow_of_two(dirty limit) - */ -static int calc_period_shift(void) -{ - unsigned long dirty_total; - - if (vm_dirty_bytes) - dirty_total = vm_dirty_bytes / PAGE_SIZE; - else - dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) / - 100; - return 2 + ilog2(dirty_total - 1); -} - -/* - * update the period when the dirty threshold changes. - */ -static void update_completion_period(void) -{ - int shift = calc_period_shift(); - prop_change_shift(&vm_completions, shift); - prop_change_shift(&vm_dirties, shift); -} - -int dirty_background_ratio_handler(struct ctl_table *table, int write, - struct file *filp, void __user *buffer, size_t *lenp, - loff_t *ppos) -{ - int ret; - - ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos); - if (ret == 0 && write) - dirty_background_bytes = 0; - return ret; -} - -int dirty_background_bytes_handler(struct ctl_table *table, int write, - struct file *filp, void __user *buffer, size_t *lenp, - loff_t *ppos) -{ - int ret; - - ret = proc_doulongvec_minmax(table, write, filp, buffer, lenp, ppos); - if (ret == 0 && write) - dirty_background_ratio = 0; - return ret; -} - -int dirty_ratio_handler(struct ctl_table *table, int write, - struct file *filp, void __user *buffer, size_t *lenp, - loff_t *ppos) -{ - int old_ratio = vm_dirty_ratio; - int ret; - - ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos); - if (ret == 0 && write && vm_dirty_ratio != old_ratio) { - update_completion_period(); - vm_dirty_bytes = 0; - } - return ret; -} - - -int dirty_bytes_handler(struct ctl_table *table, int write, - struct file *filp, void __user *buffer, size_t *lenp, - loff_t *ppos) -{ - unsigned long old_bytes = vm_dirty_bytes; - int ret; - - ret = proc_doulongvec_minmax(table, write, filp, buffer, lenp, ppos); - if (ret == 0 && write && vm_dirty_bytes != old_bytes) { - update_completion_period(); - vm_dirty_ratio = 0; - } - return ret; -} - -/* - * Increment the BDI's writeout completion count and the global writeout - * completion count. Called from test_clear_page_writeback(). - */ -static inline void __bdi_writeout_inc(struct backing_dev_info *bdi) -{ - __prop_inc_percpu_max(&vm_completions, &bdi->completions, - bdi->max_prop_frac); -} - -void bdi_writeout_inc(struct backing_dev_info *bdi) -{ - unsigned long flags; - - local_irq_save(flags); - __bdi_writeout_inc(bdi); - local_irq_restore(flags); -} -EXPORT_SYMBOL_GPL(bdi_writeout_inc); - -void task_dirty_inc(struct task_struct *tsk) -{ - prop_inc_single(&vm_dirties, &tsk->dirties); -} - -/* - * Obtain an accurate fraction of the BDI's portion. - */ -static void bdi_writeout_fraction(struct backing_dev_info *bdi, - long *numerator, long *denominator) -{ - if (bdi_cap_writeback_dirty(bdi)) { - prop_fraction_percpu(&vm_completions, &bdi->completions, - numerator, denominator); - } else { - *numerator = 0; - *denominator = 1; - } -} - -/* - * Clip the earned share of dirty pages to that which is actually available. - * This avoids exceeding the total dirty_limit when the floating averages - * fluctuate too quickly. - */ -static void -clip_bdi_dirty_limit(struct backing_dev_info *bdi, long dirty, long *pbdi_dirty) -{ - long avail_dirty; - - avail_dirty = dirty - - (global_page_state(NR_FILE_DIRTY) + - global_page_state(NR_WRITEBACK) + - global_page_state(NR_UNSTABLE_NFS) + - global_page_state(NR_WRITEBACK_TEMP)); - - if (avail_dirty < 0) - avail_dirty = 0; - - avail_dirty += bdi_stat(bdi, BDI_RECLAIMABLE) + - bdi_stat(bdi, BDI_WRITEBACK); - - *pbdi_dirty = min(*pbdi_dirty, avail_dirty); -} - -static inline void task_dirties_fraction(struct task_struct *tsk, - long *numerator, long *denominator) -{ - prop_fraction_single(&vm_dirties, &tsk->dirties, - numerator, denominator); -} - -/* - * scale the dirty limit - * - * task specific dirty limit: - * - * dirty -= (dirty/8) * p_{t} - */ -static void task_dirty_limit(struct task_struct *tsk, long *pdirty) -{ - long numerator, denominator; - long dirty = *pdirty; - u64 inv = dirty >> 3; - - task_dirties_fraction(tsk, &numerator, &denominator); - inv *= numerator; - do_div(inv, denominator); - - dirty -= inv; - if (dirty < *pdirty/2) - dirty = *pdirty/2; - - *pdirty = dirty; -} - -/* - * - */ -static DEFINE_SPINLOCK(bdi_lock); -static unsigned int bdi_min_ratio; - -int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio) -{ - int ret = 0; - unsigned long flags; - - spin_lock_irqsave(&bdi_lock, flags); - if (min_ratio > bdi->max_ratio) { - ret = -EINVAL; - } else { - min_ratio -= bdi->min_ratio; - if (bdi_min_ratio + min_ratio < 100) { - bdi_min_ratio += min_ratio; - bdi->min_ratio += min_ratio; - } else { - ret = -EINVAL; - } - } - spin_unlock_irqrestore(&bdi_lock, flags); - - return ret; -} - -int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio) -{ - unsigned long flags; - int ret = 0; - - if (max_ratio > 100) - return -EINVAL; - - spin_lock_irqsave(&bdi_lock, flags); - if (bdi->min_ratio > max_ratio) { - ret = -EINVAL; - } else { - bdi->max_ratio = max_ratio; - bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100; - } - spin_unlock_irqrestore(&bdi_lock, flags); - - return ret; -} -EXPORT_SYMBOL(bdi_set_max_ratio); - -/* - * Work out the current dirty-memory clamping and background writeout - * thresholds. - * - * The main aim here is to lower them aggressively if there is a lot of mapped - * memory around. To avoid stressing page reclaim with lots of unreclaimable - * pages. It is better to clamp down on writers than to start swapping, and - * performing lots of scanning. - * - * We only allow 1/2 of the currently-unmapped memory to be dirtied. - * - * We don't permit the clamping level to fall below 5% - that is getting rather - * excessive. - * - * We make sure that the background writeout level is below the adjusted - * clamping level. - */ - -static unsigned long highmem_dirtyable_memory(unsigned long total) -{ -#ifdef CONFIG_HIGHMEM - int node; - unsigned long x = 0; - - for_each_node_state(node, N_HIGH_MEMORY) { - struct zone *z = - &NODE_DATA(node)->node_zones[ZONE_HIGHMEM]; - - x += zone_page_state(z, NR_FREE_PAGES) + zone_lru_pages(z); - } - /* - * Make sure that the number of highmem pages is never larger - * than the number of the total dirtyable memory. This can only - * occur in very strange VM situations but we want to make sure - * that this does not occur. - */ - return min(x, total); -#else - return 0; -#endif -} - -/** - * determine_dirtyable_memory - amount of memory that may be used - * - * Returns the numebr of pages that can currently be freed and used - * by the kernel for direct mappings. - */ -unsigned long determine_dirtyable_memory(void) -{ - unsigned long x; - - x = global_page_state(NR_FREE_PAGES) + global_lru_pages(); - - if (!vm_highmem_is_dirtyable) - x -= highmem_dirtyable_memory(x); - - return x + 1; /* Ensure that we never return 0 */ -} - -void -get_dirty_limits(unsigned long *pbackground, unsigned long *pdirty, - unsigned long *pbdi_dirty, struct backing_dev_info *bdi) -{ - unsigned long background; - unsigned long dirty; - unsigned long available_memory = determine_dirtyable_memory(); - struct task_struct *tsk; - - if (vm_dirty_bytes) - dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE); - else { - int dirty_ratio; - - dirty_ratio = vm_dirty_ratio; - if (dirty_ratio < 5) - dirty_ratio = 5; - dirty = (dirty_ratio * available_memory) / 100; - } - - if (dirty_background_bytes) - background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE); - else - background = (dirty_background_ratio * available_memory) / 100; - - if (background >= dirty) - background = dirty / 2; - tsk = current; - if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) { - background += background / 4; - dirty += dirty / 4; - } - *pbackground = background; - *pdirty = dirty; - - if (bdi) { - u64 bdi_dirty; - long numerator, denominator; - - /* - * Calculate this BDI's share of the dirty ratio. - */ - bdi_writeout_fraction(bdi, &numerator, &denominator); - - bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100; - bdi_dirty *= numerator; - do_div(bdi_dirty, denominator); - bdi_dirty += (dirty * bdi->min_ratio) / 100; - if (bdi_dirty > (dirty * bdi->max_ratio) / 100) - bdi_dirty = dirty * bdi->max_ratio / 100; - - *pbdi_dirty = bdi_dirty; - clip_bdi_dirty_limit(bdi, dirty, pbdi_dirty); - task_dirty_limit(current, pbdi_dirty); - } -} - -/* - * balance_dirty_pages() must be called by processes which are generating dirty - * data. It looks at the number of dirty pages in the machine and will force - * the caller to perform writeback if the system is over `vm_dirty_ratio'. - * If we're over `background_thresh' then pdflush is woken to perform some - * writeout. - */ -static void balance_dirty_pages(struct address_space *mapping) -{ - long nr_reclaimable, bdi_nr_reclaimable; - long nr_writeback, bdi_nr_writeback; - unsigned long background_thresh; - unsigned long dirty_thresh; - unsigned long bdi_thresh; - unsigned long pages_written = 0; - unsigned long write_chunk = sync_writeback_pages(); - - struct backing_dev_info *bdi = mapping->backing_dev_info; - - for (;;) { - struct writeback_control wbc = { - .bdi = bdi, - .sync_mode = WB_SYNC_NONE, - .older_than_this = NULL, - .nr_to_write = write_chunk, - .range_cyclic = 1, - }; - - get_dirty_limits(&background_thresh, &dirty_thresh, - &bdi_thresh, bdi); - - nr_reclaimable = global_page_state(NR_FILE_DIRTY) + - global_page_state(NR_UNSTABLE_NFS); - nr_writeback = global_page_state(NR_WRITEBACK); - - bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE); - bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK); - - if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh) - break; - - /* - * Throttle it only when the background writeback cannot - * catch-up. This avoids (excessively) small writeouts - * when the bdi limits are ramping up. - */ - if (nr_reclaimable + nr_writeback < - (background_thresh + dirty_thresh) / 2) - break; - - if (!bdi->dirty_exceeded) - bdi->dirty_exceeded = 1; - - /* Note: nr_reclaimable denotes nr_dirty + nr_unstable. - * Unstable writes are a feature of certain networked - * filesystems (i.e. NFS) in which data may have been - * written to the server's write cache, but has not yet - * been flushed to permanent storage. - */ - if (bdi_nr_reclaimable) { - writeback_inodes(&wbc); - pages_written += write_chunk - wbc.nr_to_write; - get_dirty_limits(&background_thresh, &dirty_thresh, - &bdi_thresh, bdi); - } - - /* - * In order to avoid the stacked BDI deadlock we need - * to ensure we accurately count the 'dirty' pages when - * the threshold is low. - * - * Otherwise it would be possible to get thresh+n pages - * reported dirty, even though there are thresh-m pages - * actually dirty; with m+n sitting in the percpu - * deltas. - */ - if (bdi_thresh < 2*bdi_stat_error(bdi)) { - bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE); - bdi_nr_writeback = bdi_stat_sum(bdi, BDI_WRITEBACK); - } else if (bdi_nr_reclaimable) { - bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE); - bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK); - } - - if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh) - break; - if (pages_written >= write_chunk) - break; /* We've done our duty */ - - congestion_wait(WRITE, HZ/10); - } - - if (bdi_nr_reclaimable + bdi_nr_writeback < bdi_thresh && - bdi->dirty_exceeded) - bdi->dirty_exceeded = 0; - - if (writeback_in_progress(bdi)) - return; /* pdflush is already working this queue */ - - /* - * In laptop mode, we wait until hitting the higher threshold before - * starting background writeout, and then write out all the way down - * to the lower threshold. So slow writers cause minimal disk activity. - * - * In normal mode, we start background writeout at the lower - * background_thresh, to keep the amount of dirty memory low. - */ - if ((laptop_mode && pages_written) || - (!laptop_mode && (global_page_state(NR_FILE_DIRTY) - + global_page_state(NR_UNSTABLE_NFS) - > background_thresh))) - pdflush_operation(background_writeout, 0); -} - -void set_page_dirty_balance(struct page *page, int page_mkwrite) -{ - if (set_page_dirty(page) || page_mkwrite) { - struct address_space *mapping = page_mapping(page); - - if (mapping) - balance_dirty_pages_ratelimited(mapping); - } -} - -/** - * balance_dirty_pages_ratelimited_nr - balance dirty memory state - * @mapping: address_space which was dirtied - * @nr_pages_dirtied: number of pages which the caller has just dirtied - * - * Processes which are dirtying memory should call in here once for each page - * which was newly dirtied. The function will periodically check the system's - * dirty state and will initiate writeback if needed. - * - * On really big machines, get_writeback_state is expensive, so try to avoid - * calling it too often (ratelimiting). But once we're over the dirty memory - * limit we decrease the ratelimiting by a lot, to prevent individual processes - * from overshooting the limit by (ratelimit_pages) each. - */ -void balance_dirty_pages_ratelimited_nr(struct address_space *mapping, - unsigned long nr_pages_dirtied) -{ - static DEFINE_PER_CPU(unsigned long, ratelimits) = 0; - unsigned long ratelimit; - unsigned long *p; - - ratelimit = ratelimit_pages; - if (mapping->backing_dev_info->dirty_exceeded) - ratelimit = 8; - - /* - * Check the rate limiting. Also, we do not want to throttle real-time - * tasks in balance_dirty_pages(). Period. - */ - preempt_disable(); - p = &__get_cpu_var(ratelimits); - *p += nr_pages_dirtied; - if (unlikely(*p >= ratelimit)) { - *p = 0; - preempt_enable(); - balance_dirty_pages(mapping); - return; - } - preempt_enable(); -} -EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr); - -void throttle_vm_writeout(gfp_t gfp_mask) -{ - unsigned long background_thresh; - unsigned long dirty_thresh; - - for ( ; ; ) { - get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL); - - /* - * Boost the allowable dirty threshold a bit for page - * allocators so they don't get DoS'ed by heavy writers - */ - dirty_thresh += dirty_thresh / 10; /* wheeee... */ - - if (global_page_state(NR_UNSTABLE_NFS) + - global_page_state(NR_WRITEBACK) <= dirty_thresh) - break; - congestion_wait(WRITE, HZ/10); - - /* - * The caller might hold locks which can prevent IO completion - * or progress in the filesystem. So we cannot just sit here - * waiting for IO to complete. - */ - if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO)) - break; - } -} - -/* - * writeback at least _min_pages, and keep writing until the amount of dirty - * memory is less than the background threshold, or until we're all clean. - */ -static void background_writeout(unsigned long _min_pages) -{ - long min_pages = _min_pages; - struct writeback_control wbc = { - .bdi = NULL, - .sync_mode = WB_SYNC_NONE, - .older_than_this = NULL, - .nr_to_write = 0, - .nonblocking = 1, - .range_cyclic = 1, - }; - - for ( ; ; ) { - unsigned long background_thresh; - unsigned long dirty_thresh; - - get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL); - if (global_page_state(NR_FILE_DIRTY) + - global_page_state(NR_UNSTABLE_NFS) < background_thresh - && min_pages <= 0) - break; - wbc.more_io = 0; - wbc.encountered_congestion = 0; - wbc.nr_to_write = MAX_WRITEBACK_PAGES; - wbc.pages_skipped = 0; - writeback_inodes(&wbc); - min_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write; - if (wbc.nr_to_write > 0 || wbc.pages_skipped > 0) { - /* Wrote less than expected */ - if (wbc.encountered_congestion || wbc.more_io) - congestion_wait(WRITE, HZ/10); - else - break; - } - } -} - -/* - * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back - * the whole world. Returns 0 if a pdflush thread was dispatched. Returns - * -1 if all pdflush threads were busy. - */ -int wakeup_pdflush(long nr_pages) -{ - if (nr_pages == 0) - nr_pages = global_page_state(NR_FILE_DIRTY) + - global_page_state(NR_UNSTABLE_NFS); - return pdflush_operation(background_writeout, nr_pages); -} - -#ifndef DDE_LINUX -static void wb_timer_fn(unsigned long unused); -static void laptop_timer_fn(unsigned long unused); - -static DEFINE_TIMER(wb_timer, wb_timer_fn, 0, 0); -static DEFINE_TIMER(laptop_mode_wb_timer, laptop_timer_fn, 0, 0); - -/* - * Periodic writeback of "old" data. - * - * Define "old": the first time one of an inode's pages is dirtied, we mark the - * dirtying-time in the inode's address_space. So this periodic writeback code - * just walks the superblock inode list, writing back any inodes which are - * older than a specific point in time. - * - * Try to run once per dirty_writeback_interval. But if a writeback event - * takes longer than a dirty_writeback_interval interval, then leave a - * one-second gap. - * - * older_than_this takes precedence over nr_to_write. So we'll only write back - * all dirty pages if they are all attached to "old" mappings. - */ -static void wb_kupdate(unsigned long arg) -{ - unsigned long oldest_jif; - unsigned long start_jif; - unsigned long next_jif; - long nr_to_write; - struct writeback_control wbc = { - .bdi = NULL, - .sync_mode = WB_SYNC_NONE, - .older_than_this = &oldest_jif, - .nr_to_write = 0, - .nonblocking = 1, - .for_kupdate = 1, - .range_cyclic = 1, - }; - - sync_supers(); - - oldest_jif = jiffies - dirty_expire_interval; - start_jif = jiffies; - next_jif = start_jif + dirty_writeback_interval; - nr_to_write = global_page_state(NR_FILE_DIRTY) + - global_page_state(NR_UNSTABLE_NFS) + - (inodes_stat.nr_inodes - inodes_stat.nr_unused); - while (nr_to_write > 0) { - wbc.more_io = 0; - wbc.encountered_congestion = 0; - wbc.nr_to_write = MAX_WRITEBACK_PAGES; - writeback_inodes(&wbc); - if (wbc.nr_to_write > 0) { - if (wbc.encountered_congestion || wbc.more_io) - congestion_wait(WRITE, HZ/10); - else - break; /* All the old data is written */ - } - nr_to_write -= MAX_WRITEBACK_PAGES - wbc.nr_to_write; - } - if (time_before(next_jif, jiffies + HZ)) - next_jif = jiffies + HZ; - if (dirty_writeback_interval) - mod_timer(&wb_timer, next_jif); -} - -/* - * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs - */ -int dirty_writeback_centisecs_handler(ctl_table *table, int write, - struct file *file, void __user *buffer, size_t *length, loff_t *ppos) -{ - proc_dointvec_userhz_jiffies(table, write, file, buffer, length, ppos); - if (dirty_writeback_interval) - mod_timer(&wb_timer, jiffies + dirty_writeback_interval); - else - del_timer(&wb_timer); - return 0; -} - -static void wb_timer_fn(unsigned long unused) -{ - if (pdflush_operation(wb_kupdate, 0) < 0) - mod_timer(&wb_timer, jiffies + HZ); /* delay 1 second */ -} - -static void laptop_flush(unsigned long unused) -{ - sys_sync(); -} - -static void laptop_timer_fn(unsigned long unused) -{ - pdflush_operation(laptop_flush, 0); -} - -/* - * We've spun up the disk and we're in laptop mode: schedule writeback - * of all dirty data a few seconds from now. If the flush is already scheduled - * then push it back - the user is still using the disk. - */ -void laptop_io_completion(void) -{ - mod_timer(&laptop_mode_wb_timer, jiffies + laptop_mode); -} - -/* - * We're in laptop mode and we've just synced. The sync's writes will have - * caused another writeback to be scheduled by laptop_io_completion. - * Nothing needs to be written back anymore, so we unschedule the writeback. - */ -void laptop_sync_completion(void) -{ - del_timer(&laptop_mode_wb_timer); -} -#endif - -/* - * If ratelimit_pages is too high then we can get into dirty-data overload - * if a large number of processes all perform writes at the same time. - * If it is too low then SMP machines will call the (expensive) - * get_writeback_state too often. - * - * Here we set ratelimit_pages to a level which ensures that when all CPUs are - * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory - * thresholds before writeback cuts in. - * - * But the limit should not be set too high. Because it also controls the - * amount of memory which the balance_dirty_pages() caller has to write back. - * If this is too large then the caller will block on the IO queue all the - * time. So limit it to four megabytes - the balance_dirty_pages() caller - * will write six megabyte chunks, max. - */ - -void writeback_set_ratelimit(void) -{ - ratelimit_pages = vm_total_pages / (num_online_cpus() * 32); - if (ratelimit_pages < 16) - ratelimit_pages = 16; - if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024) - ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE; -} - -static int __cpuinit -ratelimit_handler(struct notifier_block *self, unsigned long u, void *v) -{ - writeback_set_ratelimit(); - return NOTIFY_DONE; -} - -static struct notifier_block __cpuinitdata ratelimit_nb = { - .notifier_call = ratelimit_handler, - .next = NULL, -}; - -/* - * Called early on to tune the page writeback dirty limits. - * - * We used to scale dirty pages according to how total memory - * related to pages that could be allocated for buffers (by - * comparing nr_free_buffer_pages() to vm_total_pages. - * - * However, that was when we used "dirty_ratio" to scale with - * all memory, and we don't do that any more. "dirty_ratio" - * is now applied to total non-HIGHPAGE memory (by subtracting - * totalhigh_pages from vm_total_pages), and as such we can't - * get into the old insane situation any more where we had - * large amounts of dirty pages compared to a small amount of - * non-HIGHMEM memory. - * - * But we might still want to scale the dirty_ratio by how - * much memory the box has.. - */ -void __init page_writeback_init(void) -{ - int shift; - -#ifndef DDE_LINUX - mod_timer(&wb_timer, jiffies + dirty_writeback_interval); -#endif - writeback_set_ratelimit(); - register_cpu_notifier(&ratelimit_nb); - - shift = calc_period_shift(); - prop_descriptor_init(&vm_completions, shift); - prop_descriptor_init(&vm_dirties, shift); -} - -/** - * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. - * @mapping: address space structure to write - * @wbc: subtract the number of written pages from *@wbc->nr_to_write - * @writepage: function called for each page - * @data: data passed to writepage function - * - * If a page is already under I/O, write_cache_pages() skips it, even - * if it's dirty. This is desirable behaviour for memory-cleaning writeback, - * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() - * and msync() need to guarantee that all the data which was dirty at the time - * the call was made get new I/O started against them. If wbc->sync_mode is - * WB_SYNC_ALL then we were called for data integrity and we must wait for - * existing IO to complete. - */ -int write_cache_pages(struct address_space *mapping, - struct writeback_control *wbc, writepage_t writepage, - void *data) -{ - struct backing_dev_info *bdi = mapping->backing_dev_info; - int ret = 0; - int done = 0; - struct pagevec pvec; - int nr_pages; - pgoff_t uninitialized_var(writeback_index); - pgoff_t index; - pgoff_t end; /* Inclusive */ - pgoff_t done_index; - int cycled; - int range_whole = 0; - long nr_to_write = wbc->nr_to_write; - - if (wbc->nonblocking && bdi_write_congested(bdi)) { - wbc->encountered_congestion = 1; - return 0; - } - - pagevec_init(&pvec, 0); - if (wbc->range_cyclic) { - writeback_index = mapping->writeback_index; /* prev offset */ - index = writeback_index; - if (index == 0) - cycled = 1; - else - cycled = 0; - end = -1; - } else { - index = wbc->range_start >> PAGE_CACHE_SHIFT; - end = wbc->range_end >> PAGE_CACHE_SHIFT; - if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) - range_whole = 1; - cycled = 1; /* ignore range_cyclic tests */ - } -retry: - done_index = index; - while (!done && (index <= end)) { - int i; - - nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, - PAGECACHE_TAG_DIRTY, - min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); - if (nr_pages == 0) - break; - - for (i = 0; i < nr_pages; i++) { - struct page *page = pvec.pages[i]; - - /* - * At this point, the page may be truncated or - * invalidated (changing page->mapping to NULL), or - * even swizzled back from swapper_space to tmpfs file - * mapping. However, page->index will not change - * because we have a reference on the page. - */ - if (page->index > end) { - /* - * can't be range_cyclic (1st pass) because - * end == -1 in that case. - */ - done = 1; - break; - } - - done_index = page->index + 1; - - lock_page(page); - - /* - * Page truncated or invalidated. We can freely skip it - * then, even for data integrity operations: the page - * has disappeared concurrently, so there could be no - * real expectation of this data interity operation - * even if there is now a new, dirty page at the same - * pagecache address. - */ - if (unlikely(page->mapping != mapping)) { -continue_unlock: - unlock_page(page); - continue; - } - - if (!PageDirty(page)) { - /* someone wrote it for us */ - goto continue_unlock; - } - - if (PageWriteback(page)) { - if (wbc->sync_mode != WB_SYNC_NONE) - wait_on_page_writeback(page); - else - goto continue_unlock; - } - - BUG_ON(PageWriteback(page)); - if (!clear_page_dirty_for_io(page)) - goto continue_unlock; - - ret = (*writepage)(page, wbc, data); - if (unlikely(ret)) { - if (ret == AOP_WRITEPAGE_ACTIVATE) { - unlock_page(page); - ret = 0; - } else { - /* - * done_index is set past this page, - * so media errors will not choke - * background writeout for the entire - * file. This has consequences for - * range_cyclic semantics (ie. it may - * not be suitable for data integrity - * writeout). - */ - done = 1; - break; - } - } - - if (nr_to_write > 0) { - nr_to_write--; - if (nr_to_write == 0 && - wbc->sync_mode == WB_SYNC_NONE) { - /* - * We stop writing back only if we are - * not doing integrity sync. In case of - * integrity sync we have to keep going - * because someone may be concurrently - * dirtying pages, and we might have - * synced a lot of newly appeared dirty - * pages, but have not synced all of the - * old dirty pages. - */ - done = 1; - break; - } - } - - if (wbc->nonblocking && bdi_write_congested(bdi)) { - wbc->encountered_congestion = 1; - done = 1; - break; - } - } - pagevec_release(&pvec); - cond_resched(); - } - if (!cycled && !done) { - /* - * range_cyclic: - * We hit the last page and there is more work to be done: wrap - * back to the start of the file - */ - cycled = 1; - index = 0; - end = writeback_index - 1; - goto retry; - } - if (!wbc->no_nrwrite_index_update) { - if (wbc->range_cyclic || (range_whole && nr_to_write > 0)) - mapping->writeback_index = done_index; - wbc->nr_to_write = nr_to_write; - } - - return ret; -} -EXPORT_SYMBOL(write_cache_pages); - -#ifndef DDE_LINUX -/* - * Function used by generic_writepages to call the real writepage - * function and set the mapping flags on error - */ -static int __writepage(struct page *page, struct writeback_control *wbc, - void *data) -{ - struct address_space *mapping = data; - int ret = mapping->a_ops->writepage(page, wbc); - mapping_set_error(mapping, ret); - return ret; -} - -/** - * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them. - * @mapping: address space structure to write - * @wbc: subtract the number of written pages from *@wbc->nr_to_write - * - * This is a library function, which implements the writepages() - * address_space_operation. - */ -int generic_writepages(struct address_space *mapping, - struct writeback_control *wbc) -{ - /* deal with chardevs and other special file */ - if (!mapping->a_ops->writepage) - return 0; - - return write_cache_pages(mapping, wbc, __writepage, mapping); -} - -EXPORT_SYMBOL(generic_writepages); - -int do_writepages(struct address_space *mapping, struct writeback_control *wbc) -{ - int ret; - - if (wbc->nr_to_write <= 0) - return 0; - wbc->for_writepages = 1; - if (mapping->a_ops->writepages) - ret = mapping->a_ops->writepages(mapping, wbc); - else - ret = generic_writepages(mapping, wbc); - wbc->for_writepages = 0; - return ret; -} - -/** - * write_one_page - write out a single page and optionally wait on I/O - * @page: the page to write - * @wait: if true, wait on writeout - * - * The page must be locked by the caller and will be unlocked upon return. - * - * write_one_page() returns a negative error code if I/O failed. - */ -int write_one_page(struct page *page, int wait) -{ - struct address_space *mapping = page->mapping; - int ret = 0; - struct writeback_control wbc = { - .sync_mode = WB_SYNC_ALL, - .nr_to_write = 1, - }; - - BUG_ON(!PageLocked(page)); - - if (wait) - wait_on_page_writeback(page); - - if (clear_page_dirty_for_io(page)) { - page_cache_get(page); - ret = mapping->a_ops->writepage(page, &wbc); - if (ret == 0 && wait) { - wait_on_page_writeback(page); - if (PageError(page)) - ret = -EIO; - } - page_cache_release(page); - } else { - unlock_page(page); - } - return ret; -} -EXPORT_SYMBOL(write_one_page); - -/* - * For address_spaces which do not use buffers nor write back. - */ -int __set_page_dirty_no_writeback(struct page *page) -{ - if (!PageDirty(page)) - SetPageDirty(page); - return 0; -} - -/* - * For address_spaces which do not use buffers. Just tag the page as dirty in - * its radix tree. - * - * This is also used when a single buffer is being dirtied: we want to set the - * page dirty in that case, but not all the buffers. This is a "bottom-up" - * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying. - * - * Most callers have locked the page, which pins the address_space in memory. - * But zap_pte_range() does not lock the page, however in that case the - * mapping is pinned by the vma's ->vm_file reference. - * - * We take care to handle the case where the page was truncated from the - * mapping by re-checking page_mapping() inside tree_lock. - */ -int __set_page_dirty_nobuffers(struct page *page) -{ - if (!TestSetPageDirty(page)) { - struct address_space *mapping = page_mapping(page); - struct address_space *mapping2; - - if (!mapping) - return 1; - - spin_lock_irq(&mapping->tree_lock); - mapping2 = page_mapping(page); - if (mapping2) { /* Race with truncate? */ - BUG_ON(mapping2 != mapping); - WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page)); - if (mapping_cap_account_dirty(mapping)) { - __inc_zone_page_state(page, NR_FILE_DIRTY); - __inc_bdi_stat(mapping->backing_dev_info, - BDI_RECLAIMABLE); - task_dirty_inc(current); - task_io_account_write(PAGE_CACHE_SIZE); - } - radix_tree_tag_set(&mapping->page_tree, - page_index(page), PAGECACHE_TAG_DIRTY); - } - spin_unlock_irq(&mapping->tree_lock); - if (mapping->host) { - /* !PageAnon && !swapper_space */ - __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); - } - return 1; - } - return 0; -} -EXPORT_SYMBOL(__set_page_dirty_nobuffers); - -/* - * When a writepage implementation decides that it doesn't want to write this - * page for some reason, it should redirty the locked page via - * redirty_page_for_writepage() and it should then unlock the page and return 0 - */ -int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page) -{ - wbc->pages_skipped++; - return __set_page_dirty_nobuffers(page); -} -EXPORT_SYMBOL(redirty_page_for_writepage); - -/* - * If the mapping doesn't provide a set_page_dirty a_op, then - * just fall through and assume that it wants buffer_heads. - */ -int set_page_dirty(struct page *page) -{ - struct address_space *mapping = page_mapping(page); - - if (likely(mapping)) { - int (*spd)(struct page *) = mapping->a_ops->set_page_dirty; -#ifdef CONFIG_BLOCK - if (!spd) - spd = __set_page_dirty_buffers; -#endif - return (*spd)(page); - } - if (!PageDirty(page)) { - if (!TestSetPageDirty(page)) - return 1; - } - return 0; -} -EXPORT_SYMBOL(set_page_dirty); - -/* - * set_page_dirty() is racy if the caller has no reference against - * page->mapping->host, and if the page is unlocked. This is because another - * CPU could truncate the page off the mapping and then free the mapping. - * - * Usually, the page _is_ locked, or the caller is a user-space process which - * holds a reference on the inode by having an open file. - * - * In other cases, the page should be locked before running set_page_dirty(). - */ -int set_page_dirty_lock(struct page *page) -{ - int ret; - - lock_page_nosync(page); - ret = set_page_dirty(page); - unlock_page(page); - return ret; -} -EXPORT_SYMBOL(set_page_dirty_lock); -#endif - -/* - * Clear a page's dirty flag, while caring for dirty memory accounting. - * Returns true if the page was previously dirty. - * - * This is for preparing to put the page under writeout. We leave the page - * tagged as dirty in the radix tree so that a concurrent write-for-sync - * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage - * implementation will run either set_page_writeback() or set_page_dirty(), - * at which stage we bring the page's dirty flag and radix-tree dirty tag - * back into sync. - * - * This incoherency between the page's dirty flag and radix-tree tag is - * unfortunate, but it only exists while the page is locked. - */ -int clear_page_dirty_for_io(struct page *page) -{ - struct address_space *mapping = page_mapping(page); - - BUG_ON(!PageLocked(page)); - - ClearPageReclaim(page); - if (mapping && mapping_cap_account_dirty(mapping)) { - /* - * Yes, Virginia, this is indeed insane. - * - * We use this sequence to make sure that - * (a) we account for dirty stats properly - * (b) we tell the low-level filesystem to - * mark the whole page dirty if it was - * dirty in a pagetable. Only to then - * (c) clean the page again and return 1 to - * cause the writeback. - * - * This way we avoid all nasty races with the - * dirty bit in multiple places and clearing - * them concurrently from different threads. - * - * Note! Normally the "set_page_dirty(page)" - * has no effect on the actual dirty bit - since - * that will already usually be set. But we - * need the side effects, and it can help us - * avoid races. - * - * We basically use the page "master dirty bit" - * as a serialization point for all the different - * threads doing their things. - */ - if (page_mkclean(page)) - set_page_dirty(page); - /* - * We carefully synchronise fault handlers against - * installing a dirty pte and marking the page dirty - * at this point. We do this by having them hold the - * page lock at some point after installing their - * pte, but before marking the page dirty. - * Pages are always locked coming in here, so we get - * the desired exclusion. See mm/memory.c:do_wp_page() - * for more comments. - */ - if (TestClearPageDirty(page)) { - dec_zone_page_state(page, NR_FILE_DIRTY); - dec_bdi_stat(mapping->backing_dev_info, - BDI_RECLAIMABLE); - return 1; - } - return 0; - } - return TestClearPageDirty(page); -} -EXPORT_SYMBOL(clear_page_dirty_for_io); - -int test_clear_page_writeback(struct page *page) -{ - struct address_space *mapping = page_mapping(page); - int ret; - - if (mapping) { - struct backing_dev_info *bdi = mapping->backing_dev_info; - unsigned long flags; - - spin_lock_irqsave(&mapping->tree_lock, flags); - ret = TestClearPageWriteback(page); - if (ret) { - radix_tree_tag_clear(&mapping->page_tree, - page_index(page), - PAGECACHE_TAG_WRITEBACK); - if (bdi_cap_account_writeback(bdi)) { - __dec_bdi_stat(bdi, BDI_WRITEBACK); - __bdi_writeout_inc(bdi); - } - } - spin_unlock_irqrestore(&mapping->tree_lock, flags); - } else { - ret = TestClearPageWriteback(page); - } - if (ret) - dec_zone_page_state(page, NR_WRITEBACK); - return ret; -} - -#ifndef DDE_LINUX -int test_set_page_writeback(struct page *page) -{ - struct address_space *mapping = page_mapping(page); - int ret; - - if (mapping) { - struct backing_dev_info *bdi = mapping->backing_dev_info; - unsigned long flags; - - spin_lock_irqsave(&mapping->tree_lock, flags); - ret = TestSetPageWriteback(page); - if (!ret) { - radix_tree_tag_set(&mapping->page_tree, - page_index(page), - PAGECACHE_TAG_WRITEBACK); - if (bdi_cap_account_writeback(bdi)) - __inc_bdi_stat(bdi, BDI_WRITEBACK); - } - if (!PageDirty(page)) - radix_tree_tag_clear(&mapping->page_tree, - page_index(page), - PAGECACHE_TAG_DIRTY); - spin_unlock_irqrestore(&mapping->tree_lock, flags); - } else { - ret = TestSetPageWriteback(page); - } - if (!ret) - inc_zone_page_state(page, NR_WRITEBACK); - return ret; - -} -EXPORT_SYMBOL(test_set_page_writeback); -#endif /* DDE_LINUX */ - -/* - * Return true if any of the pages in the mapping are marked with the - * passed tag. - */ -int mapping_tagged(struct address_space *mapping, int tag) -{ - int ret; - rcu_read_lock(); - ret = radix_tree_tagged(&mapping->page_tree, tag); - rcu_read_unlock(); - return ret; -} -EXPORT_SYMBOL(mapping_tagged); |
