1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
|
/* Sock functions
Copyright (C) 1995, 1996, 2000 Free Software Foundation, Inc.
Written by Miles Bader <miles@gnu.ai.mit.edu>
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2, or (at
your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
#include <string.h> /* For bzero() */
#include <cthreads.h>
#include <hurd/pipe.h>
#include "sock.h"
#include "sserver.h"
/* ---------------------------------------------------------------- */
/* Returns the pipe that SOCK is reading from in PIPE, locked and with an
additional reference, or an error saying why it's not possible. In the
case where the read should signal EOF, EPIPE is returned. SOCK mustn't be
locked. */
error_t
sock_acquire_read_pipe (struct sock *sock, struct pipe **pipe)
{
error_t err = 0;
mutex_lock (&sock->lock);
*pipe = sock->read_pipe;
if (*pipe != NULL)
/* SOCK may have a read pipe even before it's connected, so make
sure it really is. */
if ( !(sock->pipe_class->flags & PIPE_CLASS_CONNECTIONLESS)
&& !(sock->flags & SOCK_CONNECTED))
err = ENOTCONN;
else
pipe_acquire_reader (*pipe);
else if (sock->flags & SOCK_SHUTDOWN_READ)
/* Reading on a socket with the read-half shutdown always acts as if the
pipe were at eof, even if the socket isn't connected yet [at least in
netbsd]. */
err = EPIPE;
else
err = ENOTCONN;
mutex_unlock (&sock->lock);
return err;
}
/* Returns the pipe that SOCK is writing to in PIPE, locked and with an
additional reference, or an error saying why it's not possible. SOCK
mustn't be locked. */
error_t
sock_acquire_write_pipe (struct sock *sock, struct pipe **pipe)
{
error_t err = 0;
mutex_lock (&sock->lock);
*pipe = sock->write_pipe;
if (*pipe != NULL)
pipe_acquire_writer (*pipe); /* Do this before unlocking the sock! */
else if (sock->flags & SOCK_SHUTDOWN_WRITE)
/* Writing on a socket with the write-half shutdown always acts as if the
pipe were broken, even if the socket isn't connected yet [at least in
netbsd]. */
err = EPIPE;
else if (sock->pipe_class->flags & PIPE_CLASS_CONNECTIONLESS)
/* Connectionless protocols give a different error when unconnected. */
err = EDESTADDRREQ;
else
err = ENOTCONN;
mutex_unlock (&sock->lock);
return err;
}
/* ---------------------------------------------------------------- */
/* Return a new socket with the given pipe class in SOCK. */
error_t
sock_create (struct pipe_class *pipe_class, mode_t mode, struct sock **sock)
{
error_t err;
struct sock *new = malloc (sizeof (struct sock));
if (new == NULL)
return ENOMEM;
/* A socket always has a read pipe (this is just to avoid some annoyance in
sock_connect), so create it here. */
err = pipe_create (pipe_class, &new->read_pipe);
if (err)
{
free (new);
return err;
}
pipe_add_reader (new->read_pipe);
new->refs = 0;
new->flags = 0;
new->write_pipe = NULL;
new->mode = mode;
new->id = MACH_PORT_NULL;
new->listen_queue = NULL;
new->connect_queue = NULL;
new->pipe_class = pipe_class;
new->addr = NULL;
bzero (&new->change_time, sizeof (new->change_time));
mutex_init (&new->lock);
*sock = new;
return 0;
}
/* Free SOCK, assuming there are no more handle on it. */
void
sock_free (struct sock *sock)
{
sock_shutdown (sock, SOCK_SHUTDOWN_READ | SOCK_SHUTDOWN_WRITE);
if (sock->id != MACH_PORT_NULL)
mach_port_destroy (mach_task_self (), sock->id);
if (sock->listen_queue)
connq_destroy (sock->listen_queue);
if (sock->connect_queue)
connq_destroy (sock->connect_queue);
free (sock);
}
/* Free a sock derefed too far. */
void
_sock_norefs (struct sock *sock)
{
/* A sock should never have an address when it has 0 refs, as the
address should hold a reference to the sock! */
assert (sock->addr == NULL);
mutex_unlock (&sock->lock); /* Unlock so sock_free can do stuff. */
sock_free (sock);
}
/* ---------------------------------------------------------------- */
/* Return a new socket largely copied from TEMPLATE. */
error_t
sock_clone (struct sock *template, struct sock **sock)
{
error_t err = sock_create (template->pipe_class, template->mode, sock);
if (err)
return err;
/* Copy some properties from TEMPLATE. */
(*sock)->flags = template->flags & ~SOCK_CONNECTED;
return 0;
}
/* ---------------------------------------------------------------- */
struct port_class *sock_user_port_class;
/* Get rid of a user reference to a socket. */
static void
sock_user_clean (void *vuser)
{
struct sock_user *user = vuser;
sock_deref (user->sock);
}
/* Return a new user port on SOCK in PORT. */
error_t
sock_create_port (struct sock *sock, mach_port_t *port)
{
struct sock_user *user;
error_t err =
ports_create_port (sock_user_port_class, sock_port_bucket,
sizeof (struct sock_user), &user);
if (err)
return err;
ensure_sock_server ();
mutex_lock (&sock->lock);
sock->refs++;
mutex_unlock (&sock->lock);
user->sock = sock;
*port = ports_get_right (user);
ports_port_deref (user); /* We only want one ref, for the send right. */
return 0;
}
/* ---------------------------------------------------------------- */
/* Address manipulation. */
struct addr
{
struct port_info pi;
struct sock *sock;
struct mutex lock;
};
struct port_class *addr_port_class;
/* Get rid of ADDR's socket's reference to it, in preparation for ADDR going
away. */
static void
addr_unbind (void *vaddr)
{
struct sock *sock;
struct addr *addr = vaddr;
mutex_lock (&addr->lock);
sock = addr->sock;
if (sock)
{
mutex_lock (&sock->lock);
sock->addr = NULL;
addr->sock = NULL;
ports_port_deref_weak (addr);
mutex_unlock (&sock->lock);
sock_deref (sock);
}
mutex_unlock (&addr->lock);
}
/* Cleanup after the address ADDR, which is going away... */
static void
addr_clean (void *vaddr)
{
struct addr *addr = vaddr;
/* ADDR should never have a socket bound to it at this point, as it should
have been removed by addr_unbind dropping the socket's weak reference
it. */
assert (addr->sock == NULL);
}
/* Return a new address, not connected to any socket yet, ADDR. */
inline error_t
addr_create (struct addr **addr)
{
error_t err =
ports_create_port (addr_port_class, sock_port_bucket,
sizeof (struct addr), addr);
if (! err)
{
ensure_sock_server ();
(*addr)->sock = NULL;
mutex_init (&(*addr)->lock);
}
return err;
}
/* Bind SOCK to ADDR. */
error_t
sock_bind (struct sock *sock, struct addr *addr)
{
error_t err = 0;
struct addr *old_addr;
mutex_lock (&addr->lock);
mutex_lock (&sock->lock);
old_addr = sock->addr;
if (addr && old_addr)
err = EINVAL; /* SOCK already bound. */
else if (addr && addr->sock)
err = EADDRINUSE; /* Something else already bound ADDR. */
else if (addr)
addr->sock = sock; /* First binding for SOCK. */
else
old_addr->sock = NULL; /* Unbinding SOCK. */
if (! err)
{
sock->addr = addr;
if (addr)
sock->refs++;
if (old_addr)
{
/* Note that we don't have to worry about SOCK's ref count going to
zero because whoever's calling us should be holding a ref. */
sock->refs--;
assert (sock->refs > 0); /* But make sure... */
}
}
mutex_unlock (&sock->lock);
mutex_unlock (&addr->lock);
return err;
}
/* Returns SOCK's addr, with an additional reference, fabricating one if
necessary. SOCK should be locked. */
static inline error_t
ensure_addr (struct sock *sock, struct addr **addr)
{
error_t err = 0;
if (! sock->addr)
{
err = addr_create (&sock->addr);
if (!err)
{
sock->addr->sock = sock;
sock->refs++;
ports_port_ref_weak (sock->addr);
}
}
else
ports_port_ref (sock->addr);
if (!err)
*addr = sock->addr;
return err;
}
/* Returns the socket bound to ADDR in SOCK, or EADDRNOTAVAIL. The returned
sock will have one reference added to it. */
error_t
addr_get_sock (struct addr *addr, struct sock **sock)
{
mutex_lock (&addr->lock);
*sock = addr->sock;
if (*sock)
(*sock)->refs++;
mutex_unlock (&addr->lock);
return *sock ? 0 : EADDRNOTAVAIL;
}
/* Returns SOCK's address in ADDR, with an additional reference added. If
SOCK doesn't currently have an address, one is fabricated first. */
error_t
sock_get_addr (struct sock *sock, struct addr **addr)
{
error_t err;
mutex_lock (&sock->lock);
err = ensure_addr (sock, addr);
mutex_unlock (&sock->lock);
return err; /* XXX */
}
/* ---------------------------------------------------------------- */
/* We hold this lock before we lock two sockets at once, to prevent someone
else trying to lock the same two sockets in the reverse order, resulting
in a deadlock. */
static struct mutex socket_pair_lock;
/* Connect SOCK1 and SOCK2. */
error_t
sock_connect (struct sock *sock1, struct sock *sock2)
{
error_t err = 0;
/* In the case of a connectionless protocol, an already-connected socket may
be reconnected, so save the old destination for later disposal. */
struct pipe *old_sock1_write_pipe = NULL;
struct addr *old_sock1_write_addr = NULL;
void connect (struct sock *wr, struct sock *rd)
{
if (!( (wr->flags & SOCK_SHUTDOWN_WRITE)
|| (rd->flags & SOCK_SHUTDOWN_READ)))
{
struct pipe *pipe = rd->read_pipe;
assert (pipe); /* Since SOCK_SHUTDOWN_READ isn't set. */
pipe_add_writer (pipe);
wr->write_pipe = pipe;
}
}
if (sock1->pipe_class != sock2->pipe_class)
/* Incompatible socket types. */
return EOPNOTSUPP; /* XXX?? */
mutex_lock (&socket_pair_lock);
mutex_lock (&sock1->lock);
if (sock1 != sock2)
/* If SOCK1 == SOCK2, then we get a fifo! */
mutex_lock (&sock2->lock);
if ((sock1->flags & SOCK_CONNECTED) || (sock2->flags & SOCK_CONNECTED))
/* An already-connected socket. */
err = EISCONN;
else
{
old_sock1_write_pipe = sock1->write_pipe;
old_sock1_write_addr = sock1->write_addr;
/* Always make the forward connection. */
connect (sock1, sock2);
/* Only make the reverse for connection-oriented protocols. */
if (! (sock1->pipe_class->flags & PIPE_CLASS_CONNECTIONLESS))
{
sock1->flags |= SOCK_CONNECTED;
if (sock1 != sock2)
{
connect (sock2, sock1);
sock2->flags |= SOCK_CONNECTED;
}
}
}
if (sock1 != sock2)
mutex_unlock (&sock2->lock);
mutex_unlock (&sock1->lock);
mutex_unlock (&socket_pair_lock);
if (old_sock1_write_pipe)
{
pipe_remove_writer (old_sock1_write_pipe);
ports_port_deref (old_sock1_write_addr);
}
return err;
}
/* ---------------------------------------------------------------- */
/* Shutdown either the read or write halves of SOCK, depending on whether the
SOCK_SHUTDOWN_READ or SOCK_SHUTDOWN_WRITE flags are set in FLAGS. */
void
sock_shutdown (struct sock *sock, unsigned flags)
{
unsigned old_flags;
mutex_lock (&sock->lock);
old_flags = sock->flags;
sock->flags |= flags;
if (flags & SOCK_SHUTDOWN_READ && !(old_flags & SOCK_SHUTDOWN_READ))
/* Shutdown the read half. */
{
struct pipe *pipe = sock->read_pipe;
if (pipe != NULL)
{
sock->read_pipe = NULL;
/* Unlock SOCK here, as we may subsequently wake up other threads. */
mutex_unlock (&sock->lock);
pipe_remove_reader (pipe);
}
else
mutex_unlock (&sock->lock);
}
if (flags & SOCK_SHUTDOWN_WRITE && !(old_flags & SOCK_SHUTDOWN_WRITE))
/* Shutdown the write half. */
{
struct pipe *pipe = sock->write_pipe;
if (pipe != NULL)
{
sock->write_pipe = NULL;
/* Unlock SOCK here, as we may subsequently wake up other threads. */
mutex_unlock (&sock->lock);
pipe_remove_writer (pipe);
}
else
mutex_unlock (&sock->lock);
}
else
mutex_unlock (&sock->lock);
}
/* ---------------------------------------------------------------- */
error_t
sock_global_init ()
{
sock_port_bucket = ports_create_bucket ();
sock_user_port_class = ports_create_class (sock_user_clean, NULL);
addr_port_class = ports_create_class (addr_clean, addr_unbind);
return 0;
}
/* Try to shutdown any active sockets, returning EBUSY if we can't. */
error_t
sock_global_shutdown ()
{
int num_ports = ports_count_bucket (sock_port_bucket);
ports_enable_bucket (sock_port_bucket);
return (num_ports == 0 ? 0 : EBUSY);
}
|