1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
|
#include <hurd.h>
#include <elf.h>
#include <link.h>
#include <string.h>
#include <argz.h>
#include <sys/mman.h>
#include <sys/utsname.h>
#include <sys/procfs.h>
#include <stddef.h>
#define ELF_MACHINE EM_386 /* XXX */
#define ELF_CLASS PASTE (ELFCLASS, __ELF_NATIVE_CLASS)
#define PASTE(a, b) PASTE_1 (a, b)
#define PASTE_1(a, b) a##b
#include <endian.h>
#if BYTE_ORDER == BIG_ENDIAN
#define ELF_DATA ELFDATA2MSB
#elif BYTE_ORDER == LITTLE_ENDIAN
#define ELF_DATA ELFDATA2LSB
#endif
#define TIME_VALUE_TO_TIMESPEC(tv, ts) \
TIMEVAL_TO_TIMESPEC ((struct timeval *) (tv), (ts))
#define PAGES_TO_KB(x) ((x) * (vm_page_size / 1024))
#define ENCODE_PCT(f) ((uint16_t) ((f) * 32768.0))
extern process_t procserver;
error_t
dump_core (task_t task, file_t file, off_t corelimit,
int signo, long int sigcode, int sigerror)
{
static float host_memory_size = -1.0;
error_t err;
ElfW(Phdr) *phdrs, *ph;
ElfW(Ehdr) hdr = /* ELF header for the core file. */
{
e_ident:
{
[EI_MAG0] = ELFMAG0,
[EI_MAG1] = ELFMAG1,
[EI_MAG2] = ELFMAG2,
[EI_MAG3] = ELFMAG3,
[EI_CLASS] = ELF_CLASS,
[EI_DATA] = ELF_DATA,
[EI_VERSION] = EV_CURRENT,
[EI_OSABI] = ELFOSABI_SYSV,
[EI_ABIVERSION] = 0
},
e_type: ET_CORE,
e_version: EV_CURRENT,
e_machine: ELF_MACHINE,
e_ehsize: sizeof hdr,
e_phentsize: sizeof phdrs[0],
e_phoff: sizeof hdr, /* Fill in e_phnum later. */
};
off_t offset;
size_t wrote;
pid_t pid;
thread_t *threads;
size_t nthreads, i;
off_t notestart;
/* Helper macros for writing notes. */
#define DEFINE_NOTE(typename) struct { struct note_header hdr; typename data; }
#define WRITE_NOTE(type, var) ({ \
(var).hdr = NOTE_HEADER ((type), sizeof (var).data); \
write_note (&(var).hdr); \
})
struct note_header
{
ElfW(Nhdr) note;
char name[4];
};
#define NOTE_HEADER(type, size) \
((struct note_header) { { 4, (size), (type) }, "CORE" })
inline error_t write_note (struct note_header *hdr)
{
error_t err = 0;
char *data = (char *) hdr;
size_t size = sizeof *hdr + hdr->note.n_descsz;
if (corelimit >= 0 && offset + size > corelimit)
size = corelimit - offset;
while (size > 0)
{
err = io_write (file, data, size, offset, &wrote);
if (err)
return err;
offset = (offset + wrote + 3) &~ 3; /* Pad it to word alignment. */
if (wrote > size)
break;
data += wrote;
size -= wrote;
}
return err;
}
struct vm_region_list
{
struct vm_region_list *next;
vm_prot_t protection;
vm_address_t start;
vm_size_t length;
};
struct vm_region_list *regions = NULL, **tailp = ®ions, *r;
unsigned int nregions = 0;
if (corelimit >= 0 && corelimit < sizeof hdr)
return EFBIG;
{
/* Examine the task and record the locations of contiguous memory
segments that we will dump into the core file. */
vm_address_t region_address, last_region_address, last_region_end;
vm_prot_t last_protection;
#define RECORD_LAST_REGION do { \
if (last_region_end > last_region_address \
&& last_protection != VM_PROT_NONE) \
record_last_region (alloca (sizeof (struct vm_region_list))); } while (0)
inline void record_last_region (struct vm_region_list *region)
{
*tailp = region;
tailp = ®ion->next;
region->next = NULL;
region->start = last_region_address;
region->length = last_region_end - last_region_address;
region->protection = last_protection;
++nregions;
}
region_address = last_region_address = last_region_end = VM_MIN_ADDRESS;
last_protection = VM_PROT_NONE;
while (region_address < VM_MAX_ADDRESS)
{
vm_prot_t protection;
vm_prot_t max_protection;
vm_inherit_t inheritance;
boolean_t shared;
mach_port_t object_name;
vm_offset_t offset;
vm_size_t region_length = VM_MAX_ADDRESS - region_address;
err = vm_region (task,
®ion_address,
®ion_length,
&protection,
&max_protection,
&inheritance,
&shared,
&object_name,
&offset);
if (err == KERN_NO_SPACE)
break;
if (err != KERN_SUCCESS)
return err;
if (protection == last_protection && region_address == last_region_end)
/* This region is contiguous with and indistinguishable from
the previous one, so we just extend that one. */
last_region_end = region_address += region_length;
else
{
/* This region is distinct from the last one we saw,
so record that previous one. */
RECORD_LAST_REGION;
last_region_address = region_address;
last_region_end = region_address += region_length;
last_protection = protection;
}
}
/* Record the final region. */
RECORD_LAST_REGION;
}
/* Now we start laying out the file. */
offset = round_page (sizeof hdr + ((nregions + 1) * sizeof *phdrs));
/* Final check for tiny core limit. From now on, we will simply truncate
the file at CORELIMIT but not change the contents of what we write. */
if (corelimit >= 0 && corelimit < offset)
return EFBIG;
/* Now we can complete the file header and write it. */
hdr.e_phnum = nregions + 1;
err = io_write (file, (char *) &hdr, sizeof hdr, 0, &wrote);
if (err)
return err;
if (wrote < sizeof hdr)
return EGRATUITOUS; /* XXX */
/* Now we can write the various notes. */
notestart = offset;
/* First a dull note containing the results of `uname', a la Solaris. */
{
DEFINE_NOTE (struct utsname) note;
if (uname (¬e.data) == 0) /* XXX Use proc_uname on task's proc port? */
err = WRITE_NOTE (NT_UTSNAME, note);
}
if (err || (corelimit >= 0 && corelimit <= offset))
return err;
err = proc_task2pid (procserver, task, &pid);
if (err)
return err;
/* Make sure we have the total RAM size of the host.
We only do this once, assuming that it won't change.
XXX this could use the task's host-self port instead. */
if (host_memory_size <= 0.0)
{
host_basic_info_data_t hostinfo;
mach_msg_type_number_t size = sizeof hostinfo;
error_t err = host_info (mach_host_self (), HOST_BASIC_INFO,
(host_info_t) &hostinfo, &size);
if (err == 0)
host_memory_size = hostinfo.memory_size;
}
/* The psinfo_t note contains some process-global info we should get from
the proc server, but no thread-specific info like register state. */
{
DEFINE_NOTE (psinfo_t) note;
int flags = PI_FETCH_TASKINFO | PI_FETCH_THREADS | PI_FETCH_THREAD_BASIC;
char *waits = 0;
mach_msg_type_number_t num_waits = 0;
char pibuf[offsetof (struct procinfo, threadinfos[2])];
struct procinfo *pi = (void *) &pibuf;
mach_msg_type_number_t pi_size = sizeof pibuf;
err = proc_getprocinfo (procserver, pid, &flags,
(procinfo_t *) &pi, &pi_size,
&waits, &num_waits);
if (err == 0)
{
if (num_waits != 0)
munmap (waits, num_waits);
memset (¬e.data, 0, sizeof note.data);
note.data.pr_flag = pi->state;
note.data.pr_nlwp = pi->nthreads;
note.data.pr_pid = pid;
note.data.pr_ppid = pi->ppid;
note.data.pr_pgid = pi->pgrp;
note.data.pr_sid = pi->session;
note.data.pr_euid = pi->owner;
/* XXX struct procinfo should have these */
note.data.pr_egid = note.data.pr_gid = note.data.pr_uid = -1;
note.data.pr_size = PAGES_TO_KB (pi->taskinfo.virtual_size);
note.data.pr_rssize = PAGES_TO_KB (pi->taskinfo.resident_size);
{
/* Sum all the threads' cpu_usage fields. */
integer_t cpu_usage = 0;
for (i = 0; i < pi->nthreads; ++i)
cpu_usage += pi->threadinfos[i].pis_bi.cpu_usage;
note.data.pr_pctcpu = ENCODE_PCT ((float) cpu_usage
/ (float) TH_USAGE_SCALE);
}
if (host_memory_size > 0.0)
note.data.pr_pctmem = ENCODE_PCT ((float) pi->taskinfo.resident_size
/ host_memory_size);
TIME_VALUE_TO_TIMESPEC (&pi->taskinfo.creation_time,
¬e.data.pr_start);
timeradd ((const struct timeval *) &pi->taskinfo.user_time,
(const struct timeval *) &pi->taskinfo.system_time,
(struct timeval *) &pi->taskinfo.user_time);
TIME_VALUE_TO_TIMESPEC (&pi->taskinfo.user_time, ¬e.data.pr_time);
/* XXX struct procinfo should have dead child info for pr_ctime */
note.data.pr_wstat = pi->exitstatus;
if ((void *) pi != &pibuf)
munmap (pi, pi_size);
{
/* We have to nab the process's own proc port to get the
proc server to tell us its registered arg locations. */
process_t proc;
err = proc_task2proc (procserver, task, &proc);
if (err == 0)
{
err = proc_get_arg_locations (proc,
¬e.data.pr_argv,
¬e.data.pr_envp);
mach_port_deallocate (mach_task_self (), proc);
}
err = 0;
}
{
/* Now fetch the arguments. We could do this directly from the
task given the locations we now have. But we are lazy and have
the proc server do it for us. */
char *data = note.data.pr_psargs;
size_t datalen = sizeof note.data.pr_psargs;
err = proc_getprocargs (procserver, pid, &data, &datalen);
if (err == 0)
{
note.data.pr_argc = argz_count (data, datalen);
argz_stringify (data, datalen, ' ');
if (data != note.data.pr_psargs)
{
memcpy (note.data.pr_psargs, data,
sizeof note.data.pr_psargs);
munmap (data, datalen);
}
}
}
err = WRITE_NOTE (NT_PSTATUS, note);
}
#if 0
note.data.pr_info.si_signo = signo;
note.data.pr_info.si_code = sigcode;
note.data.pr_info.si_errno = sigerror;
#endif
}
if (err || (corelimit >= 0 && corelimit <= offset))
return err;
/* Now examine all the threads in the task.
For each thread we produce one or more notes. */
err = task_threads (task, &threads, &nthreads);
if (err)
return err;
for (i = 0; i < nthreads; ++i)
{
{
/* lwpinfo_t a la Solaris gives thread's CPU time and such. */
DEFINE_NOTE (struct thread_basic_info) note;
mach_msg_type_number_t count = THREAD_BASIC_INFO_COUNT;
err = thread_info (threads[i], THREAD_BASIC_INFO,
(thread_info_t)¬e.data, &count);
if (err == 0)
err = WRITE_NOTE (NT_LWPSINFO, note);
else /* Just skip it if we can't get the info. */
err = 0;
}
if (err || (corelimit >= 0 && corelimit <= offset))
break;
#ifdef WRITE_THREAD_NOTES
/* XXX Here would go the note flavors for machine thread states. */
err = WRITE_THREAD_NOTES (i, threads[i]);
#endif
if (err || (corelimit >= 0 && corelimit <= offset))
break;
mach_port_deallocate (mach_task_self (), threads[i]);
}
while (i < nthreads)
mach_port_deallocate (mach_task_self (), threads[i++]);
munmap (threads, nthreads * sizeof *threads);
if (err || (corelimit >= 0 && corelimit <= offset))
return err;
/* Make an array of program headers and fill them in.
The first one describes the note segment. */
ph = phdrs = alloca ((nregions + 1) * sizeof *phdrs);
memset (ph, 0, sizeof *ph);
ph->p_type = PT_NOTE;
ph->p_offset = notestart;
ph->p_filesz = offset - notestart;
++ph;
/* Now make ELF program headers for each of the record memory regions.
Consistent with the Linux kernel, we create PT_LOAD headers with
p_filesz = 0 for the read-only segments that we are not dumping
into the file. */
for (r = regions; r != NULL; r = r->next)
{
memset (ph, 0, sizeof *ph);
ph->p_type = PT_LOAD;
ph->p_align = vm_page_size;
ph->p_flags = (((r->protection & VM_PROT_READ) ? PF_R : 0)
| ((r->protection & VM_PROT_WRITE) ? PF_W : 0)
| ((r->protection & VM_PROT_EXECUTE) ? PF_X : 0));
ph->p_vaddr = r->start;
ph->p_memsz = r->length;
ph->p_filesz = (r->protection & VM_PROT_WRITE) ? ph->p_memsz : 0;
ph->p_offset = offset;
offset += ph->p_filesz;
++ph;
}
/* Now write the memory segment data. */
for (ph = &phdrs[1]; ph < &phdrs[nregions + 1]; ++ph)
if (ph->p_filesz > 0)
{
vm_address_t va = ph->p_vaddr;
vm_size_t sz = ph->p_memsz;
off_t ofs = ph->p_offset;
int wrote_any = 0;
do
{
pointer_t copied;
int copy_count;
err = vm_read (task, va, sz, &copied, ©_count);
if (err == 0)
{
char *data = (void *) copied;
size_t left = copy_count, wrote;
va += copy_count;
sz -= copy_count;
do
{
if (corelimit >= 0 && ofs + left > corelimit)
left = corelimit - ofs;
err = io_write (file, data, left, ofs, &wrote);
if (err)
break;
ofs += wrote;
data += wrote;
left -= wrote;
if (ofs >= corelimit)
break;
} while (left > 0);
munmap ((void *) copied, copy_count);
if (left < copy_count)
wrote_any = 1;
}
else
{
/* Leave a hole in the file for pages we can't read. */
va += vm_page_size;
sz -= vm_page_size;
ofs += vm_page_size;
}
} while (sz > 0 && (corelimit < 0 || ofs < corelimit));
if (! wrote_any)
/* If we failed to write any contents at all,
don't claim the big hole as the contents. */
ph->p_filesz = 0;
}
/* Finally, we go back and write the program headers. */
err = io_write (file, (char *) phdrs, (nregions + 1) * sizeof phdrs[0],
sizeof hdr, &wrote);
return err;
}
|