summaryrefslogtreecommitdiff
path: root/vm/memory_object.c
blob: 404ae73cb09d4053363d0d3c8e6874a300fb6ef7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
/*
 * Mach Operating System
 * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University.
 * Copyright (c) 1993,1994 The University of Utah and
 * the Computer Systems Laboratory (CSL).
 * All rights reserved.
 *
 * Permission to use, copy, modify and distribute this software and its
 * documentation is hereby granted, provided that both the copyright
 * notice and this permission notice appear in all copies of the
 * software, derivative works or modified versions, and any portions
 * thereof, and that both notices appear in supporting documentation.
 *
 * CARNEGIE MELLON, THE UNIVERSITY OF UTAH AND CSL ALLOW FREE USE OF
 * THIS SOFTWARE IN ITS "AS IS" CONDITION, AND DISCLAIM ANY LIABILITY
 * OF ANY KIND FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF
 * THIS SOFTWARE.
 *
 * Carnegie Mellon requests users of this software to return to
 *
 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
 *  School of Computer Science
 *  Carnegie Mellon University
 *  Pittsburgh PA 15213-3890
 *
 * any improvements or extensions that they make and grant Carnegie Mellon
 * the rights to redistribute these changes.
 */
/*
 *	File:	vm/memory_object.c
 *	Author:	Michael Wayne Young
 *
 *	External memory management interface control functions.
 */

/*
 *	Interface dependencies:
 */

#include <mach/std_types.h>	/* For pointer_t */
#include <mach/mach_types.h>

#include <mach/kern_return.h>
#include <vm/vm_map.h>
#include <vm/vm_object.h>
#include <mach/memory_object.h>
#include <mach/boolean.h>
#include <mach/vm_prot.h>
#include <mach/message.h>

#include <vm/memory_object_user.user.h>
#include <vm/memory_object_default.user.h>

/*
 *	Implementation dependencies:
 */
#include <vm/memory_object.h>
#include <vm/vm_page.h>
#include <vm/vm_pageout.h>
#include <vm/pmap.h>		/* For copy_to_phys, pmap_clear_modify */
#include <kern/debug.h>		/* For panic() */
#include <kern/thread.h>		/* For current_thread() */
#include <kern/host.h>
#include <vm/vm_kern.h>		/* For kernel_map, vm_move */
#include <vm/vm_map.h>		/* For vm_map_pageable */
#include <ipc/ipc_port.h>

#if	MACH_PAGEMAP
#include <vm/vm_external.h>
#endif	/* MACH_PAGEMAP */

typedef	int		memory_object_lock_result_t; /* moved from below */


ipc_port_t	memory_manager_default = IP_NULL;
decl_simple_lock_data(,memory_manager_default_lock)

/*
 *	Important note:
 *		All of these routines gain a reference to the
 *		object (first argument) as part of the automatic
 *		argument conversion. Explicit deallocation is necessary.
 */

kern_return_t memory_object_data_supply(object, offset, data_copy, data_cnt,
	lock_value, precious, reply_to, reply_to_type)
        vm_object_t		object;
	vm_offset_t		offset;
	vm_map_copy_t		data_copy;
	unsigned int		data_cnt;
	vm_prot_t		lock_value;
	boolean_t		precious;
	ipc_port_t		reply_to;
	mach_msg_type_name_t	reply_to_type;
{
	kern_return_t	result = KERN_SUCCESS;
	vm_offset_t	error_offset = 0;
	vm_page_t	m;
	vm_page_t	data_m;
	vm_size_t	original_length;
	vm_offset_t	original_offset;
	vm_page_t	*page_list;
	boolean_t	was_absent;
	vm_map_copy_t	orig_copy = data_copy;

	/*
	 *	Look for bogus arguments
	 */

	if (object == VM_OBJECT_NULL) {
		return(KERN_INVALID_ARGUMENT);
	}

	if (lock_value & ~VM_PROT_ALL) {
		vm_object_deallocate(object);
		return(KERN_INVALID_ARGUMENT);
	}

	if ((data_cnt % PAGE_SIZE) != 0) {
	    vm_object_deallocate(object);
	    return(KERN_INVALID_ARGUMENT);
	}

	/*
	 *	Adjust the offset from the memory object to the offset
	 *	within the vm_object.
	 */

	original_length = data_cnt;
	original_offset = offset;

	assert(data_copy->type == VM_MAP_COPY_PAGE_LIST);
	page_list = &data_copy->cpy_page_list[0];

	vm_object_lock(object);
	vm_object_paging_begin(object);
	offset -= object->paging_offset;

	/*
	 *	Loop over copy stealing pages for pagein.
	 */

	for (; data_cnt > 0 ; data_cnt -= PAGE_SIZE, offset += PAGE_SIZE) {

		assert(data_copy->cpy_npages > 0);
		data_m = *page_list;

		if (data_m == VM_PAGE_NULL || data_m->tabled ||
		    data_m->error || data_m->absent || data_m->fictitious) {

			panic("Data_supply: bad page");
		      }

		/*
		 *	Look up target page and check its state.
		 */

retry_lookup:
		m = vm_page_lookup(object,offset);
		if (m == VM_PAGE_NULL) {
		    was_absent = FALSE;
		}
		else {
		    if (m->absent && m->busy) {

			/*
			 *	Page was requested.  Free the busy
			 *	page waiting for it.  Insertion
			 *	of new page happens below.
			 */

			VM_PAGE_FREE(m);
			was_absent = TRUE;
		    }
		    else {

			/*
			 *	Have to wait for page that is busy and
			 *	not absent.  This is probably going to
			 *	be an error, but go back and check.
			 */
			if (m->busy) {
				PAGE_ASSERT_WAIT(m, FALSE);
				vm_object_unlock(object);
				thread_block((void (*)()) 0);
				vm_object_lock(object);
				goto retry_lookup;
			}

			/*
			 *	Page already present; error.
			 *	This is an error if data is precious.
			 */
			result = KERN_MEMORY_PRESENT;
			error_offset = offset + object->paging_offset;

			break;
		    }
		}

		/*
		 *	Ok to pagein page.  Target object now has no page
		 *	at offset.  Set the page parameters, then drop
		 *	in new page and set up pageout state.  Object is
		 *	still locked here.
		 *
		 *	Must clear busy bit in page before inserting it.
		 *	Ok to skip wakeup logic because nobody else
		 *	can possibly know about this page.
		 */

		data_m->busy = FALSE;
		data_m->dirty = FALSE;
		pmap_clear_modify(data_m->phys_addr);

		data_m->page_lock = lock_value;
		data_m->unlock_request = VM_PROT_NONE;
		data_m->precious = precious;

		vm_page_lock_queues();
		vm_page_insert(data_m, object, offset);

		if (was_absent)
			vm_page_activate(data_m);
		else
			vm_page_deactivate(data_m);

		vm_page_unlock_queues();

		/*
		 *	Null out this page list entry, and advance to next
		 *	page.
		 */

		*page_list++ = VM_PAGE_NULL;

		if (--(data_copy->cpy_npages) == 0 &&
		    vm_map_copy_has_cont(data_copy)) {
			vm_map_copy_t	new_copy;

			vm_object_unlock(object);

			vm_map_copy_invoke_cont(data_copy, &new_copy, &result);

			if (result == KERN_SUCCESS) {

			    /*
			     *	Consume on success requires that
			     *	we keep the original vm_map_copy
			     *	around in case something fails.
			     *	Free the old copy if it's not the original
			     */
			    if (data_copy != orig_copy) {
				vm_map_copy_discard(data_copy);
			    }

			    if ((data_copy = new_copy) != VM_MAP_COPY_NULL)
				page_list = &data_copy->cpy_page_list[0];

			    vm_object_lock(object);
			}
			else {
			    vm_object_lock(object);
			    error_offset = offset + object->paging_offset +
						PAGE_SIZE;
			    break;
			}
		}
	}

	/*
	 *	Send reply if one was requested.
	 */
	vm_object_paging_end(object);
	vm_object_unlock(object);

	if (vm_map_copy_has_cont(data_copy))
		vm_map_copy_abort_cont(data_copy);

	if (IP_VALID(reply_to)) {
		memory_object_supply_completed(
				reply_to, reply_to_type,
				object->pager_request,
				original_offset,
				original_length,
				result,
				error_offset);
	}

	vm_object_deallocate(object);

	/*
	 *	Consume on success:  The final data copy must be
	 *	be discarded if it is not the original.  The original
	 *	gets discarded only if this routine succeeds.
	 */
	if (data_copy != orig_copy)
		vm_map_copy_discard(data_copy);
	if (result == KERN_SUCCESS)
		vm_map_copy_discard(orig_copy);


	return(result);
}


/*
 *	If successful, destroys the map copy object.
 */
kern_return_t memory_object_data_provided(object, offset, data, data_cnt,
					  lock_value)
	vm_object_t	object;
	vm_offset_t	offset;
	pointer_t	data;
	unsigned int	data_cnt;
	vm_prot_t	lock_value;
{
        return memory_object_data_supply(object, offset, (vm_map_copy_t) data,
					 data_cnt, lock_value, FALSE, IP_NULL,
					 0);
}


kern_return_t memory_object_data_error(object, offset, size, error_value)
	vm_object_t	object;
	vm_offset_t	offset;
	vm_size_t	size;
	kern_return_t	error_value;
{
	if (object == VM_OBJECT_NULL)
		return(KERN_INVALID_ARGUMENT);

	if (size != round_page(size))
		return(KERN_INVALID_ARGUMENT);

	vm_object_lock(object);
	offset -= object->paging_offset;

	while (size != 0) {
		vm_page_t m;

		m = vm_page_lookup(object, offset);
		if ((m != VM_PAGE_NULL) && m->busy && m->absent) {
			m->error = TRUE;
			m->absent = FALSE;
			vm_object_absent_release(object);

			PAGE_WAKEUP_DONE(m);

			vm_page_lock_queues();
			vm_page_activate(m);
			vm_page_unlock_queues();
		}

		size -= PAGE_SIZE;
		offset += PAGE_SIZE;
	 }
	vm_object_unlock(object);

	vm_object_deallocate(object);
	return(KERN_SUCCESS);
}

kern_return_t memory_object_data_unavailable(object, offset, size)
	vm_object_t	object;
	vm_offset_t	offset;
	vm_size_t	size;
{
#if	MACH_PAGEMAP
	vm_external_t	existence_info = VM_EXTERNAL_NULL;
#endif	/* MACH_PAGEMAP */

	if (object == VM_OBJECT_NULL)
		return(KERN_INVALID_ARGUMENT);

	if (size != round_page(size))
		return(KERN_INVALID_ARGUMENT);

#if	MACH_PAGEMAP
	if ((offset == 0) && (size > VM_EXTERNAL_LARGE_SIZE) &&
	    (object->existence_info == VM_EXTERNAL_NULL)) {
		existence_info = vm_external_create(VM_EXTERNAL_SMALL_SIZE);
	}
#endif	/* MACH_PAGEMAP */

	vm_object_lock(object);
#if	MACH_PAGEMAP
 	if (existence_info != VM_EXTERNAL_NULL) {
		object->existence_info = existence_info;
	}
	if ((offset == 0) && (size > VM_EXTERNAL_LARGE_SIZE)) {
		vm_object_unlock(object);
		vm_object_deallocate(object);
		return(KERN_SUCCESS);
	}
#endif	/* MACH_PAGEMAP */
	offset -= object->paging_offset;

	while (size != 0) {
		vm_page_t m;

		/*
		 *	We're looking for pages that are both busy and
		 *	absent (waiting to be filled), converting them
		 *	to just absent.
		 *
		 *	Pages that are just busy can be ignored entirely.
		 */

		m = vm_page_lookup(object, offset);
		if ((m != VM_PAGE_NULL) && m->busy && m->absent) {
			PAGE_WAKEUP_DONE(m);

			vm_page_lock_queues();
			vm_page_activate(m);
			vm_page_unlock_queues();
		}
		size -= PAGE_SIZE;
		offset += PAGE_SIZE;
	}

	vm_object_unlock(object);

	vm_object_deallocate(object);
	return(KERN_SUCCESS);
}

/*
 *	Routine:	memory_object_lock_page
 *
 *	Description:
 *		Perform the appropriate lock operations on the
 *		given page.  See the description of
 *		"memory_object_lock_request" for the meanings
 *		of the arguments.
 *
 *		Returns an indication that the operation
 *		completed, blocked, or that the page must
 *		be cleaned.
 */

#define	MEMORY_OBJECT_LOCK_RESULT_DONE		0
#define	MEMORY_OBJECT_LOCK_RESULT_MUST_BLOCK	1
#define	MEMORY_OBJECT_LOCK_RESULT_MUST_CLEAN	2
#define	MEMORY_OBJECT_LOCK_RESULT_MUST_RETURN	3

memory_object_lock_result_t memory_object_lock_page(m, should_return,
				should_flush, prot)
	vm_page_t		m;
	memory_object_return_t	should_return;
	boolean_t		should_flush;
	vm_prot_t		prot;
{
	/*
	 *	Don't worry about pages for which the kernel
	 *	does not have any data.
	 */

	if (m->absent)
		return(MEMORY_OBJECT_LOCK_RESULT_DONE);

	/*
	 *	If we cannot change access to the page,
	 *	either because a mapping is in progress
	 *	(busy page) or because a mapping has been
	 *	wired, then give up.
	 */

	if (m->busy)
		return(MEMORY_OBJECT_LOCK_RESULT_MUST_BLOCK);

	assert(!m->fictitious);

	if (m->wire_count != 0) {
		/*
		 *	If no change would take place
		 *	anyway, return successfully.
		 *
		 *	No change means:
		 *		Not flushing AND
		 *		No change to page lock [2 checks]  AND
		 *		Don't need to send page to manager
		 *
		 *	Don't need to send page to manager means:
		 *		No clean or return request OR (
		 *		    Page is not dirty [2 checks] AND (
		 *		        Page is not precious OR
		 *			No request to return precious pages ))
		 *
		 *	Now isn't that straightforward and obvious ?? ;-)
		 *
		 * XXX	This doesn't handle sending a copy of a wired
		 * XXX	page to the pager, but that will require some
		 * XXX	significant surgery.
		 */

		if (!should_flush &&
		    ((m->page_lock == prot) || (prot == VM_PROT_NO_CHANGE)) &&
		    ((should_return == MEMORY_OBJECT_RETURN_NONE) ||
		     (!m->dirty && !pmap_is_modified(m->phys_addr) &&
		      (!m->precious ||
		       should_return != MEMORY_OBJECT_RETURN_ALL)))) {
			/*
			 *	Restart page unlock requests,
			 *	even though no change took place.
			 *	[Memory managers may be expecting
			 *	to see new requests.]
			 */
			m->unlock_request = VM_PROT_NONE;
			PAGE_WAKEUP(m);

			return(MEMORY_OBJECT_LOCK_RESULT_DONE);
		}

		return(MEMORY_OBJECT_LOCK_RESULT_MUST_BLOCK);
	}

	/*
	 *	If the page is to be flushed, allow
	 *	that to be done as part of the protection.
	 */

	if (should_flush)
		prot = VM_PROT_ALL;

	/*
	 *	Set the page lock.
	 *
	 *	If we are decreasing permission, do it now;
	 *	let the fault handler take care of increases
	 *	(pmap_page_protect may not increase protection).
	 */

	if (prot != VM_PROT_NO_CHANGE) {
		if ((m->page_lock ^ prot) & prot) {
			pmap_page_protect(m->phys_addr, VM_PROT_ALL & ~prot);
		}
		m->page_lock = prot;

		/*
		 *	Restart any past unlock requests, even if no
		 *	change resulted.  If the manager explicitly
		 *	requested no protection change, then it is assumed
		 *	to be remembering past requests.
		 */

		m->unlock_request = VM_PROT_NONE;
		PAGE_WAKEUP(m);
	}

	/*
	 *	Handle cleaning.
	 */

	if (should_return != MEMORY_OBJECT_RETURN_NONE) {
		/*
		 *	Check whether the page is dirty.  If
		 *	write permission has not been removed,
		 *	this may have unpredictable results.
		 */

		if (!m->dirty)
			m->dirty = pmap_is_modified(m->phys_addr);

		if (m->dirty || (m->precious &&
				 should_return == MEMORY_OBJECT_RETURN_ALL)) {
			/*
			 *	If we weren't planning
			 *	to flush the page anyway,
			 *	we may need to remove the
			 *	page from the pageout
			 *	system and from physical
			 *	maps now.
			 */

			vm_page_lock_queues();
			VM_PAGE_QUEUES_REMOVE(m);
			vm_page_unlock_queues();

			if (!should_flush)
				pmap_page_protect(m->phys_addr,
						VM_PROT_NONE);

			/*
			 *	Cleaning a page will cause
			 *	it to be flushed.
			 */

			if (m->dirty)
				return(MEMORY_OBJECT_LOCK_RESULT_MUST_CLEAN);
			else
				return(MEMORY_OBJECT_LOCK_RESULT_MUST_RETURN);
		}
	}

	/*
	 *	Handle flushing
	 */

	if (should_flush) {
		VM_PAGE_FREE(m);
	} else {
		extern boolean_t vm_page_deactivate_hint;

		/*
		 *	XXX Make clean but not flush a paging hint,
		 *	and deactivate the pages.  This is a hack
		 *	because it overloads flush/clean with
		 *	implementation-dependent meaning.  This only
		 *	happens to pages that are already clean.
		 */

		if (vm_page_deactivate_hint &&
		    (should_return != MEMORY_OBJECT_RETURN_NONE)) {
			vm_page_lock_queues();
			vm_page_deactivate(m);
			vm_page_unlock_queues();
		}
	}

	return(MEMORY_OBJECT_LOCK_RESULT_DONE);
}

/*
 *	Routine:	memory_object_lock_request [user interface]
 *
 *	Description:
 *		Control use of the data associated with the given
 *		memory object.  For each page in the given range,
 *		perform the following operations, in order:
 *			1)  restrict access to the page (disallow
 *			    forms specified by "prot");
 *			2)  return data to the manager (if "should_return"
 *			    is RETURN_DIRTY and the page is dirty, or
 * 			    "should_return" is RETURN_ALL and the page
 *			    is either dirty or precious); and,
 *			3)  flush the cached copy (if "should_flush"
 *			    is asserted).
 *		The set of pages is defined by a starting offset
 *		("offset") and size ("size").  Only pages with the
 *		same page alignment as the starting offset are
 *		considered.
 *
 *		A single acknowledgement is sent (to the "reply_to"
 *		port) when these actions are complete.  If successful,
 *		the naked send right for reply_to is consumed.
 */

kern_return_t
memory_object_lock_request(object, offset, size,
			should_return, should_flush, prot,
			reply_to, reply_to_type)
	vm_object_t		object;
	vm_offset_t		offset;
	vm_size_t		size;
	memory_object_return_t	should_return;
	boolean_t		should_flush;
	vm_prot_t		prot;
	ipc_port_t		reply_to;
	mach_msg_type_name_t	reply_to_type;
{
	vm_page_t		m;
	vm_offset_t		original_offset = offset;
	vm_size_t		original_size = size;
	vm_offset_t		paging_offset = 0;
	vm_object_t		new_object = VM_OBJECT_NULL;
	vm_offset_t		new_offset = 0;
	vm_offset_t		last_offset = offset;
	int			page_lock_result;
	int			pageout_action = 0; /* '=0' to quiet lint */

#define	DATA_WRITE_MAX	32
	vm_page_t		holding_pages[DATA_WRITE_MAX];

	/*
	 *	Check for bogus arguments.
	 */
	if (object == VM_OBJECT_NULL ||
		((prot & ~VM_PROT_ALL) != 0 && prot != VM_PROT_NO_CHANGE))
	    return (KERN_INVALID_ARGUMENT);

	size = round_page(size);

	/*
	 *	Lock the object, and acquire a paging reference to
	 *	prevent the memory_object and control ports from
	 *	being destroyed.
	 */

	vm_object_lock(object);
	vm_object_paging_begin(object);
	offset -= object->paging_offset;

	/*
	 *	To avoid blocking while scanning for pages, save
	 *	dirty pages to be cleaned all at once.
	 *
	 *	XXXO A similar strategy could be used to limit the
	 *	number of times that a scan must be restarted for
	 *	other reasons.  Those pages that would require blocking
	 *	could be temporarily collected in another list, or
	 *	their offsets could be recorded in a small array.
	 */

	/*
	 * XXX	NOTE: May want to consider converting this to a page list
	 * XXX	vm_map_copy interface.  Need to understand object
	 * XXX	coalescing implications before doing so.
	 */

#define	PAGEOUT_PAGES							\
MACRO_BEGIN								\
	vm_map_copy_t		copy;					\
	int			i;					\
	vm_page_t		hp;					\
									\
	vm_object_unlock(object);					\
									\
	(void) vm_map_copyin_object(new_object, 0, new_offset, &copy);	\
									\
	if (object->use_old_pageout) {					\
	    assert(pageout_action == MEMORY_OBJECT_LOCK_RESULT_MUST_CLEAN);  \
		(void) memory_object_data_write(			\
			object->pager,					\
			object->pager_request,				\
			paging_offset,					\
			(pointer_t) copy,				\
			new_offset);					\
	}								\
	else {								\
		(void) memory_object_data_return(			\
			object->pager,					\
			object->pager_request,				\
			paging_offset,					\
			(pointer_t) copy,				\
			new_offset,					\
	     (pageout_action == MEMORY_OBJECT_LOCK_RESULT_MUST_CLEAN),	\
			!should_flush);					\
	}								\
									\
	vm_object_lock(object);						\
									\
	for (i = 0; i < atop(new_offset); i++) {			\
	    hp = holding_pages[i];					\
	    if (hp != VM_PAGE_NULL)					\
		VM_PAGE_FREE(hp);					\
	}								\
									\
	new_object = VM_OBJECT_NULL;					\
MACRO_END

	for (;
	     size != 0;
	     size -= PAGE_SIZE, offset += PAGE_SIZE)
	{
	    /*
	     *	Limit the number of pages to be cleaned at once.
	     */
	    if (new_object != VM_OBJECT_NULL &&
		    new_offset >= PAGE_SIZE * DATA_WRITE_MAX)
	    {
		PAGEOUT_PAGES;
	    }

	    while ((m = vm_page_lookup(object, offset)) != VM_PAGE_NULL) {
		switch ((page_lock_result = memory_object_lock_page(m,
					should_return,
					should_flush,
					prot)))
		{
		    case MEMORY_OBJECT_LOCK_RESULT_DONE:
			/*
			 *	End of a cluster of dirty pages.
			 */
			if (new_object != VM_OBJECT_NULL) {
			    PAGEOUT_PAGES;
			    continue;
			}
			break;

		    case MEMORY_OBJECT_LOCK_RESULT_MUST_BLOCK:
			/*
			 *	Since it is necessary to block,
			 *	clean any dirty pages now.
			 */
			if (new_object != VM_OBJECT_NULL) {
			    PAGEOUT_PAGES;
			    continue;
			}

			PAGE_ASSERT_WAIT(m, FALSE);
			vm_object_unlock(object);
			thread_block((void (*)()) 0);
			vm_object_lock(object);
			continue;

		    case MEMORY_OBJECT_LOCK_RESULT_MUST_CLEAN:
		    case MEMORY_OBJECT_LOCK_RESULT_MUST_RETURN:
			/*
			 * The clean and return cases are similar.
			 *
			 * Mark the page busy since we unlock the
			 * object below.
			 */
			m->busy = TRUE;

			/*
			 * if this would form a discontiguous block,
			 * clean the old pages and start anew.
			 *
			 * NOTE: The first time through here, new_object
			 * is null, hiding the fact that pageout_action
			 * is not initialized.
			 */
			if (new_object != VM_OBJECT_NULL &&
			    (last_offset != offset ||
			     pageout_action != page_lock_result)) {
			        PAGEOUT_PAGES;
			}

			vm_object_unlock(object);

			/*
			 *	If we have not already allocated an object
			 *	for a range of pages to be written, do so
			 *	now.
			 */
			if (new_object == VM_OBJECT_NULL) {
			    new_object = vm_object_allocate(original_size);
			    new_offset = 0;
			    paging_offset = m->offset +
					object->paging_offset;
			    pageout_action = page_lock_result;
			}

			/*
			 *	Move or copy the dirty page into the
			 *	new object.
			 */
			m = vm_pageout_setup(m,
					m->offset + object->paging_offset,
					new_object,
					new_offset,
					should_flush);

			/*
			 *	Save the holding page if there is one.
			 */
			holding_pages[atop(new_offset)] = m;
			new_offset += PAGE_SIZE;
			last_offset = offset + PAGE_SIZE;

			vm_object_lock(object);
			break;
		}
		break;
	    }
	}

	/*
	 *	We have completed the scan for applicable pages.
	 *	Clean any pages that have been saved.
	 */
	if (new_object != VM_OBJECT_NULL) {
	    PAGEOUT_PAGES;
	}

	if (IP_VALID(reply_to)) {
		vm_object_unlock(object);

		/* consumes our naked send-once/send right for reply_to */
		(void) memory_object_lock_completed(reply_to, reply_to_type,
			object->pager_request, original_offset, original_size);

		vm_object_lock(object);
	}

	vm_object_paging_end(object);
	vm_object_unlock(object);
	vm_object_deallocate(object);

	return (KERN_SUCCESS);
}

kern_return_t
memory_object_set_attributes_common(object, object_ready, may_cache,
				    copy_strategy, use_old_pageout)
	vm_object_t	object;
	boolean_t	object_ready;
	boolean_t	may_cache;
	memory_object_copy_strategy_t copy_strategy;
	boolean_t use_old_pageout;
{
	if (object == VM_OBJECT_NULL)
		return(KERN_INVALID_ARGUMENT);

	/*
	 *	Verify the attributes of importance
	 */

	switch(copy_strategy) {
		case MEMORY_OBJECT_COPY_NONE:
		case MEMORY_OBJECT_COPY_CALL:
		case MEMORY_OBJECT_COPY_DELAY:
		case MEMORY_OBJECT_COPY_TEMPORARY:
			break;
		default:
			vm_object_deallocate(object);
			return(KERN_INVALID_ARGUMENT);
	}

	if (object_ready)
		object_ready = TRUE;
	if (may_cache)
		may_cache = TRUE;

	vm_object_lock(object);

	/*
	 *	Wake up anyone waiting for the ready attribute
	 *	to become asserted.
	 */

	if (object_ready && !object->pager_ready) {
		object->use_old_pageout = use_old_pageout;
		vm_object_wakeup(object, VM_OBJECT_EVENT_PAGER_READY);
	}

	/*
	 *	Copy the attributes
	 */

	object->can_persist = may_cache;
	object->pager_ready = object_ready;
	if (copy_strategy == MEMORY_OBJECT_COPY_TEMPORARY) {
		object->temporary = TRUE;
	} else {
		object->copy_strategy = copy_strategy;
	}

	vm_object_unlock(object);

	vm_object_deallocate(object);

	return(KERN_SUCCESS);
}

/*
 * XXX	rpd claims that reply_to could be obviated in favor of a client
 * XXX	stub that made change_attributes an RPC.  Need investigation.
 */

kern_return_t	memory_object_change_attributes(object, may_cache,
			copy_strategy, reply_to, reply_to_type)
	vm_object_t	object;
	boolean_t	may_cache;
	memory_object_copy_strategy_t copy_strategy;
	ipc_port_t		reply_to;
	mach_msg_type_name_t	reply_to_type;
{
	kern_return_t	result;

	/*
	 *	Do the work and throw away our object reference.  It
	 *	is important that the object reference be deallocated
	 *	BEFORE sending the reply.  The whole point of the reply
	 *	is that it shows up after the terminate message that
	 *	may be generated by setting the object uncacheable.
	 *
	 * XXX	may_cache may become a tri-valued variable to handle
	 * XXX	uncache if not in use.
	 */
	result = memory_object_set_attributes_common(object, TRUE,
						     may_cache, copy_strategy,
						     FALSE);

	if (IP_VALID(reply_to)) {

		/* consumes our naked send-once/send right for reply_to */
		(void) memory_object_change_completed(reply_to, reply_to_type,
			may_cache, copy_strategy);

	}

	return(result);
}

kern_return_t
memory_object_set_attributes(object, object_ready, may_cache, copy_strategy)
	vm_object_t	object;
	boolean_t	object_ready;
	boolean_t	may_cache;
	memory_object_copy_strategy_t copy_strategy;
{
	return memory_object_set_attributes_common(object, object_ready,
						   may_cache, copy_strategy,
						   TRUE);
}

kern_return_t	memory_object_ready(object, may_cache, copy_strategy)
	vm_object_t	object;
	boolean_t	may_cache;
	memory_object_copy_strategy_t copy_strategy;
{
	return memory_object_set_attributes_common(object, TRUE,
						   may_cache, copy_strategy,
						   FALSE);
}

kern_return_t	memory_object_get_attributes(object, object_ready,
						may_cache, copy_strategy)
	vm_object_t	object;
	boolean_t	*object_ready;
	boolean_t	*may_cache;
	memory_object_copy_strategy_t *copy_strategy;
{
	if (object == VM_OBJECT_NULL)
		return(KERN_INVALID_ARGUMENT);

	vm_object_lock(object);
	*may_cache = object->can_persist;
	*object_ready = object->pager_ready;
	*copy_strategy = object->copy_strategy;
	vm_object_unlock(object);

	vm_object_deallocate(object);

	return(KERN_SUCCESS);
}

/*
 *	If successful, consumes the supplied naked send right.
 */
kern_return_t	vm_set_default_memory_manager(host, default_manager)
	host_t		host;
	ipc_port_t	*default_manager;
{
	ipc_port_t current_manager;
	ipc_port_t new_manager;
	ipc_port_t returned_manager;

	if (host == HOST_NULL)
		return(KERN_INVALID_HOST);

	new_manager = *default_manager;
	simple_lock(&memory_manager_default_lock);
	current_manager = memory_manager_default;

	if (new_manager == IP_NULL) {
		/*
		 *	Retrieve the current value.
		 */

		returned_manager = ipc_port_copy_send(current_manager);
	} else {
		/*
		 *	Retrieve the current value,
		 *	and replace it with the supplied value.
		 *	We consume the supplied naked send right.
		 */

		returned_manager = current_manager;
		memory_manager_default = new_manager;

		/*
		 *	In case anyone's been waiting for a memory
		 *	manager to be established, wake them up.
		 */

		thread_wakeup((event_t) &memory_manager_default);
	}

	simple_unlock(&memory_manager_default_lock);

	*default_manager = returned_manager;
	return(KERN_SUCCESS);
}

/*
 *	Routine:	memory_manager_default_reference
 *	Purpose:
 *		Returns a naked send right for the default
 *		memory manager.  The returned right is always
 *		valid (not IP_NULL or IP_DEAD).
 */

ipc_port_t	memory_manager_default_reference(void)
{
	ipc_port_t current_manager;

	simple_lock(&memory_manager_default_lock);

	while (current_manager = ipc_port_copy_send(memory_manager_default),
	       !IP_VALID(current_manager)) {
		thread_sleep((event_t) &memory_manager_default,
			     simple_lock_addr(memory_manager_default_lock),
			     FALSE);
		simple_lock(&memory_manager_default_lock);
	}

	simple_unlock(&memory_manager_default_lock);

	return current_manager;
}

/*
 *	Routine:	memory_manager_default_port
 *	Purpose:
 *		Returns true if the receiver for the port
 *		is the default memory manager.
 *
 *		This is a hack to let ds_read_done
 *		know when it should keep memory wired.
 */

boolean_t	memory_manager_default_port(port)
	ipc_port_t port;
{
	ipc_port_t current;
	boolean_t result;

	simple_lock(&memory_manager_default_lock);
	current = memory_manager_default;
	if (IP_VALID(current)) {
		/*
		 *	There is no point in bothering to lock
		 *	both ports, which would be painful to do.
		 *	If the receive rights are moving around,
		 *	we might be inaccurate.
		 */

		result = port->ip_receiver == current->ip_receiver;
	} else
		result = FALSE;
	simple_unlock(&memory_manager_default_lock);

	return result;
}

void		memory_manager_default_init(void)
{
	memory_manager_default = IP_NULL;
	simple_lock_init(&memory_manager_default_lock);
}