File: | obj-scan-build/../vm/vm_fault.c |
Location: | line 720, column 5 |
Description: | Value stored to 'offset' is never read |
1 | /* |
2 | * Mach Operating System |
3 | * Copyright (c) 1994,1990,1989,1988,1987 Carnegie Mellon University. |
4 | * Copyright (c) 1993,1994 The University of Utah and |
5 | * the Computer Systems Laboratory (CSL). |
6 | * All rights reserved. |
7 | * |
8 | * Permission to use, copy, modify and distribute this software and its |
9 | * documentation is hereby granted, provided that both the copyright |
10 | * notice and this permission notice appear in all copies of the |
11 | * software, derivative works or modified versions, and any portions |
12 | * thereof, and that both notices appear in supporting documentation. |
13 | * |
14 | * CARNEGIE MELLON, THE UNIVERSITY OF UTAH AND CSL ALLOW FREE USE OF |
15 | * THIS SOFTWARE IN ITS "AS IS" CONDITION, AND DISCLAIM ANY LIABILITY |
16 | * OF ANY KIND FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF |
17 | * THIS SOFTWARE. |
18 | * |
19 | * Carnegie Mellon requests users of this software to return to |
20 | * |
21 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU |
22 | * School of Computer Science |
23 | * Carnegie Mellon University |
24 | * Pittsburgh PA 15213-3890 |
25 | * |
26 | * any improvements or extensions that they make and grant Carnegie Mellon |
27 | * the rights to redistribute these changes. |
28 | */ |
29 | /* |
30 | * File: vm_fault.c |
31 | * Author: Avadis Tevanian, Jr., Michael Wayne Young |
32 | * |
33 | * Page fault handling module. |
34 | */ |
35 | |
36 | #include <kern/printf.h> |
37 | #include <vm/vm_fault.h> |
38 | #include <mach/kern_return.h> |
39 | #include <mach/message.h> /* for error codes */ |
40 | #include <kern/counters.h> |
41 | #include <kern/debug.h> |
42 | #include <kern/thread.h> |
43 | #include <kern/sched_prim.h> |
44 | #include <vm/vm_map.h> |
45 | #include <vm/vm_object.h> |
46 | #include <vm/vm_page.h> |
47 | #include <vm/pmap.h> |
48 | #include <mach/vm_statistics.h> |
49 | #include <vm/vm_pageout.h> |
50 | #include <mach/vm_param.h> |
51 | #include <mach/memory_object.h> |
52 | #include <vm/memory_object_user.user.h> |
53 | /* For memory_object_data_{request,unlock} */ |
54 | #include <kern/macros.h> |
55 | #include <kern/slab.h> |
56 | |
57 | #if MACH_PCSAMPLE1 |
58 | #include <kern/pc_sample.h> |
59 | #endif |
60 | |
61 | |
62 | |
63 | /* |
64 | * State needed by vm_fault_continue. |
65 | * This is a little hefty to drop directly |
66 | * into the thread structure. |
67 | */ |
68 | typedef struct vm_fault_state { |
69 | struct vm_map *vmf_map; |
70 | vm_offset_t vmf_vaddr; |
71 | vm_prot_t vmf_fault_type; |
72 | boolean_t vmf_change_wiring; |
73 | void (*vmf_continuation)(); |
74 | vm_map_version_t vmf_version; |
75 | boolean_t vmf_wired; |
76 | struct vm_object *vmf_object; |
77 | vm_offset_t vmf_offset; |
78 | vm_prot_t vmf_prot; |
79 | |
80 | boolean_t vmfp_backoff; |
81 | struct vm_object *vmfp_object; |
82 | vm_offset_t vmfp_offset; |
83 | struct vm_page *vmfp_first_m; |
84 | vm_prot_t vmfp_access; |
85 | } vm_fault_state_t; |
86 | |
87 | struct kmem_cache vm_fault_state_cache; |
88 | |
89 | int vm_object_absent_max = 50; |
90 | |
91 | boolean_t vm_fault_dirty_handling = FALSE((boolean_t) 0); |
92 | boolean_t vm_fault_interruptible = TRUE((boolean_t) 1); |
93 | |
94 | boolean_t software_reference_bits = TRUE((boolean_t) 1); |
95 | |
96 | #if MACH_KDB1 |
97 | extern struct db_watchpoint *db_watchpoint_list; |
98 | #endif /* MACH_KDB */ |
99 | |
100 | /* |
101 | * Routine: vm_fault_init |
102 | * Purpose: |
103 | * Initialize our private data structures. |
104 | */ |
105 | void vm_fault_init(void) |
106 | { |
107 | kmem_cache_init(&vm_fault_state_cache, "vm_fault_state", |
108 | sizeof(vm_fault_state_t), 0, NULL((void *) 0), NULL((void *) 0), NULL((void *) 0), 0); |
109 | } |
110 | |
111 | /* |
112 | * Routine: vm_fault_cleanup |
113 | * Purpose: |
114 | * Clean up the result of vm_fault_page. |
115 | * Results: |
116 | * The paging reference for "object" is released. |
117 | * "object" is unlocked. |
118 | * If "top_page" is not null, "top_page" is |
119 | * freed and the paging reference for the object |
120 | * containing it is released. |
121 | * |
122 | * In/out conditions: |
123 | * "object" must be locked. |
124 | */ |
125 | void |
126 | vm_fault_cleanup( |
127 | vm_object_t object, |
128 | vm_page_t top_page) |
129 | { |
130 | vm_object_paging_end(object)({ (((object)->paging_in_progress != 0) ? (void) (0) : Assert ("(object)->paging_in_progress != 0", "../vm/vm_fault.c", 130)); if (--(object)->paging_in_progress == 0) { ({ if ( (object)->all_wanted & (1 << (2))) thread_wakeup_prim (((event_t)(((vm_offset_t) object) + (2))), ((boolean_t) 0), 0 ); (object)->all_wanted &= ~(1 << (2)); }); } }); |
131 | vm_object_unlock(object)((void)(&(object)->Lock)); |
132 | |
133 | if (top_page != VM_PAGE_NULL((vm_page_t) 0)) { |
134 | object = top_page->object; |
135 | vm_object_lock(object); |
136 | VM_PAGE_FREE(top_page)({ ; vm_page_free(top_page); ((void)(&vm_page_queue_lock) ); }); |
137 | vm_object_paging_end(object)({ (((object)->paging_in_progress != 0) ? (void) (0) : Assert ("(object)->paging_in_progress != 0", "../vm/vm_fault.c", 137)); if (--(object)->paging_in_progress == 0) { ({ if ( (object)->all_wanted & (1 << (2))) thread_wakeup_prim (((event_t)(((vm_offset_t) object) + (2))), ((boolean_t) 0), 0 ); (object)->all_wanted &= ~(1 << (2)); }); } }); |
138 | vm_object_unlock(object)((void)(&(object)->Lock)); |
139 | } |
140 | } |
141 | |
142 | |
143 | #if MACH_PCSAMPLE1 |
144 | /* |
145 | * Do PC sampling on current thread, assuming |
146 | * that it is the thread taking this page fault. |
147 | * |
148 | * Must check for THREAD_NULL, since faults |
149 | * can occur before threads are running. |
150 | */ |
151 | |
152 | #define vm_stat_sample(flavor)({ thread_t _thread_ = (active_threads[(0)]); if (_thread_ != ((thread_t) 0)) ({ task_t task; if ((_thread_)->pc_sample .sampletypes & ((flavor))) take_pc_sample((_thread_), & (_thread_)->pc_sample, ((flavor))); task = (_thread_)-> task; if (task->pc_sample.sampletypes & ((flavor))) take_pc_sample ((_thread_), &task->pc_sample, ((flavor))); }); }) \ |
153 | MACRO_BEGIN({ \ |
154 | thread_t _thread_ = current_thread()(active_threads[(0)]); \ |
155 | \ |
156 | if (_thread_ != THREAD_NULL((thread_t) 0)) \ |
157 | take_pc_sample_macro(_thread_, (flavor))({ task_t task; if ((_thread_)->pc_sample.sampletypes & ((flavor))) take_pc_sample((_thread_), &(_thread_)->pc_sample , ((flavor))); task = (_thread_)->task; if (task->pc_sample .sampletypes & ((flavor))) take_pc_sample((_thread_), & task->pc_sample, ((flavor))); }); \ |
158 | MACRO_END}) |
159 | |
160 | #else |
161 | #define vm_stat_sample(x)({ thread_t _thread_ = (active_threads[(0)]); if (_thread_ != ((thread_t) 0)) ({ task_t task; if ((_thread_)->pc_sample .sampletypes & ((x))) take_pc_sample((_thread_), &(_thread_ )->pc_sample, ((x))); task = (_thread_)->task; if (task ->pc_sample.sampletypes & ((x))) take_pc_sample((_thread_ ), &task->pc_sample, ((x))); }); }) |
162 | #endif /* MACH_PCSAMPLE */ |
163 | |
164 | |
165 | |
166 | /* |
167 | * Routine: vm_fault_page |
168 | * Purpose: |
169 | * Find the resident page for the virtual memory |
170 | * specified by the given virtual memory object |
171 | * and offset. |
172 | * Additional arguments: |
173 | * The required permissions for the page is given |
174 | * in "fault_type". Desired permissions are included |
175 | * in "protection". |
176 | * |
177 | * If the desired page is known to be resident (for |
178 | * example, because it was previously wired down), asserting |
179 | * the "unwiring" parameter will speed the search. |
180 | * |
181 | * If the operation can be interrupted (by thread_abort |
182 | * or thread_terminate), then the "interruptible" |
183 | * parameter should be asserted. |
184 | * |
185 | * Results: |
186 | * The page containing the proper data is returned |
187 | * in "result_page". |
188 | * |
189 | * In/out conditions: |
190 | * The source object must be locked and referenced, |
191 | * and must donate one paging reference. The reference |
192 | * is not affected. The paging reference and lock are |
193 | * consumed. |
194 | * |
195 | * If the call succeeds, the object in which "result_page" |
196 | * resides is left locked and holding a paging reference. |
197 | * If this is not the original object, a busy page in the |
198 | * original object is returned in "top_page", to prevent other |
199 | * callers from pursuing this same data, along with a paging |
200 | * reference for the original object. The "top_page" should |
201 | * be destroyed when this guarantee is no longer required. |
202 | * The "result_page" is also left busy. It is not removed |
203 | * from the pageout queues. |
204 | */ |
205 | vm_fault_return_t vm_fault_page( |
206 | /* Arguments: */ |
207 | vm_object_t first_object, /* Object to begin search */ |
208 | vm_offset_t first_offset, /* Offset into object */ |
209 | vm_prot_t fault_type, /* What access is requested */ |
210 | boolean_t must_be_resident,/* Must page be resident? */ |
211 | boolean_t interruptible, /* May fault be interrupted? */ |
212 | /* Modifies in place: */ |
213 | vm_prot_t *protection, /* Protection for mapping */ |
214 | /* Returns: */ |
215 | vm_page_t *result_page, /* Page found, if successful */ |
216 | vm_page_t *top_page, /* Page in top object, if |
217 | * not result_page. |
218 | */ |
219 | /* More arguments: */ |
220 | boolean_t resume, /* We are restarting. */ |
221 | void (*continuation)()) /* Continuation for blocking. */ |
222 | { |
223 | vm_page_t m; |
224 | vm_object_t object; |
225 | vm_offset_t offset; |
226 | vm_page_t first_m; |
227 | vm_object_t next_object; |
228 | vm_object_t copy_object; |
229 | boolean_t look_for_page; |
230 | vm_prot_t access_required; |
231 | |
232 | if (resume) { |
233 | vm_fault_state_t *state = |
234 | (vm_fault_state_t *) current_thread()(active_threads[(0)])->ith_othersaved.other; |
235 | |
236 | if (state->vmfp_backoff) |
237 | goto after_block_and_backoff; |
238 | |
239 | object = state->vmfp_object; |
240 | offset = state->vmfp_offset; |
241 | first_m = state->vmfp_first_m; |
242 | access_required = state->vmfp_access; |
243 | goto after_thread_block; |
244 | } |
245 | |
246 | vm_stat_sample(SAMPLED_PC_VM_FAULTS_ANY)({ thread_t _thread_ = (active_threads[(0)]); if (_thread_ != ((thread_t) 0)) ({ task_t task; if ((_thread_)->pc_sample .sampletypes & ((0x100))) take_pc_sample((_thread_), & (_thread_)->pc_sample, ((0x100))); task = (_thread_)->task ; if (task->pc_sample.sampletypes & ((0x100))) take_pc_sample ((_thread_), &task->pc_sample, ((0x100))); }); }); |
247 | vm_stat.faults++; /* needs lock XXX */ |
248 | current_task()((active_threads[(0)])->task)->faults++; |
249 | |
250 | /* |
251 | * Recovery actions |
252 | */ |
253 | #define RELEASE_PAGE(m){ ({ (m)->busy = ((boolean_t) 0); if ((m)->wanted) { (m )->wanted = ((boolean_t) 0); thread_wakeup_prim((((event_t ) m)), ((boolean_t) 0), 0); } }); ; vm_page_unwire(m); ((void )(&vm_page_queue_lock)); } \ |
254 | MACRO_BEGIN({ \ |
255 | PAGE_WAKEUP_DONE(m)({ (m)->busy = ((boolean_t) 0); if ((m)->wanted) { (m)-> wanted = ((boolean_t) 0); thread_wakeup_prim((((event_t) m)), ((boolean_t) 0), 0); } }); \ |
256 | vm_page_lock_queues(); \ |
257 | if (!m->active && !m->inactive) \ |
258 | vm_page_activate(m); \ |
259 | vm_page_unlock_queues()((void)(&vm_page_queue_lock)); \ |
260 | MACRO_END}) |
261 | |
262 | if (vm_fault_dirty_handling |
263 | #if MACH_KDB1 |
264 | /* |
265 | * If there are watchpoints set, then |
266 | * we don't want to give away write permission |
267 | * on a read fault. Make the task write fault, |
268 | * so that the watchpoint code notices the access. |
269 | */ |
270 | || db_watchpoint_list |
271 | #endif /* MACH_KDB */ |
272 | ) { |
273 | /* |
274 | * If we aren't asking for write permission, |
275 | * then don't give it away. We're using write |
276 | * faults to set the dirty bit. |
277 | */ |
278 | if (!(fault_type & VM_PROT_WRITE((vm_prot_t) 0x02))) |
279 | *protection &= ~VM_PROT_WRITE((vm_prot_t) 0x02); |
280 | } |
281 | |
282 | if (!vm_fault_interruptible) |
283 | interruptible = FALSE((boolean_t) 0); |
284 | |
285 | /* |
286 | * INVARIANTS (through entire routine): |
287 | * |
288 | * 1) At all times, we must either have the object |
289 | * lock or a busy page in some object to prevent |
290 | * some other thread from trying to bring in |
291 | * the same page. |
292 | * |
293 | * Note that we cannot hold any locks during the |
294 | * pager access or when waiting for memory, so |
295 | * we use a busy page then. |
296 | * |
297 | * Note also that we aren't as concerned about more than |
298 | * one thread attempting to memory_object_data_unlock |
299 | * the same page at once, so we don't hold the page |
300 | * as busy then, but do record the highest unlock |
301 | * value so far. [Unlock requests may also be delivered |
302 | * out of order.] |
303 | * |
304 | * 2) To prevent another thread from racing us down the |
305 | * shadow chain and entering a new page in the top |
306 | * object before we do, we must keep a busy page in |
307 | * the top object while following the shadow chain. |
308 | * |
309 | * 3) We must increment paging_in_progress on any object |
310 | * for which we have a busy page, to prevent |
311 | * vm_object_collapse from removing the busy page |
312 | * without our noticing. |
313 | * |
314 | * 4) We leave busy pages on the pageout queues. |
315 | * If the pageout daemon comes across a busy page, |
316 | * it will remove the page from the pageout queues. |
317 | */ |
318 | |
319 | /* |
320 | * Search for the page at object/offset. |
321 | */ |
322 | |
323 | object = first_object; |
324 | offset = first_offset; |
325 | first_m = VM_PAGE_NULL((vm_page_t) 0); |
326 | access_required = fault_type; |
327 | |
328 | /* |
329 | * See whether this page is resident |
330 | */ |
331 | |
332 | while (TRUE((boolean_t) 1)) { |
333 | m = vm_page_lookup(object, offset); |
334 | if (m != VM_PAGE_NULL((vm_page_t) 0)) { |
335 | /* |
336 | * If the page is being brought in, |
337 | * wait for it and then retry. |
338 | * |
339 | * A possible optimization: if the page |
340 | * is known to be resident, we can ignore |
341 | * pages that are absent (regardless of |
342 | * whether they're busy). |
343 | */ |
344 | |
345 | if (m->busy) { |
346 | kern_return_t wait_result; |
347 | |
348 | PAGE_ASSERT_WAIT(m, interruptible)({ (m)->wanted = ((boolean_t) 1); assert_wait((event_t) (m ), (interruptible)); }); |
349 | vm_object_unlock(object)((void)(&(object)->Lock)); |
350 | if (continuation != (void (*)()) 0) { |
351 | vm_fault_state_t *state = |
352 | (vm_fault_state_t *) current_thread()(active_threads[(0)])->ith_othersaved.other; |
353 | |
354 | /* |
355 | * Save variables in case |
356 | * thread_block discards |
357 | * our kernel stack. |
358 | */ |
359 | |
360 | state->vmfp_backoff = FALSE((boolean_t) 0); |
361 | state->vmfp_object = object; |
362 | state->vmfp_offset = offset; |
363 | state->vmfp_first_m = first_m; |
364 | state->vmfp_access = |
365 | access_required; |
366 | state->vmf_prot = *protection; |
367 | |
368 | counter(c_vm_fault_page_block_busy_user++); |
369 | thread_block(continuation); |
370 | } else |
371 | { |
372 | counter(c_vm_fault_page_block_busy_kernel++); |
373 | thread_block((void (*)()) 0); |
374 | } |
375 | after_thread_block: |
376 | wait_result = current_thread()(active_threads[(0)])->wait_result; |
377 | vm_object_lock(object); |
378 | if (wait_result != THREAD_AWAKENED0) { |
379 | vm_fault_cleanup(object, first_m); |
380 | if (wait_result == THREAD_RESTART3) |
381 | return(VM_FAULT_RETRY1); |
382 | else |
383 | return(VM_FAULT_INTERRUPTED2); |
384 | } |
385 | continue; |
386 | } |
387 | |
388 | /* |
389 | * If the page is in error, give up now. |
390 | */ |
391 | |
392 | if (m->error) { |
393 | VM_PAGE_FREE(m)({ ; vm_page_free(m); ((void)(&vm_page_queue_lock)); }); |
394 | vm_fault_cleanup(object, first_m); |
395 | return(VM_FAULT_MEMORY_ERROR5); |
396 | } |
397 | |
398 | /* |
399 | * If the page isn't busy, but is absent, |
400 | * then it was deemed "unavailable". |
401 | */ |
402 | |
403 | if (m->absent) { |
404 | /* |
405 | * Remove the non-existent page (unless it's |
406 | * in the top object) and move on down to the |
407 | * next object (if there is one). |
408 | */ |
409 | |
410 | offset += object->shadow_offset; |
411 | access_required = VM_PROT_READ((vm_prot_t) 0x01); |
412 | next_object = object->shadow; |
413 | if (next_object == VM_OBJECT_NULL((vm_object_t) 0)) { |
414 | vm_page_t real_m; |
415 | |
416 | assert(!must_be_resident)((!must_be_resident) ? (void) (0) : Assert ("!must_be_resident" , "../vm/vm_fault.c", 416)); |
417 | |
418 | /* |
419 | * Absent page at bottom of shadow |
420 | * chain; zero fill the page we left |
421 | * busy in the first object, and flush |
422 | * the absent page. But first we |
423 | * need to allocate a real page. |
424 | */ |
425 | |
426 | real_m = vm_page_grab(!object->internal); |
427 | if (real_m == VM_PAGE_NULL((vm_page_t) 0)) { |
428 | vm_fault_cleanup(object, first_m); |
429 | return(VM_FAULT_MEMORY_SHORTAGE3); |
430 | } |
431 | |
432 | if (object != first_object) { |
433 | VM_PAGE_FREE(m)({ ; vm_page_free(m); ((void)(&vm_page_queue_lock)); }); |
434 | vm_object_paging_end(object)({ (((object)->paging_in_progress != 0) ? (void) (0) : Assert ("(object)->paging_in_progress != 0", "../vm/vm_fault.c", 434)); if (--(object)->paging_in_progress == 0) { ({ if ( (object)->all_wanted & (1 << (2))) thread_wakeup_prim (((event_t)(((vm_offset_t) object) + (2))), ((boolean_t) 0), 0 ); (object)->all_wanted &= ~(1 << (2)); }); } }); |
435 | vm_object_unlock(object)((void)(&(object)->Lock)); |
436 | object = first_object; |
437 | offset = first_offset; |
438 | m = first_m; |
439 | first_m = VM_PAGE_NULL((vm_page_t) 0); |
440 | vm_object_lock(object); |
441 | } |
442 | |
443 | VM_PAGE_FREE(m)({ ; vm_page_free(m); ((void)(&vm_page_queue_lock)); }); |
444 | assert(real_m->busy)((real_m->busy) ? (void) (0) : Assert ("real_m->busy", "../vm/vm_fault.c" , 444)); |
445 | vm_page_lock_queues(); |
446 | vm_page_insert(real_m, object, offset); |
447 | vm_page_unlock_queues()((void)(&vm_page_queue_lock)); |
448 | m = real_m; |
449 | |
450 | /* |
451 | * Drop the lock while zero filling |
452 | * page. Then break because this |
453 | * is the page we wanted. Checking |
454 | * the page lock is a waste of time; |
455 | * this page was either absent or |
456 | * newly allocated -- in both cases |
457 | * it can't be page locked by a pager. |
458 | */ |
459 | vm_object_unlock(object)((void)(&(object)->Lock)); |
460 | |
461 | vm_page_zero_fill(m); |
462 | |
463 | vm_stat_sample(SAMPLED_PC_VM_ZFILL_FAULTS)({ thread_t _thread_ = (active_threads[(0)]); if (_thread_ != ((thread_t) 0)) ({ task_t task; if ((_thread_)->pc_sample .sampletypes & ((0x10))) take_pc_sample((_thread_), & (_thread_)->pc_sample, ((0x10))); task = (_thread_)->task ; if (task->pc_sample.sampletypes & ((0x10))) take_pc_sample ((_thread_), &task->pc_sample, ((0x10))); }); }); |
464 | |
465 | vm_stat.zero_fill_count++; |
466 | current_task()((active_threads[(0)])->task)->zero_fills++; |
467 | vm_object_lock(object); |
468 | pmap_clear_modify(m->phys_addr); |
469 | break; |
470 | } else { |
471 | if (must_be_resident) { |
472 | vm_object_paging_end(object)({ (((object)->paging_in_progress != 0) ? (void) (0) : Assert ("(object)->paging_in_progress != 0", "../vm/vm_fault.c", 472)); if (--(object)->paging_in_progress == 0) { ({ if ( (object)->all_wanted & (1 << (2))) thread_wakeup_prim (((event_t)(((vm_offset_t) object) + (2))), ((boolean_t) 0), 0 ); (object)->all_wanted &= ~(1 << (2)); }); } }); |
473 | } else if (object != first_object) { |
474 | vm_object_paging_end(object)({ (((object)->paging_in_progress != 0) ? (void) (0) : Assert ("(object)->paging_in_progress != 0", "../vm/vm_fault.c", 474)); if (--(object)->paging_in_progress == 0) { ({ if ( (object)->all_wanted & (1 << (2))) thread_wakeup_prim (((event_t)(((vm_offset_t) object) + (2))), ((boolean_t) 0), 0 ); (object)->all_wanted &= ~(1 << (2)); }); } }); |
475 | VM_PAGE_FREE(m)({ ; vm_page_free(m); ((void)(&vm_page_queue_lock)); }); |
476 | } else { |
477 | first_m = m; |
478 | m->absent = FALSE((boolean_t) 0); |
479 | vm_object_absent_release(object)({ (object)->absent_count--; ({ if (((object))->all_wanted & (1 << (3))) thread_wakeup_prim(((event_t)(((vm_offset_t ) (object)) + (3))), ((boolean_t) 0), 0); ((object))->all_wanted &= ~(1 << (3)); }); }); |
480 | m->busy = TRUE((boolean_t) 1); |
481 | |
482 | vm_page_lock_queues(); |
483 | VM_PAGE_QUEUES_REMOVE(m)({ if (m->active) { { queue_entry_t next, prev; next = (m) ->pageq.next; prev = (m)->pageq.prev; if ((&vm_page_queue_active ) == next) (&vm_page_queue_active)->prev = prev; else ( (vm_page_t)next)->pageq.prev = prev; if ((&vm_page_queue_active ) == prev) (&vm_page_queue_active)->next = next; else ( (vm_page_t)prev)->pageq.next = next; }; m->active = ((boolean_t ) 0); vm_page_active_count--; } if (m->inactive) { { queue_entry_t next, prev; next = (m)->pageq.next; prev = (m)->pageq. prev; if ((&vm_page_queue_inactive) == next) (&vm_page_queue_inactive )->prev = prev; else ((vm_page_t)next)->pageq.prev = prev ; if ((&vm_page_queue_inactive) == prev) (&vm_page_queue_inactive )->next = next; else ((vm_page_t)prev)->pageq.next = next ; }; m->inactive = ((boolean_t) 0); vm_page_inactive_count --; } }); |
484 | vm_page_unlock_queues()((void)(&vm_page_queue_lock)); |
485 | } |
486 | vm_object_lock(next_object); |
487 | vm_object_unlock(object)((void)(&(object)->Lock)); |
488 | object = next_object; |
489 | vm_object_paging_begin(object)((object)->paging_in_progress++); |
490 | continue; |
491 | } |
492 | } |
493 | |
494 | /* |
495 | * If the desired access to this page has |
496 | * been locked out, request that it be unlocked. |
497 | */ |
498 | |
499 | if (access_required & m->page_lock) { |
500 | if ((access_required & m->unlock_request) != access_required) { |
501 | vm_prot_t new_unlock_request; |
502 | kern_return_t rc; |
503 | |
504 | if (!object->pager_ready) { |
505 | vm_object_assert_wait(object,({ (object)->all_wanted |= 1 << (1); assert_wait((event_t )(((vm_offset_t) object) + (1)), (interruptible)); }) |
506 | VM_OBJECT_EVENT_PAGER_READY,({ (object)->all_wanted |= 1 << (1); assert_wait((event_t )(((vm_offset_t) object) + (1)), (interruptible)); }) |
507 | interruptible)({ (object)->all_wanted |= 1 << (1); assert_wait((event_t )(((vm_offset_t) object) + (1)), (interruptible)); }); |
508 | goto block_and_backoff; |
509 | } |
510 | |
511 | new_unlock_request = m->unlock_request = |
512 | (access_required | m->unlock_request); |
513 | vm_object_unlock(object)((void)(&(object)->Lock)); |
514 | if ((rc = memory_object_data_unlock( |
515 | object->pager, |
516 | object->pager_request, |
517 | offset + object->paging_offset, |
518 | PAGE_SIZE(1 << 12), |
519 | new_unlock_request)) |
520 | != KERN_SUCCESS0) { |
521 | printf("vm_fault: memory_object_data_unlock failed\n"); |
522 | vm_object_lock(object); |
523 | vm_fault_cleanup(object, first_m); |
524 | return((rc == MACH_SEND_INTERRUPTED0x10000007) ? |
525 | VM_FAULT_INTERRUPTED2 : |
526 | VM_FAULT_MEMORY_ERROR5); |
527 | } |
528 | vm_object_lock(object); |
529 | continue; |
530 | } |
531 | |
532 | PAGE_ASSERT_WAIT(m, interruptible)({ (m)->wanted = ((boolean_t) 1); assert_wait((event_t) (m ), (interruptible)); }); |
533 | goto block_and_backoff; |
534 | } |
535 | |
536 | /* |
537 | * We mark the page busy and leave it on |
538 | * the pageout queues. If the pageout |
539 | * deamon comes across it, then it will |
540 | * remove the page. |
541 | */ |
542 | |
543 | if (!software_reference_bits) { |
544 | vm_page_lock_queues(); |
545 | if (m->inactive) { |
546 | vm_stat_sample(SAMPLED_PC_VM_REACTIVATION_FAULTS)({ thread_t _thread_ = (active_threads[(0)]); if (_thread_ != ((thread_t) 0)) ({ task_t task; if ((_thread_)->pc_sample .sampletypes & ((0x20))) take_pc_sample((_thread_), & (_thread_)->pc_sample, ((0x20))); task = (_thread_)->task ; if (task->pc_sample.sampletypes & ((0x20))) take_pc_sample ((_thread_), &task->pc_sample, ((0x20))); }); }); |
547 | vm_stat.reactivations++; |
548 | current_task()((active_threads[(0)])->task)->reactivations++; |
549 | } |
550 | |
551 | VM_PAGE_QUEUES_REMOVE(m)({ if (m->active) { { queue_entry_t next, prev; next = (m) ->pageq.next; prev = (m)->pageq.prev; if ((&vm_page_queue_active ) == next) (&vm_page_queue_active)->prev = prev; else ( (vm_page_t)next)->pageq.prev = prev; if ((&vm_page_queue_active ) == prev) (&vm_page_queue_active)->next = next; else ( (vm_page_t)prev)->pageq.next = next; }; m->active = ((boolean_t ) 0); vm_page_active_count--; } if (m->inactive) { { queue_entry_t next, prev; next = (m)->pageq.next; prev = (m)->pageq. prev; if ((&vm_page_queue_inactive) == next) (&vm_page_queue_inactive )->prev = prev; else ((vm_page_t)next)->pageq.prev = prev ; if ((&vm_page_queue_inactive) == prev) (&vm_page_queue_inactive )->next = next; else ((vm_page_t)prev)->pageq.next = next ; }; m->inactive = ((boolean_t) 0); vm_page_inactive_count --; } }); |
552 | vm_page_unlock_queues()((void)(&vm_page_queue_lock)); |
553 | } |
554 | |
555 | assert(!m->busy)((!m->busy) ? (void) (0) : Assert ("!m->busy", "../vm/vm_fault.c" , 555)); |
556 | m->busy = TRUE((boolean_t) 1); |
557 | assert(!m->absent)((!m->absent) ? (void) (0) : Assert ("!m->absent", "../vm/vm_fault.c" , 557)); |
558 | break; |
559 | } |
560 | |
561 | look_for_page = |
562 | (object->pager_created) |
563 | #if MACH_PAGEMAP1 |
564 | && (vm_external_state_get(object->existence_info, offset + object->paging_offset)(((object->existence_info) != ((vm_external_t) 0)) ? _vm_external_state_get (object->existence_info, offset + object->paging_offset ) : 2) != |
565 | VM_EXTERNAL_STATE_ABSENT3) |
566 | #endif /* MACH_PAGEMAP */ |
567 | ; |
568 | |
569 | if ((look_for_page || (object == first_object)) |
570 | && !must_be_resident) { |
571 | /* |
572 | * Allocate a new page for this object/offset |
573 | * pair. |
574 | */ |
575 | |
576 | m = vm_page_grab_fictitious(); |
577 | if (m == VM_PAGE_NULL((vm_page_t) 0)) { |
578 | vm_fault_cleanup(object, first_m); |
579 | return(VM_FAULT_FICTITIOUS_SHORTAGE4); |
580 | } |
581 | |
582 | vm_page_lock_queues(); |
583 | vm_page_insert(m, object, offset); |
584 | vm_page_unlock_queues()((void)(&vm_page_queue_lock)); |
585 | } |
586 | |
587 | if (look_for_page && !must_be_resident) { |
588 | kern_return_t rc; |
589 | |
590 | /* |
591 | * If the memory manager is not ready, we |
592 | * cannot make requests. |
593 | */ |
594 | if (!object->pager_ready) { |
595 | vm_object_assert_wait(object,({ (object)->all_wanted |= 1 << (1); assert_wait((event_t )(((vm_offset_t) object) + (1)), (interruptible)); }) |
596 | VM_OBJECT_EVENT_PAGER_READY,({ (object)->all_wanted |= 1 << (1); assert_wait((event_t )(((vm_offset_t) object) + (1)), (interruptible)); }) |
597 | interruptible)({ (object)->all_wanted |= 1 << (1); assert_wait((event_t )(((vm_offset_t) object) + (1)), (interruptible)); }); |
598 | VM_PAGE_FREE(m)({ ; vm_page_free(m); ((void)(&vm_page_queue_lock)); }); |
599 | goto block_and_backoff; |
600 | } |
601 | |
602 | if (object->internal) { |
603 | /* |
604 | * Requests to the default pager |
605 | * must reserve a real page in advance, |
606 | * because the pager's data-provided |
607 | * won't block for pages. |
608 | */ |
609 | |
610 | if (m->fictitious && !vm_page_convert(m, FALSE((boolean_t) 0))) { |
611 | VM_PAGE_FREE(m)({ ; vm_page_free(m); ((void)(&vm_page_queue_lock)); }); |
612 | vm_fault_cleanup(object, first_m); |
613 | return(VM_FAULT_MEMORY_SHORTAGE3); |
614 | } |
615 | } else if (object->absent_count > |
616 | vm_object_absent_max) { |
617 | /* |
618 | * If there are too many outstanding page |
619 | * requests pending on this object, we |
620 | * wait for them to be resolved now. |
621 | */ |
622 | |
623 | vm_object_absent_assert_wait(object, interruptible)({ ({ ((object))->all_wanted |= 1 << (3); assert_wait ((event_t)(((vm_offset_t) (object)) + (3)), ((interruptible)) ); }); }); |
624 | VM_PAGE_FREE(m)({ ; vm_page_free(m); ((void)(&vm_page_queue_lock)); }); |
625 | goto block_and_backoff; |
626 | } |
627 | |
628 | /* |
629 | * Indicate that the page is waiting for data |
630 | * from the memory manager. |
631 | */ |
632 | |
633 | m->absent = TRUE((boolean_t) 1); |
634 | object->absent_count++; |
635 | |
636 | /* |
637 | * We have a busy page, so we can |
638 | * release the object lock. |
639 | */ |
640 | vm_object_unlock(object)((void)(&(object)->Lock)); |
641 | |
642 | /* |
643 | * Call the memory manager to retrieve the data. |
644 | */ |
645 | |
646 | vm_stat.pageins++; |
647 | vm_stat_sample(SAMPLED_PC_VM_PAGEIN_FAULTS)({ thread_t _thread_ = (active_threads[(0)]); if (_thread_ != ((thread_t) 0)) ({ task_t task; if ((_thread_)->pc_sample .sampletypes & ((0x40))) take_pc_sample((_thread_), & (_thread_)->pc_sample, ((0x40))); task = (_thread_)->task ; if (task->pc_sample.sampletypes & ((0x40))) take_pc_sample ((_thread_), &task->pc_sample, ((0x40))); }); }); |
648 | current_task()((active_threads[(0)])->task)->pageins++; |
649 | |
650 | if ((rc = memory_object_data_request(object->pager, |
651 | object->pager_request, |
652 | m->offset + object->paging_offset, |
653 | PAGE_SIZE(1 << 12), access_required)) != KERN_SUCCESS0) { |
654 | if (rc != MACH_SEND_INTERRUPTED0x10000007) |
655 | printf("%s(0x%p, 0x%p, 0x%lx, 0x%x, 0x%x) failed, %x\n", |
656 | "memory_object_data_request", |
657 | object->pager, |
658 | object->pager_request, |
659 | m->offset + object->paging_offset, |
660 | PAGE_SIZE(1 << 12), access_required, rc); |
661 | /* |
662 | * Don't want to leave a busy page around, |
663 | * but the data request may have blocked, |
664 | * so check if it's still there and busy. |
665 | */ |
666 | vm_object_lock(object); |
667 | if (m == vm_page_lookup(object,offset) && |
668 | m->absent && m->busy) |
669 | VM_PAGE_FREE(m)({ ; vm_page_free(m); ((void)(&vm_page_queue_lock)); }); |
670 | vm_fault_cleanup(object, first_m); |
671 | return((rc == MACH_SEND_INTERRUPTED0x10000007) ? |
672 | VM_FAULT_INTERRUPTED2 : |
673 | VM_FAULT_MEMORY_ERROR5); |
674 | } |
675 | |
676 | /* |
677 | * Retry with same object/offset, since new data may |
678 | * be in a different page (i.e., m is meaningless at |
679 | * this point). |
680 | */ |
681 | vm_object_lock(object); |
682 | continue; |
683 | } |
684 | |
685 | /* |
686 | * For the XP system, the only case in which we get here is if |
687 | * object has no pager (or unwiring). If the pager doesn't |
688 | * have the page this is handled in the m->absent case above |
689 | * (and if you change things here you should look above). |
690 | */ |
691 | if (object == first_object) |
692 | first_m = m; |
693 | else |
694 | { |
695 | assert(m == VM_PAGE_NULL)((m == ((vm_page_t) 0)) ? (void) (0) : Assert ("m == VM_PAGE_NULL" , "../vm/vm_fault.c", 695)); |
696 | } |
697 | |
698 | /* |
699 | * Move on to the next object. Lock the next |
700 | * object before unlocking the current one. |
701 | */ |
702 | access_required = VM_PROT_READ((vm_prot_t) 0x01); |
703 | |
704 | offset += object->shadow_offset; |
705 | next_object = object->shadow; |
706 | if (next_object == VM_OBJECT_NULL((vm_object_t) 0)) { |
707 | assert(!must_be_resident)((!must_be_resident) ? (void) (0) : Assert ("!must_be_resident" , "../vm/vm_fault.c", 707)); |
708 | |
709 | /* |
710 | * If there's no object left, fill the page |
711 | * in the top object with zeros. But first we |
712 | * need to allocate a real page. |
713 | */ |
714 | |
715 | if (object != first_object) { |
716 | vm_object_paging_end(object)({ (((object)->paging_in_progress != 0) ? (void) (0) : Assert ("(object)->paging_in_progress != 0", "../vm/vm_fault.c", 716)); if (--(object)->paging_in_progress == 0) { ({ if ( (object)->all_wanted & (1 << (2))) thread_wakeup_prim (((event_t)(((vm_offset_t) object) + (2))), ((boolean_t) 0), 0 ); (object)->all_wanted &= ~(1 << (2)); }); } }); |
717 | vm_object_unlock(object)((void)(&(object)->Lock)); |
718 | |
719 | object = first_object; |
720 | offset = first_offset; |
Value stored to 'offset' is never read | |
721 | vm_object_lock(object); |
722 | } |
723 | |
724 | m = first_m; |
725 | assert(m->object == object)((m->object == object) ? (void) (0) : Assert ("m->object == object" , "../vm/vm_fault.c", 725)); |
726 | first_m = VM_PAGE_NULL((vm_page_t) 0); |
727 | |
728 | if (m->fictitious && !vm_page_convert(m, !object->internal)) { |
729 | VM_PAGE_FREE(m)({ ; vm_page_free(m); ((void)(&vm_page_queue_lock)); }); |
730 | vm_fault_cleanup(object, VM_PAGE_NULL((vm_page_t) 0)); |
731 | return(VM_FAULT_MEMORY_SHORTAGE3); |
732 | } |
733 | |
734 | vm_object_unlock(object)((void)(&(object)->Lock)); |
735 | vm_page_zero_fill(m); |
736 | vm_stat_sample(SAMPLED_PC_VM_ZFILL_FAULTS)({ thread_t _thread_ = (active_threads[(0)]); if (_thread_ != ((thread_t) 0)) ({ task_t task; if ((_thread_)->pc_sample .sampletypes & ((0x10))) take_pc_sample((_thread_), & (_thread_)->pc_sample, ((0x10))); task = (_thread_)->task ; if (task->pc_sample.sampletypes & ((0x10))) take_pc_sample ((_thread_), &task->pc_sample, ((0x10))); }); }); |
737 | vm_stat.zero_fill_count++; |
738 | current_task()((active_threads[(0)])->task)->zero_fills++; |
739 | vm_object_lock(object); |
740 | pmap_clear_modify(m->phys_addr); |
741 | break; |
742 | } |
743 | else { |
744 | vm_object_lock(next_object); |
745 | if ((object != first_object) || must_be_resident) |
746 | vm_object_paging_end(object)({ (((object)->paging_in_progress != 0) ? (void) (0) : Assert ("(object)->paging_in_progress != 0", "../vm/vm_fault.c", 746)); if (--(object)->paging_in_progress == 0) { ({ if ( (object)->all_wanted & (1 << (2))) thread_wakeup_prim (((event_t)(((vm_offset_t) object) + (2))), ((boolean_t) 0), 0 ); (object)->all_wanted &= ~(1 << (2)); }); } }); |
747 | vm_object_unlock(object)((void)(&(object)->Lock)); |
748 | object = next_object; |
749 | vm_object_paging_begin(object)((object)->paging_in_progress++); |
750 | } |
751 | } |
752 | |
753 | /* |
754 | * PAGE HAS BEEN FOUND. |
755 | * |
756 | * This page (m) is: |
757 | * busy, so that we can play with it; |
758 | * not absent, so that nobody else will fill it; |
759 | * possibly eligible for pageout; |
760 | * |
761 | * The top-level page (first_m) is: |
762 | * VM_PAGE_NULL if the page was found in the |
763 | * top-level object; |
764 | * busy, not absent, and ineligible for pageout. |
765 | * |
766 | * The current object (object) is locked. A paging |
767 | * reference is held for the current and top-level |
768 | * objects. |
769 | */ |
770 | |
771 | #if EXTRA_ASSERTIONS |
772 | assert(m->busy && !m->absent)((m->busy && !m->absent) ? (void) (0) : Assert ( "m->busy && !m->absent", "../vm/vm_fault.c", 772 )); |
773 | assert((first_m == VM_PAGE_NULL) ||(((first_m == ((vm_page_t) 0)) || (first_m->busy && !first_m->absent && !first_m->active && !first_m->inactive)) ? (void) (0) : Assert ("(first_m == VM_PAGE_NULL) || (first_m->busy && !first_m->absent && !first_m->active && !first_m->inactive)" , "../vm/vm_fault.c", 775)) |
774 | (first_m->busy && !first_m->absent &&(((first_m == ((vm_page_t) 0)) || (first_m->busy && !first_m->absent && !first_m->active && !first_m->inactive)) ? (void) (0) : Assert ("(first_m == VM_PAGE_NULL) || (first_m->busy && !first_m->absent && !first_m->active && !first_m->inactive)" , "../vm/vm_fault.c", 775)) |
775 | !first_m->active && !first_m->inactive))(((first_m == ((vm_page_t) 0)) || (first_m->busy && !first_m->absent && !first_m->active && !first_m->inactive)) ? (void) (0) : Assert ("(first_m == VM_PAGE_NULL) || (first_m->busy && !first_m->absent && !first_m->active && !first_m->inactive)" , "../vm/vm_fault.c", 775)); |
776 | #endif /* EXTRA_ASSERTIONS */ |
777 | |
778 | /* |
779 | * If the page is being written, but isn't |
780 | * already owned by the top-level object, |
781 | * we have to copy it into a new page owned |
782 | * by the top-level object. |
783 | */ |
784 | |
785 | if (object != first_object) { |
786 | /* |
787 | * We only really need to copy if we |
788 | * want to write it. |
789 | */ |
790 | |
791 | if (fault_type & VM_PROT_WRITE((vm_prot_t) 0x02)) { |
792 | vm_page_t copy_m; |
793 | |
794 | assert(!must_be_resident)((!must_be_resident) ? (void) (0) : Assert ("!must_be_resident" , "../vm/vm_fault.c", 794)); |
795 | |
796 | /* |
797 | * If we try to collapse first_object at this |
798 | * point, we may deadlock when we try to get |
799 | * the lock on an intermediate object (since we |
800 | * have the bottom object locked). We can't |
801 | * unlock the bottom object, because the page |
802 | * we found may move (by collapse) if we do. |
803 | * |
804 | * Instead, we first copy the page. Then, when |
805 | * we have no more use for the bottom object, |
806 | * we unlock it and try to collapse. |
807 | * |
808 | * Note that we copy the page even if we didn't |
809 | * need to... that's the breaks. |
810 | */ |
811 | |
812 | /* |
813 | * Allocate a page for the copy |
814 | */ |
815 | copy_m = vm_page_grab(!first_object->internal); |
816 | if (copy_m == VM_PAGE_NULL((vm_page_t) 0)) { |
817 | RELEASE_PAGE(m){ ({ (m)->busy = ((boolean_t) 0); if ((m)->wanted) { (m )->wanted = ((boolean_t) 0); thread_wakeup_prim((((event_t ) m)), ((boolean_t) 0), 0); } }); ; vm_page_unwire(m); ((void )(&vm_page_queue_lock)); }; |
818 | vm_fault_cleanup(object, first_m); |
819 | return(VM_FAULT_MEMORY_SHORTAGE3); |
820 | } |
821 | |
822 | vm_object_unlock(object)((void)(&(object)->Lock)); |
823 | vm_page_copy(m, copy_m); |
824 | vm_object_lock(object); |
825 | |
826 | /* |
827 | * If another map is truly sharing this |
828 | * page with us, we have to flush all |
829 | * uses of the original page, since we |
830 | * can't distinguish those which want the |
831 | * original from those which need the |
832 | * new copy. |
833 | * |
834 | * XXXO If we know that only one map has |
835 | * access to this page, then we could |
836 | * avoid the pmap_page_protect() call. |
837 | */ |
838 | |
839 | vm_page_lock_queues(); |
840 | vm_page_deactivate(m); |
841 | pmap_page_protect(m->phys_addr, VM_PROT_NONE((vm_prot_t) 0x00)); |
842 | vm_page_unlock_queues()((void)(&vm_page_queue_lock)); |
843 | |
844 | /* |
845 | * We no longer need the old page or object. |
846 | */ |
847 | |
848 | PAGE_WAKEUP_DONE(m)({ (m)->busy = ((boolean_t) 0); if ((m)->wanted) { (m)-> wanted = ((boolean_t) 0); thread_wakeup_prim((((event_t) m)), ((boolean_t) 0), 0); } }); |
849 | vm_object_paging_end(object)({ (((object)->paging_in_progress != 0) ? (void) (0) : Assert ("(object)->paging_in_progress != 0", "../vm/vm_fault.c", 849)); if (--(object)->paging_in_progress == 0) { ({ if ( (object)->all_wanted & (1 << (2))) thread_wakeup_prim (((event_t)(((vm_offset_t) object) + (2))), ((boolean_t) 0), 0 ); (object)->all_wanted &= ~(1 << (2)); }); } }); |
850 | vm_object_unlock(object)((void)(&(object)->Lock)); |
851 | |
852 | vm_stat.cow_faults++; |
853 | vm_stat_sample(SAMPLED_PC_VM_COW_FAULTS)({ thread_t _thread_ = (active_threads[(0)]); if (_thread_ != ((thread_t) 0)) ({ task_t task; if ((_thread_)->pc_sample .sampletypes & ((0x80))) take_pc_sample((_thread_), & (_thread_)->pc_sample, ((0x80))); task = (_thread_)->task ; if (task->pc_sample.sampletypes & ((0x80))) take_pc_sample ((_thread_), &task->pc_sample, ((0x80))); }); }); |
854 | current_task()((active_threads[(0)])->task)->cow_faults++; |
855 | object = first_object; |
856 | offset = first_offset; |
857 | |
858 | vm_object_lock(object); |
859 | VM_PAGE_FREE(first_m)({ ; vm_page_free(first_m); ((void)(&vm_page_queue_lock)) ; }); |
860 | first_m = VM_PAGE_NULL((vm_page_t) 0); |
861 | assert(copy_m->busy)((copy_m->busy) ? (void) (0) : Assert ("copy_m->busy", "../vm/vm_fault.c" , 861)); |
862 | vm_page_lock_queues(); |
863 | vm_page_insert(copy_m, object, offset); |
864 | vm_page_unlock_queues()((void)(&vm_page_queue_lock)); |
865 | m = copy_m; |
866 | |
867 | /* |
868 | * Now that we've gotten the copy out of the |
869 | * way, let's try to collapse the top object. |
870 | * But we have to play ugly games with |
871 | * paging_in_progress to do that... |
872 | */ |
873 | |
874 | vm_object_paging_end(object)({ (((object)->paging_in_progress != 0) ? (void) (0) : Assert ("(object)->paging_in_progress != 0", "../vm/vm_fault.c", 874)); if (--(object)->paging_in_progress == 0) { ({ if ( (object)->all_wanted & (1 << (2))) thread_wakeup_prim (((event_t)(((vm_offset_t) object) + (2))), ((boolean_t) 0), 0 ); (object)->all_wanted &= ~(1 << (2)); }); } }); |
875 | vm_object_collapse(object); |
876 | vm_object_paging_begin(object)((object)->paging_in_progress++); |
877 | } |
878 | else { |
879 | *protection &= (~VM_PROT_WRITE((vm_prot_t) 0x02)); |
880 | } |
881 | } |
882 | |
883 | /* |
884 | * Now check whether the page needs to be pushed into the |
885 | * copy object. The use of asymmetric copy on write for |
886 | * shared temporary objects means that we may do two copies to |
887 | * satisfy the fault; one above to get the page from a |
888 | * shadowed object, and one here to push it into the copy. |
889 | */ |
890 | |
891 | while ((copy_object = first_object->copy) != VM_OBJECT_NULL((vm_object_t) 0)) { |
892 | vm_offset_t copy_offset; |
893 | vm_page_t copy_m; |
894 | |
895 | /* |
896 | * If the page is being written, but hasn't been |
897 | * copied to the copy-object, we have to copy it there. |
898 | */ |
899 | |
900 | if ((fault_type & VM_PROT_WRITE((vm_prot_t) 0x02)) == 0) { |
901 | *protection &= ~VM_PROT_WRITE((vm_prot_t) 0x02); |
902 | break; |
903 | } |
904 | |
905 | /* |
906 | * If the page was guaranteed to be resident, |
907 | * we must have already performed the copy. |
908 | */ |
909 | |
910 | if (must_be_resident) |
911 | break; |
912 | |
913 | /* |
914 | * Try to get the lock on the copy_object. |
915 | */ |
916 | if (!vm_object_lock_try(copy_object)(((boolean_t) 1))) { |
917 | vm_object_unlock(object)((void)(&(object)->Lock)); |
918 | |
919 | simple_lock_pause(); /* wait a bit */ |
920 | |
921 | vm_object_lock(object); |
922 | continue; |
923 | } |
924 | |
925 | /* |
926 | * Make another reference to the copy-object, |
927 | * to keep it from disappearing during the |
928 | * copy. |
929 | */ |
930 | assert(copy_object->ref_count > 0)((copy_object->ref_count > 0) ? (void) (0) : Assert ("copy_object->ref_count > 0" , "../vm/vm_fault.c", 930)); |
931 | copy_object->ref_count++; |
932 | |
933 | /* |
934 | * Does the page exist in the copy? |
935 | */ |
936 | copy_offset = first_offset - copy_object->shadow_offset; |
937 | copy_m = vm_page_lookup(copy_object, copy_offset); |
938 | if (copy_m != VM_PAGE_NULL((vm_page_t) 0)) { |
939 | if (copy_m->busy) { |
940 | /* |
941 | * If the page is being brought |
942 | * in, wait for it and then retry. |
943 | */ |
944 | PAGE_ASSERT_WAIT(copy_m, interruptible)({ (copy_m)->wanted = ((boolean_t) 1); assert_wait((event_t ) (copy_m), (interruptible)); }); |
945 | RELEASE_PAGE(m){ ({ (m)->busy = ((boolean_t) 0); if ((m)->wanted) { (m )->wanted = ((boolean_t) 0); thread_wakeup_prim((((event_t ) m)), ((boolean_t) 0), 0); } }); ; vm_page_unwire(m); ((void )(&vm_page_queue_lock)); }; |
946 | copy_object->ref_count--; |
947 | assert(copy_object->ref_count > 0)((copy_object->ref_count > 0) ? (void) (0) : Assert ("copy_object->ref_count > 0" , "../vm/vm_fault.c", 947)); |
948 | vm_object_unlock(copy_object)((void)(&(copy_object)->Lock)); |
949 | goto block_and_backoff; |
950 | } |
951 | } |
952 | else { |
953 | /* |
954 | * Allocate a page for the copy |
955 | */ |
956 | copy_m = vm_page_alloc(copy_object, copy_offset); |
957 | if (copy_m == VM_PAGE_NULL((vm_page_t) 0)) { |
958 | RELEASE_PAGE(m){ ({ (m)->busy = ((boolean_t) 0); if ((m)->wanted) { (m )->wanted = ((boolean_t) 0); thread_wakeup_prim((((event_t ) m)), ((boolean_t) 0), 0); } }); ; vm_page_unwire(m); ((void )(&vm_page_queue_lock)); }; |
959 | copy_object->ref_count--; |
960 | assert(copy_object->ref_count > 0)((copy_object->ref_count > 0) ? (void) (0) : Assert ("copy_object->ref_count > 0" , "../vm/vm_fault.c", 960)); |
961 | vm_object_unlock(copy_object)((void)(&(copy_object)->Lock)); |
962 | vm_fault_cleanup(object, first_m); |
963 | return(VM_FAULT_MEMORY_SHORTAGE3); |
964 | } |
965 | |
966 | /* |
967 | * Must copy page into copy-object. |
968 | */ |
969 | |
970 | vm_page_copy(m, copy_m); |
971 | |
972 | /* |
973 | * If the old page was in use by any users |
974 | * of the copy-object, it must be removed |
975 | * from all pmaps. (We can't know which |
976 | * pmaps use it.) |
977 | */ |
978 | |
979 | vm_page_lock_queues(); |
980 | pmap_page_protect(m->phys_addr, VM_PROT_NONE((vm_prot_t) 0x00)); |
981 | copy_m->dirty = TRUE((boolean_t) 1); |
982 | vm_page_unlock_queues()((void)(&vm_page_queue_lock)); |
983 | |
984 | /* |
985 | * If there's a pager, then immediately |
986 | * page out this page, using the "initialize" |
987 | * option. Else, we use the copy. |
988 | */ |
989 | |
990 | if (!copy_object->pager_created) { |
991 | vm_page_lock_queues(); |
992 | vm_page_activate(copy_m); |
993 | vm_page_unlock_queues()((void)(&vm_page_queue_lock)); |
994 | PAGE_WAKEUP_DONE(copy_m)({ (copy_m)->busy = ((boolean_t) 0); if ((copy_m)->wanted ) { (copy_m)->wanted = ((boolean_t) 0); thread_wakeup_prim ((((event_t) copy_m)), ((boolean_t) 0), 0); } }); |
995 | } else { |
996 | /* |
997 | * The page is already ready for pageout: |
998 | * not on pageout queues and busy. |
999 | * Unlock everything except the |
1000 | * copy_object itself. |
1001 | */ |
1002 | |
1003 | vm_object_unlock(object)((void)(&(object)->Lock)); |
1004 | |
1005 | /* |
1006 | * Write the page to the copy-object, |
1007 | * flushing it from the kernel. |
1008 | */ |
1009 | |
1010 | vm_pageout_page(copy_m, TRUE((boolean_t) 1), TRUE((boolean_t) 1)); |
1011 | |
1012 | /* |
1013 | * Since the pageout may have |
1014 | * temporarily dropped the |
1015 | * copy_object's lock, we |
1016 | * check whether we'll have |
1017 | * to deallocate the hard way. |
1018 | */ |
1019 | |
1020 | if ((copy_object->shadow != object) || |
1021 | (copy_object->ref_count == 1)) { |
1022 | vm_object_unlock(copy_object)((void)(&(copy_object)->Lock)); |
1023 | vm_object_deallocate(copy_object); |
1024 | vm_object_lock(object); |
1025 | continue; |
1026 | } |
1027 | |
1028 | /* |
1029 | * Pick back up the old object's |
1030 | * lock. [It is safe to do so, |
1031 | * since it must be deeper in the |
1032 | * object tree.] |
1033 | */ |
1034 | |
1035 | vm_object_lock(object); |
1036 | } |
1037 | |
1038 | /* |
1039 | * Because we're pushing a page upward |
1040 | * in the object tree, we must restart |
1041 | * any faults that are waiting here. |
1042 | * [Note that this is an expansion of |
1043 | * PAGE_WAKEUP that uses the THREAD_RESTART |
1044 | * wait result]. Can't turn off the page's |
1045 | * busy bit because we're not done with it. |
1046 | */ |
1047 | |
1048 | if (m->wanted) { |
1049 | m->wanted = FALSE((boolean_t) 0); |
1050 | thread_wakeup_with_result((event_t) m,thread_wakeup_prim(((event_t) m), ((boolean_t) 0), (3)) |
1051 | THREAD_RESTART)thread_wakeup_prim(((event_t) m), ((boolean_t) 0), (3)); |
1052 | } |
1053 | } |
1054 | |
1055 | /* |
1056 | * The reference count on copy_object must be |
1057 | * at least 2: one for our extra reference, |
1058 | * and at least one from the outside world |
1059 | * (we checked that when we last locked |
1060 | * copy_object). |
1061 | */ |
1062 | copy_object->ref_count--; |
1063 | assert(copy_object->ref_count > 0)((copy_object->ref_count > 0) ? (void) (0) : Assert ("copy_object->ref_count > 0" , "../vm/vm_fault.c", 1063)); |
1064 | vm_object_unlock(copy_object)((void)(&(copy_object)->Lock)); |
1065 | |
1066 | break; |
1067 | } |
1068 | |
1069 | *result_page = m; |
1070 | *top_page = first_m; |
1071 | |
1072 | /* |
1073 | * If the page can be written, assume that it will be. |
1074 | * [Earlier, we restrict the permission to allow write |
1075 | * access only if the fault so required, so we don't |
1076 | * mark read-only data as dirty.] |
1077 | */ |
1078 | |
1079 | if (vm_fault_dirty_handling && (*protection & VM_PROT_WRITE((vm_prot_t) 0x02))) |
1080 | m->dirty = TRUE((boolean_t) 1); |
1081 | |
1082 | return(VM_FAULT_SUCCESS0); |
1083 | |
1084 | block_and_backoff: |
1085 | vm_fault_cleanup(object, first_m); |
1086 | |
1087 | if (continuation != (void (*)()) 0) { |
1088 | vm_fault_state_t *state = |
1089 | (vm_fault_state_t *) current_thread()(active_threads[(0)])->ith_othersaved.other; |
1090 | |
1091 | /* |
1092 | * Save variables in case we must restart. |
1093 | */ |
1094 | |
1095 | state->vmfp_backoff = TRUE((boolean_t) 1); |
1096 | state->vmf_prot = *protection; |
1097 | |
1098 | counter(c_vm_fault_page_block_backoff_user++); |
1099 | thread_block(continuation); |
1100 | } else |
1101 | { |
1102 | counter(c_vm_fault_page_block_backoff_kernel++); |
1103 | thread_block((void (*)()) 0); |
1104 | } |
1105 | after_block_and_backoff: |
1106 | if (current_thread()(active_threads[(0)])->wait_result == THREAD_AWAKENED0) |
1107 | return VM_FAULT_RETRY1; |
1108 | else |
1109 | return VM_FAULT_INTERRUPTED2; |
1110 | |
1111 | #undef RELEASE_PAGE |
1112 | } |
1113 | |
1114 | /* |
1115 | * Routine: vm_fault |
1116 | * Purpose: |
1117 | * Handle page faults, including pseudo-faults |
1118 | * used to change the wiring status of pages. |
1119 | * Returns: |
1120 | * If an explicit (expression) continuation is supplied, |
1121 | * then we call the continuation instead of returning. |
1122 | * Implementation: |
1123 | * Explicit continuations make this a little icky, |
1124 | * because it hasn't been rewritten to embrace CPS. |
1125 | * Instead, we have resume arguments for vm_fault and |
1126 | * vm_fault_page, to let continue the fault computation. |
1127 | * |
1128 | * vm_fault and vm_fault_page save mucho state |
1129 | * in the moral equivalent of a closure. The state |
1130 | * structure is allocated when first entering vm_fault |
1131 | * and deallocated when leaving vm_fault. |
1132 | */ |
1133 | |
1134 | void |
1135 | vm_fault_continue(void) |
1136 | { |
1137 | vm_fault_state_t *state = |
1138 | (vm_fault_state_t *) current_thread()(active_threads[(0)])->ith_othersaved.other; |
1139 | |
1140 | (void) vm_fault(state->vmf_map, |
1141 | state->vmf_vaddr, |
1142 | state->vmf_fault_type, |
1143 | state->vmf_change_wiring, |
1144 | TRUE((boolean_t) 1), state->vmf_continuation); |
1145 | /*NOTREACHED*/ |
1146 | } |
1147 | |
1148 | kern_return_t vm_fault( |
1149 | vm_map_t map, |
1150 | vm_offset_t vaddr, |
1151 | vm_prot_t fault_type, |
1152 | boolean_t change_wiring, |
1153 | boolean_t resume, |
1154 | void (*continuation)()) |
1155 | { |
1156 | vm_map_version_t version; /* Map version for verificiation */ |
1157 | boolean_t wired; /* Should mapping be wired down? */ |
1158 | vm_object_t object; /* Top-level object */ |
1159 | vm_offset_t offset; /* Top-level offset */ |
1160 | vm_prot_t prot; /* Protection for mapping */ |
1161 | vm_object_t old_copy_object; /* Saved copy object */ |
1162 | vm_page_t result_page; /* Result of vm_fault_page */ |
1163 | vm_page_t top_page; /* Placeholder page */ |
1164 | kern_return_t kr; |
1165 | |
1166 | vm_page_t m; /* Fast access to result_page */ |
1167 | |
1168 | if (resume) { |
1169 | vm_fault_state_t *state = |
1170 | (vm_fault_state_t *) current_thread()(active_threads[(0)])->ith_othersaved.other; |
1171 | |
1172 | /* |
1173 | * Retrieve cached variables and |
1174 | * continue vm_fault_page. |
1175 | */ |
1176 | |
1177 | object = state->vmf_object; |
1178 | if (object == VM_OBJECT_NULL((vm_object_t) 0)) |
1179 | goto RetryFault; |
1180 | version = state->vmf_version; |
1181 | wired = state->vmf_wired; |
1182 | offset = state->vmf_offset; |
1183 | prot = state->vmf_prot; |
1184 | |
1185 | kr = vm_fault_page(object, offset, fault_type, |
1186 | (change_wiring && !wired), !change_wiring, |
1187 | &prot, &result_page, &top_page, |
1188 | TRUE((boolean_t) 1), vm_fault_continue); |
1189 | goto after_vm_fault_page; |
1190 | } |
1191 | |
1192 | if (continuation != (void (*)()) 0) { |
1193 | /* |
1194 | * We will probably need to save state. |
1195 | */ |
1196 | |
1197 | char * state; |
1198 | |
1199 | /* |
1200 | * if this assignment stmt is written as |
1201 | * 'active_threads[cpu_number()] = kmem_cache_alloc()', |
1202 | * cpu_number may be evaluated before kmem_cache_alloc; |
1203 | * if kmem_cache_alloc blocks, cpu_number will be wrong |
1204 | */ |
1205 | |
1206 | state = (char *) kmem_cache_alloc(&vm_fault_state_cache); |
1207 | current_thread()(active_threads[(0)])->ith_othersaved.other = state; |
1208 | |
1209 | } |
1210 | |
1211 | RetryFault: ; |
1212 | |
1213 | /* |
1214 | * Find the backing store object and offset into |
1215 | * it to begin the search. |
1216 | */ |
1217 | |
1218 | if ((kr = vm_map_lookup(&map, vaddr, fault_type, &version, |
1219 | &object, &offset, |
1220 | &prot, &wired)) != KERN_SUCCESS0) { |
1221 | goto done; |
1222 | } |
1223 | |
1224 | /* |
1225 | * If the page is wired, we must fault for the current protection |
1226 | * value, to avoid further faults. |
1227 | */ |
1228 | |
1229 | if (wired) |
1230 | fault_type = prot; |
1231 | |
1232 | /* |
1233 | * Make a reference to this object to |
1234 | * prevent its disposal while we are messing with |
1235 | * it. Once we have the reference, the map is free |
1236 | * to be diddled. Since objects reference their |
1237 | * shadows (and copies), they will stay around as well. |
1238 | */ |
1239 | |
1240 | assert(object->ref_count > 0)((object->ref_count > 0) ? (void) (0) : Assert ("object->ref_count > 0" , "../vm/vm_fault.c", 1240)); |
1241 | object->ref_count++; |
1242 | vm_object_paging_begin(object)((object)->paging_in_progress++); |
1243 | |
1244 | if (continuation != (void (*)()) 0) { |
1245 | vm_fault_state_t *state = |
1246 | (vm_fault_state_t *) current_thread()(active_threads[(0)])->ith_othersaved.other; |
1247 | |
1248 | /* |
1249 | * Save variables, in case vm_fault_page discards |
1250 | * our kernel stack and we have to restart. |
1251 | */ |
1252 | |
1253 | state->vmf_map = map; |
1254 | state->vmf_vaddr = vaddr; |
1255 | state->vmf_fault_type = fault_type; |
1256 | state->vmf_change_wiring = change_wiring; |
1257 | state->vmf_continuation = continuation; |
1258 | |
1259 | state->vmf_version = version; |
1260 | state->vmf_wired = wired; |
1261 | state->vmf_object = object; |
1262 | state->vmf_offset = offset; |
1263 | state->vmf_prot = prot; |
1264 | |
1265 | kr = vm_fault_page(object, offset, fault_type, |
1266 | (change_wiring && !wired), !change_wiring, |
1267 | &prot, &result_page, &top_page, |
1268 | FALSE((boolean_t) 0), vm_fault_continue); |
1269 | } else |
1270 | { |
1271 | kr = vm_fault_page(object, offset, fault_type, |
1272 | (change_wiring && !wired), !change_wiring, |
1273 | &prot, &result_page, &top_page, |
1274 | FALSE((boolean_t) 0), (void (*)()) 0); |
1275 | } |
1276 | after_vm_fault_page: |
1277 | |
1278 | /* |
1279 | * If we didn't succeed, lose the object reference immediately. |
1280 | */ |
1281 | |
1282 | if (kr != VM_FAULT_SUCCESS0) |
1283 | vm_object_deallocate(object); |
1284 | |
1285 | /* |
1286 | * See why we failed, and take corrective action. |
1287 | */ |
1288 | |
1289 | switch (kr) { |
1290 | case VM_FAULT_SUCCESS0: |
1291 | break; |
1292 | case VM_FAULT_RETRY1: |
1293 | goto RetryFault; |
1294 | case VM_FAULT_INTERRUPTED2: |
1295 | kr = KERN_SUCCESS0; |
1296 | goto done; |
1297 | case VM_FAULT_MEMORY_SHORTAGE3: |
1298 | if (continuation != (void (*)()) 0) { |
1299 | vm_fault_state_t *state = |
1300 | (vm_fault_state_t *) current_thread()(active_threads[(0)])->ith_othersaved.other; |
1301 | |
1302 | /* |
1303 | * Save variables in case VM_PAGE_WAIT |
1304 | * discards our kernel stack. |
1305 | */ |
1306 | |
1307 | state->vmf_map = map; |
1308 | state->vmf_vaddr = vaddr; |
1309 | state->vmf_fault_type = fault_type; |
1310 | state->vmf_change_wiring = change_wiring; |
1311 | state->vmf_continuation = continuation; |
1312 | state->vmf_object = VM_OBJECT_NULL((vm_object_t) 0); |
1313 | |
1314 | VM_PAGE_WAIT(vm_fault_continue)vm_page_wait(vm_fault_continue); |
1315 | } else |
1316 | VM_PAGE_WAIT((void (*)()) 0)vm_page_wait((void (*)()) 0); |
1317 | goto RetryFault; |
1318 | case VM_FAULT_FICTITIOUS_SHORTAGE4: |
1319 | vm_page_more_fictitious(); |
1320 | goto RetryFault; |
1321 | case VM_FAULT_MEMORY_ERROR5: |
1322 | kr = KERN_MEMORY_ERROR10; |
1323 | goto done; |
1324 | } |
1325 | |
1326 | m = result_page; |
1327 | |
1328 | assert((change_wiring && !wired) ?(((change_wiring && !wired) ? (top_page == ((vm_page_t ) 0)) : ((top_page == ((vm_page_t) 0)) == (m->object == object ))) ? (void) (0) : Assert ("(change_wiring && !wired) ? (top_page == VM_PAGE_NULL) : ((top_page == VM_PAGE_NULL) == (m->object == object))" , "../vm/vm_fault.c", 1330)) |
1329 | (top_page == VM_PAGE_NULL) :(((change_wiring && !wired) ? (top_page == ((vm_page_t ) 0)) : ((top_page == ((vm_page_t) 0)) == (m->object == object ))) ? (void) (0) : Assert ("(change_wiring && !wired) ? (top_page == VM_PAGE_NULL) : ((top_page == VM_PAGE_NULL) == (m->object == object))" , "../vm/vm_fault.c", 1330)) |
1330 | ((top_page == VM_PAGE_NULL) == (m->object == object)))(((change_wiring && !wired) ? (top_page == ((vm_page_t ) 0)) : ((top_page == ((vm_page_t) 0)) == (m->object == object ))) ? (void) (0) : Assert ("(change_wiring && !wired) ? (top_page == VM_PAGE_NULL) : ((top_page == VM_PAGE_NULL) == (m->object == object))" , "../vm/vm_fault.c", 1330)); |
1331 | |
1332 | /* |
1333 | * How to clean up the result of vm_fault_page. This |
1334 | * happens whether the mapping is entered or not. |
1335 | */ |
1336 | |
1337 | #define UNLOCK_AND_DEALLOCATE{ { object->paging_in_progress--; ((void)(&(object)-> Lock)); }; vm_object_deallocate(object); } \ |
1338 | MACRO_BEGIN({ \ |
1339 | vm_fault_cleanup(m->object, top_page); \ |
1340 | vm_object_deallocate(object); \ |
1341 | MACRO_END}) |
1342 | |
1343 | /* |
1344 | * What to do with the resulting page from vm_fault_page |
1345 | * if it doesn't get entered into the physical map: |
1346 | */ |
1347 | |
1348 | #define RELEASE_PAGE(m){ ({ (m)->busy = ((boolean_t) 0); if ((m)->wanted) { (m )->wanted = ((boolean_t) 0); thread_wakeup_prim((((event_t ) m)), ((boolean_t) 0), 0); } }); ; vm_page_unwire(m); ((void )(&vm_page_queue_lock)); } \ |
1349 | MACRO_BEGIN({ \ |
1350 | PAGE_WAKEUP_DONE(m)({ (m)->busy = ((boolean_t) 0); if ((m)->wanted) { (m)-> wanted = ((boolean_t) 0); thread_wakeup_prim((((event_t) m)), ((boolean_t) 0), 0); } }); \ |
1351 | vm_page_lock_queues(); \ |
1352 | if (!m->active && !m->inactive) \ |
1353 | vm_page_activate(m); \ |
1354 | vm_page_unlock_queues()((void)(&vm_page_queue_lock)); \ |
1355 | MACRO_END}) |
1356 | |
1357 | /* |
1358 | * We must verify that the maps have not changed |
1359 | * since our last lookup. |
1360 | */ |
1361 | |
1362 | old_copy_object = m->object->copy; |
1363 | |
1364 | vm_object_unlock(m->object)((void)(&(m->object)->Lock)); |
1365 | while (!vm_map_verify(map, &version)) { |
1366 | vm_object_t retry_object; |
1367 | vm_offset_t retry_offset; |
1368 | vm_prot_t retry_prot; |
1369 | |
1370 | /* |
1371 | * To avoid trying to write_lock the map while another |
1372 | * thread has it read_locked (in vm_map_pageable), we |
1373 | * do not try for write permission. If the page is |
1374 | * still writable, we will get write permission. If it |
1375 | * is not, or has been marked needs_copy, we enter the |
1376 | * mapping without write permission, and will merely |
1377 | * take another fault. |
1378 | */ |
1379 | kr = vm_map_lookup(&map, vaddr, |
1380 | fault_type & ~VM_PROT_WRITE((vm_prot_t) 0x02), &version, |
1381 | &retry_object, &retry_offset, &retry_prot, |
1382 | &wired); |
1383 | |
1384 | if (kr != KERN_SUCCESS0) { |
1385 | vm_object_lock(m->object); |
1386 | RELEASE_PAGE(m){ ({ (m)->busy = ((boolean_t) 0); if ((m)->wanted) { (m )->wanted = ((boolean_t) 0); thread_wakeup_prim((((event_t ) m)), ((boolean_t) 0), 0); } }); ; vm_page_unwire(m); ((void )(&vm_page_queue_lock)); }; |
1387 | UNLOCK_AND_DEALLOCATE{ { object->paging_in_progress--; ((void)(&(object)-> Lock)); }; vm_object_deallocate(object); }; |
1388 | goto done; |
1389 | } |
1390 | |
1391 | vm_object_unlock(retry_object)((void)(&(retry_object)->Lock)); |
1392 | vm_object_lock(m->object); |
1393 | |
1394 | if ((retry_object != object) || |
1395 | (retry_offset != offset)) { |
1396 | RELEASE_PAGE(m){ ({ (m)->busy = ((boolean_t) 0); if ((m)->wanted) { (m )->wanted = ((boolean_t) 0); thread_wakeup_prim((((event_t ) m)), ((boolean_t) 0), 0); } }); ; vm_page_unwire(m); ((void )(&vm_page_queue_lock)); }; |
1397 | UNLOCK_AND_DEALLOCATE{ { object->paging_in_progress--; ((void)(&(object)-> Lock)); }; vm_object_deallocate(object); }; |
1398 | goto RetryFault; |
1399 | } |
1400 | |
1401 | /* |
1402 | * Check whether the protection has changed or the object |
1403 | * has been copied while we left the map unlocked. |
1404 | */ |
1405 | prot &= retry_prot; |
1406 | vm_object_unlock(m->object)((void)(&(m->object)->Lock)); |
1407 | } |
1408 | vm_object_lock(m->object); |
1409 | |
1410 | /* |
1411 | * If the copy object changed while the top-level object |
1412 | * was unlocked, then we must take away write permission. |
1413 | */ |
1414 | |
1415 | if (m->object->copy != old_copy_object) |
1416 | prot &= ~VM_PROT_WRITE((vm_prot_t) 0x02); |
1417 | |
1418 | /* |
1419 | * If we want to wire down this page, but no longer have |
1420 | * adequate permissions, we must start all over. |
1421 | */ |
1422 | |
1423 | if (wired && (prot != fault_type)) { |
1424 | vm_map_verify_done(map, &version)(lock_done(&(map)->lock)); |
1425 | RELEASE_PAGE(m){ ({ (m)->busy = ((boolean_t) 0); if ((m)->wanted) { (m )->wanted = ((boolean_t) 0); thread_wakeup_prim((((event_t ) m)), ((boolean_t) 0), 0); } }); ; vm_page_unwire(m); ((void )(&vm_page_queue_lock)); }; |
1426 | UNLOCK_AND_DEALLOCATE{ { object->paging_in_progress--; ((void)(&(object)-> Lock)); }; vm_object_deallocate(object); }; |
1427 | goto RetryFault; |
1428 | } |
1429 | |
1430 | /* |
1431 | * It's critically important that a wired-down page be faulted |
1432 | * only once in each map for which it is wired. |
1433 | */ |
1434 | |
1435 | vm_object_unlock(m->object)((void)(&(m->object)->Lock)); |
1436 | |
1437 | /* |
1438 | * Put this page into the physical map. |
1439 | * We had to do the unlock above because pmap_enter |
1440 | * may cause other faults. The page may be on |
1441 | * the pageout queues. If the pageout daemon comes |
1442 | * across the page, it will remove it from the queues. |
1443 | */ |
1444 | |
1445 | PMAP_ENTER(map->pmap, vaddr, m, prot, wired)({ pmap_enter( (map->pmap), (vaddr), (m)->phys_addr, (prot ) & ~(m)->page_lock, (wired) ); }); |
1446 | |
1447 | /* |
1448 | * If the page is not wired down and isn't already |
1449 | * on a pageout queue, then put it where the |
1450 | * pageout daemon can find it. |
1451 | */ |
1452 | vm_object_lock(m->object); |
1453 | vm_page_lock_queues(); |
1454 | if (change_wiring) { |
1455 | if (wired) |
1456 | vm_page_wire(m); |
1457 | else |
1458 | vm_page_unwire(m); |
1459 | } else if (software_reference_bits) { |
1460 | if (!m->active && !m->inactive) |
1461 | vm_page_activate(m); |
1462 | m->reference = TRUE((boolean_t) 1); |
1463 | } else { |
1464 | vm_page_activate(m); |
1465 | } |
1466 | vm_page_unlock_queues()((void)(&vm_page_queue_lock)); |
1467 | |
1468 | /* |
1469 | * Unlock everything, and return |
1470 | */ |
1471 | |
1472 | vm_map_verify_done(map, &version)(lock_done(&(map)->lock)); |
1473 | PAGE_WAKEUP_DONE(m)({ (m)->busy = ((boolean_t) 0); if ((m)->wanted) { (m)-> wanted = ((boolean_t) 0); thread_wakeup_prim((((event_t) m)), ((boolean_t) 0), 0); } }); |
1474 | kr = KERN_SUCCESS0; |
1475 | UNLOCK_AND_DEALLOCATE{ { object->paging_in_progress--; ((void)(&(object)-> Lock)); }; vm_object_deallocate(object); }; |
1476 | |
1477 | #undef UNLOCK_AND_DEALLOCATE{ { object->paging_in_progress--; ((void)(&(object)-> Lock)); }; vm_object_deallocate(object); } |
1478 | #undef RELEASE_PAGE |
1479 | |
1480 | done: |
1481 | if (continuation != (void (*)()) 0) { |
1482 | vm_fault_state_t *state = |
1483 | (vm_fault_state_t *) current_thread()(active_threads[(0)])->ith_othersaved.other; |
1484 | |
1485 | kmem_cache_free(&vm_fault_state_cache, (vm_offset_t) state); |
1486 | (*continuation)(kr); |
1487 | /*NOTREACHED*/ |
1488 | } |
1489 | |
1490 | return(kr); |
1491 | } |
1492 | |
1493 | /* |
1494 | * vm_fault_wire: |
1495 | * |
1496 | * Wire down a range of virtual addresses in a map. |
1497 | */ |
1498 | void vm_fault_wire( |
1499 | vm_map_t map, |
1500 | vm_map_entry_t entry) |
1501 | { |
1502 | |
1503 | vm_offset_t va; |
1504 | pmap_t pmap; |
1505 | vm_offset_t end_addr = entry->vme_endlinks.end; |
1506 | |
1507 | pmap = vm_map_pmap(map)((map)->pmap); |
1508 | |
1509 | /* |
1510 | * Inform the physical mapping system that the |
1511 | * range of addresses may not fault, so that |
1512 | * page tables and such can be locked down as well. |
1513 | */ |
1514 | |
1515 | pmap_pageable(pmap, entry->vme_startlinks.start, end_addr, FALSE((boolean_t) 0)); |
1516 | |
1517 | /* |
1518 | * We simulate a fault to get the page and enter it |
1519 | * in the physical map. |
1520 | */ |
1521 | |
1522 | for (va = entry->vme_startlinks.start; va < end_addr; va += PAGE_SIZE(1 << 12)) { |
1523 | if (vm_fault_wire_fast(map, va, entry) != KERN_SUCCESS0) |
1524 | (void) vm_fault(map, va, VM_PROT_NONE((vm_prot_t) 0x00), TRUE((boolean_t) 1), |
1525 | FALSE((boolean_t) 0), (void (*)()) 0); |
1526 | } |
1527 | } |
1528 | |
1529 | /* |
1530 | * vm_fault_unwire: |
1531 | * |
1532 | * Unwire a range of virtual addresses in a map. |
1533 | */ |
1534 | void vm_fault_unwire( |
1535 | vm_map_t map, |
1536 | vm_map_entry_t entry) |
1537 | { |
1538 | vm_offset_t va; |
1539 | pmap_t pmap; |
1540 | vm_offset_t end_addr = entry->vme_endlinks.end; |
1541 | vm_object_t object; |
1542 | |
1543 | pmap = vm_map_pmap(map)((map)->pmap); |
1544 | |
1545 | object = (entry->is_sub_map) |
1546 | ? VM_OBJECT_NULL((vm_object_t) 0) : entry->object.vm_object; |
1547 | |
1548 | /* |
1549 | * Since the pages are wired down, we must be able to |
1550 | * get their mappings from the physical map system. |
1551 | */ |
1552 | |
1553 | for (va = entry->vme_startlinks.start; va < end_addr; va += PAGE_SIZE(1 << 12)) { |
1554 | pmap_change_wiring(pmap, va, FALSE((boolean_t) 0)); |
1555 | |
1556 | if (object == VM_OBJECT_NULL((vm_object_t) 0)) { |
1557 | vm_map_lock_set_recursive(map)lock_set_recursive(&(map)->lock); |
1558 | (void) vm_fault(map, va, VM_PROT_NONE((vm_prot_t) 0x00), TRUE((boolean_t) 1), |
1559 | FALSE((boolean_t) 0), (void (*)()) 0); |
1560 | vm_map_lock_clear_recursive(map)lock_clear_recursive(&(map)->lock); |
1561 | } else { |
1562 | vm_prot_t prot; |
1563 | vm_page_t result_page; |
1564 | vm_page_t top_page; |
1565 | vm_fault_return_t result; |
1566 | |
1567 | do { |
1568 | prot = VM_PROT_NONE((vm_prot_t) 0x00); |
1569 | |
1570 | vm_object_lock(object); |
1571 | vm_object_paging_begin(object)((object)->paging_in_progress++); |
1572 | result = vm_fault_page(object, |
1573 | entry->offset + |
1574 | (va - entry->vme_startlinks.start), |
1575 | VM_PROT_NONE((vm_prot_t) 0x00), TRUE((boolean_t) 1), |
1576 | FALSE((boolean_t) 0), &prot, |
1577 | &result_page, |
1578 | &top_page, |
1579 | FALSE((boolean_t) 0), (void (*)()) 0); |
1580 | } while (result == VM_FAULT_RETRY1); |
1581 | |
1582 | if (result != VM_FAULT_SUCCESS0) |
1583 | panic("vm_fault_unwire: failure"); |
1584 | |
1585 | vm_page_lock_queues(); |
1586 | vm_page_unwire(result_page); |
1587 | vm_page_unlock_queues()((void)(&vm_page_queue_lock)); |
1588 | PAGE_WAKEUP_DONE(result_page)({ (result_page)->busy = ((boolean_t) 0); if ((result_page )->wanted) { (result_page)->wanted = ((boolean_t) 0); thread_wakeup_prim ((((event_t) result_page)), ((boolean_t) 0), 0); } }); |
1589 | |
1590 | vm_fault_cleanup(result_page->object, top_page); |
1591 | } |
1592 | } |
1593 | |
1594 | /* |
1595 | * Inform the physical mapping system that the range |
1596 | * of addresses may fault, so that page tables and |
1597 | * such may be unwired themselves. |
1598 | */ |
1599 | |
1600 | pmap_pageable(pmap, entry->vme_startlinks.start, end_addr, TRUE((boolean_t) 1)); |
1601 | } |
1602 | |
1603 | /* |
1604 | * vm_fault_wire_fast: |
1605 | * |
1606 | * Handle common case of a wire down page fault at the given address. |
1607 | * If successful, the page is inserted into the associated physical map. |
1608 | * The map entry is passed in to avoid the overhead of a map lookup. |
1609 | * |
1610 | * NOTE: the given address should be truncated to the |
1611 | * proper page address. |
1612 | * |
1613 | * KERN_SUCCESS is returned if the page fault is handled; otherwise, |
1614 | * a standard error specifying why the fault is fatal is returned. |
1615 | * |
1616 | * The map in question must be referenced, and remains so. |
1617 | * Caller has a read lock on the map. |
1618 | * |
1619 | * This is a stripped version of vm_fault() for wiring pages. Anything |
1620 | * other than the common case will return KERN_FAILURE, and the caller |
1621 | * is expected to call vm_fault(). |
1622 | */ |
1623 | kern_return_t vm_fault_wire_fast( |
1624 | vm_map_t map, |
1625 | vm_offset_t va, |
1626 | vm_map_entry_t entry) |
1627 | { |
1628 | vm_object_t object; |
1629 | vm_offset_t offset; |
1630 | vm_page_t m; |
1631 | vm_prot_t prot; |
1632 | |
1633 | vm_stat.faults++; /* needs lock XXX */ |
1634 | current_task()((active_threads[(0)])->task)->faults++; |
1635 | /* |
1636 | * Recovery actions |
1637 | */ |
1638 | |
1639 | #undef RELEASE_PAGE |
1640 | #define RELEASE_PAGE(m){ ({ (m)->busy = ((boolean_t) 0); if ((m)->wanted) { (m )->wanted = ((boolean_t) 0); thread_wakeup_prim((((event_t ) m)), ((boolean_t) 0), 0); } }); ; vm_page_unwire(m); ((void )(&vm_page_queue_lock)); } { \ |
1641 | PAGE_WAKEUP_DONE(m)({ (m)->busy = ((boolean_t) 0); if ((m)->wanted) { (m)-> wanted = ((boolean_t) 0); thread_wakeup_prim((((event_t) m)), ((boolean_t) 0), 0); } }); \ |
1642 | vm_page_lock_queues(); \ |
1643 | vm_page_unwire(m); \ |
1644 | vm_page_unlock_queues()((void)(&vm_page_queue_lock)); \ |
1645 | } |
1646 | |
1647 | |
1648 | #undef UNLOCK_THINGS{ object->paging_in_progress--; ((void)(&(object)-> Lock)); } |
1649 | #define UNLOCK_THINGS{ object->paging_in_progress--; ((void)(&(object)-> Lock)); } { \ |
1650 | object->paging_in_progress--; \ |
1651 | vm_object_unlock(object)((void)(&(object)->Lock)); \ |
1652 | } |
1653 | |
1654 | #undef UNLOCK_AND_DEALLOCATE{ { object->paging_in_progress--; ((void)(&(object)-> Lock)); }; vm_object_deallocate(object); } |
1655 | #define UNLOCK_AND_DEALLOCATE{ { object->paging_in_progress--; ((void)(&(object)-> Lock)); }; vm_object_deallocate(object); } { \ |
1656 | UNLOCK_THINGS{ object->paging_in_progress--; ((void)(&(object)-> Lock)); }; \ |
1657 | vm_object_deallocate(object); \ |
1658 | } |
1659 | /* |
1660 | * Give up and have caller do things the hard way. |
1661 | */ |
1662 | |
1663 | #define GIVE_UP{ { { object->paging_in_progress--; ((void)(&(object)-> Lock)); }; vm_object_deallocate(object); }; return(5); } { \ |
1664 | UNLOCK_AND_DEALLOCATE{ { object->paging_in_progress--; ((void)(&(object)-> Lock)); }; vm_object_deallocate(object); }; \ |
1665 | return(KERN_FAILURE5); \ |
1666 | } |
1667 | |
1668 | |
1669 | /* |
1670 | * If this entry is not directly to a vm_object, bail out. |
1671 | */ |
1672 | if (entry->is_sub_map) |
1673 | return(KERN_FAILURE5); |
1674 | |
1675 | /* |
1676 | * Find the backing store object and offset into it. |
1677 | */ |
1678 | |
1679 | object = entry->object.vm_object; |
1680 | offset = (va - entry->vme_startlinks.start) + entry->offset; |
1681 | prot = entry->protection; |
1682 | |
1683 | /* |
1684 | * Make a reference to this object to prevent its |
1685 | * disposal while we are messing with it. |
1686 | */ |
1687 | |
1688 | vm_object_lock(object); |
1689 | assert(object->ref_count > 0)((object->ref_count > 0) ? (void) (0) : Assert ("object->ref_count > 0" , "../vm/vm_fault.c", 1689)); |
1690 | object->ref_count++; |
1691 | object->paging_in_progress++; |
1692 | |
1693 | /* |
1694 | * INVARIANTS (through entire routine): |
1695 | * |
1696 | * 1) At all times, we must either have the object |
1697 | * lock or a busy page in some object to prevent |
1698 | * some other thread from trying to bring in |
1699 | * the same page. |
1700 | * |
1701 | * 2) Once we have a busy page, we must remove it from |
1702 | * the pageout queues, so that the pageout daemon |
1703 | * will not grab it away. |
1704 | * |
1705 | */ |
1706 | |
1707 | /* |
1708 | * Look for page in top-level object. If it's not there or |
1709 | * there's something going on, give up. |
1710 | */ |
1711 | m = vm_page_lookup(object, offset); |
1712 | if ((m == VM_PAGE_NULL((vm_page_t) 0)) || (m->error) || |
1713 | (m->busy) || (m->absent) || (prot & m->page_lock)) { |
1714 | GIVE_UP{ { { object->paging_in_progress--; ((void)(&(object)-> Lock)); }; vm_object_deallocate(object); }; return(5); }; |
1715 | } |
1716 | |
1717 | /* |
1718 | * Wire the page down now. All bail outs beyond this |
1719 | * point must unwire the page. |
1720 | */ |
1721 | |
1722 | vm_page_lock_queues(); |
1723 | vm_page_wire(m); |
1724 | vm_page_unlock_queues()((void)(&vm_page_queue_lock)); |
1725 | |
1726 | /* |
1727 | * Mark page busy for other threads. |
1728 | */ |
1729 | assert(!m->busy)((!m->busy) ? (void) (0) : Assert ("!m->busy", "../vm/vm_fault.c" , 1729)); |
1730 | m->busy = TRUE((boolean_t) 1); |
1731 | assert(!m->absent)((!m->absent) ? (void) (0) : Assert ("!m->absent", "../vm/vm_fault.c" , 1731)); |
1732 | |
1733 | /* |
1734 | * Give up if the page is being written and there's a copy object |
1735 | */ |
1736 | if ((object->copy != VM_OBJECT_NULL((vm_object_t) 0)) && (prot & VM_PROT_WRITE((vm_prot_t) 0x02))) { |
1737 | RELEASE_PAGE(m){ ({ (m)->busy = ((boolean_t) 0); if ((m)->wanted) { (m )->wanted = ((boolean_t) 0); thread_wakeup_prim((((event_t ) m)), ((boolean_t) 0), 0); } }); ; vm_page_unwire(m); ((void )(&vm_page_queue_lock)); }; |
1738 | GIVE_UP{ { { object->paging_in_progress--; ((void)(&(object)-> Lock)); }; vm_object_deallocate(object); }; return(5); }; |
1739 | } |
1740 | |
1741 | /* |
1742 | * Put this page into the physical map. |
1743 | * We have to unlock the object because pmap_enter |
1744 | * may cause other faults. |
1745 | */ |
1746 | vm_object_unlock(object)((void)(&(object)->Lock)); |
1747 | |
1748 | PMAP_ENTER(map->pmap, va, m, prot, TRUE)({ pmap_enter( (map->pmap), (va), (m)->phys_addr, (prot ) & ~(m)->page_lock, (((boolean_t) 1)) ); }); |
1749 | |
1750 | /* |
1751 | * Must relock object so that paging_in_progress can be cleared. |
1752 | */ |
1753 | vm_object_lock(object); |
1754 | |
1755 | /* |
1756 | * Unlock everything, and return |
1757 | */ |
1758 | |
1759 | PAGE_WAKEUP_DONE(m)({ (m)->busy = ((boolean_t) 0); if ((m)->wanted) { (m)-> wanted = ((boolean_t) 0); thread_wakeup_prim((((event_t) m)), ((boolean_t) 0), 0); } }); |
1760 | UNLOCK_AND_DEALLOCATE{ { object->paging_in_progress--; ((void)(&(object)-> Lock)); }; vm_object_deallocate(object); }; |
1761 | |
1762 | return(KERN_SUCCESS0); |
1763 | |
1764 | } |
1765 | |
1766 | /* |
1767 | * Routine: vm_fault_copy_cleanup |
1768 | * Purpose: |
1769 | * Release a page used by vm_fault_copy. |
1770 | */ |
1771 | |
1772 | void vm_fault_copy_cleanup( |
1773 | vm_page_t page, |
1774 | vm_page_t top_page) |
1775 | { |
1776 | vm_object_t object = page->object; |
1777 | |
1778 | vm_object_lock(object); |
1779 | PAGE_WAKEUP_DONE(page)({ (page)->busy = ((boolean_t) 0); if ((page)->wanted) { (page)->wanted = ((boolean_t) 0); thread_wakeup_prim((((event_t ) page)), ((boolean_t) 0), 0); } }); |
1780 | vm_page_lock_queues(); |
1781 | if (!page->active && !page->inactive) |
1782 | vm_page_activate(page); |
1783 | vm_page_unlock_queues()((void)(&vm_page_queue_lock)); |
1784 | vm_fault_cleanup(object, top_page); |
1785 | } |
1786 | |
1787 | /* |
1788 | * Routine: vm_fault_copy |
1789 | * |
1790 | * Purpose: |
1791 | * Copy pages from one virtual memory object to another -- |
1792 | * neither the source nor destination pages need be resident. |
1793 | * |
1794 | * Before actually copying a page, the version associated with |
1795 | * the destination address map wil be verified. |
1796 | * |
1797 | * In/out conditions: |
1798 | * The caller must hold a reference, but not a lock, to |
1799 | * each of the source and destination objects and to the |
1800 | * destination map. |
1801 | * |
1802 | * Results: |
1803 | * Returns KERN_SUCCESS if no errors were encountered in |
1804 | * reading or writing the data. Returns KERN_INTERRUPTED if |
1805 | * the operation was interrupted (only possible if the |
1806 | * "interruptible" argument is asserted). Other return values |
1807 | * indicate a permanent error in copying the data. |
1808 | * |
1809 | * The actual amount of data copied will be returned in the |
1810 | * "copy_size" argument. In the event that the destination map |
1811 | * verification failed, this amount may be less than the amount |
1812 | * requested. |
1813 | */ |
1814 | kern_return_t vm_fault_copy( |
1815 | vm_object_t src_object, |
1816 | vm_offset_t src_offset, |
1817 | vm_size_t *src_size, /* INOUT */ |
1818 | vm_object_t dst_object, |
1819 | vm_offset_t dst_offset, |
1820 | vm_map_t dst_map, |
1821 | vm_map_version_t *dst_version, |
1822 | boolean_t interruptible) |
1823 | { |
1824 | vm_page_t result_page; |
1825 | vm_prot_t prot; |
1826 | |
1827 | vm_page_t src_page; |
1828 | vm_page_t src_top_page; |
1829 | |
1830 | vm_page_t dst_page; |
1831 | vm_page_t dst_top_page; |
1832 | |
1833 | vm_size_t amount_done; |
1834 | vm_object_t old_copy_object; |
1835 | |
1836 | #define RETURN(x) \ |
1837 | MACRO_BEGIN({ \ |
1838 | *src_size = amount_done; \ |
1839 | MACRO_RETURNif (1) return(x); \ |
1840 | MACRO_END}) |
1841 | |
1842 | amount_done = 0; |
1843 | do { /* while (amount_done != *src_size) */ |
1844 | |
1845 | RetrySourceFault: ; |
1846 | |
1847 | if (src_object == VM_OBJECT_NULL((vm_object_t) 0)) { |
1848 | /* |
1849 | * No source object. We will just |
1850 | * zero-fill the page in dst_object. |
1851 | */ |
1852 | |
1853 | src_page = VM_PAGE_NULL((vm_page_t) 0); |
1854 | } else { |
1855 | prot = VM_PROT_READ((vm_prot_t) 0x01); |
1856 | |
1857 | vm_object_lock(src_object); |
1858 | vm_object_paging_begin(src_object)((src_object)->paging_in_progress++); |
1859 | |
1860 | switch (vm_fault_page(src_object, src_offset, |
1861 | VM_PROT_READ((vm_prot_t) 0x01), FALSE((boolean_t) 0), interruptible, |
1862 | &prot, &result_page, &src_top_page, |
1863 | FALSE((boolean_t) 0), (void (*)()) 0)) { |
1864 | |
1865 | case VM_FAULT_SUCCESS0: |
1866 | break; |
1867 | case VM_FAULT_RETRY1: |
1868 | goto RetrySourceFault; |
1869 | case VM_FAULT_INTERRUPTED2: |
1870 | RETURN(MACH_SEND_INTERRUPTED0x10000007); |
1871 | case VM_FAULT_MEMORY_SHORTAGE3: |
1872 | VM_PAGE_WAIT((void (*)()) 0)vm_page_wait((void (*)()) 0); |
1873 | goto RetrySourceFault; |
1874 | case VM_FAULT_FICTITIOUS_SHORTAGE4: |
1875 | vm_page_more_fictitious(); |
1876 | goto RetrySourceFault; |
1877 | case VM_FAULT_MEMORY_ERROR5: |
1878 | return(KERN_MEMORY_ERROR10); |
1879 | } |
1880 | |
1881 | src_page = result_page; |
1882 | |
1883 | assert((src_top_page == VM_PAGE_NULL) ==(((src_top_page == ((vm_page_t) 0)) == (src_page->object == src_object)) ? (void) (0) : Assert ("(src_top_page == VM_PAGE_NULL) == (src_page->object == src_object)" , "../vm/vm_fault.c", 1884)) |
1884 | (src_page->object == src_object))(((src_top_page == ((vm_page_t) 0)) == (src_page->object == src_object)) ? (void) (0) : Assert ("(src_top_page == VM_PAGE_NULL) == (src_page->object == src_object)" , "../vm/vm_fault.c", 1884)); |
1885 | |
1886 | assert ((prot & VM_PROT_READ) != VM_PROT_NONE)(((prot & ((vm_prot_t) 0x01)) != ((vm_prot_t) 0x00)) ? (void ) (0) : Assert ("(prot & VM_PROT_READ) != VM_PROT_NONE", "../vm/vm_fault.c" , 1886)); |
1887 | |
1888 | vm_object_unlock(src_page->object)((void)(&(src_page->object)->Lock)); |
1889 | } |
1890 | |
1891 | RetryDestinationFault: ; |
1892 | |
1893 | prot = VM_PROT_WRITE((vm_prot_t) 0x02); |
1894 | |
1895 | vm_object_lock(dst_object); |
1896 | vm_object_paging_begin(dst_object)((dst_object)->paging_in_progress++); |
1897 | |
1898 | switch (vm_fault_page(dst_object, dst_offset, VM_PROT_WRITE((vm_prot_t) 0x02), |
1899 | FALSE((boolean_t) 0), FALSE((boolean_t) 0) /* interruptible */, |
1900 | &prot, &result_page, &dst_top_page, |
1901 | FALSE((boolean_t) 0), (void (*)()) 0)) { |
1902 | |
1903 | case VM_FAULT_SUCCESS0: |
1904 | break; |
1905 | case VM_FAULT_RETRY1: |
1906 | goto RetryDestinationFault; |
1907 | case VM_FAULT_INTERRUPTED2: |
1908 | if (src_page != VM_PAGE_NULL((vm_page_t) 0)) |
1909 | vm_fault_copy_cleanup(src_page, |
1910 | src_top_page); |
1911 | RETURN(MACH_SEND_INTERRUPTED0x10000007); |
1912 | case VM_FAULT_MEMORY_SHORTAGE3: |
1913 | VM_PAGE_WAIT((void (*)()) 0)vm_page_wait((void (*)()) 0); |
1914 | goto RetryDestinationFault; |
1915 | case VM_FAULT_FICTITIOUS_SHORTAGE4: |
1916 | vm_page_more_fictitious(); |
1917 | goto RetryDestinationFault; |
1918 | case VM_FAULT_MEMORY_ERROR5: |
1919 | if (src_page != VM_PAGE_NULL((vm_page_t) 0)) |
1920 | vm_fault_copy_cleanup(src_page, |
1921 | src_top_page); |
1922 | return(KERN_MEMORY_ERROR10); |
1923 | } |
1924 | assert ((prot & VM_PROT_WRITE) != VM_PROT_NONE)(((prot & ((vm_prot_t) 0x02)) != ((vm_prot_t) 0x00)) ? (void ) (0) : Assert ("(prot & VM_PROT_WRITE) != VM_PROT_NONE", "../vm/vm_fault.c", 1924)); |
1925 | |
1926 | dst_page = result_page; |
1927 | |
1928 | old_copy_object = dst_page->object->copy; |
1929 | |
1930 | vm_object_unlock(dst_page->object)((void)(&(dst_page->object)->Lock)); |
1931 | |
1932 | if (!vm_map_verify(dst_map, dst_version)) { |
1933 | |
1934 | BailOut: ; |
1935 | |
1936 | if (src_page != VM_PAGE_NULL((vm_page_t) 0)) |
1937 | vm_fault_copy_cleanup(src_page, src_top_page); |
1938 | vm_fault_copy_cleanup(dst_page, dst_top_page); |
1939 | break; |
1940 | } |
1941 | |
1942 | |
1943 | vm_object_lock(dst_page->object); |
1944 | if (dst_page->object->copy != old_copy_object) { |
1945 | vm_object_unlock(dst_page->object)((void)(&(dst_page->object)->Lock)); |
1946 | vm_map_verify_done(dst_map, dst_version)(lock_done(&(dst_map)->lock)); |
1947 | goto BailOut; |
1948 | } |
1949 | vm_object_unlock(dst_page->object)((void)(&(dst_page->object)->Lock)); |
1950 | |
1951 | /* |
1952 | * Copy the page, and note that it is dirty |
1953 | * immediately. |
1954 | */ |
1955 | |
1956 | if (src_page == VM_PAGE_NULL((vm_page_t) 0)) |
1957 | vm_page_zero_fill(dst_page); |
1958 | else |
1959 | vm_page_copy(src_page, dst_page); |
1960 | dst_page->dirty = TRUE((boolean_t) 1); |
1961 | |
1962 | /* |
1963 | * Unlock everything, and return |
1964 | */ |
1965 | |
1966 | vm_map_verify_done(dst_map, dst_version)(lock_done(&(dst_map)->lock)); |
1967 | |
1968 | if (src_page != VM_PAGE_NULL((vm_page_t) 0)) |
1969 | vm_fault_copy_cleanup(src_page, src_top_page); |
1970 | vm_fault_copy_cleanup(dst_page, dst_top_page); |
1971 | |
1972 | amount_done += PAGE_SIZE(1 << 12); |
1973 | src_offset += PAGE_SIZE(1 << 12); |
1974 | dst_offset += PAGE_SIZE(1 << 12); |
1975 | |
1976 | } while (amount_done != *src_size); |
1977 | |
1978 | RETURN(KERN_SUCCESS0); |
1979 | #undef RETURN |
1980 | |
1981 | /*NOTREACHED*/ |
1982 | } |
1983 | |
1984 | |
1985 | |
1986 | |
1987 | |
1988 | #ifdef notdef |
1989 | |
1990 | /* |
1991 | * Routine: vm_fault_page_overwrite |
1992 | * |
1993 | * Description: |
1994 | * A form of vm_fault_page that assumes that the |
1995 | * resulting page will be overwritten in its entirety, |
1996 | * making it unnecessary to obtain the correct *contents* |
1997 | * of the page. |
1998 | * |
1999 | * Implementation: |
2000 | * XXX Untested. Also unused. Eventually, this technology |
2001 | * could be used in vm_fault_copy() to advantage. |
2002 | */ |
2003 | vm_fault_return_t vm_fault_page_overwrite( |
2004 | vm_object_t dst_object, |
2005 | vm_offset_t dst_offset, |
2006 | vm_page_t *result_page) /* OUT */ |
2007 | { |
2008 | vm_page_t dst_page; |
2009 | |
2010 | #define interruptible FALSE((boolean_t) 0) /* XXX */ |
2011 | |
2012 | while (TRUE((boolean_t) 1)) { |
2013 | /* |
2014 | * Look for a page at this offset |
2015 | */ |
2016 | |
2017 | while ((dst_page = vm_page_lookup(dst_object, dst_offset)) |
2018 | == VM_PAGE_NULL((vm_page_t) 0)) { |
2019 | /* |
2020 | * No page, no problem... just allocate one. |
2021 | */ |
2022 | |
2023 | dst_page = vm_page_alloc(dst_object, dst_offset); |
2024 | if (dst_page == VM_PAGE_NULL((vm_page_t) 0)) { |
2025 | vm_object_unlock(dst_object)((void)(&(dst_object)->Lock)); |
2026 | VM_PAGE_WAIT((void (*)()) 0)vm_page_wait((void (*)()) 0); |
2027 | vm_object_lock(dst_object); |
2028 | continue; |
2029 | } |
2030 | |
2031 | /* |
2032 | * Pretend that the memory manager |
2033 | * write-protected the page. |
2034 | * |
2035 | * Note that we will be asking for write |
2036 | * permission without asking for the data |
2037 | * first. |
2038 | */ |
2039 | |
2040 | dst_page->overwriting = TRUE((boolean_t) 1); |
2041 | dst_page->page_lock = VM_PROT_WRITE((vm_prot_t) 0x02); |
2042 | dst_page->absent = TRUE((boolean_t) 1); |
2043 | dst_object->absent_count++; |
2044 | |
2045 | break; |
2046 | |
2047 | /* |
2048 | * When we bail out, we might have to throw |
2049 | * away the page created here. |
2050 | */ |
2051 | |
2052 | #define DISCARD_PAGE \ |
2053 | MACRO_BEGIN({ \ |
2054 | vm_object_lock(dst_object); \ |
2055 | dst_page = vm_page_lookup(dst_object, dst_offset); \ |
2056 | if ((dst_page != VM_PAGE_NULL((vm_page_t) 0)) && dst_page->overwriting) \ |
2057 | VM_PAGE_FREE(dst_page)({ ; vm_page_free(dst_page); ((void)(&vm_page_queue_lock) ); }); \ |
2058 | vm_object_unlock(dst_object)((void)(&(dst_object)->Lock)); \ |
2059 | MACRO_END}) |
2060 | } |
2061 | |
2062 | /* |
2063 | * If the page is write-protected... |
2064 | */ |
2065 | |
2066 | if (dst_page->page_lock & VM_PROT_WRITE((vm_prot_t) 0x02)) { |
2067 | /* |
2068 | * ... and an unlock request hasn't been sent |
2069 | */ |
2070 | |
2071 | if ( ! (dst_page->unlock_request & VM_PROT_WRITE((vm_prot_t) 0x02))) { |
2072 | vm_prot_t u; |
2073 | kern_return_t rc; |
2074 | |
2075 | /* |
2076 | * ... then send one now. |
2077 | */ |
2078 | |
2079 | if (!dst_object->pager_ready) { |
2080 | vm_object_assert_wait(dst_object,({ (dst_object)->all_wanted |= 1 << (1); assert_wait ((event_t)(((vm_offset_t) dst_object) + (1)), (interruptible) ); }) |
2081 | VM_OBJECT_EVENT_PAGER_READY,({ (dst_object)->all_wanted |= 1 << (1); assert_wait ((event_t)(((vm_offset_t) dst_object) + (1)), (interruptible) ); }) |
2082 | interruptible)({ (dst_object)->all_wanted |= 1 << (1); assert_wait ((event_t)(((vm_offset_t) dst_object) + (1)), (interruptible) ); }); |
2083 | vm_object_unlock(dst_object)((void)(&(dst_object)->Lock)); |
2084 | thread_block((void (*)()) 0); |
2085 | if (current_thread()(active_threads[(0)])->wait_result != |
2086 | THREAD_AWAKENED0) { |
2087 | DISCARD_PAGE; |
2088 | return(VM_FAULT_INTERRUPTED2); |
2089 | } |
2090 | continue; |
2091 | } |
2092 | |
2093 | u = dst_page->unlock_request |= VM_PROT_WRITE((vm_prot_t) 0x02); |
2094 | vm_object_unlock(dst_object)((void)(&(dst_object)->Lock)); |
2095 | |
2096 | if ((rc = memory_object_data_unlock( |
2097 | dst_object->pager, |
2098 | dst_object->pager_request, |
2099 | dst_offset + dst_object->paging_offset, |
2100 | PAGE_SIZE(1 << 12), |
2101 | u)) != KERN_SUCCESS0) { |
2102 | printf("vm_object_overwrite: memory_object_data_unlock failed\n"); |
2103 | DISCARD_PAGE; |
2104 | return((rc == MACH_SEND_INTERRUPTED0x10000007) ? |
2105 | VM_FAULT_INTERRUPTED2 : |
2106 | VM_FAULT_MEMORY_ERROR5); |
2107 | } |
2108 | vm_object_lock(dst_object); |
2109 | continue; |
2110 | } |
2111 | |
2112 | /* ... fall through to wait below */ |
2113 | } else { |
2114 | /* |
2115 | * If the page isn't being used for other |
2116 | * purposes, then we're done. |
2117 | */ |
2118 | if ( ! (dst_page->busy || dst_page->absent || dst_page->error) ) |
2119 | break; |
2120 | } |
2121 | |
2122 | PAGE_ASSERT_WAIT(dst_page, interruptible)({ (dst_page)->wanted = ((boolean_t) 1); assert_wait((event_t ) (dst_page), (interruptible)); }); |
2123 | vm_object_unlock(dst_object)((void)(&(dst_object)->Lock)); |
2124 | thread_block((void (*)()) 0); |
2125 | if (current_thread()(active_threads[(0)])->wait_result != THREAD_AWAKENED0) { |
2126 | DISCARD_PAGE; |
2127 | return(VM_FAULT_INTERRUPTED2); |
2128 | } |
2129 | } |
2130 | |
2131 | *result_page = dst_page; |
2132 | return(VM_FAULT_SUCCESS0); |
2133 | |
2134 | #undef interruptible |
2135 | #undef DISCARD_PAGE |
2136 | } |
2137 | |
2138 | #endif /* notdef */ |