summaryrefslogtreecommitdiff
path: root/pfinet/linux-src/net/core/neighbour.c
blob: 6afbfdcc0bf44d66d7d8205f82445922914e8af2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
/*
 *	Generic address resolution entity
 *
 *	Authors:
 *	Pedro Roque		<roque@di.fc.ul.pt>
 *	Alexey Kuznetsov	<kuznet@ms2.inr.ac.ru>
 *
 *	This program is free software; you can redistribute it and/or
 *      modify it under the terms of the GNU General Public License
 *      as published by the Free Software Foundation; either version
 *      2 of the License, or (at your option) any later version.
 *
 *	Fixes:
 *	Vitaly E. Lavrov	releasing NULL neighbor in neigh_add.
 */

#include <linux/config.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/socket.h>
#include <linux/sched.h>
#include <linux/netdevice.h>
#ifdef CONFIG_SYSCTL
#include <linux/sysctl.h>
#endif
#include <net/neighbour.h>
#include <net/dst.h>
#include <net/sock.h>
#include <linux/rtnetlink.h>

/*
   NOTE. The most unpleasent question is serialization of
   accesses to resolved addresses. The problem is that addresses
   are modified by bh, but they are referenced from normal
   kernel thread. Before today no locking was made.
   My reasoning was that corrupted address token will be copied
   to packet with cosmologically small probability
   (it is even difficult to estimate such small number)
   and it is very silly to waste cycles in fast path to lock them.

   But now I changed my mind, but not because previous statement
   is wrong. Actually, neigh->ha MAY BE not opaque byte array,
   but reference to some private data. In this case even neglibible
   corruption probability becomes bug.

   - hh cache is protected by rwlock. It assumes that
     hh cache update procedure is short and fast, and that
     read_lock is cheaper than start_bh_atomic().
   - ha tokens, saved in neighbour entries, are protected
     by bh_atomic().
   - no protection is made in /proc reading. It is OK, because
     /proc is broken by design in any case, and
     corrupted output is normal behaviour there.

     --ANK (981025)
 */

#define NEIGH_DEBUG 1

#define NEIGH_PRINTK(x...) printk(x)
#define NEIGH_NOPRINTK(x...) do { ; } while(0)
#define NEIGH_PRINTK0 NEIGH_PRINTK
#define NEIGH_PRINTK1 NEIGH_NOPRINTK
#define NEIGH_PRINTK2 NEIGH_NOPRINTK

#if NEIGH_DEBUG >= 1
#undef NEIGH_PRINTK1
#define NEIGH_PRINTK1 NEIGH_PRINTK
#endif
#if NEIGH_DEBUG >= 2
#undef NEIGH_PRINTK2
#define NEIGH_PRINTK2 NEIGH_PRINTK
#endif

static void neigh_timer_handler(unsigned long arg);
#ifdef CONFIG_ARPD
static void neigh_app_notify(struct neighbour *n);
#endif
static int pneigh_ifdown(struct neigh_table *tbl, struct device *dev);

static int neigh_glbl_allocs;
static struct neigh_table *neigh_tables;

static int neigh_blackhole(struct sk_buff *skb)
{
	kfree_skb(skb);
	return -ENETDOWN;
}

/*
 * It is random distribution in the interval (1/2)*base...(3/2)*base.
 * It corresponds to default IPv6 settings and is not overridable,
 * because it is really reasonbale choice.
 */

unsigned long neigh_rand_reach_time(unsigned long base)
{
	return (net_random() % base) + (base>>1);
}


static int neigh_forced_gc(struct neigh_table *tbl)
{
	int shrunk = 0;
	int i;

	if (atomic_read(&tbl->lock))
		return 0;

	for (i=0; i<=NEIGH_HASHMASK; i++) {
		struct neighbour *n, **np;

		np = &tbl->hash_buckets[i];
		while ((n = *np) != NULL) {
			/* Neighbour record may be discarded if:
			   - nobody refers to it.
			   - it is not premanent
			   - (NEW and probably wrong)
			     INCOMPLETE entries are kept at least for
			     n->parms->retrans_time, otherwise we could
			     flood network with resolution requests.
			     It is not clear, what is better table overflow
			     or flooding.
			 */
			if (atomic_read(&n->refcnt) == 0 &&
			    !(n->nud_state&NUD_PERMANENT) &&
			    (n->nud_state != NUD_INCOMPLETE ||
			     jiffies - n->used > n->parms->retrans_time)) {
				*np = n->next;
				n->tbl = NULL;
				tbl->entries--;
				shrunk = 1;
				neigh_destroy(n);
				continue;
			}
			np = &n->next;
		}
	}
	
	tbl->last_flush = jiffies;
	return shrunk;
}

int neigh_ifdown(struct neigh_table *tbl, struct device *dev)
{
	int i;

	if (atomic_read(&tbl->lock)) {
		NEIGH_PRINTK1("neigh_ifdown: impossible event 1763\n");
		return -EBUSY;
	}

	start_bh_atomic();
	for (i=0; i<=NEIGH_HASHMASK; i++) {
		struct neighbour *n, **np;

		np = &tbl->hash_buckets[i];
		while ((n = *np) != NULL) {
			if (dev && n->dev != dev) {
				np = &n->next;
				continue;
			}
			*np = n->next;
			n->tbl = NULL;
			tbl->entries--;
			if (atomic_read(&n->refcnt)) {
				/* The most unpleasant situation.
				   We must destroy neighbour entry,
				   but someone still uses it.

				   The destroy will be delayed until
				   the last user releases us, but
				   we must kill timers etc. and move
				   it to safe state.
				 */
				if (n->nud_state & NUD_IN_TIMER)
					del_timer(&n->timer);
				n->parms = &tbl->parms;
				skb_queue_purge(&n->arp_queue);
				n->output = neigh_blackhole;
				if (n->nud_state&NUD_VALID)
					n->nud_state = NUD_NOARP;
				else
					n->nud_state = NUD_NONE;
				NEIGH_PRINTK2("neigh %p is stray.\n", n);
			} else
				neigh_destroy(n);
		}
	}

	del_timer(&tbl->proxy_timer);
	skb_queue_purge(&tbl->proxy_queue);
	pneigh_ifdown(tbl, dev);
	end_bh_atomic();
	return 0;
}

static struct neighbour *neigh_alloc(struct neigh_table *tbl, int creat)
{
	struct neighbour *n;
	unsigned long now = jiffies;

	if (tbl->entries > tbl->gc_thresh1) {
		if (creat < 0)
			return NULL;
		if (tbl->entries > tbl->gc_thresh3 ||
		    (tbl->entries > tbl->gc_thresh2 &&
		     now - tbl->last_flush > 5*HZ)) {
			if (neigh_forced_gc(tbl) == 0 &&
			    tbl->entries > tbl->gc_thresh3)
				return NULL;
		}
	}

	n = kmalloc(tbl->entry_size, GFP_ATOMIC);
	if (n == NULL)
		return NULL;

	memset(n, 0, tbl->entry_size);

	skb_queue_head_init(&n->arp_queue);
	n->updated = n->used = now;
	n->nud_state = NUD_NONE;
	n->output = neigh_blackhole;
	n->parms = &tbl->parms;
	init_timer(&n->timer);
	n->timer.function = neigh_timer_handler;
	n->timer.data = (unsigned long)n;
	tbl->stats.allocs++;
	neigh_glbl_allocs++;
	return n;
}


struct neighbour * __neigh_lookup(struct neigh_table *tbl, const void *pkey,
				    struct device *dev, int creat)
{
	struct neighbour *n;
	u32 hash_val;
	int key_len = tbl->key_len;

	hash_val = *(u32*)(pkey + key_len - 4);
	hash_val ^= (hash_val>>16);
	hash_val ^= hash_val>>8;
	hash_val ^= hash_val>>3;
	hash_val = (hash_val^dev->ifindex)&NEIGH_HASHMASK;

	for (n = tbl->hash_buckets[hash_val]; n; n = n->next) {
		if (dev == n->dev &&
		    memcmp(n->primary_key, pkey, key_len) == 0) {
			atomic_inc(&n->refcnt);
			return n;
		}
	}
	if (!creat)
		return NULL;

	n = neigh_alloc(tbl, creat);
	if (n == NULL)
		return NULL;

	memcpy(n->primary_key, pkey, key_len);
	n->dev = dev;

	/* Protocol specific setup. */
	if (tbl->constructor &&	tbl->constructor(n) < 0) {
		neigh_destroy(n);
		return NULL;
	}

	/* Device specific setup. */
	if (n->parms && n->parms->neigh_setup && n->parms->neigh_setup(n) < 0) {
		neigh_destroy(n);
		return NULL;
	}

	n->confirmed = jiffies - (n->parms->base_reachable_time<<1);
	atomic_set(&n->refcnt, 1);
	tbl->entries++;
	n->next = tbl->hash_buckets[hash_val];
	tbl->hash_buckets[hash_val] = n;
	n->tbl = tbl;
	NEIGH_PRINTK2("neigh %p is created.\n", n);
	return n;
}

struct pneigh_entry * pneigh_lookup(struct neigh_table *tbl, const void *pkey,
				    struct device *dev, int creat)
{
	struct pneigh_entry *n;
	u32 hash_val;
	int key_len = tbl->key_len;

	hash_val = *(u32*)(pkey + key_len - 4);
	hash_val ^= (hash_val>>16);
	hash_val ^= hash_val>>8;
	hash_val ^= hash_val>>4;
	hash_val &= PNEIGH_HASHMASK;

	for (n = tbl->phash_buckets[hash_val]; n; n = n->next) {
		if (memcmp(n->key, pkey, key_len) == 0 &&
		    (n->dev == dev || !n->dev))
			return n;
	}
	if (!creat)
		return NULL;

	n = kmalloc(sizeof(*n) + key_len, GFP_KERNEL);
	if (n == NULL)
		return NULL;

	memcpy(n->key, pkey, key_len);
	n->dev = dev;

	if (tbl->pconstructor && tbl->pconstructor(n)) {
		kfree(n);
		return NULL;
	}

	n->next = tbl->phash_buckets[hash_val];
	tbl->phash_buckets[hash_val] = n;
	return n;
}


int pneigh_delete(struct neigh_table *tbl, const void *pkey, struct device *dev)
{
	struct pneigh_entry *n, **np;
	u32 hash_val;
	int key_len = tbl->key_len;

	hash_val = *(u32*)(pkey + key_len - 4);
	hash_val ^= (hash_val>>16);
	hash_val ^= hash_val>>8;
	hash_val ^= hash_val>>4;
	hash_val &= PNEIGH_HASHMASK;

	for (np = &tbl->phash_buckets[hash_val]; (n=*np) != NULL; np = &n->next) {
		if (memcmp(n->key, pkey, key_len) == 0 && n->dev == dev) {
			*np = n->next;
			synchronize_bh();
			if (tbl->pdestructor)
				tbl->pdestructor(n);
			kfree(n);
			return 0;
		}
	}
	return -ENOENT;
}

static int pneigh_ifdown(struct neigh_table *tbl, struct device *dev)
{
	struct pneigh_entry *n, **np;
	u32 h;

	for (h=0; h<=PNEIGH_HASHMASK; h++) {
		np = &tbl->phash_buckets[h];
		while ((n=*np) != NULL) {
			if (n->dev == dev || dev == NULL) {
				*np = n->next;
				synchronize_bh();
				if (tbl->pdestructor)
					tbl->pdestructor(n);
				kfree(n);
				continue;
			}
			np = &n->next;
		}
	}
	return -ENOENT;
}


/*
 *	neighbour must already be out of the table;
 *
 */
void neigh_destroy(struct neighbour *neigh)
{	
	struct hh_cache *hh;

	if (neigh->tbl || atomic_read(&neigh->refcnt)) {
		NEIGH_PRINTK1("neigh_destroy: neighbour is use tbl=%p, ref=%d: "
		       "called from %p\n", neigh->tbl, atomic_read(&neigh->refcnt), __builtin_return_address(0));
		return;
	}

	if (neigh->nud_state&NUD_IN_TIMER)
		del_timer(&neigh->timer);

	while ((hh = neigh->hh) != NULL) {
		neigh->hh = hh->hh_next;
		hh->hh_next = NULL;
		hh->hh_output = neigh_blackhole;
		if (atomic_dec_and_test(&hh->hh_refcnt))
			kfree(hh);
	}

	if (neigh->ops && neigh->ops->destructor)
		(neigh->ops->destructor)(neigh);

	skb_queue_purge(&neigh->arp_queue);

	NEIGH_PRINTK2("neigh %p is destroyed.\n", neigh);

	neigh_glbl_allocs--;
	kfree(neigh);
}

/* Neighbour state is suspicious;
   disable fast path.
 */
static void neigh_suspect(struct neighbour *neigh)
{
	struct hh_cache *hh;

	NEIGH_PRINTK2("neigh %p is suspecteded.\n", neigh);

	neigh->output = neigh->ops->output;

	for (hh = neigh->hh; hh; hh = hh->hh_next)
		hh->hh_output = neigh->ops->output;
}

/* Neighbour state is OK;
   enable fast path.
 */
static void neigh_connect(struct neighbour *neigh)
{
	struct hh_cache *hh;

	NEIGH_PRINTK2("neigh %p is connected.\n", neigh);

	neigh->output = neigh->ops->connected_output;

	for (hh = neigh->hh; hh; hh = hh->hh_next)
		hh->hh_output = neigh->ops->hh_output;
}

/*
   Transitions NUD_STALE <-> NUD_REACHABLE do not occur
   when fast path is built: we have no timers assotiated with
   these states, we do not have time to check state when sending.
   neigh_periodic_timer check periodically neigh->confirmed
   time and moves NUD_REACHABLE -> NUD_STALE.

   If a routine wants to know TRUE entry state, it calls
   neigh_sync before checking state.
 */

static void neigh_sync(struct neighbour *n)
{
	unsigned long now = jiffies;
	u8 state = n->nud_state;

	if (state&(NUD_NOARP|NUD_PERMANENT))
		return;
	if (state&NUD_REACHABLE) {
		if (now - n->confirmed > n->parms->reachable_time) {
			n->nud_state = NUD_STALE;
			neigh_suspect(n);
		}
	} else if (state&NUD_VALID) {
		if (now - n->confirmed < n->parms->reachable_time) {
			if (state&NUD_IN_TIMER)
				del_timer(&n->timer);
			n->nud_state = NUD_REACHABLE;
			neigh_connect(n);
		}
	}
}

static void neigh_periodic_timer(unsigned long arg)
{
	struct neigh_table *tbl = (struct neigh_table*)arg;
	unsigned long now = jiffies;
	int i;

	if (atomic_read(&tbl->lock)) {
		tbl->gc_timer.expires = now + 1*HZ;
		add_timer(&tbl->gc_timer);
		return;
	}

	/*
	 *	periodicly recompute ReachableTime from random function
	 */
	
	if (now - tbl->last_rand > 300*HZ) {
		struct neigh_parms *p;
		tbl->last_rand = now;
		for (p=&tbl->parms; p; p = p->next)
			p->reachable_time = neigh_rand_reach_time(p->base_reachable_time);
	}

	for (i=0; i <= NEIGH_HASHMASK; i++) {
		struct neighbour *n, **np;

		np = &tbl->hash_buckets[i];
		while ((n = *np) != NULL) {
			unsigned state = n->nud_state;

			if (state&(NUD_PERMANENT|NUD_IN_TIMER))
				goto next_elt;

			if ((long)(n->used - n->confirmed) < 0)
				n->used = n->confirmed;

			if (atomic_read(&n->refcnt) == 0 &&
			    (state == NUD_FAILED || now - n->used > n->parms->gc_staletime)) {
				*np = n->next;
				n->tbl = NULL;
				n->next = NULL;
				tbl->entries--;
				neigh_destroy(n);
				continue;
			}

			if (n->nud_state&NUD_REACHABLE &&
			    now - n->confirmed > n->parms->reachable_time) {
				n->nud_state = NUD_STALE;
				neigh_suspect(n);
			}

next_elt:
			np = &n->next;
		}
	}

	tbl->gc_timer.expires = now + tbl->gc_interval;
	add_timer(&tbl->gc_timer);
}

static __inline__ int neigh_max_probes(struct neighbour *n)
{
	struct neigh_parms *p = n->parms;
	return p->ucast_probes + p->app_probes + p->mcast_probes;
}


/* Called when a timer expires for a neighbour entry. */

static void neigh_timer_handler(unsigned long arg) 
{
	unsigned long now = jiffies;
	struct neighbour *neigh = (struct neighbour*)arg;
	unsigned state = neigh->nud_state;

	if (!(state&NUD_IN_TIMER)) {
		NEIGH_PRINTK1("neigh: timer & !nud_in_timer\n");
		return;
	}

	if ((state&NUD_VALID) &&
	    now - neigh->confirmed < neigh->parms->reachable_time) {
		neigh->nud_state = NUD_REACHABLE;
		NEIGH_PRINTK2("neigh %p is still alive.\n", neigh);
		neigh_connect(neigh);
		return;
	}
	if (state == NUD_DELAY) {
		NEIGH_PRINTK2("neigh %p is probed.\n", neigh);
		neigh->nud_state = NUD_PROBE;
		neigh->probes = 0;
	}

	if (neigh->probes >= neigh_max_probes(neigh)) {
		struct sk_buff *skb;

		neigh->nud_state = NUD_FAILED;
		neigh->tbl->stats.res_failed++;
		NEIGH_PRINTK2("neigh %p is failed.\n", neigh);

		/* It is very thin place. report_unreachable is very complicated
		   routine. Particularly, it can hit the same neighbour entry!
		   
		   So that, we try to be accurate and avoid dead loop. --ANK
		 */
		while(neigh->nud_state==NUD_FAILED && (skb=__skb_dequeue(&neigh->arp_queue)) != NULL)
			neigh->ops->error_report(neigh, skb);
		skb_queue_purge(&neigh->arp_queue);
		return;
	}

	neigh->timer.expires = now + neigh->parms->retrans_time;
	add_timer(&neigh->timer);

	neigh->ops->solicit(neigh, skb_peek(&neigh->arp_queue));
	neigh->probes++;
}

int __neigh_event_send(struct neighbour *neigh, struct sk_buff *skb)
{
	start_bh_atomic();
	if (!(neigh->nud_state&(NUD_CONNECTED|NUD_DELAY|NUD_PROBE))) {
		if (!(neigh->nud_state&(NUD_STALE|NUD_INCOMPLETE))) {
			if (neigh->tbl == NULL) {
				NEIGH_PRINTK2("neigh %p used after death.\n", neigh);
				if (skb)
					kfree_skb(skb);
				end_bh_atomic();
				return 1;
			}
			if (neigh->parms->mcast_probes + neigh->parms->app_probes) {
				neigh->probes = neigh->parms->ucast_probes;
				neigh->nud_state = NUD_INCOMPLETE;
				neigh->timer.expires = jiffies + neigh->parms->retrans_time;
				add_timer(&neigh->timer);

				neigh->ops->solicit(neigh, skb);
				neigh->probes++;
			} else {
				neigh->nud_state = NUD_FAILED;
				if (skb)
					kfree_skb(skb);
				end_bh_atomic();
				return 1;
			}
		}
		if (neigh->nud_state == NUD_INCOMPLETE) {
			if (skb) {
				if (skb_queue_len(&neigh->arp_queue) >= neigh->parms->queue_len) {
					struct sk_buff *buff;
					buff = neigh->arp_queue.prev;
					__skb_unlink(buff, &neigh->arp_queue);
					kfree_skb(buff);
				}
				__skb_queue_head(&neigh->arp_queue, skb);
			}
			end_bh_atomic();
			return 1;
		}
		if (neigh->nud_state == NUD_STALE) {
			NEIGH_PRINTK2("neigh %p is delayed.\n", neigh);
			neigh->nud_state = NUD_DELAY;
			neigh->timer.expires = jiffies + neigh->parms->delay_probe_time;
			add_timer(&neigh->timer);
		}
	}
	end_bh_atomic();
	return 0;
}

static __inline__ void neigh_update_hhs(struct neighbour *neigh)
{
	struct hh_cache *hh;
	void (*update)(struct hh_cache*, struct device*, unsigned char*) =
		neigh->dev->header_cache_update;

	if (update) {
		for (hh=neigh->hh; hh; hh=hh->hh_next) {
			write_lock_irq(&hh->hh_lock);
			update(hh, neigh->dev, neigh->ha);
			write_unlock_irq(&hh->hh_lock);
		}
	}
}



/* Generic update routine.
   -- lladdr is new lladdr or NULL, if it is not supplied.
   -- new    is new state.
   -- override==1 allows to override existing lladdr, if it is different.
   -- arp==0 means that the change is administrative.
 */

int neigh_update(struct neighbour *neigh, u8 *lladdr, u8 new, int override, int arp)
{
	u8 old = neigh->nud_state;
	struct device *dev = neigh->dev;

	if (arp && (old&(NUD_NOARP|NUD_PERMANENT)))
		return -EPERM;

	if (!(new&NUD_VALID)) {
		if (old&NUD_IN_TIMER)
			del_timer(&neigh->timer);
		if (old&NUD_CONNECTED)
			neigh_suspect(neigh);
		neigh->nud_state = new;
		return 0;
	}

	/* Compare new lladdr with cached one */
	if (dev->addr_len == 0) {
		/* First case: device needs no address. */
		lladdr = neigh->ha;
	} else if (lladdr) {
		/* The second case: if something is already cached
		   and a new address is proposed:
		   - compare new & old
		   - if they are different, check override flag
		 */
		if (old&NUD_VALID) {
			if (memcmp(lladdr, neigh->ha, dev->addr_len) == 0)
				lladdr = neigh->ha;
			else if (!override)
				return -EPERM;
		}
	} else {
		/* No address is supplied; if we know something,
		   use it, otherwise discard the request.
		 */
		if (!(old&NUD_VALID))
			return -EINVAL;
		lladdr = neigh->ha;
	}

	neigh_sync(neigh);
	old = neigh->nud_state;
	if (new&NUD_CONNECTED)
		neigh->confirmed = jiffies;
	neigh->updated = jiffies;

	/* If entry was valid and address is not changed,
	   do not change entry state, if new one is STALE.
	 */
	if (old&NUD_VALID) {
		if (lladdr == neigh->ha)
			if (new == old || (new == NUD_STALE && (old&NUD_CONNECTED)))
				return 0;
	}
	if (old&NUD_IN_TIMER)
		del_timer(&neigh->timer);
	neigh->nud_state = new;
	if (lladdr != neigh->ha) {
		memcpy(&neigh->ha, lladdr, dev->addr_len);
		neigh_update_hhs(neigh);
		neigh->confirmed = jiffies - (neigh->parms->base_reachable_time<<1);
#ifdef CONFIG_ARPD
		if (neigh->parms->app_probes)
			neigh_app_notify(neigh);
#endif
	}
	if (new == old)
		return 0;
	if (new&NUD_CONNECTED)
		neigh_connect(neigh);
	else
		neigh_suspect(neigh);
	if (!(old&NUD_VALID)) {
		struct sk_buff *skb;

		/* Again: avoid dead loop if something went wrong */

		while (neigh->nud_state&NUD_VALID &&
		       (skb=__skb_dequeue(&neigh->arp_queue)) != NULL) {
			struct neighbour *n1 = neigh;
			/* On shaper/eql skb->dst->neighbour != neigh :( */
			if (skb->dst && skb->dst->neighbour)
				n1 = skb->dst->neighbour;
			n1->output(skb);
		}
		skb_queue_purge(&neigh->arp_queue);
	}
	return 0;
}

struct neighbour * neigh_event_ns(struct neigh_table *tbl,
				  u8 *lladdr, void *saddr,
				  struct device *dev)
{
	struct neighbour *neigh;

	neigh = __neigh_lookup(tbl, saddr, dev, lladdr || !dev->addr_len);
	if (neigh)
		neigh_update(neigh, lladdr, NUD_STALE, 1, 1);
	return neigh;
}

static void neigh_hh_init(struct neighbour *n, struct dst_entry *dst, u16 protocol)
{
	struct hh_cache	*hh = NULL;
	struct device *dev = dst->dev;

	for (hh=n->hh; hh; hh = hh->hh_next)
		if (hh->hh_type == protocol)
			break;

	if (!hh && (hh = kmalloc(sizeof(*hh), GFP_ATOMIC)) != NULL) {
		memset(hh, 0, sizeof(struct hh_cache));
		hh->hh_type = protocol;
		atomic_set(&hh->hh_refcnt, 0);
		hh->hh_next = NULL;
		if (dev->hard_header_cache(n, hh)) {
			kfree(hh);
			hh = NULL;
		} else {
			atomic_inc(&hh->hh_refcnt);
			hh->hh_next = n->hh;
			n->hh = hh;
			if (n->nud_state&NUD_CONNECTED)
				hh->hh_output = n->ops->hh_output;
			else
				hh->hh_output = n->ops->output;
		}
	}
	if (hh)	{
		atomic_inc(&hh->hh_refcnt);
		dst->hh = hh;
	}
}

/* This function can be used in contexts, where only old dev_queue_xmit
   worked, f.e. if you want to override normal output path (eql, shaper),
   but resoltution is not made yet.
 */

int neigh_compat_output(struct sk_buff *skb)
{
	struct device *dev = skb->dev;

	__skb_pull(skb, skb->nh.raw - skb->data);

	if (dev->hard_header &&
	    dev->hard_header(skb, dev, ntohs(skb->protocol), NULL, NULL, skb->len) < 0 &&
	    dev->rebuild_header(skb))
		return 0;

	return dev_queue_xmit(skb);
}

/* Slow and careful. */

int neigh_resolve_output(struct sk_buff *skb)
{
	struct dst_entry *dst = skb->dst;
	struct neighbour *neigh;

	if (!dst || !(neigh = dst->neighbour))
		goto discard;

	__skb_pull(skb, skb->nh.raw - skb->data);

	if (neigh_event_send(neigh, skb) == 0) {
		int err;
		struct device *dev = neigh->dev;
		if (dev->hard_header_cache && dst->hh == NULL) {
			start_bh_atomic();
			if (dst->hh == NULL)
				neigh_hh_init(neigh, dst, dst->ops->protocol);
			err = dev->hard_header(skb, dev, ntohs(skb->protocol), neigh->ha, NULL, skb->len);
			end_bh_atomic();
		} else {
			start_bh_atomic();
			err = dev->hard_header(skb, dev, ntohs(skb->protocol), neigh->ha, NULL, skb->len);
			end_bh_atomic();
		}
		if (err >= 0)
			return neigh->ops->queue_xmit(skb);
		kfree_skb(skb);
		return -EINVAL;
	}
	return 0;

discard:
	NEIGH_PRINTK1("neigh_resolve_output: dst=%p neigh=%p\n", dst, dst ? dst->neighbour : NULL);
	kfree_skb(skb);
	return -EINVAL;
}

/* As fast as possible without hh cache */

int neigh_connected_output(struct sk_buff *skb)
{
	int err;
	struct dst_entry *dst = skb->dst;
	struct neighbour *neigh = dst->neighbour;
	struct device *dev = neigh->dev;

	__skb_pull(skb, skb->nh.raw - skb->data);

	start_bh_atomic();
	err = dev->hard_header(skb, dev, ntohs(skb->protocol), neigh->ha, NULL, skb->len);
	end_bh_atomic();
	if (err >= 0)
		return neigh->ops->queue_xmit(skb);
	kfree_skb(skb);
	return -EINVAL;
}

static void neigh_proxy_process(unsigned long arg)
{
	struct neigh_table *tbl = (struct neigh_table *)arg;
	long sched_next = 0;
	unsigned long now = jiffies;
	struct sk_buff *skb = tbl->proxy_queue.next;

	while (skb != (struct sk_buff*)&tbl->proxy_queue) {
		struct sk_buff *back = skb;
		long tdif = back->stamp.tv_usec - now;

		skb = skb->next;
		if (tdif <= 0) {
			__skb_unlink(back, &tbl->proxy_queue);
			if (tbl->proxy_redo)
				tbl->proxy_redo(back);
			else
				kfree_skb(back);
		} else if (!sched_next || tdif < sched_next)
			sched_next = tdif;
	}
	del_timer(&tbl->proxy_timer);
	if (sched_next) {
		tbl->proxy_timer.expires = jiffies + sched_next;
		add_timer(&tbl->proxy_timer);
	}
}

void pneigh_enqueue(struct neigh_table *tbl, struct neigh_parms *p,
		    struct sk_buff *skb)
{
	unsigned long now = jiffies;
	long sched_next = net_random()%p->proxy_delay;

	if (tbl->proxy_queue.qlen > p->proxy_qlen) {
		kfree_skb(skb);
		return;
	}
	skb->stamp.tv_sec = 0;
	skb->stamp.tv_usec = now + sched_next;
	if (del_timer(&tbl->proxy_timer)) {
		long tval = tbl->proxy_timer.expires - now;
		if (tval < sched_next)
			sched_next = tval;
	}
	tbl->proxy_timer.expires = now + sched_next;
	dst_release(skb->dst);
	skb->dst = NULL;
	__skb_queue_tail(&tbl->proxy_queue, skb);
	add_timer(&tbl->proxy_timer);
}


struct neigh_parms *neigh_parms_alloc(struct device *dev, struct neigh_table *tbl)
{
	struct neigh_parms *p;
	p = kmalloc(sizeof(*p), GFP_KERNEL);
	if (p) {
		memcpy(p, &tbl->parms, sizeof(*p));
		p->tbl = tbl;
		p->reachable_time = neigh_rand_reach_time(p->base_reachable_time);
		if (dev && dev->neigh_setup) {
			if (dev->neigh_setup(dev, p)) {
				kfree(p);
				return NULL;
			}
		}
		p->next = tbl->parms.next;
		tbl->parms.next = p;
	}
	return p;
}

void neigh_parms_release(struct neigh_table *tbl, struct neigh_parms *parms)
{
	struct neigh_parms **p;
	
	if (parms == NULL || parms == &tbl->parms)
		return;
	for (p = &tbl->parms.next; *p; p = &(*p)->next) {
		if (*p == parms) {
			*p = parms->next;
			synchronize_bh();
#ifdef CONFIG_SYSCTL
			neigh_sysctl_unregister(parms);
#endif
			kfree(parms);
			return;
		}
	}
	NEIGH_PRINTK1("neigh_release_parms: not found\n");
}


void neigh_table_init(struct neigh_table *tbl)
{
	unsigned long now = jiffies;

	tbl->parms.reachable_time = neigh_rand_reach_time(tbl->parms.base_reachable_time);

	init_timer(&tbl->gc_timer);
	tbl->gc_timer.data = (unsigned long)tbl;
	tbl->gc_timer.function = neigh_periodic_timer;
	tbl->gc_timer.expires = now + tbl->gc_interval + tbl->parms.reachable_time;
	add_timer(&tbl->gc_timer);

	init_timer(&tbl->proxy_timer);
	tbl->proxy_timer.data = (unsigned long)tbl;
	tbl->proxy_timer.function = neigh_proxy_process;
	skb_queue_head_init(&tbl->proxy_queue);

	tbl->last_flush = now;
	tbl->last_rand = now + tbl->parms.reachable_time*20;
	tbl->next = neigh_tables;
	neigh_tables = tbl;
}

int neigh_table_clear(struct neigh_table *tbl)
{
	struct neigh_table **tp;

	start_bh_atomic();
	del_timer(&tbl->gc_timer);
	del_timer(&tbl->proxy_timer);
	skb_queue_purge(&tbl->proxy_queue);
	neigh_ifdown(tbl, NULL);
	end_bh_atomic();
	if (tbl->entries)
		printk(KERN_CRIT "neighbour leakage\n");
	for (tp = &neigh_tables; *tp; tp = &(*tp)->next) {
		if (*tp == tbl) {
			*tp = tbl->next;
			synchronize_bh();
			break;
		}
	}
#ifdef CONFIG_SYSCTL
	neigh_sysctl_unregister(&tbl->parms);
#endif
	return 0;
}

#ifdef CONFIG_RTNETLINK


int neigh_delete(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
{
	struct ndmsg *ndm = NLMSG_DATA(nlh);
	struct rtattr **nda = arg;
	struct neigh_table *tbl;
	struct device *dev = NULL;

	if (ndm->ndm_ifindex) {
		if ((dev = dev_get_by_index(ndm->ndm_ifindex)) == NULL)
			return -ENODEV;
	}

	for (tbl=neigh_tables; tbl; tbl = tbl->next) {
		int err = 0;
		struct neighbour *n;

		if (tbl->family != ndm->ndm_family)
			continue;

		if (nda[NDA_DST-1] == NULL ||
		    nda[NDA_DST-1]->rta_len != RTA_LENGTH(tbl->key_len))
			return -EINVAL;

		if (ndm->ndm_flags&NTF_PROXY)
			return pneigh_delete(tbl, RTA_DATA(nda[NDA_DST-1]), dev);

		if (dev == NULL)
			return -EINVAL;

		start_bh_atomic();
		n = __neigh_lookup(tbl, RTA_DATA(nda[NDA_DST-1]), dev, 0);
		if (n) {
			err = neigh_update(n, NULL, NUD_FAILED, 1, 0);
			neigh_release(n);
		}
		end_bh_atomic();
		return err;
	}

	return -EADDRNOTAVAIL;
}

int neigh_add(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
{
	struct ndmsg *ndm = NLMSG_DATA(nlh);
	struct rtattr **nda = arg;
	struct neigh_table *tbl;
	struct device *dev = NULL;

	if (ndm->ndm_ifindex) {
		if ((dev = dev_get_by_index(ndm->ndm_ifindex)) == NULL)
			return -ENODEV;
	}

	for (tbl=neigh_tables; tbl; tbl = tbl->next) {
		int err = 0;
		struct neighbour *n;

		if (tbl->family != ndm->ndm_family)
			continue;
		if (nda[NDA_DST-1] == NULL ||
		    nda[NDA_DST-1]->rta_len != RTA_LENGTH(tbl->key_len))
			return -EINVAL;
		if (ndm->ndm_flags&NTF_PROXY) {
			if (pneigh_lookup(tbl, RTA_DATA(nda[NDA_DST-1]), dev, 1))
				return 0;
			return -ENOBUFS;
		}
		if (dev == NULL)
			return -EINVAL;
		if (nda[NDA_LLADDR-1] != NULL &&
		    nda[NDA_LLADDR-1]->rta_len != RTA_LENGTH(dev->addr_len))
			return -EINVAL;
		start_bh_atomic();
		n = __neigh_lookup(tbl, RTA_DATA(nda[NDA_DST-1]), dev, 0);
		if (n) {
			if (nlh->nlmsg_flags&NLM_F_EXCL)
				err = -EEXIST;
		} else if (!(nlh->nlmsg_flags&NLM_F_CREATE))
			err = -ENOENT;
		else {
			n = __neigh_lookup(tbl, RTA_DATA(nda[NDA_DST-1]), dev, 1);
			if (n == NULL)
				err = -ENOBUFS;
		}
		if (err == 0) {
			err = neigh_update(n, nda[NDA_LLADDR-1] ? RTA_DATA(nda[NDA_LLADDR-1]) : NULL,
					   ndm->ndm_state,
					   nlh->nlmsg_flags&NLM_F_REPLACE, 0);
		}
		if (n)
			neigh_release(n);
		end_bh_atomic();
		return err;
	}

	return -EADDRNOTAVAIL;
}


static int neigh_fill_info(struct sk_buff *skb, struct neighbour *n,
			   u32 pid, u32 seq, int event)
{
	unsigned long now = jiffies;
	struct ndmsg *ndm;
	struct nlmsghdr  *nlh;
	unsigned char	 *b = skb->tail;
	struct nda_cacheinfo ci;

	nlh = NLMSG_PUT(skb, pid, seq, event, sizeof(*ndm));
	ndm = NLMSG_DATA(nlh);
	ndm->ndm_family = n->ops->family;
	ndm->ndm_flags = n->flags;
	ndm->ndm_type = n->type;
	ndm->ndm_state = n->nud_state;
	ndm->ndm_ifindex = n->dev->ifindex;
	RTA_PUT(skb, NDA_DST, n->tbl->key_len, n->primary_key);
	if (n->nud_state&NUD_VALID)
		RTA_PUT(skb, NDA_LLADDR, n->dev->addr_len, n->ha);
	ci.ndm_used = now - n->used;
	ci.ndm_confirmed = now - n->confirmed;
	ci.ndm_updated = now - n->updated;
	ci.ndm_refcnt = atomic_read(&n->refcnt);
	RTA_PUT(skb, NDA_CACHEINFO, sizeof(ci), &ci);
	nlh->nlmsg_len = skb->tail - b;
	return skb->len;

nlmsg_failure:
rtattr_failure:
	skb_trim(skb, b - skb->data);
	return -1;
}


static int neigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb, struct netlink_callback *cb)
{
	struct neighbour *n;
	int h, s_h;
	int idx, s_idx;

	s_h = cb->args[1];
	s_idx = idx = cb->args[2];
	for (h=0; h <= NEIGH_HASHMASK; h++) {
		if (h < s_h) continue;
		if (h > s_h)
			s_idx = 0;
		start_bh_atomic();
		for (n = tbl->hash_buckets[h], idx = 0; n;
		     n = n->next, idx++) {
			if (idx < s_idx)
				continue;
			if (neigh_fill_info(skb, n, NETLINK_CB(cb->skb).pid,
					    cb->nlh->nlmsg_seq, RTM_NEWNEIGH) <= 0) {
				end_bh_atomic();
				cb->args[1] = h;
				cb->args[2] = idx;
				return -1;
			}
		}
		end_bh_atomic();
	}

	cb->args[1] = h;
	cb->args[2] = idx;
	return skb->len;
}

int neigh_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
{
	int t;
	int s_t;
	struct neigh_table *tbl;
	int family = ((struct rtgenmsg*)NLMSG_DATA(cb->nlh))->rtgen_family;

	s_t = cb->args[0];

	for (tbl=neigh_tables, t=0; tbl; tbl = tbl->next, t++) {
		if (t < s_t) continue;
		if (family && tbl->family != family)
			continue;
		if (t > s_t)
			memset(&cb->args[1], 0, sizeof(cb->args)-sizeof(cb->args[0]));
		if (neigh_dump_table(tbl, skb, cb) < 0) 
			break;
	}

	cb->args[0] = t;

	return skb->len;
}

#ifdef CONFIG_ARPD
void neigh_app_ns(struct neighbour *n)
{
	struct sk_buff *skb;
	struct nlmsghdr  *nlh;
	int size = NLMSG_SPACE(sizeof(struct ndmsg)+256);

	skb = alloc_skb(size, GFP_ATOMIC);
	if (!skb)
		return;

	if (neigh_fill_info(skb, n, 0, 0, RTM_GETNEIGH) < 0) {
		kfree_skb(skb);
		return;
	}
	nlh = (struct nlmsghdr*)skb->data;
	nlh->nlmsg_flags = NLM_F_REQUEST;
	NETLINK_CB(skb).dst_groups = RTMGRP_NEIGH;
	netlink_broadcast(rtnl, skb, 0, RTMGRP_NEIGH, GFP_ATOMIC);
}

static void neigh_app_notify(struct neighbour *n)
{
	struct sk_buff *skb;
	struct nlmsghdr  *nlh;
	int size = NLMSG_SPACE(sizeof(struct ndmsg)+256);

	skb = alloc_skb(size, GFP_ATOMIC);
	if (!skb)
		return;

	if (neigh_fill_info(skb, n, 0, 0, RTM_NEWNEIGH) < 0) {
		kfree_skb(skb);
		return;
	}
	nlh = (struct nlmsghdr*)skb->data;
	NETLINK_CB(skb).dst_groups = RTMGRP_NEIGH;
	netlink_broadcast(rtnl, skb, 0, RTMGRP_NEIGH, GFP_ATOMIC);
}



#endif


#endif

#ifdef CONFIG_SYSCTL

struct neigh_sysctl_table
{
	struct ctl_table_header *sysctl_header;
	ctl_table neigh_vars[17];
	ctl_table neigh_dev[2];
	ctl_table neigh_neigh_dir[2];
	ctl_table neigh_proto_dir[2];
	ctl_table neigh_root_dir[2];
} neigh_sysctl_template = {
	NULL,
        {{NET_NEIGH_MCAST_SOLICIT, "mcast_solicit",
         NULL, sizeof(int), 0644, NULL,
         &proc_dointvec},
	{NET_NEIGH_UCAST_SOLICIT, "ucast_solicit",
         NULL, sizeof(int), 0644, NULL,
         &proc_dointvec},
	{NET_NEIGH_APP_SOLICIT, "app_solicit",
         NULL, sizeof(int), 0644, NULL,
         &proc_dointvec},
	{NET_NEIGH_RETRANS_TIME, "retrans_time",
         NULL, sizeof(int), 0644, NULL,
         &proc_dointvec},
	{NET_NEIGH_REACHABLE_TIME, "base_reachable_time",
         NULL, sizeof(int), 0644, NULL,
         &proc_dointvec_jiffies},
	{NET_NEIGH_DELAY_PROBE_TIME, "delay_first_probe_time",
         NULL, sizeof(int), 0644, NULL,
         &proc_dointvec_jiffies},
	{NET_NEIGH_GC_STALE_TIME, "gc_stale_time",
         NULL, sizeof(int), 0644, NULL,
         &proc_dointvec_jiffies},
	{NET_NEIGH_UNRES_QLEN, "unres_qlen",
         NULL, sizeof(int), 0644, NULL,
         &proc_dointvec},
	{NET_NEIGH_PROXY_QLEN, "proxy_qlen",
         NULL, sizeof(int), 0644, NULL,
         &proc_dointvec},
	{NET_NEIGH_ANYCAST_DELAY, "anycast_delay",
         NULL, sizeof(int), 0644, NULL,
         &proc_dointvec},
	{NET_NEIGH_PROXY_DELAY, "proxy_delay",
         NULL, sizeof(int), 0644, NULL,
         &proc_dointvec},
	{NET_NEIGH_LOCKTIME, "locktime",
         NULL, sizeof(int), 0644, NULL,
         &proc_dointvec},
	{NET_NEIGH_GC_INTERVAL, "gc_interval",
         NULL, sizeof(int), 0644, NULL,
         &proc_dointvec_jiffies},
	{NET_NEIGH_GC_THRESH1, "gc_thresh1",
         NULL, sizeof(int), 0644, NULL,
         &proc_dointvec},
	{NET_NEIGH_GC_THRESH2, "gc_thresh2",
         NULL, sizeof(int), 0644, NULL,
         &proc_dointvec},
	{NET_NEIGH_GC_THRESH3, "gc_thresh3",
         NULL, sizeof(int), 0644, NULL,
         &proc_dointvec},
	 {0}},

	{{NET_PROTO_CONF_DEFAULT, "default", NULL, 0, 0555, NULL},{0}},
	{{0, "neigh", NULL, 0, 0555, NULL},{0}},
	{{0, NULL, NULL, 0, 0555, NULL},{0}},
	{{CTL_NET, "net", NULL, 0, 0555, NULL},{0}}
};

int neigh_sysctl_register(struct device *dev, struct neigh_parms *p,
			  int p_id, int pdev_id, char *p_name)
{
	struct neigh_sysctl_table *t;

	t = kmalloc(sizeof(*t), GFP_KERNEL);
	if (t == NULL)
		return -ENOBUFS;
	memcpy(t, &neigh_sysctl_template, sizeof(*t));
	t->neigh_vars[0].data = &p->mcast_probes;
	t->neigh_vars[1].data = &p->ucast_probes;
	t->neigh_vars[2].data = &p->app_probes;
	t->neigh_vars[3].data = &p->retrans_time;
	t->neigh_vars[4].data = &p->base_reachable_time;
	t->neigh_vars[5].data = &p->delay_probe_time;
	t->neigh_vars[6].data = &p->gc_staletime;
	t->neigh_vars[7].data = &p->queue_len;
	t->neigh_vars[8].data = &p->proxy_qlen;
	t->neigh_vars[9].data = &p->anycast_delay;
	t->neigh_vars[10].data = &p->proxy_delay;
	t->neigh_vars[11].data = &p->locktime;
	if (dev) {
		t->neigh_dev[0].procname = dev->name;
		t->neigh_dev[0].ctl_name = dev->ifindex;
		memset(&t->neigh_vars[12], 0, sizeof(ctl_table));
	} else {
		t->neigh_vars[12].data = (int*)(p+1);
		t->neigh_vars[13].data = (int*)(p+1) + 1;
		t->neigh_vars[14].data = (int*)(p+1) + 2;
		t->neigh_vars[15].data = (int*)(p+1) + 3;
	}
	t->neigh_neigh_dir[0].ctl_name = pdev_id;

	t->neigh_proto_dir[0].procname = p_name;
	t->neigh_proto_dir[0].ctl_name = p_id;

	t->neigh_dev[0].child = t->neigh_vars;
	t->neigh_neigh_dir[0].child = t->neigh_dev;
	t->neigh_proto_dir[0].child = t->neigh_neigh_dir;
	t->neigh_root_dir[0].child = t->neigh_proto_dir;

	t->sysctl_header = register_sysctl_table(t->neigh_root_dir, 0);
	if (t->sysctl_header == NULL) {
		kfree(t);
		return -ENOBUFS;
	}
	p->sysctl_table = t;
	return 0;
}

void neigh_sysctl_unregister(struct neigh_parms *p)
{
	if (p->sysctl_table) {
		struct neigh_sysctl_table *t = p->sysctl_table;
		p->sysctl_table = NULL;
		unregister_sysctl_table(t->sysctl_header);
		kfree(t);
	}
}

#endif	/* CONFIG_SYSCTL */