1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
|
/* sundance.c: A Linux device driver for the Sundance ST201 "Alta". */
/*
Written 1999-2003 by Donald Becker.
This software may be used and distributed according to the terms of
the GNU General Public License (GPL), incorporated herein by reference.
Drivers based on or derived from this code fall under the GPL and must
retain the authorship, copyright and license notice. This file is not
a complete program and may only be used when the entire operating
system is licensed under the GPL.
The author may be reached as becker@scyld.com, or C/O
Scyld Computing Corporation
410 Severn Ave., Suite 210
Annapolis MD 21403
Support information and updates available at
http://www.scyld.com/network/sundance.html
*/
/* These identify the driver base version and may not be removed. */
static const char version1[] =
"sundance.c:v1.11 2/4/2003 Written by Donald Becker <becker@scyld.com>\n";
static const char version2[] =
" http://www.scyld.com/network/sundance.html\n";
/* Updated to recommendations in pci-skeleton v2.12. */
/* Automatically extracted configuration info:
probe-func: sundance_probe
config-in: tristate 'Sundance ST201 "Alta" PCI Ethernet support' CONFIG_SUNDANCE
c-help-name: Sundance ST201 "Alta" PCI Ethernet support
c-help-symbol: CONFIG_SUNDANCE
c-help: This driver is for the Sundance ST201 "Alta" and Kendin KS8723, as
c-help: used on the D-Link DFE-550 and DFE-580.
c-help: Design information, usage details and updates are available from
c-help: http://www.scyld.com/network/sundance.html
*/
/* The user-configurable values.
These may be modified when a driver module is loaded.*/
/* Message enable level: 0..31 = no..all messages. See NETIF_MSG docs. */
static int debug = 2;
/* Maximum events (Rx packets, etc.) to handle at each interrupt. */
static int max_interrupt_work = 20;
/* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
The sundance uses a 64 element hash table based on the Ethernet CRC. */
static int multicast_filter_limit = 32;
/* Set the copy breakpoint for the copy-only-tiny-frames scheme.
Setting to > 1518 effectively disables this feature.
This chip can receive into any byte alignment buffers, so word-oriented
archs do not need a copy-align of the IP header. */
static int rx_copybreak = 0;
/* Used to pass the media type, etc.
Both 'options[]' and 'full_duplex[]' should exist for driver
interoperability.
The media type is usually passed in 'options[]'.
The default is autonegotation for speed and duplex.
This should rarely be overridden.
Use option values 0x10/0x20 for 10Mbps, 0x100,0x200 for 100Mbps.
Use option values 0x10 and 0x100 for forcing half duplex fixed speed.
Use option values 0x20 and 0x200 for forcing full duplex operation.
*/
#define MAX_UNITS 8 /* More are supported, limit only on options */
static int options[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
static int full_duplex[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
/* Operational parameters that are set at compile time. */
/* Ring sizes are a power of two only for compile efficiency.
The compiler will convert <unsigned>'%'<2^N> into a bit mask.
There must be at least five Tx entries for the tx_full hysteresis, and
more than 31 requires modifying the Tx status handling error recovery.
Leave a inactive gap in the Tx ring for better cache behavior.
Making the Tx ring too large decreases the effectiveness of channel
bonding and packet priority.
Large receive rings waste memory and impact buffer accounting.
The driver need to protect against interrupt latency and the kernel
not reserving enough available memory.
*/
#define TX_RING_SIZE 16
#define TX_QUEUE_LEN 10 /* Limit ring entries actually used. */
#define RX_RING_SIZE 32
/* Operational parameters that usually are not changed. */
/* Time in jiffies before concluding the transmitter is hung. */
#define TX_TIMEOUT (6*HZ)
/* Allocation size of Rx buffers with normal sized Ethernet frames.
Do not change this value without good reason. This is not a limit,
but a way to keep a consistent allocation size among drivers.
*/
#define PKT_BUF_SZ 1536
/* Set iff a MII transceiver on any interface requires mdio preamble.
This only set with older tranceivers, so the extra
code size of a per-interface flag is not worthwhile. */
static char mii_preamble_required = 0;
#ifndef __KERNEL__
#define __KERNEL__
#endif
#if !defined(__OPTIMIZE__)
#warning You must compile this file with the correct options!
#warning See the last lines of the source file.
#error You must compile this driver with "-O".
#endif
/* Include files, designed to support most kernel versions 2.0.0 and later. */
#include <linux/config.h>
#if defined(CONFIG_SMP) && ! defined(__SMP__)
#define __SMP__
#endif
#if defined(MODULE) && defined(CONFIG_MODVERSIONS) && ! defined(MODVERSIONS)
#define MODVERSIONS
#endif
#include <linux/version.h>
#if defined(MODVERSIONS)
#include <linux/modversions.h>
#endif
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/timer.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#if LINUX_VERSION_CODE >= 0x20400
#include <linux/slab.h>
#else
#include <linux/malloc.h>
#endif
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <asm/bitops.h>
#include <asm/io.h>
#if LINUX_VERSION_CODE >= 0x20300
#include <linux/spinlock.h>
#elif LINUX_VERSION_CODE >= 0x20200
#include <asm/spinlock.h>
#endif
#ifdef INLINE_PCISCAN
#include "k_compat.h"
#else
#include "pci-scan.h"
#include "kern_compat.h"
#endif
/* Condensed operations for readability. */
#define virt_to_le32desc(addr) cpu_to_le32(virt_to_bus(addr))
#define le32desc_to_virt(addr) bus_to_virt(le32_to_cpu(addr))
#if (LINUX_VERSION_CODE >= 0x20100) && defined(MODULE)
char kernel_version[] = UTS_RELEASE;
#endif
MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
MODULE_DESCRIPTION("Sundance Alta Ethernet driver");
MODULE_LICENSE("GPL");
MODULE_PARM(max_interrupt_work, "i");
MODULE_PARM(debug, "i");
MODULE_PARM(rx_copybreak, "i");
MODULE_PARM(options, "1-" __MODULE_STRING(MAX_UNITS) "i");
MODULE_PARM(full_duplex, "1-" __MODULE_STRING(MAX_UNITS) "i");
MODULE_PARM(multicast_filter_limit, "i");
MODULE_PARM_DESC(debug, "Driver message level (0-31)");
MODULE_PARM_DESC(options, "Force transceiver type or fixed speed+duplex");
MODULE_PARM_DESC(max_interrupt_work,
"Driver maximum events handled per interrupt");
MODULE_PARM_DESC(full_duplex,
"Non-zero to set forced full duplex (deprecated).");
MODULE_PARM_DESC(rx_copybreak,
"Breakpoint in bytes for copy-only-tiny-frames");
MODULE_PARM_DESC(multicast_filter_limit,
"Multicast addresses before switching to Rx-all-multicast");
/*
Theory of Operation
I. Board Compatibility
This driver is designed for the Sundance Technologies "Alta" ST201 chip.
The Kendin KS8723 is the same design with an integrated transceiver and
new quirks.
II. Board-specific settings
This is an all-in-one chip, so there are no board-specific settings.
III. Driver operation
IIIa. Ring buffers
This driver uses two statically allocated fixed-size descriptor lists
formed into rings by a branch from the final descriptor to the beginning of
the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
Some chips explicitly use only 2^N sized rings, while others use a
'next descriptor' pointer that the driver forms into rings.
IIIb/c. Transmit/Receive Structure
This driver uses a zero-copy receive and transmit scheme.
The driver allocates full frame size skbuffs for the Rx ring buffers at
open() time and passes the skb->data field to the chip as receive data
buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
a fresh skbuff is allocated and the frame is copied to the new skbuff.
When the incoming frame is larger, the skbuff is passed directly up the
protocol stack. Buffers consumed this way are replaced by newly allocated
skbuffs in a later phase of receives.
The RX_COPYBREAK value is chosen to trade-off the memory wasted by
using a full-sized skbuff for small frames vs. the copying costs of larger
frames. New boards are typically used in generously configured machines
and the underfilled buffers have negligible impact compared to the benefit of
a single allocation size, so the default value of zero results in never
copying packets. When copying is done, the cost is usually mitigated by using
a combined copy/checksum routine. Copying also preloads the cache, which is
most useful with small frames.
A subtle aspect of the operation is that the IP header at offset 14 in an
ethernet frame isn't longword aligned for further processing.
Unaligned buffers are permitted by the Sundance hardware, so
frames are received into the skbuff at an offset of "+2", 16-byte aligning
the IP header.
IIId. Synchronization
The driver runs as two independent, single-threaded flows of control. One
is the send-packet routine, which enforces single-threaded use by the
dev->tbusy flag. The other thread is the interrupt handler, which is single
threaded by the hardware and interrupt handling software.
The send packet thread has partial control over the Tx ring and 'dev->tbusy'
flag. It sets the tbusy flag whenever it's queuing a Tx packet. If the next
queue slot is empty, it clears the tbusy flag when finished otherwise it sets
the 'lp->tx_full' flag.
The interrupt handler has exclusive control over the Rx ring and records stats
from the Tx ring. After reaping the stats, it marks the Tx queue entry as
empty by incrementing the dirty_tx mark. Iff the 'lp->tx_full' flag is set, it
clears both the tx_full and tbusy flags.
IV. Notes
IVb. References
The Sundance ST201 datasheet, preliminary version.
The Kendin KS8723 datasheet, preliminary version.
http://www.scyld.com/expert/100mbps.html
http://www.scyld.com/expert/NWay.html
IVc. Errata
*/
/* Work-around for Kendin chip bugs. This will be reversed after tracking
down all of the chip access quirks in memory mode. */
#ifndef USE_MEM_OPS
#define USE_IO_OPS 1
#endif
static void *sundance_probe1(struct pci_dev *pdev, void *init_dev,
long ioaddr, int irq, int chip_idx, int find_cnt);
static int sundance_pwr_event(void *dev_instance, int event);
enum chip_capability_flags {CanHaveMII=1, KendinPktDropBug=2, };
#ifdef USE_IO_OPS
#define PCI_IOTYPE (PCI_USES_MASTER | PCI_USES_IO | PCI_ADDR0)
#else
#define PCI_IOTYPE (PCI_USES_MASTER | PCI_USES_MEM | PCI_ADDR1)
#endif
static struct pci_id_info pci_id_tbl[] = {
{"D-Link DFE-580TX (Kendin/Sundance ST201 Alta)",
{0x10021186, 0xffffffff, 0x10121186, 0xffffffff, 0x14, 0xff},
PCI_IOTYPE, 128, CanHaveMII|KendinPktDropBug},
{"D-Link DFE-580TX (Sundance ST201)",
{0x10021186, 0xffffffff, 0x10121186, 0xffffffff, },
PCI_IOTYPE, 128, CanHaveMII|KendinPktDropBug},
{"D-Link DFE-550FX 100baseFx (Sundance ST201)",
{0x10031186, 0xffffffff, },
PCI_IOTYPE, 128, CanHaveMII|KendinPktDropBug},
{"OEM Sundance Technology ST201", {0x10021186, 0xffffffff, },
PCI_IOTYPE, 128, CanHaveMII},
{"Sundance Technology Alta", {0x020113F0, 0xffffffff, },
PCI_IOTYPE, 128, CanHaveMII},
{0,}, /* 0 terminated list. */
};
struct drv_id_info sundance_drv_id = {
"sundance", PCI_HOTSWAP, PCI_CLASS_NETWORK_ETHERNET<<8, pci_id_tbl,
sundance_probe1, sundance_pwr_event };
/* This driver was written to use PCI memory space, however x86-oriented
hardware often uses I/O space accesses. */
#ifdef USE_IO_OPS
#undef readb
#undef readw
#undef readl
#undef writeb
#undef writew
#undef writel
#define readb inb
#define readw inw
#define readl inl
#define writeb outb
#define writew outw
#define writel outl
#endif
/* Offsets to the device registers.
Unlike software-only systems, device drivers interact with complex hardware.
It's not useful to define symbolic names for every register bit in the
device. The name can only partially document the semantics and make
the driver longer and more difficult to read.
In general, only the important configuration values or bits changed
multiple times should be defined symbolically.
*/
enum alta_offsets {
DMACtrl=0x00, TxListPtr=0x04, TxDMACtrl=0x08, TxDescPoll=0x0a,
RxDMAStatus=0x0c, RxListPtr=0x10, RxDMACtrl=0x14, RxDescPoll=0x16,
LEDCtrl=0x1a, ASICCtrl=0x30,
EEData=0x34, EECtrl=0x36, TxThreshold=0x3c,
FlashAddr=0x40, FlashData=0x44, WakeEvent=0x45, TxStatus=0x46,
DownCounter=0x48, IntrClear=0x4a, IntrEnable=0x4c, IntrStatus=0x4e,
MACCtrl0=0x50, MACCtrl1=0x52, StationAddr=0x54,
MaxFrameSize=0x5A, RxMode=0x5c, MIICtrl=0x5e,
MulticastFilter0=0x60, MulticastFilter1=0x64,
RxOctetsLow=0x68, RxOctetsHigh=0x6a, TxOctetsLow=0x6c, TxOctetsHigh=0x6e,
TxFramesOK=0x70, RxFramesOK=0x72, StatsCarrierError=0x74,
StatsLateColl=0x75, StatsMultiColl=0x76, StatsOneColl=0x77,
StatsTxDefer=0x78, RxMissed=0x79, StatsTxXSDefer=0x7a, StatsTxAbort=0x7b,
StatsBcastTx=0x7c, StatsBcastRx=0x7d, StatsMcastTx=0x7e, StatsMcastRx=0x7f,
/* Aliased and bogus values! */
RxStatus=0x0c,
};
/* Bits in the interrupt status/mask registers. */
enum intr_status_bits {
IntrSummary=0x0001, IntrPCIErr=0x0002, IntrMACCtrl=0x0008,
IntrTxDone=0x0004, IntrRxDone=0x0010, IntrRxStart=0x0020,
IntrDrvRqst=0x0040,
StatsMax=0x0080, LinkChange=0x0100,
IntrTxDMADone=0x0200, IntrRxDMADone=0x0400,
};
/* Bits in the RxMode register. */
enum rx_mode_bits {
AcceptAllIPMulti=0x20, AcceptMultiHash=0x10, AcceptAll=0x08,
AcceptBroadcast=0x04, AcceptMulticast=0x02, AcceptMyPhys=0x01,
};
/* Bits in MACCtrl. */
enum mac_ctrl0_bits {
EnbFullDuplex=0x20, EnbRcvLargeFrame=0x40,
EnbFlowCtrl=0x100, EnbPassRxCRC=0x200,
};
enum mac_ctrl1_bits {
StatsEnable=0x0020, StatsDisable=0x0040, StatsEnabled=0x0080,
TxEnable=0x0100, TxDisable=0x0200, TxEnabled=0x0400,
RxEnable=0x0800, RxDisable=0x1000, RxEnabled=0x2000,
};
/* The Rx and Tx buffer descriptors.
Using only 32 bit fields simplifies software endian correction.
This structure must be aligned, and should avoid spanning cache lines.
*/
struct netdev_desc {
u32 next_desc;
u32 status;
struct desc_frag { u32 addr, length; } frag[1];
};
/* Bits in netdev_desc.status */
enum desc_status_bits {
DescOwn=0x8000, DescEndPacket=0x4000, DescEndRing=0x2000,
DescTxDMADone=0x10000,
LastFrag=0x80000000, DescIntrOnTx=0x8000, DescIntrOnDMADone=0x80000000,
};
#define PRIV_ALIGN 15 /* Required alignment mask */
/* Use __attribute__((aligned (L1_CACHE_BYTES))) to maintain alignment
within the structure. */
struct netdev_private {
/* Descriptor rings first for alignment. */
struct netdev_desc rx_ring[RX_RING_SIZE];
struct netdev_desc tx_ring[TX_RING_SIZE];
struct net_device *next_module; /* Link for devices of this type. */
void *priv_addr; /* Unaligned address for kfree */
const char *product_name;
/* The addresses of receive-in-place skbuffs. */
struct sk_buff* rx_skbuff[RX_RING_SIZE];
/* The saved address of a sent-in-place packet/buffer, for later free(). */
struct sk_buff* tx_skbuff[TX_RING_SIZE];
struct net_device_stats stats;
struct timer_list timer; /* Media monitoring timer. */
/* Frequently used values: keep some adjacent for cache effect. */
int msg_level;
int chip_id, drv_flags;
struct pci_dev *pci_dev;
int max_interrupt_work;
/* Note: Group variables for cache line effect. */
struct netdev_desc *rx_head_desc;
unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
unsigned int rx_buf_sz; /* Based on MTU+slack. */
int rx_copybreak;
spinlock_t txlock; /* Group with Tx control cache line. */
struct netdev_desc *last_tx; /* Last Tx descriptor used. */
unsigned int cur_tx, dirty_tx;
unsigned int tx_full:1; /* The Tx queue is full. */
/* These values keep track of the transceiver/media in use. */
unsigned int full_duplex:1; /* Full-duplex operation requested. */
unsigned int duplex_lock:1;
unsigned int medialock:1; /* Do not sense media. */
unsigned int default_port; /* Last dev->if_port value. */
/* Multicast and receive mode. */
spinlock_t mcastlock; /* SMP lock multicast updates. */
u16 mcast_filter[4];
int multicast_filter_limit;
/* MII transceiver section. */
int mii_cnt; /* MII device addresses. */
int link_status;
u16 advertising; /* NWay media advertisement */
unsigned char phys[2]; /* MII device addresses. */
};
/* The station address location in the EEPROM. */
#define EEPROM_SA_OFFSET 0x10
static int eeprom_read(long ioaddr, int location);
static int mdio_read(struct net_device *dev, int phy_id,
unsigned int location);
static void mdio_write(struct net_device *dev, int phy_id,
unsigned int location, int value);
static int netdev_open(struct net_device *dev);
static void sundance_start(struct net_device *dev);
static int change_mtu(struct net_device *dev, int new_mtu);
static void check_duplex(struct net_device *dev);
static void netdev_timer(unsigned long data);
static void tx_timeout(struct net_device *dev);
static void init_ring(struct net_device *dev);
static int start_tx(struct sk_buff *skb, struct net_device *dev);
static void intr_handler(int irq, void *dev_instance, struct pt_regs *regs);
static void netdev_error(struct net_device *dev, int intr_status);
static int netdev_rx(struct net_device *dev);
static void netdev_error(struct net_device *dev, int intr_status);
static void set_rx_mode(struct net_device *dev);
static struct net_device_stats *get_stats(struct net_device *dev);
static int mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
static int netdev_close(struct net_device *dev);
/* A list of our installed devices, for removing the driver module. */
static struct net_device *root_net_dev = NULL;
#ifndef MODULE
int sundance_probe(struct net_device *dev)
{
if (pci_drv_register(&sundance_drv_id, dev) < 0)
return -ENODEV;
if (debug >= NETIF_MSG_DRV) /* Emit version even if no cards detected. */
printk(KERN_INFO "%s" KERN_INFO "%s", version1, version2);
return 0;
}
#endif
static void *sundance_probe1(struct pci_dev *pdev, void *init_dev,
long ioaddr, int irq, int chip_idx, int card_idx)
{
struct net_device *dev;
struct netdev_private *np;
void *priv_mem;
int i, option = card_idx < MAX_UNITS ? options[card_idx] : 0;
dev = init_etherdev(init_dev, 0);
if (!dev)
return NULL;
/* Perhaps NETIF_MSG_PROBE */
printk(KERN_INFO "%s: %s at 0x%lx, ",
dev->name, pci_id_tbl[chip_idx].name, ioaddr);
for (i = 0; i < 3; i++)
((u16 *)dev->dev_addr)[i] =
le16_to_cpu(eeprom_read(ioaddr, i + EEPROM_SA_OFFSET));
for (i = 0; i < 5; i++)
printk("%2.2x:", dev->dev_addr[i]);
printk("%2.2x, IRQ %d.\n", dev->dev_addr[i], irq);
/* Make certain elements e.g. descriptor lists are aligned. */
priv_mem = kmalloc(sizeof(*np) + PRIV_ALIGN, GFP_KERNEL);
/* Check for the very unlikely case of no memory. */
if (priv_mem == NULL)
return NULL;
/* All failure checks before this point.
We do a request_region() only to register /proc/ioports info. */
#ifdef USE_IO_OPS
request_region(ioaddr, pci_id_tbl[chip_idx].io_size, dev->name);
#endif
dev->base_addr = ioaddr;
dev->irq = irq;
dev->priv = np = (void *)(((long)priv_mem + PRIV_ALIGN) & ~PRIV_ALIGN);
memset(np, 0, sizeof(*np));
np->priv_addr = priv_mem;
np->next_module = root_net_dev;
root_net_dev = dev;
np->pci_dev = pdev;
np->chip_id = chip_idx;
np->drv_flags = pci_id_tbl[chip_idx].drv_flags;
np->msg_level = (1 << debug) - 1;
np->rx_copybreak = rx_copybreak;
np->max_interrupt_work = max_interrupt_work;
np->multicast_filter_limit = multicast_filter_limit;
if (dev->mem_start)
option = dev->mem_start;
if (card_idx < MAX_UNITS && full_duplex[card_idx] > 0)
np->full_duplex = 1;
if (np->full_duplex)
np->medialock = 1;
/* The chip-specific entries in the device structure. */
dev->open = &netdev_open;
dev->hard_start_xmit = &start_tx;
dev->stop = &netdev_close;
dev->get_stats = &get_stats;
dev->set_multicast_list = &set_rx_mode;
dev->do_ioctl = &mii_ioctl;
dev->change_mtu = &change_mtu;
if (1) {
int phy, phy_idx = 0;
np->phys[0] = 1; /* Default setting */
mii_preamble_required++;
for (phy = 1; phy < 32 && phy_idx < 4; phy++) {
int mii_status = mdio_read(dev, phy, 1);
if (mii_status != 0xffff && mii_status != 0x0000) {
np->phys[phy_idx++] = phy;
np->advertising = mdio_read(dev, phy, 4);
if ((mii_status & 0x0040) == 0)
mii_preamble_required++;
if (np->msg_level & NETIF_MSG_PROBE)
printk(KERN_INFO "%s: MII PHY found at address %d, status "
"0x%4.4x advertising %4.4x.\n",
dev->name, phy, mii_status, np->advertising);
}
}
mii_preamble_required--;
np->mii_cnt = phy_idx;
if (phy_idx == 0)
printk(KERN_INFO "%s: No MII transceiver found!, ASIC status %x\n",
dev->name, (int)readl(ioaddr + ASICCtrl));
}
/* Allow forcing the media type. */
if (option > 0) {
if (option & 0x220)
np->full_duplex = 1;
np->default_port = option & 0x3ff;
if (np->default_port & 0x330) {
np->medialock = 1;
if (np->msg_level & NETIF_MSG_PROBE)
printk(KERN_INFO " Forcing %dMbs %s-duplex operation.\n",
(option & 0x300 ? 100 : 10),
(np->full_duplex ? "full" : "half"));
if (np->mii_cnt)
mdio_write(dev, np->phys[0], 0,
((option & 0x300) ? 0x2000 : 0) | /* 100mbps? */
(np->full_duplex ? 0x0100 : 0)); /* Full duplex? */
}
}
/* Reset the chip to erase previous misconfiguration. */
if (np->msg_level & NETIF_MSG_MISC)
printk("ASIC Control is %x.\n", (int)readl(ioaddr + ASICCtrl));
writel(0x007f0000 | readl(ioaddr + ASICCtrl), ioaddr + ASICCtrl);
if (np->msg_level & NETIF_MSG_MISC)
printk("ASIC Control is now %x.\n", (int)readl(ioaddr + ASICCtrl));
return dev;
}
static int change_mtu(struct net_device *dev, int new_mtu)
{
if ((new_mtu < 68) || (new_mtu > 8191)) /* Limited by RxDMAFrameLen */
return -EINVAL;
if (netif_running(dev))
return -EBUSY;
dev->mtu = new_mtu;
return 0;
}
/* Read the EEPROM and MII Management Data I/O (MDIO) interfaces. */
static int eeprom_read(long ioaddr, int location)
{
int boguscnt = 2000; /* Typical 190 ticks. */
writew(0x0200 | (location & 0xff), ioaddr + EECtrl);
do {
if (! (readw(ioaddr + EECtrl) & 0x8000)) {
return readw(ioaddr + EEData);
}
} while (--boguscnt > 0);
return 0;
}
/* MII transceiver control section.
Read and write the MII registers using software-generated serial
MDIO protocol. See the MII specifications or DP83840A data sheet
for details.
The maximum data clock rate is 2.5 Mhz.
The timing is decoupled from the processor clock by flushing the write
from the CPU write buffer with a following read, and using PCI
transaction time. */
#define mdio_in(mdio_addr) readb(mdio_addr)
#define mdio_out(value, mdio_addr) writeb(value, mdio_addr)
#define mdio_delay(mdio_addr) readb(mdio_addr)
enum mii_reg_bits {
MDIO_ShiftClk=0x0001, MDIO_Data=0x0002, MDIO_EnbOutput=0x0004,
};
#define MDIO_EnbIn (0)
#define MDIO_WRITE0 (MDIO_EnbOutput)
#define MDIO_WRITE1 (MDIO_Data | MDIO_EnbOutput)
/* Generate the preamble required for initial synchronization and
a few older transceivers. */
static void mdio_sync(long mdio_addr)
{
int bits = 32;
/* Establish sync by sending at least 32 logic ones. */
while (--bits >= 0) {
mdio_out(MDIO_WRITE1, mdio_addr);
mdio_delay(mdio_addr);
mdio_out(MDIO_WRITE1 | MDIO_ShiftClk, mdio_addr);
mdio_delay(mdio_addr);
}
}
static int mdio_read(struct net_device *dev, int phy_id, unsigned int location)
{
long mdio_addr = dev->base_addr + MIICtrl;
int mii_cmd = (0xf6 << 10) | (phy_id << 5) | location;
int i, retval = 0;
if (mii_preamble_required)
mdio_sync(mdio_addr);
/* Shift the read command bits out. */
for (i = 15; i >= 0; i--) {
int dataval = (mii_cmd & (1 << i)) ? MDIO_WRITE1 : MDIO_WRITE0;
mdio_out(dataval, mdio_addr);
mdio_delay(mdio_addr);
mdio_out(dataval | MDIO_ShiftClk, mdio_addr);
mdio_delay(mdio_addr);
}
/* Read the two transition, 16 data, and wire-idle bits. */
for (i = 19; i > 0; i--) {
mdio_out(MDIO_EnbIn, mdio_addr);
mdio_delay(mdio_addr);
retval = (retval << 1) | ((mdio_in(mdio_addr) & MDIO_Data) ? 1 : 0);
mdio_out(MDIO_EnbIn | MDIO_ShiftClk, mdio_addr);
mdio_delay(mdio_addr);
}
return (retval>>1) & 0xffff;
}
static void mdio_write(struct net_device *dev, int phy_id,
unsigned int location, int value)
{
long mdio_addr = dev->base_addr + MIICtrl;
int mii_cmd = (0x5002 << 16) | (phy_id << 23) | (location<<18) | value;
int i;
if (mii_preamble_required)
mdio_sync(mdio_addr);
/* Shift the command bits out. */
for (i = 31; i >= 0; i--) {
int dataval = (mii_cmd & (1 << i)) ? MDIO_WRITE1 : MDIO_WRITE0;
mdio_out(dataval, mdio_addr);
mdio_delay(mdio_addr);
mdio_out(dataval | MDIO_ShiftClk, mdio_addr);
mdio_delay(mdio_addr);
}
/* Clear out extra bits. */
for (i = 2; i > 0; i--) {
mdio_out(MDIO_EnbIn, mdio_addr);
mdio_delay(mdio_addr);
mdio_out(MDIO_EnbIn | MDIO_ShiftClk, mdio_addr);
mdio_delay(mdio_addr);
}
return;
}
static int netdev_open(struct net_device *dev)
{
struct netdev_private *np = (struct netdev_private *)dev->priv;
long ioaddr = dev->base_addr;
MOD_INC_USE_COUNT;
if (request_irq(dev->irq, &intr_handler, SA_SHIRQ, dev->name, dev)) {
MOD_DEC_USE_COUNT;
return -EAGAIN;
}
if (np->msg_level & NETIF_MSG_IFUP)
printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
dev->name, dev->irq);
init_ring(dev);
if (dev->if_port == 0)
dev->if_port = np->default_port;
np->full_duplex = np->duplex_lock;
np->mcastlock = (spinlock_t) SPIN_LOCK_UNLOCKED;
sundance_start(dev);
netif_start_tx_queue(dev);
if (np->msg_level & NETIF_MSG_IFUP)
printk(KERN_DEBUG "%s: Done netdev_open(), status: Rx %x Tx %x "
"MAC Control %x, %4.4x %4.4x.\n",
dev->name, (int)readl(ioaddr + RxStatus),
(int)readw(ioaddr + TxStatus), (int)readl(ioaddr + MACCtrl0),
(int)readw(ioaddr + MACCtrl1), (int)readw(ioaddr + MACCtrl0));
/* Set the timer to check for link beat. */
init_timer(&np->timer);
np->timer.expires = jiffies + 3*HZ;
np->timer.data = (unsigned long)dev;
np->timer.function = &netdev_timer; /* timer handler */
add_timer(&np->timer);
return 0;
}
static void sundance_start(struct net_device *dev)
{
struct netdev_private *np = (struct netdev_private *)dev->priv;
long ioaddr = dev->base_addr;
int i;
/* No reports have indicated that we need to reset the chip. */
writel(virt_to_bus(&np->rx_ring[np->cur_rx % RX_RING_SIZE]),
ioaddr + RxListPtr);
/* The Tx list pointer is written as packets are queued. */
/* Station address must be written as 16 bit words with the Kendin chip. */
for (i = 0; i < 6; i += 2)
writew((dev->dev_addr[i + 1] << 8) + dev->dev_addr[i],
ioaddr + StationAddr + i);
np->link_status = readb(ioaddr + MIICtrl) & 0xE0;
writew((np->full_duplex || (np->link_status & 0x20)) ? 0x120 : 0,
ioaddr + MACCtrl0);
writew(dev->mtu + 14, ioaddr + MaxFrameSize);
if (dev->mtu > 2047)
writel(readl(ioaddr + ASICCtrl) | 0x0C, ioaddr + ASICCtrl);
set_rx_mode(dev);
writew(0, ioaddr + DownCounter);
/* Set the chip to poll every N*320nsec. */
writeb(100, ioaddr + RxDescPoll);
writeb(127, ioaddr + TxDescPoll);
#if 0
if (np->drv_flags & KendinPktDropBug)
writeb(0x01, ioaddr + DebugCtrl1);
#endif
/* Enable interrupts by setting the interrupt mask. */
writew(IntrRxDMADone | IntrPCIErr | IntrDrvRqst | IntrTxDone
| StatsMax | LinkChange, ioaddr + IntrEnable);
writew(StatsEnable | RxEnable | TxEnable, ioaddr + MACCtrl1);
}
static void check_duplex(struct net_device *dev)
{
struct netdev_private *np = (struct netdev_private *)dev->priv;
long ioaddr = dev->base_addr;
int mii_reg5 = mdio_read(dev, np->phys[0], 5);
int negotiated = mii_reg5 & np->advertising;
int duplex;
if (np->duplex_lock || mii_reg5 == 0xffff)
return;
duplex = (negotiated & 0x0100) || (negotiated & 0x01C0) == 0x0040;
if (np->full_duplex != duplex) {
np->full_duplex = duplex;
if (np->msg_level & NETIF_MSG_LINK)
printk(KERN_INFO "%s: Setting %s-duplex based on MII #%d "
"negotiated capability %4.4x.\n", dev->name,
duplex ? "full" : "half", np->phys[0], negotiated);
writew(duplex ? 0x20 : 0, ioaddr + MACCtrl0);
}
}
static void netdev_timer(unsigned long data)
{
struct net_device *dev = (struct net_device *)data;
struct netdev_private *np = (struct netdev_private *)dev->priv;
long ioaddr = dev->base_addr;
int next_tick = 10*HZ;
if (np->msg_level & NETIF_MSG_TIMER) {
printk(KERN_DEBUG "%s: Media selection timer tick, intr status %4.4x, "
"Tx %x Rx %x.\n",
dev->name, (int)readw(ioaddr + IntrEnable),
(int)readw(ioaddr + TxStatus), (int)readl(ioaddr + RxStatus));
}
/* Note: This does not catch a 0 or 1 element stuck queue. */
if (netif_queue_paused(dev) &&
np->cur_tx - np->dirty_tx > 1 &&
(jiffies - dev->trans_start) > TX_TIMEOUT) {
tx_timeout(dev);
}
check_duplex(dev);
np->timer.expires = jiffies + next_tick;
add_timer(&np->timer);
}
static void tx_timeout(struct net_device *dev)
{
struct netdev_private *np = (struct netdev_private *)dev->priv;
long ioaddr = dev->base_addr;
printk(KERN_WARNING "%s: Transmit timed out, status %4.4x,"
" resetting...\n", dev->name, (int)readw(ioaddr + TxStatus));
#ifdef __i386__
if (np->msg_level & NETIF_MSG_TX_ERR) {
int i;
printk(KERN_DEBUG " Rx ring %8.8x: ", (int)np->rx_ring);
for (i = 0; i < RX_RING_SIZE; i++)
printk(" %8.8x", (unsigned int)np->rx_ring[i].status);
printk("\n"KERN_DEBUG" Tx ring %8.8x: ", (int)np->tx_ring);
for (i = 0; i < TX_RING_SIZE; i++)
printk(" %8.8x", np->tx_ring[i].status);
printk("\n");
}
#endif
/* Perhaps we should reinitialize the hardware here. */
dev->if_port = 0;
/* Stop and restart the chip's Tx processes . */
/* Trigger an immediate transmit demand. */
writew(IntrRxDMADone | IntrPCIErr | IntrDrvRqst | IntrTxDone
| StatsMax | LinkChange, ioaddr + IntrEnable);
dev->trans_start = jiffies;
np->stats.tx_errors++;
return;
}
/* Initialize the Rx and Tx rings, along with various 'dev' bits. */
static void init_ring(struct net_device *dev)
{
struct netdev_private *np = (struct netdev_private *)dev->priv;
int i;
np->tx_full = 0;
np->cur_rx = np->cur_tx = 0;
np->dirty_rx = np->dirty_tx = 0;
np->rx_buf_sz = dev->mtu + 20;
if (np->rx_buf_sz < PKT_BUF_SZ)
np->rx_buf_sz = PKT_BUF_SZ;
np->rx_head_desc = &np->rx_ring[0];
/* Initialize all Rx descriptors. */
for (i = 0; i < RX_RING_SIZE; i++) {
np->rx_ring[i].next_desc = virt_to_le32desc(&np->rx_ring[i+1]);
np->rx_ring[i].status = 0;
np->rx_ring[i].frag[0].length = 0;
np->rx_skbuff[i] = 0;
}
/* Wrap the ring. */
np->rx_ring[i-1].next_desc = virt_to_le32desc(&np->rx_ring[0]);
/* Fill in the Rx buffers. Handle allocation failure gracefully. */
for (i = 0; i < RX_RING_SIZE; i++) {
struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz);
np->rx_skbuff[i] = skb;
if (skb == NULL)
break;
skb->dev = dev; /* Mark as being used by this device. */
skb_reserve(skb, 2); /* 16 byte align the IP header. */
np->rx_ring[i].frag[0].addr = virt_to_le32desc(skb->tail);
np->rx_ring[i].frag[0].length = cpu_to_le32(np->rx_buf_sz | LastFrag);
}
np->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
for (i = 0; i < TX_RING_SIZE; i++) {
np->tx_skbuff[i] = 0;
np->tx_ring[i].status = 0;
}
return;
}
static int start_tx(struct sk_buff *skb, struct net_device *dev)
{
struct netdev_private *np = (struct netdev_private *)dev->priv;
struct netdev_desc *txdesc;
unsigned entry;
/* Block a timer-based transmit from overlapping. */
if (netif_pause_tx_queue(dev) != 0) {
/* This watchdog code is redundant with the media monitor timer. */
if (jiffies - dev->trans_start > TX_TIMEOUT)
tx_timeout(dev);
return 1;
}
/* Note: Ordering is important here, set the field with the
"ownership" bit last, and only then increment cur_tx. */
/* Calculate the next Tx descriptor entry. */
entry = np->cur_tx % TX_RING_SIZE;
np->tx_skbuff[entry] = skb;
txdesc = &np->tx_ring[entry];
txdesc->next_desc = 0;
/* Note: disable the interrupt generation here before releasing. */
txdesc->status =
cpu_to_le32((entry<<2) | DescIntrOnDMADone | DescIntrOnTx | 1);
txdesc->frag[0].addr = virt_to_le32desc(skb->data);
txdesc->frag[0].length = cpu_to_le32(skb->len | LastFrag);
if (np->last_tx)
np->last_tx->next_desc = virt_to_le32desc(txdesc);
np->last_tx = txdesc;
np->cur_tx++;
/* On some architectures: explicitly flush cache lines here. */
if (np->cur_tx - np->dirty_tx >= TX_QUEUE_LEN - 1) {
np->tx_full = 1;
/* Check for a just-cleared queue. */
if (np->cur_tx - (volatile unsigned int)np->dirty_tx
< TX_QUEUE_LEN - 2) {
np->tx_full = 0;
netif_unpause_tx_queue(dev);
} else
netif_stop_tx_queue(dev);
} else
netif_unpause_tx_queue(dev); /* Typical path */
/* Side effect: The read wakes the potentially-idle transmit channel. */
if (readl(dev->base_addr + TxListPtr) == 0)
writel(virt_to_bus(&np->tx_ring[entry]), dev->base_addr + TxListPtr);
dev->trans_start = jiffies;
if (np->msg_level & NETIF_MSG_TX_QUEUED) {
printk(KERN_DEBUG "%s: Transmit frame #%d len %ld queued in slot %u.\n",
dev->name, np->cur_tx, skb->len, entry);
}
return 0;
}
/* The interrupt handler does all of the Rx thread work and cleans up
after the Tx thread. */
static void intr_handler(int irq, void *dev_instance, struct pt_regs *rgs)
{
struct net_device *dev = (struct net_device *)dev_instance;
struct netdev_private *np;
long ioaddr;
int boguscnt;
ioaddr = dev->base_addr;
np = (struct netdev_private *)dev->priv;
boguscnt = np->max_interrupt_work;
do {
int intr_status = readw(ioaddr + IntrStatus);
if ((intr_status & ~IntrRxDone) == 0 || intr_status == 0xffff)
break;
writew(intr_status & (IntrRxDMADone | IntrPCIErr |
IntrDrvRqst |IntrTxDone|IntrTxDMADone |
StatsMax | LinkChange),
ioaddr + IntrStatus);
if (np->msg_level & NETIF_MSG_INTR)
printk(KERN_DEBUG "%s: Interrupt, status %4.4x.\n",
dev->name, intr_status);
if (intr_status & IntrRxDMADone)
netdev_rx(dev);
if (intr_status & IntrTxDone) {
int txboguscnt = 32;
int tx_status = readw(ioaddr + TxStatus);
while (tx_status & 0x80) {
if (np->msg_level & NETIF_MSG_TX_DONE)
printk("%s: Transmit status is %4.4x.\n",
dev->name, tx_status);
if (tx_status & 0x1e) {
if (np->msg_level & NETIF_MSG_TX_ERR)
printk("%s: Transmit error status %4.4x.\n",
dev->name, tx_status);
np->stats.tx_errors++;
if (tx_status & 0x10) np->stats.tx_fifo_errors++;
#ifdef ETHER_STATS
if (tx_status & 0x08) np->stats.collisions16++;
#else
if (tx_status & 0x08) np->stats.collisions++;
#endif
if (tx_status & 0x04) np->stats.tx_fifo_errors++;
if (tx_status & 0x02) np->stats.tx_window_errors++;
/* This reset has not been verified!. */
if (tx_status & 0x10) { /* Reset the Tx. */
writel(0x001c0000 | readl(ioaddr + ASICCtrl),
ioaddr + ASICCtrl);
#if 0 /* Do we need to reset the Tx pointer here? */
writel(virt_to_bus(&np->tx_ring[np->dirty_tx]),
dev->base_addr + TxListPtr);
#endif
}
if (tx_status & 0x1e) /* Restart the Tx. */
writew(TxEnable, ioaddr + MACCtrl1);
}
/* Yup, this is a documentation bug. It cost me *hours*. */
writew(0, ioaddr + TxStatus);
if (--txboguscnt < 0)
break;
tx_status = readw(ioaddr + TxStatus);
}
}
for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) {
int entry = np->dirty_tx % TX_RING_SIZE;
if ( ! (np->tx_ring[entry].status & cpu_to_le32(DescTxDMADone)))
break;
/* Free the original skb. */
dev_free_skb_irq(np->tx_skbuff[entry]);
np->tx_skbuff[entry] = 0;
}
if (np->tx_full && np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) {
/* The ring is no longer full, allow new TX entries. */
np->tx_full = 0;
netif_resume_tx_queue(dev);
}
/* Abnormal error summary/uncommon events handlers. */
if (intr_status & (IntrDrvRqst | IntrPCIErr | LinkChange | StatsMax))
netdev_error(dev, intr_status);
if (--boguscnt < 0) {
int intr_clear = readw(ioaddr + IntrClear);
get_stats(dev);
printk(KERN_WARNING "%s: Too much work at interrupt, "
"status=0x%4.4x / 0x%4.4x .. 0x%4.4x.\n",
dev->name, intr_status, intr_clear,
(int)readw(ioaddr + IntrClear));
/* Re-enable us in 3.2msec. */
writew(1000, ioaddr + DownCounter);
writew(IntrDrvRqst, ioaddr + IntrEnable);
break;
}
} while (1);
if (np->msg_level & NETIF_MSG_INTR)
printk(KERN_DEBUG "%s: exiting interrupt, status=%#4.4x.\n",
dev->name, (int)readw(ioaddr + IntrStatus));
return;
}
/* This routine is logically part of the interrupt handler, but separated
for clarity and better register allocation. */
static int netdev_rx(struct net_device *dev)
{
struct netdev_private *np = (struct netdev_private *)dev->priv;
int entry = np->cur_rx % RX_RING_SIZE;
int boguscnt = np->dirty_rx + RX_RING_SIZE - np->cur_rx;
if (np->msg_level & NETIF_MSG_RX_STATUS) {
printk(KERN_DEBUG " In netdev_rx(), entry %d status %4.4x.\n",
entry, np->rx_ring[entry].status);
}
/* If EOP is set on the next entry, it's a new packet. Send it up. */
while (np->rx_head_desc->status & cpu_to_le32(DescOwn)) {
struct netdev_desc *desc = np->rx_head_desc;
u32 frame_status = le32_to_cpu(desc->status);
int pkt_len = frame_status & 0x1fff; /* Chip omits the CRC. */
if (np->msg_level & NETIF_MSG_RX_STATUS)
printk(KERN_DEBUG " netdev_rx() status was %8.8x.\n",
frame_status);
if (--boguscnt < 0)
break;
if (frame_status & 0x001f4000) {
/* There was a error. */
if (np->msg_level & NETIF_MSG_RX_ERR)
printk(KERN_DEBUG " netdev_rx() Rx error was %8.8x.\n",
frame_status);
np->stats.rx_errors++;
if (frame_status & 0x00100000) np->stats.rx_length_errors++;
if (frame_status & 0x00010000) np->stats.rx_fifo_errors++;
if (frame_status & 0x00060000) np->stats.rx_frame_errors++;
if (frame_status & 0x00080000) np->stats.rx_crc_errors++;
if (frame_status & 0x00100000) {
printk(KERN_WARNING "%s: Oversized Ethernet frame,"
" status %8.8x.\n",
dev->name, frame_status);
}
} else {
struct sk_buff *skb;
#ifndef final_version
if (np->msg_level & NETIF_MSG_RX_STATUS)
printk(KERN_DEBUG " netdev_rx() normal Rx pkt length %d"
", bogus_cnt %d.\n",
pkt_len, boguscnt);
#endif
/* Check if the packet is long enough to accept without copying
to a minimally-sized skbuff. */
if (pkt_len < np->rx_copybreak
&& (skb = dev_alloc_skb(pkt_len + 2)) != NULL) {
skb->dev = dev;
skb_reserve(skb, 2); /* 16 byte align the IP header */
eth_copy_and_sum(skb, np->rx_skbuff[entry]->tail, pkt_len, 0);
skb_put(skb, pkt_len);
} else {
skb_put(skb = np->rx_skbuff[entry], pkt_len);
np->rx_skbuff[entry] = NULL;
}
skb->protocol = eth_type_trans(skb, dev);
/* Note: checksum -> skb->ip_summed = CHECKSUM_UNNECESSARY; */
netif_rx(skb);
dev->last_rx = jiffies;
}
entry = (++np->cur_rx) % RX_RING_SIZE;
np->rx_head_desc = &np->rx_ring[entry];
}
/* Refill the Rx ring buffers. */
for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
struct sk_buff *skb;
entry = np->dirty_rx % RX_RING_SIZE;
if (np->rx_skbuff[entry] == NULL) {
skb = dev_alloc_skb(np->rx_buf_sz);
np->rx_skbuff[entry] = skb;
if (skb == NULL)
break; /* Better luck next round. */
skb->dev = dev; /* Mark as being used by this device. */
skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
np->rx_ring[entry].frag[0].addr = virt_to_le32desc(skb->tail);
}
/* Perhaps we need not reset this field. */
np->rx_ring[entry].frag[0].length =
cpu_to_le32(np->rx_buf_sz | LastFrag);
np->rx_ring[entry].status = 0;
}
/* No need to restart Rx engine, it will poll. */
return 0;
}
static void netdev_error(struct net_device *dev, int intr_status)
{
long ioaddr = dev->base_addr;
struct netdev_private *np = (struct netdev_private *)dev->priv;
if (intr_status & IntrDrvRqst) {
/* Stop the down counter and turn interrupts back on. */
printk(KERN_WARNING "%s: Turning interrupts back on.\n", dev->name);
writew(0, ioaddr + DownCounter);
writew(IntrRxDMADone | IntrPCIErr | IntrDrvRqst |
IntrTxDone | StatsMax | LinkChange, ioaddr + IntrEnable);
}
if (intr_status & LinkChange) {
int new_status = readb(ioaddr + MIICtrl) & 0xE0;
if (np->msg_level & NETIF_MSG_LINK)
printk(KERN_NOTICE "%s: Link changed: Autonegotiation advertising"
" %4.4x partner %4.4x.\n", dev->name,
mdio_read(dev, np->phys[0], 4),
mdio_read(dev, np->phys[0], 5));
if ((np->link_status ^ new_status) & 0x80) {
if (new_status & 0x80)
netif_link_up(dev);
else
netif_link_down(dev);
}
np->link_status = new_status;
check_duplex(dev);
}
if (intr_status & StatsMax) {
get_stats(dev);
}
if (intr_status & IntrPCIErr) {
printk(KERN_ERR "%s: Something Wicked happened! %4.4x.\n",
dev->name, intr_status);
/* We must do a global reset of DMA to continue. */
}
}
static struct net_device_stats *get_stats(struct net_device *dev)
{
long ioaddr = dev->base_addr;
struct netdev_private *np = (struct netdev_private *)dev->priv;
int i;
if (readw(ioaddr + StationAddr) == 0xffff)
return &np->stats;
/* We do not spinlock statistics.
A window only exists if we have non-atomic adds, the error counts
are typically zero, and statistics are non-critical. */
np->stats.rx_missed_errors += readb(ioaddr + RxMissed);
np->stats.tx_packets += readw(ioaddr + TxFramesOK);
np->stats.rx_packets += readw(ioaddr + RxFramesOK);
np->stats.collisions += readb(ioaddr + StatsLateColl);
np->stats.collisions += readb(ioaddr + StatsMultiColl);
np->stats.collisions += readb(ioaddr + StatsOneColl);
readb(ioaddr + StatsCarrierError);
readb(ioaddr + StatsTxDefer);
for (i = StatsTxXSDefer; i <= StatsMcastRx; i++)
readb(ioaddr + i);
#if LINUX_VERSION_CODE > 0x20127
np->stats.tx_bytes += readw(ioaddr + TxOctetsLow);
np->stats.tx_bytes += readw(ioaddr + TxOctetsHigh) << 16;
np->stats.rx_bytes += readw(ioaddr + RxOctetsLow);
np->stats.rx_bytes += readw(ioaddr + RxOctetsHigh) << 16;
#else
readw(ioaddr + TxOctetsLow);
readw(ioaddr + TxOctetsHigh);
readw(ioaddr + RxOctetsLow);
readw(ioaddr + RxOctetsHigh);
#endif
return &np->stats;
}
/* The little-endian AUTODIN II ethernet CRC calculations.
A big-endian version is also available.
This is slow but compact code. Do not use this routine for bulk data,
use a table-based routine instead.
This is common code and should be moved to net/core/crc.c.
Chips may use the upper or lower CRC bits, and may reverse and/or invert
them. Select the endian-ness that results in minimal calculations.
*/
static unsigned const ethernet_polynomial_le = 0xedb88320U;
static inline unsigned ether_crc_le(int length, unsigned char *data)
{
unsigned int crc = ~0; /* Initial value. */
while(--length >= 0) {
unsigned char current_octet = *data++;
int bit;
for (bit = 8; --bit >= 0; current_octet >>= 1) {
if ((crc ^ current_octet) & 1) {
crc >>= 1;
crc ^= ethernet_polynomial_le;
} else
crc >>= 1;
}
}
return crc;
}
static void set_rx_mode(struct net_device *dev)
{
struct netdev_private *np = (struct netdev_private *)dev->priv;
long ioaddr = dev->base_addr;
u16 mc_filter[4]; /* Multicast hash filter */
u32 rx_mode;
int i;
if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
/* Unconditionally log net taps. */
printk(KERN_NOTICE "%s: Promiscuous mode enabled.\n", dev->name);
memset(mc_filter, ~0, sizeof(mc_filter));
rx_mode = AcceptBroadcast | AcceptMulticast | AcceptAll | AcceptMyPhys;
} else if ((dev->mc_count > np->multicast_filter_limit)
|| (dev->flags & IFF_ALLMULTI)) {
/* Too many to match, or accept all multicasts. */
memset(mc_filter, 0xff, sizeof(mc_filter));
rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys;
} else if (dev->mc_count) {
struct dev_mc_list *mclist;
memset(mc_filter, 0, sizeof(mc_filter));
for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
i++, mclist = mclist->next) {
set_bit(ether_crc_le(ETH_ALEN, mclist->dmi_addr) & 0x3f,
mc_filter);
}
rx_mode = AcceptBroadcast | AcceptMultiHash | AcceptMyPhys;
} else {
writeb(AcceptBroadcast | AcceptMyPhys, ioaddr + RxMode);
return;
}
for (i = 0; i < 4; i++)
writew(mc_filter[i], ioaddr + MulticastFilter0 + i*2);
writeb(rx_mode, ioaddr + RxMode);
}
static int mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
struct netdev_private *np = (struct netdev_private *)dev->priv;
u16 *data = (u16 *)&rq->ifr_data;
u32 *data32 = (void *)&rq->ifr_data;
switch(cmd) {
case 0x8947: case 0x89F0:
/* SIOCGMIIPHY: Get the address of the PHY in use. */
data[0] = np->phys[0] & 0x1f;
/* Fall Through */
case 0x8948: case 0x89F1:
/* SIOCGMIIREG: Read the specified MII register. */
data[3] = mdio_read(dev, data[0] & 0x1f, data[1] & 0x1f);
return 0;
case 0x8949: case 0x89F2:
/* SIOCSMIIREG: Write the specified MII register */
if (!capable(CAP_NET_ADMIN))
return -EPERM;
if (data[0] == np->phys[0]) {
u16 value = data[2];
switch (data[1]) {
case 0:
/* Check for autonegotiation on or reset. */
np->medialock = (value & 0x9000) ? 0 : 1;
if (np->medialock)
np->full_duplex = (value & 0x0100) ? 1 : 0;
break;
case 4: np->advertising = value; break;
}
/* Perhaps check_duplex(dev), depending on chip semantics. */
}
mdio_write(dev, data[0] & 0x1f, data[1] & 0x1f, data[2]);
return 0;
case SIOCGPARAMS:
data32[0] = np->msg_level;
data32[1] = np->multicast_filter_limit;
data32[2] = np->max_interrupt_work;
data32[3] = np->rx_copybreak;
return 0;
case SIOCSPARAMS:
if (!capable(CAP_NET_ADMIN))
return -EPERM;
np->msg_level = data32[0];
np->multicast_filter_limit = data32[1];
np->max_interrupt_work = data32[2];
np->rx_copybreak = data32[3];
return 0;
default:
return -EOPNOTSUPP;
}
}
static int sundance_pwr_event(void *dev_instance, int event)
{
struct net_device *dev = dev_instance;
struct netdev_private *np = (struct netdev_private *)dev->priv;
long ioaddr = dev->base_addr;
if (np->msg_level & NETIF_MSG_LINK)
printk(KERN_DEBUG "%s: Handling power event %d.\n", dev->name, event);
switch(event) {
case DRV_ATTACH:
MOD_INC_USE_COUNT;
break;
case DRV_SUSPEND:
/* Disable interrupts, stop Tx and Rx. */
writew(0x0000, ioaddr + IntrEnable);
writew(TxDisable | RxDisable | StatsDisable, ioaddr + MACCtrl1);
break;
case DRV_RESUME:
sundance_start(dev);
break;
case DRV_DETACH: {
struct net_device **devp, **next;
if (dev->flags & IFF_UP) {
/* Some, but not all, kernel versions close automatically. */
dev_close(dev);
dev->flags &= ~(IFF_UP|IFF_RUNNING);
}
unregister_netdev(dev);
release_region(dev->base_addr, pci_id_tbl[np->chip_id].io_size);
#ifndef USE_IO_OPS
iounmap((char *)dev->base_addr);
#endif
for (devp = &root_net_dev; *devp; devp = next) {
next = &((struct netdev_private *)(*devp)->priv)->next_module;
if (*devp == dev) {
*devp = *next;
break;
}
}
if (np->priv_addr)
kfree(np->priv_addr);
kfree(dev);
MOD_DEC_USE_COUNT;
break;
}
case DRV_PWR_WakeOn:
writeb(readb(ioaddr + WakeEvent) | 2, ioaddr + WakeEvent);
/* Fall through. */
case DRV_PWR_DOWN:
case DRV_PWR_UP:
acpi_set_pwr_state(np->pci_dev, event==DRV_PWR_UP ? ACPI_D0:ACPI_D3);
break;
default:
return -1;
}
return 0;
}
static int netdev_close(struct net_device *dev)
{
long ioaddr = dev->base_addr;
struct netdev_private *np = (struct netdev_private *)dev->priv;
int i;
netif_stop_tx_queue(dev);
if (np->msg_level & NETIF_MSG_IFDOWN) {
printk(KERN_DEBUG "%s: Shutting down ethercard, status was Tx %2.2x "
"Rx %4.4x Int %2.2x.\n",
dev->name, (int)readw(ioaddr + TxStatus),
(int)readl(ioaddr + RxStatus), (int)readw(ioaddr + IntrStatus));
printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
dev->name, np->cur_tx, np->dirty_tx, np->cur_rx, np->dirty_rx);
}
/* Disable interrupts by clearing the interrupt mask. */
writew(0x0000, ioaddr + IntrEnable);
/* Stop the chip's Tx and Rx processes. */
writew(TxDisable | RxDisable | StatsDisable, ioaddr + MACCtrl1);
del_timer(&np->timer);
#ifdef __i386__
if (np->msg_level & NETIF_MSG_IFDOWN) {
printk("\n"KERN_DEBUG" Tx ring at %8.8x:\n",
(int)virt_to_bus(np->tx_ring));
for (i = 0; i < TX_RING_SIZE; i++)
printk(" #%d desc. %4.4x %8.8x %8.8x.\n",
i, np->tx_ring[i].status, np->tx_ring[i].frag[0].addr,
np->tx_ring[i].frag[0].length);
printk("\n"KERN_DEBUG " Rx ring %8.8x:\n",
(int)virt_to_bus(np->rx_ring));
for (i = 0; i < /*RX_RING_SIZE*/4 ; i++) {
printk(KERN_DEBUG " #%d desc. %4.4x %4.4x %8.8x\n",
i, np->rx_ring[i].status, np->rx_ring[i].frag[0].addr,
np->rx_ring[i].frag[0].length);
}
}
#endif /* __i386__ debugging only */
free_irq(dev->irq, dev);
/* Free all the skbuffs in the Rx queue. */
for (i = 0; i < RX_RING_SIZE; i++) {
np->rx_ring[i].status = 0;
np->rx_ring[i].frag[0].addr = 0xBADF00D0; /* An invalid address. */
if (np->rx_skbuff[i]) {
#if LINUX_VERSION_CODE < 0x20100
np->rx_skbuff[i]->free = 1;
#endif
dev_free_skb(np->rx_skbuff[i]);
}
np->rx_skbuff[i] = 0;
}
for (i = 0; i < TX_RING_SIZE; i++) {
if (np->tx_skbuff[i])
dev_free_skb(np->tx_skbuff[i]);
np->tx_skbuff[i] = 0;
}
MOD_DEC_USE_COUNT;
return 0;
}
#ifdef MODULE
int init_module(void)
{
if (debug >= NETIF_MSG_DRV) /* Emit version even if no cards detected. */
printk(KERN_INFO "%s" KERN_INFO "%s", version1, version2);
return pci_drv_register(&sundance_drv_id, NULL);
}
void cleanup_module(void)
{
struct net_device *next_dev;
pci_drv_unregister(&sundance_drv_id);
/* No need to check MOD_IN_USE, as sys_delete_module() checks. */
while (root_net_dev) {
struct netdev_private *np = (void *)(root_net_dev->priv);
unregister_netdev(root_net_dev);
#ifdef USE_IO_OPS
release_region(root_net_dev->base_addr,
pci_id_tbl[np->chip_id].io_size);
#else
iounmap((char *)root_net_dev->base_addr);
#endif
next_dev = np->next_module;
if (np->priv_addr)
kfree(np->priv_addr);
kfree(root_net_dev);
root_net_dev = next_dev;
}
}
#endif /* MODULE */
/*
* Local variables:
* compile-command: "make KERNVER=`uname -r` sundance.o"
* compile-cmd1: "gcc -DMODULE -Wall -Wstrict-prototypes -O6 -c sundance.c"
* simple-compile-command: "gcc -DMODULE -O6 -c sundance.c"
* c-indent-level: 4
* c-basic-offset: 4
* tab-width: 4
* End:
*/
|