| File: | obj-scan-build/../vm/memory_object.c |
| Location: | line 144, column 3 |
| Description: | Dereference of null pointer |
| 1 | /* | |||||
| 2 | * Mach Operating System | |||||
| 3 | * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University. | |||||
| 4 | * Copyright (c) 1993,1994 The University of Utah and | |||||
| 5 | * the Computer Systems Laboratory (CSL). | |||||
| 6 | * All rights reserved. | |||||
| 7 | * | |||||
| 8 | * Permission to use, copy, modify and distribute this software and its | |||||
| 9 | * documentation is hereby granted, provided that both the copyright | |||||
| 10 | * notice and this permission notice appear in all copies of the | |||||
| 11 | * software, derivative works or modified versions, and any portions | |||||
| 12 | * thereof, and that both notices appear in supporting documentation. | |||||
| 13 | * | |||||
| 14 | * CARNEGIE MELLON, THE UNIVERSITY OF UTAH AND CSL ALLOW FREE USE OF | |||||
| 15 | * THIS SOFTWARE IN ITS "AS IS" CONDITION, AND DISCLAIM ANY LIABILITY | |||||
| 16 | * OF ANY KIND FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF | |||||
| 17 | * THIS SOFTWARE. | |||||
| 18 | * | |||||
| 19 | * Carnegie Mellon requests users of this software to return to | |||||
| 20 | * | |||||
| 21 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU | |||||
| 22 | * School of Computer Science | |||||
| 23 | * Carnegie Mellon University | |||||
| 24 | * Pittsburgh PA 15213-3890 | |||||
| 25 | * | |||||
| 26 | * any improvements or extensions that they make and grant Carnegie Mellon | |||||
| 27 | * the rights to redistribute these changes. | |||||
| 28 | */ | |||||
| 29 | /* | |||||
| 30 | * File: vm/memory_object.c | |||||
| 31 | * Author: Michael Wayne Young | |||||
| 32 | * | |||||
| 33 | * External memory management interface control functions. | |||||
| 34 | */ | |||||
| 35 | ||||||
| 36 | /* | |||||
| 37 | * Interface dependencies: | |||||
| 38 | */ | |||||
| 39 | ||||||
| 40 | #include <mach/std_types.h> /* For pointer_t */ | |||||
| 41 | #include <mach/mach_types.h> | |||||
| 42 | ||||||
| 43 | #include <mach/kern_return.h> | |||||
| 44 | #include <vm/vm_map.h> | |||||
| 45 | #include <vm/vm_object.h> | |||||
| 46 | #include <mach/memory_object.h> | |||||
| 47 | #include <mach/boolean.h> | |||||
| 48 | #include <mach/vm_prot.h> | |||||
| 49 | #include <mach/message.h> | |||||
| 50 | ||||||
| 51 | #include <vm/memory_object_user.user.h> | |||||
| 52 | #include <vm/memory_object_default.user.h> | |||||
| 53 | ||||||
| 54 | /* | |||||
| 55 | * Implementation dependencies: | |||||
| 56 | */ | |||||
| 57 | #include <vm/memory_object.h> | |||||
| 58 | #include <vm/vm_page.h> | |||||
| 59 | #include <vm/vm_pageout.h> | |||||
| 60 | #include <vm/pmap.h> /* For copy_to_phys, pmap_clear_modify */ | |||||
| 61 | #include <kern/debug.h> /* For panic() */ | |||||
| 62 | #include <kern/thread.h> /* For current_thread() */ | |||||
| 63 | #include <kern/host.h> | |||||
| 64 | #include <vm/vm_kern.h> /* For kernel_map, vm_move */ | |||||
| 65 | #include <vm/vm_map.h> /* For vm_map_pageable */ | |||||
| 66 | #include <ipc/ipc_port.h> | |||||
| 67 | ||||||
| 68 | #if MACH_PAGEMAP1 | |||||
| 69 | #include <vm/vm_external.h> | |||||
| 70 | #endif /* MACH_PAGEMAP */ | |||||
| 71 | ||||||
| 72 | typedef int memory_object_lock_result_t; /* moved from below */ | |||||
| 73 | ||||||
| 74 | ||||||
| 75 | ipc_port_t memory_manager_default = IP_NULL((ipc_port_t) ((ipc_object_t) 0)); | |||||
| 76 | decl_simple_lock_data(,memory_manager_default_lock)struct simple_lock_data_empty memory_manager_default_lock; | |||||
| 77 | ||||||
| 78 | /* | |||||
| 79 | * Important note: | |||||
| 80 | * All of these routines gain a reference to the | |||||
| 81 | * object (first argument) as part of the automatic | |||||
| 82 | * argument conversion. Explicit deallocation is necessary. | |||||
| 83 | */ | |||||
| 84 | ||||||
| 85 | kern_return_t memory_object_data_supply( | |||||
| 86 | vm_object_t object, | |||||
| 87 | vm_offset_t offset, | |||||
| 88 | vm_map_copy_t data_copy, | |||||
| 89 | unsigned int data_cnt, | |||||
| 90 | vm_prot_t lock_value, | |||||
| 91 | boolean_t precious, | |||||
| 92 | ipc_port_t reply_to, | |||||
| 93 | mach_msg_type_name_t reply_to_type) | |||||
| 94 | { | |||||
| 95 | kern_return_t result = KERN_SUCCESS0; | |||||
| 96 | vm_offset_t error_offset = 0; | |||||
| 97 | vm_page_t m; | |||||
| 98 | vm_page_t data_m; | |||||
| 99 | vm_size_t original_length; | |||||
| 100 | vm_offset_t original_offset; | |||||
| 101 | vm_page_t *page_list; | |||||
| 102 | boolean_t was_absent; | |||||
| 103 | vm_map_copy_t orig_copy = data_copy; | |||||
| 104 | ||||||
| 105 | /* | |||||
| 106 | * Look for bogus arguments | |||||
| 107 | */ | |||||
| 108 | ||||||
| 109 | if (object == VM_OBJECT_NULL((vm_object_t) 0)) { | |||||
| 110 | return(KERN_INVALID_ARGUMENT4); | |||||
| 111 | } | |||||
| 112 | ||||||
| 113 | if (lock_value & ~VM_PROT_ALL(((vm_prot_t) 0x01)|((vm_prot_t) 0x02)|((vm_prot_t) 0x04))) { | |||||
| 114 | vm_object_deallocate(object); | |||||
| 115 | return(KERN_INVALID_ARGUMENT4); | |||||
| 116 | } | |||||
| 117 | ||||||
| 118 | if ((data_cnt % PAGE_SIZE(1 << 12)) != 0) { | |||||
| 119 | vm_object_deallocate(object); | |||||
| 120 | return(KERN_INVALID_ARGUMENT4); | |||||
| 121 | } | |||||
| 122 | ||||||
| 123 | /* | |||||
| 124 | * Adjust the offset from the memory object to the offset | |||||
| 125 | * within the vm_object. | |||||
| 126 | */ | |||||
| 127 | ||||||
| 128 | original_length = data_cnt; | |||||
| 129 | original_offset = offset; | |||||
| 130 | ||||||
| 131 | assert(data_copy->type == VM_MAP_COPY_PAGE_LIST)({ if (!(data_copy->type == 3)) Assert("data_copy->type == VM_MAP_COPY_PAGE_LIST" , "../vm/memory_object.c", 131); }); | |||||
| 132 | page_list = &data_copy->cpy_page_listc_u.c_p.page_list[0]; | |||||
| 133 | ||||||
| 134 | vm_object_lock(object); | |||||
| 135 | vm_object_paging_begin(object)((object)->paging_in_progress++); | |||||
| 136 | offset -= object->paging_offset; | |||||
| 137 | ||||||
| 138 | /* | |||||
| 139 | * Loop over copy stealing pages for pagein. | |||||
| 140 | */ | |||||
| 141 | ||||||
| 142 | for (; data_cnt > 0 ; data_cnt -= PAGE_SIZE(1 << 12), offset += PAGE_SIZE(1 << 12)) { | |||||
| 143 | ||||||
| 144 | assert(data_copy->cpy_npages > 0)({ if (!(data_copy->c_u.c_p.npages > 0)) Assert("data_copy->cpy_npages > 0" , "../vm/memory_object.c", 144); }); | |||||
| ||||||
| 145 | data_m = *page_list; | |||||
| 146 | ||||||
| 147 | if (data_m == VM_PAGE_NULL((vm_page_t) 0) || data_m->tabled || | |||||
| 148 | data_m->error || data_m->absent || data_m->fictitious) { | |||||
| 149 | ||||||
| 150 | panic("Data_supply: bad page"); | |||||
| 151 | } | |||||
| 152 | ||||||
| 153 | /* | |||||
| 154 | * Look up target page and check its state. | |||||
| 155 | */ | |||||
| 156 | ||||||
| 157 | retry_lookup: | |||||
| 158 | m = vm_page_lookup(object,offset); | |||||
| 159 | if (m == VM_PAGE_NULL((vm_page_t) 0)) { | |||||
| 160 | was_absent = FALSE((boolean_t) 0); | |||||
| 161 | } | |||||
| 162 | else { | |||||
| 163 | if (m->absent && m->busy) { | |||||
| 164 | ||||||
| 165 | /* | |||||
| 166 | * Page was requested. Free the busy | |||||
| 167 | * page waiting for it. Insertion | |||||
| 168 | * of new page happens below. | |||||
| 169 | */ | |||||
| 170 | ||||||
| 171 | VM_PAGE_FREE(m)({ ; vm_page_free(m); ((void)(&vm_page_queue_lock)); }); | |||||
| 172 | was_absent = TRUE((boolean_t) 1); | |||||
| 173 | } | |||||
| 174 | else { | |||||
| 175 | ||||||
| 176 | /* | |||||
| 177 | * Have to wait for page that is busy and | |||||
| 178 | * not absent. This is probably going to | |||||
| 179 | * be an error, but go back and check. | |||||
| 180 | */ | |||||
| 181 | if (m->busy) { | |||||
| 182 | PAGE_ASSERT_WAIT(m, FALSE)({ (m)->wanted = ((boolean_t) 1); assert_wait((event_t) (m ), (((boolean_t) 0))); }); | |||||
| 183 | vm_object_unlock(object)((void)(&(object)->Lock)); | |||||
| 184 | thread_block((void (*)()) 0); | |||||
| 185 | vm_object_lock(object); | |||||
| 186 | goto retry_lookup; | |||||
| 187 | } | |||||
| 188 | ||||||
| 189 | /* | |||||
| 190 | * Page already present; error. | |||||
| 191 | * This is an error if data is precious. | |||||
| 192 | */ | |||||
| 193 | result = KERN_MEMORY_PRESENT23; | |||||
| 194 | error_offset = offset + object->paging_offset; | |||||
| 195 | ||||||
| 196 | break; | |||||
| 197 | } | |||||
| 198 | } | |||||
| 199 | ||||||
| 200 | /* | |||||
| 201 | * Ok to pagein page. Target object now has no page | |||||
| 202 | * at offset. Set the page parameters, then drop | |||||
| 203 | * in new page and set up pageout state. Object is | |||||
| 204 | * still locked here. | |||||
| 205 | * | |||||
| 206 | * Must clear busy bit in page before inserting it. | |||||
| 207 | * Ok to skip wakeup logic because nobody else | |||||
| 208 | * can possibly know about this page. | |||||
| 209 | */ | |||||
| 210 | ||||||
| 211 | data_m->busy = FALSE((boolean_t) 0); | |||||
| 212 | data_m->dirty = FALSE((boolean_t) 0); | |||||
| 213 | pmap_clear_modify(data_m->phys_addr); | |||||
| 214 | ||||||
| 215 | data_m->page_lock = lock_value; | |||||
| 216 | data_m->unlock_request = VM_PROT_NONE((vm_prot_t) 0x00); | |||||
| 217 | data_m->precious = precious; | |||||
| 218 | ||||||
| 219 | vm_page_lock_queues(); | |||||
| 220 | vm_page_insert(data_m, object, offset); | |||||
| 221 | ||||||
| 222 | if (was_absent) | |||||
| 223 | vm_page_activate(data_m); | |||||
| 224 | else | |||||
| 225 | vm_page_deactivate(data_m); | |||||
| 226 | ||||||
| 227 | vm_page_unlock_queues()((void)(&vm_page_queue_lock)); | |||||
| 228 | ||||||
| 229 | /* | |||||
| 230 | * Null out this page list entry, and advance to next | |||||
| 231 | * page. | |||||
| 232 | */ | |||||
| 233 | ||||||
| 234 | *page_list++ = VM_PAGE_NULL((vm_page_t) 0); | |||||
| 235 | ||||||
| 236 | if (--(data_copy->cpy_npagesc_u.c_p.npages) == 0 && | |||||
| 237 | vm_map_copy_has_cont(data_copy)(((data_copy)->c_u.c_p.cont) != (kern_return_t (*)()) 0)) { | |||||
| 238 | vm_map_copy_t new_copy; | |||||
| 239 | ||||||
| 240 | vm_object_unlock(object)((void)(&(object)->Lock)); | |||||
| 241 | ||||||
| 242 | vm_map_copy_invoke_cont(data_copy, &new_copy, &result)({ vm_map_copy_page_discard(data_copy); *&result = (*((data_copy )->c_u.c_p.cont))((data_copy)->c_u.c_p.cont_args, & new_copy); (data_copy)->c_u.c_p.cont = (kern_return_t (*)( )) 0; }); | |||||
| 243 | ||||||
| 244 | if (result == KERN_SUCCESS0) { | |||||
| 245 | ||||||
| 246 | /* | |||||
| 247 | * Consume on success requires that | |||||
| 248 | * we keep the original vm_map_copy | |||||
| 249 | * around in case something fails. | |||||
| 250 | * Free the old copy if it's not the original | |||||
| 251 | */ | |||||
| 252 | if (data_copy != orig_copy) { | |||||
| 253 | vm_map_copy_discard(data_copy); | |||||
| 254 | } | |||||
| 255 | ||||||
| 256 | if ((data_copy = new_copy) != VM_MAP_COPY_NULL((vm_map_copy_t) 0)) | |||||
| 257 | page_list = &data_copy->cpy_page_listc_u.c_p.page_list[0]; | |||||
| 258 | ||||||
| 259 | vm_object_lock(object); | |||||
| 260 | } | |||||
| 261 | else { | |||||
| 262 | vm_object_lock(object); | |||||
| 263 | error_offset = offset + object->paging_offset + | |||||
| 264 | PAGE_SIZE(1 << 12); | |||||
| 265 | break; | |||||
| 266 | } | |||||
| 267 | } | |||||
| 268 | } | |||||
| 269 | ||||||
| 270 | /* | |||||
| 271 | * Send reply if one was requested. | |||||
| 272 | */ | |||||
| 273 | vm_object_paging_end(object)({ ({ if (!((object)->paging_in_progress != 0)) Assert("(object)->paging_in_progress != 0" , "../vm/memory_object.c", 273); }); if (--(object)->paging_in_progress == 0) { ({ if ((object)->all_wanted & (1 << (2) )) thread_wakeup_prim(((event_t)(((vm_offset_t) object) + (2) )), ((boolean_t) 0), 0); (object)->all_wanted &= ~(1 << (2)); }); } }); | |||||
| 274 | vm_object_unlock(object)((void)(&(object)->Lock)); | |||||
| 275 | ||||||
| 276 | if (vm_map_copy_has_cont(data_copy)(((data_copy)->c_u.c_p.cont) != (kern_return_t (*)()) 0)) | |||||
| 277 | vm_map_copy_abort_cont(data_copy)({ vm_map_copy_page_discard(data_copy); (*((data_copy)->c_u .c_p.cont))((data_copy)->c_u.c_p.cont_args, (vm_map_copy_t *) 0); (data_copy)->c_u.c_p.cont = (kern_return_t (*)()) 0 ; (data_copy)->c_u.c_p.cont_args = (char *) 0; }); | |||||
| 278 | ||||||
| 279 | if (IP_VALID(reply_to)(((&(reply_to)->ip_target.ipt_object) != ((ipc_object_t ) 0)) && ((&(reply_to)->ip_target.ipt_object) != ((ipc_object_t) -1)))) { | |||||
| 280 | memory_object_supply_completed( | |||||
| 281 | reply_to, reply_to_type, | |||||
| 282 | object->pager_request, | |||||
| 283 | original_offset, | |||||
| 284 | original_length, | |||||
| 285 | result, | |||||
| 286 | error_offset); | |||||
| 287 | } | |||||
| 288 | ||||||
| 289 | vm_object_deallocate(object); | |||||
| 290 | ||||||
| 291 | /* | |||||
| 292 | * Consume on success: The final data copy must be | |||||
| 293 | * be discarded if it is not the original. The original | |||||
| 294 | * gets discarded only if this routine succeeds. | |||||
| 295 | */ | |||||
| 296 | if (data_copy != orig_copy) | |||||
| 297 | vm_map_copy_discard(data_copy); | |||||
| 298 | if (result == KERN_SUCCESS0) | |||||
| 299 | vm_map_copy_discard(orig_copy); | |||||
| 300 | ||||||
| 301 | ||||||
| 302 | return(result); | |||||
| 303 | } | |||||
| 304 | ||||||
| 305 | /* | |||||
| 306 | * If successful, destroys the map copy object. | |||||
| 307 | */ | |||||
| 308 | kern_return_t memory_object_data_provided( | |||||
| 309 | vm_object_t object, | |||||
| 310 | vm_offset_t offset, | |||||
| 311 | pointer_t data, | |||||
| 312 | unsigned int data_cnt, | |||||
| 313 | vm_prot_t lock_value) | |||||
| 314 | { | |||||
| 315 | return memory_object_data_supply(object, offset, (vm_map_copy_t) data, | |||||
| ||||||
| 316 | data_cnt, lock_value, FALSE((boolean_t) 0), IP_NULL((ipc_port_t) ((ipc_object_t) 0)), | |||||
| 317 | 0); | |||||
| 318 | } | |||||
| 319 | ||||||
| 320 | kern_return_t memory_object_data_error( | |||||
| 321 | vm_object_t object, | |||||
| 322 | vm_offset_t offset, | |||||
| 323 | vm_size_t size, | |||||
| 324 | kern_return_t error_value) | |||||
| 325 | { | |||||
| 326 | if (object == VM_OBJECT_NULL((vm_object_t) 0)) | |||||
| 327 | return(KERN_INVALID_ARGUMENT4); | |||||
| 328 | ||||||
| 329 | if (size != round_page(size)((vm_offset_t)((((vm_offset_t)(size)) + ((1 << 12)-1)) & ~((1 << 12)-1)))) | |||||
| 330 | return(KERN_INVALID_ARGUMENT4); | |||||
| 331 | ||||||
| 332 | vm_object_lock(object); | |||||
| 333 | offset -= object->paging_offset; | |||||
| 334 | ||||||
| 335 | while (size != 0) { | |||||
| 336 | vm_page_t m; | |||||
| 337 | ||||||
| 338 | m = vm_page_lookup(object, offset); | |||||
| 339 | if ((m != VM_PAGE_NULL((vm_page_t) 0)) && m->busy && m->absent) { | |||||
| 340 | m->error = TRUE((boolean_t) 1); | |||||
| 341 | m->absent = FALSE((boolean_t) 0); | |||||
| 342 | vm_object_absent_release(object)({ (object)->absent_count--; ({ if (((object))->all_wanted & (1 << (3))) thread_wakeup_prim(((event_t)(((vm_offset_t ) (object)) + (3))), ((boolean_t) 0), 0); ((object))->all_wanted &= ~(1 << (3)); }); }); | |||||
| 343 | ||||||
| 344 | PAGE_WAKEUP_DONE(m)({ (m)->busy = ((boolean_t) 0); if ((m)->wanted) { (m)-> wanted = ((boolean_t) 0); thread_wakeup_prim((((event_t) m)), ((boolean_t) 0), 0); } }); | |||||
| 345 | ||||||
| 346 | vm_page_lock_queues(); | |||||
| 347 | vm_page_activate(m); | |||||
| 348 | vm_page_unlock_queues()((void)(&vm_page_queue_lock)); | |||||
| 349 | } | |||||
| 350 | ||||||
| 351 | size -= PAGE_SIZE(1 << 12); | |||||
| 352 | offset += PAGE_SIZE(1 << 12); | |||||
| 353 | } | |||||
| 354 | vm_object_unlock(object)((void)(&(object)->Lock)); | |||||
| 355 | ||||||
| 356 | vm_object_deallocate(object); | |||||
| 357 | return(KERN_SUCCESS0); | |||||
| 358 | } | |||||
| 359 | ||||||
| 360 | kern_return_t memory_object_data_unavailable( | |||||
| 361 | vm_object_t object, | |||||
| 362 | vm_offset_t offset, | |||||
| 363 | vm_size_t size) | |||||
| 364 | { | |||||
| 365 | #if MACH_PAGEMAP1 | |||||
| 366 | vm_external_t existence_info = VM_EXTERNAL_NULL((vm_external_t) 0); | |||||
| 367 | #endif /* MACH_PAGEMAP */ | |||||
| 368 | ||||||
| 369 | if (object == VM_OBJECT_NULL((vm_object_t) 0)) | |||||
| 370 | return(KERN_INVALID_ARGUMENT4); | |||||
| 371 | ||||||
| 372 | if (size != round_page(size)((vm_offset_t)((((vm_offset_t)(size)) + ((1 << 12)-1)) & ~((1 << 12)-1)))) | |||||
| 373 | return(KERN_INVALID_ARGUMENT4); | |||||
| 374 | ||||||
| 375 | #if MACH_PAGEMAP1 | |||||
| 376 | if ((offset == 0) && (size > VM_EXTERNAL_LARGE_SIZE8192) && | |||||
| 377 | (object->existence_info == VM_EXTERNAL_NULL((vm_external_t) 0))) { | |||||
| 378 | existence_info = vm_external_create(VM_EXTERNAL_SMALL_SIZE128); | |||||
| 379 | } | |||||
| 380 | #endif /* MACH_PAGEMAP */ | |||||
| 381 | ||||||
| 382 | vm_object_lock(object); | |||||
| 383 | #if MACH_PAGEMAP1 | |||||
| 384 | if (existence_info != VM_EXTERNAL_NULL((vm_external_t) 0)) { | |||||
| 385 | object->existence_info = existence_info; | |||||
| 386 | } | |||||
| 387 | if ((offset == 0) && (size > VM_EXTERNAL_LARGE_SIZE8192)) { | |||||
| 388 | vm_object_unlock(object)((void)(&(object)->Lock)); | |||||
| 389 | vm_object_deallocate(object); | |||||
| 390 | return(KERN_SUCCESS0); | |||||
| 391 | } | |||||
| 392 | #endif /* MACH_PAGEMAP */ | |||||
| 393 | offset -= object->paging_offset; | |||||
| 394 | ||||||
| 395 | while (size != 0) { | |||||
| 396 | vm_page_t m; | |||||
| 397 | ||||||
| 398 | /* | |||||
| 399 | * We're looking for pages that are both busy and | |||||
| 400 | * absent (waiting to be filled), converting them | |||||
| 401 | * to just absent. | |||||
| 402 | * | |||||
| 403 | * Pages that are just busy can be ignored entirely. | |||||
| 404 | */ | |||||
| 405 | ||||||
| 406 | m = vm_page_lookup(object, offset); | |||||
| 407 | if ((m != VM_PAGE_NULL((vm_page_t) 0)) && m->busy && m->absent) { | |||||
| 408 | PAGE_WAKEUP_DONE(m)({ (m)->busy = ((boolean_t) 0); if ((m)->wanted) { (m)-> wanted = ((boolean_t) 0); thread_wakeup_prim((((event_t) m)), ((boolean_t) 0), 0); } }); | |||||
| 409 | ||||||
| 410 | vm_page_lock_queues(); | |||||
| 411 | vm_page_activate(m); | |||||
| 412 | vm_page_unlock_queues()((void)(&vm_page_queue_lock)); | |||||
| 413 | } | |||||
| 414 | size -= PAGE_SIZE(1 << 12); | |||||
| 415 | offset += PAGE_SIZE(1 << 12); | |||||
| 416 | } | |||||
| 417 | ||||||
| 418 | vm_object_unlock(object)((void)(&(object)->Lock)); | |||||
| 419 | ||||||
| 420 | vm_object_deallocate(object); | |||||
| 421 | return(KERN_SUCCESS0); | |||||
| 422 | } | |||||
| 423 | ||||||
| 424 | /* | |||||
| 425 | * Routine: memory_object_lock_page | |||||
| 426 | * | |||||
| 427 | * Description: | |||||
| 428 | * Perform the appropriate lock operations on the | |||||
| 429 | * given page. See the description of | |||||
| 430 | * "memory_object_lock_request" for the meanings | |||||
| 431 | * of the arguments. | |||||
| 432 | * | |||||
| 433 | * Returns an indication that the operation | |||||
| 434 | * completed, blocked, or that the page must | |||||
| 435 | * be cleaned. | |||||
| 436 | */ | |||||
| 437 | ||||||
| 438 | #define MEMORY_OBJECT_LOCK_RESULT_DONE0 0 | |||||
| 439 | #define MEMORY_OBJECT_LOCK_RESULT_MUST_BLOCK1 1 | |||||
| 440 | #define MEMORY_OBJECT_LOCK_RESULT_MUST_CLEAN2 2 | |||||
| 441 | #define MEMORY_OBJECT_LOCK_RESULT_MUST_RETURN3 3 | |||||
| 442 | ||||||
| 443 | memory_object_lock_result_t memory_object_lock_page( | |||||
| 444 | vm_page_t m, | |||||
| 445 | memory_object_return_t should_return, | |||||
| 446 | boolean_t should_flush, | |||||
| 447 | vm_prot_t prot) | |||||
| 448 | { | |||||
| 449 | /* | |||||
| 450 | * Don't worry about pages for which the kernel | |||||
| 451 | * does not have any data. | |||||
| 452 | */ | |||||
| 453 | ||||||
| 454 | if (m->absent) | |||||
| 455 | return(MEMORY_OBJECT_LOCK_RESULT_DONE0); | |||||
| 456 | ||||||
| 457 | /* | |||||
| 458 | * If we cannot change access to the page, | |||||
| 459 | * either because a mapping is in progress | |||||
| 460 | * (busy page) or because a mapping has been | |||||
| 461 | * wired, then give up. | |||||
| 462 | */ | |||||
| 463 | ||||||
| 464 | if (m->busy) | |||||
| 465 | return(MEMORY_OBJECT_LOCK_RESULT_MUST_BLOCK1); | |||||
| 466 | ||||||
| 467 | assert(!m->fictitious)({ if (!(!m->fictitious)) Assert("!m->fictitious", "../vm/memory_object.c" , 467); }); | |||||
| 468 | ||||||
| 469 | if (m->wire_count != 0) { | |||||
| 470 | /* | |||||
| 471 | * If no change would take place | |||||
| 472 | * anyway, return successfully. | |||||
| 473 | * | |||||
| 474 | * No change means: | |||||
| 475 | * Not flushing AND | |||||
| 476 | * No change to page lock [2 checks] AND | |||||
| 477 | * Don't need to send page to manager | |||||
| 478 | * | |||||
| 479 | * Don't need to send page to manager means: | |||||
| 480 | * No clean or return request OR ( | |||||
| 481 | * Page is not dirty [2 checks] AND ( | |||||
| 482 | * Page is not precious OR | |||||
| 483 | * No request to return precious pages )) | |||||
| 484 | * | |||||
| 485 | * Now isn't that straightforward and obvious ?? ;-) | |||||
| 486 | * | |||||
| 487 | * XXX This doesn't handle sending a copy of a wired | |||||
| 488 | * XXX page to the pager, but that will require some | |||||
| 489 | * XXX significant surgery. | |||||
| 490 | */ | |||||
| 491 | ||||||
| 492 | if (!should_flush && | |||||
| 493 | ((m->page_lock == prot) || (prot == VM_PROT_NO_CHANGE((vm_prot_t) 0x08))) && | |||||
| 494 | ((should_return == MEMORY_OBJECT_RETURN_NONE0) || | |||||
| 495 | (!m->dirty && !pmap_is_modified(m->phys_addr) && | |||||
| 496 | (!m->precious || | |||||
| 497 | should_return != MEMORY_OBJECT_RETURN_ALL2)))) { | |||||
| 498 | /* | |||||
| 499 | * Restart page unlock requests, | |||||
| 500 | * even though no change took place. | |||||
| 501 | * [Memory managers may be expecting | |||||
| 502 | * to see new requests.] | |||||
| 503 | */ | |||||
| 504 | m->unlock_request = VM_PROT_NONE((vm_prot_t) 0x00); | |||||
| 505 | PAGE_WAKEUP(m)({ if ((m)->wanted) { (m)->wanted = ((boolean_t) 0); thread_wakeup_prim (((event_t) (m)), ((boolean_t) 0), 0); } }); | |||||
| 506 | ||||||
| 507 | return(MEMORY_OBJECT_LOCK_RESULT_DONE0); | |||||
| 508 | } | |||||
| 509 | ||||||
| 510 | return(MEMORY_OBJECT_LOCK_RESULT_MUST_BLOCK1); | |||||
| 511 | } | |||||
| 512 | ||||||
| 513 | /* | |||||
| 514 | * If the page is to be flushed, allow | |||||
| 515 | * that to be done as part of the protection. | |||||
| 516 | */ | |||||
| 517 | ||||||
| 518 | if (should_flush) | |||||
| 519 | prot = VM_PROT_ALL(((vm_prot_t) 0x01)|((vm_prot_t) 0x02)|((vm_prot_t) 0x04)); | |||||
| 520 | ||||||
| 521 | /* | |||||
| 522 | * Set the page lock. | |||||
| 523 | * | |||||
| 524 | * If we are decreasing permission, do it now; | |||||
| 525 | * let the fault handler take care of increases | |||||
| 526 | * (pmap_page_protect may not increase protection). | |||||
| 527 | */ | |||||
| 528 | ||||||
| 529 | if (prot != VM_PROT_NO_CHANGE((vm_prot_t) 0x08)) { | |||||
| 530 | if ((m->page_lock ^ prot) & prot) { | |||||
| 531 | pmap_page_protect(m->phys_addr, VM_PROT_ALL(((vm_prot_t) 0x01)|((vm_prot_t) 0x02)|((vm_prot_t) 0x04)) & ~prot); | |||||
| 532 | } | |||||
| 533 | m->page_lock = prot; | |||||
| 534 | ||||||
| 535 | /* | |||||
| 536 | * Restart any past unlock requests, even if no | |||||
| 537 | * change resulted. If the manager explicitly | |||||
| 538 | * requested no protection change, then it is assumed | |||||
| 539 | * to be remembering past requests. | |||||
| 540 | */ | |||||
| 541 | ||||||
| 542 | m->unlock_request = VM_PROT_NONE((vm_prot_t) 0x00); | |||||
| 543 | PAGE_WAKEUP(m)({ if ((m)->wanted) { (m)->wanted = ((boolean_t) 0); thread_wakeup_prim (((event_t) (m)), ((boolean_t) 0), 0); } }); | |||||
| 544 | } | |||||
| 545 | ||||||
| 546 | /* | |||||
| 547 | * Handle cleaning. | |||||
| 548 | */ | |||||
| 549 | ||||||
| 550 | if (should_return != MEMORY_OBJECT_RETURN_NONE0) { | |||||
| 551 | /* | |||||
| 552 | * Check whether the page is dirty. If | |||||
| 553 | * write permission has not been removed, | |||||
| 554 | * this may have unpredictable results. | |||||
| 555 | */ | |||||
| 556 | ||||||
| 557 | if (!m->dirty) | |||||
| 558 | m->dirty = pmap_is_modified(m->phys_addr); | |||||
| 559 | ||||||
| 560 | if (m->dirty || (m->precious && | |||||
| 561 | should_return == MEMORY_OBJECT_RETURN_ALL2)) { | |||||
| 562 | /* | |||||
| 563 | * If we weren't planning | |||||
| 564 | * to flush the page anyway, | |||||
| 565 | * we may need to remove the | |||||
| 566 | * page from the pageout | |||||
| 567 | * system and from physical | |||||
| 568 | * maps now. | |||||
| 569 | */ | |||||
| 570 | ||||||
| 571 | vm_page_lock_queues(); | |||||
| 572 | VM_PAGE_QUEUES_REMOVE(m)({ if (m->active) { { queue_entry_t next, prev; next = (m) ->pageq.next; prev = (m)->pageq.prev; if ((&vm_page_queue_active ) == next) (&vm_page_queue_active)->prev = prev; else ( (vm_page_t)next)->pageq.prev = prev; if ((&vm_page_queue_active ) == prev) (&vm_page_queue_active)->next = next; else ( (vm_page_t)prev)->pageq.next = next; }; m->active = ((boolean_t ) 0); vm_page_active_count--; } if (m->inactive) { { queue_entry_t next, prev; next = (m)->pageq.next; prev = (m)->pageq. prev; if ((&vm_page_queue_inactive) == next) (&vm_page_queue_inactive )->prev = prev; else ((vm_page_t)next)->pageq.prev = prev ; if ((&vm_page_queue_inactive) == prev) (&vm_page_queue_inactive )->next = next; else ((vm_page_t)prev)->pageq.next = next ; }; m->inactive = ((boolean_t) 0); vm_page_inactive_count --; } }); | |||||
| 573 | vm_page_unlock_queues()((void)(&vm_page_queue_lock)); | |||||
| 574 | ||||||
| 575 | if (!should_flush) | |||||
| 576 | pmap_page_protect(m->phys_addr, | |||||
| 577 | VM_PROT_NONE((vm_prot_t) 0x00)); | |||||
| 578 | ||||||
| 579 | /* | |||||
| 580 | * Cleaning a page will cause | |||||
| 581 | * it to be flushed. | |||||
| 582 | */ | |||||
| 583 | ||||||
| 584 | if (m->dirty) | |||||
| 585 | return(MEMORY_OBJECT_LOCK_RESULT_MUST_CLEAN2); | |||||
| 586 | else | |||||
| 587 | return(MEMORY_OBJECT_LOCK_RESULT_MUST_RETURN3); | |||||
| 588 | } | |||||
| 589 | } | |||||
| 590 | ||||||
| 591 | /* | |||||
| 592 | * Handle flushing | |||||
| 593 | */ | |||||
| 594 | ||||||
| 595 | if (should_flush) { | |||||
| 596 | VM_PAGE_FREE(m)({ ; vm_page_free(m); ((void)(&vm_page_queue_lock)); }); | |||||
| 597 | } else { | |||||
| 598 | extern boolean_t vm_page_deactivate_hint; | |||||
| 599 | ||||||
| 600 | /* | |||||
| 601 | * XXX Make clean but not flush a paging hint, | |||||
| 602 | * and deactivate the pages. This is a hack | |||||
| 603 | * because it overloads flush/clean with | |||||
| 604 | * implementation-dependent meaning. This only | |||||
| 605 | * happens to pages that are already clean. | |||||
| 606 | */ | |||||
| 607 | ||||||
| 608 | if (vm_page_deactivate_hint && | |||||
| 609 | (should_return != MEMORY_OBJECT_RETURN_NONE0)) { | |||||
| 610 | vm_page_lock_queues(); | |||||
| 611 | vm_page_deactivate(m); | |||||
| 612 | vm_page_unlock_queues()((void)(&vm_page_queue_lock)); | |||||
| 613 | } | |||||
| 614 | } | |||||
| 615 | ||||||
| 616 | return(MEMORY_OBJECT_LOCK_RESULT_DONE0); | |||||
| 617 | } | |||||
| 618 | ||||||
| 619 | /* | |||||
| 620 | * Routine: memory_object_lock_request [user interface] | |||||
| 621 | * | |||||
| 622 | * Description: | |||||
| 623 | * Control use of the data associated with the given | |||||
| 624 | * memory object. For each page in the given range, | |||||
| 625 | * perform the following operations, in order: | |||||
| 626 | * 1) restrict access to the page (disallow | |||||
| 627 | * forms specified by "prot"); | |||||
| 628 | * 2) return data to the manager (if "should_return" | |||||
| 629 | * is RETURN_DIRTY and the page is dirty, or | |||||
| 630 | * "should_return" is RETURN_ALL and the page | |||||
| 631 | * is either dirty or precious); and, | |||||
| 632 | * 3) flush the cached copy (if "should_flush" | |||||
| 633 | * is asserted). | |||||
| 634 | * The set of pages is defined by a starting offset | |||||
| 635 | * ("offset") and size ("size"). Only pages with the | |||||
| 636 | * same page alignment as the starting offset are | |||||
| 637 | * considered. | |||||
| 638 | * | |||||
| 639 | * A single acknowledgement is sent (to the "reply_to" | |||||
| 640 | * port) when these actions are complete. If successful, | |||||
| 641 | * the naked send right for reply_to is consumed. | |||||
| 642 | */ | |||||
| 643 | ||||||
| 644 | kern_return_t | |||||
| 645 | memory_object_lock_request( | |||||
| 646 | vm_object_t object, | |||||
| 647 | vm_offset_t offset, | |||||
| 648 | vm_size_t size, | |||||
| 649 | memory_object_return_t should_return, | |||||
| 650 | boolean_t should_flush, | |||||
| 651 | vm_prot_t prot, | |||||
| 652 | ipc_port_t reply_to, | |||||
| 653 | mach_msg_type_name_t reply_to_type) | |||||
| 654 | { | |||||
| 655 | vm_page_t m; | |||||
| 656 | vm_offset_t original_offset = offset; | |||||
| 657 | vm_size_t original_size = size; | |||||
| 658 | vm_offset_t paging_offset = 0; | |||||
| 659 | vm_object_t new_object = VM_OBJECT_NULL((vm_object_t) 0); | |||||
| 660 | vm_offset_t new_offset = 0; | |||||
| 661 | vm_offset_t last_offset = offset; | |||||
| 662 | int page_lock_result; | |||||
| 663 | int pageout_action = 0; /* '=0' to quiet lint */ | |||||
| 664 | ||||||
| 665 | #define DATA_WRITE_MAX32 32 | |||||
| 666 | vm_page_t holding_pages[DATA_WRITE_MAX32]; | |||||
| 667 | ||||||
| 668 | /* | |||||
| 669 | * Check for bogus arguments. | |||||
| 670 | */ | |||||
| 671 | if (object == VM_OBJECT_NULL((vm_object_t) 0) || | |||||
| 672 | ((prot & ~VM_PROT_ALL(((vm_prot_t) 0x01)|((vm_prot_t) 0x02)|((vm_prot_t) 0x04))) != 0 && prot != VM_PROT_NO_CHANGE((vm_prot_t) 0x08))) | |||||
| 673 | return (KERN_INVALID_ARGUMENT4); | |||||
| 674 | ||||||
| 675 | size = round_page(size)((vm_offset_t)((((vm_offset_t)(size)) + ((1 << 12)-1)) & ~((1 << 12)-1))); | |||||
| 676 | ||||||
| 677 | /* | |||||
| 678 | * Lock the object, and acquire a paging reference to | |||||
| 679 | * prevent the memory_object and control ports from | |||||
| 680 | * being destroyed. | |||||
| 681 | */ | |||||
| 682 | ||||||
| 683 | vm_object_lock(object); | |||||
| 684 | vm_object_paging_begin(object)((object)->paging_in_progress++); | |||||
| 685 | offset -= object->paging_offset; | |||||
| 686 | ||||||
| 687 | /* | |||||
| 688 | * To avoid blocking while scanning for pages, save | |||||
| 689 | * dirty pages to be cleaned all at once. | |||||
| 690 | * | |||||
| 691 | * XXXO A similar strategy could be used to limit the | |||||
| 692 | * number of times that a scan must be restarted for | |||||
| 693 | * other reasons. Those pages that would require blocking | |||||
| 694 | * could be temporarily collected in another list, or | |||||
| 695 | * their offsets could be recorded in a small array. | |||||
| 696 | */ | |||||
| 697 | ||||||
| 698 | /* | |||||
| 699 | * XXX NOTE: May want to consider converting this to a page list | |||||
| 700 | * XXX vm_map_copy interface. Need to understand object | |||||
| 701 | * XXX coalescing implications before doing so. | |||||
| 702 | */ | |||||
| 703 | ||||||
| 704 | #define PAGEOUT_PAGES({ vm_map_copy_t copy; int i; vm_page_t hp; ((void)(&(object )->Lock)); (void) vm_map_copyin_object(new_object, 0, new_offset , ©); if (object->use_old_pageout) { ({ if (!(pageout_action == 2)) Assert("pageout_action == MEMORY_OBJECT_LOCK_RESULT_MUST_CLEAN" , "../vm/memory_object.c", 704); }); (void) memory_object_data_write ( object->pager, object->pager_request, paging_offset, ( pointer_t) copy, new_offset); } else { (void) memory_object_data_return ( object->pager, object->pager_request, paging_offset, ( pointer_t) copy, new_offset, (pageout_action == 2), !should_flush ); } ; for (i = 0; i < (((vm_size_t)(new_offset)) >> 12); i++) { hp = holding_pages[i]; if (hp != ((vm_page_t) 0) ) ({ ; vm_page_free(hp); ((void)(&vm_page_queue_lock)); } ); } new_object = ((vm_object_t) 0); }) \({ | |||||
| 705 | MACRO_BEGIN({ \ | |||||
| 706 | vm_map_copy_t copy; \ | |||||
| 707 | int i; \ | |||||
| 708 | vm_page_t hp; \ | |||||
| 709 | \ | |||||
| 710 | vm_object_unlock(object)((void)(&(object)->Lock)); \ | |||||
| 711 | \ | |||||
| 712 | (void) vm_map_copyin_object(new_object, 0, new_offset, ©); \ | |||||
| 713 | \ | |||||
| 714 | if (object->use_old_pageout) { \ | |||||
| 715 | assert(pageout_action == MEMORY_OBJECT_LOCK_RESULT_MUST_CLEAN)({ if (!(pageout_action == 2)) Assert("pageout_action == MEMORY_OBJECT_LOCK_RESULT_MUST_CLEAN" , "../vm/memory_object.c", 715); }); \ | |||||
| 716 | (void) memory_object_data_write( \ | |||||
| 717 | object->pager, \ | |||||
| 718 | object->pager_request, \ | |||||
| 719 | paging_offset, \ | |||||
| 720 | (pointer_t) copy, \ | |||||
| 721 | new_offset); \ | |||||
| 722 | } \ | |||||
| 723 | else { \ | |||||
| 724 | (void) memory_object_data_return( \ | |||||
| 725 | object->pager, \ | |||||
| 726 | object->pager_request, \ | |||||
| 727 | paging_offset, \ | |||||
| 728 | (pointer_t) copy, \ | |||||
| 729 | new_offset, \ | |||||
| 730 | (pageout_action == MEMORY_OBJECT_LOCK_RESULT_MUST_CLEAN2), \ | |||||
| 731 | !should_flush); \ | |||||
| 732 | } \ | |||||
| 733 | \ | |||||
| 734 | vm_object_lock(object); \ | |||||
| 735 | \ | |||||
| 736 | for (i = 0; i < atop(new_offset)(((vm_size_t)(new_offset)) >> 12); i++) { \ | |||||
| 737 | hp = holding_pages[i]; \ | |||||
| 738 | if (hp != VM_PAGE_NULL((vm_page_t) 0)) \ | |||||
| 739 | VM_PAGE_FREE(hp)({ ; vm_page_free(hp); ((void)(&vm_page_queue_lock)); }); \ | |||||
| 740 | } \ | |||||
| 741 | \ | |||||
| 742 | new_object = VM_OBJECT_NULL((vm_object_t) 0); \}) | |||||
| 743 | MACRO_END}) | |||||
| 744 | ||||||
| 745 | for (; | |||||
| 746 | size != 0; | |||||
| 747 | size -= PAGE_SIZE(1 << 12), offset += PAGE_SIZE(1 << 12)) | |||||
| 748 | { | |||||
| 749 | /* | |||||
| 750 | * Limit the number of pages to be cleaned at once. | |||||
| 751 | */ | |||||
| 752 | if (new_object != VM_OBJECT_NULL((vm_object_t) 0) && | |||||
| 753 | new_offset >= PAGE_SIZE(1 << 12) * DATA_WRITE_MAX32) | |||||
| 754 | { | |||||
| 755 | PAGEOUT_PAGES({ vm_map_copy_t copy; int i; vm_page_t hp; ((void)(&(object )->Lock)); (void) vm_map_copyin_object(new_object, 0, new_offset , ©); if (object->use_old_pageout) { ({ if (!(pageout_action == 2)) Assert("pageout_action == MEMORY_OBJECT_LOCK_RESULT_MUST_CLEAN" , "../vm/memory_object.c", 755); }); (void) memory_object_data_write ( object->pager, object->pager_request, paging_offset, ( pointer_t) copy, new_offset); } else { (void) memory_object_data_return ( object->pager, object->pager_request, paging_offset, ( pointer_t) copy, new_offset, (pageout_action == 2), !should_flush ); } ; for (i = 0; i < (((vm_size_t)(new_offset)) >> 12); i++) { hp = holding_pages[i]; if (hp != ((vm_page_t) 0) ) ({ ; vm_page_free(hp); ((void)(&vm_page_queue_lock)); } ); } new_object = ((vm_object_t) 0); }); | |||||
| 756 | } | |||||
| 757 | ||||||
| 758 | while ((m = vm_page_lookup(object, offset)) != VM_PAGE_NULL((vm_page_t) 0)) { | |||||
| 759 | switch ((page_lock_result = memory_object_lock_page(m, | |||||
| 760 | should_return, | |||||
| 761 | should_flush, | |||||
| 762 | prot))) | |||||
| 763 | { | |||||
| 764 | case MEMORY_OBJECT_LOCK_RESULT_DONE0: | |||||
| 765 | /* | |||||
| 766 | * End of a cluster of dirty pages. | |||||
| 767 | */ | |||||
| 768 | if (new_object != VM_OBJECT_NULL((vm_object_t) 0)) { | |||||
| 769 | PAGEOUT_PAGES({ vm_map_copy_t copy; int i; vm_page_t hp; ((void)(&(object )->Lock)); (void) vm_map_copyin_object(new_object, 0, new_offset , ©); if (object->use_old_pageout) { ({ if (!(pageout_action == 2)) Assert("pageout_action == MEMORY_OBJECT_LOCK_RESULT_MUST_CLEAN" , "../vm/memory_object.c", 769); }); (void) memory_object_data_write ( object->pager, object->pager_request, paging_offset, ( pointer_t) copy, new_offset); } else { (void) memory_object_data_return ( object->pager, object->pager_request, paging_offset, ( pointer_t) copy, new_offset, (pageout_action == 2), !should_flush ); } ; for (i = 0; i < (((vm_size_t)(new_offset)) >> 12); i++) { hp = holding_pages[i]; if (hp != ((vm_page_t) 0) ) ({ ; vm_page_free(hp); ((void)(&vm_page_queue_lock)); } ); } new_object = ((vm_object_t) 0); }); | |||||
| 770 | continue; | |||||
| 771 | } | |||||
| 772 | break; | |||||
| 773 | ||||||
| 774 | case MEMORY_OBJECT_LOCK_RESULT_MUST_BLOCK1: | |||||
| 775 | /* | |||||
| 776 | * Since it is necessary to block, | |||||
| 777 | * clean any dirty pages now. | |||||
| 778 | */ | |||||
| 779 | if (new_object != VM_OBJECT_NULL((vm_object_t) 0)) { | |||||
| 780 | PAGEOUT_PAGES({ vm_map_copy_t copy; int i; vm_page_t hp; ((void)(&(object )->Lock)); (void) vm_map_copyin_object(new_object, 0, new_offset , ©); if (object->use_old_pageout) { ({ if (!(pageout_action == 2)) Assert("pageout_action == MEMORY_OBJECT_LOCK_RESULT_MUST_CLEAN" , "../vm/memory_object.c", 780); }); (void) memory_object_data_write ( object->pager, object->pager_request, paging_offset, ( pointer_t) copy, new_offset); } else { (void) memory_object_data_return ( object->pager, object->pager_request, paging_offset, ( pointer_t) copy, new_offset, (pageout_action == 2), !should_flush ); } ; for (i = 0; i < (((vm_size_t)(new_offset)) >> 12); i++) { hp = holding_pages[i]; if (hp != ((vm_page_t) 0) ) ({ ; vm_page_free(hp); ((void)(&vm_page_queue_lock)); } ); } new_object = ((vm_object_t) 0); }); | |||||
| 781 | continue; | |||||
| 782 | } | |||||
| 783 | ||||||
| 784 | PAGE_ASSERT_WAIT(m, FALSE)({ (m)->wanted = ((boolean_t) 1); assert_wait((event_t) (m ), (((boolean_t) 0))); }); | |||||
| 785 | vm_object_unlock(object)((void)(&(object)->Lock)); | |||||
| 786 | thread_block((void (*)()) 0); | |||||
| 787 | vm_object_lock(object); | |||||
| 788 | continue; | |||||
| 789 | ||||||
| 790 | case MEMORY_OBJECT_LOCK_RESULT_MUST_CLEAN2: | |||||
| 791 | case MEMORY_OBJECT_LOCK_RESULT_MUST_RETURN3: | |||||
| 792 | /* | |||||
| 793 | * The clean and return cases are similar. | |||||
| 794 | * | |||||
| 795 | * Mark the page busy since we unlock the | |||||
| 796 | * object below. | |||||
| 797 | */ | |||||
| 798 | m->busy = TRUE((boolean_t) 1); | |||||
| 799 | ||||||
| 800 | /* | |||||
| 801 | * if this would form a discontiguous block, | |||||
| 802 | * clean the old pages and start anew. | |||||
| 803 | * | |||||
| 804 | * NOTE: The first time through here, new_object | |||||
| 805 | * is null, hiding the fact that pageout_action | |||||
| 806 | * is not initialized. | |||||
| 807 | */ | |||||
| 808 | if (new_object != VM_OBJECT_NULL((vm_object_t) 0) && | |||||
| 809 | (last_offset != offset || | |||||
| 810 | pageout_action != page_lock_result)) { | |||||
| 811 | PAGEOUT_PAGES({ vm_map_copy_t copy; int i; vm_page_t hp; ((void)(&(object )->Lock)); (void) vm_map_copyin_object(new_object, 0, new_offset , ©); if (object->use_old_pageout) { ({ if (!(pageout_action == 2)) Assert("pageout_action == MEMORY_OBJECT_LOCK_RESULT_MUST_CLEAN" , "../vm/memory_object.c", 811); }); (void) memory_object_data_write ( object->pager, object->pager_request, paging_offset, ( pointer_t) copy, new_offset); } else { (void) memory_object_data_return ( object->pager, object->pager_request, paging_offset, ( pointer_t) copy, new_offset, (pageout_action == 2), !should_flush ); } ; for (i = 0; i < (((vm_size_t)(new_offset)) >> 12); i++) { hp = holding_pages[i]; if (hp != ((vm_page_t) 0) ) ({ ; vm_page_free(hp); ((void)(&vm_page_queue_lock)); } ); } new_object = ((vm_object_t) 0); }); | |||||
| 812 | } | |||||
| 813 | ||||||
| 814 | vm_object_unlock(object)((void)(&(object)->Lock)); | |||||
| 815 | ||||||
| 816 | /* | |||||
| 817 | * If we have not already allocated an object | |||||
| 818 | * for a range of pages to be written, do so | |||||
| 819 | * now. | |||||
| 820 | */ | |||||
| 821 | if (new_object == VM_OBJECT_NULL((vm_object_t) 0)) { | |||||
| 822 | new_object = vm_object_allocate(original_size); | |||||
| 823 | new_offset = 0; | |||||
| 824 | paging_offset = m->offset + | |||||
| 825 | object->paging_offset; | |||||
| 826 | pageout_action = page_lock_result; | |||||
| 827 | } | |||||
| 828 | ||||||
| 829 | /* | |||||
| 830 | * Move or copy the dirty page into the | |||||
| 831 | * new object. | |||||
| 832 | */ | |||||
| 833 | m = vm_pageout_setup(m, | |||||
| 834 | m->offset + object->paging_offset, | |||||
| 835 | new_object, | |||||
| 836 | new_offset, | |||||
| 837 | should_flush); | |||||
| 838 | ||||||
| 839 | /* | |||||
| 840 | * Save the holding page if there is one. | |||||
| 841 | */ | |||||
| 842 | holding_pages[atop(new_offset)(((vm_size_t)(new_offset)) >> 12)] = m; | |||||
| 843 | new_offset += PAGE_SIZE(1 << 12); | |||||
| 844 | last_offset = offset + PAGE_SIZE(1 << 12); | |||||
| 845 | ||||||
| 846 | vm_object_lock(object); | |||||
| 847 | break; | |||||
| 848 | } | |||||
| 849 | break; | |||||
| 850 | } | |||||
| 851 | } | |||||
| 852 | ||||||
| 853 | /* | |||||
| 854 | * We have completed the scan for applicable pages. | |||||
| 855 | * Clean any pages that have been saved. | |||||
| 856 | */ | |||||
| 857 | if (new_object != VM_OBJECT_NULL((vm_object_t) 0)) { | |||||
| 858 | PAGEOUT_PAGES({ vm_map_copy_t copy; int i; vm_page_t hp; ((void)(&(object )->Lock)); (void) vm_map_copyin_object(new_object, 0, new_offset , ©); if (object->use_old_pageout) { ({ if (!(pageout_action == 2)) Assert("pageout_action == MEMORY_OBJECT_LOCK_RESULT_MUST_CLEAN" , "../vm/memory_object.c", 858); }); (void) memory_object_data_write ( object->pager, object->pager_request, paging_offset, ( pointer_t) copy, new_offset); } else { (void) memory_object_data_return ( object->pager, object->pager_request, paging_offset, ( pointer_t) copy, new_offset, (pageout_action == 2), !should_flush ); } ; for (i = 0; i < (((vm_size_t)(new_offset)) >> 12); i++) { hp = holding_pages[i]; if (hp != ((vm_page_t) 0) ) ({ ; vm_page_free(hp); ((void)(&vm_page_queue_lock)); } ); } new_object = ((vm_object_t) 0); }); | |||||
| 859 | } | |||||
| 860 | ||||||
| 861 | if (IP_VALID(reply_to)(((&(reply_to)->ip_target.ipt_object) != ((ipc_object_t ) 0)) && ((&(reply_to)->ip_target.ipt_object) != ((ipc_object_t) -1)))) { | |||||
| 862 | vm_object_unlock(object)((void)(&(object)->Lock)); | |||||
| 863 | ||||||
| 864 | /* consumes our naked send-once/send right for reply_to */ | |||||
| 865 | (void) memory_object_lock_completed(reply_to, reply_to_type, | |||||
| 866 | object->pager_request, original_offset, original_size); | |||||
| 867 | ||||||
| 868 | vm_object_lock(object); | |||||
| 869 | } | |||||
| 870 | ||||||
| 871 | vm_object_paging_end(object)({ ({ if (!((object)->paging_in_progress != 0)) Assert("(object)->paging_in_progress != 0" , "../vm/memory_object.c", 871); }); if (--(object)->paging_in_progress == 0) { ({ if ((object)->all_wanted & (1 << (2) )) thread_wakeup_prim(((event_t)(((vm_offset_t) object) + (2) )), ((boolean_t) 0), 0); (object)->all_wanted &= ~(1 << (2)); }); } }); | |||||
| 872 | vm_object_unlock(object)((void)(&(object)->Lock)); | |||||
| 873 | vm_object_deallocate(object); | |||||
| 874 | ||||||
| 875 | return (KERN_SUCCESS0); | |||||
| 876 | } | |||||
| 877 | ||||||
| 878 | kern_return_t | |||||
| 879 | memory_object_set_attributes_common( | |||||
| 880 | vm_object_t object, | |||||
| 881 | boolean_t object_ready, | |||||
| 882 | boolean_t may_cache, | |||||
| 883 | memory_object_copy_strategy_t copy_strategy, | |||||
| 884 | boolean_t use_old_pageout) | |||||
| 885 | { | |||||
| 886 | if (object == VM_OBJECT_NULL((vm_object_t) 0)) | |||||
| 887 | return(KERN_INVALID_ARGUMENT4); | |||||
| 888 | ||||||
| 889 | /* | |||||
| 890 | * Verify the attributes of importance | |||||
| 891 | */ | |||||
| 892 | ||||||
| 893 | switch(copy_strategy) { | |||||
| 894 | case MEMORY_OBJECT_COPY_NONE0: | |||||
| 895 | case MEMORY_OBJECT_COPY_CALL1: | |||||
| 896 | case MEMORY_OBJECT_COPY_DELAY2: | |||||
| 897 | case MEMORY_OBJECT_COPY_TEMPORARY3: | |||||
| 898 | break; | |||||
| 899 | default: | |||||
| 900 | vm_object_deallocate(object); | |||||
| 901 | return(KERN_INVALID_ARGUMENT4); | |||||
| 902 | } | |||||
| 903 | ||||||
| 904 | if (object_ready) | |||||
| 905 | object_ready = TRUE((boolean_t) 1); | |||||
| 906 | if (may_cache) | |||||
| 907 | may_cache = TRUE((boolean_t) 1); | |||||
| 908 | ||||||
| 909 | vm_object_lock(object); | |||||
| 910 | ||||||
| 911 | /* | |||||
| 912 | * Wake up anyone waiting for the ready attribute | |||||
| 913 | * to become asserted. | |||||
| 914 | */ | |||||
| 915 | ||||||
| 916 | if (object_ready && !object->pager_ready) { | |||||
| 917 | object->use_old_pageout = use_old_pageout; | |||||
| 918 | vm_object_wakeup(object, VM_OBJECT_EVENT_PAGER_READY)({ if ((object)->all_wanted & (1 << (1))) thread_wakeup_prim (((event_t)(((vm_offset_t) object) + (1))), ((boolean_t) 0), 0 ); (object)->all_wanted &= ~(1 << (1)); }); | |||||
| 919 | } | |||||
| 920 | ||||||
| 921 | /* | |||||
| 922 | * Copy the attributes | |||||
| 923 | */ | |||||
| 924 | ||||||
| 925 | object->can_persist = may_cache; | |||||
| 926 | object->pager_ready = object_ready; | |||||
| 927 | if (copy_strategy == MEMORY_OBJECT_COPY_TEMPORARY3) { | |||||
| 928 | object->temporary = TRUE((boolean_t) 1); | |||||
| 929 | } else { | |||||
| 930 | object->copy_strategy = copy_strategy; | |||||
| 931 | } | |||||
| 932 | ||||||
| 933 | vm_object_unlock(object)((void)(&(object)->Lock)); | |||||
| 934 | ||||||
| 935 | vm_object_deallocate(object); | |||||
| 936 | ||||||
| 937 | return(KERN_SUCCESS0); | |||||
| 938 | } | |||||
| 939 | ||||||
| 940 | /* | |||||
| 941 | * XXX rpd claims that reply_to could be obviated in favor of a client | |||||
| 942 | * XXX stub that made change_attributes an RPC. Need investigation. | |||||
| 943 | */ | |||||
| 944 | ||||||
| 945 | kern_return_t memory_object_change_attributes( | |||||
| 946 | vm_object_t object, | |||||
| 947 | boolean_t may_cache, | |||||
| 948 | memory_object_copy_strategy_t copy_strategy, | |||||
| 949 | ipc_port_t reply_to, | |||||
| 950 | mach_msg_type_name_t reply_to_type) | |||||
| 951 | { | |||||
| 952 | kern_return_t result; | |||||
| 953 | ||||||
| 954 | /* | |||||
| 955 | * Do the work and throw away our object reference. It | |||||
| 956 | * is important that the object reference be deallocated | |||||
| 957 | * BEFORE sending the reply. The whole point of the reply | |||||
| 958 | * is that it shows up after the terminate message that | |||||
| 959 | * may be generated by setting the object uncacheable. | |||||
| 960 | * | |||||
| 961 | * XXX may_cache may become a tri-valued variable to handle | |||||
| 962 | * XXX uncache if not in use. | |||||
| 963 | */ | |||||
| 964 | result = memory_object_set_attributes_common(object, TRUE((boolean_t) 1), | |||||
| 965 | may_cache, copy_strategy, | |||||
| 966 | FALSE((boolean_t) 0)); | |||||
| 967 | ||||||
| 968 | if (IP_VALID(reply_to)(((&(reply_to)->ip_target.ipt_object) != ((ipc_object_t ) 0)) && ((&(reply_to)->ip_target.ipt_object) != ((ipc_object_t) -1)))) { | |||||
| 969 | ||||||
| 970 | /* consumes our naked send-once/send right for reply_to */ | |||||
| 971 | (void) memory_object_change_completed(reply_to, reply_to_type, | |||||
| 972 | may_cache, copy_strategy); | |||||
| 973 | ||||||
| 974 | } | |||||
| 975 | ||||||
| 976 | return(result); | |||||
| 977 | } | |||||
| 978 | ||||||
| 979 | kern_return_t | |||||
| 980 | memory_object_set_attributes( | |||||
| 981 | vm_object_t object, | |||||
| 982 | boolean_t object_ready, | |||||
| 983 | boolean_t may_cache, | |||||
| 984 | memory_object_copy_strategy_t copy_strategy) | |||||
| 985 | { | |||||
| 986 | return memory_object_set_attributes_common(object, object_ready, | |||||
| 987 | may_cache, copy_strategy, | |||||
| 988 | TRUE((boolean_t) 1)); | |||||
| 989 | } | |||||
| 990 | ||||||
| 991 | kern_return_t memory_object_ready( | |||||
| 992 | vm_object_t object, | |||||
| 993 | boolean_t may_cache, | |||||
| 994 | memory_object_copy_strategy_t copy_strategy) | |||||
| 995 | { | |||||
| 996 | return memory_object_set_attributes_common(object, TRUE((boolean_t) 1), | |||||
| 997 | may_cache, copy_strategy, | |||||
| 998 | FALSE((boolean_t) 0)); | |||||
| 999 | } | |||||
| 1000 | ||||||
| 1001 | kern_return_t memory_object_get_attributes( | |||||
| 1002 | vm_object_t object, | |||||
| 1003 | boolean_t *object_ready, | |||||
| 1004 | boolean_t *may_cache, | |||||
| 1005 | memory_object_copy_strategy_t *copy_strategy) | |||||
| 1006 | { | |||||
| 1007 | if (object == VM_OBJECT_NULL((vm_object_t) 0)) | |||||
| 1008 | return(KERN_INVALID_ARGUMENT4); | |||||
| 1009 | ||||||
| 1010 | vm_object_lock(object); | |||||
| 1011 | *may_cache = object->can_persist; | |||||
| 1012 | *object_ready = object->pager_ready; | |||||
| 1013 | *copy_strategy = object->copy_strategy; | |||||
| 1014 | vm_object_unlock(object)((void)(&(object)->Lock)); | |||||
| 1015 | ||||||
| 1016 | vm_object_deallocate(object); | |||||
| 1017 | ||||||
| 1018 | return(KERN_SUCCESS0); | |||||
| 1019 | } | |||||
| 1020 | ||||||
| 1021 | /* | |||||
| 1022 | * If successful, consumes the supplied naked send right. | |||||
| 1023 | */ | |||||
| 1024 | kern_return_t vm_set_default_memory_manager(host, default_manager) | |||||
| 1025 | const host_t host; | |||||
| 1026 | ipc_port_t *default_manager; | |||||
| 1027 | { | |||||
| 1028 | ipc_port_t current_manager; | |||||
| 1029 | ipc_port_t new_manager; | |||||
| 1030 | ipc_port_t returned_manager; | |||||
| 1031 | ||||||
| 1032 | if (host == HOST_NULL((host_t)0)) | |||||
| 1033 | return(KERN_INVALID_HOST22); | |||||
| 1034 | ||||||
| 1035 | new_manager = *default_manager; | |||||
| 1036 | simple_lock(&memory_manager_default_lock); | |||||
| 1037 | current_manager = memory_manager_default; | |||||
| 1038 | ||||||
| 1039 | if (new_manager == IP_NULL((ipc_port_t) ((ipc_object_t) 0))) { | |||||
| 1040 | /* | |||||
| 1041 | * Retrieve the current value. | |||||
| 1042 | */ | |||||
| 1043 | ||||||
| 1044 | returned_manager = ipc_port_copy_send(current_manager); | |||||
| 1045 | } else { | |||||
| 1046 | /* | |||||
| 1047 | * Retrieve the current value, | |||||
| 1048 | * and replace it with the supplied value. | |||||
| 1049 | * We consume the supplied naked send right. | |||||
| 1050 | */ | |||||
| 1051 | ||||||
| 1052 | returned_manager = current_manager; | |||||
| 1053 | memory_manager_default = new_manager; | |||||
| 1054 | ||||||
| 1055 | /* | |||||
| 1056 | * In case anyone's been waiting for a memory | |||||
| 1057 | * manager to be established, wake them up. | |||||
| 1058 | */ | |||||
| 1059 | ||||||
| 1060 | thread_wakeup((event_t) &memory_manager_default)thread_wakeup_prim(((event_t) &memory_manager_default), ( (boolean_t) 0), 0); | |||||
| 1061 | } | |||||
| 1062 | ||||||
| 1063 | simple_unlock(&memory_manager_default_lock)((void)(&memory_manager_default_lock)); | |||||
| 1064 | ||||||
| 1065 | *default_manager = returned_manager; | |||||
| 1066 | return(KERN_SUCCESS0); | |||||
| 1067 | } | |||||
| 1068 | ||||||
| 1069 | /* | |||||
| 1070 | * Routine: memory_manager_default_reference | |||||
| 1071 | * Purpose: | |||||
| 1072 | * Returns a naked send right for the default | |||||
| 1073 | * memory manager. The returned right is always | |||||
| 1074 | * valid (not IP_NULL or IP_DEAD). | |||||
| 1075 | */ | |||||
| 1076 | ||||||
| 1077 | ipc_port_t memory_manager_default_reference(void) | |||||
| 1078 | { | |||||
| 1079 | ipc_port_t current_manager; | |||||
| 1080 | ||||||
| 1081 | simple_lock(&memory_manager_default_lock); | |||||
| 1082 | ||||||
| 1083 | while (current_manager = ipc_port_copy_send(memory_manager_default), | |||||
| 1084 | !IP_VALID(current_manager)(((&(current_manager)->ip_target.ipt_object) != ((ipc_object_t ) 0)) && ((&(current_manager)->ip_target.ipt_object ) != ((ipc_object_t) -1)))) { | |||||
| 1085 | thread_sleep((event_t) &memory_manager_default, | |||||
| 1086 | simple_lock_addr(memory_manager_default_lock)((simple_lock_t)0), | |||||
| 1087 | FALSE((boolean_t) 0)); | |||||
| 1088 | simple_lock(&memory_manager_default_lock); | |||||
| 1089 | } | |||||
| 1090 | ||||||
| 1091 | simple_unlock(&memory_manager_default_lock)((void)(&memory_manager_default_lock)); | |||||
| 1092 | ||||||
| 1093 | return current_manager; | |||||
| 1094 | } | |||||
| 1095 | ||||||
| 1096 | /* | |||||
| 1097 | * Routine: memory_manager_default_port | |||||
| 1098 | * Purpose: | |||||
| 1099 | * Returns true if the receiver for the port | |||||
| 1100 | * is the default memory manager. | |||||
| 1101 | * | |||||
| 1102 | * This is a hack to let ds_read_done | |||||
| 1103 | * know when it should keep memory wired. | |||||
| 1104 | */ | |||||
| 1105 | ||||||
| 1106 | boolean_t memory_manager_default_port(port) | |||||
| 1107 | const ipc_port_t port; | |||||
| 1108 | { | |||||
| 1109 | ipc_port_t current; | |||||
| 1110 | boolean_t result; | |||||
| 1111 | ||||||
| 1112 | simple_lock(&memory_manager_default_lock); | |||||
| 1113 | current = memory_manager_default; | |||||
| 1114 | if (IP_VALID(current)(((&(current)->ip_target.ipt_object) != ((ipc_object_t ) 0)) && ((&(current)->ip_target.ipt_object) != ((ipc_object_t) -1)))) { | |||||
| 1115 | /* | |||||
| 1116 | * There is no point in bothering to lock | |||||
| 1117 | * both ports, which would be painful to do. | |||||
| 1118 | * If the receive rights are moving around, | |||||
| 1119 | * we might be inaccurate. | |||||
| 1120 | */ | |||||
| 1121 | ||||||
| 1122 | result = port->ip_receiverdata.receiver == current->ip_receiverdata.receiver; | |||||
| 1123 | } else | |||||
| 1124 | result = FALSE((boolean_t) 0); | |||||
| 1125 | simple_unlock(&memory_manager_default_lock)((void)(&memory_manager_default_lock)); | |||||
| 1126 | ||||||
| 1127 | return result; | |||||
| 1128 | } | |||||
| 1129 | ||||||
| 1130 | void memory_manager_default_init(void) | |||||
| 1131 | { | |||||
| 1132 | memory_manager_default = IP_NULL((ipc_port_t) ((ipc_object_t) 0)); | |||||
| 1133 | simple_lock_init(&memory_manager_default_lock); | |||||
| 1134 | } |