| File: | obj-scan-build/../kern/rdxtree.c |
| Location: | line 440, column 33 |
| Description: | Assigned value is garbage or undefined |
| 1 | /* |
| 2 | * Copyright (c) 2011-2015 Richard Braun. |
| 3 | * All rights reserved. |
| 4 | * |
| 5 | * Redistribution and use in source and binary forms, with or without |
| 6 | * modification, are permitted provided that the following conditions |
| 7 | * are met: |
| 8 | * 1. Redistributions of source code must retain the above copyright |
| 9 | * notice, this list of conditions and the following disclaimer. |
| 10 | * 2. Redistributions in binary form must reproduce the above copyright |
| 11 | * notice, this list of conditions and the following disclaimer in the |
| 12 | * documentation and/or other materials provided with the distribution. |
| 13 | * |
| 14 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR |
| 15 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES |
| 16 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. |
| 17 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, |
| 18 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| 19 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 20 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 21 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 22 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
| 23 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 24 | * |
| 25 | * |
| 26 | * Upstream site with license notes : |
| 27 | * http://git.sceen.net/rbraun/librbraun.git/ |
| 28 | */ |
| 29 | |
| 30 | #include <kern/assert.h> |
| 31 | #include <kern/slab.h> |
| 32 | #include <mach/kern_return.h> |
| 33 | #include <stddef.h> |
| 34 | #include <string.h> |
| 35 | |
| 36 | #include "macros.h" |
| 37 | #include "rdxtree.h" |
| 38 | #include "rdxtree_i.h" |
| 39 | |
| 40 | /* XXX */ |
| 41 | #define CHAR_BIT8U 8U |
| 42 | #define ERR_SUCCESS0 KERN_SUCCESS0 |
| 43 | #define ERR_BUSY4 KERN_INVALID_ARGUMENT4 |
| 44 | #define ERR_NOMEM6 KERN_RESOURCE_SHORTAGE6 |
| 45 | |
| 46 | /* |
| 47 | * Mask applied on an entry to obtain its address. |
| 48 | */ |
| 49 | #define RDXTREE_ENTRY_ADDR_MASK(~0x3UL) (~0x3UL) |
| 50 | |
| 51 | /* |
| 52 | * Global properties used to shape radix trees. |
| 53 | */ |
| 54 | #define RDXTREE_RADIX6 6 |
| 55 | #define RDXTREE_RADIX_SIZE(1UL << 6) (1UL << RDXTREE_RADIX6) |
| 56 | #define RDXTREE_RADIX_MASK((1UL << 6) - 1) (RDXTREE_RADIX_SIZE(1UL << 6) - 1) |
| 57 | |
| 58 | #if RDXTREE_RADIX6 < 6 |
| 59 | typedef unsigned long rdxtree_bm_t; |
| 60 | #define rdxtree_ffs(x)__builtin_ffsll(x) __builtin_ffsl(x) |
| 61 | #elif RDXTREE_RADIX6 == 6 /* RDXTREE_RADIX < 6 */ |
| 62 | typedef unsigned long long rdxtree_bm_t; |
| 63 | #define rdxtree_ffs(x)__builtin_ffsll(x) __builtin_ffsll(x) |
| 64 | #else /* RDXTREE_RADIX < 6 */ |
| 65 | #error "radix too high" |
| 66 | #endif /* RDXTREE_RADIX < 6 */ |
| 67 | |
| 68 | /* |
| 69 | * Allocation bitmap size in bits. |
| 70 | */ |
| 71 | #define RDXTREE_BM_SIZE(sizeof(rdxtree_bm_t) * 8U) (sizeof(rdxtree_bm_t) * CHAR_BIT8U) |
| 72 | |
| 73 | /* |
| 74 | * Empty/full allocation bitmap words. |
| 75 | */ |
| 76 | #define RDXTREE_BM_EMPTY((rdxtree_bm_t)0) ((rdxtree_bm_t)0) |
| 77 | #define RDXTREE_BM_FULL((~(rdxtree_bm_t)0) >> ((sizeof(rdxtree_bm_t) * 8U) - ( 1UL << 6))) \ |
| 78 | ((~(rdxtree_bm_t)0) >> (RDXTREE_BM_SIZE(sizeof(rdxtree_bm_t) * 8U) - RDXTREE_RADIX_SIZE(1UL << 6))) |
| 79 | |
| 80 | /* |
| 81 | * These macros can be replaced by actual functions in an environment |
| 82 | * that provides lockless synchronization such as RCU. |
| 83 | */ |
| 84 | #define llsync_assign_ptr(ptr, value)((ptr) = (value)) ((ptr) = (value)) |
| 85 | #define llsync_read_ptr(ptr)(ptr) (ptr) |
| 86 | |
| 87 | /* |
| 88 | * Radix tree node. |
| 89 | * |
| 90 | * The height of a tree is the number of nodes to traverse until stored |
| 91 | * pointers are reached. A height of 0 means the entries of a node (or the |
| 92 | * tree root) directly point to stored pointers. |
| 93 | * |
| 94 | * The index is valid if and only if the parent isn't NULL. |
| 95 | * |
| 96 | * Concerning the allocation bitmap, a bit is set when the node it denotes, |
| 97 | * or one of its children, can be used to allocate an entry. Conversely, a bit |
| 98 | * is clear when the matching node and all of its children have no free entry. |
| 99 | * |
| 100 | * In order to support safe lockless lookups, in particular during a resize, |
| 101 | * each node includes the height of its subtree, which is invariant during |
| 102 | * the entire node lifetime. Since the tree height does vary, it can't be |
| 103 | * used to determine whether the tree root is a node or a stored pointer. |
| 104 | * This implementation assumes that all nodes and stored pointers are at least |
| 105 | * 4-byte aligned, and uses the least significant bit of entries to indicate |
| 106 | * the pointer type. This bit is set for internal nodes, and clear for stored |
| 107 | * pointers so that they can be accessed from slots without conversion. |
| 108 | */ |
| 109 | struct rdxtree_node { |
| 110 | struct rdxtree_node *parent; |
| 111 | unsigned int index; |
| 112 | unsigned int height; |
| 113 | unsigned int nr_entries; |
| 114 | rdxtree_bm_t alloc_bm; |
| 115 | void *entries[RDXTREE_RADIX_SIZE(1UL << 6)]; |
| 116 | }; |
| 117 | |
| 118 | /* |
| 119 | * We allocate nodes using the slab allocator. |
| 120 | */ |
| 121 | static struct kmem_cache rdxtree_node_cache; |
| 122 | |
| 123 | void |
| 124 | rdxtree_cache_init(void) |
| 125 | { |
| 126 | kmem_cache_init(&rdxtree_node_cache, "rdxtree_node", |
| 127 | sizeof(struct rdxtree_node), 0, NULL((void *) 0), NULL((void *) 0), NULL((void *) 0), 0); |
| 128 | } |
| 129 | |
| 130 | #ifdef RDXTREE_ENABLE_NODE_CREATION_FAILURES |
| 131 | unsigned int rdxtree_fail_node_creation_threshold; |
| 132 | unsigned int rdxtree_nr_node_creations; |
| 133 | #endif /* RDXTREE_ENABLE_NODE_CREATION_FAILURES */ |
| 134 | |
| 135 | static inline int |
| 136 | rdxtree_check_alignment(const void *ptr) |
| 137 | { |
| 138 | return ((unsigned long)ptr & ~RDXTREE_ENTRY_ADDR_MASK(~0x3UL)) == 0; |
| 139 | } |
| 140 | |
| 141 | static inline void * |
| 142 | rdxtree_entry_addr(void *entry) |
| 143 | { |
| 144 | return (void *)((unsigned long)entry & RDXTREE_ENTRY_ADDR_MASK(~0x3UL)); |
| 145 | } |
| 146 | |
| 147 | static inline int |
| 148 | rdxtree_entry_is_node(const void *entry) |
| 149 | { |
| 150 | return ((unsigned long)entry & 1) != 0; |
| 151 | } |
| 152 | |
| 153 | static inline void * |
| 154 | rdxtree_node_to_entry(struct rdxtree_node *node) |
| 155 | { |
| 156 | return (void *)((unsigned long)node | 1); |
| 157 | } |
| 158 | |
| 159 | static int |
| 160 | rdxtree_node_create(struct rdxtree_node **nodep, unsigned int height) |
| 161 | { |
| 162 | struct rdxtree_node *node; |
| 163 | |
| 164 | #ifdef RDXTREE_ENABLE_NODE_CREATION_FAILURES |
| 165 | if (rdxtree_fail_node_creation_threshold != 0) { |
| 166 | rdxtree_nr_node_creations++; |
| 167 | |
| 168 | if (rdxtree_nr_node_creations == rdxtree_fail_node_creation_threshold) |
| 169 | return ERR_NOMEM6; |
| 170 | } |
| 171 | #endif /* RDXTREE_ENABLE_NODE_CREATION_FAILURES */ |
| 172 | |
| 173 | node = (struct rdxtree_node *) kmem_cache_alloc(&rdxtree_node_cache); |
| 174 | |
| 175 | if (node == NULL((void *) 0)) |
| 176 | return ERR_NOMEM6; |
| 177 | |
| 178 | assert(rdxtree_check_alignment(node))((rdxtree_check_alignment(node)) ? (void) (0) : Assert ("rdxtree_check_alignment(node)" , "../kern/rdxtree.c", 178)); |
| 179 | node->parent = NULL((void *) 0); |
| 180 | node->height = height; |
| 181 | node->nr_entries = 0; |
| 182 | node->alloc_bm = RDXTREE_BM_FULL((~(rdxtree_bm_t)0) >> ((sizeof(rdxtree_bm_t) * 8U) - ( 1UL << 6))); |
| 183 | memset(node->entries, 0, sizeof(node->entries)); |
| 184 | *nodep = node; |
| 185 | return 0; |
| 186 | } |
| 187 | |
| 188 | static void |
| 189 | rdxtree_node_schedule_destruction(struct rdxtree_node *node) |
| 190 | { |
| 191 | /* |
| 192 | * This function is intended to use the appropriate interface to defer |
| 193 | * destruction until all read-side references are dropped in an |
| 194 | * environment that provides lockless synchronization. |
| 195 | * |
| 196 | * Otherwise, it simply "schedules" destruction immediately. |
| 197 | */ |
| 198 | kmem_cache_free(&rdxtree_node_cache, (vm_offset_t) node); |
| 199 | } |
| 200 | |
| 201 | static inline void |
| 202 | rdxtree_node_link(struct rdxtree_node *node, struct rdxtree_node *parent, |
| 203 | unsigned int index) |
| 204 | { |
| 205 | node->parent = parent; |
| 206 | node->index = index; |
| 207 | } |
| 208 | |
| 209 | static inline void |
| 210 | rdxtree_node_unlink(struct rdxtree_node *node) |
| 211 | { |
| 212 | assert(node->parent != NULL)((node->parent != ((void *) 0)) ? (void) (0) : Assert ("node->parent != NULL" , "../kern/rdxtree.c", 212)); |
| 213 | node->parent = NULL((void *) 0); |
| 214 | } |
| 215 | |
| 216 | static inline int |
| 217 | rdxtree_node_full(struct rdxtree_node *node) |
| 218 | { |
| 219 | return (node->nr_entries == ARRAY_SIZE(node->entries)(sizeof(node->entries) / sizeof((node->entries)[0]))); |
| 220 | } |
| 221 | |
| 222 | static inline int |
| 223 | rdxtree_node_empty(struct rdxtree_node *node) |
| 224 | { |
| 225 | return (node->nr_entries == 0); |
| 226 | } |
| 227 | |
| 228 | static inline void |
| 229 | rdxtree_node_insert(struct rdxtree_node *node, unsigned int index, |
| 230 | void *entry) |
| 231 | { |
| 232 | assert(index < ARRAY_SIZE(node->entries))((index < (sizeof(node->entries) / sizeof((node->entries )[0]))) ? (void) (0) : Assert ("index < ARRAY_SIZE(node->entries)" , "../kern/rdxtree.c", 232)); |
| 233 | assert(node->entries[index] == NULL)((node->entries[index] == ((void *) 0)) ? (void) (0) : Assert ("node->entries[index] == NULL", "../kern/rdxtree.c", 233 )); |
| 234 | |
| 235 | node->nr_entries++; |
| 236 | llsync_assign_ptr(node->entries[index], entry)((node->entries[index]) = (entry)); |
| 237 | } |
| 238 | |
| 239 | static inline void |
| 240 | rdxtree_node_insert_node(struct rdxtree_node *node, unsigned int index, |
| 241 | struct rdxtree_node *child) |
| 242 | { |
| 243 | rdxtree_node_insert(node, index, rdxtree_node_to_entry(child)); |
| 244 | } |
| 245 | |
| 246 | static inline void |
| 247 | rdxtree_node_remove(struct rdxtree_node *node, unsigned int index) |
| 248 | { |
| 249 | assert(index < ARRAY_SIZE(node->entries))((index < (sizeof(node->entries) / sizeof((node->entries )[0]))) ? (void) (0) : Assert ("index < ARRAY_SIZE(node->entries)" , "../kern/rdxtree.c", 249)); |
| 250 | assert(node->entries[index] != NULL)((node->entries[index] != ((void *) 0)) ? (void) (0) : Assert ("node->entries[index] != NULL", "../kern/rdxtree.c", 250 )); |
| 251 | |
| 252 | node->nr_entries--; |
| 253 | llsync_assign_ptr(node->entries[index], NULL)((node->entries[index]) = (((void *) 0))); |
| 254 | } |
| 255 | |
| 256 | static inline void * |
| 257 | rdxtree_node_find(struct rdxtree_node *node, unsigned int *indexp) |
| 258 | { |
| 259 | unsigned int index; |
| 260 | void *ptr; |
| 261 | |
| 262 | index = *indexp; |
| 263 | |
| 264 | while (index < ARRAY_SIZE(node->entries)(sizeof(node->entries) / sizeof((node->entries)[0]))) { |
| 265 | ptr = rdxtree_entry_addr(llsync_read_ptr(node->entries[index])(node->entries[index])); |
| 266 | |
| 267 | if (ptr != NULL((void *) 0)) { |
| 268 | *indexp = index; |
| 269 | return ptr; |
| 270 | } |
| 271 | |
| 272 | index++; |
| 273 | } |
| 274 | |
| 275 | return NULL((void *) 0); |
| 276 | } |
| 277 | |
| 278 | static inline void |
| 279 | rdxtree_node_bm_set(struct rdxtree_node *node, unsigned int index) |
| 280 | { |
| 281 | node->alloc_bm |= (rdxtree_bm_t)1 << index; |
| 282 | } |
| 283 | |
| 284 | static inline void |
| 285 | rdxtree_node_bm_clear(struct rdxtree_node *node, unsigned int index) |
| 286 | { |
| 287 | node->alloc_bm &= ~((rdxtree_bm_t)1 << index); |
| 288 | } |
| 289 | |
| 290 | static inline int |
| 291 | rdxtree_node_bm_is_set(struct rdxtree_node *node, unsigned int index) |
| 292 | { |
| 293 | return (node->alloc_bm & ((rdxtree_bm_t)1 << index)); |
| 294 | } |
| 295 | |
| 296 | static inline int |
| 297 | rdxtree_node_bm_empty(struct rdxtree_node *node) |
| 298 | { |
| 299 | return (node->alloc_bm == RDXTREE_BM_EMPTY((rdxtree_bm_t)0)); |
| 300 | } |
| 301 | |
| 302 | static inline unsigned int |
| 303 | rdxtree_node_bm_first(struct rdxtree_node *node) |
| 304 | { |
| 305 | return rdxtree_ffs(node->alloc_bm)__builtin_ffsll(node->alloc_bm) - 1; |
| 306 | } |
| 307 | |
| 308 | static inline rdxtree_key_t |
| 309 | rdxtree_max_key(unsigned int height) |
| 310 | { |
| 311 | size_t shift; |
| 312 | |
| 313 | shift = RDXTREE_RADIX6 * height; |
| 314 | |
| 315 | if (likely(shift < (sizeof(rdxtree_key_t) * CHAR_BIT))__builtin_expect(!!(shift < (sizeof(rdxtree_key_t) * 8U)), 1)) |
| 316 | return ((rdxtree_key_t)1 << shift) - 1; |
| 317 | else |
| 318 | return ~((rdxtree_key_t)0); |
| 319 | } |
| 320 | |
| 321 | static void |
| 322 | rdxtree_shrink(struct rdxtree *tree) |
| 323 | { |
| 324 | struct rdxtree_node *node; |
| 325 | void *entry; |
| 326 | |
| 327 | while (tree->height > 0) { |
| 328 | node = rdxtree_entry_addr(tree->root); |
| 329 | |
| 330 | if (node->nr_entries != 1) |
| 331 | break; |
| 332 | |
| 333 | entry = node->entries[0]; |
| 334 | |
| 335 | if (entry == NULL((void *) 0)) |
| 336 | break; |
| 337 | |
| 338 | tree->height--; |
| 339 | |
| 340 | if (tree->height > 0) |
| 341 | rdxtree_node_unlink(rdxtree_entry_addr(entry)); |
| 342 | |
| 343 | llsync_assign_ptr(tree->root, entry)((tree->root) = (entry)); |
| 344 | rdxtree_node_schedule_destruction(node); |
| 345 | } |
| 346 | } |
| 347 | |
| 348 | static int |
| 349 | rdxtree_grow(struct rdxtree *tree, rdxtree_key_t key) |
| 350 | { |
| 351 | struct rdxtree_node *root, *node; |
| 352 | unsigned int new_height; |
| 353 | int error; |
| 354 | |
| 355 | new_height = tree->height + 1; |
| 356 | |
| 357 | while (key > rdxtree_max_key(new_height)) |
| 358 | new_height++; |
| 359 | |
| 360 | if (tree->root == NULL((void *) 0)) { |
| 361 | tree->height = new_height; |
| 362 | return ERR_SUCCESS0; |
| 363 | } |
| 364 | |
| 365 | root = rdxtree_entry_addr(tree->root); |
| 366 | |
| 367 | do { |
| 368 | error = rdxtree_node_create(&node, tree->height); |
| 369 | |
| 370 | if (error) { |
| 371 | rdxtree_shrink(tree); |
| 372 | return error; |
| 373 | } |
| 374 | |
| 375 | if (tree->height == 0) |
| 376 | rdxtree_node_bm_clear(node, 0); |
| 377 | else { |
| 378 | rdxtree_node_link(root, node, 0); |
| 379 | |
| 380 | if (rdxtree_node_bm_empty(root)) |
| 381 | rdxtree_node_bm_clear(node, 0); |
| 382 | } |
| 383 | |
| 384 | rdxtree_node_insert(node, 0, tree->root); |
| 385 | tree->height++; |
| 386 | llsync_assign_ptr(tree->root, rdxtree_node_to_entry(node))((tree->root) = (rdxtree_node_to_entry(node))); |
| 387 | root = node; |
| 388 | } while (new_height > tree->height); |
| 389 | |
| 390 | return ERR_SUCCESS0; |
| 391 | } |
| 392 | |
| 393 | static void |
| 394 | rdxtree_cleanup(struct rdxtree *tree, struct rdxtree_node *node) |
| 395 | { |
| 396 | struct rdxtree_node *prev; |
| 397 | |
| 398 | for (;;) { |
| 399 | if (likely(!rdxtree_node_empty(node))__builtin_expect(!!(!rdxtree_node_empty(node)), 1)) { |
| 400 | if (unlikely(node->parent == NULL)__builtin_expect(!!(node->parent == ((void *) 0)), 0)) |
| 401 | rdxtree_shrink(tree); |
| 402 | |
| 403 | break; |
| 404 | } |
| 405 | |
| 406 | if (node->parent == NULL((void *) 0)) { |
| 407 | tree->height = 0; |
| 408 | llsync_assign_ptr(tree->root, NULL)((tree->root) = (((void *) 0))); |
| 409 | rdxtree_node_schedule_destruction(node); |
| 410 | break; |
| 411 | } |
| 412 | |
| 413 | prev = node; |
| 414 | node = node->parent; |
| 415 | rdxtree_node_unlink(prev); |
| 416 | rdxtree_node_remove(node, prev->index); |
| 417 | rdxtree_node_schedule_destruction(prev); |
| 418 | } |
| 419 | } |
| 420 | |
| 421 | static void |
| 422 | rdxtree_insert_bm_clear(struct rdxtree_node *node, unsigned int index) |
| 423 | { |
| 424 | for (;;) { |
| 425 | rdxtree_node_bm_clear(node, index); |
| 426 | |
| 427 | if (!rdxtree_node_full(node) || (node->parent == NULL((void *) 0))) |
| 428 | break; |
| 429 | |
| 430 | index = node->index; |
| 431 | node = node->parent; |
| 432 | } |
| 433 | } |
| 434 | |
| 435 | int |
| 436 | rdxtree_insert_common(struct rdxtree *tree, rdxtree_key_t key, |
| 437 | void *ptr, void ***slotp) |
| 438 | { |
| 439 | struct rdxtree_node *node, *prev; |
| 440 | unsigned int height, shift, index = index; |
Assigned value is garbage or undefined | |
| 441 | int error; |
| 442 | |
| 443 | assert(ptr != NULL)((ptr != ((void *) 0)) ? (void) (0) : Assert ("ptr != NULL", "../kern/rdxtree.c" , 443)); |
| 444 | assert(rdxtree_check_alignment(ptr))((rdxtree_check_alignment(ptr)) ? (void) (0) : Assert ("rdxtree_check_alignment(ptr)" , "../kern/rdxtree.c", 444)); |
| 445 | |
| 446 | if (unlikely(key > rdxtree_max_key(tree->height))__builtin_expect(!!(key > rdxtree_max_key(tree->height) ), 0)) { |
| 447 | error = rdxtree_grow(tree, key); |
| 448 | |
| 449 | if (error) |
| 450 | return error; |
| 451 | } |
| 452 | |
| 453 | height = tree->height; |
| 454 | |
| 455 | if (unlikely(height == 0)__builtin_expect(!!(height == 0), 0)) { |
| 456 | if (tree->root != NULL((void *) 0)) |
| 457 | return ERR_BUSY4; |
| 458 | |
| 459 | llsync_assign_ptr(tree->root, ptr)((tree->root) = (ptr)); |
| 460 | |
| 461 | if (slotp != NULL((void *) 0)) |
| 462 | *slotp = &tree->root; |
| 463 | |
| 464 | return ERR_SUCCESS0; |
| 465 | } |
| 466 | |
| 467 | node = rdxtree_entry_addr(tree->root); |
| 468 | shift = (height - 1) * RDXTREE_RADIX6; |
| 469 | prev = NULL((void *) 0); |
| 470 | |
| 471 | do { |
| 472 | if (node == NULL((void *) 0)) { |
| 473 | error = rdxtree_node_create(&node, height - 1); |
| 474 | |
| 475 | if (error) { |
| 476 | if (prev == NULL((void *) 0)) |
| 477 | tree->height = 0; |
| 478 | else |
| 479 | rdxtree_cleanup(tree, prev); |
| 480 | |
| 481 | return error; |
| 482 | } |
| 483 | |
| 484 | if (prev == NULL((void *) 0)) |
| 485 | llsync_assign_ptr(tree->root, rdxtree_node_to_entry(node))((tree->root) = (rdxtree_node_to_entry(node))); |
| 486 | else { |
| 487 | rdxtree_node_link(node, prev, index); |
| 488 | rdxtree_node_insert_node(prev, index, node); |
| 489 | } |
| 490 | } |
| 491 | |
| 492 | prev = node; |
| 493 | index = (unsigned int)(key >> shift) & RDXTREE_RADIX_MASK((1UL << 6) - 1); |
| 494 | node = rdxtree_entry_addr(prev->entries[index]); |
| 495 | shift -= RDXTREE_RADIX6; |
| 496 | height--; |
| 497 | } while (height > 0); |
| 498 | |
| 499 | if (unlikely(node != NULL)__builtin_expect(!!(node != ((void *) 0)), 0)) |
| 500 | return ERR_BUSY4; |
| 501 | |
| 502 | rdxtree_node_insert(prev, index, ptr); |
| 503 | rdxtree_insert_bm_clear(prev, index); |
| 504 | |
| 505 | if (slotp != NULL((void *) 0)) |
| 506 | *slotp = &prev->entries[index]; |
| 507 | |
| 508 | return ERR_SUCCESS0; |
| 509 | } |
| 510 | |
| 511 | int |
| 512 | rdxtree_insert_alloc_common(struct rdxtree *tree, void *ptr, |
| 513 | rdxtree_key_t *keyp, void ***slotp) |
| 514 | { |
| 515 | struct rdxtree_node *node, *prev; |
| 516 | unsigned int height, shift, index = index; |
| 517 | rdxtree_key_t key; |
| 518 | int error; |
| 519 | |
| 520 | assert(ptr != NULL)((ptr != ((void *) 0)) ? (void) (0) : Assert ("ptr != NULL", "../kern/rdxtree.c" , 520)); |
| 521 | assert(rdxtree_check_alignment(ptr))((rdxtree_check_alignment(ptr)) ? (void) (0) : Assert ("rdxtree_check_alignment(ptr)" , "../kern/rdxtree.c", 521)); |
| 522 | |
| 523 | height = tree->height; |
| 524 | |
| 525 | if (unlikely(height == 0)__builtin_expect(!!(height == 0), 0)) { |
| 526 | if (tree->root == NULL((void *) 0)) { |
| 527 | llsync_assign_ptr(tree->root, ptr)((tree->root) = (ptr)); |
| 528 | *keyp = 0; |
| 529 | |
| 530 | if (slotp != NULL((void *) 0)) |
| 531 | *slotp = &tree->root; |
| 532 | |
| 533 | return ERR_SUCCESS0; |
| 534 | } |
| 535 | |
| 536 | goto grow; |
| 537 | } |
| 538 | |
| 539 | node = rdxtree_entry_addr(tree->root); |
| 540 | key = 0; |
| 541 | shift = (height - 1) * RDXTREE_RADIX6; |
| 542 | prev = NULL((void *) 0); |
| 543 | |
| 544 | do { |
| 545 | if (node == NULL((void *) 0)) { |
| 546 | error = rdxtree_node_create(&node, height - 1); |
| 547 | |
| 548 | if (error) { |
| 549 | rdxtree_cleanup(tree, prev); |
| 550 | return error; |
| 551 | } |
| 552 | |
| 553 | rdxtree_node_link(node, prev, index); |
| 554 | rdxtree_node_insert_node(prev, index, node); |
| 555 | } |
| 556 | |
| 557 | prev = node; |
| 558 | index = rdxtree_node_bm_first(node); |
| 559 | |
| 560 | if (index == (unsigned int)-1) |
| 561 | goto grow; |
| 562 | |
| 563 | key |= (rdxtree_key_t)index << shift; |
| 564 | node = rdxtree_entry_addr(node->entries[index]); |
| 565 | shift -= RDXTREE_RADIX6; |
| 566 | height--; |
| 567 | } while (height > 0); |
| 568 | |
| 569 | rdxtree_node_insert(prev, index, ptr); |
| 570 | rdxtree_insert_bm_clear(prev, index); |
| 571 | |
| 572 | if (slotp != NULL((void *) 0)) |
| 573 | *slotp = &prev->entries[index]; |
| 574 | |
| 575 | goto out; |
| 576 | |
| 577 | grow: |
| 578 | key = rdxtree_max_key(height) + 1; |
| 579 | error = rdxtree_insert_common(tree, key, ptr, slotp); |
| 580 | |
| 581 | if (error) |
| 582 | return error; |
| 583 | |
| 584 | out: |
| 585 | *keyp = key; |
| 586 | return ERR_SUCCESS0; |
| 587 | } |
| 588 | |
| 589 | static void |
| 590 | rdxtree_remove_bm_set(struct rdxtree_node *node, unsigned int index) |
| 591 | { |
| 592 | do { |
| 593 | rdxtree_node_bm_set(node, index); |
| 594 | |
| 595 | if (node->parent == NULL((void *) 0)) |
| 596 | break; |
| 597 | |
| 598 | index = node->index; |
| 599 | node = node->parent; |
| 600 | } while (!rdxtree_node_bm_is_set(node, index)); |
| 601 | } |
| 602 | |
| 603 | void * |
| 604 | rdxtree_remove(struct rdxtree *tree, rdxtree_key_t key) |
| 605 | { |
| 606 | struct rdxtree_node *node, *prev; |
| 607 | unsigned int height, shift, index; |
| 608 | |
| 609 | height = tree->height; |
| 610 | |
| 611 | if (unlikely(key > rdxtree_max_key(height))__builtin_expect(!!(key > rdxtree_max_key(height)), 0)) |
| 612 | return NULL((void *) 0); |
| 613 | |
| 614 | node = rdxtree_entry_addr(tree->root); |
| 615 | |
| 616 | if (unlikely(height == 0)__builtin_expect(!!(height == 0), 0)) { |
| 617 | llsync_assign_ptr(tree->root, NULL)((tree->root) = (((void *) 0))); |
| 618 | return node; |
| 619 | } |
| 620 | |
| 621 | shift = (height - 1) * RDXTREE_RADIX6; |
| 622 | |
| 623 | do { |
| 624 | if (node == NULL((void *) 0)) |
| 625 | return NULL((void *) 0); |
| 626 | |
| 627 | prev = node; |
| 628 | index = (unsigned int)(key >> shift) & RDXTREE_RADIX_MASK((1UL << 6) - 1); |
| 629 | node = rdxtree_entry_addr(node->entries[index]); |
| 630 | shift -= RDXTREE_RADIX6; |
| 631 | height--; |
| 632 | } while (height > 0); |
| 633 | |
| 634 | if (node == NULL((void *) 0)) |
| 635 | return NULL((void *) 0); |
| 636 | |
| 637 | rdxtree_node_remove(prev, index); |
| 638 | rdxtree_remove_bm_set(prev, index); |
| 639 | rdxtree_cleanup(tree, prev); |
| 640 | return node; |
| 641 | } |
| 642 | |
| 643 | void * |
| 644 | rdxtree_lookup_common(const struct rdxtree *tree, rdxtree_key_t key, |
| 645 | int get_slot) |
| 646 | { |
| 647 | struct rdxtree_node *node, *prev; |
| 648 | unsigned int height, shift, index; |
| 649 | void *entry; |
| 650 | |
| 651 | entry = llsync_read_ptr(tree->root)(tree->root); |
| 652 | |
| 653 | if (entry == NULL((void *) 0)) { |
| 654 | node = NULL((void *) 0); |
| 655 | height = 0; |
| 656 | } else { |
| 657 | node = rdxtree_entry_addr(entry); |
| 658 | height = rdxtree_entry_is_node(entry) ? node->height + 1 : 0; |
| 659 | } |
| 660 | |
| 661 | if (key > rdxtree_max_key(height)) |
| 662 | return NULL((void *) 0); |
| 663 | |
| 664 | if (height == 0) { |
| 665 | if (node == NULL((void *) 0)) |
| 666 | return NULL((void *) 0); |
| 667 | |
| 668 | return get_slot ? (void *)&tree->root : node; |
| 669 | } |
| 670 | |
| 671 | shift = (height - 1) * RDXTREE_RADIX6; |
| 672 | |
| 673 | do { |
| 674 | if (node == NULL((void *) 0)) |
| 675 | return NULL((void *) 0); |
| 676 | |
| 677 | prev = node; |
| 678 | index = (unsigned int)(key >> shift) & RDXTREE_RADIX_MASK((1UL << 6) - 1); |
| 679 | entry = llsync_read_ptr(node->entries[index])(node->entries[index]); |
| 680 | node = rdxtree_entry_addr(entry); |
| 681 | shift -= RDXTREE_RADIX6; |
| 682 | height--; |
| 683 | } while (height > 0); |
| 684 | |
| 685 | if (node == NULL((void *) 0)) |
| 686 | return NULL((void *) 0); |
| 687 | |
| 688 | return get_slot ? (void *)&prev->entries[index] : node; |
| 689 | } |
| 690 | |
| 691 | void * |
| 692 | rdxtree_replace_slot(void **slot, void *ptr) |
| 693 | { |
| 694 | void *old; |
| 695 | |
| 696 | assert(ptr != NULL)((ptr != ((void *) 0)) ? (void) (0) : Assert ("ptr != NULL", "../kern/rdxtree.c" , 696)); |
| 697 | assert(rdxtree_check_alignment(ptr))((rdxtree_check_alignment(ptr)) ? (void) (0) : Assert ("rdxtree_check_alignment(ptr)" , "../kern/rdxtree.c", 697)); |
| 698 | |
| 699 | old = *slot; |
| 700 | assert(old != NULL)((old != ((void *) 0)) ? (void) (0) : Assert ("old != NULL", "../kern/rdxtree.c" , 700)); |
| 701 | assert(rdxtree_check_alignment(old))((rdxtree_check_alignment(old)) ? (void) (0) : Assert ("rdxtree_check_alignment(old)" , "../kern/rdxtree.c", 701)); |
| 702 | llsync_assign_ptr(*slot, ptr)((*slot) = (ptr)); |
| 703 | return old; |
| 704 | } |
| 705 | |
| 706 | static void * |
| 707 | rdxtree_walk_next(struct rdxtree *tree, struct rdxtree_iter *iter) |
| 708 | { |
| 709 | struct rdxtree_node *root, *node, *prev; |
| 710 | unsigned int height, shift, index, orig_index; |
| 711 | rdxtree_key_t key; |
| 712 | void *entry; |
| 713 | |
| 714 | entry = llsync_read_ptr(tree->root)(tree->root); |
| 715 | |
| 716 | if (entry == NULL((void *) 0)) |
| 717 | return NULL((void *) 0); |
| 718 | |
| 719 | if (!rdxtree_entry_is_node(entry)) { |
| 720 | if (iter->key != (rdxtree_key_t)-1) |
| 721 | return NULL((void *) 0); |
| 722 | else { |
| 723 | iter->key = 0; |
| 724 | return rdxtree_entry_addr(entry); |
| 725 | } |
| 726 | } |
| 727 | |
| 728 | key = iter->key + 1; |
| 729 | |
| 730 | if ((key == 0) && (iter->node != NULL((void *) 0))) |
| 731 | return NULL((void *) 0); |
| 732 | |
| 733 | root = rdxtree_entry_addr(entry); |
| 734 | |
| 735 | restart: |
| 736 | node = root; |
| 737 | height = root->height + 1; |
| 738 | |
| 739 | if (key > rdxtree_max_key(height)) |
| 740 | return NULL((void *) 0); |
| 741 | |
| 742 | shift = (height - 1) * RDXTREE_RADIX6; |
| 743 | |
| 744 | do { |
| 745 | prev = node; |
| 746 | index = (key >> shift) & RDXTREE_RADIX_MASK((1UL << 6) - 1); |
| 747 | orig_index = index; |
| 748 | node = rdxtree_node_find(node, &index); |
| 749 | |
| 750 | if (node == NULL((void *) 0)) { |
| 751 | shift += RDXTREE_RADIX6; |
| 752 | key = ((key >> shift) + 1) << shift; |
| 753 | |
| 754 | if (key == 0) |
| 755 | return NULL((void *) 0); |
| 756 | |
| 757 | goto restart; |
| 758 | } |
| 759 | |
| 760 | if (orig_index != index) |
| 761 | key = ((key >> shift) + (index - orig_index)) << shift; |
| 762 | |
| 763 | shift -= RDXTREE_RADIX6; |
| 764 | height--; |
| 765 | } while (height > 0); |
| 766 | |
| 767 | iter->node = prev; |
| 768 | iter->key = key; |
| 769 | return node; |
| 770 | } |
| 771 | |
| 772 | void * |
| 773 | rdxtree_walk(struct rdxtree *tree, struct rdxtree_iter *iter) |
| 774 | { |
| 775 | unsigned int index, orig_index; |
| 776 | void *ptr; |
| 777 | |
| 778 | if (iter->node == NULL((void *) 0)) |
| 779 | return rdxtree_walk_next(tree, iter); |
| 780 | |
| 781 | index = (iter->key + 1) & RDXTREE_RADIX_MASK((1UL << 6) - 1); |
| 782 | |
| 783 | if (index != 0) { |
| 784 | orig_index = index; |
| 785 | ptr = rdxtree_node_find(iter->node, &index); |
| 786 | |
| 787 | if (ptr != NULL((void *) 0)) { |
| 788 | iter->key += (index - orig_index) + 1; |
| 789 | return ptr; |
| 790 | } |
| 791 | } |
| 792 | |
| 793 | return rdxtree_walk_next(tree, iter); |
| 794 | } |
| 795 | |
| 796 | void |
| 797 | rdxtree_remove_all(struct rdxtree *tree) |
| 798 | { |
| 799 | struct rdxtree_node *node, *parent; |
| 800 | struct rdxtree_iter iter; |
| 801 | |
| 802 | if (tree->height == 0) { |
| 803 | if (tree->root != NULL((void *) 0)) |
| 804 | llsync_assign_ptr(tree->root, NULL)((tree->root) = (((void *) 0))); |
| 805 | |
| 806 | return; |
| 807 | } |
| 808 | |
| 809 | for (;;) { |
| 810 | rdxtree_iter_init(&iter); |
| 811 | rdxtree_walk_next(tree, &iter); |
| 812 | |
| 813 | if (iter.node == NULL((void *) 0)) |
| 814 | break; |
| 815 | |
| 816 | node = iter.node; |
| 817 | parent = node->parent; |
| 818 | |
| 819 | if (parent == NULL((void *) 0)) |
| 820 | rdxtree_init(tree); |
| 821 | else { |
| 822 | rdxtree_node_remove(parent, node->index); |
| 823 | rdxtree_remove_bm_set(parent, node->index); |
| 824 | rdxtree_cleanup(tree, parent); |
| 825 | node->parent = NULL((void *) 0); |
| 826 | } |
| 827 | |
| 828 | rdxtree_node_schedule_destruction(node); |
| 829 | } |
| 830 | } |