summaryrefslogtreecommitdiff
path: root/linux/src/drivers/scsi/hosts.h
diff options
context:
space:
mode:
authorThomas Bushnell <thomas@gnu.org>1999-04-26 05:58:44 +0000
committerThomas Bushnell <thomas@gnu.org>1999-04-26 05:58:44 +0000
commit86297c41a26f18d924e64fc93321c59cbc4c48dd (patch)
tree376954c6b95b735d361875319a1a2a9db6a27527 /linux/src/drivers/scsi/hosts.h
parent851137902d3e7ad87af177487df3eea53e940a1c (diff)
1998-11-30 OKUJI Yoshinori <okuji@kuicr.kyoto-u.ac.jp>
Clean up linux emulation code to make it architecture-independent as much as possible. * linux: Renamed from linuxdev. * Makefile.in (objfiles): Add linux.o instead of linuxdev.o. (MAKE): New variable. Used for the linux.o target. * configure.in: Add AC_CHECK_TOOL(MAKE, make). * i386/i386/spl.h: Include <i386/ipl.h>, for compatibility with OSF Mach 3.0. Suggested by Elgin Lee <ehl@funghi.com>. * linux/src: Renamed from linux/linux. * linux/dev: Renamed from linux/mach. * linux/Drivers.in (AC_INIT): Use dev/include/linux/autoconf.h, instead of mach/include/linux/autoconf.h. * Makefile.in (all): Target ../linux.o instead of ../linuxdev.o. * linux/dev/drivers/block/genhd.c: Include <machine/spl.h> instead of <i386/ipl.h>. * linux/dev/drivers/net/auto_irq.c: Remove unneeded header files, <i386/ipl.h> and <i386/pic.h>. * linux/dev/init/main.c: Many i386-dependent codes moved to ... * linux/dev/arch/i386/irq.c: ... here. * linux/dev/arch/i386/setup.c: New file. * linux/dev/arch/i386/linux_emul.h: Likewise. * linux/dev/arch/i386/glue/timer.c: Merged into sched.c. * linux/dev/arch/i386/glue/sched.c: Include <machine/spl.h> instead of <i386/ipl.h>, and moved to ... * linux/dev/kernel/sched.c: ... here. * linux/dev/arch/i386/glue/block.c: Include <machine/spl.h> and <linux_emul.h>, instead of i386-dependent header files, and moved to ... * linux/dev/glue/blocl.c: ... here. * linux/dev/arch/i386/glue/net.c: Include <machine/spl.h> and <linux_emul.h>, instead of i386-dependent header files, and moved to ... * linux/dev/glue/net.c: ... here. * linux/dev/arch/i386/glue/misc.c: Remove `x86' and moved to ... * linux/dev/glue/misc.c: ... here. * linux/dev/arch/i386/glue/kmem.c: Moved to ... * linux/dev/glue/kmem.c: ... here.
Diffstat (limited to 'linux/src/drivers/scsi/hosts.h')
-rw-r--r--linux/src/drivers/scsi/hosts.h405
1 files changed, 405 insertions, 0 deletions
diff --git a/linux/src/drivers/scsi/hosts.h b/linux/src/drivers/scsi/hosts.h
new file mode 100644
index 0000000..8f3f4e0
--- /dev/null
+++ b/linux/src/drivers/scsi/hosts.h
@@ -0,0 +1,405 @@
+/*
+ * hosts.h Copyright (C) 1992 Drew Eckhardt
+ * Copyright (C) 1993, 1994, 1995 Eric Youngdale
+ *
+ * mid to low-level SCSI driver interface header
+ * Initial versions: Drew Eckhardt
+ * Subsequent revisions: Eric Youngdale
+ *
+ * <drew@colorado.edu>
+ *
+ * Modified by Eric Youngdale eric@aib.com to
+ * add scatter-gather, multiple outstanding request, and other
+ * enhancements.
+ *
+ * Further modified by Eric Youngdale to support multiple host adapters
+ * of the same type.
+ */
+
+#ifndef _HOSTS_H
+#define _HOSTS_H
+
+/*
+ $Header: cvs/gnumach/linux/src/drivers/scsi/Attic/hosts.h,v 1.1 1999/04/26 05:54:41 tb Exp $
+*/
+
+#include <linux/proc_fs.h>
+
+/* It is senseless to set SG_ALL any higher than this - the performance
+ * does not get any better, and it wastes memory
+ */
+#define SG_NONE 0
+#define SG_ALL 0xff
+
+#define DISABLE_CLUSTERING 0
+#define ENABLE_CLUSTERING 1
+
+/* The various choices mean:
+ * NONE: Self evident. Host adapter is not capable of scatter-gather.
+ * ALL: Means that the host adapter module can do scatter-gather,
+ * and that there is no limit to the size of the table to which
+ * we scatter/gather data.
+ * Anything else: Indicates the maximum number of chains that can be
+ * used in one scatter-gather request.
+ */
+
+/*
+ * The Scsi_Host_Template type has all that is needed to interface with a SCSI
+ * host in a device independent matter. There is one entry for each different
+ * type of host adapter that is supported on the system.
+ */
+
+typedef struct scsi_disk Disk;
+
+typedef struct SHT
+{
+
+ /* Used with loadable modules so we can construct a linked list. */
+ struct SHT * next;
+
+ /* Used with loadable modules so that we know when it is safe to unload */
+ long * usage_count;
+
+ /* The pointer to the /proc/scsi directory entry */
+ struct proc_dir_entry *proc_dir;
+
+ /* proc-fs info function.
+ * Can be used to export driver statistics and other infos to the world
+ * outside the kernel ie. userspace and it also provides an interface
+ * to feed the driver with information. Check eata_dma_proc.c for reference
+ */
+ int (*proc_info)(char *, char **, off_t, int, int, int);
+
+ /*
+ * The name pointer is a pointer to the name of the SCSI
+ * device detected.
+ */
+ const char *name;
+
+ /*
+ * The detect function shall return non zero on detection,
+ * indicating the number of host adapters of this particular
+ * type were found. It should also
+ * initialize all data necessary for this particular
+ * SCSI driver. It is passed the host number, so this host
+ * knows where the first entry is in the scsi_hosts[] array.
+ *
+ * Note that the detect routine MUST not call any of the mid level
+ * functions to queue commands because things are not guaranteed
+ * to be set up yet. The detect routine can send commands to
+ * the host adapter as long as the program control will not be
+ * passed to scsi.c in the processing of the command. Note
+ * especially that scsi_malloc/scsi_free must not be called.
+ */
+ int (* detect)(struct SHT *);
+
+ /* Used with loadable modules to unload the host structures. Note:
+ * there is a default action built into the modules code which may
+ * be sufficient for most host adapters. Thus you may not have to supply
+ * this at all.
+ */
+ int (*release)(struct Scsi_Host *);
+
+ /*
+ * The info function will return whatever useful
+ * information the developer sees fit. If not provided, then
+ * the name field will be used instead.
+ */
+ const char *(* info)(struct Scsi_Host *);
+
+ /*
+ * The command function takes a target, a command (this is a SCSI
+ * command formatted as per the SCSI spec, nothing strange), a
+ * data buffer pointer, and data buffer length pointer. The return
+ * is a status int, bit fielded as follows :
+ * Byte What
+ * 0 SCSI status code
+ * 1 SCSI 1 byte message
+ * 2 host error return.
+ * 3 mid level error return
+ */
+ int (* command)(Scsi_Cmnd *);
+
+ /*
+ * The QueueCommand function works in a similar manner
+ * to the command function. It takes an additional parameter,
+ * void (* done)(int host, int code) which is passed the host
+ * # and exit result when the command is complete.
+ * Host number is the POSITION IN THE hosts array of THIS
+ * host adapter.
+ */
+ int (* queuecommand)(Scsi_Cmnd *, void (*done)(Scsi_Cmnd *));
+
+ /*
+ * Since the mid level driver handles time outs, etc, we want to
+ * be able to abort the current command. Abort returns 0 if the
+ * abortion was successful. The field SCpnt->abort reason
+ * can be filled in with the appropriate reason why we wanted
+ * the abort in the first place, and this will be used
+ * in the mid-level code instead of the host_byte().
+ * If non-zero, the code passed to it
+ * will be used as the return code, otherwise
+ * DID_ABORT should be returned.
+ *
+ * Note that the scsi driver should "clean up" after itself,
+ * resetting the bus, etc. if necessary.
+ */
+ int (* abort)(Scsi_Cmnd *);
+
+ /*
+ * The reset function will reset the SCSI bus. Any executing
+ * commands should fail with a DID_RESET in the host byte.
+ * The Scsi_Cmnd is passed so that the reset routine can figure
+ * out which host adapter should be reset, and also which command
+ * within the command block was responsible for the reset in
+ * the first place. Some hosts do not implement a reset function,
+ * and these hosts must call scsi_request_sense(SCpnt) to keep
+ * the command alive.
+ */
+ int (* reset)(Scsi_Cmnd *, unsigned int);
+
+ /*
+ * This function is used to select synchronous communications,
+ * which will result in a higher data throughput. Not implemented
+ * yet.
+ */
+ int (* slave_attach)(int, int);
+
+ /*
+ * This function determines the bios parameters for a given
+ * harddisk. These tend to be numbers that are made up by
+ * the host adapter. Parameters:
+ * size, device number, list (heads, sectors, cylinders)
+ */
+ int (* bios_param)(Disk *, kdev_t, int []);
+
+ /*
+ * This determines if we will use a non-interrupt driven
+ * or an interrupt driven scheme, It is set to the maximum number
+ * of simultaneous commands a given host adapter will accept.
+ */
+ int can_queue;
+
+ /*
+ * In many instances, especially where disconnect / reconnect are
+ * supported, our host also has an ID on the SCSI bus. If this is
+ * the case, then it must be reserved. Please set this_id to -1 if
+ * your setup is in single initiator mode, and the host lacks an
+ * ID.
+ */
+ int this_id;
+
+ /*
+ * This determines the degree to which the host adapter is capable
+ * of scatter-gather.
+ */
+ short unsigned int sg_tablesize;
+
+ /*
+ * True if this host adapter can make good use of linked commands.
+ * This will allow more than one command to be queued to a given
+ * unit on a given host. Set this to the maximum number of command
+ * blocks to be provided for each device. Set this to 1 for one
+ * command block per lun, 2 for two, etc. Do not set this to 0.
+ * You should make sure that the host adapter will do the right thing
+ * before you try setting this above 1.
+ */
+ short cmd_per_lun;
+
+ /*
+ * present contains counter indicating how many boards of this
+ * type were found when we did the scan.
+ */
+ unsigned char present;
+
+ /*
+ * true if this host adapter uses unchecked DMA onto an ISA bus.
+ */
+ unsigned unchecked_isa_dma:1;
+
+ /*
+ * true if this host adapter can make good use of clustering.
+ * I originally thought that if the tablesize was large that it
+ * was a waste of CPU cycles to prepare a cluster list, but
+ * it works out that the Buslogic is faster if you use a smaller
+ * number of segments (i.e. use clustering). I guess it is
+ * inefficient.
+ */
+ unsigned use_clustering:1;
+
+} Scsi_Host_Template;
+
+/*
+ * The scsi_hosts array is the array containing the data for all
+ * possible <supported> scsi hosts. This is similar to the
+ * Scsi_Host_Template, except that we have one entry for each
+ * actual physical host adapter on the system, stored as a linked
+ * list. Note that if there are 2 aha1542 boards, then there will
+ * be two Scsi_Host entries, but only 1 Scsi_Host_Template entry.
+ */
+
+struct Scsi_Host
+{
+ struct Scsi_Host * next;
+ unsigned short extra_bytes;
+ volatile unsigned char host_busy;
+ char host_no; /* Used for IOCTL_GET_IDLUN, /proc/scsi et al. */
+ unsigned long last_reset;
+ struct wait_queue *host_wait;
+ Scsi_Cmnd *host_queue;
+ Scsi_Host_Template * hostt;
+
+ /*
+ * These three parameters can be used to allow for wide scsi,
+ * and for host adapters that support multiple busses
+ * The first two should be set to 1 more than the actual max id
+ * or lun (i.e. 8 for normal systems).
+ */
+ unsigned int max_id;
+ unsigned int max_lun;
+ unsigned int max_channel;
+
+ /*
+ * Pointer to a circularly linked list - this indicates the hosts
+ * that should be locked out of performing I/O while we have an active
+ * command on this host.
+ */
+ struct Scsi_Host * block;
+ unsigned wish_block:1;
+
+ /* These parameters should be set by the detect routine */
+ unsigned char *base;
+ unsigned int io_port;
+ unsigned char n_io_port;
+ unsigned char irq;
+ unsigned char dma_channel;
+
+ /*
+ * This is a unique identifier that must be assigned so that we
+ * have some way of identifying each detected host adapter properly
+ * and uniquely. For hosts that do not support more than one card
+ * in the system at one time, this does not need to be set. It is
+ * initialized to 0 in scsi_register.
+ */
+ unsigned int unique_id;
+
+ /*
+ * The rest can be copied from the template, or specifically
+ * initialized, as required.
+ */
+
+ int this_id;
+ int can_queue;
+ short cmd_per_lun;
+ short unsigned int sg_tablesize;
+ unsigned unchecked_isa_dma:1;
+ unsigned use_clustering:1;
+ /*
+ * True if this host was loaded as a loadable module
+ */
+ unsigned loaded_as_module:1;
+
+ void (*select_queue_depths)(struct Scsi_Host *, Scsi_Device *);
+
+ unsigned long hostdata[0]; /* Used for storage of host specific stuff */
+};
+
+extern struct Scsi_Host * scsi_hostlist;
+extern struct Scsi_Device_Template * scsi_devicelist;
+
+extern Scsi_Host_Template * scsi_hosts;
+
+extern void build_proc_dir_entries(Scsi_Host_Template *);
+
+
+/*
+ * scsi_init initializes the scsi hosts.
+ */
+
+/*
+ * We use these goofy things because the MM is not set up when we init
+ * the scsi subsystem. By using these functions we can write code that
+ * looks normal. Also, it makes it possible to use the same code for a
+ * loadable module.
+ */
+
+extern void * scsi_init_malloc(unsigned int size, int priority);
+extern void scsi_init_free(char * ptr, unsigned int size);
+
+extern int next_scsi_host;
+
+extern int scsi_loadable_module_flag;
+unsigned int scsi_init(void);
+extern struct Scsi_Host * scsi_register(Scsi_Host_Template *, int j);
+extern void scsi_unregister(struct Scsi_Host * i);
+
+#define BLANK_HOST {"", 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
+
+struct Scsi_Device_Template
+{
+ struct Scsi_Device_Template * next;
+ const char * name;
+ const char * tag;
+ long * usage_count; /* Used for loadable modules */
+ unsigned char scsi_type;
+ unsigned char major;
+ unsigned char nr_dev; /* Number currently attached */
+ unsigned char dev_noticed; /* Number of devices detected. */
+ unsigned char dev_max; /* Current size of arrays */
+ unsigned blk:1; /* 0 if character device */
+ int (*detect)(Scsi_Device *); /* Returns 1 if we can attach this device */
+ int (*init)(void); /* Sizes arrays based upon number of devices
+ * detected */
+ void (*finish)(void); /* Perform initialization after attachment */
+ int (*attach)(Scsi_Device *); /* Attach devices to arrays */
+ void (*detach)(Scsi_Device *);
+};
+
+extern struct Scsi_Device_Template sd_template;
+extern struct Scsi_Device_Template st_template;
+extern struct Scsi_Device_Template sr_template;
+extern struct Scsi_Device_Template sg_template;
+
+int scsi_register_device(struct Scsi_Device_Template * sdpnt);
+
+/* These are used by loadable modules */
+extern int scsi_register_module(int, void *);
+extern void scsi_unregister_module(int, void *);
+
+/* The different types of modules that we can load and unload */
+#define MODULE_SCSI_HA 1
+#define MODULE_SCSI_CONST 2
+#define MODULE_SCSI_IOCTL 3
+#define MODULE_SCSI_DEV 4
+
+
+/*
+ * This is an ugly hack. If we expect to be able to load devices at run time,
+ * we need to leave extra room in some of the data structures. Doing a
+ * realloc to enlarge the structures would be riddled with race conditions,
+ * so until a better solution is discovered, we use this crude approach
+ */
+#define SD_EXTRA_DEVS 2
+#define ST_EXTRA_DEVS 2
+#define SR_EXTRA_DEVS 2
+#define SG_EXTRA_DEVS (SD_EXTRA_DEVS + SR_EXTRA_DEVS + ST_EXTRA_DEVS)
+
+#endif
+/*
+ * Overrides for Emacs so that we follow Linus's tabbing style.
+ * Emacs will notice this stuff at the end of the file and automatically
+ * adjust the settings for this buffer only. This must remain at the end
+ * of the file.
+ * ---------------------------------------------------------------------------
+ * Local variables:
+ * c-indent-level: 4
+ * c-brace-imaginary-offset: 0
+ * c-brace-offset: -4
+ * c-argdecl-indent: 4
+ * c-label-offset: -4
+ * c-continued-statement-offset: 4
+ * c-continued-brace-offset: 0
+ * indent-tabs-mode: nil
+ * tab-width: 8
+ * End:
+ */