summaryrefslogtreecommitdiff
path: root/linux/src/drivers/net/eepro100.c
blob: 6909cdc4ff6c8f2d68aeabd44709788d8f50c56b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
/* drivers/net/eepro100.c: An Intel i82557-559 Ethernet driver for Linux. */
/*
	Written 1998-2003 by Donald Becker.

	This software may be used and distributed according to the terms of
	the GNU General Public License (GPL), incorporated herein by reference.
	Drivers based on or derived from this code fall under the GPL and must
	retain the authorship, copyright and license notice.  This driver is not
	a complete program and may only be used when the entire operating
	system is licensed under the GPL.

	This driver is for the Intel EtherExpress Pro100 (Speedo3) design.
	It should work with all i82557/558/559 boards.

	To use as a module, use the compile-command at the end of the file.

	The author may be reached as becker@scyld.com, or C/O
	Scyld Computing Corporation
	914 Bay Ridge Road, Suite 220
	Annapolis MD 21403

	For updates see
		http://www.scyld.com/network/eepro100.html
	For installation instructions
		http://www.scyld.com/network/modules.html
	The information and support mailing lists are based at
		http://www.scyld.com/mailman/listinfo/
*/

/* These identify the driver base version and may not be removed. */
static const char version1[] =
"eepro100.c:v1.28 7/22/2003 Donald Becker <becker@scyld.com>\n";
static const char version2[] =
"  http://www.scyld.com/network/eepro100.html\n";


/* The user-configurable values.
   These may be modified when a driver module is loaded.
   The first five are undocumented and spelled per Intel recommendations.
*/

/* Message enable level: 0..31 = no..all messages.  See NETIF_MSG docs. */
static int debug = 2;

static int congenb = 0;		/* Enable congestion control in the DP83840. */
static int txfifo = 8;		/* Tx FIFO threshold in 4 byte units, 0-15 */
static int rxfifo = 8;		/* Rx FIFO threshold, default 32 bytes. */
/* Tx/Rx DMA burst length, 0-127, 0 == no preemption, tx==128 -> disabled. */
static int txdmacount = 128;
static int rxdmacount = 0;

/* Set the copy breakpoint for the copy-only-tiny-frame Rx method.
   Lower values use more memory, but are faster.
   Setting to > 1518 disables this feature. */
static int rx_copybreak = 200;

/* Maximum events (Rx packets, etc.) to handle at each interrupt. */
static int max_interrupt_work = 20;

/* Maximum number of multicast addresses to filter (vs. rx-all-multicast) */
static int multicast_filter_limit = 64;

/* Used to pass the media type, etc.
   Both 'options[]' and 'full_duplex[]' should exist for driver
   interoperability, however setting full_duplex[] is deprecated.
   The media type is usually passed in 'options[]'.
    Use option values 0x10/0x20 for 10Mbps, 0x100,0x200 for 100Mbps.
    Use option values 0x10 and 0x100 for forcing half duplex fixed speed.
    Use option values 0x20 and 0x200 for forcing full duplex operation.
*/
#define MAX_UNITS 8		/* More are supported, limit only on options */
static int options[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
static int full_duplex[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};

/* Operational parameters that are set at compile time. */

/* The ring sizes should be a power of two for efficiency. */
#define TX_RING_SIZE	32		/* Effectively 2 entries fewer. */
#define RX_RING_SIZE	32
/* Actual number of TX packets queued, must be <= TX_RING_SIZE-2. */
#define TX_QUEUE_LIMIT  12
#define TX_QUEUE_UNFULL 8		/* Hysteresis marking queue as no longer full. */

/* Operational parameters that usually are not changed. */

/* Time in jiffies before concluding the transmitter is hung. */
#define TX_TIMEOUT  (6*HZ)

/* Allocation size of Rx buffers with normal sized Ethernet frames.
   Do not change this value without good reason.  This is not a limit,
   but a way to keep a consistent allocation size among drivers.
 */
#define PKT_BUF_SZ		1536

#ifndef __KERNEL__
#define __KERNEL__
#endif
#if !defined(__OPTIMIZE__)
#warning  You must compile this file with the correct options!
#warning  See the last lines of the source file.
#error You must compile this driver with "-O".
#endif

#include <linux/config.h>
#if defined(CONFIG_SMP) && ! defined(__SMP__)
#define __SMP__
#endif
#if defined(MODULE) && defined(CONFIG_MODVERSIONS) && ! defined(MODVERSIONS)
#define MODVERSIONS
#endif

#include <linux/version.h>
#if defined(MODVERSIONS)
#include <linux/modversions.h>
#endif
#include <linux/module.h>

#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/timer.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#if LINUX_VERSION_CODE >= 0x20400
#include <linux/slab.h>
#else
#include <linux/malloc.h>
#endif
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/delay.h>
#include <asm/bitops.h>
#include <asm/io.h>

#if LINUX_VERSION_CODE >= 0x20300
#include <linux/spinlock.h>
#elif LINUX_VERSION_CODE >= 0x20200
#include <asm/spinlock.h>
#endif

#ifdef INLINE_PCISCAN
#include "k_compat.h"
#else
#include "pci-scan.h"
#include "kern_compat.h"
#endif

/* Condensed bus+endian portability operations. */
#define virt_to_le32desc(addr)  cpu_to_le32(virt_to_bus(addr))
#define le32desc_to_virt(addr)  bus_to_virt(le32_to_cpu(addr))

#if (LINUX_VERSION_CODE >= 0x20100)  &&  defined(MODULE)
char kernel_version[] = UTS_RELEASE;
#endif

MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
MODULE_DESCRIPTION("Intel PCI EtherExpressPro 100 driver");
MODULE_LICENSE("GPL");
MODULE_PARM(debug, "i");
MODULE_PARM(options, "1-" __MODULE_STRING(MAX_UNITS) "i");
MODULE_PARM(full_duplex, "1-" __MODULE_STRING(MAX_UNITS) "i");
MODULE_PARM(congenb, "i");
MODULE_PARM(txfifo, "i");
MODULE_PARM(rxfifo, "i");
MODULE_PARM(txdmacount, "i");
MODULE_PARM(rxdmacount, "i");
MODULE_PARM(rx_copybreak, "i");
MODULE_PARM(max_interrupt_work, "i");
MODULE_PARM(multicast_filter_limit, "i");
#ifdef MODULE_PARM_DESC
MODULE_PARM_DESC(debug, "EEPro100 message level (0-31)");
MODULE_PARM_DESC(options,
				 "EEPro100: force fixed speed+duplex 0x10 0x20 0x100 0x200");
MODULE_PARM_DESC(max_interrupt_work,
				 "EEPro100 maximum events handled per interrupt");
MODULE_PARM_DESC(full_duplex, "EEPro100 set to forced full duplex when not 0"
				 " (deprecated)");
MODULE_PARM_DESC(rx_copybreak,
				 "EEPro100 copy breakpoint for copy-only-tiny-frames");
MODULE_PARM_DESC(multicast_filter_limit,
				 "EEPro100 breakpoint for switching to Rx-all-multicast");
/* Other settings are undocumented per Intel recommendation. */
#endif

/*
				Theory of Operation

I. Board Compatibility

This device driver is designed for the Intel i82557 "Speedo3" chip, Intel's
single-chip fast Ethernet controller for PCI, as used on the Intel
EtherExpress Pro 100 adapter.

II. Board-specific settings

PCI bus devices are configured by the system at boot time, so no jumpers
need to be set on the board.  The system BIOS should be set to assign the
PCI INTA signal to an otherwise unused system IRQ line.  While it's
possible to share PCI interrupt lines, it negatively impacts performance and
only recent kernels support it.

III. Driver operation

IIIA. General
The Speedo3 is very similar to other Intel network chips, that is to say
"apparently designed on a different planet".  This chips retains the complex
Rx and Tx descriptors and multiple buffers pointers as previous chips, but
also has simplified Tx and Rx buffer modes.  This driver uses the "flexible"
Tx mode, but in a simplified lower-overhead manner: it associates only a
single buffer descriptor with each frame descriptor.

Despite the extra space overhead in each receive skbuff, the driver must use
the simplified Rx buffer mode to assure that only a single data buffer is
associated with each RxFD. The driver implements this by reserving space
for the Rx descriptor at the head of each Rx skbuff.

The Speedo-3 has receive and command unit base addresses that are added to
almost all descriptor pointers.  The driver sets these to zero, so that all
pointer fields are absolute addresses.

The System Control Block (SCB) of some previous Intel chips exists on the
chip in both PCI I/O and memory space.  This driver uses the I/O space
registers, but might switch to memory mapped mode to better support non-x86
processors.

IIIB. Transmit structure

The driver must use the complex Tx command+descriptor mode in order to
have a indirect pointer to the skbuff data section.  Each Tx command block
(TxCB) is associated with two immediately appended Tx Buffer Descriptor
(TxBD).  A fixed ring of these TxCB+TxBD pairs are kept as part of the
speedo_private data structure for each adapter instance.

The i82558 and later explicitly supports this structure, and can read the two
TxBDs in the same PCI burst as the TxCB.

This ring structure is used for all normal transmit packets, but the
transmit packet descriptors aren't long enough for most non-Tx commands such
as CmdConfigure.  This is complicated by the possibility that the chip has
already loaded the link address in the previous descriptor.  So for these
commands we convert the next free descriptor on the ring to a NoOp, and point
that descriptor's link to the complex command.

An additional complexity of these non-transmit commands are that they may be
added asynchronous to the normal transmit queue, so we set a lock
whenever the Tx descriptor ring is manipulated.

A notable aspect of these special configure commands is that they do
work with the normal Tx ring entry scavenge method.  The Tx ring scavenge
is done at interrupt time using the 'dirty_tx' index, and checking for the
command-complete bit.  While the setup frames may have the NoOp command on the
Tx ring marked as complete, but not have completed the setup command, this
is not a problem.  The tx_ring entry can be still safely reused, as the
tx_skbuff[] entry is always empty for config_cmd and mc_setup frames.

Commands may have bits set e.g. CmdSuspend in the command word to either
suspend or stop the transmit/command unit.  This driver always initializes
the current command with CmdSuspend before erasing the CmdSuspend in the
previous command, and only then issues a CU_RESUME.

Note: In previous generation Intel chips, restarting the command unit was a
notoriously slow process.  This is presumably no longer true.

IIIC. Receive structure

Because of the bus-master support on the Speedo3 this driver uses the
SKBUFF_RX_COPYBREAK scheme, rather than a fixed intermediate receive buffer.
This scheme allocates full-sized skbuffs as receive buffers.  The value
SKBUFF_RX_COPYBREAK is used as the copying breakpoint: it is chosen to
trade-off the memory wasted by passing the full-sized skbuff to the queue
layer for all frames vs. the copying cost of copying a frame to a
correctly-sized skbuff.

For small frames the copying cost is negligible (esp. considering that we
are pre-loading the cache with immediately useful header information), so we
allocate a new, minimally-sized skbuff.  For large frames the copying cost
is non-trivial, and the larger copy might flush the cache of useful data, so
we pass up the skbuff the packet was received into.

IIID. Synchronization
The driver runs as two independent, single-threaded flows of control.  One
is the send-packet routine, which enforces single-threaded use by the
dev->tbusy flag.  The other thread is the interrupt handler, which is single
threaded by the hardware and other software.

The send packet thread has partial control over the Tx ring and 'dev->tbusy'
flag.  It sets the tbusy flag whenever it's queuing a Tx packet. If the next
queue slot is empty, it clears the tbusy flag when finished otherwise it sets
the 'sp->tx_full' flag.

The interrupt handler has exclusive control over the Rx ring and records stats
from the Tx ring.  (The Tx-done interrupt can't be selectively turned off, so
we can't avoid the interrupt overhead by having the Tx routine reap the Tx
stats.)	 After reaping the stats, it marks the queue entry as empty by setting
the 'base' to zero.	 Iff the 'sp->tx_full' flag is set, it clears both the
tx_full and tbusy flags.

IV. Notes

Thanks to Steve Williams of Intel for arranging the non-disclosure agreement
that stated that I could disclose the information.  But I still resent
having to sign an Intel NDA when I'm helping Intel sell their own product!

*/

/* This table drives the PCI probe routines. */
static void *speedo_found1(struct pci_dev *pdev, void *init_dev,
						   long ioaddr, int irq, int chip_idx, int fnd_cnt);
static int speedo_pwr_event(void *dev_instance, int event);
enum chip_capability_flags { ResetMII=1, HasChksum=2};

/* I/O registers beyond 0x18 do not exist on the i82557. */
#ifdef USE_IO_OPS
#define SPEEDO_IOTYPE   PCI_USES_MASTER|PCI_USES_IO|PCI_ADDR1
#define SPEEDO_SIZE		32
#else
#define SPEEDO_IOTYPE   PCI_USES_MASTER|PCI_USES_MEM|PCI_ADDR0
#define SPEEDO_SIZE		0x1000
#endif

struct pci_id_info static pci_id_tbl[] = {
	{"Intel PCI EtherExpress Pro100 82865",		{ 0x12278086, 0xffffffff,},
	 SPEEDO_IOTYPE, SPEEDO_SIZE, 0, },
	{"Intel PCI EtherExpress Pro100 Smart (i960RP/RD)",
	 { 0x12288086, 0xffffffff,}, SPEEDO_IOTYPE, SPEEDO_SIZE, 0, },
	{"Intel i82559 rev 8",			{ 0x12298086, ~0, 0,0, 8,0xff},
	 SPEEDO_IOTYPE, SPEEDO_SIZE, HasChksum, },
	{"Intel PCI EtherExpress Pro100",			{ 0x12298086, 0xffffffff,},
	 SPEEDO_IOTYPE, SPEEDO_SIZE, 0, },
	{"Intel EtherExpress Pro/100+ i82559ER",	{ 0x12098086, 0xffffffff,},
	 SPEEDO_IOTYPE, SPEEDO_SIZE, ResetMII, },
	{"Intel EtherExpress Pro/100 type 1029",	{ 0x10298086, 0xffffffff,},
	 SPEEDO_IOTYPE, SPEEDO_SIZE, 0, },
	{"Intel EtherExpress Pro/100 type 1030",	{ 0x10308086, 0xffffffff,},
	 SPEEDO_IOTYPE, SPEEDO_SIZE, 0, },
	{"Intel Pro/100 V Network",					{ 0x24498086, 0xffffffff,},
	 SPEEDO_IOTYPE, SPEEDO_SIZE, 0, },
	{"Intel PCI LAN0 Controller 82801E",		{ 0x24598086, 0xffffffff,},
	 SPEEDO_IOTYPE, SPEEDO_SIZE, 0, },
	{"Intel PCI LAN1 Controller 82801E",		{ 0x245D8086, 0xffffffff,},
	 SPEEDO_IOTYPE, SPEEDO_SIZE, 0, },
	{"Intel Pro/100 VE (type 1031)",			{ 0x10318086, 0xffffffff,},
	 SPEEDO_IOTYPE, SPEEDO_SIZE, 0, },
	{"Intel Pro/100 VE (type 1032)",			{ 0x10328086, 0xffffffff,},
	 SPEEDO_IOTYPE, SPEEDO_SIZE, 0, },
	{"Intel Pro/100 VE (type 1033)",			{ 0x10338086, 0xffffffff,},
	 SPEEDO_IOTYPE, SPEEDO_SIZE, 0, },
	{"Intel Pro/100 VE (type 1034)",			{ 0x10348086, 0xffffffff,},
	 SPEEDO_IOTYPE, SPEEDO_SIZE, 0, },
	{"Intel Pro/100 VE (type 1035)",			{ 0x10358086, 0xffffffff,},
	 SPEEDO_IOTYPE, SPEEDO_SIZE, 0, },
	{"Intel Pro/100 VM (type 1038)",			{ 0x10388086, 0xffffffff,},
	 SPEEDO_IOTYPE, SPEEDO_SIZE, 0, },
	{"Intel Pro/100 VM (type 1039)",			{ 0x10398086, 0xffffffff,},
	 SPEEDO_IOTYPE, SPEEDO_SIZE, 0, },
	{"Intel Pro/100 VM (type 103a)",			{ 0x103a8086, 0xffffffff,},
	 SPEEDO_IOTYPE, SPEEDO_SIZE, 0, },
	{"HP/Compaq D510 Intel Pro/100 VM",
	 { 0x103b8086, 0xffffffff, 0x00120e11, 0xffffffff,},
	 SPEEDO_IOTYPE, SPEEDO_SIZE, 0, },
	{"Intel Pro/100 VM (type 103b)",			{ 0x103b8086, 0xffffffff,},
	 SPEEDO_IOTYPE, SPEEDO_SIZE, 0, },
	{"Intel Pro/100 VE (type 103D)",			{ 0x103d8086, 0xffffffff,},
	 SPEEDO_IOTYPE, SPEEDO_SIZE, 0, },
	{"Intel Pro/100 VE (type 103E)",			{ 0x103e8086, 0xffffffff,},
	 SPEEDO_IOTYPE, SPEEDO_SIZE, 0, },
	{"Intel EtherExpress Pro/100 865G Northbridge type 1051",
	 { 0x10518086, 0xffffffff,}, SPEEDO_IOTYPE, SPEEDO_SIZE, 0, },
	{"Intel PCI to PCI Bridge EtherExpress Pro100 Server Adapter",
	 { 0x52008086, 0xffffffff,}, SPEEDO_IOTYPE, SPEEDO_SIZE, 0, },
	{"Intel PCI EtherExpress Pro100 Server Adapter",
	 { 0x52018086, 0xffffffff,}, SPEEDO_IOTYPE, SPEEDO_SIZE, 0, },
	{"Intel Pro/100 VM (unknown type series 1030)",
	 { 0x10308086, 0xfff0ffff,}, SPEEDO_IOTYPE, SPEEDO_SIZE, 0, },
	{"Intel Pro/100 (unknown type series 1050)",
	 { 0x10508086, 0xfff0ffff,}, SPEEDO_IOTYPE, SPEEDO_SIZE, 0, },
	{0,},						/* 0 terminated list. */
};

struct drv_id_info eepro100_drv_id = {
	"eepro100", PCI_HOTSWAP, PCI_CLASS_NETWORK_ETHERNET<<8, pci_id_tbl,
	speedo_found1, speedo_pwr_event, };

#ifndef USE_IO_OPS
#undef inb
#undef inw
#undef inl
#undef outb
#undef outw
#undef outl
#define inb readb
#define inw readw
#define inl readl
#define outb writeb
#define outw writew
#define outl writel
#endif

/* Offsets to the various registers.
   All accesses need not be longword aligned. */
enum speedo_offsets {
	SCBStatus = 0, SCBCmd = 2,	/* Rx/Command Unit command and status. */
	SCBPointer = 4,				/* General purpose pointer. */
	SCBPort = 8,				/* Misc. commands and operands.  */
	SCBflash = 12, SCBeeprom = 14, /* EEPROM and flash memory control. */
	SCBCtrlMDI = 16,			/* MDI interface control. */
	SCBEarlyRx = 20,			/* Early receive byte count. */
};
/* Commands that can be put in a command list entry. */
enum commands {
	CmdNOp = 0, CmdIASetup = 0x10000, CmdConfigure = 0x20000,
	CmdMulticastList = 0x30000, CmdTx = 0x40000, CmdTDR = 0x50000,
	CmdDump = 0x60000, CmdDiagnose = 0x70000,
	CmdSuspend = 0x40000000,	/* Suspend after completion. */
	CmdIntr = 0x20000000,		/* Interrupt after completion. */
	CmdTxFlex = 0x00080000,		/* Use "Flexible mode" for CmdTx command. */
};
/* Do atomically if possible. */
#if defined(__i386__)
#define clear_suspend(cmd)   ((char *)(&(cmd)->cmd_status))[3] &= ~0x40
#elif defined(__alpha__) || defined(__x86_64) || defined(__ia64)
#define clear_suspend(cmd)   clear_bit(30, &(cmd)->cmd_status)
#elif defined(__powerpc__) || defined(__sparc__) || (__BIG_ENDIAN)
#define clear_suspend(cmd)	clear_bit(6, &(cmd)->cmd_status)
#else
#warning Undefined architecture.
#define clear_suspend(cmd)	(cmd)->cmd_status &= cpu_to_le32(~CmdSuspend)
#endif

enum SCBCmdBits {
	SCBMaskCmdDone=0x8000, SCBMaskRxDone=0x4000, SCBMaskCmdIdle=0x2000,
	SCBMaskRxSuspend=0x1000, SCBMaskEarlyRx=0x0800, SCBMaskFlowCtl=0x0400,
	SCBTriggerIntr=0x0200, SCBMaskAll=0x0100,
	/* The rest are Rx and Tx commands. */
	CUStart=0x0010, CUResume=0x0020, CUHiPriStart=0x0030, CUStatsAddr=0x0040,
	CUShowStats=0x0050,
	CUCmdBase=0x0060,  /* CU Base address (set to zero) . */
	CUDumpStats=0x0070, /* Dump then reset stats counters. */
	CUHiPriResume=0x00b0, /* Resume for the high priority Tx queue. */
	RxStart=0x0001, RxResume=0x0002, RxAbort=0x0004, RxAddrLoad=0x0006,
	RxResumeNoResources=0x0007,
};

enum intr_status_bits {
	IntrCmdDone=0x8000,  IntrRxDone=0x4000, IntrCmdIdle=0x2000,
	IntrRxSuspend=0x1000, IntrMIIDone=0x0800, IntrDrvrIntr=0x0400,
	IntrAllNormal=0xfc00,
};

enum SCBPort_cmds {
	PortReset=0, PortSelfTest=1, PortPartialReset=2, PortDump=3,
};

/* The Speedo3 Rx and Tx frame/buffer descriptors. */
struct descriptor {			/* A generic descriptor. */
	s32 cmd_status;			/* All command and status fields. */
	u32 link;					/* struct descriptor *  */
	unsigned char params[0];
};

/* The Speedo3 Rx and Tx buffer descriptors. */
struct RxFD {					/* Receive frame descriptor. */
	s32 status;
	u32 link;					/* struct RxFD * */
	u32 rx_buf_addr;			/* void * */
	u32 count;
};

/* Selected elements of the Tx/RxFD.status word. */
enum RxFD_bits {
	RxComplete=0x8000, RxOK=0x2000,
	RxErrCRC=0x0800, RxErrAlign=0x0400, RxErrTooBig=0x0200, RxErrSymbol=0x0010,
	RxEth2Type=0x0020, RxNoMatch=0x0004, RxNoIAMatch=0x0002,
	TxUnderrun=0x1000,  StatusComplete=0x8000,
};

struct TxFD {					/* Transmit frame descriptor set. */
	s32 status;
	u32 link;					/* void * */
	u32 tx_desc_addr;			/* Always points to the tx_buf_addr element. */
	s32 count;					/* # of TBD (=1), Tx start thresh., etc. */
	/* This constitutes two "TBD" entries. Non-zero-copy uses only one. */
	u32 tx_buf_addr0;			/* void *, frame to be transmitted.  */
	s32 tx_buf_size0;			/* Length of Tx frame. */
	u32 tx_buf_addr1;			/* Used only for zero-copy data section. */
	s32 tx_buf_size1;			/* Length of second data buffer (0). */
};

/* Elements of the dump_statistics block. This block must be lword aligned. */
struct speedo_stats {
	u32 tx_good_frames;
	u32 tx_coll16_errs;
	u32 tx_late_colls;
	u32 tx_underruns;
	u32 tx_lost_carrier;
	u32 tx_deferred;
	u32 tx_one_colls;
	u32 tx_multi_colls;
	u32 tx_total_colls;
	u32 rx_good_frames;
	u32 rx_crc_errs;
	u32 rx_align_errs;
	u32 rx_resource_errs;
	u32 rx_overrun_errs;
	u32 rx_colls_errs;
	u32 rx_runt_errs;
	u32 done_marker;
};

/* Do not change the position (alignment) of the first few elements!
   The later elements are grouped for cache locality. */
struct speedo_private {
	struct TxFD	tx_ring[TX_RING_SIZE];	/* Commands (usually CmdTxPacket). */
	struct RxFD *rx_ringp[RX_RING_SIZE];	/* Rx descriptor, used as ring. */
	struct speedo_stats lstats;			/* Statistics and self-test region */

	/* The addresses of a Tx/Rx-in-place packets/buffers. */
	struct sk_buff* tx_skbuff[TX_RING_SIZE];
	struct sk_buff* rx_skbuff[RX_RING_SIZE];

	/* Transmit and other commands control. */
	struct descriptor  *last_cmd;	/* Last command sent. */
	unsigned int cur_tx, dirty_tx;	/* The ring entries to be free()ed. */
	spinlock_t lock;				/* Group with Tx control cache line. */
	u32 tx_threshold;					/* The value for txdesc.count. */
	unsigned long last_cmd_time;

	/* Rx control, one cache line. */
	struct RxFD *last_rxf;				/* Most recent Rx frame. */
	unsigned int cur_rx, dirty_rx;		/* The next free ring entry */
	unsigned int rx_buf_sz;				/* Based on MTU+slack. */
	long last_rx_time;			/* Last Rx, in jiffies, to handle Rx hang. */
	int rx_copybreak;

	int msg_level;
	int max_interrupt_work;
	struct net_device *next_module;
	void *priv_addr;					/* Unaligned address for kfree */
	struct net_device_stats stats;
	int alloc_failures;
	int chip_id, drv_flags;
	struct pci_dev *pci_dev;
	unsigned char acpi_pwr;
	struct timer_list timer;	/* Media selection timer. */
	/* Multicast filter command. */
	int mc_setup_frm_len;			 	/* The length of an allocated.. */
	struct descriptor *mc_setup_frm; 	/* ..multicast setup frame. */
	int mc_setup_busy;					/* Avoid double-use of setup frame. */
	int multicast_filter_limit;

	int in_interrupt;					/* Word-aligned dev->interrupt */
	int rx_mode;						/* Current PROMISC/ALLMULTI setting. */
	unsigned int tx_full:1;				/* The Tx queue is full. */
	unsigned int full_duplex:1;			/* Full-duplex operation requested. */
	unsigned int flow_ctrl:1;			/* Use 802.3x flow control. */
	unsigned int rx_bug:1;				/* Work around receiver hang errata. */
	unsigned int rx_bug10:1;			/* Receiver might hang at 10mbps. */
	unsigned int rx_bug100:1;			/* Receiver might hang at 100mbps. */
	unsigned int polling:1;				/* Hardware blocked interrupt line. */
	unsigned int medialock:1;			/* The media speed/duplex is fixed. */
	unsigned char default_port;			/* Last dev->if_port value. */
	unsigned short phy[2];				/* PHY media interfaces available. */
	unsigned short advertising;			/* Current PHY advertised caps. */
	unsigned short partner;				/* Link partner caps. */
	long last_reset;
};

/* Our internal RxMode state, not tied to the hardware bits. */
enum rx_mode_bits {
	AcceptAllMulticast=0x01, AcceptAllPhys=0x02, 
	AcceptErr=0x80, AcceptRunt=0x10,
	AcceptBroadcast=0x08, AcceptMulticast=0x04,
	AcceptMyPhys=0x01, RxInvalidMode=0x7f
};

/* The parameters for a CmdConfigure operation.
   There are so many options that it would be difficult to document each bit.
   We mostly use the default or recommended settings. */
const char i82557_config_cmd[22] = {
	22, 0x08, 0, 0,  0, 0, 0x32, 0x03,  1, /* 1=Use MII  0=Use AUI */
	0, 0x2E, 0,  0x60, 0,
	0xf2, 0x48,   0, 0x40, 0xf2, 0x80, 		/* 0x40=Force full-duplex */
	0x3f, 0x05, };
const char i82558_config_cmd[22] = {
	22, 0x08, 0, 1,  0, 0, 0x22, 0x03,  1, /* 1=Use MII  0=Use AUI */
	0, 0x2E, 0,  0x60, 0x08, 0x88,
	0x68, 0, 0x40, 0xf2, 0xBD, 		/* 0xBD->0xFD=Force full-duplex */
	0x31, 0x05, };

/* PHY media interface chips, defined by the databook. */
static const char *phys[] = {
	"None", "i82553-A/B", "i82553-C", "i82503",
	"DP83840", "80c240", "80c24", "i82555",
	"unknown-8", "unknown-9", "DP83840A", "unknown-11",
	"unknown-12", "unknown-13", "unknown-14", "unknown-15", };
enum phy_chips { NonSuchPhy=0, I82553AB, I82553C, I82503, DP83840, S80C240,
					 S80C24, I82555, DP83840A=10, };
static const char is_mii[] = { 0, 1, 1, 0, 1, 1, 0, 1 };

/* Standard serial configuration EEPROM commands. */
#define EE_READ_CMD		(6)

static int do_eeprom_cmd(long ioaddr, int cmd, int cmd_len);
static int mdio_read(struct net_device *dev, int phy_id, int location);
static int mdio_write(long ioaddr, int phy_id, int location, int value);
static int speedo_open(struct net_device *dev);
static void speedo_resume(struct net_device *dev);
static void speedo_timer(unsigned long data);
static void speedo_init_rx_ring(struct net_device *dev);
static void speedo_tx_timeout(struct net_device *dev);
static int speedo_start_xmit(struct sk_buff *skb, struct net_device *dev);
static int speedo_rx(struct net_device *dev);
static void speedo_interrupt(int irq, void *dev_instance, struct pt_regs *regs);
static int speedo_close(struct net_device *dev);
static struct net_device_stats *speedo_get_stats(struct net_device *dev);
static int speedo_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
static void set_rx_mode(struct net_device *dev);



#ifdef honor_default_port
/* Optional driver feature to allow forcing the transceiver setting.
   Not recommended. */
static int mii_ctrl[8] = { 0x3300, 0x3100, 0x0000, 0x0100,
						   0x2000, 0x2100, 0x0400, 0x3100};
#endif

/* A list of all installed Speedo devices, for removing the driver module. */
static struct net_device *root_speedo_dev = NULL;

static void *speedo_found1(struct pci_dev *pdev, void *init_dev,
						   long ioaddr, int irq, int chip_idx, int card_idx)
{
	struct net_device *dev;
	struct speedo_private *sp;
	void *priv_mem;
	int i, option;
	u16 eeprom[0x100];
	int acpi_idle_state = 0;

	dev = init_etherdev(init_dev, 0);
	if (!dev)
		return NULL;

	if (dev->mem_start > 0)
		option = dev->mem_start;
	else if (card_idx >= 0  &&  options[card_idx] >= 0)
		option = options[card_idx];
	else
		option = -1;

	acpi_idle_state = acpi_set_pwr_state(pdev, ACPI_D0);

	/* Read the station address EEPROM before doing the reset.
	   Nominally his should even be done before accepting the device, but
	   then we wouldn't have a device name with which to report the error.
	   The size test is for 6 bit vs. 8 bit address serial EEPROMs.
	*/
	{
		u16 sum = 0;
		int j;
		int read_cmd, ee_size;

		if ((do_eeprom_cmd(ioaddr, EE_READ_CMD << 24, 27) & 0xffe0000)
			== 0xffe0000) {
			ee_size = 0x100;
			read_cmd = EE_READ_CMD << 24;
		} else {
			ee_size = 0x40;
			read_cmd = EE_READ_CMD << 22;
		}

		for (j = 0, i = 0; i < ee_size; i++) {
			u16 value = do_eeprom_cmd(ioaddr, read_cmd | (i << 16), 27);
			eeprom[i] = value;
			sum += value;
			if (i < 3) {
				dev->dev_addr[j++] = value;
				dev->dev_addr[j++] = value >> 8;
			}
		}
		if (sum != 0xBABA)
			printk(KERN_WARNING "%s: Invalid EEPROM checksum %#4.4x, "
				   "check settings before activating this device!\n",
				   dev->name, sum);
		/* Don't  unregister_netdev(dev);  as the EEPro may actually be
		   usable, especially if the MAC address is set later. */
	}

	/* Reset the chip: stop Tx and Rx processes and clear counters.
	   This takes less than 10usec and will easily finish before the next
	   action. */
	outl(PortReset, ioaddr + SCBPort);

	printk(KERN_INFO "%s: %s%s at %#3lx, ", dev->name,
		   eeprom[3] & 0x0100 ? "OEM " : "", pci_id_tbl[chip_idx].name,
		   ioaddr);

	for (i = 0; i < 5; i++)
		printk("%2.2X:", dev->dev_addr[i]);
	printk("%2.2X, IRQ %d.\n", dev->dev_addr[i], irq);

	/* We have decided to accept this device. */
	/* Allocate cached private storage.
	   The PCI coherent descriptor rings are allocated at each open. */
	sp = priv_mem = kmalloc(sizeof(*sp), GFP_KERNEL);
	/* Check for the very unlikely case of no memory. */
	if (priv_mem == NULL)
		return NULL;
	dev->base_addr = ioaddr;
	dev->irq = irq;

#ifndef kernel_bloat
	/* OK, this is pure kernel bloat.  I don't like it when other drivers
	   waste non-pageable kernel space to emit similar messages, but I need
	   them for bug reports. */
	{
		const char *connectors[] = {" RJ45", " BNC", " AUI", " MII"};
		/* The self-test results must be paragraph aligned. */
		s32 *volatile self_test_results;
		int boguscnt = 16000;	/* Timeout for set-test. */
		printk(KERN_INFO "  Board assembly %4.4x%2.2x-%3.3d, Physical"
			   " connectors present:",
			   eeprom[8], eeprom[9]>>8, eeprom[9] & 0xff);
		for (i = 0; i < 4; i++)
			if (eeprom[5] & (1<<i))
				printk(connectors[i]);
		printk("\n"KERN_INFO"  Primary interface chip %s PHY #%d.\n",
			   phys[(eeprom[6]>>8)&15], eeprom[6] & 0x1f);
		if (eeprom[7] & 0x0700)
			printk(KERN_INFO "    Secondary interface chip %s.\n",
				   phys[(eeprom[7]>>8)&7]);
		if (((eeprom[6]>>8) & 0x3f) == DP83840
			||  ((eeprom[6]>>8) & 0x3f) == DP83840A) {
			int mdi_reg23 = mdio_read(dev, eeprom[6] & 0x1f, 23) | 0x0422;
			if (congenb)
			  mdi_reg23 |= 0x0100;
			printk(KERN_INFO"  DP83840 specific setup, setting register 23 to %4.4x.\n",
				   mdi_reg23);
			mdio_write(ioaddr, eeprom[6] & 0x1f, 23, mdi_reg23);
		}
		if ((option >= 0) && (option & 0x330)) {
			printk(KERN_INFO "  Forcing %dMbs %s-duplex operation.\n",
				   (option & 0x300 ? 100 : 10),
				   (option & 0x220 ? "full" : "half"));
			mdio_write(ioaddr, eeprom[6] & 0x1f, 0,
					   ((option & 0x300) ? 0x2000 : 0) | 	/* 100mbps? */
					   ((option & 0x220) ? 0x0100 : 0)); /* Full duplex? */
		} else {
			int mii_bmcrctrl = mdio_read(dev, eeprom[6] & 0x1f, 0);
			/* Reset out of a transceiver left in 10baseT-fixed mode. */
			if ((mii_bmcrctrl & 0x3100) == 0)
				mdio_write(ioaddr, eeprom[6] & 0x1f, 0, 0x8000);
		}
		if (eeprom[10] & 0x0002)
			printk(KERN_INFO "\n" KERN_INFO "  ** The configuration "
				   "EEPROM enables Sleep Mode.\n" KERN_INFO "\n"
				   "  ** This will cause PCI bus errors!\n"
				   KERN_INFO "  ** Update the configuration EEPROM "
				   "with the eepro100-diag program.\n"  );
		if (eeprom[6] == 0)
			printk(KERN_INFO "  ** The configuration EEPROM does not have a "
				   "transceiver type set.\n" KERN_INFO "\n"
				   "  ** This will cause configuration problems and prevent "
				   "monitoring the link!\n"
				   KERN_INFO "  ** Update the configuration EEPROM "
				   "with the eepro100-diag program.\n"  );

		/* Perform a system self-test. */
		self_test_results = (s32*)(&sp->lstats);
		self_test_results[0] = 0;
		self_test_results[1] = -1;
		outl(virt_to_bus(self_test_results) | PortSelfTest, ioaddr + SCBPort);
		do {
			udelay(10);
		} while (self_test_results[1] == -1  &&  --boguscnt >= 0);

		if (boguscnt < 0) {		/* Test optimized out. */
			printk(KERN_ERR "Self test failed, status %8.8x:\n"
				   KERN_ERR " Failure to initialize the i82557.\n"
				   KERN_ERR " Verify that the card is a bus-master"
				   " capable slot.\n",
				   self_test_results[1]);
		} else
			printk(KERN_INFO "  General self-test: %s.\n"
				   KERN_INFO "  Serial sub-system self-test: %s.\n"
				   KERN_INFO "  Internal registers self-test: %s.\n"
				   KERN_INFO "  ROM checksum self-test: %s (%#8.8x).\n",
				   self_test_results[1] & 0x1000 ? "failed" : "passed",
				   self_test_results[1] & 0x0020 ? "failed" : "passed",
				   self_test_results[1] & 0x0008 ? "failed" : "passed",
				   self_test_results[1] & 0x0004 ? "failed" : "passed",
				   self_test_results[0]);
	}
#endif  /* kernel_bloat */

	outl(PortReset, ioaddr + SCBPort);

	/* Return the chip to its original power state. */
	acpi_set_pwr_state(pdev, acpi_idle_state);

	/* We do a request_region() only to register /proc/ioports info. */
	request_region(ioaddr, pci_id_tbl[chip_idx].io_size, dev->name);

	dev->priv = sp;				/* Allocated above. */
	memset(sp, 0, sizeof(*sp));
	sp->next_module = root_speedo_dev;
	root_speedo_dev = dev;

	sp->priv_addr = priv_mem;
	sp->pci_dev = pdev;
	sp->chip_id = chip_idx;
	sp->drv_flags = pci_id_tbl[chip_idx].drv_flags;
	sp->acpi_pwr = acpi_idle_state;
	sp->msg_level = (1 << debug) - 1;
	sp->rx_copybreak = rx_copybreak;
	sp->max_interrupt_work = max_interrupt_work;
	sp->multicast_filter_limit = multicast_filter_limit;

	sp->full_duplex = option >= 0 && (option & 0x220) ? 1 : 0;
	if (card_idx >= 0) {
		if (full_duplex[card_idx] >= 0)
			sp->full_duplex = full_duplex[card_idx];
	}
	sp->default_port = option >= 0 ? (option & 0x0f) : 0;
	if (sp->full_duplex)
		sp->medialock = 1;

	sp->phy[0] = eeprom[6];
	sp->phy[1] = eeprom[7];
	sp->rx_bug = (eeprom[3] & 0x03) == 3 ? 0 : 1;

	if (sp->rx_bug)
		printk(KERN_INFO "  Receiver lock-up workaround activated.\n");

	/* The Speedo-specific entries in the device structure. */
	dev->open = &speedo_open;
	dev->hard_start_xmit = &speedo_start_xmit;
	dev->stop = &speedo_close;
	dev->get_stats = &speedo_get_stats;
	dev->set_multicast_list = &set_rx_mode;
	dev->do_ioctl = &speedo_ioctl;

	return dev;
}

/* How to wait for the command unit to accept a command.
   Typically this takes 0 ticks. */

static inline void wait_for_cmd_done(struct net_device *dev)
{
	long cmd_ioaddr = dev->base_addr + SCBCmd;
	int wait = 0;
	int delayed_cmd;
	do
		if (inb(cmd_ioaddr) == 0) return;
	while(++wait <= 100);
	delayed_cmd = inb(cmd_ioaddr);
	do
		if (inb(cmd_ioaddr) == 0) break;
	while(++wait <= 10000);
	printk(KERN_ERR "%s: Command %2.2x was not immediately accepted, "
		   "%d ticks!\n",
		   dev->name, delayed_cmd, wait);
}

/* Perform a SCB command known to be slow.
   This function checks the status both before and after command execution. */
static void do_slow_command(struct net_device *dev, int cmd)
{
	long cmd_ioaddr = dev->base_addr + SCBCmd;
	int wait = 0;
	do
		if (inb(cmd_ioaddr) == 0) break;
	while(++wait <= 200);
	if (wait > 100)
		printk(KERN_ERR "%s: Command %4.4x was never accepted (%d polls)!\n",
			   dev->name, inb(cmd_ioaddr), wait);
	outb(cmd, cmd_ioaddr);
	for (wait = 0; wait <= 100; wait++)
		if (inb(cmd_ioaddr) == 0) return;
	for (; wait <= 20000; wait++)
		if (inb(cmd_ioaddr) == 0) return;
		else udelay(1);
	printk(KERN_ERR "%s: Command %4.4x was not accepted after %d polls!"
		   "  Current status %8.8x.\n",
		   dev->name, cmd, wait, (int)inl(dev->base_addr + SCBStatus));
}


/* Serial EEPROM section.
   A "bit" grungy, but we work our way through bit-by-bit :->. */
/*  EEPROM_Ctrl bits. */
#define EE_SHIFT_CLK	0x01	/* EEPROM shift clock. */
#define EE_CS			0x02	/* EEPROM chip select. */
#define EE_DATA_WRITE	0x04	/* EEPROM chip data in. */
#define EE_DATA_READ	0x08	/* EEPROM chip data out. */
#define EE_ENB			(0x4800 | EE_CS)
#define EE_WRITE_0		0x4802
#define EE_WRITE_1		0x4806
#define EE_OFFSET		SCBeeprom

/* Delay between EEPROM clock transitions.
   The code works with no delay on 33Mhz PCI.  */
#ifndef USE_IO_OPS
#define eeprom_delay(ee_addr)	writew(readw(ee_addr), ee_addr)
#else
#define eeprom_delay(ee_addr)	inw(ee_addr)
#endif

static int do_eeprom_cmd(long ioaddr, int cmd, int cmd_len)
{
	unsigned retval = 0;
	long ee_addr = ioaddr + SCBeeprom;

	outw(EE_ENB | EE_SHIFT_CLK, ee_addr);

	/* Shift the command bits out. */
	do {
		short dataval = (cmd & (1 << cmd_len)) ? EE_WRITE_1 : EE_WRITE_0;
		outw(dataval, ee_addr);
		eeprom_delay(ee_addr);
		outw(dataval | EE_SHIFT_CLK, ee_addr);
		eeprom_delay(ee_addr);
		retval = (retval << 1) | ((inw(ee_addr) & EE_DATA_READ) ? 1 : 0);
	} while (--cmd_len >= 0);
	outw(EE_ENB, ee_addr);

	/* Terminate the EEPROM access. */
	outw(EE_ENB & ~EE_CS, ee_addr);
	return retval;
}

static int mdio_read(struct net_device *dev, int phy_id, int location)
{
	long ioaddr = dev->base_addr;
	int val, boguscnt = 64*10;		/* <64 usec. to complete, typ 27 ticks */

	outl(0x08000000 | (location<<16) | (phy_id<<21), ioaddr + SCBCtrlMDI);
	do {
		val = inl(ioaddr + SCBCtrlMDI);
		if (--boguscnt < 0) {
			printk(KERN_ERR "%s: mdio_read() timed out with val = %8.8x.\n",
				   dev->name, val);
			break;
		}
	} while (! (val & 0x10000000));
	return val & 0xffff;
}

static int mdio_write(long ioaddr, int phy_id, int location, int value)
{
	int val, boguscnt = 64*10;		/* <64 usec. to complete, typ 27 ticks */
	outl(0x04000000 | (location<<16) | (phy_id<<21) | value,
		 ioaddr + SCBCtrlMDI);
	do {
		val = inl(ioaddr + SCBCtrlMDI);
		if (--boguscnt < 0) {
			printk(KERN_ERR" mdio_write() timed out with val = %8.8x.\n", val);
			break;
		}
	} while (! (val & 0x10000000));
	return val & 0xffff;
}


static int
speedo_open(struct net_device *dev)
{
	struct speedo_private *sp = (struct speedo_private *)dev->priv;
	long ioaddr = dev->base_addr;

	MOD_INC_USE_COUNT;
	acpi_set_pwr_state(sp->pci_dev, ACPI_D0);

	if (sp->msg_level & NETIF_MSG_IFUP)
		printk(KERN_DEBUG "%s: speedo_open() irq %d.\n", dev->name, dev->irq);

	/* Set up the Tx queue early.. */
	sp->cur_tx = 0;
	sp->dirty_tx = 0;
	sp->last_cmd = 0;
	sp->tx_full = 0;
	sp->lock = (spinlock_t) SPIN_LOCK_UNLOCKED;
	sp->polling = sp->in_interrupt = 0;

	dev->if_port = sp->default_port;

	if ((sp->phy[0] & 0x8000) == 0)
		sp->advertising = mdio_read(dev, sp->phy[0] & 0x1f, 4);
	/* With some transceivers we must retrigger negotiation to reset
	   power-up errors. */
	if ((sp->drv_flags & ResetMII) &&
		(sp->phy[0] & 0x8000) == 0) {
		int phy_addr = sp->phy[0] & 0x1f ;
		/* Use 0x3300 for restarting NWay, other values to force xcvr:
		   0x0000 10-HD
		   0x0100 10-FD
		   0x2000 100-HD
		   0x2100 100-FD
		*/
#ifdef honor_default_port
		mdio_write(ioaddr, phy_addr, 0, mii_ctrl[dev->default_port & 7]);
#else
		mdio_write(ioaddr, phy_addr, 0, 0x3300);
#endif
	}

	/* We can safely take handler calls during init.
	   Doing this after speedo_init_rx_ring() results in a memory leak. */
	if (request_irq(dev->irq, &speedo_interrupt, SA_SHIRQ, dev->name, dev)) {
		MOD_DEC_USE_COUNT;
		return -EAGAIN;
	}

	speedo_init_rx_ring(dev);

	/* Fire up the hardware. */
	speedo_resume(dev);
	netif_start_tx_queue(dev);

	/* Setup the chip and configure the multicast list. */
	sp->mc_setup_frm = NULL;
	sp->mc_setup_frm_len = 0;
	sp->mc_setup_busy = 0;
	sp->rx_mode = RxInvalidMode;		/* Invalid -> always reset the mode. */
	sp->flow_ctrl = sp->partner = 0;
	set_rx_mode(dev);

	if (sp->msg_level & NETIF_MSG_IFUP)
		printk(KERN_DEBUG "%s: Done speedo_open(), status %8.8x.\n",
			   dev->name, (int)inw(ioaddr + SCBStatus));

	/* Set the timer.  The timer serves a dual purpose:
	   1) to monitor the media interface (e.g. link beat) and perhaps switch
	   to an alternate media type
	   2) to monitor Rx activity, and restart the Rx process if the receiver
	   hangs. */
	init_timer(&sp->timer);
	sp->timer.expires = jiffies + 3*HZ;
	sp->timer.data = (unsigned long)dev;
	sp->timer.function = &speedo_timer;					/* timer handler */
	add_timer(&sp->timer);

	/* No need to wait for the command unit to accept here. */
	if ((sp->phy[0] & 0x8000) == 0)
		mdio_read(dev, sp->phy[0] & 0x1f, 0);
	return 0;
}

/* Start the chip hardware after a full reset. */
static void speedo_resume(struct net_device *dev)
{
	struct speedo_private *sp = (struct speedo_private *)dev->priv;
	long ioaddr = dev->base_addr;

	outw(SCBMaskAll, ioaddr + SCBCmd);

	/* Start with a Tx threshold of 256 (0x..20.... 8 byte units). */
	sp->tx_threshold = 0x01208000;

	/* Set the segment registers to '0'. */
	wait_for_cmd_done(dev);
	if (inb(ioaddr + SCBCmd)) {
		outl(PortPartialReset, ioaddr + SCBPort);
		udelay(10);
	}
	outl(0, ioaddr + SCBPointer);
	inl(ioaddr + SCBPointer);				/* Flush to PCI. */
	udelay(10);					/* Bogus, but it avoids the bug. */
	/* Note: these next two operations can take a while. */
	do_slow_command(dev, RxAddrLoad);
	do_slow_command(dev, CUCmdBase);

	/* Load the statistics block and rx ring addresses. */
	outl(virt_to_bus(&sp->lstats), ioaddr + SCBPointer);
	inl(ioaddr + SCBPointer);				/* Flush to PCI. */
	outb(CUStatsAddr, ioaddr + SCBCmd);
	sp->lstats.done_marker = 0;
	wait_for_cmd_done(dev);

	outl(virt_to_bus(sp->rx_ringp[sp->cur_rx % RX_RING_SIZE]),
		 ioaddr + SCBPointer);
	inl(ioaddr + SCBPointer);				/* Flush to PCI. */
	/* Note: RxStart should complete instantly. */
	do_slow_command(dev, RxStart);
	do_slow_command(dev, CUDumpStats);

	/* Fill the first command with our physical address. */
	{
		int entry = sp->cur_tx++ % TX_RING_SIZE;
		struct descriptor *cur_cmd = (struct descriptor *)&sp->tx_ring[entry];

		/* Avoid a bug(?!) here by marking the command already completed. */
		cur_cmd->cmd_status = cpu_to_le32((CmdSuspend | CmdIASetup) | 0xa000);
		cur_cmd->link =
			virt_to_le32desc(&sp->tx_ring[sp->cur_tx % TX_RING_SIZE]);
		memcpy(cur_cmd->params, dev->dev_addr, 6);
		if (sp->last_cmd)
			clear_suspend(sp->last_cmd);
		sp->last_cmd = cur_cmd;
	}

	/* Start the chip's Tx process and unmask interrupts. */
	outl(virt_to_bus(&sp->tx_ring[sp->dirty_tx % TX_RING_SIZE]),
		 ioaddr + SCBPointer);
	outw(CUStart, ioaddr + SCBCmd);
}

/* Media monitoring and control. */
static void speedo_timer(unsigned long data)
{
	struct net_device *dev = (struct net_device *)data;
	struct speedo_private *sp = (struct speedo_private *)dev->priv;
	long ioaddr = dev->base_addr;
	int phy_num = sp->phy[0] & 0x1f;
	int status = inw(ioaddr + SCBStatus);

	if (sp->msg_level & NETIF_MSG_TIMER)
		printk(KERN_DEBUG "%s: Interface monitor tick, chip status %4.4x.\n",
			   dev->name, status);

	/* Normally we check every two seconds. */
	sp->timer.expires = jiffies + 2*HZ;

	if (sp->polling) {
		/* Continue to be annoying. */
		if (status & 0xfc00) {
			speedo_interrupt(dev->irq, dev, 0);
			if (jiffies - sp->last_reset > 10*HZ) {
				printk(KERN_ERR "%s: IRQ %d is still blocked!\n",
					   dev->name, dev->irq);
				sp->last_reset = jiffies;
			}
		} else if (jiffies - sp->last_reset > 10*HZ)
			sp->polling = 0;
		sp->timer.expires = jiffies + 2;
	}
	/* We have MII and lost link beat. */
	if ((sp->phy[0] & 0x8000) == 0) {
		int partner = mdio_read(dev, phy_num, 5);
		if (partner != sp->partner) {
			int flow_ctrl = sp->advertising & partner & 0x0400 ? 1 : 0;
			sp->partner = partner;
			if (flow_ctrl != sp->flow_ctrl) {
				sp->flow_ctrl = flow_ctrl;
				sp->rx_mode = RxInvalidMode;	/* Trigger a reload. */
			}
			/* Clear sticky bit. */
			mdio_read(dev, phy_num, 1);
			/* If link beat has returned... */
			if (mdio_read(dev, phy_num, 1) & 0x0004)
				netif_link_up(dev);
			else
				netif_link_down(dev);
		}
	}

	/* This no longer has a false-trigger window. */
	if (sp->cur_tx - sp->dirty_tx > 1 &&
		(jiffies - dev->trans_start) > TX_TIMEOUT  &&
		(jiffies - sp->last_cmd_time) > TX_TIMEOUT) {
		if (status == 0xffff) {
			if (jiffies - sp->last_reset > 10*HZ) {
				sp->last_reset = jiffies;
				printk(KERN_ERR "%s: The EEPro100 chip is missing!\n",
					   dev->name);
			}
		} else if (status & 0xfc00) {
			/* We have a blocked IRQ line.  This should never happen, but
			   we recover as best we can.*/
			if ( ! sp->polling) {
				if (jiffies - sp->last_reset > 10*HZ) {
					printk(KERN_ERR "%s: IRQ %d is physically blocked! (%4.4x)"
						   "Failing back to low-rate polling.\n",
						   dev->name, dev->irq, status);
					sp->last_reset = jiffies;
				}
				sp->polling = 1;
			}
			speedo_interrupt(dev->irq, dev, 0);
			sp->timer.expires = jiffies + 2;	/* Avoid  */
		} else {
			speedo_tx_timeout(dev);
			sp->last_reset = jiffies;
		}
	}
	if (sp->rx_mode == RxInvalidMode  ||
		(sp->rx_bug  && jiffies - sp->last_rx_time > 2*HZ)) {
		/* We haven't received a packet in a Long Time.  We might have been
		   bitten by the receiver hang bug.  This can be cleared by sending
		   a set multicast list command. */
		set_rx_mode(dev);
	}
	add_timer(&sp->timer);
}

static void speedo_show_state(struct net_device *dev)
{
	struct speedo_private *sp = (struct speedo_private *)dev->priv;
	int phy_num = sp->phy[0] & 0x1f;
	int i;

	/* Print a few items for debugging. */
	if (sp->msg_level & NETIF_MSG_DRV) {
		int i;
		printk(KERN_DEBUG "%s: Tx ring dump,  Tx queue %d / %d:\n", dev->name,
			   sp->cur_tx, sp->dirty_tx);
		for (i = 0; i < TX_RING_SIZE; i++)
			printk(KERN_DEBUG "%s: %c%c%d %8.8x.\n", dev->name,
				   i == sp->dirty_tx % TX_RING_SIZE ? '*' : ' ',
				   i == sp->cur_tx % TX_RING_SIZE ? '=' : ' ',
				   i, sp->tx_ring[i].status);
	}
	printk(KERN_DEBUG "%s:Printing Rx ring (next to receive into %d).\n",
		   dev->name, sp->cur_rx);

	for (i = 0; i < RX_RING_SIZE; i++)
		printk(KERN_DEBUG "  Rx ring entry %d  %8.8x.\n",
			   i, sp->rx_ringp[i] ? (int)sp->rx_ringp[i]->status : 0);

	for (i = 0; i < 16; i++) {
		if (i == 6) i = 21;
		printk(KERN_DEBUG "  PHY index %d register %d is %4.4x.\n",
			   phy_num, i, mdio_read(dev, phy_num, i));
	}

}

/* Initialize the Rx and Tx rings, along with various 'dev' bits. */
static void
speedo_init_rx_ring(struct net_device *dev)
{
	struct speedo_private *sp = (struct speedo_private *)dev->priv;
	struct RxFD *rxf, *last_rxf = NULL;
	int i;

	sp->cur_rx = 0;
#if defined(CONFIG_VLAN)
	/* Note that buffer sizing is not a run-time check! */
	sp->rx_buf_sz = dev->mtu + 14 + sizeof(struct RxFD) + 4;
#else
	sp->rx_buf_sz = dev->mtu + 14 + sizeof(struct RxFD);
#endif
	if (sp->rx_buf_sz < PKT_BUF_SZ)
		sp->rx_buf_sz = PKT_BUF_SZ;

	for (i = 0; i < RX_RING_SIZE; i++) {
		struct sk_buff *skb;
		skb = dev_alloc_skb(sp->rx_buf_sz);
		sp->rx_skbuff[i] = skb;
		if (skb == NULL)
			break;			/* OK.  Just initially short of Rx bufs. */
		skb->dev = dev;			/* Mark as being used by this device. */
		rxf = (struct RxFD *)skb->tail;
		sp->rx_ringp[i] = rxf;
		skb_reserve(skb, sizeof(struct RxFD));
		if (last_rxf)
			last_rxf->link = virt_to_le32desc(rxf);
		last_rxf = rxf;
		rxf->status = cpu_to_le32(0x00000001);	/* '1' is flag value only. */
		rxf->link = 0;						/* None yet. */
		/* This field unused by i82557, we use it as a consistency check. */
#ifdef final_version
		rxf->rx_buf_addr = 0xffffffff;
#else
		rxf->rx_buf_addr = virt_to_bus(skb->tail);
#endif
		rxf->count = cpu_to_le32((sp->rx_buf_sz - sizeof(struct RxFD)) << 16);
	}
	sp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
	/* Mark the last entry as end-of-list. */
	last_rxf->status = cpu_to_le32(0xC0000002);	/* '2' is flag value only. */
	sp->last_rxf = last_rxf;
}

static void speedo_tx_timeout(struct net_device *dev)
{
	struct speedo_private *sp = (struct speedo_private *)dev->priv;
	long ioaddr = dev->base_addr;
	int status = inw(ioaddr + SCBStatus);

	printk(KERN_WARNING "%s: Transmit timed out: status %4.4x "
		   " %4.4x at %d/%d commands %8.8x %8.8x %8.8x.\n",
		   dev->name, status, (int)inw(ioaddr + SCBCmd),
		   sp->dirty_tx, sp->cur_tx,
		   sp->tx_ring[(sp->dirty_tx+0) % TX_RING_SIZE].status,
		   sp->tx_ring[(sp->dirty_tx+1) % TX_RING_SIZE].status,
		   sp->tx_ring[(sp->dirty_tx+2) % TX_RING_SIZE].status);

	/* Trigger a stats dump to give time before the reset. */
	speedo_get_stats(dev);

	speedo_show_state(dev);
	if ((status & 0x00C0) != 0x0080
		&&  (status & 0x003C) == 0x0010  &&  0) {
		/* Only the command unit has stopped. */
		printk(KERN_WARNING "%s: Trying to restart the transmitter...\n",
			   dev->name);
		outl(virt_to_bus(&sp->tx_ring[sp->dirty_tx % TX_RING_SIZE]),
			 ioaddr + SCBPointer);
		outw(CUStart, ioaddr + SCBCmd);
	} else {
		printk(KERN_WARNING "%s: Restarting the chip...\n",
			   dev->name);
		/* Reset the Tx and Rx units. */
		outl(PortReset, ioaddr + SCBPort);
		if (sp->msg_level & NETIF_MSG_TX_ERR)
			speedo_show_state(dev);
		udelay(10);
		speedo_resume(dev);
	}
	/* Reset the MII transceiver, suggested by Fred Young @ scalable.com. */
	if ((sp->phy[0] & 0x8000) == 0) {
		int phy_addr = sp->phy[0] & 0x1f;
		int advertising = mdio_read(dev, phy_addr, 4);
		int mii_bmcr = mdio_read(dev, phy_addr, 0);
		mdio_write(ioaddr, phy_addr, 0, 0x0400);
		mdio_write(ioaddr, phy_addr, 1, 0x0000);
		mdio_write(ioaddr, phy_addr, 4, 0x0000);
		mdio_write(ioaddr, phy_addr, 0, 0x8000);
#ifdef honor_default_port
		mdio_write(ioaddr, phy_addr, 0, mii_ctrl[dev->default_port & 7]);
#else
		mdio_read(dev, phy_addr, 0);
		mdio_write(ioaddr, phy_addr, 0, mii_bmcr);
		mdio_write(ioaddr, phy_addr, 4, advertising);
#endif
	}
	sp->stats.tx_errors++;
	dev->trans_start = jiffies;
	return;
}

/* Handle the interrupt cases when something unexpected happens. */
static void speedo_intr_error(struct net_device *dev, int intr_status)
{
	long ioaddr = dev->base_addr;
	struct speedo_private *sp = (struct speedo_private *)dev->priv;

	if (intr_status & IntrRxSuspend) {
		if ((intr_status & 0x003c) == 0x0028) /* No more Rx buffers. */
			outb(RxResumeNoResources, ioaddr + SCBCmd);
		else if ((intr_status & 0x003c) == 0x0008) { /* No resources (why?!) */
			printk(KERN_DEBUG "%s: Unknown receiver error, status=%#4.4x.\n",
				   dev->name, intr_status);
			/* No idea of what went wrong.  Restart the receiver. */
			outl(virt_to_bus(sp->rx_ringp[sp->cur_rx % RX_RING_SIZE]),
				 ioaddr + SCBPointer);
			outb(RxStart, ioaddr + SCBCmd);
		}
		sp->stats.rx_errors++;
	}
}


static int
speedo_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
	struct speedo_private *sp = (struct speedo_private *)dev->priv;
	long ioaddr = dev->base_addr;
	int entry;

	/* Block a timer-based transmit from overlapping.  This could better be
	   done with atomic_swap(1, dev->tbusy), but set_bit() works as well.
	   If this ever occurs the queue layer is doing something evil! */
	if (netif_pause_tx_queue(dev) != 0) {
		int tickssofar = jiffies - dev->trans_start;
		if (tickssofar < TX_TIMEOUT - 2)
			return 1;
		if (tickssofar < TX_TIMEOUT) {
			/* Reap sent packets from the full Tx queue. */
			outw(SCBTriggerIntr, ioaddr + SCBCmd);
			return 1;
		}
		speedo_tx_timeout(dev);
		return 1;
	}

	/* Caution: the write order is important here, set the base address
	   with the "ownership" bits last. */

	{	/* Prevent interrupts from changing the Tx ring from underneath us. */
		unsigned long flags;

		spin_lock_irqsave(&sp->lock, flags);
		/* Calculate the Tx descriptor entry. */
		entry = sp->cur_tx % TX_RING_SIZE;

		sp->tx_skbuff[entry] = skb;
		/* Todo: be a little more clever about setting the interrupt bit. */
		sp->tx_ring[entry].status =
			cpu_to_le32(CmdSuspend | CmdTx | CmdTxFlex);
		sp->cur_tx++;
		sp->tx_ring[entry].link =
			virt_to_le32desc(&sp->tx_ring[sp->cur_tx % TX_RING_SIZE]);
		/* We may nominally release the lock here. */
		sp->tx_ring[entry].tx_desc_addr =
			virt_to_le32desc(&sp->tx_ring[entry].tx_buf_addr0);
		/* The data region is always in one buffer descriptor. */
		sp->tx_ring[entry].count = cpu_to_le32(sp->tx_threshold);
		sp->tx_ring[entry].tx_buf_addr0 = virt_to_le32desc(skb->data);
		sp->tx_ring[entry].tx_buf_size0 = cpu_to_le32(skb->len);
		/* Todo: perhaps leave the interrupt bit set if the Tx queue is more
		   than half full.  Argument against: we should be receiving packets
		   and scavenging the queue.  Argument for: if so, it shouldn't
		   matter. */
		{
			struct descriptor *last_cmd = sp->last_cmd;
			sp->last_cmd = (struct descriptor *)&sp->tx_ring[entry];
			clear_suspend(last_cmd);
		}
		if (sp->cur_tx - sp->dirty_tx >= TX_QUEUE_LIMIT) {
			sp->tx_full = 1;
			netif_stop_tx_queue(dev);
		} else
			netif_unpause_tx_queue(dev);
		spin_unlock_irqrestore(&sp->lock, flags);
	}
	wait_for_cmd_done(dev);
	outb(CUResume, ioaddr + SCBCmd);
	dev->trans_start = jiffies;

	return 0;
}

/* The interrupt handler does all of the Rx thread work and cleans up
   after the Tx thread. */
static void speedo_interrupt(int irq, void *dev_instance, struct pt_regs *regs)
{
	struct net_device *dev = (struct net_device *)dev_instance;
	struct speedo_private *sp;
	long ioaddr;
	int work_limit;
	u16 status;

	ioaddr = dev->base_addr;
	sp = (struct speedo_private *)dev->priv;
	work_limit = sp->max_interrupt_work;
#ifndef final_version
	/* A lock to prevent simultaneous entry on SMP machines. */
	if (test_and_set_bit(0, (void*)&sp->in_interrupt)) {
		printk(KERN_ERR"%s: SMP simultaneous entry of an interrupt handler.\n",
			   dev->name);
		sp->in_interrupt = 0;	/* Avoid halting machine. */
		return;
	}
#endif

	do {
		status = inw(ioaddr + SCBStatus);

		if ((status & IntrAllNormal) == 0  ||  status == 0xffff)
			break;
		/* Acknowledge all of the current interrupt sources ASAP. */
		outw(status & IntrAllNormal, ioaddr + SCBStatus);

		if (sp->msg_level & NETIF_MSG_INTR)
			printk(KERN_DEBUG "%s: interrupt  status=%#4.4x.\n",
				   dev->name, status);

		if (status & (IntrRxDone|IntrRxSuspend))
			speedo_rx(dev);

		/* The command unit did something, scavenge finished Tx entries. */
		if (status & (IntrCmdDone | IntrCmdIdle | IntrDrvrIntr)) {
			unsigned int dirty_tx;
			/* We should nominally not need this lock. */
			spin_lock(&sp->lock);

			dirty_tx = sp->dirty_tx;
			while (sp->cur_tx - dirty_tx > 0) {
				int entry = dirty_tx % TX_RING_SIZE;
				int status = le32_to_cpu(sp->tx_ring[entry].status);

				if (sp->msg_level & NETIF_MSG_INTR)
					printk(KERN_DEBUG " scavenge candidate %d status %4.4x.\n",
						   entry, status);
				if ((status & StatusComplete) == 0) {
					/* Special case error check: look for descriptor that the
					   chip skipped(?). */
					if (sp->cur_tx - dirty_tx > 2  &&
						(sp->tx_ring[(dirty_tx+1) % TX_RING_SIZE].status
						 & cpu_to_le32(StatusComplete))) {
						printk(KERN_ERR "%s: Command unit failed to mark "
							   "command %8.8x as complete at %d.\n",
							   dev->name, status, dirty_tx);
					} else
						break;			/* It still hasn't been processed. */
				}
				if ((status & TxUnderrun) &&
					(sp->tx_threshold < 0x01e08000)) {
					sp->tx_threshold += 0x00040000;
					if (sp->msg_level & NETIF_MSG_TX_ERR)
						printk(KERN_DEBUG "%s: Tx threshold increased, "
							   "%#8.8x.\n", dev->name, sp->tx_threshold);
				}
				/* Free the original skb. */
				if (sp->tx_skbuff[entry]) {
					sp->stats.tx_packets++;	/* Count only user packets. */
#if LINUX_VERSION_CODE > 0x20127
					sp->stats.tx_bytes += sp->tx_skbuff[entry]->len;
#endif
					dev_free_skb_irq(sp->tx_skbuff[entry]);
					sp->tx_skbuff[entry] = 0;
				} else if ((status & 0x70000) == CmdNOp)
					sp->mc_setup_busy = 0;
				dirty_tx++;
			}

#ifndef final_version
			if (sp->cur_tx - dirty_tx > TX_RING_SIZE) {
				printk(KERN_ERR "out-of-sync dirty pointer, %d vs. %d,"
					   " full=%d.\n",
					   dirty_tx, sp->cur_tx, sp->tx_full);
				dirty_tx += TX_RING_SIZE;
			}
#endif

			sp->dirty_tx = dirty_tx;
			if (sp->tx_full
				&&  sp->cur_tx - dirty_tx < TX_QUEUE_UNFULL) {
				/* The ring is no longer full, clear tbusy. */
				sp->tx_full = 0;
				netif_resume_tx_queue(dev);
			}
			spin_unlock(&sp->lock);
		}

		if (status & IntrRxSuspend)
			speedo_intr_error(dev, status);

		if (--work_limit < 0) {
			printk(KERN_ERR "%s: Too much work at interrupt, status=0x%4.4x.\n",
				   dev->name, status);
			/* Clear all interrupt sources. */
			outl(0xfc00, ioaddr + SCBStatus);
			break;
		}
	} while (1);

	if (sp->msg_level & NETIF_MSG_INTR)
		printk(KERN_DEBUG "%s: exiting interrupt, status=%#4.4x.\n",
			   dev->name, (int)inw(ioaddr + SCBStatus));

	clear_bit(0, (void*)&sp->in_interrupt);
	return;
}

static int
speedo_rx(struct net_device *dev)
{
	struct speedo_private *sp = (struct speedo_private *)dev->priv;
	int entry = sp->cur_rx % RX_RING_SIZE;
	int status;
	int rx_work_limit = sp->dirty_rx + RX_RING_SIZE - sp->cur_rx;

	if (sp->msg_level & NETIF_MSG_RX_STATUS)
		printk(KERN_DEBUG " In speedo_rx().\n");
	/* If we own the next entry, it's a new packet. Send it up. */
	while (sp->rx_ringp[entry] != NULL &&
		   (status = le32_to_cpu(sp->rx_ringp[entry]->status)) & RxComplete) {
		int desc_count = le32_to_cpu(sp->rx_ringp[entry]->count);
		int pkt_len = desc_count & 0x07ff;

		if (--rx_work_limit < 0)
			break;
		if (sp->msg_level & NETIF_MSG_RX_STATUS)
			printk(KERN_DEBUG "  speedo_rx() status %8.8x len %d.\n", status,
				   pkt_len);
		if ((status & (RxErrTooBig|RxOK|0x0f90)) != RxOK) {
			if (status & RxErrTooBig)
				printk(KERN_ERR "%s: Ethernet frame overran the Rx buffer, "
					   "status %8.8x!\n", dev->name, status);
			else if ( ! (status & RxOK)) {
				/* There was a fatal error.  This *should* be impossible. */
				sp->stats.rx_errors++;
				printk(KERN_ERR "%s: Anomalous event in speedo_rx(), "
					   "status %8.8x.\n", dev->name, status);
			}
		} else {
			struct sk_buff *skb;

			if (sp->drv_flags & HasChksum)
				pkt_len -= 2;

			/* Check if the packet is long enough to just accept without
			   copying to a properly sized skbuff. */
			if (pkt_len < sp->rx_copybreak
				&& (skb = dev_alloc_skb(pkt_len + 2)) != 0) {
				skb->dev = dev;
				skb_reserve(skb, 2);	/* Align IP on 16 byte boundaries */
				/* 'skb_put()' points to the start of sk_buff data area. */
				/* Packet is in one chunk -- we can copy + cksum. */
				eth_copy_and_sum(skb, sp->rx_skbuff[entry]->tail, pkt_len, 0);
				skb_put(skb, pkt_len);
			} else {
				void *temp;
				/* Pass up the already-filled skbuff. */
				skb = sp->rx_skbuff[entry];
				if (skb == NULL) {
					printk(KERN_ERR "%s: Inconsistent Rx descriptor chain.\n",
						   dev->name);
					break;
				}
				sp->rx_skbuff[entry] = NULL;
				temp = skb_put(skb, pkt_len);
#if !defined(final_version) && !defined(__powerpc__)
				if (bus_to_virt(sp->rx_ringp[entry]->rx_buf_addr) != temp)
					printk(KERN_ERR "%s: Rx consistency error -- the skbuff "
						   "addresses do not match in speedo_rx: %p vs. %p "
						   "/ %p.\n", dev->name,
						   bus_to_virt(sp->rx_ringp[entry]->rx_buf_addr),
						   skb->head, temp);
#endif
				sp->rx_ringp[entry] = NULL;
			}
			skb->protocol = eth_type_trans(skb, dev);
			if (sp->drv_flags & HasChksum) {
#if 0
				u16 csum = get_unaligned((u16*)(skb->head + pkt_len))
				if (desc_count & 0x8000)
					skb->ip_summed = CHECKSUM_UNNECESSARY;
#endif
			}
			netif_rx(skb);
			sp->stats.rx_packets++;
#if LINUX_VERSION_CODE > 0x20127
			sp->stats.rx_bytes += pkt_len;
#endif
		}
		entry = (++sp->cur_rx) % RX_RING_SIZE;
	}

	/* Refill the Rx ring buffers. */
	for (; sp->cur_rx - sp->dirty_rx > 0; sp->dirty_rx++) {
		struct RxFD *rxf;
		entry = sp->dirty_rx % RX_RING_SIZE;
		if (sp->rx_skbuff[entry] == NULL) {
			struct sk_buff *skb;
			/* Get a fresh skbuff to replace the consumed one. */
			skb = dev_alloc_skb(sp->rx_buf_sz);
			sp->rx_skbuff[entry] = skb;
			if (skb == NULL) {
				sp->rx_ringp[entry] = NULL;
				sp->alloc_failures++;
				break;			/* Better luck next time!  */
			}
			rxf = sp->rx_ringp[entry] = (struct RxFD *)skb->tail;
			skb->dev = dev;
			skb_reserve(skb, sizeof(struct RxFD));
			rxf->rx_buf_addr = virt_to_le32desc(skb->tail);
		} else {
			rxf = sp->rx_ringp[entry];
		}
		rxf->status = cpu_to_le32(0xC0000001); 	/* '1' for driver use only. */
		rxf->link = 0;			/* None yet. */
		rxf->count = cpu_to_le32((sp->rx_buf_sz - sizeof(struct RxFD)) << 16);
		sp->last_rxf->link = virt_to_le32desc(rxf);
		sp->last_rxf->status &= cpu_to_le32(~0xC0000000);
		sp->last_rxf = rxf;
	}

	sp->last_rx_time = jiffies;
	return 0;
}

static int
speedo_close(struct net_device *dev)
{
	long ioaddr = dev->base_addr;
	struct speedo_private *sp = (struct speedo_private *)dev->priv;
	int i;

	netif_stop_tx_queue(dev);

	if (sp->msg_level & NETIF_MSG_IFDOWN)
		printk(KERN_DEBUG "%s: Shutting down ethercard, status was %4.4x.\n"
			   KERN_DEBUG "%s:   Cumlative allocation failures: %d.\n",
			   dev->name, (int)inw(ioaddr + SCBStatus),
			   dev->name, sp->alloc_failures);

	/* Shut off the media monitoring timer. */
	del_timer(&sp->timer);

	/* Shutting down the chip nicely fails to disable flow control. So.. */
	outl(PortPartialReset, ioaddr + SCBPort);

	free_irq(dev->irq, dev);

	/* Free all the skbuffs in the Rx and Tx queues. */
	for (i = 0; i < RX_RING_SIZE; i++) {
		struct sk_buff *skb = sp->rx_skbuff[i];
		sp->rx_skbuff[i] = 0;
		/* Clear the Rx descriptors. */
		if (skb) {
#if LINUX_VERSION_CODE < 0x20100
			skb->free = 1;
#endif
			dev_free_skb(skb);
		}
	}

	for (i = 0; i < TX_RING_SIZE; i++) {
		struct sk_buff *skb = sp->tx_skbuff[i];
		sp->tx_skbuff[i] = 0;
		/* Clear the Tx descriptors. */
		if (skb)
			dev_free_skb(skb);
	}
	if (sp->mc_setup_frm) {
		kfree(sp->mc_setup_frm);
		sp->mc_setup_frm_len = 0;
	}

	/* Print a few items for debugging. */
	if (sp->msg_level & NETIF_MSG_IFDOWN)
		speedo_show_state(dev);

	/* Alt: acpi_set_pwr_state(pdev, sp->acpi_pwr); */
	acpi_set_pwr_state(sp->pci_dev, ACPI_D2);
	MOD_DEC_USE_COUNT;

	return 0;
}

/* The Speedo-3 has an especially awkward and unusable method of getting
   statistics out of the chip.  It takes an unpredictable length of time
   for the dump-stats command to complete.  To avoid a busy-wait loop we
   update the stats with the previous dump results, and then trigger a
   new dump.

   These problems are mitigated by the current /proc implementation, which
   calls this routine first to judge the output length, and then to emit the
   output.

   Oh, and incoming frames are dropped while executing dump-stats!
   */
static struct net_device_stats *speedo_get_stats(struct net_device *dev)
{
	struct speedo_private *sp = (struct speedo_private *)dev->priv;
	long ioaddr = dev->base_addr;

	/* Update only if the previous dump finished. */
	if (sp->lstats.done_marker == le32_to_cpu(0xA007)) {
		sp->stats.tx_aborted_errors += le32_to_cpu(sp->lstats.tx_coll16_errs);
		sp->stats.tx_window_errors += le32_to_cpu(sp->lstats.tx_late_colls);
		sp->stats.tx_fifo_errors += le32_to_cpu(sp->lstats.tx_underruns);
		sp->stats.tx_fifo_errors += le32_to_cpu(sp->lstats.tx_lost_carrier);
		/*sp->stats.tx_deferred += le32_to_cpu(sp->lstats.tx_deferred);*/
		sp->stats.collisions += le32_to_cpu(sp->lstats.tx_total_colls);
		sp->stats.rx_crc_errors += le32_to_cpu(sp->lstats.rx_crc_errs);
		sp->stats.rx_frame_errors += le32_to_cpu(sp->lstats.rx_align_errs);
		sp->stats.rx_over_errors += le32_to_cpu(sp->lstats.rx_resource_errs);
		sp->stats.rx_fifo_errors += le32_to_cpu(sp->lstats.rx_overrun_errs);
		sp->stats.rx_length_errors += le32_to_cpu(sp->lstats.rx_runt_errs);
		sp->lstats.done_marker = 0x0000;
		if (netif_running(dev)) {
			wait_for_cmd_done(dev);
			outb(CUDumpStats, ioaddr + SCBCmd);
		}
	}
	return &sp->stats;
}

static int speedo_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
	struct speedo_private *sp = (struct speedo_private *)dev->priv;
	long ioaddr = dev->base_addr;
	u16 *data = (u16 *)&rq->ifr_data;
	u32 *data32 = (void *)&rq->ifr_data;
	int phy = sp->phy[0] & 0x1f;
	int saved_acpi;

	switch(cmd) {
	case 0x8947: case 0x89F0:
		/* SIOCGMIIPHY: Get the address of the PHY in use. */
		data[0] = phy;
		/* Fall Through */
	case 0x8948: case 0x89F1:
		/* SIOCGMIIREG: Read the specified MII register. */
		saved_acpi = acpi_set_pwr_state(sp->pci_dev, ACPI_D0);
		data[3] = mdio_read(dev, data[0], data[1]);
		acpi_set_pwr_state(sp->pci_dev, saved_acpi);
		return 0;
	case 0x8949: case 0x89F2:
		/* SIOCSMIIREG: Write the specified MII register */
		if (!capable(CAP_NET_ADMIN))
			return -EPERM;
		if (data[0] == sp->phy[0]) {
			u16 value = data[2];
			switch (data[1]) {
			case 0:
				/* Check for autonegotiation on or reset. */
				sp->medialock = (value & 0x9000) ? 0 : 1;
				if (sp->medialock) {
					sp->full_duplex = (value & 0x0100) ? 1 : 0;
					sp->rx_mode = RxInvalidMode;
				}
				break;
			case 4: sp->advertising = value; break;
			}
		}
		saved_acpi = acpi_set_pwr_state(sp->pci_dev, ACPI_D0);
		mdio_write(ioaddr, data[0], data[1], data[2]);
		acpi_set_pwr_state(sp->pci_dev, saved_acpi);
		return 0;
	case SIOCGPARAMS:
		data32[0] = sp->msg_level;
		data32[1] = sp->multicast_filter_limit;
		data32[2] = sp->max_interrupt_work;
		data32[3] = sp->rx_copybreak;
#if 0
		/* No room in the ioctl() to set these. */
		data32[4] = txfifo;
		data32[5] = rxfifo;
#endif
		return 0;
	case SIOCSPARAMS:
		if (!capable(CAP_NET_ADMIN))
			return -EPERM;
		sp->msg_level = data32[0];
		sp->multicast_filter_limit = data32[1];
		sp->max_interrupt_work = data32[2];
		sp->rx_copybreak = data32[3];
#if 0
		/* No room in the ioctl() to set these. */
		if (data32[4] < 16)
			txfifo = data32[4];
		if (data32[5] < 16)
			rxfifo = data32[5];
#endif
		return 0;
	default:
		return -EOPNOTSUPP;
	}
}

/* Set or clear the multicast filter for this adaptor.
   This is very ugly with Intel chips -- we usually have to execute an
   entire configuration command, plus process a multicast command.
   This is complicated.  We must put a large configuration command and
   an arbitrarily-sized multicast command in the transmit list.
   To minimize the disruption -- the previous command might have already
   loaded the link -- we convert the current command block, normally a Tx
   command, into a no-op and link it to the new command.
*/
static void set_rx_mode(struct net_device *dev)
{
	struct speedo_private *sp = (struct speedo_private *)dev->priv;
	long ioaddr = dev->base_addr;
	struct descriptor *last_cmd;
	char new_rx_mode;
	unsigned long flags;
	int entry, i;

	if (dev->flags & IFF_PROMISC) {			/* Set promiscuous. */
		new_rx_mode = AcceptAllMulticast | AcceptAllPhys;
	} else if ((dev->flags & IFF_ALLMULTI)  ||
			   dev->mc_count > sp->multicast_filter_limit) {
		new_rx_mode = AcceptAllMulticast;
	} else
		new_rx_mode = 0;

	if (sp->cur_tx - sp->dirty_tx >= TX_RING_SIZE - 1) {
	  /* The Tx ring is full -- don't add anything!  Presumably the new mode
		 is in config_cmd_data and will be added anyway, otherwise we wait
		 for a timer tick or the mode to change again. */
		sp->rx_mode = RxInvalidMode;
		return;
	}

	if (new_rx_mode != sp->rx_mode) {
		u8 *config_cmd_data;

		spin_lock_irqsave(&sp->lock, flags);
		entry = sp->cur_tx % TX_RING_SIZE;
		last_cmd = sp->last_cmd;
		sp->last_cmd = (struct descriptor *)&sp->tx_ring[entry];

		sp->tx_skbuff[entry] = 0;			/* Redundant. */
		sp->tx_ring[entry].status = cpu_to_le32(CmdSuspend | CmdConfigure);
		sp->cur_tx++;
		sp->tx_ring[entry].link =
			virt_to_le32desc(&sp->tx_ring[(entry + 1) % TX_RING_SIZE]);
		/* We may nominally release the lock here. */

		config_cmd_data = (void *)&sp->tx_ring[entry].tx_desc_addr;
		/* Construct a full CmdConfig frame. */
		memcpy(config_cmd_data, i82558_config_cmd, sizeof(i82558_config_cmd));
		config_cmd_data[1] = (txfifo << 4) | rxfifo;
		config_cmd_data[4] = rxdmacount;
		config_cmd_data[5] = txdmacount + 0x80;
		config_cmd_data[6] |= (new_rx_mode & AcceptErr) ? 0x80 : 0;
		config_cmd_data[7] &= (new_rx_mode & AcceptRunt) ? ~0x01 : ~0;
		if (sp->drv_flags & HasChksum)
			config_cmd_data[9] |= 1;
		config_cmd_data[15] |= (new_rx_mode & AcceptAllPhys) ? 1 : 0;
		config_cmd_data[19] = sp->flow_ctrl ? 0xBD : 0x80;
		config_cmd_data[19] |= sp->full_duplex ? 0x40 : 0;
		config_cmd_data[21] = (new_rx_mode & AcceptAllMulticast) ? 0x0D : 0x05;
		if (sp->phy[0] & 0x8000) {			/* Use the AUI port instead. */
			config_cmd_data[15] |= 0x80;
			config_cmd_data[8] = 0;
		}
		/* Trigger the command unit resume. */
		wait_for_cmd_done(dev);
		clear_suspend(last_cmd);
		outb(CUResume, ioaddr + SCBCmd);
		spin_unlock_irqrestore(&sp->lock, flags);
		sp->last_cmd_time = jiffies;
	}

	if (new_rx_mode == 0  &&  dev->mc_count < 4) {
		/* The simple case of 0-3 multicast list entries occurs often, and
		   fits within one tx_ring[] entry. */
		struct dev_mc_list *mclist;
		u16 *setup_params, *eaddrs;

		spin_lock_irqsave(&sp->lock, flags);
		entry = sp->cur_tx % TX_RING_SIZE;
		last_cmd = sp->last_cmd;
		sp->last_cmd = (struct descriptor *)&sp->tx_ring[entry];

		sp->tx_skbuff[entry] = 0;
		sp->tx_ring[entry].status = cpu_to_le32(CmdSuspend | CmdMulticastList);
		sp->cur_tx++;
		sp->tx_ring[entry].link =
			virt_to_le32desc(&sp->tx_ring[(entry + 1) % TX_RING_SIZE]);
		/* We may nominally release the lock here. */
		sp->tx_ring[entry].tx_desc_addr = 0; /* Really MC list count. */
		setup_params = (u16 *)&sp->tx_ring[entry].tx_desc_addr;
		*setup_params++ = cpu_to_le16(dev->mc_count*6);
		/* Fill in the multicast addresses. */
		for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
			 i++, mclist = mclist->next) {
			eaddrs = (u16 *)mclist->dmi_addr;
			*setup_params++ = *eaddrs++;
			*setup_params++ = *eaddrs++;
			*setup_params++ = *eaddrs++;
		}

		wait_for_cmd_done(dev);
		clear_suspend(last_cmd);
		/* Immediately trigger the command unit resume. */
		outb(CUResume, ioaddr + SCBCmd);
		spin_unlock_irqrestore(&sp->lock, flags);
		sp->last_cmd_time = jiffies;
	} else if (new_rx_mode == 0) {
		struct dev_mc_list *mclist;
		u16 *setup_params, *eaddrs;
		struct descriptor *mc_setup_frm = sp->mc_setup_frm;
		int i;

		if (sp->mc_setup_frm_len < 10 + dev->mc_count*6
			|| sp->mc_setup_frm == NULL) {
			/* Allocate a full setup frame, 10bytes + <max addrs>. */
			if (sp->mc_setup_frm)
				kfree(sp->mc_setup_frm);
			sp->mc_setup_busy = 0;
			sp->mc_setup_frm_len = 10 + sp->multicast_filter_limit*6;
			sp->mc_setup_frm = kmalloc(sp->mc_setup_frm_len, GFP_ATOMIC);
			if (sp->mc_setup_frm == NULL) {
				printk(KERN_ERR "%s: Failed to allocate a setup frame.\n",
					   dev->name);
				sp->rx_mode = RxInvalidMode; /* We failed, try again. */
				return;
			}
		}
		/* If we are busy, someone might be quickly adding to the MC list.
		   Try again later when the list updates stop. */
		if (sp->mc_setup_busy) {
			sp->rx_mode = RxInvalidMode;
			return;
		}
		mc_setup_frm = sp->mc_setup_frm;
		/* Fill the setup frame. */
		if (sp->msg_level & NETIF_MSG_RXFILTER)
			printk(KERN_DEBUG "%s: Constructing a setup frame at %p, "
				   "%d bytes.\n",
				   dev->name, sp->mc_setup_frm, sp->mc_setup_frm_len);
		mc_setup_frm->cmd_status =
			cpu_to_le32(CmdSuspend | CmdIntr | CmdMulticastList);
		/* Link set below. */
		setup_params = (u16 *)&mc_setup_frm->params;
		*setup_params++ = cpu_to_le16(dev->mc_count*6);
		/* Fill in the multicast addresses. */
		for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
			 i++, mclist = mclist->next) {
			eaddrs = (u16 *)mclist->dmi_addr;
			*setup_params++ = *eaddrs++;
			*setup_params++ = *eaddrs++;
			*setup_params++ = *eaddrs++;
		}

		/* Disable interrupts while playing with the Tx Cmd list. */
		spin_lock_irqsave(&sp->lock, flags);
		entry = sp->cur_tx % TX_RING_SIZE;
		last_cmd = sp->last_cmd;
		sp->last_cmd = mc_setup_frm;
		sp->mc_setup_busy++;

		/* Change the command to a NoOp, pointing to the CmdMulti command. */
		sp->tx_skbuff[entry] = 0;
		sp->tx_ring[entry].status = cpu_to_le32(CmdNOp);
		sp->cur_tx++;
		sp->tx_ring[entry].link = virt_to_le32desc(mc_setup_frm);
		/* We may nominally release the lock here. */

		/* Set the link in the setup frame. */
		mc_setup_frm->link =
			virt_to_le32desc(&(sp->tx_ring[(entry+1) % TX_RING_SIZE]));

		wait_for_cmd_done(dev);
		clear_suspend(last_cmd);
		/* Immediately trigger the command unit resume. */
		outb(CUResume, ioaddr + SCBCmd);
		spin_unlock_irqrestore(&sp->lock, flags);
		sp->last_cmd_time = jiffies;
		if (sp->msg_level & NETIF_MSG_RXFILTER)
			printk(KERN_DEBUG " CmdMCSetup frame length %d in entry %d.\n",
				   dev->mc_count, entry);
	}

	sp->rx_mode = new_rx_mode;
}

static int speedo_pwr_event(void *dev_instance, int event)
{
	struct net_device *dev = dev_instance;
	struct speedo_private *np = (struct speedo_private *)dev->priv;
	long ioaddr = dev->base_addr;

	if (np->msg_level & NETIF_MSG_LINK)
		printk(KERN_DEBUG "%s: Handling power event %d.\n", dev->name, event);
	switch(event) {
	case DRV_ATTACH:
		MOD_INC_USE_COUNT;
		break;
	case DRV_SUSPEND:
		outl(PortPartialReset, ioaddr + SCBPort);
		break;
	case DRV_RESUME:
		speedo_resume(dev);
		np->rx_mode = RxInvalidMode;
		np->flow_ctrl = np->partner = 0;
		set_rx_mode(dev);
		break;
	case DRV_DETACH: {
		struct net_device **devp, **next;
		if (dev->flags & IFF_UP) {
			dev_close(dev);
			dev->flags &= ~(IFF_UP|IFF_RUNNING);
		}
		unregister_netdev(dev);
		release_region(dev->base_addr, pci_id_tbl[np->chip_id].io_size);
#ifndef USE_IO_OPS
		iounmap((char *)dev->base_addr);
#endif
		for (devp = &root_speedo_dev; *devp; devp = next) {
			next = &((struct speedo_private *)(*devp)->priv)->next_module;
			if (*devp == dev) {
				*devp = *next;
				break;
			}
		}
		if (np->priv_addr)
			kfree(np->priv_addr);
		kfree(dev);
		MOD_DEC_USE_COUNT;
		break;
	}
	case DRV_PWR_DOWN:
	case DRV_PWR_UP:
		acpi_set_pwr_state(np->pci_dev, event==DRV_PWR_DOWN ? ACPI_D3:ACPI_D0);
		break;
	case DRV_PWR_WakeOn:
	default:
		return -1;
	}

	return 0;
}


#if defined(MODULE) || (LINUX_VERSION_CODE >= 0x020400)

int init_module(void)
{
	int cards_found;

	/* Emit version even if no cards detected. */
	printk(KERN_INFO "%s" KERN_INFO "%s", version1, version2);
	cards_found = pci_drv_register(&eepro100_drv_id, NULL);
	if (cards_found < 0)
		printk(KERN_INFO "eepro100: No cards found, driver not installed.\n");
	return cards_found;
}

void cleanup_module(void)
{
	struct net_device *next_dev;

	pci_drv_unregister(&eepro100_drv_id);

	/* No need to check MOD_IN_USE, as sys_delete_module() checks. */
	while (root_speedo_dev) {
		struct speedo_private *sp = (void *)root_speedo_dev->priv;
		unregister_netdev(root_speedo_dev);
#ifdef USE_IO_OPS
		release_region(root_speedo_dev->base_addr,
					   pci_id_tbl[sp->chip_id].io_size);
#else
		iounmap((char *)root_speedo_dev->base_addr);
#endif
		acpi_set_pwr_state(sp->pci_dev, sp->acpi_pwr);
		next_dev = sp->next_module;
		if (sp->priv_addr)
			kfree(sp->priv_addr);
		kfree(root_speedo_dev);
		root_speedo_dev = next_dev;
	}
}

#if (LINUX_VERSION_CODE >= 0x020400)  && 0
module_init(init_module);
module_exit(cleanup_module);
#endif

#else   /* not MODULE */

int eepro100_probe(struct net_device *dev)
{
	int cards_found =  pci_drv_register(&eepro100_drv_id, dev);

	/* Only emit the version if the driver is being used. */
	if (cards_found >= 0)
		printk(KERN_INFO "%s" KERN_INFO "%s", version1, version2);

	return cards_found;
}
#endif  /* MODULE */

/*
 * Local variables:
 *  compile-command: "make KERNVER=`uname -r` eepro100.o"
 *  compile-cmd: "gcc -DMODULE -Wall -Wstrict-prototypes -O6 -c eepro100.c"
 *  simple-compile-command: "gcc -DMODULE -O6 -c eepro100.c"
 *  c-indent-level: 4
 *  c-basic-offset: 4
 *  tab-width: 4
 * End:
 */