1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
|
/*
* Mach Operating System
* Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University.
* Copyright (c) 1993,1994 The University of Utah and
* the Computer Systems Laboratory (CSL).
* All rights reserved.
*
* Permission to use, copy, modify and distribute this software and its
* documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
*
* CARNEGIE MELLON, THE UNIVERSITY OF UTAH AND CSL ALLOW FREE USE OF
* THIS SOFTWARE IN ITS "AS IS" CONDITION, AND DISCLAIM ANY LIABILITY
* OF ANY KIND FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF
* THIS SOFTWARE.
*
* Carnegie Mellon requests users of this software to return to
*
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie Mellon
* the rights to redistribute these changes.
*/
/*
* File: vm/vm_resident.c
* Author: Avadis Tevanian, Jr., Michael Wayne Young
*
* Resident memory management module.
*/
#include <kern/printf.h>
#include <string.h>
#include <mach/vm_prot.h>
#include <kern/counters.h>
#include <kern/debug.h>
#include <kern/sched_prim.h>
#include <kern/task.h>
#include <kern/thread.h>
#include <mach/vm_statistics.h>
#include <machine/vm_param.h>
#include <kern/xpr.h>
#include <kern/slab.h>
#include <kern/rdxtree.h>
#include <vm/pmap.h>
#include <vm/vm_map.h>
#include <vm/vm_page.h>
#include <vm/vm_pageout.h>
#include <vm/vm_kern.h>
#if MACH_VM_DEBUG
#include <mach/kern_return.h>
#include <vm/vm_user.h>
#endif
#if MACH_KDB
#include <ddb/db_output.h>
#include <vm/vm_print.h>
#endif /* MACH_KDB */
/*
* Associated with each page of user-allocatable memory is a
* page structure.
*/
/*
* These variables record the values returned by vm_page_bootstrap,
* for debugging purposes. The implementation of pmap_steal_memory
* and pmap_startup here also uses them internally.
*/
vm_offset_t virtual_space_start;
vm_offset_t virtual_space_end;
/*
* Resident pages that represent real memory
* are allocated from a free list.
*/
vm_page_t vm_page_queue_free;
vm_page_t vm_page_queue_fictitious;
decl_simple_lock_data(,vm_page_queue_free_lock)
unsigned int vm_page_free_wanted;
int vm_page_free_count;
int vm_page_fictitious_count;
int vm_page_external_count;
/*
* Occasionally, the virtual memory system uses
* resident page structures that do not refer to
* real pages, for example to leave a page with
* important state information in the VP table.
*
* These page structures are allocated the way
* most other kernel structures are.
*/
struct kmem_cache vm_page_cache;
/*
* Fictitious pages don't have a physical address,
* but we must initialize phys_addr to something.
* For debugging, this should be a strange value
* that the pmap module can recognize in assertions.
*/
vm_offset_t vm_page_fictitious_addr = (vm_offset_t) -1;
/*
* Resident page structures are also chained on
* queues that are used by the page replacement
* system (pageout daemon). These queues are
* defined here, but are shared by the pageout
* module.
*/
queue_head_t vm_page_queue_active;
queue_head_t vm_page_queue_inactive;
struct lock vm_page_queue_lock;
int vm_page_active_count;
int vm_page_inactive_count;
int vm_page_wire_count;
/*
* Several page replacement parameters are also
* shared with this module, so that page allocation
* (done here in vm_page_alloc) can trigger the
* pageout daemon.
*/
int vm_page_free_target = 0;
int vm_page_free_min = 0;
int vm_page_inactive_target = 0;
int vm_page_free_reserved = 0;
int vm_page_laundry_count = 0;
int vm_page_external_limit = 0;
/*
* The VM system has a couple of heuristics for deciding
* that pages are "uninteresting" and should be placed
* on the inactive queue as likely candidates for replacement.
* These variables let the heuristics be controlled at run-time
* to make experimentation easier.
*/
boolean_t vm_page_deactivate_behind = TRUE;
boolean_t vm_page_deactivate_hint = TRUE;
/*
* vm_page_bootstrap:
*
* Initializes the resident memory module.
*
* Returns the range of available kernel virtual memory.
*/
void vm_page_bootstrap(
vm_offset_t *startp,
vm_offset_t *endp)
{
/*
* Initialize the page queues.
*/
simple_lock_init(&vm_page_queue_free_lock);
lock_init(&vm_page_queue_lock, FALSE);
vm_page_queue_free = VM_PAGE_NULL;
vm_page_queue_fictitious = VM_PAGE_NULL;
queue_init(&vm_page_queue_active);
queue_init(&vm_page_queue_inactive);
vm_page_free_wanted = 0;
/*
* Machine-dependent code allocates the resident page table.
* It uses vm_page_init to initialize the page frames.
* The code also returns to us the virtual space available
* to the kernel. We don't trust the pmap module
* to get the alignment right.
*/
pmap_startup(&virtual_space_start, &virtual_space_end);
virtual_space_start = round_page(virtual_space_start);
virtual_space_end = trunc_page(virtual_space_end);
*startp = virtual_space_start;
*endp = virtual_space_end;
/* printf("vm_page_bootstrap: %d free pages\n", vm_page_free_count);*/
}
#ifndef MACHINE_PAGES
void pmap_startup(
vm_offset_t *startp,
vm_offset_t *endp)
{
pmap_virtual_space(&virtual_space_start, &virtual_space_end);
/*
* The initial values must be aligned properly, and
* we don't trust the pmap module to do it right.
*/
virtual_space_start = round_page(virtual_space_start);
virtual_space_end = trunc_page(virtual_space_end);
*startp = virtual_space_start;
*endp = virtual_space_end;
}
#endif /* MACHINE_PAGES */
/*
* Routine: vm_page_module_init
* Purpose:
* Second initialization pass, to be done after
* the basic VM system is ready.
*/
void vm_page_module_init(void)
{
kmem_cache_init (&vm_page_cache,
"vm_page",
sizeof(struct vm_page), 0,
NULL, 0);
}
/*
* Routine: vm_page_create
* Purpose:
* After the VM system is up, machine-dependent code
* may stumble across more physical memory. For example,
* memory that it was reserving for a frame buffer.
* vm_page_create turns this memory into available pages.
*/
void vm_page_create(
vm_offset_t start,
vm_offset_t end)
{
printf ("XXX: vm_page_create stubbed out\n");
return;
vm_offset_t paddr;
vm_page_t m;
for (paddr = round_page(start);
paddr < trunc_page(end);
paddr += PAGE_SIZE) {
m = (vm_page_t) kmem_cache_alloc(&vm_page_cache);
if (m == VM_PAGE_NULL)
panic("vm_page_create");
vm_page_init(m, paddr);
vm_page_release(m, FALSE);
}
}
static rdxtree_key_t
offset_key(vm_offset_t offset)
{
return (rdxtree_key_t) atop(offset);
}
/*
* vm_page_insert: [ internal use only ]
*
* Inserts the given mem entry into the object/object-page
* table and object list.
*
* The object and page must be locked.
*/
void vm_page_insert(
vm_page_t mem,
vm_object_t object,
vm_offset_t offset)
{
assert(have_vm_object_lock(object));
VM_PAGE_CHECK(mem);
if (mem->tabled)
panic("vm_page_insert");
/*
* Record the object/offset pair in this page
*/
mem->object = object;
mem->offset = offset;
/*
* Insert it into the objects radix tree.
*/
rdxtree_insert(&object->memt, offset_key(offset), mem);
mem->tabled = TRUE;
/*
* Show that the object has one more resident page.
*/
object->resident_page_count++;
assert(object->resident_page_count >= 0);
if (object->can_persist && (object->ref_count == 0))
vm_object_cached_pages_update(1);
/*
* Detect sequential access and inactivate previous page.
* We ignore busy pages.
*/
if (vm_page_deactivate_behind &&
(offset == object->last_alloc + PAGE_SIZE)) {
vm_page_t last_mem;
last_mem = vm_page_lookup(object, object->last_alloc);
if ((last_mem != VM_PAGE_NULL) && !last_mem->busy)
vm_page_deactivate(last_mem);
}
object->last_alloc = offset;
}
/*
* vm_page_replace:
*
* Exactly like vm_page_insert, except that we first
* remove any existing page at the given offset in object
* and we don't do deactivate-behind.
*
* The object and page must be locked.
*/
void vm_page_replace(
vm_page_t mem,
vm_object_t object,
vm_offset_t offset)
{
struct vm_page *old;
void **slot;
assert(have_vm_object_lock(object));
VM_PAGE_CHECK(mem);
if (mem->tabled)
panic("vm_page_replace");
/*
* Record the object/offset pair in this page
*/
mem->object = object;
mem->offset = offset;
/*
* Insert it into the objects radix tree, replacing any
* page that might have been there.
*/
slot = rdxtree_lookup_slot(&object->memt, offset_key(offset));
old = rdxtree_replace_slot(slot, mem);
if (old != VM_PAGE_NULL) {
old->tabled = FALSE;
object->resident_page_count--;
if (object->can_persist
&& (object->ref_count == 0))
vm_object_cached_pages_update(-1);
/* And free it. */
vm_page_free(old);
}
mem->tabled = TRUE;
/*
* And show that the object has one more resident
* page.
*/
object->resident_page_count++;
assert(object->resident_page_count >= 0);
if (object->can_persist && (object->ref_count == 0))
vm_object_cached_pages_update(1);
}
/*
* vm_page_remove: [ internal use only ]
*
* Removes the given mem entry from the object/offset-page
* table and the object page list.
*
* The object and page must be locked.
*/
void vm_page_remove(
vm_page_t mem)
{
assert(have_vm_object_lock(mem->object));
assert(mem->tabled);
VM_PAGE_CHECK(mem);
/* Remove from the objects radix tree. */
rdxtree_remove(&mem->object->memt, offset_key(mem->offset));
/*
* And show that the object has one fewer resident
* page.
*/
mem->object->resident_page_count--;
mem->tabled = FALSE;
if (mem->object->can_persist && (mem->object->ref_count == 0))
vm_object_cached_pages_update(-1);
}
/*
* vm_page_lookup:
*
* Returns the page associated with the object/offset
* pair specified; if none is found, VM_PAGE_NULL is returned.
*
* The object must be locked. No side effects.
*/
vm_page_t vm_page_lookup(
vm_object_t object,
vm_offset_t offset)
{
assert(have_vm_object_lock(object));
return rdxtree_lookup(&object->memt, offset_key(offset));
}
/*
* vm_page_rename:
*
* Move the given memory entry from its
* current object to the specified target object/offset.
*
* The object must be locked.
*/
void vm_page_rename(
vm_page_t mem,
vm_object_t new_object,
vm_offset_t new_offset)
{
assert(have_vm_object_lock(new_object));
/*
* Changes to mem->object require the page lock because
* the pageout daemon uses that lock to get the object.
*/
vm_page_lock_queues();
vm_page_remove(mem);
vm_page_insert(mem, new_object, new_offset);
vm_page_unlock_queues();
}
/*
* vm_page_grab_fictitious:
*
* Remove a fictitious page from the free list.
* Returns VM_PAGE_NULL if there are no free pages.
*/
vm_page_t vm_page_grab_fictitious(void)
{
vm_page_t m;
simple_lock(&vm_page_queue_free_lock);
m = vm_page_queue_fictitious;
if (m != VM_PAGE_NULL) {
vm_page_fictitious_count--;
vm_page_queue_fictitious = (vm_page_t) m->pageq.next;
assert(m->fictitious);
assert(! m->tabled);
}
simple_unlock(&vm_page_queue_free_lock);
return m;
}
/*
* vm_page_release_fictitious:
*
* Release a fictitious page to the free list.
*/
void vm_page_release_fictitious(
vm_page_t m)
{
assert(m->fictitious);
assert(! m->tabled);
simple_lock(&vm_page_queue_free_lock);
m->pageq.next = (queue_entry_t) vm_page_queue_fictitious;
vm_page_queue_fictitious = m;
vm_page_fictitious_count++;
simple_unlock(&vm_page_queue_free_lock);
}
/*
* vm_page_more_fictitious:
*
* Add more fictitious pages to the free list.
* Allowed to block.
*/
int vm_page_fictitious_quantum = 5;
void vm_page_more_fictitious(void)
{
vm_page_t m;
int i;
for (i = 0; i < vm_page_fictitious_quantum; i++) {
m = (vm_page_t) kmem_cache_alloc(&vm_page_cache);
if (m == VM_PAGE_NULL)
panic("vm_page_more_fictitious");
vm_page_init(m, vm_page_fictitious_addr);
m->fictitious = TRUE;
vm_page_release_fictitious(m);
}
}
/*
* vm_page_convert:
*
* Attempt to convert a fictitious page into a real page.
*/
boolean_t vm_page_convert(
struct vm_page **mp,
boolean_t external)
{
struct vm_page *real_m, *fict_m, *old;
void **slot;
fict_m = *mp;
assert(fict_m->fictitious);
assert(fict_m->phys_addr == vm_page_fictitious_addr);
assert(! fict_m->active);
assert(! fict_m->inactive);
assert(have_vm_object_lock((*mp)->object));
real_m = vm_page_grab(external);
if (real_m == VM_PAGE_NULL)
return FALSE;
memcpy(&real_m->vm_page_header,
&fict_m->vm_page_header,
sizeof *fict_m - VM_PAGE_HEADER_SIZE);
real_m->fictitious = FALSE;
fict_m->tabled = FALSE;
/* Fix radix tree entry. */
/* XXX is the object locked? */
slot = rdxtree_lookup_slot(&fict_m->object->memt,
offset_key(fict_m->offset));
old = rdxtree_replace_slot(slot, real_m);
assert(old == fict_m);
assert(real_m->phys_addr != vm_page_fictitious_addr);
assert(fict_m->fictitious);
assert(fict_m->phys_addr == vm_page_fictitious_addr);
vm_page_release_fictitious(fict_m);
*mp = real_m;
return TRUE;
}
/*
* vm_page_grab:
*
* Remove a page from the free list.
* Returns VM_PAGE_NULL if the free list is too small.
*/
vm_page_t vm_page_grab(
boolean_t external)
{
vm_page_t mem;
simple_lock(&vm_page_queue_free_lock);
/*
* Only let privileged threads (involved in pageout)
* dip into the reserved pool or exceed the limit
* for externally-managed pages.
*/
if (((vm_page_free_count < vm_page_free_reserved)
|| (external
&& (vm_page_external_count > vm_page_external_limit)))
&& !current_thread()->vm_privilege) {
simple_unlock(&vm_page_queue_free_lock);
return VM_PAGE_NULL;
}
if (external)
vm_page_external_count++;
mem = vm_page_alloc_p(0, VM_PAGE_SEL_DIRECTMAP, VM_PAGE_OBJECT);
if (! mem) {
simple_unlock(&vm_page_queue_free_lock);
return VM_PAGE_NULL;
}
vm_page_init_mach(mem);
mem->extcounted = mem->external = external;
simple_unlock(&vm_page_queue_free_lock);
/*
* Decide if we should poke the pageout daemon.
* We do this if the free count is less than the low
* water mark, or if the free count is less than the high
* water mark (but above the low water mark) and the inactive
* count is less than its target.
*
* We don't have the counts locked ... if they change a little,
* it doesn't really matter.
*/
if ((vm_page_free_count < vm_page_free_min) ||
((vm_page_free_count < vm_page_free_target) &&
(vm_page_inactive_count < vm_page_inactive_target)))
thread_wakeup((event_t) &vm_page_free_wanted);
return mem;
}
vm_offset_t vm_page_grab_phys_addr(void)
{
vm_page_t p = vm_page_grab(FALSE);
if (p == VM_PAGE_NULL)
return -1;
else
return p->phys_addr;
}
/*
* vm_page_release:
*
* Return a page to the free list.
*/
void vm_page_release(
vm_page_t mem,
boolean_t external)
{
simple_lock(&vm_page_queue_free_lock);
vm_page_free_p(mem, 0);
if (external)
vm_page_external_count--;
/*
* Check if we should wake up someone waiting for page.
* But don't bother waking them unless they can allocate.
*
* We wakeup only one thread, to prevent starvation.
* Because the scheduling system handles wait queues FIFO,
* if we wakeup all waiting threads, one greedy thread
* can starve multiple niceguy threads. When the threads
* all wakeup, the greedy threads runs first, grabs the page,
* and waits for another page. It will be the first to run
* when the next page is freed.
*
* However, there is a slight danger here.
* The thread we wake might not use the free page.
* Then the other threads could wait indefinitely
* while the page goes unused. To forestall this,
* the pageout daemon will keep making free pages
* as long as vm_page_free_wanted is non-zero.
*/
if ((vm_page_free_wanted > 0) &&
(vm_page_free_count >= vm_page_free_reserved)) {
vm_page_free_wanted--;
thread_wakeup_one((event_t) &vm_page_free_count);
}
simple_unlock(&vm_page_queue_free_lock);
}
/*
* vm_page_wait:
*
* Wait for a page to become available.
* If there are plenty of free pages, then we don't sleep.
*/
void vm_page_wait(
void (*continuation)(void))
{
/*
* We can't use vm_page_free_reserved to make this
* determination. Consider: some thread might
* need to allocate two pages. The first allocation
* succeeds, the second fails. After the first page is freed,
* a call to vm_page_wait must really block.
*/
simple_lock(&vm_page_queue_free_lock);
if ((vm_page_free_count < vm_page_free_target)
|| (vm_page_external_count > vm_page_external_limit)) {
if (vm_page_free_wanted++ == 0)
thread_wakeup((event_t)&vm_page_free_wanted);
assert_wait((event_t)&vm_page_free_count, FALSE);
simple_unlock(&vm_page_queue_free_lock);
if (continuation != 0) {
counter(c_vm_page_wait_block_user++);
thread_block(continuation);
} else {
counter(c_vm_page_wait_block_kernel++);
thread_block((void (*)(void)) 0);
}
} else
simple_unlock(&vm_page_queue_free_lock);
}
/*
* vm_page_alloc:
*
* Allocate and return a memory cell associated
* with this VM object/offset pair.
*
* Object must be locked.
*/
vm_page_t vm_page_alloc(
vm_object_t object,
vm_offset_t offset)
{
vm_page_t mem;
assert(have_vm_object_lock(object));
mem = vm_page_grab(!object->internal);
if (mem == VM_PAGE_NULL)
return VM_PAGE_NULL;
vm_page_lock_queues();
vm_page_insert(mem, object, offset);
vm_page_unlock_queues();
return mem;
}
/*
* vm_page_free:
*
* Returns the given page to the free list,
* disassociating it with any VM object.
*
* Object and page queues must be locked prior to entry.
*/
void vm_page_free(
vm_page_t mem)
{
assert(have_vm_object_lock(mem->object));
assert(have_vm_page_queue_lock());
if (mem->tabled)
vm_page_remove(mem);
VM_PAGE_QUEUES_REMOVE(mem);
if (mem->wire_count != 0) {
if (!mem->private && !mem->fictitious)
vm_page_wire_count--;
mem->wire_count = 0;
}
if (mem->laundry) {
vm_page_laundry_count--;
mem->laundry = FALSE;
}
PAGE_WAKEUP_DONE(mem);
if (mem->absent)
vm_object_absent_release(mem->object);
/*
* XXX The calls to vm_page_init here are
* really overkill.
*/
if (mem->private || mem->fictitious) {
vm_page_init(mem, vm_page_fictitious_addr);
mem->fictitious = TRUE;
vm_page_release_fictitious(mem);
} else {
int external = mem->external && mem->extcounted;
vm_page_init(mem, mem->phys_addr);
vm_page_release(mem, external);
}
}
/*
* vm_page_wire:
*
* Mark this page as wired down by yet
* another map, removing it from paging queues
* as necessary.
*
* The page's object and the page queues must be locked.
*/
void vm_page_wire(
vm_page_t mem)
{
assert(have_vm_object_lock(mem->object));
assert(have_vm_page_queue_lock());
VM_PAGE_CHECK(mem);
if (mem->wire_count == 0) {
VM_PAGE_QUEUES_REMOVE(mem);
if (!mem->private && !mem->fictitious)
vm_page_wire_count++;
}
mem->wire_count++;
}
/*
* vm_page_unwire:
*
* Release one wiring of this page, potentially
* enabling it to be paged again.
*
* The page's object and the page queues must be locked.
*/
void vm_page_unwire(
vm_page_t mem)
{
assert(have_vm_object_lock(mem->object));
assert(have_vm_page_queue_lock());
VM_PAGE_CHECK(mem);
if (--mem->wire_count == 0) {
queue_enter(&vm_page_queue_active, mem, vm_page_t, pageq);
vm_page_active_count++;
mem->active = TRUE;
if (!mem->private && !mem->fictitious)
vm_page_wire_count--;
}
}
/*
* vm_page_deactivate:
*
* Returns the given page to the inactive list,
* indicating that no physical maps have access
* to this page. [Used by the physical mapping system.]
*
* The page queues must be locked.
*/
void vm_page_deactivate(
vm_page_t m)
{
assert(have_vm_page_queue_lock());
VM_PAGE_CHECK(m);
/*
* This page is no longer very interesting. If it was
* interesting (active or inactive/referenced), then we
* clear the reference bit and (re)enter it in the
* inactive queue. Note wired pages should not have
* their reference bit cleared.
*/
if (m->active || (m->inactive && m->reference)) {
if (!m->fictitious && !m->absent)
pmap_clear_reference(m->phys_addr);
m->reference = FALSE;
VM_PAGE_QUEUES_REMOVE(m);
}
if (m->wire_count == 0 && !m->inactive) {
queue_enter(&vm_page_queue_inactive, m, vm_page_t, pageq);
m->inactive = TRUE;
vm_page_inactive_count++;
}
}
/*
* vm_page_activate:
*
* Put the specified page on the active list (if appropriate).
*
* The page queues must be locked.
*/
void vm_page_activate(
vm_page_t m)
{
assert(have_vm_page_queue_lock());
VM_PAGE_CHECK(m);
if (m->inactive) {
queue_remove(&vm_page_queue_inactive, m, vm_page_t,
pageq);
vm_page_inactive_count--;
m->inactive = FALSE;
}
if (m->wire_count == 0) {
if (m->active)
panic("vm_page_activate: already active");
queue_enter(&vm_page_queue_active, m, vm_page_t, pageq);
m->active = TRUE;
vm_page_active_count++;
}
}
/*
* vm_page_zero_fill:
*
* Zero-fill the specified page.
*/
void vm_page_zero_fill(
vm_page_t m)
{
VM_PAGE_CHECK(m);
pmap_zero_page(m->phys_addr);
}
/*
* vm_page_copy:
*
* Copy one page to another
*/
void vm_page_copy(
vm_page_t src_m,
vm_page_t dest_m)
{
VM_PAGE_CHECK(src_m);
VM_PAGE_CHECK(dest_m);
pmap_copy_page(src_m->phys_addr, dest_m->phys_addr);
}
#if MACH_KDB
#define printf kdbprintf
/*
* Routine: vm_page_print [exported]
*/
void vm_page_print(p)
const vm_page_t p;
{
iprintf("Page 0x%X: object 0x%X,", (vm_offset_t) p, (vm_offset_t) p->object);
printf(" offset 0x%X", p->offset);
printf("wire_count %d,", p->wire_count);
printf(" %s",
(p->active ? "active" : (p->inactive ? "inactive" : "loose")));
printf("%s ",
(p->laundry ? " laundry" : ""));
printf("%s",
(p->dirty ? "dirty" : "clean"));
printf("%s",
(p->busy ? " busy" : ""));
printf("%s",
(p->absent ? " absent" : ""));
printf("%s",
(p->error ? " error" : ""));
printf("%s",
(p->fictitious ? " fictitious" : ""));
printf("%s",
(p->private ? " private" : ""));
printf("%s",
(p->wanted ? " wanted" : ""));
printf("%s,",
(p->tabled ? "" : "not_tabled"));
printf("phys_addr = 0x%X, lock = 0x%X, unlock_request = 0x%X\n",
p->phys_addr,
(vm_offset_t) p->page_lock,
(vm_offset_t) p->unlock_request);
}
#endif /* MACH_KDB */
|