diff options
author | Samuel Thibault <samuel.thibault@ens-lyon.org> | 2013-07-27 22:15:01 +0000 |
---|---|---|
committer | Samuel Thibault <samuel.thibault@ens-lyon.org> | 2013-07-27 22:15:01 +0000 |
commit | 7996a3d79d55b7f879dfd62e202bbfe2963718d3 (patch) | |
tree | 8d9f6759fec4099b9be503c11c7ed174f7204980 /libdde-linux26/contrib/include/linux/raid | |
parent | 4fbe7358c7747a9165f776eb19addbb9baf7def2 (diff) |
really properly move files
Diffstat (limited to 'libdde-linux26/contrib/include/linux/raid')
-rw-r--r-- | libdde-linux26/contrib/include/linux/raid/Kbuild | 2 | ||||
-rw-r--r-- | libdde-linux26/contrib/include/linux/raid/bitmap.h | 288 | ||||
-rw-r--r-- | libdde-linux26/contrib/include/linux/raid/linear.h | 31 | ||||
-rw-r--r-- | libdde-linux26/contrib/include/linux/raid/md.h | 81 | ||||
-rw-r--r-- | libdde-linux26/contrib/include/linux/raid/md_k.h | 402 | ||||
-rw-r--r-- | libdde-linux26/contrib/include/linux/raid/md_p.h | 277 | ||||
-rw-r--r-- | libdde-linux26/contrib/include/linux/raid/md_u.h | 124 | ||||
-rw-r--r-- | libdde-linux26/contrib/include/linux/raid/multipath.h | 42 | ||||
-rw-r--r-- | libdde-linux26/contrib/include/linux/raid/raid0.h | 30 | ||||
-rw-r--r-- | libdde-linux26/contrib/include/linux/raid/raid1.h | 134 | ||||
-rw-r--r-- | libdde-linux26/contrib/include/linux/raid/raid10.h | 123 | ||||
-rw-r--r-- | libdde-linux26/contrib/include/linux/raid/raid5.h | 402 | ||||
-rw-r--r-- | libdde-linux26/contrib/include/linux/raid/xor.h | 24 |
13 files changed, 1960 insertions, 0 deletions
diff --git a/libdde-linux26/contrib/include/linux/raid/Kbuild b/libdde-linux26/contrib/include/linux/raid/Kbuild new file mode 100644 index 00000000..2415a64c --- /dev/null +++ b/libdde-linux26/contrib/include/linux/raid/Kbuild @@ -0,0 +1,2 @@ +header-y += md_p.h +header-y += md_u.h diff --git a/libdde-linux26/contrib/include/linux/raid/bitmap.h b/libdde-linux26/contrib/include/linux/raid/bitmap.h new file mode 100644 index 00000000..e9890067 --- /dev/null +++ b/libdde-linux26/contrib/include/linux/raid/bitmap.h @@ -0,0 +1,288 @@ +/* + * bitmap.h: Copyright (C) Peter T. Breuer (ptb@ot.uc3m.es) 2003 + * + * additions: Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc. + */ +#ifndef BITMAP_H +#define BITMAP_H 1 + +#define BITMAP_MAJOR_LO 3 +/* version 4 insists the bitmap is in little-endian order + * with version 3, it is host-endian which is non-portable + */ +#define BITMAP_MAJOR_HI 4 +#define BITMAP_MAJOR_HOSTENDIAN 3 + +#define BITMAP_MINOR 39 + +/* + * in-memory bitmap: + * + * Use 16 bit block counters to track pending writes to each "chunk". + * The 2 high order bits are special-purpose, the first is a flag indicating + * whether a resync is needed. The second is a flag indicating whether a + * resync is active. + * This means that the counter is actually 14 bits: + * + * +--------+--------+------------------------------------------------+ + * | resync | resync | counter | + * | needed | active | | + * | (0-1) | (0-1) | (0-16383) | + * +--------+--------+------------------------------------------------+ + * + * The "resync needed" bit is set when: + * a '1' bit is read from storage at startup. + * a write request fails on some drives + * a resync is aborted on a chunk with 'resync active' set + * It is cleared (and resync-active set) when a resync starts across all drives + * of the chunk. + * + * + * The "resync active" bit is set when: + * a resync is started on all drives, and resync_needed is set. + * resync_needed will be cleared (as long as resync_active wasn't already set). + * It is cleared when a resync completes. + * + * The counter counts pending write requests, plus the on-disk bit. + * When the counter is '1' and the resync bits are clear, the on-disk + * bit can be cleared aswell, thus setting the counter to 0. + * When we set a bit, or in the counter (to start a write), if the fields is + * 0, we first set the disk bit and set the counter to 1. + * + * If the counter is 0, the on-disk bit is clear and the stipe is clean + * Anything that dirties the stipe pushes the counter to 2 (at least) + * and sets the on-disk bit (lazily). + * If a periodic sweep find the counter at 2, it is decremented to 1. + * If the sweep find the counter at 1, the on-disk bit is cleared and the + * counter goes to zero. + * + * Also, we'll hijack the "map" pointer itself and use it as two 16 bit block + * counters as a fallback when "page" memory cannot be allocated: + * + * Normal case (page memory allocated): + * + * page pointer (32-bit) + * + * [ ] ------+ + * | + * +-------> [ ][ ]..[ ] (4096 byte page == 2048 counters) + * c1 c2 c2048 + * + * Hijacked case (page memory allocation failed): + * + * hijacked page pointer (32-bit) + * + * [ ][ ] (no page memory allocated) + * counter #1 (16-bit) counter #2 (16-bit) + * + */ + +#ifdef __KERNEL__ + +#define PAGE_BITS (PAGE_SIZE << 3) +#define PAGE_BIT_SHIFT (PAGE_SHIFT + 3) + +typedef __u16 bitmap_counter_t; +#define COUNTER_BITS 16 +#define COUNTER_BIT_SHIFT 4 +#define COUNTER_BYTE_RATIO (COUNTER_BITS / 8) +#define COUNTER_BYTE_SHIFT (COUNTER_BIT_SHIFT - 3) + +#define NEEDED_MASK ((bitmap_counter_t) (1 << (COUNTER_BITS - 1))) +#define RESYNC_MASK ((bitmap_counter_t) (1 << (COUNTER_BITS - 2))) +#define COUNTER_MAX ((bitmap_counter_t) RESYNC_MASK - 1) +#define NEEDED(x) (((bitmap_counter_t) x) & NEEDED_MASK) +#define RESYNC(x) (((bitmap_counter_t) x) & RESYNC_MASK) +#define COUNTER(x) (((bitmap_counter_t) x) & COUNTER_MAX) + +/* how many counters per page? */ +#define PAGE_COUNTER_RATIO (PAGE_BITS / COUNTER_BITS) +/* same, except a shift value for more efficient bitops */ +#define PAGE_COUNTER_SHIFT (PAGE_BIT_SHIFT - COUNTER_BIT_SHIFT) +/* same, except a mask value for more efficient bitops */ +#define PAGE_COUNTER_MASK (PAGE_COUNTER_RATIO - 1) + +#define BITMAP_BLOCK_SIZE 512 +#define BITMAP_BLOCK_SHIFT 9 + +/* how many blocks per chunk? (this is variable) */ +#define CHUNK_BLOCK_RATIO(bitmap) ((bitmap)->chunksize >> BITMAP_BLOCK_SHIFT) +#define CHUNK_BLOCK_SHIFT(bitmap) ((bitmap)->chunkshift - BITMAP_BLOCK_SHIFT) +#define CHUNK_BLOCK_MASK(bitmap) (CHUNK_BLOCK_RATIO(bitmap) - 1) + +/* when hijacked, the counters and bits represent even larger "chunks" */ +/* there will be 1024 chunks represented by each counter in the page pointers */ +#define PAGEPTR_BLOCK_RATIO(bitmap) \ + (CHUNK_BLOCK_RATIO(bitmap) << PAGE_COUNTER_SHIFT >> 1) +#define PAGEPTR_BLOCK_SHIFT(bitmap) \ + (CHUNK_BLOCK_SHIFT(bitmap) + PAGE_COUNTER_SHIFT - 1) +#define PAGEPTR_BLOCK_MASK(bitmap) (PAGEPTR_BLOCK_RATIO(bitmap) - 1) + +/* + * on-disk bitmap: + * + * Use one bit per "chunk" (block set). We do the disk I/O on the bitmap + * file a page at a time. There's a superblock at the start of the file. + */ + +/* map chunks (bits) to file pages - offset by the size of the superblock */ +#define CHUNK_BIT_OFFSET(chunk) ((chunk) + (sizeof(bitmap_super_t) << 3)) + +#endif + +/* + * bitmap structures: + */ + +#define BITMAP_MAGIC 0x6d746962 + +/* use these for bitmap->flags and bitmap->sb->state bit-fields */ +enum bitmap_state { + BITMAP_STALE = 0x002, /* the bitmap file is out of date or had -EIO */ + BITMAP_WRITE_ERROR = 0x004, /* A write error has occurred */ + BITMAP_HOSTENDIAN = 0x8000, +}; + +/* the superblock at the front of the bitmap file -- little endian */ +typedef struct bitmap_super_s { + __le32 magic; /* 0 BITMAP_MAGIC */ + __le32 version; /* 4 the bitmap major for now, could change... */ + __u8 uuid[16]; /* 8 128 bit uuid - must match md device uuid */ + __le64 events; /* 24 event counter for the bitmap (1)*/ + __le64 events_cleared;/*32 event counter when last bit cleared (2) */ + __le64 sync_size; /* 40 the size of the md device's sync range(3) */ + __le32 state; /* 48 bitmap state information */ + __le32 chunksize; /* 52 the bitmap chunk size in bytes */ + __le32 daemon_sleep; /* 56 seconds between disk flushes */ + __le32 write_behind; /* 60 number of outstanding write-behind writes */ + + __u8 pad[256 - 64]; /* set to zero */ +} bitmap_super_t; + +/* notes: + * (1) This event counter is updated before the eventcounter in the md superblock + * When a bitmap is loaded, it is only accepted if this event counter is equal + * to, or one greater than, the event counter in the superblock. + * (2) This event counter is updated when the other one is *if*and*only*if* the + * array is not degraded. As bits are not cleared when the array is degraded, + * this represents the last time that any bits were cleared. + * If a device is being added that has an event count with this value or + * higher, it is accepted as conforming to the bitmap. + * (3)This is the number of sectors represented by the bitmap, and is the range that + * resync happens across. For raid1 and raid5/6 it is the size of individual + * devices. For raid10 it is the size of the array. + */ + +#ifdef __KERNEL__ + +/* the in-memory bitmap is represented by bitmap_pages */ +struct bitmap_page { + /* + * map points to the actual memory page + */ + char *map; + /* + * in emergencies (when map cannot be alloced), hijack the map + * pointer and use it as two counters itself + */ + unsigned int hijacked:1; + /* + * count of dirty bits on the page + */ + unsigned int count:31; +}; + +/* keep track of bitmap file pages that have pending writes on them */ +struct page_list { + struct list_head list; + struct page *page; +}; + +/* the main bitmap structure - one per mddev */ +struct bitmap { + struct bitmap_page *bp; + unsigned long pages; /* total number of pages in the bitmap */ + unsigned long missing_pages; /* number of pages not yet allocated */ + + mddev_t *mddev; /* the md device that the bitmap is for */ + + int counter_bits; /* how many bits per block counter */ + + /* bitmap chunksize -- how much data does each bit represent? */ + unsigned long chunksize; + unsigned long chunkshift; /* chunksize = 2^chunkshift (for bitops) */ + unsigned long chunks; /* total number of data chunks for the array */ + + /* We hold a count on the chunk currently being synced, and drop + * it when the last block is started. If the resync is aborted + * midway, we need to be able to drop that count, so we remember + * the counted chunk.. + */ + unsigned long syncchunk; + + __u64 events_cleared; + int need_sync; + + /* bitmap spinlock */ + spinlock_t lock; + + long offset; /* offset from superblock if file is NULL */ + struct file *file; /* backing disk file */ + struct page *sb_page; /* cached copy of the bitmap file superblock */ + struct page **filemap; /* list of cache pages for the file */ + unsigned long *filemap_attr; /* attributes associated w/ filemap pages */ + unsigned long file_pages; /* number of pages in the file */ + int last_page_size; /* bytes in the last page */ + + unsigned long flags; + + int allclean; + + unsigned long max_write_behind; /* write-behind mode */ + atomic_t behind_writes; + + /* + * the bitmap daemon - periodically wakes up and sweeps the bitmap + * file, cleaning up bits and flushing out pages to disk as necessary + */ + unsigned long daemon_lastrun; /* jiffies of last run */ + unsigned long daemon_sleep; /* how many seconds between updates? */ + unsigned long last_end_sync; /* when we lasted called end_sync to + * update bitmap with resync progress */ + + atomic_t pending_writes; /* pending writes to the bitmap file */ + wait_queue_head_t write_wait; + wait_queue_head_t overflow_wait; + +}; + +/* the bitmap API */ + +/* these are used only by md/bitmap */ +int bitmap_create(mddev_t *mddev); +void bitmap_flush(mddev_t *mddev); +void bitmap_destroy(mddev_t *mddev); + +void bitmap_print_sb(struct bitmap *bitmap); +void bitmap_update_sb(struct bitmap *bitmap); + +int bitmap_setallbits(struct bitmap *bitmap); +void bitmap_write_all(struct bitmap *bitmap); + +void bitmap_dirty_bits(struct bitmap *bitmap, unsigned long s, unsigned long e); + +/* these are exported */ +int bitmap_startwrite(struct bitmap *bitmap, sector_t offset, + unsigned long sectors, int behind); +void bitmap_endwrite(struct bitmap *bitmap, sector_t offset, + unsigned long sectors, int success, int behind); +int bitmap_start_sync(struct bitmap *bitmap, sector_t offset, int *blocks, int degraded); +void bitmap_end_sync(struct bitmap *bitmap, sector_t offset, int *blocks, int aborted); +void bitmap_close_sync(struct bitmap *bitmap); +void bitmap_cond_end_sync(struct bitmap *bitmap, sector_t sector); + +void bitmap_unplug(struct bitmap *bitmap); +void bitmap_daemon_work(struct bitmap *bitmap); +#endif + +#endif diff --git a/libdde-linux26/contrib/include/linux/raid/linear.h b/libdde-linux26/contrib/include/linux/raid/linear.h new file mode 100644 index 00000000..f38b9c58 --- /dev/null +++ b/libdde-linux26/contrib/include/linux/raid/linear.h @@ -0,0 +1,31 @@ +#ifndef _LINEAR_H +#define _LINEAR_H + +#include <linux/raid/md.h> + +struct dev_info { + mdk_rdev_t *rdev; + sector_t num_sectors; + sector_t start_sector; +}; + +typedef struct dev_info dev_info_t; + +struct linear_private_data +{ + struct linear_private_data *prev; /* earlier version */ + dev_info_t **hash_table; + sector_t spacing; + sector_t array_sectors; + int sector_shift; /* shift before dividing + * by spacing + */ + dev_info_t disks[0]; +}; + + +typedef struct linear_private_data linear_conf_t; + +#define mddev_to_conf(mddev) ((linear_conf_t *) mddev->private) + +#endif diff --git a/libdde-linux26/contrib/include/linux/raid/md.h b/libdde-linux26/contrib/include/linux/raid/md.h new file mode 100644 index 00000000..82bea14c --- /dev/null +++ b/libdde-linux26/contrib/include/linux/raid/md.h @@ -0,0 +1,81 @@ +/* + md.h : Multiple Devices driver for Linux + Copyright (C) 1996-98 Ingo Molnar, Gadi Oxman + Copyright (C) 1994-96 Marc ZYNGIER + <zyngier@ufr-info-p7.ibp.fr> or + <maz@gloups.fdn.fr> + + This program is free software; you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation; either version 2, or (at your option) + any later version. + + You should have received a copy of the GNU General Public License + (for example /usr/src/linux/COPYING); if not, write to the Free + Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. +*/ + +#ifndef _MD_H +#define _MD_H + +#include <linux/blkdev.h> +#include <linux/seq_file.h> + +/* + * 'md_p.h' holds the 'physical' layout of RAID devices + * 'md_u.h' holds the user <=> kernel API + * + * 'md_k.h' holds kernel internal definitions + */ + +#include <linux/raid/md_p.h> +#include <linux/raid/md_u.h> +#include <linux/raid/md_k.h> + +#ifdef CONFIG_MD + +/* + * Different major versions are not compatible. + * Different minor versions are only downward compatible. + * Different patchlevel versions are downward and upward compatible. + */ +#define MD_MAJOR_VERSION 0 +#define MD_MINOR_VERSION 90 +/* + * MD_PATCHLEVEL_VERSION indicates kernel functionality. + * >=1 means different superblock formats are selectable using SET_ARRAY_INFO + * and major_version/minor_version accordingly + * >=2 means that Internal bitmaps are supported by setting MD_SB_BITMAP_PRESENT + * in the super status byte + * >=3 means that bitmap superblock version 4 is supported, which uses + * little-ending representation rather than host-endian + */ +#define MD_PATCHLEVEL_VERSION 3 + +extern int mdp_major; + +extern int register_md_personality(struct mdk_personality *p); +extern int unregister_md_personality(struct mdk_personality *p); +extern mdk_thread_t * md_register_thread(void (*run) (mddev_t *mddev), + mddev_t *mddev, const char *name); +extern void md_unregister_thread(mdk_thread_t *thread); +extern void md_wakeup_thread(mdk_thread_t *thread); +extern void md_check_recovery(mddev_t *mddev); +extern void md_write_start(mddev_t *mddev, struct bio *bi); +extern void md_write_end(mddev_t *mddev); +extern void md_done_sync(mddev_t *mddev, int blocks, int ok); +extern void md_error(mddev_t *mddev, mdk_rdev_t *rdev); + +extern void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev, + sector_t sector, int size, struct page *page); +extern void md_super_wait(mddev_t *mddev); +extern int sync_page_io(struct block_device *bdev, sector_t sector, int size, + struct page *page, int rw); +extern void md_do_sync(mddev_t *mddev); +extern void md_new_event(mddev_t *mddev); +extern int md_allow_write(mddev_t *mddev); +extern void md_wait_for_blocked_rdev(mdk_rdev_t *rdev, mddev_t *mddev); + +#endif /* CONFIG_MD */ +#endif + diff --git a/libdde-linux26/contrib/include/linux/raid/md_k.h b/libdde-linux26/contrib/include/linux/raid/md_k.h new file mode 100644 index 00000000..9743e4db --- /dev/null +++ b/libdde-linux26/contrib/include/linux/raid/md_k.h @@ -0,0 +1,402 @@ +/* + md_k.h : kernel internal structure of the Linux MD driver + Copyright (C) 1996-98 Ingo Molnar, Gadi Oxman + + This program is free software; you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation; either version 2, or (at your option) + any later version. + + You should have received a copy of the GNU General Public License + (for example /usr/src/linux/COPYING); if not, write to the Free + Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. +*/ + +#ifndef _MD_K_H +#define _MD_K_H + +/* and dm-bio-list.h is not under include/linux because.... ??? */ +#include "../../../drivers/md/dm-bio-list.h" + +#ifdef CONFIG_BLOCK + +#define LEVEL_MULTIPATH (-4) +#define LEVEL_LINEAR (-1) +#define LEVEL_FAULTY (-5) + +/* we need a value for 'no level specified' and 0 + * means 'raid0', so we need something else. This is + * for internal use only + */ +#define LEVEL_NONE (-1000000) + +#define MaxSector (~(sector_t)0) + +typedef struct mddev_s mddev_t; +typedef struct mdk_rdev_s mdk_rdev_t; + +/* + * options passed in raidrun: + */ + +/* Currently this must fit in an 'int' */ +#define MAX_CHUNK_SIZE (1<<30) + +/* + * MD's 'extended' device + */ +struct mdk_rdev_s +{ + struct list_head same_set; /* RAID devices within the same set */ + + sector_t size; /* Device size (in blocks) */ + mddev_t *mddev; /* RAID array if running */ + long last_events; /* IO event timestamp */ + + struct block_device *bdev; /* block device handle */ + + struct page *sb_page; + int sb_loaded; + __u64 sb_events; + sector_t data_offset; /* start of data in array */ + sector_t sb_start; /* offset of the super block (in 512byte sectors) */ + int sb_size; /* bytes in the superblock */ + int preferred_minor; /* autorun support */ + + struct kobject kobj; + + /* A device can be in one of three states based on two flags: + * Not working: faulty==1 in_sync==0 + * Fully working: faulty==0 in_sync==1 + * Working, but not + * in sync with array + * faulty==0 in_sync==0 + * + * It can never have faulty==1, in_sync==1 + * This reduces the burden of testing multiple flags in many cases + */ + + unsigned long flags; +#define Faulty 1 /* device is known to have a fault */ +#define In_sync 2 /* device is in_sync with rest of array */ +#define WriteMostly 4 /* Avoid reading if at all possible */ +#define BarriersNotsupp 5 /* BIO_RW_BARRIER is not supported */ +#define AllReserved 6 /* If whole device is reserved for + * one array */ +#define AutoDetected 7 /* added by auto-detect */ +#define Blocked 8 /* An error occured on an externally + * managed array, don't allow writes + * until it is cleared */ +#define StateChanged 9 /* Faulty or Blocked has changed during + * interrupt, so it needs to be + * notified by the thread */ + wait_queue_head_t blocked_wait; + + int desc_nr; /* descriptor index in the superblock */ + int raid_disk; /* role of device in array */ + int saved_raid_disk; /* role that device used to have in the + * array and could again if we did a partial + * resync from the bitmap + */ + sector_t recovery_offset;/* If this device has been partially + * recovered, this is where we were + * up to. + */ + + atomic_t nr_pending; /* number of pending requests. + * only maintained for arrays that + * support hot removal + */ + atomic_t read_errors; /* number of consecutive read errors that + * we have tried to ignore. + */ + atomic_t corrected_errors; /* number of corrected read errors, + * for reporting to userspace and storing + * in superblock. + */ + struct work_struct del_work; /* used for delayed sysfs removal */ + + struct sysfs_dirent *sysfs_state; /* handle for 'state' + * sysfs entry */ +}; + +struct mddev_s +{ + void *private; + struct mdk_personality *pers; + dev_t unit; + int md_minor; + struct list_head disks; + unsigned long flags; +#define MD_CHANGE_DEVS 0 /* Some device status has changed */ +#define MD_CHANGE_CLEAN 1 /* transition to or from 'clean' */ +#define MD_CHANGE_PENDING 2 /* superblock update in progress */ + + int ro; + + struct gendisk *gendisk; + + struct kobject kobj; + int hold_active; +#define UNTIL_IOCTL 1 +#define UNTIL_STOP 2 + + /* Superblock information */ + int major_version, + minor_version, + patch_version; + int persistent; + int external; /* metadata is + * managed externally */ + char metadata_type[17]; /* externally set*/ + int chunk_size; + time_t ctime, utime; + int level, layout; + char clevel[16]; + int raid_disks; + int max_disks; + sector_t size; /* used size of component devices */ + sector_t array_sectors; /* exported array size */ + __u64 events; + + char uuid[16]; + + /* If the array is being reshaped, we need to record the + * new shape and an indication of where we are up to. + * This is written to the superblock. + * If reshape_position is MaxSector, then no reshape is happening (yet). + */ + sector_t reshape_position; + int delta_disks, new_level, new_layout, new_chunk; + + struct mdk_thread_s *thread; /* management thread */ + struct mdk_thread_s *sync_thread; /* doing resync or reconstruct */ + sector_t curr_resync; /* last block scheduled */ + unsigned long resync_mark; /* a recent timestamp */ + sector_t resync_mark_cnt;/* blocks written at resync_mark */ + sector_t curr_mark_cnt; /* blocks scheduled now */ + + sector_t resync_max_sectors; /* may be set by personality */ + + sector_t resync_mismatches; /* count of sectors where + * parity/replica mismatch found + */ + + /* allow user-space to request suspension of IO to regions of the array */ + sector_t suspend_lo; + sector_t suspend_hi; + /* if zero, use the system-wide default */ + int sync_speed_min; + int sync_speed_max; + + /* resync even though the same disks are shared among md-devices */ + int parallel_resync; + + int ok_start_degraded; + /* recovery/resync flags + * NEEDED: we might need to start a resync/recover + * RUNNING: a thread is running, or about to be started + * SYNC: actually doing a resync, not a recovery + * RECOVER: doing recovery, or need to try it. + * INTR: resync needs to be aborted for some reason + * DONE: thread is done and is waiting to be reaped + * REQUEST: user-space has requested a sync (used with SYNC) + * CHECK: user-space request for for check-only, no repair + * RESHAPE: A reshape is happening + * + * If neither SYNC or RESHAPE are set, then it is a recovery. + */ +#define MD_RECOVERY_RUNNING 0 +#define MD_RECOVERY_SYNC 1 +#define MD_RECOVERY_RECOVER 2 +#define MD_RECOVERY_INTR 3 +#define MD_RECOVERY_DONE 4 +#define MD_RECOVERY_NEEDED 5 +#define MD_RECOVERY_REQUESTED 6 +#define MD_RECOVERY_CHECK 7 +#define MD_RECOVERY_RESHAPE 8 +#define MD_RECOVERY_FROZEN 9 + + unsigned long recovery; + int recovery_disabled; /* if we detect that recovery + * will always fail, set this + * so we don't loop trying */ + + int in_sync; /* know to not need resync */ + struct mutex reconfig_mutex; + atomic_t active; /* general refcount */ + atomic_t openers; /* number of active opens */ + + int changed; /* true if we might need to reread partition info */ + int degraded; /* whether md should consider + * adding a spare + */ + int barriers_work; /* initialised to true, cleared as soon + * as a barrier request to slave + * fails. Only supported + */ + struct bio *biolist; /* bios that need to be retried + * because BIO_RW_BARRIER is not supported + */ + + atomic_t recovery_active; /* blocks scheduled, but not written */ + wait_queue_head_t recovery_wait; + sector_t recovery_cp; + sector_t resync_min; /* user requested sync + * starts here */ + sector_t resync_max; /* resync should pause + * when it gets here */ + + struct sysfs_dirent *sysfs_state; /* handle for 'array_state' + * file in sysfs. + */ + struct sysfs_dirent *sysfs_action; /* handle for 'sync_action' */ + + struct work_struct del_work; /* used for delayed sysfs removal */ + + spinlock_t write_lock; + wait_queue_head_t sb_wait; /* for waiting on superblock updates */ + atomic_t pending_writes; /* number of active superblock writes */ + + unsigned int safemode; /* if set, update "clean" superblock + * when no writes pending. + */ + unsigned int safemode_delay; + struct timer_list safemode_timer; + atomic_t writes_pending; + struct request_queue *queue; /* for plugging ... */ + + atomic_t write_behind; /* outstanding async IO */ + unsigned int max_write_behind; /* 0 = sync */ + + struct bitmap *bitmap; /* the bitmap for the device */ + struct file *bitmap_file; /* the bitmap file */ + long bitmap_offset; /* offset from superblock of + * start of bitmap. May be + * negative, but not '0' + */ + long default_bitmap_offset; /* this is the offset to use when + * hot-adding a bitmap. It should + * eventually be settable by sysfs. + */ + + struct list_head all_mddevs; +}; + + +static inline void rdev_dec_pending(mdk_rdev_t *rdev, mddev_t *mddev) +{ + int faulty = test_bit(Faulty, &rdev->flags); + if (atomic_dec_and_test(&rdev->nr_pending) && faulty) + set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); +} + +static inline void md_sync_acct(struct block_device *bdev, unsigned long nr_sectors) +{ + atomic_add(nr_sectors, &bdev->bd_contains->bd_disk->sync_io); +} + +struct mdk_personality +{ + char *name; + int level; + struct list_head list; + struct module *owner; + int (*make_request)(struct request_queue *q, struct bio *bio); + int (*run)(mddev_t *mddev); + int (*stop)(mddev_t *mddev); + void (*status)(struct seq_file *seq, mddev_t *mddev); + /* error_handler must set ->faulty and clear ->in_sync + * if appropriate, and should abort recovery if needed + */ + void (*error_handler)(mddev_t *mddev, mdk_rdev_t *rdev); + int (*hot_add_disk) (mddev_t *mddev, mdk_rdev_t *rdev); + int (*hot_remove_disk) (mddev_t *mddev, int number); + int (*spare_active) (mddev_t *mddev); + sector_t (*sync_request)(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster); + int (*resize) (mddev_t *mddev, sector_t sectors); + int (*check_reshape) (mddev_t *mddev); + int (*start_reshape) (mddev_t *mddev); + int (*reconfig) (mddev_t *mddev, int layout, int chunk_size); + /* quiesce moves between quiescence states + * 0 - fully active + * 1 - no new requests allowed + * others - reserved + */ + void (*quiesce) (mddev_t *mddev, int state); +}; + + +struct md_sysfs_entry { + struct attribute attr; + ssize_t (*show)(mddev_t *, char *); + ssize_t (*store)(mddev_t *, const char *, size_t); +}; + + +static inline char * mdname (mddev_t * mddev) +{ + return mddev->gendisk ? mddev->gendisk->disk_name : "mdX"; +} + +/* + * iterates through some rdev ringlist. It's safe to remove the + * current 'rdev'. Dont touch 'tmp' though. + */ +#define rdev_for_each_list(rdev, tmp, head) \ + list_for_each_entry_safe(rdev, tmp, head, same_set) + +/* + * iterates through the 'same array disks' ringlist + */ +#define rdev_for_each(rdev, tmp, mddev) \ + list_for_each_entry_safe(rdev, tmp, &((mddev)->disks), same_set) + +#define rdev_for_each_rcu(rdev, mddev) \ + list_for_each_entry_rcu(rdev, &((mddev)->disks), same_set) + +typedef struct mdk_thread_s { + void (*run) (mddev_t *mddev); + mddev_t *mddev; + wait_queue_head_t wqueue; + unsigned long flags; + struct task_struct *tsk; + unsigned long timeout; +} mdk_thread_t; + +#define THREAD_WAKEUP 0 + +#define __wait_event_lock_irq(wq, condition, lock, cmd) \ +do { \ + wait_queue_t __wait; \ + init_waitqueue_entry(&__wait, current); \ + \ + add_wait_queue(&wq, &__wait); \ + for (;;) { \ + set_current_state(TASK_UNINTERRUPTIBLE); \ + if (condition) \ + break; \ + spin_unlock_irq(&lock); \ + cmd; \ + schedule(); \ + spin_lock_irq(&lock); \ + } \ + current->state = TASK_RUNNING; \ + remove_wait_queue(&wq, &__wait); \ +} while (0) + +#define wait_event_lock_irq(wq, condition, lock, cmd) \ +do { \ + if (condition) \ + break; \ + __wait_event_lock_irq(wq, condition, lock, cmd); \ +} while (0) + +static inline void safe_put_page(struct page *p) +{ + if (p) put_page(p); +} + +#endif /* CONFIG_BLOCK */ +#endif + diff --git a/libdde-linux26/contrib/include/linux/raid/md_p.h b/libdde-linux26/contrib/include/linux/raid/md_p.h new file mode 100644 index 00000000..6ba830fa --- /dev/null +++ b/libdde-linux26/contrib/include/linux/raid/md_p.h @@ -0,0 +1,277 @@ +/* + md_p.h : physical layout of Linux RAID devices + Copyright (C) 1996-98 Ingo Molnar, Gadi Oxman + + This program is free software; you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation; either version 2, or (at your option) + any later version. + + You should have received a copy of the GNU General Public License + (for example /usr/src/linux/COPYING); if not, write to the Free + Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. +*/ + +#ifndef _MD_P_H +#define _MD_P_H + +#include <linux/types.h> + +/* + * RAID superblock. + * + * The RAID superblock maintains some statistics on each RAID configuration. + * Each real device in the RAID set contains it near the end of the device. + * Some of the ideas are copied from the ext2fs implementation. + * + * We currently use 4096 bytes as follows: + * + * word offset function + * + * 0 - 31 Constant generic RAID device information. + * 32 - 63 Generic state information. + * 64 - 127 Personality specific information. + * 128 - 511 12 32-words descriptors of the disks in the raid set. + * 512 - 911 Reserved. + * 912 - 1023 Disk specific descriptor. + */ + +/* + * If x is the real device size in bytes, we return an apparent size of: + * + * y = (x & ~(MD_RESERVED_BYTES - 1)) - MD_RESERVED_BYTES + * + * and place the 4kB superblock at offset y. + */ +#define MD_RESERVED_BYTES (64 * 1024) +#define MD_RESERVED_SECTORS (MD_RESERVED_BYTES / 512) + +#define MD_NEW_SIZE_SECTORS(x) ((x & ~(MD_RESERVED_SECTORS - 1)) - MD_RESERVED_SECTORS) + +#define MD_SB_BYTES 4096 +#define MD_SB_WORDS (MD_SB_BYTES / 4) +#define MD_SB_SECTORS (MD_SB_BYTES / 512) + +/* + * The following are counted in 32-bit words + */ +#define MD_SB_GENERIC_OFFSET 0 +#define MD_SB_PERSONALITY_OFFSET 64 +#define MD_SB_DISKS_OFFSET 128 +#define MD_SB_DESCRIPTOR_OFFSET 992 + +#define MD_SB_GENERIC_CONSTANT_WORDS 32 +#define MD_SB_GENERIC_STATE_WORDS 32 +#define MD_SB_GENERIC_WORDS (MD_SB_GENERIC_CONSTANT_WORDS + MD_SB_GENERIC_STATE_WORDS) +#define MD_SB_PERSONALITY_WORDS 64 +#define MD_SB_DESCRIPTOR_WORDS 32 +#define MD_SB_DISKS 27 +#define MD_SB_DISKS_WORDS (MD_SB_DISKS*MD_SB_DESCRIPTOR_WORDS) +#define MD_SB_RESERVED_WORDS (1024 - MD_SB_GENERIC_WORDS - MD_SB_PERSONALITY_WORDS - MD_SB_DISKS_WORDS - MD_SB_DESCRIPTOR_WORDS) +#define MD_SB_EQUAL_WORDS (MD_SB_GENERIC_WORDS + MD_SB_PERSONALITY_WORDS + MD_SB_DISKS_WORDS) + +/* + * Device "operational" state bits + */ +#define MD_DISK_FAULTY 0 /* disk is faulty / operational */ +#define MD_DISK_ACTIVE 1 /* disk is running or spare disk */ +#define MD_DISK_SYNC 2 /* disk is in sync with the raid set */ +#define MD_DISK_REMOVED 3 /* disk is in sync with the raid set */ + +#define MD_DISK_WRITEMOSTLY 9 /* disk is "write-mostly" is RAID1 config. + * read requests will only be sent here in + * dire need + */ + +typedef struct mdp_device_descriptor_s { + __u32 number; /* 0 Device number in the entire set */ + __u32 major; /* 1 Device major number */ + __u32 minor; /* 2 Device minor number */ + __u32 raid_disk; /* 3 The role of the device in the raid set */ + __u32 state; /* 4 Operational state */ + __u32 reserved[MD_SB_DESCRIPTOR_WORDS - 5]; +} mdp_disk_t; + +#define MD_SB_MAGIC 0xa92b4efc + +/* + * Superblock state bits + */ +#define MD_SB_CLEAN 0 +#define MD_SB_ERRORS 1 + +#define MD_SB_BITMAP_PRESENT 8 /* bitmap may be present nearby */ + +/* + * Notes: + * - if an array is being reshaped (restriped) in order to change the + * the number of active devices in the array, 'raid_disks' will be + * the larger of the old and new numbers. 'delta_disks' will + * be the "new - old". So if +ve, raid_disks is the new value, and + * "raid_disks-delta_disks" is the old. If -ve, raid_disks is the + * old value and "raid_disks+delta_disks" is the new (smaller) value. + */ + + +typedef struct mdp_superblock_s { + /* + * Constant generic information + */ + __u32 md_magic; /* 0 MD identifier */ + __u32 major_version; /* 1 major version to which the set conforms */ + __u32 minor_version; /* 2 minor version ... */ + __u32 patch_version; /* 3 patchlevel version ... */ + __u32 gvalid_words; /* 4 Number of used words in this section */ + __u32 set_uuid0; /* 5 Raid set identifier */ + __u32 ctime; /* 6 Creation time */ + __u32 level; /* 7 Raid personality */ + __u32 size; /* 8 Apparent size of each individual disk */ + __u32 nr_disks; /* 9 total disks in the raid set */ + __u32 raid_disks; /* 10 disks in a fully functional raid set */ + __u32 md_minor; /* 11 preferred MD minor device number */ + __u32 not_persistent; /* 12 does it have a persistent superblock */ + __u32 set_uuid1; /* 13 Raid set identifier #2 */ + __u32 set_uuid2; /* 14 Raid set identifier #3 */ + __u32 set_uuid3; /* 15 Raid set identifier #4 */ + __u32 gstate_creserved[MD_SB_GENERIC_CONSTANT_WORDS - 16]; + + /* + * Generic state information + */ + __u32 utime; /* 0 Superblock update time */ + __u32 state; /* 1 State bits (clean, ...) */ + __u32 active_disks; /* 2 Number of currently active disks */ + __u32 working_disks; /* 3 Number of working disks */ + __u32 failed_disks; /* 4 Number of failed disks */ + __u32 spare_disks; /* 5 Number of spare disks */ + __u32 sb_csum; /* 6 checksum of the whole superblock */ +#ifdef __BIG_ENDIAN + __u32 events_hi; /* 7 high-order of superblock update count */ + __u32 events_lo; /* 8 low-order of superblock update count */ + __u32 cp_events_hi; /* 9 high-order of checkpoint update count */ + __u32 cp_events_lo; /* 10 low-order of checkpoint update count */ +#else + __u32 events_lo; /* 7 low-order of superblock update count */ + __u32 events_hi; /* 8 high-order of superblock update count */ + __u32 cp_events_lo; /* 9 low-order of checkpoint update count */ + __u32 cp_events_hi; /* 10 high-order of checkpoint update count */ +#endif + __u32 recovery_cp; /* 11 recovery checkpoint sector count */ + /* There are only valid for minor_version > 90 */ + __u64 reshape_position; /* 12,13 next address in array-space for reshape */ + __u32 new_level; /* 14 new level we are reshaping to */ + __u32 delta_disks; /* 15 change in number of raid_disks */ + __u32 new_layout; /* 16 new layout */ + __u32 new_chunk; /* 17 new chunk size (bytes) */ + __u32 gstate_sreserved[MD_SB_GENERIC_STATE_WORDS - 18]; + + /* + * Personality information + */ + __u32 layout; /* 0 the array's physical layout */ + __u32 chunk_size; /* 1 chunk size in bytes */ + __u32 root_pv; /* 2 LV root PV */ + __u32 root_block; /* 3 LV root block */ + __u32 pstate_reserved[MD_SB_PERSONALITY_WORDS - 4]; + + /* + * Disks information + */ + mdp_disk_t disks[MD_SB_DISKS]; + + /* + * Reserved + */ + __u32 reserved[MD_SB_RESERVED_WORDS]; + + /* + * Active descriptor + */ + mdp_disk_t this_disk; + +} mdp_super_t; + +static inline __u64 md_event(mdp_super_t *sb) { + __u64 ev = sb->events_hi; + return (ev<<32)| sb->events_lo; +} + +#define MD_SUPERBLOCK_1_TIME_SEC_MASK ((1ULL<<40) - 1) + +/* + * The version-1 superblock : + * All numeric fields are little-endian. + * + * total size: 256 bytes plus 2 per device. + * 1K allows 384 devices. + */ +struct mdp_superblock_1 { + /* constant array information - 128 bytes */ + __le32 magic; /* MD_SB_MAGIC: 0xa92b4efc - little endian */ + __le32 major_version; /* 1 */ + __le32 feature_map; /* bit 0 set if 'bitmap_offset' is meaningful */ + __le32 pad0; /* always set to 0 when writing */ + + __u8 set_uuid[16]; /* user-space generated. */ + char set_name[32]; /* set and interpreted by user-space */ + + __le64 ctime; /* lo 40 bits are seconds, top 24 are microseconds or 0*/ + __le32 level; /* -4 (multipath), -1 (linear), 0,1,4,5 */ + __le32 layout; /* only for raid5 and raid10 currently */ + __le64 size; /* used size of component devices, in 512byte sectors */ + + __le32 chunksize; /* in 512byte sectors */ + __le32 raid_disks; + __le32 bitmap_offset; /* sectors after start of superblock that bitmap starts + * NOTE: signed, so bitmap can be before superblock + * only meaningful of feature_map[0] is set. + */ + + /* These are only valid with feature bit '4' */ + __le32 new_level; /* new level we are reshaping to */ + __le64 reshape_position; /* next address in array-space for reshape */ + __le32 delta_disks; /* change in number of raid_disks */ + __le32 new_layout; /* new layout */ + __le32 new_chunk; /* new chunk size (bytes) */ + __u8 pad1[128-124]; /* set to 0 when written */ + + /* constant this-device information - 64 bytes */ + __le64 data_offset; /* sector start of data, often 0 */ + __le64 data_size; /* sectors in this device that can be used for data */ + __le64 super_offset; /* sector start of this superblock */ + __le64 recovery_offset;/* sectors before this offset (from data_offset) have been recovered */ + __le32 dev_number; /* permanent identifier of this device - not role in raid */ + __le32 cnt_corrected_read; /* number of read errors that were corrected by re-writing */ + __u8 device_uuid[16]; /* user-space setable, ignored by kernel */ + __u8 devflags; /* per-device flags. Only one defined...*/ +#define WriteMostly1 1 /* mask for writemostly flag in above */ + __u8 pad2[64-57]; /* set to 0 when writing */ + + /* array state information - 64 bytes */ + __le64 utime; /* 40 bits second, 24 btes microseconds */ + __le64 events; /* incremented when superblock updated */ + __le64 resync_offset; /* data before this offset (from data_offset) known to be in sync */ + __le32 sb_csum; /* checksum upto devs[max_dev] */ + __le32 max_dev; /* size of devs[] array to consider */ + __u8 pad3[64-32]; /* set to 0 when writing */ + + /* device state information. Indexed by dev_number. + * 2 bytes per device + * Note there are no per-device state flags. State information is rolled + * into the 'roles' value. If a device is spare or faulty, then it doesn't + * have a meaningful role. + */ + __le16 dev_roles[0]; /* role in array, or 0xffff for a spare, or 0xfffe for faulty */ +}; + +/* feature_map bits */ +#define MD_FEATURE_BITMAP_OFFSET 1 +#define MD_FEATURE_RECOVERY_OFFSET 2 /* recovery_offset is present and + * must be honoured + */ +#define MD_FEATURE_RESHAPE_ACTIVE 4 + +#define MD_FEATURE_ALL (1|2|4) + +#endif + diff --git a/libdde-linux26/contrib/include/linux/raid/md_u.h b/libdde-linux26/contrib/include/linux/raid/md_u.h new file mode 100644 index 00000000..7192035f --- /dev/null +++ b/libdde-linux26/contrib/include/linux/raid/md_u.h @@ -0,0 +1,124 @@ +/* + md_u.h : user <=> kernel API between Linux raidtools and RAID drivers + Copyright (C) 1998 Ingo Molnar + + This program is free software; you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation; either version 2, or (at your option) + any later version. + + You should have received a copy of the GNU General Public License + (for example /usr/src/linux/COPYING); if not, write to the Free + Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. +*/ + +#ifndef _MD_U_H +#define _MD_U_H + +/* ioctls */ + +/* status */ +#define RAID_VERSION _IOR (MD_MAJOR, 0x10, mdu_version_t) +#define GET_ARRAY_INFO _IOR (MD_MAJOR, 0x11, mdu_array_info_t) +#define GET_DISK_INFO _IOR (MD_MAJOR, 0x12, mdu_disk_info_t) +#define PRINT_RAID_DEBUG _IO (MD_MAJOR, 0x13) +#define RAID_AUTORUN _IO (MD_MAJOR, 0x14) +#define GET_BITMAP_FILE _IOR (MD_MAJOR, 0x15, mdu_bitmap_file_t) + +/* configuration */ +#define CLEAR_ARRAY _IO (MD_MAJOR, 0x20) +#define ADD_NEW_DISK _IOW (MD_MAJOR, 0x21, mdu_disk_info_t) +#define HOT_REMOVE_DISK _IO (MD_MAJOR, 0x22) +#define SET_ARRAY_INFO _IOW (MD_MAJOR, 0x23, mdu_array_info_t) +#define SET_DISK_INFO _IO (MD_MAJOR, 0x24) +#define WRITE_RAID_INFO _IO (MD_MAJOR, 0x25) +#define UNPROTECT_ARRAY _IO (MD_MAJOR, 0x26) +#define PROTECT_ARRAY _IO (MD_MAJOR, 0x27) +#define HOT_ADD_DISK _IO (MD_MAJOR, 0x28) +#define SET_DISK_FAULTY _IO (MD_MAJOR, 0x29) +#define HOT_GENERATE_ERROR _IO (MD_MAJOR, 0x2a) +#define SET_BITMAP_FILE _IOW (MD_MAJOR, 0x2b, int) + +/* usage */ +#define RUN_ARRAY _IOW (MD_MAJOR, 0x30, mdu_param_t) +/* 0x31 was START_ARRAY */ +#define STOP_ARRAY _IO (MD_MAJOR, 0x32) +#define STOP_ARRAY_RO _IO (MD_MAJOR, 0x33) +#define RESTART_ARRAY_RW _IO (MD_MAJOR, 0x34) + +typedef struct mdu_version_s { + int major; + int minor; + int patchlevel; +} mdu_version_t; + +typedef struct mdu_array_info_s { + /* + * Generic constant information + */ + int major_version; + int minor_version; + int patch_version; + int ctime; + int level; + int size; + int nr_disks; + int raid_disks; + int md_minor; + int not_persistent; + + /* + * Generic state information + */ + int utime; /* 0 Superblock update time */ + int state; /* 1 State bits (clean, ...) */ + int active_disks; /* 2 Number of currently active disks */ + int working_disks; /* 3 Number of working disks */ + int failed_disks; /* 4 Number of failed disks */ + int spare_disks; /* 5 Number of spare disks */ + + /* + * Personality information + */ + int layout; /* 0 the array's physical layout */ + int chunk_size; /* 1 chunk size in bytes */ + +} mdu_array_info_t; + +typedef struct mdu_disk_info_s { + /* + * configuration/status of one particular disk + */ + int number; + int major; + int minor; + int raid_disk; + int state; + +} mdu_disk_info_t; + +typedef struct mdu_start_info_s { + /* + * configuration/status of one particular disk + */ + int major; + int minor; + int raid_disk; + int state; + +} mdu_start_info_t; + +typedef struct mdu_bitmap_file_s +{ + char pathname[4096]; +} mdu_bitmap_file_t; + +typedef struct mdu_param_s +{ + int personality; /* 1,2,3,4 */ + int chunk_size; /* in bytes */ + int max_fault; /* unused for now */ +} mdu_param_t; + +#endif + diff --git a/libdde-linux26/contrib/include/linux/raid/multipath.h b/libdde-linux26/contrib/include/linux/raid/multipath.h new file mode 100644 index 00000000..6f53fc17 --- /dev/null +++ b/libdde-linux26/contrib/include/linux/raid/multipath.h @@ -0,0 +1,42 @@ +#ifndef _MULTIPATH_H +#define _MULTIPATH_H + +#include <linux/raid/md.h> + +struct multipath_info { + mdk_rdev_t *rdev; +}; + +struct multipath_private_data { + mddev_t *mddev; + struct multipath_info *multipaths; + int raid_disks; + int working_disks; + spinlock_t device_lock; + struct list_head retry_list; + + mempool_t *pool; +}; + +typedef struct multipath_private_data multipath_conf_t; + +/* + * this is the only point in the RAID code where we violate + * C type safety. mddev->private is an 'opaque' pointer. + */ +#define mddev_to_conf(mddev) ((multipath_conf_t *) mddev->private) + +/* + * this is our 'private' 'collective' MULTIPATH buffer head. + * it contains information about what kind of IO operations were started + * for this MULTIPATH operation, and about their status: + */ + +struct multipath_bh { + mddev_t *mddev; + struct bio *master_bio; + struct bio bio; + int path; + struct list_head retry_list; +}; +#endif diff --git a/libdde-linux26/contrib/include/linux/raid/raid0.h b/libdde-linux26/contrib/include/linux/raid/raid0.h new file mode 100644 index 00000000..fd42aa87 --- /dev/null +++ b/libdde-linux26/contrib/include/linux/raid/raid0.h @@ -0,0 +1,30 @@ +#ifndef _RAID0_H +#define _RAID0_H + +#include <linux/raid/md.h> + +struct strip_zone +{ + sector_t zone_start; /* Zone offset in md_dev (in sectors) */ + sector_t dev_start; /* Zone offset in real dev (in sectors) */ + sector_t sectors; /* Zone size in sectors */ + int nb_dev; /* # of devices attached to the zone */ + mdk_rdev_t **dev; /* Devices attached to the zone */ +}; + +struct raid0_private_data +{ + struct strip_zone **hash_table; /* Table of indexes into strip_zone */ + struct strip_zone *strip_zone; + mdk_rdev_t **devlist; /* lists of rdevs, pointed to by strip_zone->dev */ + int nr_strip_zones; + + sector_t spacing; + int sector_shift; /* shift this before divide by spacing */ +}; + +typedef struct raid0_private_data raid0_conf_t; + +#define mddev_to_conf(mddev) ((raid0_conf_t *) mddev->private) + +#endif diff --git a/libdde-linux26/contrib/include/linux/raid/raid1.h b/libdde-linux26/contrib/include/linux/raid/raid1.h new file mode 100644 index 00000000..0a9ba7c3 --- /dev/null +++ b/libdde-linux26/contrib/include/linux/raid/raid1.h @@ -0,0 +1,134 @@ +#ifndef _RAID1_H +#define _RAID1_H + +#include <linux/raid/md.h> + +typedef struct mirror_info mirror_info_t; + +struct mirror_info { + mdk_rdev_t *rdev; + sector_t head_position; +}; + +/* + * memory pools need a pointer to the mddev, so they can force an unplug + * when memory is tight, and a count of the number of drives that the + * pool was allocated for, so they know how much to allocate and free. + * mddev->raid_disks cannot be used, as it can change while a pool is active + * These two datums are stored in a kmalloced struct. + */ + +struct pool_info { + mddev_t *mddev; + int raid_disks; +}; + + +typedef struct r1bio_s r1bio_t; + +struct r1_private_data_s { + mddev_t *mddev; + mirror_info_t *mirrors; + int raid_disks; + int last_used; + sector_t next_seq_sect; + spinlock_t device_lock; + + struct list_head retry_list; + /* queue pending writes and submit them on unplug */ + struct bio_list pending_bio_list; + /* queue of writes that have been unplugged */ + struct bio_list flushing_bio_list; + + /* for use when syncing mirrors: */ + + spinlock_t resync_lock; + int nr_pending; + int nr_waiting; + int nr_queued; + int barrier; + sector_t next_resync; + int fullsync; /* set to 1 if a full sync is needed, + * (fresh device added). + * Cleared when a sync completes. + */ + + wait_queue_head_t wait_barrier; + + struct pool_info *poolinfo; + + struct page *tmppage; + + mempool_t *r1bio_pool; + mempool_t *r1buf_pool; +}; + +typedef struct r1_private_data_s conf_t; + +/* + * this is the only point in the RAID code where we violate + * C type safety. mddev->private is an 'opaque' pointer. + */ +#define mddev_to_conf(mddev) ((conf_t *) mddev->private) + +/* + * this is our 'private' RAID1 bio. + * + * it contains information about what kind of IO operations were started + * for this RAID1 operation, and about their status: + */ + +struct r1bio_s { + atomic_t remaining; /* 'have we finished' count, + * used from IRQ handlers + */ + atomic_t behind_remaining; /* number of write-behind ios remaining + * in this BehindIO request + */ + sector_t sector; + int sectors; + unsigned long state; + mddev_t *mddev; + /* + * original bio going to /dev/mdx + */ + struct bio *master_bio; + /* + * if the IO is in READ direction, then this is where we read + */ + int read_disk; + + struct list_head retry_list; + struct bitmap_update *bitmap_update; + /* + * if the IO is in WRITE direction, then multiple bios are used. + * We choose the number when they are allocated. + */ + struct bio *bios[0]; + /* DO NOT PUT ANY NEW FIELDS HERE - bios array is contiguously alloced*/ +}; + +/* when we get a read error on a read-only array, we redirect to another + * device without failing the first device, or trying to over-write to + * correct the read error. To keep track of bad blocks on a per-bio + * level, we store IO_BLOCKED in the appropriate 'bios' pointer + */ +#define IO_BLOCKED ((struct bio*)1) + +/* bits for r1bio.state */ +#define R1BIO_Uptodate 0 +#define R1BIO_IsSync 1 +#define R1BIO_Degraded 2 +#define R1BIO_BehindIO 3 +#define R1BIO_Barrier 4 +#define R1BIO_BarrierRetry 5 +/* For write-behind requests, we call bi_end_io when + * the last non-write-behind device completes, providing + * any write was successful. Otherwise we call when + * any write-behind write succeeds, otherwise we call + * with failure when last write completes (and all failed). + * Record that bi_end_io was called with this flag... + */ +#define R1BIO_Returned 6 + +#endif diff --git a/libdde-linux26/contrib/include/linux/raid/raid10.h b/libdde-linux26/contrib/include/linux/raid/raid10.h new file mode 100644 index 00000000..e9091cfe --- /dev/null +++ b/libdde-linux26/contrib/include/linux/raid/raid10.h @@ -0,0 +1,123 @@ +#ifndef _RAID10_H +#define _RAID10_H + +#include <linux/raid/md.h> + +typedef struct mirror_info mirror_info_t; + +struct mirror_info { + mdk_rdev_t *rdev; + sector_t head_position; +}; + +typedef struct r10bio_s r10bio_t; + +struct r10_private_data_s { + mddev_t *mddev; + mirror_info_t *mirrors; + int raid_disks; + spinlock_t device_lock; + + /* geometry */ + int near_copies; /* number of copies layed out raid0 style */ + int far_copies; /* number of copies layed out + * at large strides across drives + */ + int far_offset; /* far_copies are offset by 1 stripe + * instead of many + */ + int copies; /* near_copies * far_copies. + * must be <= raid_disks + */ + sector_t stride; /* distance between far copies. + * This is size / far_copies unless + * far_offset, in which case it is + * 1 stripe. + */ + + int chunk_shift; /* shift from chunks to sectors */ + sector_t chunk_mask; + + struct list_head retry_list; + /* queue pending writes and submit them on unplug */ + struct bio_list pending_bio_list; + + + spinlock_t resync_lock; + int nr_pending; + int nr_waiting; + int nr_queued; + int barrier; + sector_t next_resync; + int fullsync; /* set to 1 if a full sync is needed, + * (fresh device added). + * Cleared when a sync completes. + */ + + wait_queue_head_t wait_barrier; + + mempool_t *r10bio_pool; + mempool_t *r10buf_pool; + struct page *tmppage; +}; + +typedef struct r10_private_data_s conf_t; + +/* + * this is the only point in the RAID code where we violate + * C type safety. mddev->private is an 'opaque' pointer. + */ +#define mddev_to_conf(mddev) ((conf_t *) mddev->private) + +/* + * this is our 'private' RAID10 bio. + * + * it contains information about what kind of IO operations were started + * for this RAID10 operation, and about their status: + */ + +struct r10bio_s { + atomic_t remaining; /* 'have we finished' count, + * used from IRQ handlers + */ + sector_t sector; /* virtual sector number */ + int sectors; + unsigned long state; + mddev_t *mddev; + /* + * original bio going to /dev/mdx + */ + struct bio *master_bio; + /* + * if the IO is in READ direction, then this is where we read + */ + int read_slot; + + struct list_head retry_list; + /* + * if the IO is in WRITE direction, then multiple bios are used, + * one for each copy. + * When resyncing we also use one for each copy. + * When reconstructing, we use 2 bios, one for read, one for write. + * We choose the number when they are allocated. + */ + struct { + struct bio *bio; + sector_t addr; + int devnum; + } devs[0]; +}; + +/* when we get a read error on a read-only array, we redirect to another + * device without failing the first device, or trying to over-write to + * correct the read error. To keep track of bad blocks on a per-bio + * level, we store IO_BLOCKED in the appropriate 'bios' pointer + */ +#define IO_BLOCKED ((struct bio*)1) + +/* bits for r10bio.state */ +#define R10BIO_Uptodate 0 +#define R10BIO_IsSync 1 +#define R10BIO_IsRecover 2 +#define R10BIO_Degraded 3 +#endif diff --git a/libdde-linux26/contrib/include/linux/raid/raid5.h b/libdde-linux26/contrib/include/linux/raid/raid5.h new file mode 100644 index 00000000..3b267279 --- /dev/null +++ b/libdde-linux26/contrib/include/linux/raid/raid5.h @@ -0,0 +1,402 @@ +#ifndef _RAID5_H +#define _RAID5_H + +#include <linux/raid/md.h> +#include <linux/raid/xor.h> + +/* + * + * Each stripe contains one buffer per disc. Each buffer can be in + * one of a number of states stored in "flags". Changes between + * these states happen *almost* exclusively under a per-stripe + * spinlock. Some very specific changes can happen in bi_end_io, and + * these are not protected by the spin lock. + * + * The flag bits that are used to represent these states are: + * R5_UPTODATE and R5_LOCKED + * + * State Empty == !UPTODATE, !LOCK + * We have no data, and there is no active request + * State Want == !UPTODATE, LOCK + * A read request is being submitted for this block + * State Dirty == UPTODATE, LOCK + * Some new data is in this buffer, and it is being written out + * State Clean == UPTODATE, !LOCK + * We have valid data which is the same as on disc + * + * The possible state transitions are: + * + * Empty -> Want - on read or write to get old data for parity calc + * Empty -> Dirty - on compute_parity to satisfy write/sync request.(RECONSTRUCT_WRITE) + * Empty -> Clean - on compute_block when computing a block for failed drive + * Want -> Empty - on failed read + * Want -> Clean - on successful completion of read request + * Dirty -> Clean - on successful completion of write request + * Dirty -> Clean - on failed write + * Clean -> Dirty - on compute_parity to satisfy write/sync (RECONSTRUCT or RMW) + * + * The Want->Empty, Want->Clean, Dirty->Clean, transitions + * all happen in b_end_io at interrupt time. + * Each sets the Uptodate bit before releasing the Lock bit. + * This leaves one multi-stage transition: + * Want->Dirty->Clean + * This is safe because thinking that a Clean buffer is actually dirty + * will at worst delay some action, and the stripe will be scheduled + * for attention after the transition is complete. + * + * There is one possibility that is not covered by these states. That + * is if one drive has failed and there is a spare being rebuilt. We + * can't distinguish between a clean block that has been generated + * from parity calculations, and a clean block that has been + * successfully written to the spare ( or to parity when resyncing). + * To distingush these states we have a stripe bit STRIPE_INSYNC that + * is set whenever a write is scheduled to the spare, or to the parity + * disc if there is no spare. A sync request clears this bit, and + * when we find it set with no buffers locked, we know the sync is + * complete. + * + * Buffers for the md device that arrive via make_request are attached + * to the appropriate stripe in one of two lists linked on b_reqnext. + * One list (bh_read) for read requests, one (bh_write) for write. + * There should never be more than one buffer on the two lists + * together, but we are not guaranteed of that so we allow for more. + * + * If a buffer is on the read list when the associated cache buffer is + * Uptodate, the data is copied into the read buffer and it's b_end_io + * routine is called. This may happen in the end_request routine only + * if the buffer has just successfully been read. end_request should + * remove the buffers from the list and then set the Uptodate bit on + * the buffer. Other threads may do this only if they first check + * that the Uptodate bit is set. Once they have checked that they may + * take buffers off the read queue. + * + * When a buffer on the write list is committed for write it is copied + * into the cache buffer, which is then marked dirty, and moved onto a + * third list, the written list (bh_written). Once both the parity + * block and the cached buffer are successfully written, any buffer on + * a written list can be returned with b_end_io. + * + * The write list and read list both act as fifos. The read list is + * protected by the device_lock. The write and written lists are + * protected by the stripe lock. The device_lock, which can be + * claimed while the stipe lock is held, is only for list + * manipulations and will only be held for a very short time. It can + * be claimed from interrupts. + * + * + * Stripes in the stripe cache can be on one of two lists (or on + * neither). The "inactive_list" contains stripes which are not + * currently being used for any request. They can freely be reused + * for another stripe. The "handle_list" contains stripes that need + * to be handled in some way. Both of these are fifo queues. Each + * stripe is also (potentially) linked to a hash bucket in the hash + * table so that it can be found by sector number. Stripes that are + * not hashed must be on the inactive_list, and will normally be at + * the front. All stripes start life this way. + * + * The inactive_list, handle_list and hash bucket lists are all protected by the + * device_lock. + * - stripes on the inactive_list never have their stripe_lock held. + * - stripes have a reference counter. If count==0, they are on a list. + * - If a stripe might need handling, STRIPE_HANDLE is set. + * - When refcount reaches zero, then if STRIPE_HANDLE it is put on + * handle_list else inactive_list + * + * This, combined with the fact that STRIPE_HANDLE is only ever + * cleared while a stripe has a non-zero count means that if the + * refcount is 0 and STRIPE_HANDLE is set, then it is on the + * handle_list and if recount is 0 and STRIPE_HANDLE is not set, then + * the stripe is on inactive_list. + * + * The possible transitions are: + * activate an unhashed/inactive stripe (get_active_stripe()) + * lockdev check-hash unlink-stripe cnt++ clean-stripe hash-stripe unlockdev + * activate a hashed, possibly active stripe (get_active_stripe()) + * lockdev check-hash if(!cnt++)unlink-stripe unlockdev + * attach a request to an active stripe (add_stripe_bh()) + * lockdev attach-buffer unlockdev + * handle a stripe (handle_stripe()) + * lockstripe clrSTRIPE_HANDLE ... + * (lockdev check-buffers unlockdev) .. + * change-state .. + * record io/ops needed unlockstripe schedule io/ops + * release an active stripe (release_stripe()) + * lockdev if (!--cnt) { if STRIPE_HANDLE, add to handle_list else add to inactive-list } unlockdev + * + * The refcount counts each thread that have activated the stripe, + * plus raid5d if it is handling it, plus one for each active request + * on a cached buffer, and plus one if the stripe is undergoing stripe + * operations. + * + * Stripe operations are performed outside the stripe lock, + * the stripe operations are: + * -copying data between the stripe cache and user application buffers + * -computing blocks to save a disk access, or to recover a missing block + * -updating the parity on a write operation (reconstruct write and + * read-modify-write) + * -checking parity correctness + * -running i/o to disk + * These operations are carried out by raid5_run_ops which uses the async_tx + * api to (optionally) offload operations to dedicated hardware engines. + * When requesting an operation handle_stripe sets the pending bit for the + * operation and increments the count. raid5_run_ops is then run whenever + * the count is non-zero. + * There are some critical dependencies between the operations that prevent some + * from being requested while another is in flight. + * 1/ Parity check operations destroy the in cache version of the parity block, + * so we prevent parity dependent operations like writes and compute_blocks + * from starting while a check is in progress. Some dma engines can perform + * the check without damaging the parity block, in these cases the parity + * block is re-marked up to date (assuming the check was successful) and is + * not re-read from disk. + * 2/ When a write operation is requested we immediately lock the affected + * blocks, and mark them as not up to date. This causes new read requests + * to be held off, as well as parity checks and compute block operations. + * 3/ Once a compute block operation has been requested handle_stripe treats + * that block as if it is up to date. raid5_run_ops guaruntees that any + * operation that is dependent on the compute block result is initiated after + * the compute block completes. + */ + +/* + * Operations state - intermediate states that are visible outside of sh->lock + * In general _idle indicates nothing is running, _run indicates a data + * processing operation is active, and _result means the data processing result + * is stable and can be acted upon. For simple operations like biofill and + * compute that only have an _idle and _run state they are indicated with + * sh->state flags (STRIPE_BIOFILL_RUN and STRIPE_COMPUTE_RUN) + */ +/** + * enum check_states - handles syncing / repairing a stripe + * @check_state_idle - check operations are quiesced + * @check_state_run - check operation is running + * @check_state_result - set outside lock when check result is valid + * @check_state_compute_run - check failed and we are repairing + * @check_state_compute_result - set outside lock when compute result is valid + */ +enum check_states { + check_state_idle = 0, + check_state_run, /* parity check */ + check_state_check_result, + check_state_compute_run, /* parity repair */ + check_state_compute_result, +}; + +/** + * enum reconstruct_states - handles writing or expanding a stripe + */ +enum reconstruct_states { + reconstruct_state_idle = 0, + reconstruct_state_prexor_drain_run, /* prexor-write */ + reconstruct_state_drain_run, /* write */ + reconstruct_state_run, /* expand */ + reconstruct_state_prexor_drain_result, + reconstruct_state_drain_result, + reconstruct_state_result, +}; + +struct stripe_head { + struct hlist_node hash; + struct list_head lru; /* inactive_list or handle_list */ + struct raid5_private_data *raid_conf; + sector_t sector; /* sector of this row */ + int pd_idx; /* parity disk index */ + unsigned long state; /* state flags */ + atomic_t count; /* nr of active thread/requests */ + spinlock_t lock; + int bm_seq; /* sequence number for bitmap flushes */ + int disks; /* disks in stripe */ + enum check_states check_state; + enum reconstruct_states reconstruct_state; + /* stripe_operations + * @target - STRIPE_OP_COMPUTE_BLK target + */ + struct stripe_operations { + int target; + u32 zero_sum_result; + } ops; + struct r5dev { + struct bio req; + struct bio_vec vec; + struct page *page; + struct bio *toread, *read, *towrite, *written; + sector_t sector; /* sector of this page */ + unsigned long flags; + } dev[1]; /* allocated with extra space depending of RAID geometry */ +}; + +/* stripe_head_state - collects and tracks the dynamic state of a stripe_head + * for handle_stripe. It is only valid under spin_lock(sh->lock); + */ +struct stripe_head_state { + int syncing, expanding, expanded; + int locked, uptodate, to_read, to_write, failed, written; + int to_fill, compute, req_compute, non_overwrite; + int failed_num; + unsigned long ops_request; +}; + +/* r6_state - extra state data only relevant to r6 */ +struct r6_state { + int p_failed, q_failed, qd_idx, failed_num[2]; +}; + +/* Flags */ +#define R5_UPTODATE 0 /* page contains current data */ +#define R5_LOCKED 1 /* IO has been submitted on "req" */ +#define R5_OVERWRITE 2 /* towrite covers whole page */ +/* and some that are internal to handle_stripe */ +#define R5_Insync 3 /* rdev && rdev->in_sync at start */ +#define R5_Wantread 4 /* want to schedule a read */ +#define R5_Wantwrite 5 +#define R5_Overlap 7 /* There is a pending overlapping request on this block */ +#define R5_ReadError 8 /* seen a read error here recently */ +#define R5_ReWrite 9 /* have tried to over-write the readerror */ + +#define R5_Expanded 10 /* This block now has post-expand data */ +#define R5_Wantcompute 11 /* compute_block in progress treat as + * uptodate + */ +#define R5_Wantfill 12 /* dev->toread contains a bio that needs + * filling + */ +#define R5_Wantdrain 13 /* dev->towrite needs to be drained */ +/* + * Write method + */ +#define RECONSTRUCT_WRITE 1 +#define READ_MODIFY_WRITE 2 +/* not a write method, but a compute_parity mode */ +#define CHECK_PARITY 3 + +/* + * Stripe state + */ +#define STRIPE_HANDLE 2 +#define STRIPE_SYNCING 3 +#define STRIPE_INSYNC 4 +#define STRIPE_PREREAD_ACTIVE 5 +#define STRIPE_DELAYED 6 +#define STRIPE_DEGRADED 7 +#define STRIPE_BIT_DELAY 8 +#define STRIPE_EXPANDING 9 +#define STRIPE_EXPAND_SOURCE 10 +#define STRIPE_EXPAND_READY 11 +#define STRIPE_IO_STARTED 12 /* do not count towards 'bypass_count' */ +#define STRIPE_FULL_WRITE 13 /* all blocks are set to be overwritten */ +#define STRIPE_BIOFILL_RUN 14 +#define STRIPE_COMPUTE_RUN 15 +/* + * Operation request flags + */ +#define STRIPE_OP_BIOFILL 0 +#define STRIPE_OP_COMPUTE_BLK 1 +#define STRIPE_OP_PREXOR 2 +#define STRIPE_OP_BIODRAIN 3 +#define STRIPE_OP_POSTXOR 4 +#define STRIPE_OP_CHECK 5 + +/* + * Plugging: + * + * To improve write throughput, we need to delay the handling of some + * stripes until there has been a chance that several write requests + * for the one stripe have all been collected. + * In particular, any write request that would require pre-reading + * is put on a "delayed" queue until there are no stripes currently + * in a pre-read phase. Further, if the "delayed" queue is empty when + * a stripe is put on it then we "plug" the queue and do not process it + * until an unplug call is made. (the unplug_io_fn() is called). + * + * When preread is initiated on a stripe, we set PREREAD_ACTIVE and add + * it to the count of prereading stripes. + * When write is initiated, or the stripe refcnt == 0 (just in case) we + * clear the PREREAD_ACTIVE flag and decrement the count + * Whenever the 'handle' queue is empty and the device is not plugged, we + * move any strips from delayed to handle and clear the DELAYED flag and set + * PREREAD_ACTIVE. + * In stripe_handle, if we find pre-reading is necessary, we do it if + * PREREAD_ACTIVE is set, else we set DELAYED which will send it to the delayed queue. + * HANDLE gets cleared if stripe_handle leave nothing locked. + */ + + +struct disk_info { + mdk_rdev_t *rdev; +}; + +struct raid5_private_data { + struct hlist_head *stripe_hashtbl; + mddev_t *mddev; + struct disk_info *spare; + int chunk_size, level, algorithm; + int max_degraded; + int raid_disks; + int max_nr_stripes; + + /* used during an expand */ + sector_t expand_progress; /* MaxSector when no expand happening */ + sector_t expand_lo; /* from here up to expand_progress it out-of-bounds + * as we haven't flushed the metadata yet + */ + int previous_raid_disks; + + struct list_head handle_list; /* stripes needing handling */ + struct list_head hold_list; /* preread ready stripes */ + struct list_head delayed_list; /* stripes that have plugged requests */ + struct list_head bitmap_list; /* stripes delaying awaiting bitmap update */ + struct bio *retry_read_aligned; /* currently retrying aligned bios */ + struct bio *retry_read_aligned_list; /* aligned bios retry list */ + atomic_t preread_active_stripes; /* stripes with scheduled io */ + atomic_t active_aligned_reads; + atomic_t pending_full_writes; /* full write backlog */ + int bypass_count; /* bypassed prereads */ + int bypass_threshold; /* preread nice */ + struct list_head *last_hold; /* detect hold_list promotions */ + + atomic_t reshape_stripes; /* stripes with pending writes for reshape */ + /* unfortunately we need two cache names as we temporarily have + * two caches. + */ + int active_name; + char cache_name[2][20]; + struct kmem_cache *slab_cache; /* for allocating stripes */ + + int seq_flush, seq_write; + int quiesce; + + int fullsync; /* set to 1 if a full sync is needed, + * (fresh device added). + * Cleared when a sync completes. + */ + + struct page *spare_page; /* Used when checking P/Q in raid6 */ + + /* + * Free stripes pool + */ + atomic_t active_stripes; + struct list_head inactive_list; + wait_queue_head_t wait_for_stripe; + wait_queue_head_t wait_for_overlap; + int inactive_blocked; /* release of inactive stripes blocked, + * waiting for 25% to be free + */ + int pool_size; /* number of disks in stripeheads in pool */ + spinlock_t device_lock; + struct disk_info *disks; +}; + +typedef struct raid5_private_data raid5_conf_t; + +#define mddev_to_conf(mddev) ((raid5_conf_t *) mddev->private) + +/* + * Our supported algorithms + */ +#define ALGORITHM_LEFT_ASYMMETRIC 0 +#define ALGORITHM_RIGHT_ASYMMETRIC 1 +#define ALGORITHM_LEFT_SYMMETRIC 2 +#define ALGORITHM_RIGHT_SYMMETRIC 3 + +#endif diff --git a/libdde-linux26/contrib/include/linux/raid/xor.h b/libdde-linux26/contrib/include/linux/raid/xor.h new file mode 100644 index 00000000..3e120587 --- /dev/null +++ b/libdde-linux26/contrib/include/linux/raid/xor.h @@ -0,0 +1,24 @@ +#ifndef _XOR_H +#define _XOR_H + +#include <linux/raid/md.h> + +#define MAX_XOR_BLOCKS 4 + +extern void xor_blocks(unsigned int count, unsigned int bytes, + void *dest, void **srcs); + +struct xor_block_template { + struct xor_block_template *next; + const char *name; + int speed; + void (*do_2)(unsigned long, unsigned long *, unsigned long *); + void (*do_3)(unsigned long, unsigned long *, unsigned long *, + unsigned long *); + void (*do_4)(unsigned long, unsigned long *, unsigned long *, + unsigned long *, unsigned long *); + void (*do_5)(unsigned long, unsigned long *, unsigned long *, + unsigned long *, unsigned long *, unsigned long *); +}; + +#endif |