File: | obj-scan-build/../kern/task.c |
Location: | line 1153, column 17 |
Description: | Access to field 'map' results in a dereference of a null pointer (loaded from variable 'task') |
1 | /* | |||
2 | * Mach Operating System | |||
3 | * Copyright (c) 1993-1988 Carnegie Mellon University | |||
4 | * All Rights Reserved. | |||
5 | * | |||
6 | * Permission to use, copy, modify and distribute this software and its | |||
7 | * documentation is hereby granted, provided that both the copyright | |||
8 | * notice and this permission notice appear in all copies of the | |||
9 | * software, derivative works or modified versions, and any portions | |||
10 | * thereof, and that both notices appear in supporting documentation. | |||
11 | * | |||
12 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" | |||
13 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR | |||
14 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. | |||
15 | * | |||
16 | * Carnegie Mellon requests users of this software to return to | |||
17 | * | |||
18 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU | |||
19 | * School of Computer Science | |||
20 | * Carnegie Mellon University | |||
21 | * Pittsburgh PA 15213-3890 | |||
22 | * | |||
23 | * any improvements or extensions that they make and grant Carnegie Mellon | |||
24 | * the rights to redistribute these changes. | |||
25 | */ | |||
26 | /* | |||
27 | * File: kern/task.c | |||
28 | * Author: Avadis Tevanian, Jr., Michael Wayne Young, David Golub, | |||
29 | * David Black | |||
30 | * | |||
31 | * Task management primitives implementation. | |||
32 | */ | |||
33 | ||||
34 | #include <string.h> | |||
35 | ||||
36 | #include <mach/machine/vm_types.h> | |||
37 | #include <mach/vm_param.h> | |||
38 | #include <mach/task_info.h> | |||
39 | #include <mach/task_special_ports.h> | |||
40 | #include <mach_debug/mach_debug_types.h> | |||
41 | #include <ipc/ipc_space.h> | |||
42 | #include <ipc/ipc_types.h> | |||
43 | #include <kern/debug.h> | |||
44 | #include <kern/task.h> | |||
45 | #include <kern/thread.h> | |||
46 | #include <kern/slab.h> | |||
47 | #include <kern/kalloc.h> | |||
48 | #include <kern/processor.h> | |||
49 | #include <kern/printf.h> | |||
50 | #include <kern/sched_prim.h> /* for thread_wakeup */ | |||
51 | #include <kern/ipc_tt.h> | |||
52 | #include <kern/syscall_emulation.h> | |||
53 | #include <kern/task_notify.user.h> | |||
54 | #include <vm/vm_kern.h> /* for kernel_map, ipc_kernel_map */ | |||
55 | #include <machine/machspl.h> /* for splsched */ | |||
56 | ||||
57 | task_t kernel_task = TASK_NULL((task_t) 0); | |||
58 | struct kmem_cache task_cache; | |||
59 | ||||
60 | /* Where to send notifications about newly created tasks. */ | |||
61 | ipc_port_t new_task_notification = NULL((void *) 0); | |||
62 | ||||
63 | void task_init(void) | |||
64 | { | |||
65 | kmem_cache_init(&task_cache, "task", sizeof(struct task), 0, | |||
66 | NULL((void *) 0), NULL((void *) 0), NULL((void *) 0), 0); | |||
67 | ||||
68 | eml_init(); | |||
69 | machine_task_module_init (); | |||
70 | ||||
71 | /* | |||
72 | * Create the kernel task as the first task. | |||
73 | * Task_create must assign to kernel_task as a side effect, | |||
74 | * for other initialization. (:-() | |||
75 | */ | |||
76 | (void) task_create(TASK_NULL((task_t) 0), FALSE((boolean_t) 0), &kernel_task); | |||
77 | (void) task_set_name(kernel_task, "gnumach"); | |||
78 | } | |||
79 | ||||
80 | kern_return_t task_create( | |||
81 | task_t parent_task, | |||
82 | boolean_t inherit_memory, | |||
83 | task_t *child_task) /* OUT */ | |||
84 | { | |||
85 | task_t new_task; | |||
86 | processor_set_t pset; | |||
87 | #if FAST_TAS0 | |||
88 | int i; | |||
89 | #endif | |||
90 | ||||
91 | new_task = (task_t) kmem_cache_alloc(&task_cache); | |||
92 | if (new_task == TASK_NULL((task_t) 0)) | |||
93 | return KERN_RESOURCE_SHORTAGE6; | |||
94 | ||||
95 | /* one ref for just being alive; one for our caller */ | |||
96 | new_task->ref_count = 2; | |||
97 | ||||
98 | if (child_task == &kernel_task) { | |||
99 | new_task->map = kernel_map; | |||
100 | } else if (inherit_memory) { | |||
101 | new_task->map = vm_map_fork(parent_task->map); | |||
102 | } else { | |||
103 | new_task->map = vm_map_create(pmap_create(0), | |||
104 | round_page(VM_MIN_ADDRESS)((vm_offset_t)((((vm_offset_t)((0))) + ((1 << 12)-1)) & ~((1 << 12)-1))), | |||
105 | trunc_page(VM_MAX_ADDRESS)((vm_offset_t)(((vm_offset_t)((0xc0000000UL))) & ~((1 << 12)-1))), TRUE((boolean_t) 1)); | |||
106 | } | |||
107 | ||||
108 | simple_lock_init(&new_task->lock); | |||
109 | queue_init(&new_task->thread_list)((&new_task->thread_list)->next = (&new_task-> thread_list)->prev = &new_task->thread_list); | |||
110 | new_task->suspend_count = 0; | |||
111 | new_task->active = TRUE((boolean_t) 1); | |||
112 | new_task->user_stop_count = 0; | |||
113 | new_task->thread_count = 0; | |||
114 | new_task->faults = 0; | |||
115 | new_task->zero_fills = 0; | |||
116 | new_task->reactivations = 0; | |||
117 | new_task->pageins = 0; | |||
118 | new_task->cow_faults = 0; | |||
119 | new_task->messages_sent = 0; | |||
120 | new_task->messages_received = 0; | |||
121 | ||||
122 | eml_task_reference(new_task, parent_task); | |||
123 | ||||
124 | ipc_task_init(new_task, parent_task); | |||
125 | machine_task_init (new_task); | |||
126 | ||||
127 | new_task->total_user_time.seconds = 0; | |||
128 | new_task->total_user_time.microseconds = 0; | |||
129 | new_task->total_system_time.seconds = 0; | |||
130 | new_task->total_system_time.microseconds = 0; | |||
131 | ||||
132 | record_time_stamp (&new_task->creation_time); | |||
133 | ||||
134 | if (parent_task != TASK_NULL((task_t) 0)) { | |||
135 | task_lock(parent_task); | |||
136 | pset = parent_task->processor_set; | |||
137 | if (!pset->active) | |||
138 | pset = &default_pset; | |||
139 | pset_reference(pset); | |||
140 | new_task->priority = parent_task->priority; | |||
141 | task_unlock(parent_task)((void)(&(parent_task)->lock)); | |||
142 | } | |||
143 | else { | |||
144 | pset = &default_pset; | |||
145 | pset_reference(pset); | |||
146 | new_task->priority = BASEPRI_USER25; | |||
147 | } | |||
148 | pset_lock(pset); | |||
149 | pset_add_task(pset, new_task); | |||
150 | pset_unlock(pset)((void)(&(pset)->lock)); | |||
151 | ||||
152 | new_task->may_assign = TRUE((boolean_t) 1); | |||
153 | new_task->assign_active = FALSE((boolean_t) 0); | |||
154 | ||||
155 | #if MACH_PCSAMPLE1 | |||
156 | new_task->pc_sample.buffer = 0; | |||
157 | new_task->pc_sample.seqno = 0; | |||
158 | new_task->pc_sample.sampletypes = 0; | |||
159 | #endif /* MACH_PCSAMPLE */ | |||
160 | ||||
161 | #if FAST_TAS0 | |||
162 | for (i = 0; i < TASK_FAST_TAS_NRAS; i++) { | |||
163 | if (inherit_memory) { | |||
164 | new_task->fast_tas_base[i] = parent_task->fast_tas_base[i]; | |||
165 | new_task->fast_tas_end[i] = parent_task->fast_tas_end[i]; | |||
166 | } else { | |||
167 | new_task->fast_tas_base[i] = (vm_offset_t)0; | |||
168 | new_task->fast_tas_end[i] = (vm_offset_t)0; | |||
169 | } | |||
170 | } | |||
171 | #endif /* FAST_TAS */ | |||
172 | ||||
173 | if (parent_task == TASK_NULL((task_t) 0)) | |||
174 | snprintf (new_task->name, sizeof new_task->name, "%p", | |||
175 | new_task); | |||
176 | else | |||
177 | snprintf (new_task->name, sizeof new_task->name, "(%.*s)", | |||
178 | sizeof new_task->name - 3, parent_task->name); | |||
179 | ||||
180 | if (new_task_notification != NULL((void *) 0)) { | |||
181 | task_reference (new_task); | |||
182 | task_reference (parent_task); | |||
183 | mach_notify_new_task (new_task_notification, | |||
184 | convert_task_to_port (new_task), | |||
185 | convert_task_to_port (parent_task)); | |||
186 | } | |||
187 | ||||
188 | ipc_task_enable(new_task); | |||
189 | ||||
190 | *child_task = new_task; | |||
191 | return KERN_SUCCESS0; | |||
192 | } | |||
193 | ||||
194 | /* | |||
195 | * task_deallocate: | |||
196 | * | |||
197 | * Give up a reference to the specified task and destroy it if there | |||
198 | * are no other references left. It is assumed that the current thread | |||
199 | * is never in this task. | |||
200 | */ | |||
201 | void task_deallocate( | |||
202 | task_t task) | |||
203 | { | |||
204 | int c; | |||
205 | processor_set_t pset; | |||
206 | ||||
207 | if (task == TASK_NULL((task_t) 0)) | |||
208 | return; | |||
209 | ||||
210 | task_lock(task); | |||
211 | c = --(task->ref_count); | |||
212 | task_unlock(task)((void)(&(task)->lock)); | |||
213 | if (c != 0) | |||
214 | return; | |||
215 | ||||
216 | machine_task_terminate (task); | |||
217 | ||||
218 | eml_task_deallocate(task); | |||
219 | ||||
220 | pset = task->processor_set; | |||
221 | pset_lock(pset); | |||
222 | pset_remove_task(pset,task); | |||
223 | pset_unlock(pset)((void)(&(pset)->lock)); | |||
224 | pset_deallocate(pset); | |||
225 | vm_map_deallocate(task->map); | |||
226 | is_release(task->itk_space)ipc_space_release(task->itk_space); | |||
227 | kmem_cache_free(&task_cache, (vm_offset_t) task); | |||
228 | } | |||
229 | ||||
230 | void task_reference( | |||
231 | task_t task) | |||
232 | { | |||
233 | if (task == TASK_NULL((task_t) 0)) | |||
234 | return; | |||
235 | ||||
236 | task_lock(task); | |||
237 | task->ref_count++; | |||
238 | task_unlock(task)((void)(&(task)->lock)); | |||
239 | } | |||
240 | ||||
241 | /* | |||
242 | * task_terminate: | |||
243 | * | |||
244 | * Terminate the specified task. See comments on thread_terminate | |||
245 | * (kern/thread.c) about problems with terminating the "current task." | |||
246 | */ | |||
247 | kern_return_t task_terminate( | |||
248 | task_t task) | |||
249 | { | |||
250 | thread_t thread, cur_thread; | |||
251 | queue_head_t *list; | |||
252 | task_t cur_task; | |||
253 | spl_t s; | |||
254 | ||||
255 | if (task == TASK_NULL((task_t) 0)) | |||
256 | return KERN_INVALID_ARGUMENT4; | |||
257 | ||||
258 | list = &task->thread_list; | |||
259 | cur_task = current_task()((active_threads[(0)])->task); | |||
260 | cur_thread = current_thread()(active_threads[(0)]); | |||
261 | ||||
262 | /* | |||
263 | * Deactivate task so that it can't be terminated again, | |||
264 | * and so lengthy operations in progress will abort. | |||
265 | * | |||
266 | * If the current thread is in this task, remove it from | |||
267 | * the task's thread list to keep the thread-termination | |||
268 | * loop simple. | |||
269 | */ | |||
270 | if (task == cur_task) { | |||
271 | task_lock(task); | |||
272 | if (!task->active) { | |||
273 | /* | |||
274 | * Task is already being terminated. | |||
275 | */ | |||
276 | task_unlock(task)((void)(&(task)->lock)); | |||
277 | return KERN_FAILURE5; | |||
278 | } | |||
279 | /* | |||
280 | * Make sure current thread is not being terminated. | |||
281 | */ | |||
282 | s = splsched(); | |||
283 | thread_lock(cur_thread); | |||
284 | if (!cur_thread->active) { | |||
285 | thread_unlock(cur_thread)((void)(&(cur_thread)->lock)); | |||
286 | (void) splx(s); | |||
287 | task_unlock(task)((void)(&(task)->lock)); | |||
288 | thread_terminate(cur_thread); | |||
289 | return KERN_FAILURE5; | |||
290 | } | |||
291 | task_hold_locked(task); | |||
292 | task->active = FALSE((boolean_t) 0); | |||
293 | queue_remove(list, cur_thread, thread_t, thread_list){ queue_entry_t next, prev; next = (cur_thread)->thread_list .next; prev = (cur_thread)->thread_list.prev; if ((list) == next) (list)->prev = prev; else ((thread_t)next)->thread_list .prev = prev; if ((list) == prev) (list)->next = next; else ((thread_t)prev)->thread_list.next = next; }; | |||
294 | thread_unlock(cur_thread)((void)(&(cur_thread)->lock)); | |||
295 | (void) splx(s); | |||
296 | task_unlock(task)((void)(&(task)->lock)); | |||
297 | ||||
298 | /* | |||
299 | * Shut down this thread's ipc now because it must | |||
300 | * be left alone to terminate the task. | |||
301 | */ | |||
302 | ipc_thread_disable(cur_thread); | |||
303 | ipc_thread_terminate(cur_thread); | |||
304 | } | |||
305 | else { | |||
306 | /* | |||
307 | * Lock both current and victim task to check for | |||
308 | * potential deadlock. | |||
309 | */ | |||
310 | if ((vm_offset_t)task < (vm_offset_t)cur_task) { | |||
311 | task_lock(task); | |||
312 | task_lock(cur_task); | |||
313 | } | |||
314 | else { | |||
315 | task_lock(cur_task); | |||
316 | task_lock(task); | |||
317 | } | |||
318 | /* | |||
319 | * Check if current thread or task is being terminated. | |||
320 | */ | |||
321 | s = splsched(); | |||
322 | thread_lock(cur_thread); | |||
323 | if ((!cur_task->active) ||(!cur_thread->active)) { | |||
324 | /* | |||
325 | * Current task or thread is being terminated. | |||
326 | */ | |||
327 | thread_unlock(cur_thread)((void)(&(cur_thread)->lock)); | |||
328 | (void) splx(s); | |||
329 | task_unlock(task)((void)(&(task)->lock)); | |||
330 | task_unlock(cur_task)((void)(&(cur_task)->lock)); | |||
331 | thread_terminate(cur_thread); | |||
332 | return KERN_FAILURE5; | |||
333 | } | |||
334 | thread_unlock(cur_thread)((void)(&(cur_thread)->lock)); | |||
335 | (void) splx(s); | |||
336 | task_unlock(cur_task)((void)(&(cur_task)->lock)); | |||
337 | ||||
338 | if (!task->active) { | |||
339 | /* | |||
340 | * Task is already being terminated. | |||
341 | */ | |||
342 | task_unlock(task)((void)(&(task)->lock)); | |||
343 | return KERN_FAILURE5; | |||
344 | } | |||
345 | task_hold_locked(task); | |||
346 | task->active = FALSE((boolean_t) 0); | |||
347 | task_unlock(task)((void)(&(task)->lock)); | |||
348 | } | |||
349 | ||||
350 | /* | |||
351 | * Prevent further execution of the task. ipc_task_disable | |||
352 | * prevents further task operations via the task port. | |||
353 | * If this is the current task, the current thread will | |||
354 | * be left running. | |||
355 | */ | |||
356 | (void) task_dowait(task,TRUE((boolean_t) 1)); /* may block */ | |||
357 | ipc_task_disable(task); | |||
358 | ||||
359 | /* | |||
360 | * Terminate each thread in the task. | |||
361 | * | |||
362 | * The task_port is closed down, so no more thread_create | |||
363 | * operations can be done. Thread_force_terminate closes the | |||
364 | * thread port for each thread; when that is done, the | |||
365 | * thread will eventually disappear. Thus the loop will | |||
366 | * terminate. Call thread_force_terminate instead of | |||
367 | * thread_terminate to avoid deadlock checks. Need | |||
368 | * to call thread_block() inside loop because some other | |||
369 | * thread (e.g., the reaper) may have to run to get rid | |||
370 | * of all references to the thread; it won't vanish from | |||
371 | * the task's thread list until the last one is gone. | |||
372 | */ | |||
373 | task_lock(task); | |||
374 | while (!queue_empty(list)(((list)) == (((list)->next)))) { | |||
375 | thread = (thread_t) queue_first(list)((list)->next); | |||
376 | thread_reference(thread); | |||
377 | task_unlock(task)((void)(&(task)->lock)); | |||
378 | thread_force_terminate(thread); | |||
379 | thread_deallocate(thread); | |||
380 | thread_block((void (*)()) 0); | |||
381 | task_lock(task); | |||
382 | } | |||
383 | task_unlock(task)((void)(&(task)->lock)); | |||
384 | ||||
385 | /* | |||
386 | * Shut down IPC. | |||
387 | */ | |||
388 | ipc_task_terminate(task); | |||
389 | ||||
390 | ||||
391 | /* | |||
392 | * Deallocate the task's reference to itself. | |||
393 | */ | |||
394 | task_deallocate(task); | |||
395 | ||||
396 | /* | |||
397 | * If the current thread is in this task, it has not yet | |||
398 | * been terminated (since it was removed from the task's | |||
399 | * thread-list). Put it back in the thread list (for | |||
400 | * completeness), and terminate it. Since it holds the | |||
401 | * last reference to the task, terminating it will deallocate | |||
402 | * the task. | |||
403 | */ | |||
404 | if (cur_thread->task == task) { | |||
405 | task_lock(task); | |||
406 | s = splsched(); | |||
407 | queue_enter(list, cur_thread, thread_t, thread_list){ queue_entry_t prev; prev = (list)->prev; if ((list) == prev ) { (list)->next = (queue_entry_t) (cur_thread); } else { ( (thread_t)prev)->thread_list.next = (queue_entry_t)(cur_thread ); } (cur_thread)->thread_list.prev = prev; (cur_thread)-> thread_list.next = list; (list)->prev = (queue_entry_t) cur_thread ; }; | |||
408 | (void) splx(s); | |||
409 | task_unlock(task)((void)(&(task)->lock)); | |||
410 | (void) thread_terminate(cur_thread); | |||
411 | } | |||
412 | ||||
413 | return KERN_SUCCESS0; | |||
414 | } | |||
415 | ||||
416 | /* | |||
417 | * task_hold: | |||
418 | * | |||
419 | * Suspend execution of the specified task. | |||
420 | * This is a recursive-style suspension of the task, a count of | |||
421 | * suspends is maintained. | |||
422 | * | |||
423 | * CONDITIONS: the task is locked and active. | |||
424 | */ | |||
425 | void task_hold_locked( | |||
426 | task_t task) | |||
427 | { | |||
428 | queue_head_t *list; | |||
429 | thread_t thread, cur_thread; | |||
430 | ||||
431 | assert(task->active)((task->active) ? (void) (0) : Assert ("task->active", "../kern/task.c" , 431)); | |||
432 | ||||
433 | cur_thread = current_thread()(active_threads[(0)]); | |||
434 | ||||
435 | task->suspend_count++; | |||
436 | ||||
437 | /* | |||
438 | * Iterate through all the threads and hold them. | |||
439 | * Do not hold the current thread if it is within the | |||
440 | * task. | |||
441 | */ | |||
442 | list = &task->thread_list; | |||
443 | queue_iterate(list, thread, thread_t, thread_list)for ((thread) = (thread_t) ((list)->next); !(((list)) == ( (queue_entry_t)(thread))); (thread) = (thread_t) ((&(thread )->thread_list)->next)) { | |||
444 | if (thread != cur_thread) | |||
445 | thread_hold(thread); | |||
446 | } | |||
447 | } | |||
448 | ||||
449 | /* | |||
450 | * task_hold: | |||
451 | * | |||
452 | * Suspend execution of the specified task. | |||
453 | * This is a recursive-style suspension of the task, a count of | |||
454 | * suspends is maintained. | |||
455 | */ | |||
456 | kern_return_t task_hold( | |||
457 | task_t task) | |||
458 | { | |||
459 | task_lock(task); | |||
460 | if (!task->active) { | |||
461 | task_unlock(task)((void)(&(task)->lock)); | |||
462 | return KERN_FAILURE5; | |||
463 | } | |||
464 | ||||
465 | task_hold_locked(task); | |||
466 | ||||
467 | task_unlock(task)((void)(&(task)->lock)); | |||
468 | return KERN_SUCCESS0; | |||
469 | } | |||
470 | ||||
471 | /* | |||
472 | * task_dowait: | |||
473 | * | |||
474 | * Wait until the task has really been suspended (all of the threads | |||
475 | * are stopped). Skip the current thread if it is within the task. | |||
476 | * | |||
477 | * If task is deactivated while waiting, return a failure code unless | |||
478 | * must_wait is true. | |||
479 | */ | |||
480 | kern_return_t task_dowait( | |||
481 | task_t task, | |||
482 | boolean_t must_wait) | |||
483 | { | |||
484 | queue_head_t *list; | |||
485 | thread_t thread, cur_thread, prev_thread; | |||
486 | kern_return_t ret = KERN_SUCCESS0; | |||
487 | ||||
488 | /* | |||
489 | * Iterate through all the threads. | |||
490 | * While waiting for each thread, we gain a reference to it | |||
491 | * to prevent it from going away on us. This guarantees | |||
492 | * that the "next" thread in the list will be a valid thread. | |||
493 | * | |||
494 | * We depend on the fact that if threads are created while | |||
495 | * we are looping through the threads, they will be held | |||
496 | * automatically. We don't care about threads that get | |||
497 | * deallocated along the way (the reference prevents it | |||
498 | * from happening to the thread we are working with). | |||
499 | * | |||
500 | * If the current thread is in the affected task, it is skipped. | |||
501 | * | |||
502 | * If the task is deactivated before we're done, and we don't | |||
503 | * have to wait for it (must_wait is FALSE), just bail out. | |||
504 | */ | |||
505 | cur_thread = current_thread()(active_threads[(0)]); | |||
506 | ||||
507 | list = &task->thread_list; | |||
508 | prev_thread = THREAD_NULL((thread_t) 0); | |||
509 | task_lock(task); | |||
510 | queue_iterate(list, thread, thread_t, thread_list)for ((thread) = (thread_t) ((list)->next); !(((list)) == ( (queue_entry_t)(thread))); (thread) = (thread_t) ((&(thread )->thread_list)->next)) { | |||
511 | if (!(task->active) && !(must_wait)) { | |||
512 | ret = KERN_FAILURE5; | |||
513 | break; | |||
514 | } | |||
515 | if (thread != cur_thread) { | |||
516 | thread_reference(thread); | |||
517 | task_unlock(task)((void)(&(task)->lock)); | |||
518 | if (prev_thread != THREAD_NULL((thread_t) 0)) | |||
519 | thread_deallocate(prev_thread); | |||
520 | /* may block */ | |||
521 | (void) thread_dowait(thread, TRUE((boolean_t) 1)); /* may block */ | |||
522 | prev_thread = thread; | |||
523 | task_lock(task); | |||
524 | } | |||
525 | } | |||
526 | task_unlock(task)((void)(&(task)->lock)); | |||
527 | if (prev_thread != THREAD_NULL((thread_t) 0)) | |||
528 | thread_deallocate(prev_thread); /* may block */ | |||
529 | return ret; | |||
530 | } | |||
531 | ||||
532 | kern_return_t task_release( | |||
533 | task_t task) | |||
534 | { | |||
535 | queue_head_t *list; | |||
536 | thread_t thread, next; | |||
537 | ||||
538 | task_lock(task); | |||
539 | if (!task->active) { | |||
540 | task_unlock(task)((void)(&(task)->lock)); | |||
541 | return KERN_FAILURE5; | |||
542 | } | |||
543 | ||||
544 | task->suspend_count--; | |||
545 | ||||
546 | /* | |||
547 | * Iterate through all the threads and release them | |||
548 | */ | |||
549 | list = &task->thread_list; | |||
550 | thread = (thread_t) queue_first(list)((list)->next); | |||
551 | while (!queue_end(list, (queue_entry_t) thread)((list) == ((queue_entry_t) thread))) { | |||
552 | next = (thread_t) queue_next(&thread->thread_list)((&thread->thread_list)->next); | |||
553 | thread_release(thread); | |||
554 | thread = next; | |||
555 | } | |||
556 | task_unlock(task)((void)(&(task)->lock)); | |||
557 | return KERN_SUCCESS0; | |||
558 | } | |||
559 | ||||
560 | kern_return_t task_threads( | |||
561 | task_t task, | |||
562 | thread_array_t *thread_list, | |||
563 | natural_t *count) | |||
564 | { | |||
565 | unsigned int actual; /* this many threads */ | |||
566 | thread_t thread; | |||
567 | thread_t *threads; | |||
568 | int i; | |||
569 | ||||
570 | vm_size_t size, size_needed; | |||
571 | vm_offset_t addr; | |||
572 | ||||
573 | if (task == TASK_NULL((task_t) 0)) | |||
574 | return KERN_INVALID_ARGUMENT4; | |||
575 | ||||
576 | size = 0; addr = 0; | |||
577 | ||||
578 | for (;;) { | |||
579 | task_lock(task); | |||
580 | if (!task->active) { | |||
581 | task_unlock(task)((void)(&(task)->lock)); | |||
582 | return KERN_FAILURE5; | |||
583 | } | |||
584 | ||||
585 | actual = task->thread_count; | |||
586 | ||||
587 | /* do we have the memory we need? */ | |||
588 | ||||
589 | size_needed = actual * sizeof(mach_port_t); | |||
590 | if (size_needed <= size) | |||
591 | break; | |||
592 | ||||
593 | /* unlock the task and allocate more memory */ | |||
594 | task_unlock(task)((void)(&(task)->lock)); | |||
595 | ||||
596 | if (size != 0) | |||
597 | kfree(addr, size); | |||
598 | ||||
599 | assert(size_needed > 0)((size_needed > 0) ? (void) (0) : Assert ("size_needed > 0" , "../kern/task.c", 599)); | |||
600 | size = size_needed; | |||
601 | ||||
602 | addr = kalloc(size); | |||
603 | if (addr == 0) | |||
604 | return KERN_RESOURCE_SHORTAGE6; | |||
605 | } | |||
606 | ||||
607 | /* OK, have memory and the task is locked & active */ | |||
608 | ||||
609 | threads = (thread_t *) addr; | |||
610 | ||||
611 | for (i = 0, thread = (thread_t) queue_first(&task->thread_list)((&task->thread_list)->next); | |||
612 | i < actual; | |||
613 | i++, thread = (thread_t) queue_next(&thread->thread_list)((&thread->thread_list)->next)) { | |||
614 | /* take ref for convert_thread_to_port */ | |||
615 | thread_reference(thread); | |||
616 | threads[i] = thread; | |||
617 | } | |||
618 | assert(queue_end(&task->thread_list, (queue_entry_t) thread))((((&task->thread_list) == ((queue_entry_t) thread))) ? (void) (0) : Assert ("queue_end(&task->thread_list, (queue_entry_t) thread)" , "../kern/task.c", 618)); | |||
619 | ||||
620 | /* can unlock task now that we've got the thread refs */ | |||
621 | task_unlock(task)((void)(&(task)->lock)); | |||
622 | ||||
623 | if (actual == 0) { | |||
624 | /* no threads, so return null pointer and deallocate memory */ | |||
625 | ||||
626 | *thread_list = 0; | |||
627 | *count = 0; | |||
628 | ||||
629 | if (size != 0) | |||
630 | kfree(addr, size); | |||
631 | } else { | |||
632 | /* if we allocated too much, must copy */ | |||
633 | ||||
634 | if (size_needed < size) { | |||
635 | vm_offset_t newaddr; | |||
636 | ||||
637 | newaddr = kalloc(size_needed); | |||
638 | if (newaddr == 0) { | |||
639 | for (i = 0; i < actual; i++) | |||
640 | thread_deallocate(threads[i]); | |||
641 | kfree(addr, size); | |||
642 | return KERN_RESOURCE_SHORTAGE6; | |||
643 | } | |||
644 | ||||
645 | memcpy((void *) newaddr, (void *) addr, size_needed); | |||
646 | kfree(addr, size); | |||
647 | threads = (thread_t *) newaddr; | |||
648 | } | |||
649 | ||||
650 | *thread_list = (mach_port_t *) threads; | |||
651 | *count = actual; | |||
652 | ||||
653 | /* do the conversion that Mig should handle */ | |||
654 | ||||
655 | for (i = 0; i < actual; i++) | |||
656 | ((ipc_port_t *) threads)[i] = | |||
657 | convert_thread_to_port(threads[i]); | |||
658 | } | |||
659 | ||||
660 | return KERN_SUCCESS0; | |||
661 | } | |||
662 | ||||
663 | kern_return_t task_suspend( | |||
664 | task_t task) | |||
665 | { | |||
666 | boolean_t hold; | |||
667 | ||||
668 | if (task == TASK_NULL((task_t) 0)) | |||
669 | return KERN_INVALID_ARGUMENT4; | |||
670 | ||||
671 | hold = FALSE((boolean_t) 0); | |||
672 | task_lock(task); | |||
673 | if ((task->user_stop_count)++ == 0) | |||
674 | hold = TRUE((boolean_t) 1); | |||
675 | task_unlock(task)((void)(&(task)->lock)); | |||
676 | ||||
677 | /* | |||
678 | * If the stop count was positive, the task is | |||
679 | * already stopped and we can exit. | |||
680 | */ | |||
681 | if (!hold) { | |||
682 | return KERN_SUCCESS0; | |||
683 | } | |||
684 | ||||
685 | /* | |||
686 | * Hold all of the threads in the task, and wait for | |||
687 | * them to stop. If the current thread is within | |||
688 | * this task, hold it separately so that all of the | |||
689 | * other threads can stop first. | |||
690 | */ | |||
691 | ||||
692 | if (task_hold(task) != KERN_SUCCESS0) | |||
693 | return KERN_FAILURE5; | |||
694 | ||||
695 | if (task_dowait(task, FALSE((boolean_t) 0)) != KERN_SUCCESS0) | |||
696 | return KERN_FAILURE5; | |||
697 | ||||
698 | if (current_task()((active_threads[(0)])->task) == task) { | |||
699 | spl_t s; | |||
700 | ||||
701 | thread_hold(current_thread()(active_threads[(0)])); | |||
702 | /* | |||
703 | * We want to call thread_block on our way out, | |||
704 | * to stop running. | |||
705 | */ | |||
706 | s = splsched(); | |||
707 | ast_on(cpu_number(), AST_BLOCK)({ if ((need_ast[(0)] |= (0x4)) != 0x0) { ; } }); | |||
708 | (void) splx(s); | |||
709 | } | |||
710 | ||||
711 | return KERN_SUCCESS0; | |||
712 | } | |||
713 | ||||
714 | kern_return_t task_resume( | |||
715 | task_t task) | |||
716 | { | |||
717 | boolean_t release; | |||
718 | ||||
719 | if (task == TASK_NULL((task_t) 0)) | |||
720 | return KERN_INVALID_ARGUMENT4; | |||
721 | ||||
722 | release = FALSE((boolean_t) 0); | |||
723 | task_lock(task); | |||
724 | if (task->user_stop_count > 0) { | |||
725 | if (--(task->user_stop_count) == 0) | |||
726 | release = TRUE((boolean_t) 1); | |||
727 | } | |||
728 | else { | |||
729 | task_unlock(task)((void)(&(task)->lock)); | |||
730 | return KERN_FAILURE5; | |||
731 | } | |||
732 | task_unlock(task)((void)(&(task)->lock)); | |||
733 | ||||
734 | /* | |||
735 | * Release the task if necessary. | |||
736 | */ | |||
737 | if (release) | |||
738 | return task_release(task); | |||
739 | ||||
740 | return KERN_SUCCESS0; | |||
741 | } | |||
742 | ||||
743 | kern_return_t task_info( | |||
744 | task_t task, | |||
745 | int flavor, | |||
746 | task_info_t task_info_out, /* pointer to OUT array */ | |||
747 | natural_t *task_info_count) /* IN/OUT */ | |||
748 | { | |||
749 | vm_map_t map; | |||
750 | ||||
751 | if (task == TASK_NULL((task_t) 0)) | |||
752 | return KERN_INVALID_ARGUMENT4; | |||
753 | ||||
754 | switch (flavor) { | |||
755 | case TASK_BASIC_INFO1: | |||
756 | { | |||
757 | task_basic_info_t basic_info; | |||
758 | ||||
759 | /* Allow *task_info_count to be two words smaller than | |||
760 | the usual amount, because creation_time is a new member | |||
761 | that some callers might not know about. */ | |||
762 | ||||
763 | if (*task_info_count < TASK_BASIC_INFO_COUNT(sizeof(task_basic_info_data_t) / sizeof(natural_t)) - 2) { | |||
764 | return KERN_INVALID_ARGUMENT4; | |||
765 | } | |||
766 | ||||
767 | basic_info = (task_basic_info_t) task_info_out; | |||
768 | ||||
769 | map = (task == kernel_task) ? kernel_map : task->map; | |||
770 | ||||
771 | basic_info->virtual_size = map->size; | |||
772 | basic_info->resident_size = pmap_resident_count(map->pmap)((map->pmap)->stats.resident_count) | |||
773 | * PAGE_SIZE(1 << 12); | |||
774 | ||||
775 | task_lock(task); | |||
776 | basic_info->base_priority = task->priority; | |||
777 | basic_info->suspend_count = task->user_stop_count; | |||
778 | basic_info->user_time.seconds | |||
779 | = task->total_user_time.seconds; | |||
780 | basic_info->user_time.microseconds | |||
781 | = task->total_user_time.microseconds; | |||
782 | basic_info->system_time.seconds | |||
783 | = task->total_system_time.seconds; | |||
784 | basic_info->system_time.microseconds | |||
785 | = task->total_system_time.microseconds; | |||
786 | basic_info->creation_time = task->creation_time; | |||
787 | task_unlock(task)((void)(&(task)->lock)); | |||
788 | ||||
789 | if (*task_info_count > TASK_BASIC_INFO_COUNT(sizeof(task_basic_info_data_t) / sizeof(natural_t))) | |||
790 | *task_info_count = TASK_BASIC_INFO_COUNT(sizeof(task_basic_info_data_t) / sizeof(natural_t)); | |||
791 | break; | |||
792 | } | |||
793 | ||||
794 | case TASK_EVENTS_INFO2: | |||
795 | { | |||
796 | task_events_info_t event_info; | |||
797 | ||||
798 | if (*task_info_count < TASK_EVENTS_INFO_COUNT(sizeof(task_events_info_data_t) / sizeof(natural_t))) { | |||
799 | return KERN_INVALID_ARGUMENT4; | |||
800 | } | |||
801 | ||||
802 | event_info = (task_events_info_t) task_info_out; | |||
803 | ||||
804 | task_lock(task); | |||
805 | event_info->faults = task->faults; | |||
806 | event_info->zero_fills = task->zero_fills; | |||
807 | event_info->reactivations = task->reactivations; | |||
808 | event_info->pageins = task->pageins; | |||
809 | event_info->cow_faults = task->cow_faults; | |||
810 | event_info->messages_sent = task->messages_sent; | |||
811 | event_info->messages_received = task->messages_received; | |||
812 | task_unlock(task)((void)(&(task)->lock)); | |||
813 | ||||
814 | *task_info_count = TASK_EVENTS_INFO_COUNT(sizeof(task_events_info_data_t) / sizeof(natural_t)); | |||
815 | break; | |||
816 | } | |||
817 | ||||
818 | case TASK_THREAD_TIMES_INFO3: | |||
819 | { | |||
820 | task_thread_times_info_t times_info; | |||
821 | thread_t thread; | |||
822 | ||||
823 | if (*task_info_count < TASK_THREAD_TIMES_INFO_COUNT(sizeof(task_thread_times_info_data_t) / sizeof(natural_t))) { | |||
824 | return KERN_INVALID_ARGUMENT4; | |||
825 | } | |||
826 | ||||
827 | times_info = (task_thread_times_info_t) task_info_out; | |||
828 | times_info->user_time.seconds = 0; | |||
829 | times_info->user_time.microseconds = 0; | |||
830 | times_info->system_time.seconds = 0; | |||
831 | times_info->system_time.microseconds = 0; | |||
832 | ||||
833 | task_lock(task); | |||
834 | queue_iterate(&task->thread_list, thread,for ((thread) = (thread_t) ((&task->thread_list)->next ); !(((&task->thread_list)) == ((queue_entry_t)(thread ))); (thread) = (thread_t) ((&(thread)->thread_list)-> next)) | |||
835 | thread_t, thread_list)for ((thread) = (thread_t) ((&task->thread_list)->next ); !(((&task->thread_list)) == ((queue_entry_t)(thread ))); (thread) = (thread_t) ((&(thread)->thread_list)-> next)) | |||
836 | { | |||
837 | time_value_t user_time, system_time; | |||
838 | spl_t s; | |||
839 | ||||
840 | s = splsched(); | |||
841 | thread_lock(thread); | |||
842 | ||||
843 | thread_read_times(thread, &user_time, &system_time); | |||
844 | ||||
845 | thread_unlock(thread)((void)(&(thread)->lock)); | |||
846 | splx(s); | |||
847 | ||||
848 | time_value_add(×_info->user_time, &user_time){ (×_info->user_time)->microseconds += (&user_time )->microseconds; (×_info->user_time)->seconds += (&user_time)->seconds; if ((×_info->user_time )->microseconds >= (1000000)) { (×_info->user_time )->microseconds -= (1000000); (×_info->user_time )->seconds++; } }; | |||
849 | time_value_add(×_info->system_time, &system_time){ (×_info->system_time)->microseconds += (& system_time)->microseconds; (×_info->system_time )->seconds += (&system_time)->seconds; if ((×_info ->system_time)->microseconds >= (1000000)) { (×_info ->system_time)->microseconds -= (1000000); (×_info ->system_time)->seconds++; } }; | |||
850 | } | |||
851 | task_unlock(task)((void)(&(task)->lock)); | |||
852 | ||||
853 | *task_info_count = TASK_THREAD_TIMES_INFO_COUNT(sizeof(task_thread_times_info_data_t) / sizeof(natural_t)); | |||
854 | break; | |||
855 | } | |||
856 | ||||
857 | default: | |||
858 | return KERN_INVALID_ARGUMENT4; | |||
859 | } | |||
860 | ||||
861 | return KERN_SUCCESS0; | |||
862 | } | |||
863 | ||||
864 | #if MACH_HOST0 | |||
865 | /* | |||
866 | * task_assign: | |||
867 | * | |||
868 | * Change the assigned processor set for the task | |||
869 | */ | |||
870 | kern_return_t | |||
871 | task_assign( | |||
872 | task_t task, | |||
873 | processor_set_t new_pset, | |||
874 | boolean_t assign_threads) | |||
875 | { | |||
876 | kern_return_t ret = KERN_SUCCESS0; | |||
877 | thread_t thread, prev_thread; | |||
878 | queue_head_t *list; | |||
879 | processor_set_t pset; | |||
880 | ||||
881 | if (task == TASK_NULL((task_t) 0) || new_pset == PROCESSOR_SET_NULL((processor_set_t) 0)) { | |||
882 | return KERN_INVALID_ARGUMENT4; | |||
883 | } | |||
884 | ||||
885 | /* | |||
886 | * Freeze task`s assignment. Prelude to assigning | |||
887 | * task. Only one freeze may be held per task. | |||
888 | */ | |||
889 | ||||
890 | task_lock(task); | |||
891 | while (task->may_assign == FALSE((boolean_t) 0)) { | |||
892 | task->assign_active = TRUE((boolean_t) 1); | |||
893 | assert_wait((event_t)&task->assign_active, TRUE((boolean_t) 1)); | |||
894 | task_unlock(task)((void)(&(task)->lock)); | |||
895 | thread_block((void (*)()) 0); | |||
896 | task_lock(task); | |||
897 | } | |||
898 | ||||
899 | /* | |||
900 | * Avoid work if task already in this processor set. | |||
901 | */ | |||
902 | if (task->processor_set == new_pset) { | |||
903 | /* | |||
904 | * No need for task->assign_active wakeup: | |||
905 | * task->may_assign is still TRUE. | |||
906 | */ | |||
907 | task_unlock(task)((void)(&(task)->lock)); | |||
908 | return KERN_SUCCESS0; | |||
909 | } | |||
910 | ||||
911 | task->may_assign = FALSE((boolean_t) 0); | |||
912 | task_unlock(task)((void)(&(task)->lock)); | |||
913 | ||||
914 | /* | |||
915 | * Safe to get the task`s pset: it cannot change while | |||
916 | * task is frozen. | |||
917 | */ | |||
918 | pset = task->processor_set; | |||
919 | ||||
920 | /* | |||
921 | * Lock both psets now. Use ordering to avoid deadlock. | |||
922 | */ | |||
923 | Restart: | |||
924 | if ((vm_offset_t) pset < (vm_offset_t) new_pset) { | |||
925 | pset_lock(pset); | |||
926 | pset_lock(new_pset); | |||
927 | } | |||
928 | else { | |||
929 | pset_lock(new_pset); | |||
930 | pset_lock(pset); | |||
931 | } | |||
932 | ||||
933 | /* | |||
934 | * Check if new_pset is ok to assign to. If not, | |||
935 | * reassign to default_pset. | |||
936 | */ | |||
937 | if (!new_pset->active) { | |||
938 | pset_unlock(pset)((void)(&(pset)->lock)); | |||
939 | pset_unlock(new_pset)((void)(&(new_pset)->lock)); | |||
940 | new_pset = &default_pset; | |||
941 | goto Restart; | |||
942 | } | |||
943 | ||||
944 | pset_reference(new_pset); | |||
945 | ||||
946 | /* | |||
947 | * Now grab the task lock and move the task. | |||
948 | */ | |||
949 | ||||
950 | task_lock(task); | |||
951 | pset_remove_task(pset, task); | |||
952 | pset_add_task(new_pset, task); | |||
953 | ||||
954 | pset_unlock(pset)((void)(&(pset)->lock)); | |||
955 | pset_unlock(new_pset)((void)(&(new_pset)->lock)); | |||
956 | ||||
957 | if (assign_threads == FALSE((boolean_t) 0)) { | |||
958 | /* | |||
959 | * We leave existing threads at their | |||
960 | * old assignments. Unfreeze task`s | |||
961 | * assignment. | |||
962 | */ | |||
963 | task->may_assign = TRUE((boolean_t) 1); | |||
964 | if (task->assign_active) { | |||
965 | task->assign_active = FALSE((boolean_t) 0); | |||
966 | thread_wakeup((event_t) &task->assign_active)thread_wakeup_prim(((event_t) &task->assign_active), ( (boolean_t) 0), 0); | |||
967 | } | |||
968 | task_unlock(task)((void)(&(task)->lock)); | |||
969 | pset_deallocate(pset); | |||
970 | return KERN_SUCCESS0; | |||
971 | } | |||
972 | ||||
973 | /* | |||
974 | * If current thread is in task, freeze its assignment. | |||
975 | */ | |||
976 | if (current_thread()(active_threads[(0)])->task == task) { | |||
977 | task_unlock(task)((void)(&(task)->lock)); | |||
978 | thread_freeze(current_thread()(active_threads[(0)])); | |||
979 | task_lock(task); | |||
980 | } | |||
981 | ||||
982 | /* | |||
983 | * Iterate down the thread list reassigning all the threads. | |||
984 | * New threads pick up task's new processor set automatically. | |||
985 | * Do current thread last because new pset may be empty. | |||
986 | */ | |||
987 | list = &task->thread_list; | |||
988 | prev_thread = THREAD_NULL((thread_t) 0); | |||
989 | queue_iterate(list, thread, thread_t, thread_list)for ((thread) = (thread_t) ((list)->next); !(((list)) == ( (queue_entry_t)(thread))); (thread) = (thread_t) ((&(thread )->thread_list)->next)) { | |||
990 | if (!(task->active)) { | |||
991 | ret = KERN_FAILURE5; | |||
992 | break; | |||
993 | } | |||
994 | if (thread != current_thread()(active_threads[(0)])) { | |||
995 | thread_reference(thread); | |||
996 | task_unlock(task)((void)(&(task)->lock)); | |||
997 | if (prev_thread != THREAD_NULL((thread_t) 0)) | |||
998 | thread_deallocate(prev_thread); /* may block */ | |||
999 | thread_assign(thread,new_pset); /* may block */ | |||
1000 | prev_thread = thread; | |||
1001 | task_lock(task); | |||
1002 | } | |||
1003 | } | |||
1004 | ||||
1005 | /* | |||
1006 | * Done, wakeup anyone waiting for us. | |||
1007 | */ | |||
1008 | task->may_assign = TRUE((boolean_t) 1); | |||
1009 | if (task->assign_active) { | |||
1010 | task->assign_active = FALSE((boolean_t) 0); | |||
1011 | thread_wakeup((event_t)&task->assign_active)thread_wakeup_prim(((event_t)&task->assign_active), (( boolean_t) 0), 0); | |||
1012 | } | |||
1013 | task_unlock(task)((void)(&(task)->lock)); | |||
1014 | if (prev_thread != THREAD_NULL((thread_t) 0)) | |||
1015 | thread_deallocate(prev_thread); /* may block */ | |||
1016 | ||||
1017 | /* | |||
1018 | * Finish assignment of current thread. | |||
1019 | */ | |||
1020 | if (current_thread()(active_threads[(0)])->task == task) | |||
1021 | thread_doassign(current_thread()(active_threads[(0)]), new_pset, TRUE((boolean_t) 1)); | |||
1022 | ||||
1023 | pset_deallocate(pset); | |||
1024 | ||||
1025 | return ret; | |||
1026 | } | |||
1027 | #else /* MACH_HOST */ | |||
1028 | /* | |||
1029 | * task_assign: | |||
1030 | * | |||
1031 | * Change the assigned processor set for the task | |||
1032 | */ | |||
1033 | kern_return_t | |||
1034 | task_assign( | |||
1035 | task_t task, | |||
1036 | processor_set_t new_pset, | |||
1037 | boolean_t assign_threads) | |||
1038 | { | |||
1039 | return KERN_FAILURE5; | |||
1040 | } | |||
1041 | #endif /* MACH_HOST */ | |||
1042 | ||||
1043 | ||||
1044 | /* | |||
1045 | * task_assign_default: | |||
1046 | * | |||
1047 | * Version of task_assign to assign to default processor set. | |||
1048 | */ | |||
1049 | kern_return_t | |||
1050 | task_assign_default( | |||
1051 | task_t task, | |||
1052 | boolean_t assign_threads) | |||
1053 | { | |||
1054 | return task_assign(task, &default_pset, assign_threads); | |||
1055 | } | |||
1056 | ||||
1057 | /* | |||
1058 | * task_get_assignment | |||
1059 | * | |||
1060 | * Return name of processor set that task is assigned to. | |||
1061 | */ | |||
1062 | kern_return_t task_get_assignment( | |||
1063 | task_t task, | |||
1064 | processor_set_t *pset) | |||
1065 | { | |||
1066 | if (task == TASK_NULL((task_t) 0)) | |||
1067 | return KERN_INVALID_ARGUMENT4; | |||
1068 | ||||
1069 | if (!task->active) | |||
1070 | return KERN_FAILURE5; | |||
1071 | ||||
1072 | *pset = task->processor_set; | |||
1073 | pset_reference(*pset); | |||
1074 | return KERN_SUCCESS0; | |||
1075 | } | |||
1076 | ||||
1077 | /* | |||
1078 | * task_priority | |||
1079 | * | |||
1080 | * Set priority of task; used only for newly created threads. | |||
1081 | * Optionally change priorities of threads. | |||
1082 | */ | |||
1083 | kern_return_t | |||
1084 | task_priority( | |||
1085 | task_t task, | |||
1086 | int priority, | |||
1087 | boolean_t change_threads) | |||
1088 | { | |||
1089 | kern_return_t ret = KERN_SUCCESS0; | |||
1090 | ||||
1091 | if (task == TASK_NULL((task_t) 0) || invalid_pri(priority)(((priority) < 0) || ((priority) >= 50))) | |||
1092 | return KERN_INVALID_ARGUMENT4; | |||
1093 | ||||
1094 | task_lock(task); | |||
1095 | task->priority = priority; | |||
1096 | ||||
1097 | if (change_threads) { | |||
1098 | thread_t thread; | |||
1099 | queue_head_t *list; | |||
1100 | ||||
1101 | list = &task->thread_list; | |||
1102 | queue_iterate(list, thread, thread_t, thread_list)for ((thread) = (thread_t) ((list)->next); !(((list)) == ( (queue_entry_t)(thread))); (thread) = (thread_t) ((&(thread )->thread_list)->next)) { | |||
1103 | if (thread_priority(thread, priority, FALSE((boolean_t) 0)) | |||
1104 | != KERN_SUCCESS0) | |||
1105 | ret = KERN_FAILURE5; | |||
1106 | } | |||
1107 | } | |||
1108 | ||||
1109 | task_unlock(task)((void)(&(task)->lock)); | |||
1110 | return ret; | |||
1111 | } | |||
1112 | ||||
1113 | /* | |||
1114 | * task_set_name | |||
1115 | * | |||
1116 | * Set the name of task TASK to NAME. This is a debugging aid. | |||
1117 | * NAME will be used in error messages printed by the kernel. | |||
1118 | */ | |||
1119 | kern_return_t | |||
1120 | task_set_name( | |||
1121 | task_t task, | |||
1122 | kernel_debug_name_t name) | |||
1123 | { | |||
1124 | strncpy(task->name, name, sizeof task->name - 1); | |||
1125 | task->name[sizeof task->name - 1] = '\0'; | |||
1126 | return KERN_SUCCESS0; | |||
1127 | } | |||
1128 | ||||
1129 | /* | |||
1130 | * task_collect_scan: | |||
1131 | * | |||
1132 | * Attempt to free resources owned by tasks. | |||
1133 | */ | |||
1134 | ||||
1135 | void task_collect_scan(void) | |||
1136 | { | |||
1137 | task_t task, prev_task; | |||
1138 | processor_set_t pset, prev_pset; | |||
1139 | ||||
1140 | prev_task = TASK_NULL((task_t) 0); | |||
1141 | prev_pset = PROCESSOR_SET_NULL((processor_set_t) 0); | |||
1142 | ||||
1143 | simple_lock(&all_psets_lock); | |||
1144 | queue_iterate(&all_psets, pset, processor_set_t, all_psets)for ((pset) = (processor_set_t) ((&all_psets)->next); ! (((&all_psets)) == ((queue_entry_t)(pset))); (pset) = (processor_set_t ) ((&(pset)->all_psets)->next)) { | |||
1145 | pset_lock(pset); | |||
1146 | queue_iterate(&pset->tasks, task, task_t, pset_tasks)for ((task) = (task_t) ((&pset->tasks)->next); !((( &pset->tasks)) == ((queue_entry_t)(task))); (task) = ( task_t) ((&(task)->pset_tasks)->next)) { | |||
1147 | task_reference(task); | |||
1148 | pset_reference(pset); | |||
1149 | pset_unlock(pset)((void)(&(pset)->lock)); | |||
1150 | simple_unlock(&all_psets_lock)((void)(&all_psets_lock)); | |||
1151 | ||||
1152 | machine_task_collect (task); | |||
1153 | pmap_collect(task->map->pmap); | |||
| ||||
1154 | ||||
1155 | if (prev_task != TASK_NULL((task_t) 0)) | |||
1156 | task_deallocate(prev_task); | |||
1157 | prev_task = task; | |||
1158 | ||||
1159 | if (prev_pset != PROCESSOR_SET_NULL((processor_set_t) 0)) | |||
1160 | pset_deallocate(prev_pset); | |||
1161 | prev_pset = pset; | |||
1162 | ||||
1163 | simple_lock(&all_psets_lock); | |||
1164 | pset_lock(pset); | |||
1165 | } | |||
1166 | pset_unlock(pset)((void)(&(pset)->lock)); | |||
1167 | } | |||
1168 | simple_unlock(&all_psets_lock)((void)(&all_psets_lock)); | |||
1169 | ||||
1170 | if (prev_task != TASK_NULL((task_t) 0)) | |||
1171 | task_deallocate(prev_task); | |||
1172 | if (prev_pset != PROCESSOR_SET_NULL((processor_set_t) 0)) | |||
1173 | pset_deallocate(prev_pset); | |||
1174 | } | |||
1175 | ||||
1176 | boolean_t task_collect_allowed = TRUE((boolean_t) 1); | |||
1177 | unsigned task_collect_last_tick = 0; | |||
1178 | unsigned task_collect_max_rate = 0; /* in ticks */ | |||
1179 | ||||
1180 | /* | |||
1181 | * consider_task_collect: | |||
1182 | * | |||
1183 | * Called by the pageout daemon when the system needs more free pages. | |||
1184 | */ | |||
1185 | ||||
1186 | void consider_task_collect(void) | |||
1187 | { | |||
1188 | /* | |||
1189 | * By default, don't attempt task collection more frequently | |||
1190 | * than once a second. | |||
1191 | */ | |||
1192 | ||||
1193 | if (task_collect_max_rate == 0) | |||
| ||||
1194 | task_collect_max_rate = hz; | |||
1195 | ||||
1196 | if (task_collect_allowed && | |||
1197 | (sched_tick > (task_collect_last_tick + task_collect_max_rate))) { | |||
1198 | task_collect_last_tick = sched_tick; | |||
1199 | task_collect_scan(); | |||
1200 | } | |||
1201 | } | |||
1202 | ||||
1203 | kern_return_t | |||
1204 | task_ras_control( | |||
1205 | task_t task, | |||
1206 | vm_offset_t pc, | |||
1207 | vm_offset_t endpc, | |||
1208 | int flavor) | |||
1209 | { | |||
1210 | kern_return_t ret = KERN_FAILURE5; | |||
1211 | ||||
1212 | #if FAST_TAS0 | |||
1213 | int i; | |||
1214 | ||||
1215 | ret = KERN_SUCCESS0; | |||
1216 | task_lock(task); | |||
1217 | switch (flavor) { | |||
1218 | case TASK_RAS_CONTROL_PURGE_ALL0: /* remove all RAS */ | |||
1219 | for (i = 0; i < TASK_FAST_TAS_NRAS; i++) { | |||
1220 | task->fast_tas_base[i] = task->fast_tas_end[i] = 0; | |||
1221 | } | |||
1222 | break; | |||
1223 | case TASK_RAS_CONTROL_PURGE_ONE1: /* remove this RAS, collapse remaining */ | |||
1224 | for (i = 0; i < TASK_FAST_TAS_NRAS; i++) { | |||
1225 | if ( (task->fast_tas_base[i] == pc) | |||
1226 | && (task->fast_tas_end[i] == endpc)) { | |||
1227 | while (i < TASK_FAST_TAS_NRAS-1) { | |||
1228 | task->fast_tas_base[i] = task->fast_tas_base[i+1]; | |||
1229 | task->fast_tas_end[i] = task->fast_tas_end[i+1]; | |||
1230 | i++; | |||
1231 | } | |||
1232 | task->fast_tas_base[TASK_FAST_TAS_NRAS-1] = 0; | |||
1233 | task->fast_tas_end[TASK_FAST_TAS_NRAS-1] = 0; | |||
1234 | break; | |||
1235 | } | |||
1236 | } | |||
1237 | if (i == TASK_FAST_TAS_NRAS) { | |||
1238 | ret = KERN_INVALID_ADDRESS1; | |||
1239 | } | |||
1240 | break; | |||
1241 | case TASK_RAS_CONTROL_PURGE_ALL_AND_INSTALL_ONE2: | |||
1242 | /* remove all RAS an install this RAS */ | |||
1243 | for (i = 0; i < TASK_FAST_TAS_NRAS; i++) { | |||
1244 | task->fast_tas_base[i] = task->fast_tas_end[i] = 0; | |||
1245 | } | |||
1246 | /* FALL THROUGH */ | |||
1247 | case TASK_RAS_CONTROL_INSTALL_ONE3: /* install this RAS */ | |||
1248 | for (i = 0; i < TASK_FAST_TAS_NRAS; i++) { | |||
1249 | if ( (task->fast_tas_base[i] == pc) | |||
1250 | && (task->fast_tas_end[i] == endpc)) { | |||
1251 | /* already installed */ | |||
1252 | break; | |||
1253 | } | |||
1254 | if ((task->fast_tas_base[i] == 0) && (task->fast_tas_end[i] == 0)){ | |||
1255 | task->fast_tas_base[i] = pc; | |||
1256 | task->fast_tas_end[i] = endpc; | |||
1257 | break; | |||
1258 | } | |||
1259 | } | |||
1260 | if (i == TASK_FAST_TAS_NRAS) { | |||
1261 | ret = KERN_RESOURCE_SHORTAGE6; | |||
1262 | } | |||
1263 | break; | |||
1264 | default: ret = KERN_INVALID_VALUE18; | |||
1265 | break; | |||
1266 | } | |||
1267 | task_unlock(task)((void)(&(task)->lock)); | |||
1268 | #endif /* FAST_TAS */ | |||
1269 | return ret; | |||
1270 | } | |||
1271 | ||||
1272 | /* | |||
1273 | * register_new_task_notification | |||
1274 | * | |||
1275 | * Register a port to which a notification about newly created | |||
1276 | * tasks are sent. | |||
1277 | */ | |||
1278 | kern_return_t | |||
1279 | register_new_task_notification( | |||
1280 | const host_t host, | |||
1281 | ipc_port_t notification) | |||
1282 | { | |||
1283 | if (host == HOST_NULL((host_t)0)) | |||
1284 | return KERN_INVALID_HOST22; | |||
1285 | ||||
1286 | if (new_task_notification != NULL((void *) 0)) | |||
1287 | return KERN_NO_ACCESS8; | |||
1288 | ||||
1289 | new_task_notification = notification; | |||
1290 | return KERN_SUCCESS0; | |||
1291 | } |