1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
|
/*
* Mach Operating System
* Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University.
* Copyright (c) 1993,1994 The University of Utah and
* the Computer Systems Laboratory (CSL).
* All rights reserved.
*
* Permission to use, copy, modify and distribute this software and its
* documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
*
* CARNEGIE MELLON, THE UNIVERSITY OF UTAH AND CSL ALLOW FREE USE OF
* THIS SOFTWARE IN ITS "AS IS" CONDITION, AND DISCLAIM ANY LIABILITY
* OF ANY KIND FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF
* THIS SOFTWARE.
*
* Carnegie Mellon requests users of this software to return to
*
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie Mellon
* the rights to redistribute these changes.
*/
/*
* File: kern/lock.c
* Author: Avadis Tevanian, Jr., Michael Wayne Young
* Date: 1985
*
* Locking primitives implementation
*/
#include <string.h>
#include <kern/debug.h>
#include <kern/lock.h>
#include <kern/thread.h>
#include <kern/sched_prim.h>
#if MACH_KDB
#include <machine/db_machdep.h>
#include <ddb/db_output.h>
#include <ddb/db_sym.h>
#endif
#if NCPUS > 1
/*
* Module: lock
* Function:
* Provide reader/writer sychronization.
* Implementation:
* Simple interlock on a bit. Readers first interlock,
* increment the reader count, then let go. Writers hold
* the interlock (thus preventing further readers), and
* wait for already-accepted readers to go away.
*/
/*
* The simple-lock routines are the primitives out of which
* the lock package is built. The implementation is left
* to the machine-dependent code.
*/
#ifdef notdef
/*
* A sample implementation of simple locks.
* assumes:
* boolean_t test_and_set(boolean_t *)
* indivisibly sets the boolean to TRUE
* and returns its old value
* and that setting a boolean to FALSE is indivisible.
*/
/*
* simple_lock_init initializes a simple lock. A simple lock
* may only be used for exclusive locks.
*/
void simple_lock_init(simple_lock_t l)
{
*(boolean_t *)l = FALSE;
}
void simple_lock(simple_lock_t l)
{
while (test_and_set((boolean_t *)l))
continue;
}
void simple_unlock(simple_lock_t l)
{
*(boolean_t *)l = FALSE;
}
boolean_t simple_lock_try(simple_lock_t l)
{
return (!test_and_set((boolean_t *)l));
}
#endif /* notdef */
#endif /* NCPUS > 1 */
#if NCPUS > 1
static int lock_wait_time = 100;
#else /* NCPUS > 1 */
/*
* It is silly to spin on a uni-processor as if we
* thought something magical would happen to the
* want_write bit while we are executing.
*/
static int lock_wait_time = 0;
#endif /* NCPUS > 1 */
#if MACH_SLOCKS && NCPUS == 1
/*
* This code does not protect simple_locks_taken and simple_locks_info.
* It works despite the fact that interrupt code does use simple locks.
* This is because interrupts use locks in a stack-like manner.
* Each interrupt releases all the locks it acquires, so the data
* structures end up in the same state after the interrupt as before.
* The only precaution necessary is that simple_locks_taken be
* incremented first and decremented last, so that interrupt handlers
* don't over-write active slots in simple_locks_info.
*/
unsigned int simple_locks_taken = 0;
#define NSLINFO 1000 /* maximum number of locks held */
struct simple_locks_info {
simple_lock_t l;
const char *expr;
const char *loc;
} simple_locks_info[NSLINFO];
int do_check_simple_locks = 1;
void check_simple_locks(void)
{
assert(! do_check_simple_locks || simple_locks_taken == 0);
}
void check_simple_locks_enable(void)
{
do_check_simple_locks = 1;
}
void check_simple_locks_disable(void)
{
do_check_simple_locks = 0;
}
/* Need simple lock sanity checking code if simple locks are being
compiled in, and we are compiling for a uniprocessor. */
void simple_lock_init(
simple_lock_t l)
{
l->lock_data = 0;
}
void _simple_lock(
simple_lock_t l,
const char *expression,
const char *location)
{
struct simple_locks_info *info;
assert(l->lock_data == 0);
l->lock_data = 1;
info = &simple_locks_info[simple_locks_taken++];
info->l = l;
info->expr = expression;
info->loc = location;
}
boolean_t _simple_lock_try(
simple_lock_t l,
const char *expression,
const char *location)
{
struct simple_locks_info *info;
if (l->lock_data != 0)
return FALSE;
l->lock_data = 1;
info = &simple_locks_info[simple_locks_taken++];
info->l = l;
info->expr = expression;
info->loc = location;
return TRUE;
}
void simple_unlock(
simple_lock_t l)
{
assert(l->lock_data != 0);
l->lock_data = 0;
if (simple_locks_info[simple_locks_taken-1].l != l) {
unsigned int i = simple_locks_taken;
/* out-of-order unlocking */
do
if (i == 0)
panic("simple_unlock");
while (simple_locks_info[--i].l != l);
simple_locks_info[i] = simple_locks_info[simple_locks_taken-1];
}
simple_locks_taken--;
simple_locks_info[simple_locks_taken] = (struct simple_locks_info) {0};
}
#endif /* MACH_SLOCKS && NCPUS == 1 */
/*
* Routine: lock_init
* Function:
* Initialize a lock; required before use.
* Note that clients declare the "struct lock"
* variables and then initialize them, rather
* than getting a new one from this module.
*/
void lock_init(
lock_t l,
boolean_t can_sleep)
{
memset(l, 0, sizeof(lock_data_t));
simple_lock_init(&l->interlock);
l->want_write = FALSE;
l->want_upgrade = FALSE;
l->read_count = 0;
l->can_sleep = can_sleep;
l->thread = (struct thread *)-1; /* XXX */
l->recursion_depth = 0;
}
void lock_sleepable(
lock_t l,
boolean_t can_sleep)
{
simple_lock(&l->interlock);
l->can_sleep = can_sleep;
simple_unlock(&l->interlock);
}
/*
* Sleep locks. These use the same data structure and algorithm
* as the spin locks, but the process sleeps while it is waiting
* for the lock. These work on uniprocessor systems.
*/
void lock_write(
lock_t l)
{
int i;
check_simple_locks();
simple_lock(&l->interlock);
if (l->thread == current_thread()) {
/*
* Recursive lock.
*/
l->recursion_depth++;
simple_unlock(&l->interlock);
return;
}
/*
* Try to acquire the want_write bit.
*/
while (l->want_write) {
if ((i = lock_wait_time) > 0) {
simple_unlock(&l->interlock);
while (--i > 0 && l->want_write)
continue;
simple_lock(&l->interlock);
}
if (l->can_sleep && l->want_write) {
l->waiting = TRUE;
thread_sleep(l,
simple_lock_addr(l->interlock), FALSE);
simple_lock(&l->interlock);
}
}
l->want_write = TRUE;
/* Wait for readers (and upgrades) to finish */
while ((l->read_count != 0) || l->want_upgrade) {
if ((i = lock_wait_time) > 0) {
simple_unlock(&l->interlock);
while (--i > 0 && (l->read_count != 0 ||
l->want_upgrade))
continue;
simple_lock(&l->interlock);
}
if (l->can_sleep && (l->read_count != 0 || l->want_upgrade)) {
l->waiting = TRUE;
thread_sleep(l,
simple_lock_addr(l->interlock), FALSE);
simple_lock(&l->interlock);
}
}
#if MACH_LDEBUG
l->writer = current_thread();
#endif /* MACH_LDEBUG */
simple_unlock(&l->interlock);
}
void lock_done(
lock_t l)
{
simple_lock(&l->interlock);
if (l->read_count != 0)
l->read_count--;
else
if (l->recursion_depth != 0)
l->recursion_depth--;
else
if (l->want_upgrade)
l->want_upgrade = FALSE;
else {
l->want_write = FALSE;
#if MACH_LDEBUG
assert(have_write_lock(l));
l->writer = THREAD_NULL;
#endif /* MACH_LDEBUG */
}
/*
* There is no reason to wakeup a waiting thread
* if the read-count is non-zero. Consider:
* we must be dropping a read lock
* threads are waiting only if one wants a write lock
* if there are still readers, they can't proceed
*/
if (l->waiting && (l->read_count == 0)) {
l->waiting = FALSE;
thread_wakeup(l);
}
simple_unlock(&l->interlock);
}
void lock_read(
lock_t l)
{
int i;
check_simple_locks();
simple_lock(&l->interlock);
if (l->thread == current_thread()) {
/*
* Recursive lock.
*/
l->read_count++;
simple_unlock(&l->interlock);
return;
}
while (l->want_write || l->want_upgrade) {
if ((i = lock_wait_time) > 0) {
simple_unlock(&l->interlock);
while (--i > 0 && (l->want_write || l->want_upgrade))
continue;
simple_lock(&l->interlock);
}
if (l->can_sleep && (l->want_write || l->want_upgrade)) {
l->waiting = TRUE;
thread_sleep(l,
simple_lock_addr(l->interlock), FALSE);
simple_lock(&l->interlock);
}
}
l->read_count++;
simple_unlock(&l->interlock);
}
/*
* Routine: lock_read_to_write
* Function:
* Improves a read-only lock to one with
* write permission. If another reader has
* already requested an upgrade to a write lock,
* no lock is held upon return.
*
* Returns TRUE if the upgrade *failed*.
*/
boolean_t lock_read_to_write(
lock_t l)
{
int i;
check_simple_locks();
simple_lock(&l->interlock);
l->read_count--;
if (l->thread == current_thread()) {
/*
* Recursive lock.
*/
l->recursion_depth++;
simple_unlock(&l->interlock);
return(FALSE);
}
if (l->want_upgrade) {
/*
* Someone else has requested upgrade.
* Since we've released a read lock, wake
* him up.
*/
if (l->waiting && (l->read_count == 0)) {
l->waiting = FALSE;
thread_wakeup(l);
}
simple_unlock(&l->interlock);
return TRUE;
}
l->want_upgrade = TRUE;
while (l->read_count != 0) {
if ((i = lock_wait_time) > 0) {
simple_unlock(&l->interlock);
while (--i > 0 && l->read_count != 0)
continue;
simple_lock(&l->interlock);
}
if (l->can_sleep && l->read_count != 0) {
l->waiting = TRUE;
thread_sleep(l,
simple_lock_addr(l->interlock), FALSE);
simple_lock(&l->interlock);
}
}
#if MACH_LDEBUG
l->writer = current_thread();
#endif /* MACH_LDEBUG */
simple_unlock(&l->interlock);
return FALSE;
}
void lock_write_to_read(
lock_t l)
{
simple_lock(&l->interlock);
#if MACH_LDEBUG
assert(l->writer == current_thread());
#endif /* MACH_LDEBUG */
l->read_count++;
if (l->recursion_depth != 0)
l->recursion_depth--;
else
if (l->want_upgrade)
l->want_upgrade = FALSE;
else
l->want_write = FALSE;
if (l->waiting) {
l->waiting = FALSE;
thread_wakeup(l);
}
#if MACH_LDEBUG
l->writer = THREAD_NULL;
#endif /* MACH_LDEBUG */
simple_unlock(&l->interlock);
}
/*
* Routine: lock_try_write
* Function:
* Tries to get a write lock.
*
* Returns FALSE if the lock is not held on return.
*/
boolean_t lock_try_write(
lock_t l)
{
simple_lock(&l->interlock);
if (l->thread == current_thread()) {
/*
* Recursive lock
*/
l->recursion_depth++;
simple_unlock(&l->interlock);
return TRUE;
}
if (l->want_write || l->want_upgrade || l->read_count) {
/*
* Can't get lock.
*/
simple_unlock(&l->interlock);
return FALSE;
}
/*
* Have lock.
*/
l->want_write = TRUE;
#if MACH_LDEBUG
l->writer = current_thread();
#endif /* MACH_LDEBUG */
simple_unlock(&l->interlock);
return TRUE;
}
/*
* Routine: lock_try_read
* Function:
* Tries to get a read lock.
*
* Returns FALSE if the lock is not held on return.
*/
boolean_t lock_try_read(
lock_t l)
{
simple_lock(&l->interlock);
if (l->thread == current_thread()) {
/*
* Recursive lock
*/
l->read_count++;
simple_unlock(&l->interlock);
return TRUE;
}
if (l->want_write || l->want_upgrade) {
simple_unlock(&l->interlock);
return FALSE;
}
l->read_count++;
simple_unlock(&l->interlock);
return TRUE;
}
/*
* Routine: lock_try_read_to_write
* Function:
* Improves a read-only lock to one with
* write permission. If another reader has
* already requested an upgrade to a write lock,
* the read lock is still held upon return.
*
* Returns FALSE if the upgrade *failed*.
*/
boolean_t lock_try_read_to_write(
lock_t l)
{
check_simple_locks();
simple_lock(&l->interlock);
if (l->thread == current_thread()) {
/*
* Recursive lock
*/
l->read_count--;
l->recursion_depth++;
simple_unlock(&l->interlock);
return TRUE;
}
if (l->want_upgrade) {
simple_unlock(&l->interlock);
return FALSE;
}
l->want_upgrade = TRUE;
l->read_count--;
while (l->read_count != 0) {
l->waiting = TRUE;
thread_sleep(l,
simple_lock_addr(l->interlock), FALSE);
simple_lock(&l->interlock);
}
#if MACH_LDEBUG
l->writer = current_thread();
#endif /* MACH_LDEBUG */
simple_unlock(&l->interlock);
return TRUE;
}
/*
* Allow a process that has a lock for write to acquire it
* recursively (for read, write, or update).
*/
void lock_set_recursive(
lock_t l)
{
simple_lock(&l->interlock);
#if MACH_LDEBUG
assert(l->writer == current_thread());
#endif /* MACH_LDEBUG */
if (!l->want_write) {
panic("lock_set_recursive: don't have write lock");
}
l->thread = current_thread();
simple_unlock(&l->interlock);
}
/*
* Prevent a lock from being re-acquired.
*/
void lock_clear_recursive(
lock_t l)
{
simple_lock(&l->interlock);
if (l->thread != current_thread()) {
panic("lock_clear_recursive: wrong thread");
}
if (l->recursion_depth == 0)
l->thread = (struct thread *)-1; /* XXX */
simple_unlock(&l->interlock);
}
#if MACH_KDB
#if MACH_SLOCKS && NCPUS == 1
void db_show_all_slocks(void)
{
int i;
struct simple_locks_info *info;
simple_lock_t l;
for (i = 0; i < simple_locks_taken; i++) {
info = &simple_locks_info[i];
db_printf("%d: %s (", i, info->expr);
db_printsym(info->l, DB_STGY_ANY);
db_printf(") locked by %s\n", info->loc);
}
}
#else /* MACH_SLOCKS && NCPUS == 1 */
void db_show_all_slocks(void)
{
db_printf("simple lock info not available\n");
}
#endif /* MACH_SLOCKS && NCPUS == 1 */
#endif /* MACH_KDB */
|