1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
|
/* tulip.c: A DEC 21040 family ethernet driver for Linux. */
/*
Written/copyright 1994-2003 by Donald Becker.
This software may be used and distributed according to the terms of
the GNU General Public License (GPL), incorporated herein by reference.
Drivers based on or derived from this code fall under the GPL and must
retain the authorship, copyright and license notice. This file is not
a complete program and may only be used when the entire operating
system is licensed under the GPL.
This driver is for the Digital "Tulip" Ethernet adapter interface.
It should work with most DEC 21*4*-based chips/ethercards, as well as
with work-alike chips from Lite-On (PNIC) and Macronix (MXIC) and ASIX.
The author may be reached as becker@scyld.com, or C/O
Scyld Computing Corporation
914 Bay Ridge Road, Suite 220
Annapolis MD 21403
Support and updates available at
http://www.scyld.com/network/tulip.html
*/
/* These identify the driver base version and may not be removed. */
static const char version1[] =
"tulip.c:v0.97 7/22/2003 Written by Donald Becker <becker@scyld.com>\n";
static const char version2[] =
" http://www.scyld.com/network/tulip.html\n";
#define SMP_CHECK
/* The user-configurable values.
These may be modified when a driver module is loaded.*/
static int debug = 2; /* Message enable: 0..31 = no..all messages. */
/* Maximum events (Rx packets, etc.) to handle at each interrupt. */
static int max_interrupt_work = 25;
#define MAX_UNITS 8
/* Used to pass the full-duplex flag, etc. */
static int full_duplex[MAX_UNITS] = {0, };
static int options[MAX_UNITS] = {0, };
static int mtu[MAX_UNITS] = {0, }; /* Jumbo MTU for interfaces. */
/* The possible media types that can be set in options[] are: */
#define MEDIA_MASK 31
static const char * const medianame[32] = {
"10baseT", "10base2", "AUI", "100baseTx",
"10baseT-FDX", "100baseTx-FDX", "100baseT4", "100baseFx",
"100baseFx-FDX", "MII 10baseT", "MII 10baseT-FDX", "MII",
"10baseT(forced)", "MII 100baseTx", "MII 100baseTx-FDX", "MII 100baseT4",
"MII 100baseFx-HDX", "MII 100baseFx-FDX", "Home-PNA 1Mbps", "Invalid-19",
"","","","", "","","","", "","","","Transceiver reset",
};
/* Set if the PCI BIOS detects the chips on a multiport board backwards. */
#ifdef REVERSE_PROBE_ORDER
static int reverse_probe = 1;
#else
static int reverse_probe = 0;
#endif
/* Set the copy breakpoint for the copy-only-tiny-buffer Rx structure. */
#ifdef __alpha__ /* Always copy to aligned IP headers. */
static int rx_copybreak = 1518;
#else
static int rx_copybreak = 100;
#endif
/*
Set the bus performance register.
Typical: Set 16 longword cache alignment, no burst limit.
Cache alignment bits 15:14 Burst length 13:8
0000 No alignment 0x00000000 unlimited 0800 8 longwords
4000 8 longwords 0100 1 longword 1000 16 longwords
8000 16 longwords 0200 2 longwords 2000 32 longwords
C000 32 longwords 0400 4 longwords
Warning: many older 486 systems are broken and require setting 0x00A04800
8 longword cache alignment, 8 longword burst.
ToDo: Non-Intel setting could be better.
*/
#if defined(__alpha__) || defined(__x86_64) || defined(__ia64)
static int csr0 = 0x01A00000 | 0xE000;
#elif defined(__i386__) || defined(__powerpc__) || defined(__sparc__)
/* Do *not* rely on hardware endian correction for big-endian machines! */
static int csr0 = 0x01A00000 | 0x8000;
#else
#warning Processor architecture undefined!
static int csr0 = 0x00A00000 | 0x4800;
#endif
/* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
Typical is a 64 element hash table based on the Ethernet CRC.
This value does not apply to the 512 bit table chips.
*/
static int multicast_filter_limit = 32;
/* Operational parameters that are set at compile time. */
/* Keep the descriptor ring sizes a power of two for efficiency.
The Tx queue length limits transmit packets to a portion of the available
ring entries. It should be at least one element less to allow multicast
filter setup frames to be queued. It must be at least four for hysteresis.
Making the Tx queue too long decreases the effectiveness of channel
bonding and packet priority.
Large receive rings waste memory and confound network buffer limits.
These values have been carefully studied: changing these might mask a
problem, it won't fix it.
*/
#define TX_RING_SIZE 16
#define TX_QUEUE_LEN 10
#define RX_RING_SIZE 32
/* Operational parameters that usually are not changed. */
/* Time in jiffies before concluding the transmitter is hung. */
#define TX_TIMEOUT (6*HZ)
/* Preferred skbuff allocation size. */
#define PKT_BUF_SZ 1536
/* This is a mysterious value that can be written to CSR11 in the 21040 (only)
to support a pre-NWay full-duplex signaling mechanism using short frames.
No one knows what it should be, but if left at its default value some
10base2(!) packets trigger a full-duplex-request interrupt. */
#define FULL_DUPLEX_MAGIC 0x6969
/* The include file section. We start by doing checks and fix-ups for
missing compile flags. */
#ifndef __KERNEL__
#define __KERNEL__
#endif
#if !defined(__OPTIMIZE__)
#warning You must compile this file with the correct options!
#warning See the last lines of the source file.
#error You must compile this driver with "-O".
#endif
#include <linux/config.h>
#if defined(CONFIG_SMP) && ! defined(__SMP__)
#define __SMP__
#endif
#if defined(CONFIG_MODVERSIONS) && defined(MODULE) && ! defined(MODVERSIONS)
#define MODVERSIONS
#endif
#include <linux/version.h>
#if defined(MODVERSIONS)
#include <linux/modversions.h>
#endif
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/timer.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#if LINUX_VERSION_CODE >= 0x20400
#include <linux/slab.h>
#else
#include <linux/malloc.h>
#endif
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <asm/processor.h> /* Processor type for cache alignment. */
#include <asm/bitops.h>
#include <asm/io.h>
#include <asm/unaligned.h>
#ifdef INLINE_PCISCAN
#include "k_compat.h"
#else
#include "pci-scan.h"
#include "kern_compat.h"
#endif
/* Condensed operations for readability. */
#define virt_to_le32desc(addr) cpu_to_le32(virt_to_bus(addr))
#if (LINUX_VERSION_CODE >= 0x20100) && defined(MODULE)
char kernel_version[] = UTS_RELEASE;
#endif
MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
MODULE_DESCRIPTION("Digital 21*4* Tulip ethernet driver");
MODULE_LICENSE("GPL");
MODULE_PARM(debug, "i");
MODULE_PARM(max_interrupt_work, "i");
MODULE_PARM(reverse_probe, "i");
MODULE_PARM(rx_copybreak, "i");
MODULE_PARM(csr0, "i");
MODULE_PARM(options, "1-" __MODULE_STRING(MAX_UNITS) "i");
MODULE_PARM(full_duplex, "1-" __MODULE_STRING(MAX_UNITS) "i");
MODULE_PARM(multicast_filter_limit, "i");
#ifdef MODULE_PARM_DESC
MODULE_PARM_DESC(debug, "Tulip driver message level (0-31)");
MODULE_PARM_DESC(options,
"Tulip: force transceiver type or fixed speed+duplex");
MODULE_PARM_DESC(max_interrupt_work,
"Tulip driver maximum events handled per interrupt");
MODULE_PARM_DESC(full_duplex, "Tulip: non-zero to set forced full duplex.");
MODULE_PARM_DESC(rx_copybreak,
"Tulip breakpoint in bytes for copy-only-tiny-frames");
MODULE_PARM_DESC(multicast_filter_limit,
"Tulip breakpoint for switching to Rx-all-multicast");
MODULE_PARM_DESC(reverse_probe, "Search PCI devices in reverse order to work "
"around misordered multiport NICS.");
MODULE_PARM_DESC(csr0, "Special setting for the CSR0 PCI bus parameter "
"register.");
#endif
/* This driver was originally written to use I/O space access, but now
uses memory space by default. Override this this with -DUSE_IO_OPS. */
#if (LINUX_VERSION_CODE < 0x20100) || ! defined(MODULE)
#define USE_IO_OPS
#endif
#ifndef USE_IO_OPS
#undef inb
#undef inw
#undef inl
#undef outb
#undef outw
#undef outl
#define inb readb
#define inw readw
#define inl readl
#define outb writeb
#define outw writew
#define outl writel
#endif
/*
Theory of Operation
I. Board Compatibility
This device driver is designed for the DECchip "Tulip", Digital's
single-chip ethernet controllers for PCI. Supported members of the family
are the 21040, 21041, 21140, 21140A, 21142, and 21143. Similar work-alike
chips from Lite-On, Macronics, ASIX, Compex and other listed below are also
supported.
These chips are used on at least 140 unique PCI board designs. The great
number of chips and board designs supported is the reason for the
driver size and complexity. Almost of the increasing complexity is in the
board configuration and media selection code. There is very little
increasing in the operational critical path length.
II. Board-specific settings
PCI bus devices are configured by the system at boot time, so no jumpers
need to be set on the board. The system BIOS preferably should assign the
PCI INTA signal to an otherwise unused system IRQ line.
Some boards have EEPROMs tables with default media entry. The factory default
is usually "autoselect". This should only be overridden when using
transceiver connections without link beat e.g. 10base2 or AUI, or (rarely!)
for forcing full-duplex when used with old link partners that do not do
autonegotiation.
III. Driver operation
IIIa. Ring buffers
The Tulip can use either ring buffers or lists of Tx and Rx descriptors.
This driver uses statically allocated rings of Rx and Tx descriptors, set at
compile time by RX/TX_RING_SIZE. This version of the driver allocates skbuffs
for the Rx ring buffers at open() time and passes the skb->data field to the
Tulip as receive data buffers. When an incoming frame is less than
RX_COPYBREAK bytes long, a fresh skbuff is allocated and the frame is
copied to the new skbuff. When the incoming frame is larger, the skbuff is
passed directly up the protocol stack and replaced by a newly allocated
skbuff.
The RX_COPYBREAK value is chosen to trade-off the memory wasted by
using a full-sized skbuff for small frames vs. the copying costs of larger
frames. For small frames the copying cost is negligible (esp. considering
that we are pre-loading the cache with immediately useful header
information). For large frames the copying cost is non-trivial, and the
larger copy might flush the cache of useful data. A subtle aspect of this
choice is that the Tulip only receives into longword aligned buffers, thus
the IP header at offset 14 is not longword aligned for further processing.
Copied frames are put into the new skbuff at an offset of "+2", thus copying
has the beneficial effect of aligning the IP header and preloading the
cache.
IIIC. Synchronization
The driver runs as two independent, single-threaded flows of control. One
is the send-packet routine, which enforces single-threaded use by the
dev->tbusy flag. The other thread is the interrupt handler, which is single
threaded by the hardware and other software.
The send packet thread has partial control over the Tx ring and 'dev->tbusy'
flag. It sets the tbusy flag whenever it is queuing a Tx packet. If the next
queue slot is empty, it clears the tbusy flag when finished otherwise it sets
the 'tp->tx_full' flag.
The interrupt handler has exclusive control over the Rx ring and records stats
from the Tx ring. (The Tx-done interrupt can not be selectively turned off, so
we cannot avoid the interrupt overhead by having the Tx routine reap the Tx
stats.) After reaping the stats, it marks the queue entry as empty by setting
the 'base' to zero. Iff the 'tp->tx_full' flag is set, it clears both the
tx_full and tbusy flags.
IV. Notes
Thanks to Duke Kamstra of SMC for long ago providing an EtherPower board.
Greg LaPolla at Linksys provided PNIC and other Linksys boards.
Znyx provided a four-port card for testing.
IVb. References
http://scyld.com/expert/NWay.html
http://www.digital.com (search for current 21*4* datasheets and "21X4 SROM")
http://www.national.com/pf/DP/DP83840A.html
http://www.asix.com.tw/pmac.htm
http://www.admtek.com.tw/
IVc. Errata
The old DEC databooks were light on details.
The 21040 databook claims that CSR13, CSR14, and CSR15 should each be the last
register of the set CSR12-15 written. Hmmm, now how is that possible?
The DEC SROM format is very badly designed not precisely defined, leading to
part of the media selection junkheap below. Some boards do not have EEPROM
media tables and need to be patched up. Worse, other boards use the DEC
design kit media table when it is not correct for their design.
We cannot use MII interrupts because there is no defined GPIO pin to attach
them. The MII transceiver status is polled using an kernel timer.
*/
static void *tulip_probe1(struct pci_dev *pdev, void *init_dev,
long ioaddr, int irq, int chip_idx, int find_cnt);
static int tulip_pwr_event(void *dev_instance, int event);
#ifdef USE_IO_OPS
#define TULIP_IOTYPE PCI_USES_MASTER | PCI_USES_IO | PCI_ADDR0
#define TULIP_SIZE 0x80
#define TULIP_SIZE1 0x100
#else
#define TULIP_IOTYPE PCI_USES_MASTER | PCI_USES_MEM | PCI_ADDR1
#define TULIP_SIZE 0x400 /* New PCI v2.1 recommends 4K min mem size. */
#define TULIP_SIZE1 0x400 /* New PCI v2.1 recommends 4K min mem size. */
#endif
/* This much match tulip_tbl[]! Note 21142 == 21143. */
enum tulip_chips {
DC21040=0, DC21041=1, DC21140=2, DC21142=3, DC21143=3,
LC82C168, MX98713, MX98715, MX98725, AX88141, AX88140, PNIC2, COMET,
COMPEX9881, I21145, XIRCOM, CONEXANT,
/* These flags may be added to the chip type. */
HAS_VLAN=0x100,
};
static struct pci_id_info pci_id_tbl[] = {
{ "Digital DC21040 Tulip", { 0x00021011, 0xffffffff },
TULIP_IOTYPE, 0x80, DC21040 },
{ "Digital DC21041 Tulip", { 0x00141011, 0xffffffff },
TULIP_IOTYPE, 0x80, DC21041 },
{ "Digital DS21140A Tulip", { 0x00091011, 0xffffffff, 0,0, 0x20,0xf0 },
TULIP_IOTYPE, 0x80, DC21140 },
{ "Digital DS21140 Tulip", { 0x00091011, 0xffffffff },
TULIP_IOTYPE, 0x80, DC21140 },
{ "Digital DS21143-xD Tulip", { 0x00191011, 0xffffffff, 0,0, 0x40,0xf0 },
TULIP_IOTYPE, TULIP_SIZE, DC21142 | HAS_VLAN },
{ "Digital DS21143-xC Tulip", { 0x00191011, 0xffffffff, 0,0, 0x30,0xf0 },
TULIP_IOTYPE, TULIP_SIZE, DC21142 },
{ "Digital DS21142 Tulip", { 0x00191011, 0xffffffff },
TULIP_IOTYPE, TULIP_SIZE, DC21142 },
{ "Kingston KNE110tx (PNIC)",
{ 0x000211AD, 0xffffffff, 0xf0022646, 0xffffffff },
TULIP_IOTYPE, 256, LC82C168 },
{ "Linksys LNE100TX (82c168 PNIC)", /* w/SYM */
{ 0x000211AD, 0xffffffff, 0xffff11ad, 0xffffffff, 17,0xff },
TULIP_IOTYPE, 256, LC82C168 },
{ "Linksys LNE100TX (82c169 PNIC)", /* w/ MII */
{ 0x000211AD, 0xffffffff, 0xf00311ad, 0xffffffff, 32,0xff },
TULIP_IOTYPE, 256, LC82C168 },
{ "Lite-On 82c168 PNIC", { 0x000211AD, 0xffffffff },
TULIP_IOTYPE, 256, LC82C168 },
{ "Macronix 98713 PMAC", { 0x051210d9, 0xffffffff },
TULIP_IOTYPE, 256, MX98713 },
{ "Macronix 98715 PMAC", { 0x053110d9, 0xffffffff },
TULIP_IOTYPE, 256, MX98715 },
{ "Macronix 98725 PMAC", { 0x053110d9, 0xffffffff },
TULIP_IOTYPE, 256, MX98725 },
{ "ASIX AX88141", { 0x1400125B, 0xffffffff, 0,0, 0x10, 0xf0 },
TULIP_IOTYPE, 128, AX88141 },
{ "ASIX AX88140", { 0x1400125B, 0xffffffff },
TULIP_IOTYPE, 128, AX88140 },
{ "Lite-On LC82C115 PNIC-II", { 0xc11511AD, 0xffffffff },
TULIP_IOTYPE, 256, PNIC2 },
{ "ADMtek AN981 Comet", { 0x09811317, 0xffffffff },
TULIP_IOTYPE, TULIP_SIZE1, COMET },
{ "ADMtek Centaur-P", { 0x09851317, 0xffffffff },
TULIP_IOTYPE, TULIP_SIZE1, COMET },
{ "ADMtek Centaur-C", { 0x19851317, 0xffffffff },
TULIP_IOTYPE, TULIP_SIZE1, COMET },
{ "D-Link DFE-680TXD v1.0 (ADMtek Centaur-C)", { 0x15411186, 0xffffffff },
TULIP_IOTYPE, TULIP_SIZE1, COMET },
{ "ADMtek Centaur-C (Linksys v2)", { 0xab0213d1, 0xffffffff },
TULIP_IOTYPE, TULIP_SIZE1, COMET },
{ "ADMtek Centaur-C (Linksys)", { 0xab0313d1, 0xffffffff },
TULIP_IOTYPE, TULIP_SIZE1, COMET },
{ "ADMtek Centaur-C (Linksys)", { 0xab0813d1, 0xffffffff },
TULIP_IOTYPE, TULIP_SIZE1, COMET },
{ "ADMtek Centaur-C (Linksys PCM200 v3)", { 0xab081737, 0xffffffff },
TULIP_IOTYPE, TULIP_SIZE1, COMET },
{ "ADMtek Centaur-C (Linksys PCM200 v3)", { 0xab091737, 0xffffffff },
TULIP_IOTYPE, TULIP_SIZE1, COMET },
{ "STMicro STE10/100 Comet", { 0x0981104a, 0xffffffff },
TULIP_IOTYPE, TULIP_SIZE1, COMET },
{ "STMicro STE10/100A Comet", { 0x2774104a, 0xffffffff },
TULIP_IOTYPE, TULIP_SIZE1, COMET },
{ "ADMtek Comet-II", { 0x95111317, 0xffffffff },
TULIP_IOTYPE, TULIP_SIZE1, COMET },
{ "ADMtek Comet-II (9513)", { 0x95131317, 0xffffffff },
TULIP_IOTYPE, TULIP_SIZE1, COMET },
{ "SMC1255TX (ADMtek Comet)",
{ 0x12161113, 0xffffffff, 0x125510b8, 0xffffffff },
TULIP_IOTYPE, TULIP_SIZE1, COMET },
{ "Accton EN1217/EN2242 (ADMtek Comet)", { 0x12161113, 0xffffffff },
TULIP_IOTYPE, TULIP_SIZE1, COMET },
{ "SMC1255TX (ADMtek Comet-II)", { 0x125510b8, 0xffffffff },
TULIP_IOTYPE, TULIP_SIZE1, COMET },
{ "ADMtek Comet-II (model 1020)", { 0x1020111a, 0xffffffff },
TULIP_IOTYPE, TULIP_SIZE1, COMET },
{ "Allied Telesyn A120 (ADMtek Comet)", { 0xa1201259, 0xffffffff },
TULIP_IOTYPE, TULIP_SIZE1, COMET },
{ "Compex RL100-TX", { 0x988111F6, 0xffffffff },
TULIP_IOTYPE, 128, COMPEX9881 },
{ "Intel 21145 Tulip", { 0x00398086, 0xffffffff },
TULIP_IOTYPE, 128, I21145 },
{ "Xircom Tulip clone", { 0x0003115d, 0xffffffff },
TULIP_IOTYPE, 128, XIRCOM },
{ "Davicom DM9102", { 0x91021282, 0xffffffff },
TULIP_IOTYPE, 0x80, DC21140 },
{ "Davicom DM9100", { 0x91001282, 0xffffffff },
TULIP_IOTYPE, 0x80, DC21140 },
{ "Macronix mxic-98715 (EN1217)", { 0x12171113, 0xffffffff },
TULIP_IOTYPE, 256, MX98715 },
{ "Conexant LANfinity", { 0x180314f1, 0xffffffff },
TULIP_IOTYPE, TULIP_SIZE1, CONEXANT },
{ "3Com 3cSOHO100B-TX (ADMtek Centaur)", { 0x930010b7, 0xffffffff },
TULIP_IOTYPE, TULIP_SIZE1, COMET },
{ 0},
};
struct drv_id_info tulip_drv_id = {
"tulip", PCI_HOTSWAP, PCI_CLASS_NETWORK_ETHERNET<<8, pci_id_tbl,
tulip_probe1, tulip_pwr_event };
/* This table is used during operation for capabilities and media timer. */
static void tulip_timer(unsigned long data);
static void nway_timer(unsigned long data);
static void mxic_timer(unsigned long data);
static void pnic_timer(unsigned long data);
static void comet_timer(unsigned long data);
enum tbl_flag {
HAS_MII=1, HAS_MEDIA_TABLE=2, CSR12_IN_SROM=4, ALWAYS_CHECK_MII=8,
HAS_PWRDWN=0x10, MC_HASH_ONLY=0x20, /* Hash-only multicast filter. */
HAS_PNICNWAY=0x80, HAS_NWAY=0x40, /* Uses internal NWay xcvr. */
HAS_INTR_MITIGATION=0x100, IS_ASIX=0x200, HAS_8023X=0x400,
COMET_MAC_ADDR=0x0800,
};
/* Note: this table must match enum tulip_chips above. */
static struct tulip_chip_table {
char *chip_name;
int io_size; /* Unused */
int valid_intrs; /* CSR7 interrupt enable settings */
int flags;
void (*media_timer)(unsigned long data);
} tulip_tbl[] = {
{ "Digital DC21040 Tulip", 128, 0x0001ebef, 0, tulip_timer },
{ "Digital DC21041 Tulip", 128, 0x0001ebff,
HAS_MEDIA_TABLE | HAS_NWAY, tulip_timer },
{ "Digital DS21140 Tulip", 128, 0x0001ebef,
HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM, tulip_timer },
{ "Digital DS21143 Tulip", 128, 0x0801fbff,
HAS_MII | HAS_MEDIA_TABLE | ALWAYS_CHECK_MII | HAS_PWRDWN | HAS_NWAY
| HAS_INTR_MITIGATION, nway_timer },
{ "Lite-On 82c168 PNIC", 256, 0x0001ebef,
HAS_MII | HAS_PNICNWAY, pnic_timer },
{ "Macronix 98713 PMAC", 128, 0x0001ebef,
HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM, mxic_timer },
{ "Macronix 98715 PMAC", 256, 0x0001ebef,
HAS_MEDIA_TABLE, mxic_timer },
{ "Macronix 98725 PMAC", 256, 0x0001ebef,
HAS_MEDIA_TABLE, mxic_timer },
{ "ASIX AX88140", 128, 0x0001fbff,
HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM | MC_HASH_ONLY | IS_ASIX, tulip_timer },
{ "ASIX AX88141", 128, 0x0001fbff,
HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM | MC_HASH_ONLY | IS_ASIX, tulip_timer },
{ "Lite-On PNIC-II", 256, 0x0801fbff,
HAS_MII | HAS_NWAY | HAS_8023X, nway_timer },
{ "ADMtek Comet", 256, 0x0001abef,
HAS_MII | MC_HASH_ONLY | COMET_MAC_ADDR, comet_timer },
{ "Compex 9881 PMAC", 128, 0x0001ebef,
HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM, mxic_timer },
{ "Intel DS21145 Tulip", 128, 0x0801fbff,
HAS_MII | HAS_MEDIA_TABLE | ALWAYS_CHECK_MII | HAS_PWRDWN | HAS_NWAY,
nway_timer },
{ "Xircom tulip work-alike", 128, 0x0801fbff,
HAS_MII | HAS_MEDIA_TABLE | ALWAYS_CHECK_MII | HAS_PWRDWN | HAS_NWAY,
nway_timer },
{ "Conexant LANfinity", 256, 0x0001ebef,
HAS_MII | HAS_PWRDWN, tulip_timer },
{0},
};
/* A full-duplex map for media types. */
enum MediaIs {
MediaIsFD = 1, MediaAlwaysFD=2, MediaIsMII=4, MediaIsFx=8,
MediaIs100=16};
static const char media_cap[32] =
{0,0,0,16, 3,19,16,24, 27,4,7,5, 0,20,23,20, 28,31,0,0, };
static u8 t21040_csr13[] = {2,0x0C,8,4, 4,0,0,0, 0,0,0,0, 4,0,0,0};
/* 21041 transceiver register settings: 10-T, 10-2, AUI, 10-T, 10T-FD*/
static u16 t21041_csr13[] = { 0xEF01, 0xEF09, 0xEF09, 0xEF01, 0xEF09, };
static u16 t21041_csr14[] = { 0xFFFF, 0xF7FD, 0xF7FD, 0x6F3F, 0x6F3D, };
static u16 t21041_csr15[] = { 0x0008, 0x0006, 0x000E, 0x0008, 0x0008, };
static u16 t21142_csr13[] = { 0x0001, 0x0009, 0x0009, 0x0000, 0x0001, };
static u16 t21142_csr14[] = { 0xFFFF, 0x0705, 0x0705, 0x0000, 0x7F3D, };
static u16 t21142_csr15[] = { 0x0008, 0x0006, 0x000E, 0x0008, 0x0008, };
/* Offsets to the Command and Status Registers, "CSRs". All accesses
must be longword instructions and quadword aligned. */
enum tulip_offsets {
CSR0=0, CSR1=0x08, CSR2=0x10, CSR3=0x18, CSR4=0x20, CSR5=0x28,
CSR6=0x30, CSR7=0x38, CSR8=0x40, CSR9=0x48, CSR10=0x50, CSR11=0x58,
CSR12=0x60, CSR13=0x68, CSR14=0x70, CSR15=0x78 };
/* The bits in the CSR5 status registers, mostly interrupt sources. */
enum status_bits {
TimerInt=0x800, TPLnkFail=0x1000, TPLnkPass=0x10,
NormalIntr=0x10000, AbnormalIntr=0x8000, PCIBusError=0x2000,
RxJabber=0x200, RxStopped=0x100, RxNoBuf=0x80, RxIntr=0x40,
TxFIFOUnderflow=0x20, TxJabber=0x08, TxNoBuf=0x04, TxDied=0x02, TxIntr=0x01,
};
/* The configuration bits in CSR6. */
enum csr6_mode_bits {
TxOn=0x2000, RxOn=0x0002, FullDuplex=0x0200,
AcceptBroadcast=0x0100, AcceptAllMulticast=0x0080,
AcceptAllPhys=0x0040, AcceptRunt=0x0008,
};
/* The Tulip Rx and Tx buffer descriptors. */
struct tulip_rx_desc {
s32 status;
s32 length;
u32 buffer1, buffer2;
};
struct tulip_tx_desc {
s32 status;
s32 length;
u32 buffer1, buffer2; /* We use only buffer 1. */
};
enum desc_status_bits {
DescOwned=0x80000000, RxDescFatalErr=0x8000, RxWholePkt=0x0300,
};
/* Ring-wrap flag in length field, use for last ring entry.
0x01000000 means chain on buffer2 address,
0x02000000 means use the ring start address in CSR2/3.
Note: Some work-alike chips do not function correctly in chained mode.
The ASIX chip works only in chained mode.
Thus we indicates ring mode, but always write the 'next' field for
chained mode as well.
*/
#define DESC_RING_WRAP 0x02000000
#define EEPROM_SIZE 512 /* support 256*16 EEPROMs */
struct medialeaf {
u8 type;
u8 media;
unsigned char *leafdata;
};
struct mediatable {
u16 defaultmedia;
u8 leafcount, csr12dir; /* General purpose pin directions. */
unsigned has_mii:1, has_nonmii:1, has_reset:6;
u32 csr15dir, csr15val; /* 21143 NWay setting. */
struct medialeaf mleaf[0];
};
struct mediainfo {
struct mediainfo *next;
int info_type;
int index;
unsigned char *info;
};
#define PRIV_ALIGN 15 /* Required alignment mask */
struct tulip_private {
struct tulip_rx_desc rx_ring[RX_RING_SIZE];
struct tulip_tx_desc tx_ring[TX_RING_SIZE];
/* The saved addresses of Rx/Tx-in-place packet buffers. */
struct sk_buff* tx_skbuff[TX_RING_SIZE];
struct sk_buff* rx_skbuff[RX_RING_SIZE];
struct net_device *next_module;
void *priv_addr; /* Unaligned address of dev->priv for kfree */
/* Multicast filter control. */
u16 setup_frame[96]; /* Pseudo-Tx frame to init address table. */
u32 mc_filter[2]; /* Multicast hash filter */
int multicast_filter_limit;
struct pci_dev *pci_dev;
int chip_id, revision;
int flags;
int max_interrupt_work;
int msg_level;
unsigned int csr0, csr6; /* Current CSR0, CSR6 settings. */
/* Note: cache line pairing and isolation of Rx vs. Tx indicies. */
unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
unsigned int rx_buf_sz; /* Based on MTU+slack. */
int rx_copybreak;
unsigned int rx_dead:1; /* We have no Rx buffers. */
struct net_device_stats stats;
unsigned int cur_tx, dirty_tx;
unsigned int tx_full:1; /* The Tx queue is full. */
/* Media selection state. */
unsigned int full_duplex:1; /* Full-duplex operation requested. */
unsigned int full_duplex_lock:1;
unsigned int fake_addr:1; /* Multiport board faked address. */
unsigned int media2:4; /* Secondary monitored media port. */
unsigned int medialock:1; /* Do not sense media type. */
unsigned int mediasense:1; /* Media sensing in progress. */
unsigned int nway:1, nwayset:1; /* 21143 internal NWay. */
unsigned int default_port; /* Last dev->if_port value. */
unsigned char eeprom[EEPROM_SIZE]; /* Serial EEPROM contents. */
struct timer_list timer; /* Media selection timer. */
void (*link_change)(struct net_device *dev, int csr5);
u16 lpar; /* 21143 Link partner ability. */
u16 sym_advertise, mii_advertise; /* NWay to-advertise. */
u16 advertising[4]; /* MII advertise, from SROM table. */
signed char phys[4], mii_cnt; /* MII device addresses. */
spinlock_t mii_lock;
struct mediatable *mtable;
int cur_index; /* Current media index. */
int saved_if_port;
};
static void start_link(struct net_device *dev);
static void parse_eeprom(struct net_device *dev);
static int read_eeprom(long ioaddr, int location, int addr_len);
static int mdio_read(struct net_device *dev, int phy_id, int location);
static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
static int tulip_open(struct net_device *dev);
/* Chip-specific media selection (timer functions prototyped above). */
static int check_duplex(struct net_device *dev);
static void select_media(struct net_device *dev, int startup);
static void init_media(struct net_device *dev);
static void nway_lnk_change(struct net_device *dev, int csr5);
static void nway_start(struct net_device *dev);
static void pnic_lnk_change(struct net_device *dev, int csr5);
static void pnic_do_nway(struct net_device *dev);
static void tulip_tx_timeout(struct net_device *dev);
static void tulip_init_ring(struct net_device *dev);
static int tulip_start_xmit(struct sk_buff *skb, struct net_device *dev);
static int tulip_rx(struct net_device *dev);
static void tulip_interrupt(int irq, void *dev_instance, struct pt_regs *regs);
static int tulip_close(struct net_device *dev);
static struct net_device_stats *tulip_get_stats(struct net_device *dev);
#ifdef HAVE_PRIVATE_IOCTL
static int private_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
#endif
static void set_rx_mode(struct net_device *dev);
/* A list of all installed Tulip devices. */
static struct net_device *root_tulip_dev = NULL;
static void *tulip_probe1(struct pci_dev *pdev, void *init_dev,
long ioaddr, int irq, int pci_tbl_idx, int find_cnt)
{
struct net_device *dev;
struct tulip_private *tp;
void *priv_mem;
/* See note below on the multiport cards. */
static unsigned char last_phys_addr[6] = {0x02, 'L', 'i', 'n', 'u', 'x'};
static int last_irq = 0;
static int multiport_cnt = 0; /* For four-port boards w/one EEPROM */
u8 chip_rev;
int i, chip_idx = pci_id_tbl[pci_tbl_idx].drv_flags & 0xff;
unsigned short sum;
u8 ee_data[EEPROM_SIZE];
/* Bring the 21041/21143 out of sleep mode.
Caution: Snooze mode does not work with some boards! */
if (tulip_tbl[chip_idx].flags & HAS_PWRDWN)
pci_write_config_dword(pdev, 0x40, 0x00000000);
if (inl(ioaddr + CSR5) == 0xffffffff) {
printk(KERN_ERR "The Tulip chip at %#lx is not functioning.\n", ioaddr);
return 0;
}
dev = init_etherdev(init_dev, 0);
if (!dev)
return NULL;
/* Make certain the data structures are quadword aligned. */
priv_mem = kmalloc(sizeof(*tp) + PRIV_ALIGN, GFP_KERNEL);
/* Check for the very unlikely case of no memory. */
if (priv_mem == NULL)
return NULL;
dev->priv = tp = (void *)(((long)priv_mem + PRIV_ALIGN) & ~PRIV_ALIGN);
memset(tp, 0, sizeof(*tp));
tp->mii_lock = (spinlock_t) SPIN_LOCK_UNLOCKED;
tp->priv_addr = priv_mem;
tp->next_module = root_tulip_dev;
root_tulip_dev = dev;
pci_read_config_byte(pdev, PCI_REVISION_ID, &chip_rev);
printk(KERN_INFO "%s: %s rev %d at %#3lx,",
dev->name, pci_id_tbl[pci_tbl_idx].name, chip_rev, ioaddr);
/* Stop the Tx and Rx processes. */
outl(inl(ioaddr + CSR6) & ~TxOn & ~RxOn, ioaddr + CSR6);
/* Clear the missed-packet counter. */
inl(ioaddr + CSR8);
if (chip_idx == DC21041 && inl(ioaddr + CSR9) & 0x8000) {
printk(" 21040 compatible mode,");
chip_idx = DC21040;
}
/* The SROM/EEPROM interface varies dramatically. */
sum = 0;
if (chip_idx == DC21040) {
outl(0, ioaddr + CSR9); /* Reset the pointer with a dummy write. */
for (i = 0; i < 6; i++) {
int value, boguscnt = 100000;
do
value = inl(ioaddr + CSR9);
while (value < 0 && --boguscnt > 0);
dev->dev_addr[i] = value;
sum += value & 0xff;
}
} else if (chip_idx == LC82C168) {
for (i = 0; i < 3; i++) {
int value, boguscnt = 100000;
outl(0x600 | i, ioaddr + 0x98);
do
value = inl(ioaddr + CSR9);
while (value < 0 && --boguscnt > 0);
put_unaligned(le16_to_cpu(value), ((u16*)dev->dev_addr) + i);
sum += value & 0xffff;
}
} else if (chip_idx == COMET) {
/* No need to read the EEPROM. */
put_unaligned(le32_to_cpu(inl(ioaddr + 0xA4)), (u32 *)dev->dev_addr);
put_unaligned(le16_to_cpu(inl(ioaddr + 0xA8)),
(u16 *)(dev->dev_addr + 4));
for (i = 0; i < 6; i ++)
sum += dev->dev_addr[i];
} else {
/* A serial EEPROM interface, we read now and sort it out later. */
int sa_offset = 0;
int ee_addr_size = read_eeprom(ioaddr, 0xff, 8) & 0x40000 ? 8 : 6;
int eeprom_word_cnt = 1 << ee_addr_size;
for (i = 0; i < eeprom_word_cnt; i++)
((u16 *)ee_data)[i] =
le16_to_cpu(read_eeprom(ioaddr, i, ee_addr_size));
/* DEC now has a specification (see Notes) but early board makers
just put the address in the first EEPROM locations. */
/* This does memcmp(eedata, eedata+16, 8) */
for (i = 0; i < 8; i ++)
if (ee_data[i] != ee_data[16+i])
sa_offset = 20;
if (chip_idx == CONEXANT) {
/* Check that the tuple type and length is correct. */
if (ee_data[0x198] == 0x04 && ee_data[0x199] == 6)
sa_offset = 0x19A;
} else if (ee_data[0] == 0xff && ee_data[1] == 0xff &&
ee_data[2] == 0) {
sa_offset = 2; /* Grrr, damn Matrox boards. */
multiport_cnt = 4;
}
for (i = 0; i < 6; i ++) {
dev->dev_addr[i] = ee_data[i + sa_offset];
sum += ee_data[i + sa_offset];
}
}
/* Lite-On boards have the address byte-swapped. */
if ((dev->dev_addr[0] == 0xA0 || dev->dev_addr[0] == 0xC0)
&& dev->dev_addr[1] == 0x00)
for (i = 0; i < 6; i+=2) {
char tmp = dev->dev_addr[i];
dev->dev_addr[i] = dev->dev_addr[i+1];
dev->dev_addr[i+1] = tmp;
}
/* On the Zynx 315 Etherarray and other multiport boards only the
first Tulip has an EEPROM.
The addresses of the subsequent ports are derived from the first.
Many PCI BIOSes also incorrectly report the IRQ line, so we correct
that here as well. */
if (sum == 0 || sum == 6*0xff) {
printk(" EEPROM not present,");
for (i = 0; i < 5; i++)
dev->dev_addr[i] = last_phys_addr[i];
dev->dev_addr[i] = last_phys_addr[i] + 1;
#if defined(__i386__) /* Patch up x86 BIOS bug. */
if (last_irq)
irq = last_irq;
#endif
}
for (i = 0; i < 6; i++)
printk("%c%2.2X", i ? ':' : ' ', last_phys_addr[i] = dev->dev_addr[i]);
printk(", IRQ %d.\n", irq);
last_irq = irq;
#ifdef USE_IO_OPS
/* We do a request_region() to register /proc/ioports info. */
request_region(ioaddr, pci_id_tbl[chip_idx].io_size, dev->name);
#endif
dev->base_addr = ioaddr;
dev->irq = irq;
tp->pci_dev = pdev;
tp->msg_level = (1 << debug) - 1;
tp->chip_id = chip_idx;
tp->revision = chip_rev;
tp->flags = tulip_tbl[chip_idx].flags
| (pci_id_tbl[pci_tbl_idx].drv_flags & 0xffffff00);
tp->rx_copybreak = rx_copybreak;
tp->max_interrupt_work = max_interrupt_work;
tp->multicast_filter_limit = multicast_filter_limit;
tp->csr0 = csr0;
/* BugFixes: The 21143-TD hangs with PCI Write-and-Invalidate cycles.
And the ASIX must have a burst limit or horrible things happen. */
if (chip_idx == DC21143 && chip_rev == 65)
tp->csr0 &= ~0x01000000;
else if (tp->flags & IS_ASIX)
tp->csr0 |= 0x2000;
/* We support a zillion ways to set the media type. */
#ifdef TULIP_FULL_DUPLEX
tp->full_duplex = 1;
tp->full_duplex_lock = 1;
#endif
#ifdef TULIP_DEFAULT_MEDIA
tp->default_port = TULIP_DEFAULT_MEDIA;
#endif
#ifdef TULIP_NO_MEDIA_SWITCH
tp->medialock = 1;
#endif
/* The lower four bits are the media type. */
if (find_cnt >= 0 && find_cnt < MAX_UNITS) {
if (options[find_cnt] & 0x1f)
tp->default_port = options[find_cnt] & 0x1f;
if ((options[find_cnt] & 0x200) || full_duplex[find_cnt] > 0)
tp->full_duplex = 1;
if (mtu[find_cnt] > 0)
dev->mtu = mtu[find_cnt];
}
if (dev->mem_start)
tp->default_port = dev->mem_start & 0x1f;
if (tp->default_port) {
printk(KERN_INFO "%s: Transceiver selection forced to %s.\n",
dev->name, medianame[tp->default_port & MEDIA_MASK]);
tp->medialock = 1;
if (media_cap[tp->default_port] & MediaAlwaysFD)
tp->full_duplex = 1;
}
if (tp->full_duplex)
tp->full_duplex_lock = 1;
if (media_cap[tp->default_port] & MediaIsMII) {
u16 media2advert[] = { 0x20, 0x40, 0x03e0, 0x60, 0x80, 0x100, 0x200 };
tp->mii_advertise = media2advert[tp->default_port - 9];
tp->mii_advertise |= (tp->flags & HAS_8023X); /* Matching bits! */
}
/* This is logically part of probe1(), but too complex to write inline. */
if (tp->flags & HAS_MEDIA_TABLE) {
memcpy(tp->eeprom, ee_data, sizeof(tp->eeprom));
parse_eeprom(dev);
}
/* The Tulip-specific entries in the device structure. */
dev->open = &tulip_open;
dev->hard_start_xmit = &tulip_start_xmit;
dev->stop = &tulip_close;
dev->get_stats = &tulip_get_stats;
#ifdef HAVE_PRIVATE_IOCTL
dev->do_ioctl = &private_ioctl;
#endif
#ifdef HAVE_MULTICAST
dev->set_multicast_list = &set_rx_mode;
#endif
if (tp->flags & HAS_NWAY)
tp->link_change = nway_lnk_change;
else if (tp->flags & HAS_PNICNWAY)
tp->link_change = pnic_lnk_change;
start_link(dev);
if (chip_idx == COMET) {
/* Set the Comet LED configuration. */
outl(0xf0000000, ioaddr + CSR9);
}
return dev;
}
/* Start the link, typically called at probe1() time but sometimes later with
multiport cards. */
static void start_link(struct net_device *dev)
{
struct tulip_private *tp = (struct tulip_private *)dev->priv;
long ioaddr = dev->base_addr;
int i;
if ((tp->flags & ALWAYS_CHECK_MII) ||
(tp->mtable && tp->mtable->has_mii) ||
( ! tp->mtable && (tp->flags & HAS_MII))) {
int phyn, phy_idx = 0;
if (tp->mtable && tp->mtable->has_mii) {
for (i = 0; i < tp->mtable->leafcount; i++)
if (tp->mtable->mleaf[i].media == 11) {
tp->cur_index = i;
tp->saved_if_port = dev->if_port;
select_media(dev, 2);
dev->if_port = tp->saved_if_port;
break;
}
}
/* Find the connected MII xcvrs.
Doing this in open() would allow detecting external xcvrs later,
but takes much time. */
for (phyn = 1; phyn <= 32 && phy_idx < sizeof(tp->phys); phyn++) {
int phy = phyn & 0x1f;
int mii_status = mdio_read(dev, phy, 1);
if ((mii_status & 0x8301) == 0x8001 ||
((mii_status & 0x8000) == 0 && (mii_status & 0x7800) != 0)) {
int mii_reg0 = mdio_read(dev, phy, 0);
int mii_advert = mdio_read(dev, phy, 4);
int to_advert;
if (tp->mii_advertise)
to_advert = tp->mii_advertise;
else if (tp->advertising[phy_idx])
to_advert = tp->advertising[phy_idx];
else /* Leave unchanged. */
tp->mii_advertise = to_advert = mii_advert;
tp->phys[phy_idx++] = phy;
printk(KERN_INFO "%s: MII transceiver #%d "
"config %4.4x status %4.4x advertising %4.4x.\n",
dev->name, phy, mii_reg0, mii_status, mii_advert);
/* Fixup for DLink with miswired PHY. */
if (mii_advert != to_advert) {
printk(KERN_DEBUG "%s: Advertising %4.4x on PHY %d,"
" previously advertising %4.4x.\n",
dev->name, to_advert, phy, mii_advert);
mdio_write(dev, phy, 4, to_advert);
}
/* Enable autonegotiation: some boards default to off. */
mdio_write(dev, phy, 0, (mii_reg0 & ~0x3000) |
(tp->full_duplex ? 0x0100 : 0x0000) |
((media_cap[tp->default_port] & MediaIs100) ?
0x2000 : 0x1000));
}
}
tp->mii_cnt = phy_idx;
if (tp->mtable && tp->mtable->has_mii && phy_idx == 0) {
printk(KERN_INFO "%s: ***WARNING***: No MII transceiver found!\n",
dev->name);
tp->phys[0] = 1;
}
}
/* Reset the xcvr interface and turn on heartbeat. */
switch (tp->chip_id) {
case DC21040:
outl(0x00000000, ioaddr + CSR13);
outl(0x00000004, ioaddr + CSR13);
break;
case DC21041:
/* This is nway_start(). */
if (tp->sym_advertise == 0)
tp->sym_advertise = 0x0061;
outl(0x00000000, ioaddr + CSR13);
outl(0xFFFFFFFF, ioaddr + CSR14);
outl(0x00000008, ioaddr + CSR15); /* Listen on AUI also. */
outl(inl(ioaddr + CSR6) | FullDuplex, ioaddr + CSR6);
outl(0x0000EF01, ioaddr + CSR13);
break;
case DC21140: default:
if (tp->mtable)
outl(tp->mtable->csr12dir | 0x100, ioaddr + CSR12);
break;
case DC21142:
case PNIC2:
if (tp->mii_cnt || media_cap[dev->if_port] & MediaIsMII) {
outl(0x82020000, ioaddr + CSR6);
outl(0x0000, ioaddr + CSR13);
outl(0x0000, ioaddr + CSR14);
outl(0x820E0000, ioaddr + CSR6);
} else
nway_start(dev);
break;
case LC82C168:
if ( ! tp->mii_cnt) {
tp->nway = 1;
tp->nwayset = 0;
outl(0x00420000, ioaddr + CSR6);
outl(0x30, ioaddr + CSR12);
outl(0x0001F078, ioaddr + 0xB8);
outl(0x0201F078, ioaddr + 0xB8); /* Turn on autonegotiation. */
}
break;
case COMPEX9881:
outl(0x00000000, ioaddr + CSR6);
outl(0x000711C0, ioaddr + CSR14); /* Turn on NWay. */
outl(0x00000001, ioaddr + CSR13);
break;
case MX98713: case MX98715: case MX98725:
outl(0x01a80000, ioaddr + CSR6);
outl(0xFFFFFFFF, ioaddr + CSR14);
outl(0x00001000, ioaddr + CSR12);
break;
case COMET:
break;
}
if (tp->flags & HAS_PWRDWN)
pci_write_config_dword(tp->pci_dev, 0x40, 0x40000000);
}
/* Serial EEPROM section. */
/* The main routine to parse the very complicated SROM structure.
Search www.digital.com for "21X4 SROM" to get details.
This code is very complex, and will require changes to support
additional cards, so I will be verbose about what is going on.
*/
/* Known cards that have old-style EEPROMs.
Writing this table is described at
http://www.scyld.com/network/tulip-media.html
*/
static struct fixups {
char *name;
unsigned char addr0, addr1, addr2;
u16 newtable[32]; /* Max length below. */
} eeprom_fixups[] = {
{"Asante", 0, 0, 0x94, {0x1e00, 0x0000, 0x0800, 0x0100, 0x018c,
0x0000, 0x0000, 0xe078, 0x0001, 0x0050, 0x0018 }},
{"SMC9332DST", 0, 0, 0xC0, { 0x1e00, 0x0000, 0x0800, 0x041f,
0x0000, 0x009E, /* 10baseT */
0x0004, 0x009E, /* 10baseT-FD */
0x0903, 0x006D, /* 100baseTx */
0x0905, 0x006D, /* 100baseTx-FD */ }},
{"Cogent EM100", 0, 0, 0x92, { 0x1e00, 0x0000, 0x0800, 0x063f,
0x0107, 0x8021, /* 100baseFx */
0x0108, 0x8021, /* 100baseFx-FD */
0x0100, 0x009E, /* 10baseT */
0x0104, 0x009E, /* 10baseT-FD */
0x0103, 0x006D, /* 100baseTx */
0x0105, 0x006D, /* 100baseTx-FD */ }},
{"Maxtech NX-110", 0, 0, 0xE8, { 0x1e00, 0x0000, 0x0800, 0x0513,
0x1001, 0x009E, /* 10base2, CSR12 0x10*/
0x0000, 0x009E, /* 10baseT */
0x0004, 0x009E, /* 10baseT-FD */
0x0303, 0x006D, /* 100baseTx, CSR12 0x03 */
0x0305, 0x006D, /* 100baseTx-FD CSR12 0x03 */}},
{"Accton EN1207", 0, 0, 0xE8, { 0x1e00, 0x0000, 0x0800, 0x051F,
0x1B01, 0x0000, /* 10base2, CSR12 0x1B */
0x0B00, 0x009E, /* 10baseT, CSR12 0x0B */
0x0B04, 0x009E, /* 10baseT-FD,CSR12 0x0B */
0x1B03, 0x006D, /* 100baseTx, CSR12 0x1B */
0x1B05, 0x006D, /* 100baseTx-FD CSR12 0x1B */
}},
{0, 0, 0, 0, {}}};
static const char * block_name[] = {"21140 non-MII", "21140 MII PHY",
"21142 Serial PHY", "21142 MII PHY", "21143 SYM PHY", "21143 reset method"};
#if defined(__i386__) /* AKA get_unaligned() */
#define get_u16(ptr) (*(u16 *)(ptr))
#else
#define get_u16(ptr) (((u8*)(ptr))[0] + (((u8*)(ptr))[1]<<8))
#endif
static void parse_eeprom(struct net_device *dev)
{
/* The last media info list parsed, for multiport boards. */
static struct mediatable *last_mediatable = NULL;
static unsigned char *last_ee_data = NULL;
static int controller_index = 0;
struct tulip_private *tp = (struct tulip_private *)dev->priv;
unsigned char *p, *ee_data = tp->eeprom;
int new_advertise = 0;
int i;
tp->mtable = 0;
/* Detect an old-style (SA only) EEPROM layout:
memcmp(eedata, eedata+16, 8). */
for (i = 0; i < 8; i ++)
if (ee_data[i] != ee_data[16+i])
break;
if (i >= 8) {
if (ee_data[0] == 0xff) {
if (last_mediatable) {
controller_index++;
printk(KERN_INFO "%s: Controller %d of multiport board.\n",
dev->name, controller_index);
tp->mtable = last_mediatable;
ee_data = last_ee_data;
goto subsequent_board;
} else
printk(KERN_INFO "%s: Missing EEPROM, this interface may "
"not work correctly!\n",
dev->name);
return;
}
/* Do a fix-up based on the vendor half of the station address. */
for (i = 0; eeprom_fixups[i].name; i++) {
if (dev->dev_addr[0] == eeprom_fixups[i].addr0
&& dev->dev_addr[1] == eeprom_fixups[i].addr1
&& dev->dev_addr[2] == eeprom_fixups[i].addr2) {
if (dev->dev_addr[2] == 0xE8 && ee_data[0x1a] == 0x55)
i++; /* An Accton EN1207, not an outlaw Maxtech. */
memcpy(ee_data + 26, eeprom_fixups[i].newtable,
sizeof(eeprom_fixups[i].newtable));
printk(KERN_INFO "%s: Old format EEPROM on '%s' board.\n"
KERN_INFO "%s: Using substitute media control info.\n",
dev->name, eeprom_fixups[i].name, dev->name);
break;
}
}
if (eeprom_fixups[i].name == NULL) { /* No fixup found. */
printk(KERN_INFO "%s: Old style EEPROM with no media selection "
"information.\n",
dev->name);
return;
}
}
controller_index = 0;
if (ee_data[19] > 1) {
struct net_device *prev_dev;
struct tulip_private *otp;
/* This is a multiport board. The probe order may be "backwards", so
we patch up already found devices. */
last_ee_data = ee_data;
for (prev_dev = tp->next_module; prev_dev; prev_dev = otp->next_module) {
otp = (struct tulip_private *)prev_dev->priv;
if (otp->eeprom[0] == 0xff && otp->mtable == 0) {
parse_eeprom(prev_dev);
start_link(prev_dev);
} else
break;
}
controller_index = 0;
}
subsequent_board:
p = (void *)ee_data + ee_data[27 + controller_index*3];
if (ee_data[27] == 0) { /* No valid media table. */
} else if (tp->chip_id == DC21041) {
int media = get_u16(p);
int count = p[2];
p += 3;
printk(KERN_INFO "%s: 21041 Media table, default media %4.4x (%s).\n",
dev->name, media,
media & 0x0800 ? "Autosense" : medianame[media & MEDIA_MASK]);
for (i = 0; i < count; i++) {
unsigned char media_block = *p++;
int media_code = media_block & MEDIA_MASK;
if (media_block & 0x40)
p += 6;
switch(media_code) {
case 0: new_advertise |= 0x0020; break;
case 4: new_advertise |= 0x0040; break;
}
printk(KERN_INFO "%s: 21041 media #%d, %s.\n",
dev->name, media_code, medianame[media_code]);
}
} else {
unsigned char csr12dir = 0;
int count;
struct mediatable *mtable;
u16 media = get_u16(p);
p += 2;
if (tp->flags & CSR12_IN_SROM)
csr12dir = *p++;
count = *p++;
mtable = (struct mediatable *)
kmalloc(sizeof(struct mediatable) + count*sizeof(struct medialeaf),
GFP_KERNEL);
if (mtable == NULL)
return; /* Horrible, impossible failure. */
last_mediatable = tp->mtable = mtable;
mtable->defaultmedia = media;
mtable->leafcount = count;
mtable->csr12dir = csr12dir;
mtable->has_nonmii = mtable->has_mii = mtable->has_reset = 0;
mtable->csr15dir = mtable->csr15val = 0;
printk(KERN_INFO "%s: EEPROM default media type %s.\n", dev->name,
media & 0x0800 ? "Autosense" : medianame[media & MEDIA_MASK]);
for (i = 0; i < count; i++) {
struct medialeaf *leaf = &mtable->mleaf[i];
if ((p[0] & 0x80) == 0) { /* 21140 Compact block. */
leaf->type = 0;
leaf->media = p[0] & 0x3f;
leaf->leafdata = p;
if ((p[2] & 0x61) == 0x01) /* Bogus, but Znyx boards do it. */
mtable->has_mii = 1;
p += 4;
} else {
switch(leaf->type = p[1]) {
case 5:
mtable->has_reset = i + 1; /* Assure non-zero */
/* Fall through */
case 6:
leaf->media = 31;
break;
case 1: case 3:
mtable->has_mii = 1;
leaf->media = 11;
break;
case 2:
if ((p[2] & 0x3f) == 0) {
u32 base15 = (p[2] & 0x40) ? get_u16(p + 7) : 0x0008;
u16 *p1 = (u16 *)(p + (p[2] & 0x40 ? 9 : 3));
mtable->csr15dir = (get_unaligned(p1 + 0)<<16) + base15;
mtable->csr15val = (get_unaligned(p1 + 1)<<16) + base15;
}
/* Fall through. */
case 0: case 4:
mtable->has_nonmii = 1;
leaf->media = p[2] & MEDIA_MASK;
switch (leaf->media) {
case 0: new_advertise |= 0x0020; break;
case 4: new_advertise |= 0x0040; break;
case 3: new_advertise |= 0x0080; break;
case 5: new_advertise |= 0x0100; break;
case 6: new_advertise |= 0x0200; break;
}
break;
default:
leaf->media = 19;
}
leaf->leafdata = p + 2;
p += (p[0] & 0x3f) + 1;
}
if ((tp->msg_level & NETIF_MSG_LINK) &&
leaf->media == 11) {
unsigned char *bp = leaf->leafdata;
printk(KERN_INFO "%s: MII interface PHY %d, setup/reset "
"sequences %d/%d long, capabilities %2.2x %2.2x.\n",
dev->name, bp[0], bp[1], bp[2 + bp[1]*2],
bp[5 + bp[2 + bp[1]*2]*2], bp[4 + bp[2 + bp[1]*2]*2]);
}
if (tp->msg_level & NETIF_MSG_PROBE)
printk(KERN_INFO "%s: Index #%d - Media %s (#%d) described "
"by a %s (%d) block.\n",
dev->name, i, medianame[leaf->media], leaf->media,
leaf->type < 6 ? block_name[leaf->type] : "UNKNOWN",
leaf->type);
}
if (new_advertise)
tp->sym_advertise = new_advertise;
}
}
/* Reading a serial EEPROM is a "bit" grungy, but we work our way through:->.*/
/* EEPROM_Ctrl bits. */
#define EE_SHIFT_CLK 0x02 /* EEPROM shift clock. */
#define EE_CS 0x01 /* EEPROM chip select. */
#define EE_DATA_WRITE 0x04 /* Data from the Tulip to EEPROM. */
#define EE_WRITE_0 0x01
#define EE_WRITE_1 0x05
#define EE_DATA_READ 0x08 /* Data from the EEPROM chip. */
#define EE_ENB (0x4800 | EE_CS)
/* Delay between EEPROM clock transitions.
Even at 33Mhz current PCI implementations do not overrun the EEPROM clock.
We add a bus turn-around to insure that this remains true. */
#define eeprom_delay() inl(ee_addr)
/* The EEPROM commands include the alway-set leading bit. */
#define EE_READ_CMD (6)
/* Note: this routine returns extra data bits for size detection. */
static int read_eeprom(long ioaddr, int location, int addr_len)
{
int i;
unsigned retval = 0;
long ee_addr = ioaddr + CSR9;
int read_cmd = location | (EE_READ_CMD << addr_len);
outl(EE_ENB & ~EE_CS, ee_addr);
outl(EE_ENB, ee_addr);
/* Shift the read command bits out. */
for (i = 4 + addr_len; i >= 0; i--) {
short dataval = (read_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
outl(EE_ENB | dataval, ee_addr);
eeprom_delay();
outl(EE_ENB | dataval | EE_SHIFT_CLK, ee_addr);
eeprom_delay();
retval = (retval << 1) | ((inl(ee_addr) & EE_DATA_READ) ? 1 : 0);
}
outl(EE_ENB, ee_addr);
eeprom_delay();
for (i = 16; i > 0; i--) {
outl(EE_ENB | EE_SHIFT_CLK, ee_addr);
eeprom_delay();
retval = (retval << 1) | ((inl(ee_addr) & EE_DATA_READ) ? 1 : 0);
outl(EE_ENB, ee_addr);
eeprom_delay();
}
/* Terminate the EEPROM access. */
outl(EE_ENB & ~EE_CS, ee_addr);
return retval;
}
/* MII transceiver control section.
Read and write the MII registers using software-generated serial
MDIO protocol. See the MII specifications or DP83840A data sheet
for details. */
/* The maximum data clock rate is 2.5 Mhz. The minimum timing is usually
met by back-to-back PCI I/O cycles, but we insert a delay to avoid
"overclocking" issues or future 66Mhz PCI. */
#define mdio_delay() inl(mdio_addr)
/* Read and write the MII registers using software-generated serial
MDIO protocol. It is just different enough from the EEPROM protocol
to not share code. The maxium data clock rate is 2.5 Mhz. */
#define MDIO_SHIFT_CLK 0x10000
#define MDIO_DATA_WRITE0 0x00000
#define MDIO_DATA_WRITE1 0x20000
#define MDIO_ENB 0x00000 /* Ignore the 0x02000 databook setting. */
#define MDIO_ENB_IN 0x40000
#define MDIO_DATA_READ 0x80000
static const unsigned char comet_miireg2offset[32] = {
0xB4, 0xB8, 0xBC, 0xC0, 0xC4, 0xC8, 0xCC, 0, 0,0,0,0, 0,0,0,0,
0,0xD0,0,0, 0,0,0,0, 0,0,0,0, 0, 0xD4, 0xD8, 0xDC, };
static int mdio_read(struct net_device *dev, int phy_id, int location)
{
struct tulip_private *tp = (struct tulip_private *)dev->priv;
int i;
int read_cmd = (0xf6 << 10) | ((phy_id & 0x1f) << 5) | location;
int retval = 0;
long ioaddr = dev->base_addr;
long mdio_addr = ioaddr + CSR9;
unsigned long flags;
if (location & ~0x1f)
return 0xffff;
if (tp->chip_id == COMET && phy_id == 30) {
if (comet_miireg2offset[location])
return inl(ioaddr + comet_miireg2offset[location]);
return 0xffff;
}
spin_lock_irqsave(&tp->mii_lock, flags);
if (tp->chip_id == LC82C168) {
int i = 1000;
outl(0x60020000 + (phy_id<<23) + (location<<18), ioaddr + 0xA0);
inl(ioaddr + 0xA0);
inl(ioaddr + 0xA0);
inl(ioaddr + 0xA0);
inl(ioaddr + 0xA0);
while (--i > 0)
if ( ! ((retval = inl(ioaddr + 0xA0)) & 0x80000000))
break;
spin_unlock_irqrestore(&tp->mii_lock, flags);
return retval & 0xffff;
}
/* Establish sync by sending at least 32 logic ones. */
for (i = 32; i >= 0; i--) {
outl(MDIO_ENB | MDIO_DATA_WRITE1, mdio_addr);
mdio_delay();
outl(MDIO_ENB | MDIO_DATA_WRITE1 | MDIO_SHIFT_CLK, mdio_addr);
mdio_delay();
}
/* Shift the read command bits out. */
for (i = 15; i >= 0; i--) {
int dataval = (read_cmd & (1 << i)) ? MDIO_DATA_WRITE1 : 0;
outl(MDIO_ENB | dataval, mdio_addr);
mdio_delay();
outl(MDIO_ENB | dataval | MDIO_SHIFT_CLK, mdio_addr);
mdio_delay();
}
/* Read the two transition, 16 data, and wire-idle bits. */
for (i = 19; i > 0; i--) {
outl(MDIO_ENB_IN, mdio_addr);
mdio_delay();
retval = (retval << 1) | ((inl(mdio_addr) & MDIO_DATA_READ) ? 1 : 0);
outl(MDIO_ENB_IN | MDIO_SHIFT_CLK, mdio_addr);
mdio_delay();
}
spin_unlock_irqrestore(&tp->mii_lock, flags);
return (retval>>1) & 0xffff;
}
static void mdio_write(struct net_device *dev, int phy_id, int location, int val)
{
struct tulip_private *tp = (struct tulip_private *)dev->priv;
int i;
int cmd = (0x5002 << 16) | (phy_id << 23) | (location<<18) | (val & 0xffff);
long ioaddr = dev->base_addr;
long mdio_addr = ioaddr + CSR9;
unsigned long flags;
if (location & ~0x1f)
return;
if (tp->chip_id == COMET && phy_id == 30) {
if (comet_miireg2offset[location])
outl(val, ioaddr + comet_miireg2offset[location]);
return;
}
spin_lock_irqsave(&tp->mii_lock, flags);
if (tp->chip_id == LC82C168) {
int i = 1000;
outl(cmd, ioaddr + 0xA0);
do
if ( ! (inl(ioaddr + 0xA0) & 0x80000000))
break;
while (--i > 0);
spin_unlock_irqrestore(&tp->mii_lock, flags);
return;
}
/* Establish sync by sending 32 logic ones. */
for (i = 32; i >= 0; i--) {
outl(MDIO_ENB | MDIO_DATA_WRITE1, mdio_addr);
mdio_delay();
outl(MDIO_ENB | MDIO_DATA_WRITE1 | MDIO_SHIFT_CLK, mdio_addr);
mdio_delay();
}
/* Shift the command bits out. */
for (i = 31; i >= 0; i--) {
int dataval = (cmd & (1 << i)) ? MDIO_DATA_WRITE1 : 0;
outl(MDIO_ENB | dataval, mdio_addr);
mdio_delay();
outl(MDIO_ENB | dataval | MDIO_SHIFT_CLK, mdio_addr);
mdio_delay();
}
/* Clear out extra bits. */
for (i = 2; i > 0; i--) {
outl(MDIO_ENB_IN, mdio_addr);
mdio_delay();
outl(MDIO_ENB_IN | MDIO_SHIFT_CLK, mdio_addr);
mdio_delay();
}
spin_unlock_irqrestore(&tp->mii_lock, flags);
return;
}
static int
tulip_open(struct net_device *dev)
{
struct tulip_private *tp = (struct tulip_private *)dev->priv;
long ioaddr = dev->base_addr;
int next_tick = 3*HZ;
/* Wake the chip from sleep/snooze mode. */
if (tp->flags & HAS_PWRDWN)
pci_write_config_dword(tp->pci_dev, 0x40, 0);
/* On some chip revs we must set the MII/SYM port before the reset!? */
if (tp->mii_cnt || (tp->mtable && tp->mtable->has_mii))
outl(0x00040000, ioaddr + CSR6);
/* Reset the chip, holding bit 0 set at least 50 PCI cycles. */
outl(0x00000001, ioaddr + CSR0);
MOD_INC_USE_COUNT;
/* This would be done after interrupts are initialized, but we do not want
to frob the transceiver only to fail later. */
if (request_irq(dev->irq, &tulip_interrupt, SA_SHIRQ, dev->name, dev)) {
MOD_DEC_USE_COUNT;
return -EAGAIN;
}
/* Deassert reset.
Wait the specified 50 PCI cycles after a reset by initializing
Tx and Rx queues and the address filter list. */
outl(tp->csr0, ioaddr + CSR0);
if (tp->msg_level & NETIF_MSG_IFUP)
printk(KERN_DEBUG "%s: tulip_open() irq %d.\n", dev->name, dev->irq);
tulip_init_ring(dev);
if (tp->chip_id == PNIC2) {
u32 addr_high = (dev->dev_addr[1]<<8) + (dev->dev_addr[0]<<0);
/* This address setting does not appear to impact chip operation?? */
outl((dev->dev_addr[5]<<8) + dev->dev_addr[4] +
(dev->dev_addr[3]<<24) + (dev->dev_addr[2]<<16),
ioaddr + 0xB0);
outl(addr_high + (addr_high<<16), ioaddr + 0xB8);
}
if (tp->flags & MC_HASH_ONLY) {
u32 addr_low = cpu_to_le32(get_unaligned((u32 *)dev->dev_addr));
u32 addr_high = cpu_to_le16(get_unaligned((u16 *)(dev->dev_addr+4)));
if (tp->flags & IS_ASIX) {
outl(0, ioaddr + CSR13);
outl(addr_low, ioaddr + CSR14);
outl(1, ioaddr + CSR13);
outl(addr_high, ioaddr + CSR14);
} else if (tp->flags & COMET_MAC_ADDR) {
outl(addr_low, ioaddr + 0xA4);
outl(addr_high, ioaddr + 0xA8);
outl(0, ioaddr + 0xAC);
outl(0, ioaddr + 0xB0);
}
}
outl(virt_to_bus(tp->rx_ring), ioaddr + CSR3);
outl(virt_to_bus(tp->tx_ring), ioaddr + CSR4);
if ( ! tp->full_duplex_lock)
tp->full_duplex = 0;
init_media(dev);
if (media_cap[dev->if_port] & MediaIsMII)
check_duplex(dev);
set_rx_mode(dev);
/* Start the Tx to process setup frame. */
outl(tp->csr6, ioaddr + CSR6);
outl(tp->csr6 | TxOn, ioaddr + CSR6);
netif_start_tx_queue(dev);
/* Enable interrupts by setting the interrupt mask. */
outl(tulip_tbl[tp->chip_id].valid_intrs, ioaddr + CSR5);
outl(tulip_tbl[tp->chip_id].valid_intrs, ioaddr + CSR7);
outl(tp->csr6 | TxOn | RxOn, ioaddr + CSR6);
outl(0, ioaddr + CSR2); /* Rx poll demand */
if (tp->msg_level & NETIF_MSG_IFUP)
printk(KERN_DEBUG "%s: Done tulip_open(), CSR0 %8.8x, CSR5 %8.8x CSR6 "
"%8.8x.\n", dev->name, (int)inl(ioaddr + CSR0),
(int)inl(ioaddr + CSR5), (int)inl(ioaddr + CSR6));
/* Set the timer to switch to check for link beat and perhaps switch
to an alternate media type. */
init_timer(&tp->timer);
tp->timer.expires = jiffies + next_tick;
tp->timer.data = (unsigned long)dev;
tp->timer.function = tulip_tbl[tp->chip_id].media_timer;
add_timer(&tp->timer);
return 0;
}
static void init_media(struct net_device *dev)
{
struct tulip_private *tp = (struct tulip_private *)dev->priv;
long ioaddr = dev->base_addr;
int i;
tp->saved_if_port = dev->if_port;
if (dev->if_port == 0)
dev->if_port = tp->default_port;
/* Allow selecting a default media. */
i = 0;
if (tp->mtable == NULL)
goto media_picked;
if (dev->if_port) {
int looking_for = media_cap[dev->if_port] & MediaIsMII ? 11 :
(dev->if_port == 12 ? 0 : dev->if_port);
for (i = 0; i < tp->mtable->leafcount; i++)
if (tp->mtable->mleaf[i].media == looking_for) {
printk(KERN_INFO "%s: Using user-specified media %s.\n",
dev->name, medianame[dev->if_port]);
goto media_picked;
}
}
if ((tp->mtable->defaultmedia & 0x0800) == 0) {
int looking_for = tp->mtable->defaultmedia & MEDIA_MASK;
for (i = 0; i < tp->mtable->leafcount; i++)
if (tp->mtable->mleaf[i].media == looking_for) {
printk(KERN_INFO "%s: Using EEPROM-set media %s.\n",
dev->name, medianame[looking_for]);
goto media_picked;
}
}
/* Start sensing first non-full-duplex media. */
for (i = tp->mtable->leafcount - 1;
(media_cap[tp->mtable->mleaf[i].media] & MediaAlwaysFD) && i > 0; i--)
;
media_picked:
tp->csr6 = 0;
tp->cur_index = i;
tp->nwayset = 0;
if (dev->if_port) {
if (tp->chip_id == DC21143 &&
(media_cap[dev->if_port] & MediaIsMII)) {
/* We must reset the media CSRs when we force-select MII mode. */
outl(0x0000, ioaddr + CSR13);
outl(0x0000, ioaddr + CSR14);
outl(0x0008, ioaddr + CSR15);
}
select_media(dev, 1);
return;
}
switch(tp->chip_id) {
case DC21041:
/* tp->nway = 1;*/
nway_start(dev);
break;
case DC21142:
if (tp->mii_cnt) {
select_media(dev, 1);
if (tp->msg_level & NETIF_MSG_LINK)
printk(KERN_INFO "%s: Using MII transceiver %d, status "
"%4.4x.\n",
dev->name, tp->phys[0], mdio_read(dev, tp->phys[0], 1));
outl(0x82020000, ioaddr + CSR6);
tp->csr6 = 0x820E0000;
dev->if_port = 11;
outl(0x0000, ioaddr + CSR13);
outl(0x0000, ioaddr + CSR14);
} else
nway_start(dev);
break;
case PNIC2:
nway_start(dev);
break;
case LC82C168:
if (tp->mii_cnt) {
dev->if_port = 11;
tp->csr6 = 0x814C0000 | (tp->full_duplex ? FullDuplex : 0);
outl(0x0001, ioaddr + CSR15);
} else if (inl(ioaddr + CSR5) & TPLnkPass)
pnic_do_nway(dev);
else {
/* Start with 10mbps to do autonegotiation. */
outl(0x32, ioaddr + CSR12);
tp->csr6 = 0x00420000;
outl(0x0001B078, ioaddr + 0xB8);
outl(0x0201B078, ioaddr + 0xB8);
}
break;
case MX98713: case COMPEX9881:
dev->if_port = 0;
tp->csr6 = 0x01880000 | (tp->full_duplex ? FullDuplex : 0);
outl(0x0f370000 | inw(ioaddr + 0x80), ioaddr + 0x80);
break;
case MX98715: case MX98725:
/* Provided by BOLO, Macronix - 12/10/1998. */
dev->if_port = 0;
tp->csr6 = 0x01a80000 | FullDuplex;
outl(0x0f370000 | inw(ioaddr + 0x80), ioaddr + 0x80);
outl(0x11000 | inw(ioaddr + 0xa0), ioaddr + 0xa0);
break;
case COMET: case CONEXANT:
/* Enable automatic Tx underrun recovery. */
outl(inl(ioaddr + 0x88) | 1, ioaddr + 0x88);
dev->if_port = tp->mii_cnt ? 11 : 0;
tp->csr6 = 0x00040000;
break;
case AX88140: case AX88141:
tp->csr6 = tp->mii_cnt ? 0x00040100 : 0x00000100;
break;
default:
select_media(dev, 1);
}
}
/* Set up the transceiver control registers for the selected media type.
STARTUP indicates to reset the transceiver. It is set to '2' for
the initial card detection, and '1' during resume or open().
*/
static void select_media(struct net_device *dev, int startup)
{
long ioaddr = dev->base_addr;
struct tulip_private *tp = (struct tulip_private *)dev->priv;
struct mediatable *mtable = tp->mtable;
u32 new_csr6;
int i;
if (mtable) {
struct medialeaf *mleaf = &mtable->mleaf[tp->cur_index];
unsigned char *p = mleaf->leafdata;
if (tp->msg_level & NETIF_MSG_LINK)
printk(KERN_DEBUG "%s: Media table type %d.\n",
dev->name, mleaf->type);
switch (mleaf->type) {
case 0: /* 21140 non-MII xcvr. */
if (tp->msg_level & NETIF_MSG_LINK)
printk(KERN_DEBUG "%s: Using a 21140 non-MII transceiver"
" with control setting %2.2x.\n",
dev->name, p[1]);
dev->if_port = p[0];
if (startup)
outl(mtable->csr12dir | 0x100, ioaddr + CSR12);
outl(p[1], ioaddr + CSR12);
new_csr6 = 0x02000000 | ((p[2] & 0x71) << 18);
break;
case 2: case 4: {
u16 setup[5];
u32 csr13val, csr14val, csr15dir, csr15val;
for (i = 0; i < 5; i++)
setup[i] = get_u16(&p[i*2 + 1]);
dev->if_port = p[0] & MEDIA_MASK;
if (media_cap[dev->if_port] & MediaAlwaysFD)
tp->full_duplex = 1;
if (startup && mtable->has_reset) {
struct medialeaf *rleaf = &mtable->mleaf[mtable->has_reset-1];
unsigned char *rst = rleaf->leafdata;
if (tp->msg_level & NETIF_MSG_LINK)
printk(KERN_DEBUG "%s: Resetting the transceiver.\n",
dev->name);
for (i = 0; i < rst[0]; i++)
outl(get_u16(rst + 1 + (i<<1)) << 16, ioaddr + CSR15);
}
if (tp->msg_level & NETIF_MSG_LINK)
printk(KERN_DEBUG "%s: 21143 non-MII %s transceiver control "
"%4.4x/%4.4x.\n",
dev->name, medianame[dev->if_port], setup[0], setup[1]);
if (p[0] & 0x40) { /* SIA (CSR13-15) setup values are provided. */
csr13val = setup[0];
csr14val = setup[1];
csr15dir = (setup[3]<<16) | setup[2];
csr15val = (setup[4]<<16) | setup[2];
outl(0, ioaddr + CSR13);
outl(csr14val, ioaddr + CSR14);
outl(csr15dir, ioaddr + CSR15); /* Direction */
outl(csr15val, ioaddr + CSR15); /* Data */
outl(csr13val, ioaddr + CSR13);
} else {
csr13val = 1;
csr14val = 0x0003FFFF;
csr15dir = (setup[0]<<16) | 0x0008;
csr15val = (setup[1]<<16) | 0x0008;
if (dev->if_port <= 4)
csr14val = t21142_csr14[dev->if_port];
if (startup) {
outl(0, ioaddr + CSR13);
outl(csr14val, ioaddr + CSR14);
}
outl(csr15dir, ioaddr + CSR15); /* Direction */
outl(csr15val, ioaddr + CSR15); /* Data */
if (startup) outl(csr13val, ioaddr + CSR13);
}
if (tp->msg_level & NETIF_MSG_LINK)
printk(KERN_DEBUG "%s: Setting CSR15 to %8.8x/%8.8x.\n",
dev->name, csr15dir, csr15val);
if (mleaf->type == 4)
new_csr6 = 0x820A0000 | ((setup[2] & 0x71) << 18);
else
new_csr6 = 0x82420000;
break;
}
case 1: case 3: {
int phy_num = p[0];
int init_length = p[1];
u16 *misc_info;
dev->if_port = 11;
new_csr6 = 0x020E0000;
if (mleaf->type == 3) { /* 21142 */
u16 *init_sequence = (u16*)(p+2);
u16 *reset_sequence = &((u16*)(p+3))[init_length];
int reset_length = p[2 + init_length*2];
misc_info = reset_sequence + reset_length;
if (startup)
for (i = 0; i < reset_length; i++)
outl(get_u16(&reset_sequence[i]) << 16, ioaddr + CSR15);
for (i = 0; i < init_length; i++)
outl(get_u16(&init_sequence[i]) << 16, ioaddr + CSR15);
} else {
u8 *init_sequence = p + 2;
u8 *reset_sequence = p + 3 + init_length;
int reset_length = p[2 + init_length];
misc_info = (u16*)(reset_sequence + reset_length);
if (startup) {
outl(mtable->csr12dir | 0x100, ioaddr + CSR12);
for (i = 0; i < reset_length; i++)
outl(reset_sequence[i], ioaddr + CSR12);
}
for (i = 0; i < init_length; i++)
outl(init_sequence[i], ioaddr + CSR12);
}
tp->advertising[phy_num] = get_u16(&misc_info[1]) | 1;
if (startup < 2) {
if (tp->mii_advertise == 0)
tp->mii_advertise = tp->advertising[phy_num];
if (tp->msg_level & NETIF_MSG_LINK)
printk(KERN_DEBUG "%s: Advertising %4.4x on MII %d.\n",
dev->name, tp->mii_advertise, tp->phys[phy_num]);
mdio_write(dev, tp->phys[phy_num], 4, tp->mii_advertise);
}
break;
}
default:
printk(KERN_DEBUG "%s: Invalid media table selection %d.\n",
dev->name, mleaf->type);
new_csr6 = 0x020E0000;
}
if (tp->msg_level & NETIF_MSG_LINK)
printk(KERN_DEBUG "%s: Using media type %s, CSR12 is %2.2x.\n",
dev->name, medianame[dev->if_port],
(int)inl(ioaddr + CSR12) & 0xff);
} else if (tp->chip_id == DC21041) {
int port = dev->if_port <= 4 ? dev->if_port : 0;
if (tp->msg_level & NETIF_MSG_LINK)
printk(KERN_DEBUG "%s: 21041 using media %s, CSR12 is %4.4x.\n",
dev->name, medianame[port == 3 ? 12: port],
(int)inl(ioaddr + CSR12));
outl(0x00000000, ioaddr + CSR13); /* Reset the serial interface */
outl(t21041_csr14[port], ioaddr + CSR14);
outl(t21041_csr15[port], ioaddr + CSR15);
outl(t21041_csr13[port], ioaddr + CSR13);
new_csr6 = 0x80020000;
} else if (tp->chip_id == LC82C168) {
if (startup && ! tp->medialock)
dev->if_port = tp->mii_cnt ? 11 : 0;
if (tp->msg_level & NETIF_MSG_LINK)
printk(KERN_DEBUG "%s: PNIC PHY status is %3.3x, media %s.\n",
dev->name, (int)inl(ioaddr + 0xB8),
medianame[dev->if_port]);
if (tp->mii_cnt) {
new_csr6 = 0x810C0000;
outl(0x0001, ioaddr + CSR15);
outl(0x0201B07A, ioaddr + 0xB8);
} else if (startup) {
/* Start with 10mbps to do autonegotiation. */
outl(0x32, ioaddr + CSR12);
new_csr6 = 0x00420000;
outl(0x0001B078, ioaddr + 0xB8);
outl(0x0201B078, ioaddr + 0xB8);
} else if (dev->if_port == 3 || dev->if_port == 5) {
outl(0x33, ioaddr + CSR12);
new_csr6 = 0x01860000;
/* Trigger autonegotiation. */
outl(startup ? 0x0201F868 : 0x0001F868, ioaddr + 0xB8);
} else {
outl(0x32, ioaddr + CSR12);
new_csr6 = 0x00420000;
outl(0x1F078, ioaddr + 0xB8);
}
} else if (tp->chip_id == DC21040) { /* 21040 */
/* Turn on the xcvr interface. */
int csr12 = inl(ioaddr + CSR12);
if (tp->msg_level & NETIF_MSG_LINK)
printk(KERN_DEBUG "%s: 21040 media type is %s, CSR12 is %2.2x.\n",
dev->name, medianame[dev->if_port], csr12);
if (media_cap[dev->if_port] & MediaAlwaysFD)
tp->full_duplex = 1;
new_csr6 = 0x20000;
/* Set the full duplux match frame. */
outl(FULL_DUPLEX_MAGIC, ioaddr + CSR11);
outl(0x00000000, ioaddr + CSR13); /* Reset the serial interface */
if (t21040_csr13[dev->if_port] & 8) {
outl(0x0705, ioaddr + CSR14);
outl(0x0006, ioaddr + CSR15);
} else {
outl(0xffff, ioaddr + CSR14);
outl(0x0000, ioaddr + CSR15);
}
outl(0x8f01 | t21040_csr13[dev->if_port], ioaddr + CSR13);
} else { /* Unknown chip type with no media table. */
if (tp->default_port == 0)
dev->if_port = tp->mii_cnt ? 11 : 3;
if (media_cap[dev->if_port] & MediaIsMII) {
new_csr6 = 0x020E0000;
} else if (media_cap[dev->if_port] & MediaIsFx) {
new_csr6 = 0x02860000;
} else
new_csr6 = 0x038E0000;
if (tp->msg_level & NETIF_MSG_LINK)
printk(KERN_DEBUG "%s: No media description table, assuming "
"%s transceiver, CSR12 %2.2x.\n",
dev->name, medianame[dev->if_port],
(int)inl(ioaddr + CSR12));
}
tp->csr6 = new_csr6 | (tp->csr6 & 0xfdff) |
(tp->full_duplex ? FullDuplex : 0);
return;
}
/*
Check the MII negotiated duplex, and change the CSR6 setting if
required.
Return 0 if everything is OK.
Return < 0 if the transceiver is missing or has no link beat.
*/
static int check_duplex(struct net_device *dev)
{
long ioaddr = dev->base_addr;
struct tulip_private *tp = (struct tulip_private *)dev->priv;
int mii_reg1, mii_reg5, negotiated, duplex;
if (tp->full_duplex_lock)
return 0;
mii_reg5 = mdio_read(dev, tp->phys[0], 5);
negotiated = mii_reg5 & tp->mii_advertise;
if (tp->msg_level & NETIF_MSG_TIMER)
printk(KERN_INFO "%s: MII link partner %4.4x, negotiated %4.4x.\n",
dev->name, mii_reg5, negotiated);
if (mii_reg5 == 0xffff)
return -2;
if ((mii_reg5 & 0x4000) == 0 && /* No negotiation. */
((mii_reg1 = mdio_read(dev, tp->phys[0], 1)) & 0x0004) == 0) {
int new_reg1 = mdio_read(dev, tp->phys[0], 1);
if ((new_reg1 & 0x0004) == 0) {
if (tp->msg_level & NETIF_MSG_TIMER)
printk(KERN_INFO "%s: No link beat on the MII interface,"
" status %4.4x.\n", dev->name, new_reg1);
return -1;
}
}
duplex = ((negotiated & 0x0300) == 0x0100
|| (negotiated & 0x00C0) == 0x0040);
/* 100baseTx-FD or 10T-FD, but not 100-HD */
if (tp->full_duplex != duplex) {
tp->full_duplex = duplex;
if (negotiated & 0x0380) /* 100mbps. */
tp->csr6 &= ~0x00400000;
if (tp->full_duplex) tp->csr6 |= FullDuplex;
else tp->csr6 &= ~FullDuplex;
outl(tp->csr6 | RxOn, ioaddr + CSR6);
outl(tp->csr6 | TxOn | RxOn, ioaddr + CSR6);
if (tp->msg_level & NETIF_MSG_LINK)
printk(KERN_INFO "%s: Setting %s-duplex based on MII "
"#%d link partner capability of %4.4x.\n",
dev->name, tp->full_duplex ? "full" : "half",
tp->phys[0], mii_reg5);
return 1;
}
return 0;
}
static void tulip_timer(unsigned long data)
{
struct net_device *dev = (struct net_device *)data;
struct tulip_private *tp = (struct tulip_private *)dev->priv;
long ioaddr = dev->base_addr;
u32 csr12 = inl(ioaddr + CSR12);
int next_tick = 2*HZ;
if (tp->msg_level & NETIF_MSG_TIMER)
printk(KERN_DEBUG "%s: Media selection tick, %s, status %8.8x mode"
" %8.8x SIA %8.8x %8.8x %8.8x %8.8x.\n",
dev->name, medianame[dev->if_port], (int)inl(ioaddr + CSR5),
(int)inl(ioaddr + CSR6), csr12, (int)inl(ioaddr + CSR13),
(int)inl(ioaddr + CSR14), (int)inl(ioaddr + CSR15));
switch (tp->chip_id) {
case DC21040:
if (!tp->medialock && (csr12 & 0x0002)) { /* Network error */
if (tp->msg_level & NETIF_MSG_TIMER)
printk(KERN_INFO "%s: No link beat found.\n",
dev->name);
dev->if_port = (dev->if_port == 2 ? 0 : 2);
select_media(dev, 0);
dev->trans_start = jiffies;
}
break;
case DC21041:
if (tp->msg_level & NETIF_MSG_TIMER)
printk(KERN_DEBUG "%s: 21041 media tick CSR12 %8.8x.\n",
dev->name, csr12);
if (tp->medialock) break;
switch (dev->if_port) {
case 0: case 3: case 4:
if (csr12 & 0x0004) { /*LnkFail */
/* 10baseT is dead. Check for activity on alternate port. */
tp->mediasense = 1;
if (csr12 & 0x0200)
dev->if_port = 2;
else
dev->if_port = 1;
if (tp->msg_level & NETIF_MSG_LINK)
printk(KERN_INFO "%s: No 21041 10baseT link beat, Media "
"switched to %s.\n",
dev->name, medianame[dev->if_port]);
outl(0, ioaddr + CSR13); /* Reset */
outl(t21041_csr14[dev->if_port], ioaddr + CSR14);
outl(t21041_csr15[dev->if_port], ioaddr + CSR15);
outl(t21041_csr13[dev->if_port], ioaddr + CSR13);
next_tick = 10*HZ; /* 2.4 sec. */
} else
next_tick = 30*HZ;
break;
case 1: /* 10base2 */
case 2: /* AUI */
if (csr12 & 0x0100) {
next_tick = (30*HZ); /* 30 sec. */
tp->mediasense = 0;
} else if ((csr12 & 0x0004) == 0) {
if (tp->msg_level & NETIF_MSG_LINK)
printk(KERN_INFO "%s: 21041 media switched to 10baseT.\n",
dev->name);
dev->if_port = 0;
select_media(dev, 0);
next_tick = (24*HZ)/10; /* 2.4 sec. */
} else if (tp->mediasense || (csr12 & 0x0002)) {
dev->if_port = 3 - dev->if_port; /* Swap ports. */
select_media(dev, 0);
next_tick = 20*HZ;
} else {
next_tick = 20*HZ;
}
break;
}
break;
case DC21140: case DC21142: case MX98713: case COMPEX9881: default: {
struct medialeaf *mleaf;
unsigned char *p;
if (tp->mtable == NULL) { /* No EEPROM info, use generic code. */
/* Not much that can be done.
Assume this a generic MII or SYM transceiver. */
next_tick = 60*HZ;
if (tp->msg_level & NETIF_MSG_TIMER)
printk(KERN_DEBUG "%s: network media monitor CSR6 %8.8x "
"CSR12 0x%2.2x.\n",
dev->name, (int)inl(ioaddr + CSR6), csr12 & 0xff);
break;
}
mleaf = &tp->mtable->mleaf[tp->cur_index];
p = mleaf->leafdata;
switch (mleaf->type) {
case 0: case 4: {
/* Type 0 serial or 4 SYM transceiver. Check the link beat bit. */
int offset = mleaf->type == 4 ? 5 : 2;
s8 bitnum = p[offset];
if (p[offset+1] & 0x80) {
if (tp->msg_level & NETIF_MSG_TIMER)
printk(KERN_DEBUG"%s: Transceiver monitor tick "
"CSR12=%#2.2x, no media sense.\n",
dev->name, csr12);
if (mleaf->type == 4) {
if (mleaf->media == 3 && (csr12 & 0x02))
goto select_next_media;
}
break;
}
if (tp->msg_level & NETIF_MSG_TIMER)
printk(KERN_DEBUG "%s: Transceiver monitor tick: CSR12=%#2.2x"
" bit %d is %d, expecting %d.\n",
dev->name, csr12, (bitnum >> 1) & 7,
(csr12 & (1 << ((bitnum >> 1) & 7))) != 0,
(bitnum >= 0));
/* Check that the specified bit has the proper value. */
if ((bitnum < 0) !=
((csr12 & (1 << ((bitnum >> 1) & 7))) != 0)) {
if (tp->msg_level & NETIF_MSG_LINK)
printk(KERN_DEBUG "%s: Link beat detected for %s.\n",
dev->name, medianame[mleaf->media & MEDIA_MASK]);
if ((p[2] & 0x61) == 0x01) /* Bogus Znyx board. */
goto actually_mii;
break;
}
if (tp->medialock)
break;
select_next_media:
if (--tp->cur_index < 0) {
/* We start again, but should instead look for default. */
tp->cur_index = tp->mtable->leafcount - 1;
}
dev->if_port = tp->mtable->mleaf[tp->cur_index].media;
if (media_cap[dev->if_port] & MediaIsFD)
goto select_next_media; /* Skip FD entries. */
if (tp->msg_level & NETIF_MSG_LINK)
printk(KERN_DEBUG "%s: No link beat on media %s,"
" trying transceiver type %s.\n",
dev->name, medianame[mleaf->media & MEDIA_MASK],
medianame[tp->mtable->mleaf[tp->cur_index].media]);
select_media(dev, 0);
/* Restart the transmit process. */
outl(tp->csr6 | RxOn, ioaddr + CSR6);
outl(tp->csr6 | TxOn | RxOn, ioaddr + CSR6);
next_tick = (24*HZ)/10;
break;
}
case 1: case 3: /* 21140, 21142 MII */
actually_mii:
check_duplex(dev);
next_tick = 60*HZ;
break;
case 2: /* 21142 serial block has no link beat. */
default:
break;
}
}
break;
}
tp->timer.expires = jiffies + next_tick;
add_timer(&tp->timer);
}
/* Handle internal NWay transceivers uniquely.
These exist on the 21041, 21143 (in SYM mode) and the PNIC2.
*/
static void nway_timer(unsigned long data)
{
struct net_device *dev = (struct net_device *)data;
struct tulip_private *tp = (struct tulip_private *)dev->priv;
long ioaddr = dev->base_addr;
int csr12 = inl(ioaddr + CSR12);
int next_tick = 60*HZ;
int new_csr6 = 0;
if (tp->msg_level & NETIF_MSG_TIMER)
printk(KERN_INFO"%s: N-Way autonegotiation status %8.8x, %s.\n",
dev->name, csr12, medianame[dev->if_port]);
if (media_cap[dev->if_port] & MediaIsMII) {
check_duplex(dev);
} else if (tp->nwayset) {
/* Do not screw up a negotiated session! */
if (tp->msg_level & NETIF_MSG_TIMER)
printk(KERN_INFO"%s: Using NWay-set %s media, csr12 %8.8x.\n",
dev->name, medianame[dev->if_port], csr12);
} else if (tp->medialock) {
;
} else if (dev->if_port == 3) {
if (csr12 & 2) { /* No 100mbps link beat, revert to 10mbps. */
if (tp->msg_level & NETIF_MSG_LINK)
printk(KERN_INFO"%s: No 21143 100baseTx link beat, %8.8x, "
"trying NWay.\n", dev->name, csr12);
nway_start(dev);
next_tick = 3*HZ;
}
} else if ((csr12 & 0x7000) != 0x5000) {
/* Negotiation failed. Search media types. */
if (tp->msg_level & NETIF_MSG_LINK)
printk(KERN_INFO"%s: 21143 negotiation failed, status %8.8x.\n",
dev->name, csr12);
if (!(csr12 & 4)) { /* 10mbps link beat good. */
new_csr6 = 0x82420000;
dev->if_port = 0;
outl(0, ioaddr + CSR13);
outl(0x0003FFFF, ioaddr + CSR14);
outw(t21142_csr15[dev->if_port], ioaddr + CSR15);
outl(t21142_csr13[dev->if_port], ioaddr + CSR13);
} else {
/* Select 100mbps port to check for link beat. */
new_csr6 = 0x83860000;
dev->if_port = 3;
outl(0, ioaddr + CSR13);
outl(0x0003FF7F, ioaddr + CSR14);
outw(8, ioaddr + CSR15);
outl(1, ioaddr + CSR13);
}
if (tp->msg_level & NETIF_MSG_LINK)
printk(KERN_INFO"%s: Testing new 21143 media %s.\n",
dev->name, medianame[dev->if_port]);
if (new_csr6 != (tp->csr6 & ~0x20D7)) {
tp->csr6 &= 0x20D7;
tp->csr6 |= new_csr6;
outl(0x0301, ioaddr + CSR12);
outl(tp->csr6 | RxOn, ioaddr + CSR6);
outl(tp->csr6 | TxOn | RxOn, ioaddr + CSR6);
}
next_tick = 3*HZ;
}
if (tp->cur_tx - tp->dirty_tx > 0 &&
jiffies - dev->trans_start > TX_TIMEOUT) {
printk(KERN_WARNING "%s: Tx hung, %d vs. %d.\n",
dev->name, tp->cur_tx, tp->dirty_tx);
tulip_tx_timeout(dev);
}
tp->timer.expires = jiffies + next_tick;
add_timer(&tp->timer);
}
static void nway_start(struct net_device *dev)
{
struct tulip_private *tp = (struct tulip_private *)dev->priv;
long ioaddr = dev->base_addr;
int csr14 = ((tp->sym_advertise & 0x0780) << 9) |
((tp->sym_advertise&0x0020)<<1) | 0xffbf;
dev->if_port = 0;
tp->nway = tp->mediasense = 1;
tp->nwayset = tp->lpar = 0;
if (tp->chip_id == PNIC2) {
tp->csr6 = 0x01000000 | (tp->sym_advertise & 0x0040 ? FullDuplex : 0);
return;
}
if (tp->msg_level & NETIF_MSG_LINK)
printk(KERN_DEBUG "%s: Restarting internal NWay autonegotiation, "
"%8.8x.\n", dev->name, csr14);
outl(0x0001, ioaddr + CSR13);
outl(csr14, ioaddr + CSR14);
tp->csr6 = 0x82420000 | (tp->sym_advertise & 0x0040 ? FullDuplex : 0)
| (tp->csr6 & 0x20ff);
outl(tp->csr6, ioaddr + CSR6);
if (tp->mtable && tp->mtable->csr15dir) {
outl(tp->mtable->csr15dir, ioaddr + CSR15);
outl(tp->mtable->csr15val, ioaddr + CSR15);
} else if (tp->chip_id != PNIC2)
outw(0x0008, ioaddr + CSR15);
if (tp->chip_id == DC21041) /* Trigger NWAY. */
outl(0xEF01, ioaddr + CSR12);
else
outl(0x1301, ioaddr + CSR12);
}
static void nway_lnk_change(struct net_device *dev, int csr5)
{
struct tulip_private *tp = (struct tulip_private *)dev->priv;
long ioaddr = dev->base_addr;
int csr12 = inl(ioaddr + CSR12);
if (tp->chip_id == PNIC2) {
if (tp->msg_level & NETIF_MSG_LINK)
printk(KERN_INFO"%s: PNIC-2 link status changed, CSR5/12/14 %8.8x"
" %8.8x, %8.8x.\n",
dev->name, csr12, csr5, (int)inl(ioaddr + CSR14));
dev->if_port = 5;
tp->lpar = csr12 >> 16;
tp->nwayset = 1;
tp->csr6 = 0x01000000 | (tp->csr6 & 0xffff);
outl(tp->csr6, ioaddr + CSR6);
return;
}
if (tp->msg_level & NETIF_MSG_LINK)
printk(KERN_INFO"%s: 21143 link status interrupt %8.8x, CSR5 %x, "
"%8.8x.\n", dev->name, csr12, csr5, (int)inl(ioaddr + CSR14));
/* If NWay finished and we have a negotiated partner capability. */
if (tp->nway && !tp->nwayset && (csr12 & 0x7000) == 0x5000) {
int setup_done = 0;
int negotiated = tp->sym_advertise & (csr12 >> 16);
tp->lpar = csr12 >> 16;
tp->nwayset = 1;
if (negotiated & 0x0100) dev->if_port = 5;
else if (negotiated & 0x0080) dev->if_port = 3;
else if (negotiated & 0x0040) dev->if_port = 4;
else if (negotiated & 0x0020) dev->if_port = 0;
else {
tp->nwayset = 0;
if ((csr12 & 2) == 0 && (tp->sym_advertise & 0x0180))
dev->if_port = 3;
}
tp->full_duplex = (media_cap[dev->if_port] & MediaAlwaysFD) ? 1:0;
if (tp->msg_level & NETIF_MSG_LINK) {
if (tp->nwayset)
printk(KERN_INFO "%s: Switching to %s based on link "
"negotiation %4.4x & %4.4x = %4.4x.\n",
dev->name, medianame[dev->if_port], tp->sym_advertise,
tp->lpar, negotiated);
else
printk(KERN_INFO "%s: Autonegotiation failed, using %s,"
" link beat status %4.4x.\n",
dev->name, medianame[dev->if_port], csr12);
}
if (tp->mtable) {
int i;
for (i = 0; i < tp->mtable->leafcount; i++)
if (tp->mtable->mleaf[i].media == dev->if_port) {
tp->cur_index = i;
select_media(dev, 0);
setup_done = 1;
break;
}
}
if ( ! setup_done) {
tp->csr6 = (dev->if_port & 1 ? 0x838E0000 : 0x82420000)
| (tp->csr6 & 0x20ff);
if (tp->full_duplex)
tp->csr6 |= FullDuplex;
outl(1, ioaddr + CSR13);
}
#if 0 /* Restart should not be needed. */
outl(tp->csr6 | 0x0000, ioaddr + CSR6);
if (tp->msg_level & NETIF_MSG_LINK)
printk(KERN_DEBUG "%s: Restarting Tx and Rx, CSR5 is %8.8x.\n",
dev->name, inl(ioaddr + CSR5));
#endif
outl(tp->csr6 | TxOn | RxOn, ioaddr + CSR6);
if (tp->msg_level & NETIF_MSG_LINK)
printk(KERN_DEBUG "%s: Setting CSR6 %8.8x/%x CSR12 %8.8x.\n",
dev->name, tp->csr6, (int)inl(ioaddr + CSR6),
(int)inl(ioaddr + CSR12));
} else if ((tp->nwayset && (csr5 & 0x08000000)
&& (dev->if_port == 3 || dev->if_port == 5)
&& (csr12 & 2) == 2) ||
(tp->nway && (csr5 & (TPLnkFail)))) {
/* Link blew? Maybe restart NWay. */
del_timer(&tp->timer);
nway_start(dev);
tp->timer.expires = jiffies + 3*HZ;
add_timer(&tp->timer);
} else if (dev->if_port == 3 || dev->if_port == 5) {
if (tp->msg_level & NETIF_MSG_LINK) /* TIMER? */
printk(KERN_INFO"%s: 21143 %s link beat %s.\n",
dev->name, medianame[dev->if_port],
(csr12 & 2) ? "failed" : "good");
if ((csr12 & 2) && ! tp->medialock) {
del_timer(&tp->timer);
nway_start(dev);
tp->timer.expires = jiffies + 3*HZ;
add_timer(&tp->timer);
} else if (dev->if_port == 5)
outl(inl(ioaddr + CSR14) & ~0x080, ioaddr + CSR14);
} else if (dev->if_port == 0 || dev->if_port == 4) {
if ((csr12 & 4) == 0)
printk(KERN_INFO"%s: 21143 10baseT link beat good.\n",
dev->name);
} else if (!(csr12 & 4)) { /* 10mbps link beat good. */
if (tp->msg_level & NETIF_MSG_LINK)
printk(KERN_INFO"%s: 21143 10mbps sensed media.\n",
dev->name);
dev->if_port = 0;
} else if (tp->nwayset) {
if (tp->msg_level & NETIF_MSG_LINK)
printk(KERN_INFO"%s: 21143 using NWay-set %s, csr6 %8.8x.\n",
dev->name, medianame[dev->if_port], tp->csr6);
} else { /* 100mbps link beat good. */
if (tp->msg_level & NETIF_MSG_LINK)
printk(KERN_INFO"%s: 21143 100baseTx sensed media.\n",
dev->name);
dev->if_port = 3;
tp->csr6 = 0x838E0000 | (tp->csr6 & 0x20ff);
outl(0x0003FF7F, ioaddr + CSR14);
outl(0x0301, ioaddr + CSR12);
outl(tp->csr6 | RxOn, ioaddr + CSR6);
outl(tp->csr6 | RxOn | TxOn, ioaddr + CSR6);
}
}
static void mxic_timer(unsigned long data)
{
struct net_device *dev = (struct net_device *)data;
struct tulip_private *tp = (struct tulip_private *)dev->priv;
long ioaddr = dev->base_addr;
int next_tick = 60*HZ;
if (tp->msg_level & NETIF_MSG_TIMER) {
printk(KERN_INFO"%s: MXIC negotiation status %8.8x.\n", dev->name,
(int)inl(ioaddr + CSR12));
}
tp->timer.expires = jiffies + next_tick;
add_timer(&tp->timer);
}
static void pnic_do_nway(struct net_device *dev)
{
struct tulip_private *tp = (struct tulip_private *)dev->priv;
long ioaddr = dev->base_addr;
u32 phy_reg = inl(ioaddr + 0xB8);
u32 new_csr6 = tp->csr6 & ~0x40C40200;
if (phy_reg & 0x78000000) { /* Ignore baseT4 */
if (phy_reg & 0x20000000) dev->if_port = 5;
else if (phy_reg & 0x40000000) dev->if_port = 3;
else if (phy_reg & 0x10000000) dev->if_port = 4;
else if (phy_reg & 0x08000000) dev->if_port = 0;
tp->nwayset = 1;
new_csr6 = (dev->if_port & 1) ? 0x01860000 : 0x00420000;
outl(0x32 | (dev->if_port & 1), ioaddr + CSR12);
if (dev->if_port & 1)
outl(0x1F868, ioaddr + 0xB8);
if (phy_reg & 0x30000000) {
tp->full_duplex = 1;
new_csr6 |= FullDuplex;
}
if (tp->msg_level & NETIF_MSG_LINK)
printk(KERN_DEBUG "%s: PNIC autonegotiated status %8.8x, %s.\n",
dev->name, phy_reg, medianame[dev->if_port]);
if (tp->csr6 != new_csr6) {
tp->csr6 = new_csr6;
outl(tp->csr6 | RxOn, ioaddr + CSR6); /* Restart Tx */
outl(tp->csr6 | TxOn | RxOn, ioaddr + CSR6);
dev->trans_start = jiffies;
}
}
}
static void pnic_lnk_change(struct net_device *dev, int csr5)
{
struct tulip_private *tp = (struct tulip_private *)dev->priv;
long ioaddr = dev->base_addr;
int phy_reg = inl(ioaddr + 0xB8);
if (tp->msg_level & NETIF_MSG_LINK)
printk(KERN_DEBUG "%s: PNIC link changed state %8.8x, CSR5 %8.8x.\n",
dev->name, phy_reg, csr5);
if (inl(ioaddr + CSR5) & TPLnkFail) {
outl((inl(ioaddr + CSR7) & ~TPLnkFail) | TPLnkPass, ioaddr + CSR7);
if (! tp->nwayset || jiffies - dev->trans_start > 1*HZ) {
tp->csr6 = 0x00420000 | (tp->csr6 & 0x0000fdff);
outl(tp->csr6, ioaddr + CSR6);
outl(0x30, ioaddr + CSR12);
outl(0x0201F078, ioaddr + 0xB8); /* Turn on autonegotiation. */
dev->trans_start = jiffies;
}
} else if (inl(ioaddr + CSR5) & TPLnkPass) {
pnic_do_nway(dev);
outl((inl(ioaddr + CSR7) & ~TPLnkPass) | TPLnkFail, ioaddr + CSR7);
}
}
static void pnic_timer(unsigned long data)
{
struct net_device *dev = (struct net_device *)data;
struct tulip_private *tp = (struct tulip_private *)dev->priv;
long ioaddr = dev->base_addr;
int next_tick = 60*HZ;
if (media_cap[dev->if_port] & MediaIsMII) {
if (check_duplex(dev) > 0)
next_tick = 3*HZ;
} else {
int csr12 = inl(ioaddr + CSR12);
int new_csr6 = tp->csr6 & ~0x40C40200;
int phy_reg = inl(ioaddr + 0xB8);
int csr5 = inl(ioaddr + CSR5);
if (tp->msg_level & NETIF_MSG_TIMER)
printk(KERN_DEBUG "%s: PNIC timer PHY status %8.8x, %s "
"CSR5 %8.8x.\n",
dev->name, phy_reg, medianame[dev->if_port], csr5);
if (phy_reg & 0x04000000) { /* Remote link fault */
outl(0x0201F078, ioaddr + 0xB8);
next_tick = 1*HZ;
tp->nwayset = 0;
} else if (phy_reg & 0x78000000) { /* Ignore baseT4 */
pnic_do_nway(dev);
next_tick = 60*HZ;
} else if (csr5 & TPLnkFail) { /* 100baseTx link beat */
if (tp->msg_level & NETIF_MSG_LINK)
printk(KERN_DEBUG "%s: %s link beat failed, CSR12 %4.4x, "
"CSR5 %8.8x, PHY %3.3x.\n",
dev->name, medianame[dev->if_port], csr12,
(int)inl(ioaddr + CSR5), (int)inl(ioaddr + 0xB8));
next_tick = 3*HZ;
if (tp->medialock) {
} else if (tp->nwayset && (dev->if_port & 1)) {
next_tick = 1*HZ;
} else if (dev->if_port == 0) {
dev->if_port = 3;
outl(0x33, ioaddr + CSR12);
new_csr6 = 0x01860000;
outl(0x1F868, ioaddr + 0xB8);
} else {
dev->if_port = 0;
outl(0x32, ioaddr + CSR12);
new_csr6 = 0x00420000;
outl(0x1F078, ioaddr + 0xB8);
}
if (tp->csr6 != new_csr6) {
tp->csr6 = new_csr6;
outl(tp->csr6 | RxOn, ioaddr + CSR6); /* Restart Tx */
outl(tp->csr6 | RxOn | TxOn, ioaddr + CSR6);
dev->trans_start = jiffies;
if (tp->msg_level & NETIF_MSG_LINK)
printk(KERN_INFO "%s: Changing PNIC configuration to %s "
"%s-duplex, CSR6 %8.8x.\n",
dev->name, medianame[dev->if_port],
tp->full_duplex ? "full" : "half", new_csr6);
}
}
}
tp->timer.expires = jiffies + next_tick;
add_timer(&tp->timer);
}
static void comet_timer(unsigned long data)
{
struct net_device *dev = (struct net_device *)data;
struct tulip_private *tp = (struct tulip_private *)dev->priv;
int next_tick = 60*HZ;
if (tp->msg_level & NETIF_MSG_TIMER)
printk(KERN_DEBUG "%s: Comet link status %4.4x partner capability "
"%4.4x.\n",
dev->name, mdio_read(dev, tp->phys[0], 1),
mdio_read(dev, tp->phys[0], 5));
check_duplex(dev);
tp->timer.expires = jiffies + next_tick;
add_timer(&tp->timer);
}
static void tulip_tx_timeout(struct net_device *dev)
{
struct tulip_private *tp = (struct tulip_private *)dev->priv;
long ioaddr = dev->base_addr;
if (media_cap[dev->if_port] & MediaIsMII) {
/* Do nothing -- the media monitor should handle this. */
int mii_bmsr = mdio_read(dev, tp->phys[0], 1);
if (tp->msg_level & NETIF_MSG_LINK)
printk(KERN_WARNING "%s: Transmit timeout using MII device,"
" status %4.4x.\n",
dev->name, mii_bmsr);
if ( ! (mii_bmsr & 0x0004)) { /* No link beat present */
dev->trans_start = jiffies;
netif_link_down(dev);
return;
}
} else switch (tp->chip_id) {
case DC21040:
if ( !tp->medialock && inl(ioaddr + CSR12) & 0x0002) {
dev->if_port = (dev->if_port == 2 ? 0 : 2);
printk(KERN_INFO "%s: transmit timed out, switching to "
"%s.\n",
dev->name, medianame[dev->if_port]);
select_media(dev, 0);
}
dev->trans_start = jiffies;
return; /* Note: not break! */
case DC21041: {
int csr12 = inl(ioaddr + CSR12);
printk(KERN_WARNING "%s: 21041 transmit timed out, status %8.8x, "
"CSR12 %8.8x, CSR13 %8.8x, CSR14 %8.8x, resetting...\n",
dev->name, (int)inl(ioaddr + CSR5), csr12,
(int)inl(ioaddr + CSR13), (int)inl(ioaddr + CSR14));
tp->mediasense = 1;
if ( ! tp->medialock) {
if (dev->if_port == 1 || dev->if_port == 2)
dev->if_port = (csr12 & 0x0004) ? 2 - dev->if_port : 0;
else
dev->if_port = 1;
select_media(dev, 0);
}
break;
}
case DC21142:
if (tp->nwayset) {
printk(KERN_WARNING "%s: Transmit timed out, status %8.8x, "
"SIA %8.8x %8.8x %8.8x %8.8x, restarting NWay .\n",
dev->name, (int)inl(ioaddr + CSR5),
(int)inl(ioaddr + CSR12), (int)inl(ioaddr + CSR13),
(int)inl(ioaddr + CSR14), (int)inl(ioaddr + CSR15));
nway_start(dev);
break;
}
/* Fall through. */
case DC21140: case MX98713: case COMPEX9881:
printk(KERN_WARNING "%s: %s transmit timed out, status %8.8x, "
"SIA %8.8x %8.8x %8.8x %8.8x, resetting...\n",
dev->name, tulip_tbl[tp->chip_id].chip_name,
(int)inl(ioaddr + CSR5), (int)inl(ioaddr + CSR12),
(int)inl(ioaddr + CSR13), (int)inl(ioaddr + CSR14),
(int)inl(ioaddr + CSR15));
if ( ! tp->medialock && tp->mtable) {
do
--tp->cur_index;
while (tp->cur_index >= 0
&& (media_cap[tp->mtable->mleaf[tp->cur_index].media]
& MediaIsFD));
if (tp->cur_index < 0) {
/* We start again, but should instead look for default. */
tp->cur_index = tp->mtable->leafcount - 1;
}
select_media(dev, 0);
printk(KERN_WARNING "%s: transmit timed out, switching to %s "
"media.\n", dev->name, medianame[dev->if_port]);
}
break;
case PNIC2:
printk(KERN_WARNING "%s: PNIC2 transmit timed out, status %8.8x, "
"CSR6/7 %8.8x / %8.8x CSR12 %8.8x, resetting...\n",
dev->name, (int)inl(ioaddr + CSR5), (int)inl(ioaddr + CSR6),
(int)inl(ioaddr + CSR7), (int)inl(ioaddr + CSR12));
break;
default:
printk(KERN_WARNING "%s: Transmit timed out, status %8.8x, CSR12 "
"%8.8x, resetting...\n",
dev->name, (int)inl(ioaddr + CSR5), (int)inl(ioaddr + CSR12));
}
#if defined(way_too_many_messages) && defined(__i386__)
if (tp->msg_level & NETIF_MSG_TXERR) {
int i;
for (i = 0; i < RX_RING_SIZE; i++) {
u8 *buf = (u8 *)(tp->rx_ring[i].buffer1);
int j;
printk(KERN_DEBUG "%2d: %8.8x %8.8x %8.8x %8.8x "
"%2.2x %2.2x %2.2x.\n",
i, (unsigned int)tp->rx_ring[i].status,
(unsigned int)tp->rx_ring[i].length,
(unsigned int)tp->rx_ring[i].buffer1,
(unsigned int)tp->rx_ring[i].buffer2,
buf[0], buf[1], buf[2]);
for (j = 0; buf[j] != 0xee && j < 1600; j++)
if (j < 100) printk(" %2.2x", buf[j]);
printk(" j=%d.\n", j);
}
printk(KERN_DEBUG " Rx ring %8.8x: ", (int)tp->rx_ring);
for (i = 0; i < RX_RING_SIZE; i++)
printk(" %8.8x", (unsigned int)tp->rx_ring[i].status);
printk("\n" KERN_DEBUG " Tx ring %8.8x: ", (int)tp->tx_ring);
for (i = 0; i < TX_RING_SIZE; i++)
printk(" %8.8x", (unsigned int)tp->tx_ring[i].status);
printk("\n");
}
#endif
/* Stop and restart the Tx process.
The pwr_event approach of empty/init_rings() may be better... */
outl(tp->csr6 | RxOn, ioaddr + CSR6);
outl(tp->csr6 | RxOn | TxOn, ioaddr + CSR6);
/* Trigger an immediate transmit demand. */
outl(0, ioaddr + CSR1);
outl(tulip_tbl[tp->chip_id].valid_intrs, ioaddr + CSR7);
dev->trans_start = jiffies;
tp->stats.tx_errors++;
return;
}
/* Initialize the Rx and Tx rings, along with various 'dev' bits. */
static void tulip_init_ring(struct net_device *dev)
{
struct tulip_private *tp = (struct tulip_private *)dev->priv;
int i;
tp->rx_dead = tp->tx_full = 0;
tp->cur_rx = tp->cur_tx = 0;
tp->dirty_rx = tp->dirty_tx = 0;
tp->rx_buf_sz = dev->mtu + 18;
if (tp->rx_buf_sz < PKT_BUF_SZ)
tp->rx_buf_sz = PKT_BUF_SZ;
for (i = 0; i < RX_RING_SIZE; i++) {
tp->rx_ring[i].status = 0x00000000;
tp->rx_ring[i].length = cpu_to_le32(tp->rx_buf_sz);
tp->rx_ring[i].buffer2 = virt_to_le32desc(&tp->rx_ring[i+1]);
tp->rx_skbuff[i] = NULL;
}
/* Mark the last entry as wrapping the ring. */
tp->rx_ring[i-1].length |= cpu_to_le32(DESC_RING_WRAP);
tp->rx_ring[i-1].buffer2 = virt_to_le32desc(&tp->rx_ring[0]);
for (i = 0; i < RX_RING_SIZE; i++) {
/* Note the receive buffer must be longword aligned.
dev_alloc_skb() provides 16 byte alignment. But do *not*
use skb_reserve() to align the IP header! */
struct sk_buff *skb = dev_alloc_skb(tp->rx_buf_sz);
tp->rx_skbuff[i] = skb;
if (skb == NULL)
break;
skb->dev = dev; /* Mark as being used by this device. */
tp->rx_ring[i].status = cpu_to_le32(DescOwned);
tp->rx_ring[i].buffer1 = virt_to_le32desc(skb->tail);
}
tp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
/* The Tx buffer descriptor is filled in as needed, but we
do need to clear the ownership bit. */
for (i = 0; i < TX_RING_SIZE; i++) {
tp->tx_skbuff[i] = 0;
tp->tx_ring[i].status = 0x00000000;
tp->tx_ring[i].buffer2 = virt_to_le32desc(&tp->tx_ring[i+1]);
}
tp->tx_ring[i-1].buffer2 = virt_to_le32desc(&tp->tx_ring[0]);
}
static int
tulip_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct tulip_private *tp = (struct tulip_private *)dev->priv;
int entry, q_used_cnt;
u32 flag;
/* Block a timer-based transmit from overlapping. This happens when
packets are presumed lost, and we use this check the Tx status. */
if (netif_pause_tx_queue(dev) != 0) {
/* This watchdog code is redundant with the media monitor timer. */
if (jiffies - dev->trans_start > TX_TIMEOUT)
tulip_tx_timeout(dev);
return 1;
}
/* Caution: the write order is important here, set the field
with the ownership bits last. */
/* Calculate the next Tx descriptor entry. */
entry = tp->cur_tx % TX_RING_SIZE;
q_used_cnt = tp->cur_tx - tp->dirty_tx;
tp->tx_skbuff[entry] = skb;
tp->tx_ring[entry].buffer1 = virt_to_le32desc(skb->data);
if (q_used_cnt < TX_QUEUE_LEN/2) {/* Typical path */
flag = 0x60000000; /* No interrupt */
} else if (q_used_cnt == TX_QUEUE_LEN/2) {
flag = 0xe0000000; /* Tx-done intr. */
} else if (q_used_cnt < TX_QUEUE_LEN) {
flag = 0x60000000; /* No Tx-done intr. */
} else { /* Leave room for set_rx_mode() to fill entries. */
tp->tx_full = 1;
flag = 0xe0000000; /* Tx-done intr. */
}
if (entry == TX_RING_SIZE-1)
flag = 0xe0000000 | DESC_RING_WRAP;
tp->tx_ring[entry].length = cpu_to_le32(skb->len | flag);
tp->tx_ring[entry].status = cpu_to_le32(DescOwned);
tp->cur_tx++;
if ( ! tp->tx_full)
netif_unpause_tx_queue(dev);
else {
netif_stop_tx_queue(dev);
/* Check for a just-cleared queue race.
Note that this code path differs from other drivers because we
set the tx_full flag early. */
if ( ! tp->tx_full)
netif_resume_tx_queue(dev);
}
dev->trans_start = jiffies;
/* Trigger an immediate transmit demand. */
outl(0, dev->base_addr + CSR1);
return 0;
}
/* The interrupt handler does all of the Rx thread work and cleans up
after the Tx thread. */
static void tulip_interrupt(int irq, void *dev_instance, struct pt_regs *regs)
{
struct net_device *dev = (struct net_device *)dev_instance;
struct tulip_private *tp = (struct tulip_private *)dev->priv;
long ioaddr = dev->base_addr;
int csr5, work_budget = tp->max_interrupt_work;
do {
csr5 = inl(ioaddr + CSR5);
if ((csr5 & (NormalIntr|AbnormalIntr)) == 0)
break;
if (tp->msg_level & NETIF_MSG_INTR)
printk(KERN_DEBUG "%s: interrupt csr5=%#8.8x new csr5=%#8.8x.\n",
dev->name, csr5, (int)inl(dev->base_addr + CSR5));
/* Acknowledge all of the current interrupt sources ASAP. */
outl(csr5 & 0x0001ffff, ioaddr + CSR5);
if (csr5 & (RxIntr | RxNoBuf))
work_budget -= tulip_rx(dev);
if (csr5 & (TxNoBuf | TxDied | TxIntr)) {
unsigned int dirty_tx;
for (dirty_tx = tp->dirty_tx; tp->cur_tx - dirty_tx > 0;
dirty_tx++) {
int entry = dirty_tx % TX_RING_SIZE;
int status = le32_to_cpu(tp->tx_ring[entry].status);
if (status < 0)
break; /* It still has not been Txed */
/* Check for Rx filter setup frames. */
if (tp->tx_skbuff[entry] == NULL)
continue;
if (status & 0x8000) {
/* There was an major error, log it. */
if (tp->msg_level & NETIF_MSG_TX_ERR)
printk(KERN_DEBUG "%s: Transmit error, Tx status %8.8x.\n",
dev->name, status);
tp->stats.tx_errors++;
if (status & 0x4104) tp->stats.tx_aborted_errors++;
if (status & 0x0C00) tp->stats.tx_carrier_errors++;
if (status & 0x0200) tp->stats.tx_window_errors++;
if (status & 0x0002) tp->stats.tx_fifo_errors++;
if ((status & 0x0080) && tp->full_duplex == 0)
tp->stats.tx_heartbeat_errors++;
#ifdef ETHER_STATS
if (status & 0x0100) tp->stats.collisions16++;
#endif
} else {
if (tp->msg_level & NETIF_MSG_TX_DONE)
printk(KERN_DEBUG "%s: Transmit complete, status "
"%8.8x.\n", dev->name, status);
#ifdef ETHER_STATS
if (status & 0x0001) tp->stats.tx_deferred++;
#endif
#if LINUX_VERSION_CODE > 0x20127
tp->stats.tx_bytes += tp->tx_skbuff[entry]->len;
#endif
tp->stats.collisions += (status >> 3) & 15;
tp->stats.tx_packets++;
}
/* Free the original skb. */
dev_free_skb_irq(tp->tx_skbuff[entry]);
tp->tx_skbuff[entry] = 0;
}
#ifndef final_version
if (tp->cur_tx - dirty_tx > TX_RING_SIZE) {
printk(KERN_ERR "%s: Out-of-sync dirty pointer, %d vs. %d, full=%d.\n",
dev->name, dirty_tx, tp->cur_tx, tp->tx_full);
dirty_tx += TX_RING_SIZE;
}
#endif
if (tp->tx_full && tp->cur_tx - dirty_tx < TX_QUEUE_LEN - 4) {
/* The ring is no longer full, clear tbusy. */
tp->tx_full = 0;
netif_resume_tx_queue(dev);
}
tp->dirty_tx = dirty_tx;
}
if (tp->rx_dead) {
tulip_rx(dev);
if (tp->cur_rx - tp->dirty_rx < RX_RING_SIZE - 3) {
printk(KERN_ERR "%s: Restarted Rx at %d / %d.\n",
dev->name, tp->cur_rx, tp->dirty_rx);
outl(0, ioaddr + CSR2); /* Rx poll demand */
tp->rx_dead = 0;
}
}
/* Log errors. */
if (csr5 & AbnormalIntr) { /* Abnormal error summary bit. */
if (csr5 == 0xffffffff)
break;
if (csr5 & TxJabber) tp->stats.tx_errors++;
if (csr5 & PCIBusError) {
printk(KERN_ERR "%s: PCI Fatal Bus Error, %8.8x.\n",
dev->name, csr5);
}
if (csr5 & TxFIFOUnderflow) {
if ((tp->csr6 & 0xC000) != 0xC000)
tp->csr6 += 0x4000; /* Bump up the Tx threshold */
else
tp->csr6 |= 0x00200000; /* Store-n-forward. */
if (tp->msg_level & NETIF_MSG_TX_ERR)
printk(KERN_WARNING "%s: Tx threshold increased, "
"new CSR6 %x.\n", dev->name, tp->csr6);
}
if (csr5 & TxDied) {
/* This is normal when changing Tx modes. */
if (tp->msg_level & NETIF_MSG_LINK)
printk(KERN_WARNING "%s: The transmitter stopped."
" CSR5 is %x, CSR6 %x, new CSR6 %x.\n",
dev->name, csr5, (int)inl(ioaddr + CSR6), tp->csr6);
}
if (csr5 & (TxDied | TxFIFOUnderflow | PCIBusError)) {
/* Restart the transmit process. */
outl(tp->csr6 | RxOn, ioaddr + CSR6);
outl(tp->csr6 | RxOn | TxOn, ioaddr + CSR6);
}
if (csr5 & (RxStopped | RxNoBuf)) {
/* Missed a Rx frame or mode change. */
tp->stats.rx_missed_errors += inl(ioaddr + CSR8) & 0xffff;
if (tp->flags & COMET_MAC_ADDR) {
outl(tp->mc_filter[0], ioaddr + 0xAC);
outl(tp->mc_filter[1], ioaddr + 0xB0);
}
tulip_rx(dev);
if (csr5 & RxNoBuf)
tp->rx_dead = 1;
outl(tp->csr6 | RxOn | TxOn, ioaddr + CSR6);
}
if (csr5 & TimerInt) {
if (tp->msg_level & NETIF_MSG_INTR)
printk(KERN_ERR "%s: Re-enabling interrupts, %8.8x.\n",
dev->name, csr5);
outl(tulip_tbl[tp->chip_id].valid_intrs, ioaddr + CSR7);
}
if (csr5 & (TPLnkPass | TPLnkFail | 0x08000000)) {
if (tp->link_change)
(tp->link_change)(dev, csr5);
}
/* Clear all error sources, included undocumented ones! */
outl(0x0800f7ba, ioaddr + CSR5);
}
if (--work_budget < 0) {
if (tp->msg_level & NETIF_MSG_DRV)
printk(KERN_WARNING "%s: Too much work during an interrupt, "
"csr5=0x%8.8x.\n", dev->name, csr5);
/* Acknowledge all interrupt sources. */
outl(0x8001ffff, ioaddr + CSR5);
if (tp->flags & HAS_INTR_MITIGATION) {
/* Josip Loncaric at ICASE did extensive experimentation
to develop a good interrupt mitigation setting.*/
outl(0x8b240000, ioaddr + CSR11);
} else {
/* Mask all interrupting sources, set timer to re-enable. */
outl(((~csr5) & 0x0001ebef) | AbnormalIntr | TimerInt,
ioaddr + CSR7);
outl(0x0012, ioaddr + CSR11);
}
break;
}
} while (1);
if (tp->msg_level & NETIF_MSG_INTR)
printk(KERN_DEBUG "%s: exiting interrupt, csr5=%#4.4x.\n",
dev->name, (int)inl(ioaddr + CSR5));
return;
}
static int tulip_rx(struct net_device *dev)
{
struct tulip_private *tp = (struct tulip_private *)dev->priv;
int entry = tp->cur_rx % RX_RING_SIZE;
int rx_work_limit = tp->dirty_rx + RX_RING_SIZE - tp->cur_rx;
int work_done = 0;
if (tp->msg_level & NETIF_MSG_RX_STATUS)
printk(KERN_DEBUG " In tulip_rx(), entry %d %8.8x.\n", entry,
tp->rx_ring[entry].status);
/* If we own the next entry, it is a new packet. Send it up. */
while ( ! (tp->rx_ring[entry].status & cpu_to_le32(DescOwned))) {
s32 status = le32_to_cpu(tp->rx_ring[entry].status);
if (tp->msg_level & NETIF_MSG_RX_STATUS)
printk(KERN_DEBUG "%s: In tulip_rx(), entry %d %8.8x.\n",
dev->name, entry, status);
if (--rx_work_limit < 0)
break;
if ((status & 0x38008300) != 0x0300) {
if ((status & 0x38000300) != 0x0300) {
/* Ingore earlier buffers. */
if ((status & 0xffff) != 0x7fff) {
if (tp->msg_level & NETIF_MSG_RX_ERR)
printk(KERN_WARNING "%s: Oversized Ethernet frame "
"spanned multiple buffers, status %8.8x!\n",
dev->name, status);
tp->stats.rx_length_errors++;
}
} else if (status & RxDescFatalErr) {
/* There was a fatal error. */
if (tp->msg_level & NETIF_MSG_RX_ERR)
printk(KERN_DEBUG "%s: Receive error, Rx status %8.8x.\n",
dev->name, status);
tp->stats.rx_errors++; /* end of a packet.*/
if (status & 0x0890) tp->stats.rx_length_errors++;
if (status & 0x0004) tp->stats.rx_frame_errors++;
if (status & 0x0002) tp->stats.rx_crc_errors++;
if (status & 0x0001) tp->stats.rx_fifo_errors++;
}
} else {
/* Omit the four octet CRC from the length. */
short pkt_len = ((status >> 16) & 0x7ff) - 4;
struct sk_buff *skb;
#ifndef final_version
if (pkt_len > 1518) {
printk(KERN_WARNING "%s: Bogus packet size of %d (%#x).\n",
dev->name, pkt_len, pkt_len);
pkt_len = 1518;
tp->stats.rx_length_errors++;
}
#endif
/* Check if the packet is long enough to accept without copying
to a minimally-sized skbuff. */
if (pkt_len < tp->rx_copybreak
&& (skb = dev_alloc_skb(pkt_len + 2)) != NULL) {
skb->dev = dev;
skb_reserve(skb, 2); /* 16 byte align the IP header */
#if (LINUX_VERSION_CODE >= 0x20100)
eth_copy_and_sum(skb, tp->rx_skbuff[entry]->tail, pkt_len, 0);
skb_put(skb, pkt_len);
#else
memcpy(skb_put(skb, pkt_len), tp->rx_skbuff[entry]->tail,
pkt_len);
#endif
work_done++;
} else { /* Pass up the skb already on the Rx ring. */
skb_put(skb = tp->rx_skbuff[entry], pkt_len);
tp->rx_skbuff[entry] = NULL;
}
skb->protocol = eth_type_trans(skb, dev);
netif_rx(skb);
dev->last_rx = jiffies;
tp->stats.rx_packets++;
#if LINUX_VERSION_CODE > 0x20127
tp->stats.rx_bytes += pkt_len;
#endif
}
entry = (++tp->cur_rx) % RX_RING_SIZE;
}
/* Refill the Rx ring buffers. */
for (; tp->cur_rx - tp->dirty_rx > 0; tp->dirty_rx++) {
entry = tp->dirty_rx % RX_RING_SIZE;
if (tp->rx_skbuff[entry] == NULL) {
struct sk_buff *skb;
skb = tp->rx_skbuff[entry] = dev_alloc_skb(tp->rx_buf_sz);
if (skb == NULL) {
if (tp->cur_rx - tp->dirty_rx == RX_RING_SIZE)
printk(KERN_ERR "%s: No kernel memory to allocate "
"receive buffers.\n", dev->name);
break;
}
skb->dev = dev; /* Mark as being used by this device. */
tp->rx_ring[entry].buffer1 = virt_to_le32desc(skb->tail);
work_done++;
}
tp->rx_ring[entry].status = cpu_to_le32(DescOwned);
}
return work_done;
}
static void empty_rings(struct net_device *dev)
{
struct tulip_private *tp = (struct tulip_private *)dev->priv;
int i;
/* Free all the skbuffs in the Rx queue. */
for (i = 0; i < RX_RING_SIZE; i++) {
struct sk_buff *skb = tp->rx_skbuff[i];
tp->rx_skbuff[i] = 0;
tp->rx_ring[i].status = 0; /* Not owned by Tulip chip. */
tp->rx_ring[i].length = 0;
tp->rx_ring[i].buffer1 = 0xBADF00D0; /* An invalid address. */
if (skb) {
#if LINUX_VERSION_CODE < 0x20100
skb->free = 1;
#endif
dev_free_skb(skb);
}
}
for (i = 0; i < TX_RING_SIZE; i++) {
if (tp->tx_skbuff[i])
dev_free_skb(tp->tx_skbuff[i]);
tp->tx_skbuff[i] = 0;
}
}
static int tulip_close(struct net_device *dev)
{
long ioaddr = dev->base_addr;
struct tulip_private *tp = (struct tulip_private *)dev->priv;
netif_stop_tx_queue(dev);
if (tp->msg_level & NETIF_MSG_IFDOWN)
printk(KERN_DEBUG "%s: Shutting down ethercard, status was %2.2x.\n",
dev->name, (int)inl(ioaddr + CSR5));
/* Disable interrupts by clearing the interrupt mask. */
outl(0x00000000, ioaddr + CSR7);
/* Stop the Tx and Rx processes. */
outl(inl(ioaddr + CSR6) & ~TxOn & ~RxOn, ioaddr + CSR6);
/* 21040 -- Leave the card in 10baseT state. */
if (tp->chip_id == DC21040)
outl(0x00000004, ioaddr + CSR13);
if (inl(ioaddr + CSR6) != 0xffffffff)
tp->stats.rx_missed_errors += inl(ioaddr + CSR8) & 0xffff;
del_timer(&tp->timer);
free_irq(dev->irq, dev);
dev->if_port = tp->saved_if_port;
empty_rings(dev);
/* Leave the driver in snooze, not sleep, mode. */
if (tp->flags & HAS_PWRDWN)
pci_write_config_dword(tp->pci_dev, 0x40, 0x40000000);
MOD_DEC_USE_COUNT;
return 0;
}
static struct net_device_stats *tulip_get_stats(struct net_device *dev)
{
struct tulip_private *tp = (struct tulip_private *)dev->priv;
long ioaddr = dev->base_addr;
int csr8 = inl(ioaddr + CSR8);
if (netif_running(dev) && csr8 != 0xffffffff)
tp->stats.rx_missed_errors += (u16)csr8;
return &tp->stats;
}
#ifdef HAVE_PRIVATE_IOCTL
/* Provide ioctl() calls to examine the MII xcvr state.
We emulate a MII management registers for chips without MII.
The two numeric constants are because some clueless person
changed value for the symbolic name.
*/
static int private_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
struct tulip_private *tp = (struct tulip_private *)dev->priv;
long ioaddr = dev->base_addr;
u16 *data = (u16 *)&rq->ifr_data;
u32 *data32 = (void *)&rq->ifr_data;
unsigned int phy = tp->phys[0];
unsigned int regnum = data[1];
switch(cmd) {
case 0x8947: case 0x89F0:
/* SIOCGMIIPHY: Get the address of the PHY in use. */
if (tp->mii_cnt)
data[0] = phy;
else if (tp->flags & HAS_NWAY)
data[0] = 32;
else if (tp->chip_id == COMET)
data[0] = 1;
else
return -ENODEV;
case 0x8948: case 0x89F1:
/* SIOCGMIIREG: Read the specified MII register. */
if (data[0] == 32 && (tp->flags & HAS_NWAY)) {
int csr12 = inl(ioaddr + CSR12);
int csr14 = inl(ioaddr + CSR14);
switch (regnum) {
case 0:
if (((csr14<<5) & 0x1000) ||
(dev->if_port == 5 && tp->nwayset))
data[3] = 0x1000;
else
data[3] = (media_cap[dev->if_port]&MediaIs100 ? 0x2000 : 0)
| (media_cap[dev->if_port]&MediaIsFD ? 0x0100 : 0);
break;
case 1:
data[3] = 0x1848 + ((csr12&0x7000) == 0x5000 ? 0x20 : 0)
+ ((csr12&0x06) == 6 ? 0 : 4);
if (tp->chip_id != DC21041)
data[3] |= 0x6048;
break;
case 4: {
/* Advertised value, bogus 10baseTx-FD value from CSR6. */
data[3] = ((inl(ioaddr + CSR6)>>3)&0x0040)+((csr14>>1)&0x20)+1;
if (tp->chip_id != DC21041)
data[3] |= ((csr14>>9)&0x03C0);
break;
}
case 5: data[3] = tp->lpar; break;
default: data[3] = 0; break;
}
} else {
data[3] = mdio_read(dev, data[0] & 0x1f, regnum);
}
return 0;
case 0x8949: case 0x89F2:
/* SIOCSMIIREG: Write the specified MII register */
if (!capable(CAP_NET_ADMIN))
return -EPERM;
if (regnum & ~0x1f)
return -EINVAL;
if (data[0] == phy) {
u16 value = data[2];
switch (regnum) {
case 0: /* Check for autonegotiation on or reset. */
tp->full_duplex_lock = (value & 0x9000) ? 0 : 1;
if (tp->full_duplex_lock)
tp->full_duplex = (value & 0x0100) ? 1 : 0;
break;
case 4: tp->mii_advertise = data[2]; break;
}
}
if (data[0] == 32 && (tp->flags & HAS_NWAY)) {
u16 value = data[2];
if (regnum == 0) {
if ((value & 0x1200) == 0x1200)
nway_start(dev);
} else if (regnum == 4)
tp->sym_advertise = value;
} else {
mdio_write(dev, data[0] & 0x1f, regnum, data[2]);
}
return 0;
case SIOCGPARAMS:
data32[0] = tp->msg_level;
data32[1] = tp->multicast_filter_limit;
data32[2] = tp->max_interrupt_work;
data32[3] = tp->rx_copybreak;
data32[4] = inl(ioaddr + CSR11);
return 0;
case SIOCSPARAMS:
if (!capable(CAP_NET_ADMIN))
return -EPERM;
tp->msg_level = data32[0];
tp->multicast_filter_limit = data32[1];
tp->max_interrupt_work = data32[2];
tp->rx_copybreak = data32[3];
if (tp->flags & HAS_INTR_MITIGATION) {
u32 *d = (u32 *)&rq->ifr_data;
outl(data32[4], ioaddr + CSR11);
printk(KERN_NOTICE "%s: Set interrupt mitigate paramters %8.8x.\n",
dev->name, d[0]);
}
return 0;
default:
return -EOPNOTSUPP;
}
return -EOPNOTSUPP;
}
#endif /* HAVE_PRIVATE_IOCTL */
/* Set or clear the multicast filter for this adaptor.
Note that we only use exclusion around actually queueing the
new frame, not around filling tp->setup_frame. This is non-deterministic
when re-entered but still correct. */
/* The little-endian AUTODIN32 ethernet CRC calculation.
N.B. Do not use for bulk data, use a table-based routine instead.
This is common code and should be moved to net/core/crc.c */
static unsigned const ethernet_polynomial_le = 0xedb88320U;
static inline u32 ether_crc_le(int length, unsigned char *data)
{
u32 crc = 0xffffffff; /* Initial value. */
while(--length >= 0) {
unsigned char current_octet = *data++;
int bit;
for (bit = 8; --bit >= 0; current_octet >>= 1) {
if ((crc ^ current_octet) & 1) {
crc >>= 1;
crc ^= ethernet_polynomial_le;
} else
crc >>= 1;
}
}
return crc;
}
static unsigned const ethernet_polynomial = 0x04c11db7U;
static inline u32 ether_crc(int length, unsigned char *data)
{
int crc = -1;
while(--length >= 0) {
unsigned char current_octet = *data++;
int bit;
for (bit = 0; bit < 8; bit++, current_octet >>= 1)
crc = (crc << 1) ^
((crc < 0) ^ (current_octet & 1) ? ethernet_polynomial : 0);
}
return crc;
}
static void set_rx_mode(struct net_device *dev)
{
struct tulip_private *tp = (struct tulip_private *)dev->priv;
long ioaddr = dev->base_addr;
int csr6 = inl(ioaddr + CSR6) & ~0x00D5;
tp->csr6 &= ~0x00D5;
if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
tp->csr6 |= AcceptAllMulticast | AcceptAllPhys;
csr6 |= AcceptAllMulticast | AcceptAllPhys;
/* Unconditionally log net taps. */
printk(KERN_INFO "%s: Promiscuous mode enabled.\n", dev->name);
} else if ((dev->mc_count > tp->multicast_filter_limit) ||
(dev->flags & IFF_ALLMULTI)) {
/* Too many to filter well -- accept all multicasts. */
tp->csr6 |= AcceptAllMulticast;
csr6 |= AcceptAllMulticast;
} else if (tp->flags & MC_HASH_ONLY) {
/* Some work-alikes have only a 64-entry hash filter table. */
/* Should verify correctness on big-endian/__powerpc__ */
struct dev_mc_list *mclist;
int i;
if (dev->mc_count > tp->multicast_filter_limit) {
tp->csr6 |= AcceptAllMulticast;
csr6 |= AcceptAllMulticast;
} else {
u32 mc_filter[2] = {0, 0}; /* Multicast hash filter */
int filterbit;
for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
i++, mclist = mclist->next) {
if (tp->flags & COMET_MAC_ADDR)
filterbit = ether_crc_le(ETH_ALEN, mclist->dmi_addr);
else
filterbit = ether_crc(ETH_ALEN, mclist->dmi_addr) >> 26;
filterbit &= 0x3f;
set_bit(filterbit, mc_filter);
if (tp->msg_level & NETIF_MSG_RXFILTER)
printk(KERN_INFO "%s: Added filter for %2.2x:%2.2x:%2.2x:"
"%2.2x:%2.2x:%2.2x %8.8x bit %d.\n", dev->name,
mclist->dmi_addr[0], mclist->dmi_addr[1],
mclist->dmi_addr[2], mclist->dmi_addr[3],
mclist->dmi_addr[4], mclist->dmi_addr[5],
ether_crc(ETH_ALEN, mclist->dmi_addr), filterbit);
}
if (mc_filter[0] == tp->mc_filter[0] &&
mc_filter[1] == tp->mc_filter[1])
; /* No change. */
else if (tp->flags & IS_ASIX) {
outl(2, ioaddr + CSR13);
outl(mc_filter[0], ioaddr + CSR14);
outl(3, ioaddr + CSR13);
outl(mc_filter[1], ioaddr + CSR14);
} else if (tp->flags & COMET_MAC_ADDR) {
outl(mc_filter[0], ioaddr + 0xAC);
outl(mc_filter[1], ioaddr + 0xB0);
}
tp->mc_filter[0] = mc_filter[0];
tp->mc_filter[1] = mc_filter[1];
}
} else {
u16 *eaddrs, *setup_frm = tp->setup_frame;
struct dev_mc_list *mclist;
u32 tx_flags = 0x08000000 | 192;
int i;
/* Note that only the low-address shortword of setup_frame is valid!
The values are doubled for big-endian architectures. */
if (dev->mc_count > 14) { /* Must use a multicast hash table. */
u16 hash_table[32];
tx_flags = 0x08400000 | 192; /* Use hash filter. */
memset(hash_table, 0, sizeof(hash_table));
set_bit(255, hash_table); /* Broadcast entry */
/* This should work on big-endian machines as well. */
for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
i++, mclist = mclist->next)
set_bit(ether_crc_le(ETH_ALEN, mclist->dmi_addr) & 0x1ff,
hash_table);
for (i = 0; i < 32; i++) {
*setup_frm++ = hash_table[i];
*setup_frm++ = hash_table[i];
}
setup_frm = &tp->setup_frame[13*6];
} else {
/* We have <= 14 addresses so we can use the wonderful
16 address perfect filtering of the Tulip. */
for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
i++, mclist = mclist->next) {
eaddrs = (u16 *)mclist->dmi_addr;
*setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
*setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
*setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
}
/* Fill the unused entries with the broadcast address. */
memset(setup_frm, 0xff, (15-i)*12);
setup_frm = &tp->setup_frame[15*6];
}
/* Fill the final entry with our physical address. */
eaddrs = (u16 *)dev->dev_addr;
*setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0];
*setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1];
*setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2];
/* Now add this frame to the Tx list. */
if (tp->cur_tx - tp->dirty_tx > TX_RING_SIZE - 2) {
/* Same setup recently queued, we need not add it. */
} else {
unsigned long flags;
unsigned int entry;
spin_lock_irqsave(&tp->mii_lock, flags);
entry = tp->cur_tx++ % TX_RING_SIZE;
if (entry != 0) {
/* Avoid a chip errata by prefixing a dummy entry. */
tp->tx_skbuff[entry] = 0;
tp->tx_ring[entry].length =
(entry == TX_RING_SIZE-1) ? cpu_to_le32(DESC_RING_WRAP):0;
tp->tx_ring[entry].buffer1 = 0;
tp->tx_ring[entry].status = cpu_to_le32(DescOwned);
entry = tp->cur_tx++ % TX_RING_SIZE;
}
tp->tx_skbuff[entry] = 0;
/* Put the setup frame on the Tx list. */
if (entry == TX_RING_SIZE-1)
tx_flags |= DESC_RING_WRAP; /* Wrap ring. */
tp->tx_ring[entry].length = cpu_to_le32(tx_flags);
tp->tx_ring[entry].buffer1 = virt_to_le32desc(tp->setup_frame);
tp->tx_ring[entry].status = cpu_to_le32(DescOwned);
if (tp->cur_tx - tp->dirty_tx >= TX_RING_SIZE - 2) {
netif_stop_tx_queue(dev);
tp->tx_full = 1;
}
spin_unlock_irqrestore(&tp->mii_lock, flags);
/* Trigger an immediate transmit demand. */
outl(0, ioaddr + CSR1);
}
}
outl(csr6, ioaddr + CSR6);
}
static int tulip_pwr_event(void *dev_instance, int event)
{
struct net_device *dev = dev_instance;
struct tulip_private *tp = (struct tulip_private *)dev->priv;
long ioaddr = dev->base_addr;
if (tp->msg_level & NETIF_MSG_LINK)
printk("%s: Handling power event %d.\n", dev->name, event);
switch(event) {
case DRV_ATTACH:
MOD_INC_USE_COUNT;
break;
case DRV_SUSPEND: {
int csr6 = inl(ioaddr + CSR6);
/* Disable interrupts, stop the chip, gather stats. */
if (csr6 != 0xffffffff) {
int csr8 = inl(ioaddr + CSR8);
outl(0x00000000, ioaddr + CSR7);
outl(csr6 & ~TxOn & ~RxOn, ioaddr + CSR6);
tp->stats.rx_missed_errors += (unsigned short)csr8;
}
empty_rings(dev);
/* Put the 21143 into sleep mode. */
if (tp->flags & HAS_PWRDWN)
pci_write_config_dword(tp->pci_dev, 0x40,0x80000000);
break;
}
case DRV_RESUME:
if (tp->flags & HAS_PWRDWN)
pci_write_config_dword(tp->pci_dev, 0x40, 0x0000);
outl(tp->csr0, ioaddr + CSR0);
tulip_init_ring(dev);
outl(virt_to_bus(tp->rx_ring), ioaddr + CSR3);
outl(virt_to_bus(tp->tx_ring), ioaddr + CSR4);
if (tp->mii_cnt) {
dev->if_port = 11;
if (tp->mtable && tp->mtable->has_mii)
select_media(dev, 1);
tp->csr6 = 0x820E0000;
dev->if_port = 11;
outl(0x0000, ioaddr + CSR13);
outl(0x0000, ioaddr + CSR14);
} else if (! tp->medialock)
nway_start(dev);
else
select_media(dev, 1);
outl(tulip_tbl[tp->chip_id].valid_intrs, ioaddr + CSR7);
outl(tp->csr6 | TxOn | RxOn, ioaddr + CSR6);
outl(0, ioaddr + CSR2); /* Rx poll demand */
set_rx_mode(dev);
break;
case DRV_DETACH: {
struct net_device **devp, **next;
if (dev->flags & IFF_UP) {
printk(KERN_ERR "%s: Tulip CardBus interface was detached while "
"still active.\n", dev->name);
dev_close(dev);
dev->flags &= ~(IFF_UP|IFF_RUNNING);
}
if (tp->msg_level & NETIF_MSG_DRV)
printk(KERN_DEBUG "%s: Unregistering device.\n", dev->name);
unregister_netdev(dev);
#ifdef USE_IO_OPS
release_region(dev->base_addr, pci_id_tbl[tp->chip_id].io_size);
#else
iounmap((char *)dev->base_addr);
#endif
for (devp = &root_tulip_dev; *devp; devp = next) {
next = &((struct tulip_private *)(*devp)->priv)->next_module;
if (*devp == dev) {
*devp = *next;
break;
}
}
if (tp->priv_addr)
kfree(tp->priv_addr);
kfree(dev);
MOD_DEC_USE_COUNT;
break;
}
default:
break;
}
return 0;
}
#ifdef CARDBUS
#include <pcmcia/driver_ops.h>
static dev_node_t *tulip_attach(dev_locator_t *loc)
{
struct net_device *dev;
long ioaddr;
struct pci_dev *pdev;
u8 bus, devfn, irq;
u32 dev_id;
u32 pciaddr;
int i, chip_id = 4; /* DC21143 */
if (loc->bus != LOC_PCI) return NULL;
bus = loc->b.pci.bus; devfn = loc->b.pci.devfn;
printk(KERN_INFO "tulip_attach(bus %d, function %d)\n", bus, devfn);
pdev = pci_find_slot(bus, devfn);
#ifdef USE_IO_OPS
pci_read_config_dword(pdev, PCI_BASE_ADDRESS_0, &pciaddr);
ioaddr = pciaddr & PCI_BASE_ADDRESS_IO_MASK;
#else
pci_read_config_dword(pdev, PCI_BASE_ADDRESS_1, &pciaddr);
ioaddr = (long)ioremap(pciaddr & PCI_BASE_ADDRESS_MEM_MASK,
pci_id_tbl[DC21142].io_size);
#endif
pci_read_config_dword(pdev, 0, &dev_id);
pci_read_config_byte(pdev, PCI_INTERRUPT_LINE, &irq);
if (ioaddr == 0 || irq == 0) {
printk(KERN_ERR "The Tulip CardBus Ethernet interface at %d/%d was "
"not assigned an %s.\n"
KERN_ERR " It will not be activated.\n",
bus, devfn, ioaddr == 0 ? "address" : "IRQ");
return NULL;
}
for (i = 0; pci_id_tbl[i].id.pci; i++) {
if (pci_id_tbl[i].id.pci == (dev_id & pci_id_tbl[i].id.pci_mask)) {
chip_id = i; break;
}
}
dev = tulip_probe1(pdev, NULL, ioaddr, irq, chip_id, 0);
if (dev) {
dev_node_t *node = kmalloc(sizeof(dev_node_t), GFP_KERNEL);
strcpy(node->dev_name, dev->name);
node->major = node->minor = 0;
node->next = NULL;
MOD_INC_USE_COUNT;
return node;
}
return NULL;
}
static void tulip_suspend(dev_node_t *node)
{
struct net_device **devp, **next;
printk(KERN_INFO "tulip_suspend(%s)\n", node->dev_name);
for (devp = &root_tulip_dev; *devp; devp = next) {
next = &((struct tulip_private *)(*devp)->priv)->next_module;
if (strcmp((*devp)->name, node->dev_name) == 0) {
tulip_pwr_event(*devp, DRV_SUSPEND);
break;
}
}
}
static void tulip_resume(dev_node_t *node)
{
struct net_device **devp, **next;
printk(KERN_INFO "tulip_resume(%s)\n", node->dev_name);
for (devp = &root_tulip_dev; *devp; devp = next) {
next = &((struct tulip_private *)(*devp)->priv)->next_module;
if (strcmp((*devp)->name, node->dev_name) == 0) {
tulip_pwr_event(*devp, DRV_RESUME);
break;
}
}
}
static void tulip_detach(dev_node_t *node)
{
struct net_device **devp, **next;
printk(KERN_INFO "tulip_detach(%s)\n", node->dev_name);
for (devp = &root_tulip_dev; *devp; devp = next) {
next = &((struct tulip_private *)(*devp)->priv)->next_module;
if (strcmp((*devp)->name, node->dev_name) == 0) break;
}
if (*devp) {
struct tulip_private *tp = (struct tulip_private *)(*devp)->priv;
unregister_netdev(*devp);
#ifdef USE_IO_OPS
release_region((*devp)->base_addr, pci_id_tbl[DC21142].io_size);
#else
iounmap((char *)(*devp)->base_addr);
#endif
kfree(*devp);
if (tp->priv_addr)
kfree(tp->priv_addr);
*devp = *next;
kfree(node);
MOD_DEC_USE_COUNT;
}
}
struct driver_operations tulip_ops = {
"tulip_cb", tulip_attach, tulip_suspend, tulip_resume, tulip_detach
};
#endif /* Cardbus support */
#ifdef MODULE
int init_module(void)
{
if (debug >= NETIF_MSG_DRV) /* Emit version even if no cards detected. */
printk(KERN_INFO "%s" KERN_INFO "%s", version1, version2);
#ifdef CARDBUS
register_driver(&tulip_ops);
return 0;
#else
return pci_drv_register(&tulip_drv_id, NULL);
#endif
reverse_probe = 0; /* Not used. */
}
void cleanup_module(void)
{
struct net_device *next_dev;
#ifdef CARDBUS
unregister_driver(&tulip_ops);
#else
pci_drv_unregister(&tulip_drv_id);
#endif
/* No need to check MOD_IN_USE, as sys_delete_module() checks. */
while (root_tulip_dev) {
struct tulip_private *tp = (struct tulip_private*)root_tulip_dev->priv;
unregister_netdev(root_tulip_dev);
#ifdef USE_IO_OPS
release_region(root_tulip_dev->base_addr,
pci_id_tbl[tp->chip_id].io_size);
#else
iounmap((char *)root_tulip_dev->base_addr);
#endif
next_dev = tp->next_module;
if (tp->priv_addr)
kfree(tp->priv_addr);
kfree(root_tulip_dev);
root_tulip_dev = next_dev;
}
}
#else
int tulip_probe(struct net_device *dev)
{
if (pci_drv_register(&tulip_drv_id, dev) < 0)
return -ENODEV;
printk(KERN_INFO "%s" KERN_INFO "%s", version1, version2);
return 0;
reverse_probe = 0; /* Not used. */
}
#endif /* MODULE */
/*
* Local variables:
* compile-command: "make KERNVER=`uname -r` tulip.o"
* compile-cmd: "gcc -DMODULE -Wall -Wstrict-prototypes -O6 -c tulip.c"
* cardbus-compile-command: "gcc -DCARDBUS -DMODULE -Wall -Wstrict-prototypes -O6 -c tulip.c -o tulip_cb.o -I/usr/src/pcmcia/include/"
* c-indent-level: 4
* c-basic-offset: 4
* tab-width: 4
* End:
*/
|