File: | obj-scan-build/../kern/task.c |
Location: | line 612, column 3 |
Description: | Array access (from variable 'threads') results in a null pointer dereference |
1 | /* | |||
2 | * Mach Operating System | |||
3 | * Copyright (c) 1993-1988 Carnegie Mellon University | |||
4 | * All Rights Reserved. | |||
5 | * | |||
6 | * Permission to use, copy, modify and distribute this software and its | |||
7 | * documentation is hereby granted, provided that both the copyright | |||
8 | * notice and this permission notice appear in all copies of the | |||
9 | * software, derivative works or modified versions, and any portions | |||
10 | * thereof, and that both notices appear in supporting documentation. | |||
11 | * | |||
12 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" | |||
13 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR | |||
14 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. | |||
15 | * | |||
16 | * Carnegie Mellon requests users of this software to return to | |||
17 | * | |||
18 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU | |||
19 | * School of Computer Science | |||
20 | * Carnegie Mellon University | |||
21 | * Pittsburgh PA 15213-3890 | |||
22 | * | |||
23 | * any improvements or extensions that they make and grant Carnegie Mellon | |||
24 | * the rights to redistribute these changes. | |||
25 | */ | |||
26 | /* | |||
27 | * File: kern/task.c | |||
28 | * Author: Avadis Tevanian, Jr., Michael Wayne Young, David Golub, | |||
29 | * David Black | |||
30 | * | |||
31 | * Task management primitives implementation. | |||
32 | */ | |||
33 | ||||
34 | #include <string.h> | |||
35 | ||||
36 | #include <mach/machine/vm_types.h> | |||
37 | #include <mach/vm_param.h> | |||
38 | #include <mach/task_info.h> | |||
39 | #include <mach/task_special_ports.h> | |||
40 | #include <mach_debug/mach_debug_types.h> | |||
41 | #include <ipc/ipc_space.h> | |||
42 | #include <ipc/ipc_types.h> | |||
43 | #include <kern/debug.h> | |||
44 | #include <kern/task.h> | |||
45 | #include <kern/thread.h> | |||
46 | #include <kern/slab.h> | |||
47 | #include <kern/kalloc.h> | |||
48 | #include <kern/processor.h> | |||
49 | #include <kern/printf.h> | |||
50 | #include <kern/sched_prim.h> /* for thread_wakeup */ | |||
51 | #include <kern/ipc_tt.h> | |||
52 | #include <kern/syscall_emulation.h> | |||
53 | #include <kern/task_notify.user.h> | |||
54 | #include <vm/vm_kern.h> /* for kernel_map, ipc_kernel_map */ | |||
55 | #include <machine/machspl.h> /* for splsched */ | |||
56 | ||||
57 | task_t kernel_task = TASK_NULL((task_t) 0); | |||
58 | struct kmem_cache task_cache; | |||
59 | ||||
60 | /* Where to send notifications about newly created tasks. */ | |||
61 | ipc_port_t new_task_notification = NULL((void *) 0); | |||
62 | ||||
63 | void task_init(void) | |||
64 | { | |||
65 | kmem_cache_init(&task_cache, "task", sizeof(struct task), 0, | |||
66 | NULL((void *) 0), NULL((void *) 0), NULL((void *) 0), 0); | |||
67 | ||||
68 | eml_init(); | |||
69 | machine_task_module_init (); | |||
70 | ||||
71 | /* | |||
72 | * Create the kernel task as the first task. | |||
73 | * Task_create must assign to kernel_task as a side effect, | |||
74 | * for other initialization. (:-() | |||
75 | */ | |||
76 | (void) task_create(TASK_NULL((task_t) 0), FALSE((boolean_t) 0), &kernel_task); | |||
77 | (void) task_set_name(kernel_task, "gnumach"); | |||
78 | } | |||
79 | ||||
80 | kern_return_t task_create( | |||
81 | task_t parent_task, | |||
82 | boolean_t inherit_memory, | |||
83 | task_t *child_task) /* OUT */ | |||
84 | { | |||
85 | task_t new_task; | |||
86 | processor_set_t pset; | |||
87 | #if FAST_TAS0 | |||
88 | int i; | |||
89 | #endif | |||
90 | ||||
91 | new_task = (task_t) kmem_cache_alloc(&task_cache); | |||
92 | if (new_task == TASK_NULL((task_t) 0)) { | |||
93 | panic("task_create: no memory for task structure"); | |||
94 | } | |||
95 | ||||
96 | /* one ref for just being alive; one for our caller */ | |||
97 | new_task->ref_count = 2; | |||
98 | ||||
99 | if (child_task == &kernel_task) { | |||
100 | new_task->map = kernel_map; | |||
101 | } else if (inherit_memory) { | |||
102 | new_task->map = vm_map_fork(parent_task->map); | |||
103 | } else { | |||
104 | new_task->map = vm_map_create(pmap_create(0), | |||
105 | round_page(VM_MIN_ADDRESS)((vm_offset_t)((((vm_offset_t)((0))) + ((1 << 12)-1)) & ~((1 << 12)-1))), | |||
106 | trunc_page(VM_MAX_ADDRESS)((vm_offset_t)(((vm_offset_t)((0xc0000000UL))) & ~((1 << 12)-1))), TRUE((boolean_t) 1)); | |||
107 | } | |||
108 | ||||
109 | simple_lock_init(&new_task->lock); | |||
110 | queue_init(&new_task->thread_list)((&new_task->thread_list)->next = (&new_task-> thread_list)->prev = &new_task->thread_list); | |||
111 | new_task->suspend_count = 0; | |||
112 | new_task->active = TRUE((boolean_t) 1); | |||
113 | new_task->user_stop_count = 0; | |||
114 | new_task->thread_count = 0; | |||
115 | new_task->faults = 0; | |||
116 | new_task->zero_fills = 0; | |||
117 | new_task->reactivations = 0; | |||
118 | new_task->pageins = 0; | |||
119 | new_task->cow_faults = 0; | |||
120 | new_task->messages_sent = 0; | |||
121 | new_task->messages_received = 0; | |||
122 | ||||
123 | eml_task_reference(new_task, parent_task); | |||
124 | ||||
125 | ipc_task_init(new_task, parent_task); | |||
126 | machine_task_init (new_task); | |||
127 | ||||
128 | new_task->total_user_time.seconds = 0; | |||
129 | new_task->total_user_time.microseconds = 0; | |||
130 | new_task->total_system_time.seconds = 0; | |||
131 | new_task->total_system_time.microseconds = 0; | |||
132 | ||||
133 | record_time_stamp (&new_task->creation_time); | |||
134 | ||||
135 | if (parent_task != TASK_NULL((task_t) 0)) { | |||
136 | task_lock(parent_task); | |||
137 | pset = parent_task->processor_set; | |||
138 | if (!pset->active) | |||
139 | pset = &default_pset; | |||
140 | pset_reference(pset); | |||
141 | new_task->priority = parent_task->priority; | |||
142 | task_unlock(parent_task)((void)(&(parent_task)->lock)); | |||
143 | } | |||
144 | else { | |||
145 | pset = &default_pset; | |||
146 | pset_reference(pset); | |||
147 | new_task->priority = BASEPRI_USER25; | |||
148 | } | |||
149 | pset_lock(pset); | |||
150 | pset_add_task(pset, new_task); | |||
151 | pset_unlock(pset)((void)(&(pset)->lock)); | |||
152 | ||||
153 | new_task->may_assign = TRUE((boolean_t) 1); | |||
154 | new_task->assign_active = FALSE((boolean_t) 0); | |||
155 | ||||
156 | #if MACH_PCSAMPLE1 | |||
157 | new_task->pc_sample.buffer = 0; | |||
158 | new_task->pc_sample.seqno = 0; | |||
159 | new_task->pc_sample.sampletypes = 0; | |||
160 | #endif /* MACH_PCSAMPLE */ | |||
161 | ||||
162 | #if FAST_TAS0 | |||
163 | for (i = 0; i < TASK_FAST_TAS_NRAS; i++) { | |||
164 | if (inherit_memory) { | |||
165 | new_task->fast_tas_base[i] = parent_task->fast_tas_base[i]; | |||
166 | new_task->fast_tas_end[i] = parent_task->fast_tas_end[i]; | |||
167 | } else { | |||
168 | new_task->fast_tas_base[i] = (vm_offset_t)0; | |||
169 | new_task->fast_tas_end[i] = (vm_offset_t)0; | |||
170 | } | |||
171 | } | |||
172 | #endif /* FAST_TAS */ | |||
173 | ||||
174 | snprintf (new_task->name, sizeof new_task->name, "%p", new_task); | |||
175 | ||||
176 | if (new_task_notification != NULL((void *) 0)) { | |||
177 | task_reference (new_task); | |||
178 | task_reference (parent_task); | |||
179 | mach_notify_new_task (new_task_notification, | |||
180 | convert_task_to_port (new_task), | |||
181 | convert_task_to_port (parent_task)); | |||
182 | } | |||
183 | ||||
184 | ipc_task_enable(new_task); | |||
185 | ||||
186 | *child_task = new_task; | |||
187 | return KERN_SUCCESS0; | |||
188 | } | |||
189 | ||||
190 | /* | |||
191 | * task_deallocate: | |||
192 | * | |||
193 | * Give up a reference to the specified task and destroy it if there | |||
194 | * are no other references left. It is assumed that the current thread | |||
195 | * is never in this task. | |||
196 | */ | |||
197 | void task_deallocate( | |||
198 | task_t task) | |||
199 | { | |||
200 | int c; | |||
201 | processor_set_t pset; | |||
202 | ||||
203 | if (task == TASK_NULL((task_t) 0)) | |||
204 | return; | |||
205 | ||||
206 | task_lock(task); | |||
207 | c = --(task->ref_count); | |||
208 | task_unlock(task)((void)(&(task)->lock)); | |||
209 | if (c != 0) | |||
210 | return; | |||
211 | ||||
212 | machine_task_terminate (task); | |||
213 | ||||
214 | eml_task_deallocate(task); | |||
215 | ||||
216 | pset = task->processor_set; | |||
217 | pset_lock(pset); | |||
218 | pset_remove_task(pset,task); | |||
219 | pset_unlock(pset)((void)(&(pset)->lock)); | |||
220 | pset_deallocate(pset); | |||
221 | vm_map_deallocate(task->map); | |||
222 | is_release(task->itk_space)ipc_space_release(task->itk_space); | |||
223 | kmem_cache_free(&task_cache, (vm_offset_t) task); | |||
224 | } | |||
225 | ||||
226 | void task_reference( | |||
227 | task_t task) | |||
228 | { | |||
229 | if (task == TASK_NULL((task_t) 0)) | |||
230 | return; | |||
231 | ||||
232 | task_lock(task); | |||
233 | task->ref_count++; | |||
234 | task_unlock(task)((void)(&(task)->lock)); | |||
235 | } | |||
236 | ||||
237 | /* | |||
238 | * task_terminate: | |||
239 | * | |||
240 | * Terminate the specified task. See comments on thread_terminate | |||
241 | * (kern/thread.c) about problems with terminating the "current task." | |||
242 | */ | |||
243 | kern_return_t task_terminate( | |||
244 | task_t task) | |||
245 | { | |||
246 | thread_t thread, cur_thread; | |||
247 | queue_head_t *list; | |||
248 | task_t cur_task; | |||
249 | spl_t s; | |||
250 | ||||
251 | if (task == TASK_NULL((task_t) 0)) | |||
252 | return KERN_INVALID_ARGUMENT4; | |||
253 | ||||
254 | list = &task->thread_list; | |||
255 | cur_task = current_task()((active_threads[(0)])->task); | |||
256 | cur_thread = current_thread()(active_threads[(0)]); | |||
257 | ||||
258 | /* | |||
259 | * Deactivate task so that it can't be terminated again, | |||
260 | * and so lengthy operations in progress will abort. | |||
261 | * | |||
262 | * If the current thread is in this task, remove it from | |||
263 | * the task's thread list to keep the thread-termination | |||
264 | * loop simple. | |||
265 | */ | |||
266 | if (task == cur_task) { | |||
267 | task_lock(task); | |||
268 | if (!task->active) { | |||
269 | /* | |||
270 | * Task is already being terminated. | |||
271 | */ | |||
272 | task_unlock(task)((void)(&(task)->lock)); | |||
273 | return KERN_FAILURE5; | |||
274 | } | |||
275 | /* | |||
276 | * Make sure current thread is not being terminated. | |||
277 | */ | |||
278 | s = splsched(); | |||
279 | thread_lock(cur_thread); | |||
280 | if (!cur_thread->active) { | |||
281 | thread_unlock(cur_thread)((void)(&(cur_thread)->lock)); | |||
282 | (void) splx(s); | |||
283 | task_unlock(task)((void)(&(task)->lock)); | |||
284 | thread_terminate(cur_thread); | |||
285 | return KERN_FAILURE5; | |||
286 | } | |||
287 | task_hold_locked(task); | |||
288 | task->active = FALSE((boolean_t) 0); | |||
289 | queue_remove(list, cur_thread, thread_t, thread_list){ queue_entry_t next, prev; next = (cur_thread)->thread_list .next; prev = (cur_thread)->thread_list.prev; if ((list) == next) (list)->prev = prev; else ((thread_t)next)->thread_list .prev = prev; if ((list) == prev) (list)->next = next; else ((thread_t)prev)->thread_list.next = next; }; | |||
290 | thread_unlock(cur_thread)((void)(&(cur_thread)->lock)); | |||
291 | (void) splx(s); | |||
292 | task_unlock(task)((void)(&(task)->lock)); | |||
293 | ||||
294 | /* | |||
295 | * Shut down this thread's ipc now because it must | |||
296 | * be left alone to terminate the task. | |||
297 | */ | |||
298 | ipc_thread_disable(cur_thread); | |||
299 | ipc_thread_terminate(cur_thread); | |||
300 | } | |||
301 | else { | |||
302 | /* | |||
303 | * Lock both current and victim task to check for | |||
304 | * potential deadlock. | |||
305 | */ | |||
306 | if ((vm_offset_t)task < (vm_offset_t)cur_task) { | |||
307 | task_lock(task); | |||
308 | task_lock(cur_task); | |||
309 | } | |||
310 | else { | |||
311 | task_lock(cur_task); | |||
312 | task_lock(task); | |||
313 | } | |||
314 | /* | |||
315 | * Check if current thread or task is being terminated. | |||
316 | */ | |||
317 | s = splsched(); | |||
318 | thread_lock(cur_thread); | |||
319 | if ((!cur_task->active) ||(!cur_thread->active)) { | |||
320 | /* | |||
321 | * Current task or thread is being terminated. | |||
322 | */ | |||
323 | thread_unlock(cur_thread)((void)(&(cur_thread)->lock)); | |||
324 | (void) splx(s); | |||
325 | task_unlock(task)((void)(&(task)->lock)); | |||
326 | task_unlock(cur_task)((void)(&(cur_task)->lock)); | |||
327 | thread_terminate(cur_thread); | |||
328 | return KERN_FAILURE5; | |||
329 | } | |||
330 | thread_unlock(cur_thread)((void)(&(cur_thread)->lock)); | |||
331 | (void) splx(s); | |||
332 | task_unlock(cur_task)((void)(&(cur_task)->lock)); | |||
333 | ||||
334 | if (!task->active) { | |||
335 | /* | |||
336 | * Task is already being terminated. | |||
337 | */ | |||
338 | task_unlock(task)((void)(&(task)->lock)); | |||
339 | return KERN_FAILURE5; | |||
340 | } | |||
341 | task_hold_locked(task); | |||
342 | task->active = FALSE((boolean_t) 0); | |||
343 | task_unlock(task)((void)(&(task)->lock)); | |||
344 | } | |||
345 | ||||
346 | /* | |||
347 | * Prevent further execution of the task. ipc_task_disable | |||
348 | * prevents further task operations via the task port. | |||
349 | * If this is the current task, the current thread will | |||
350 | * be left running. | |||
351 | */ | |||
352 | (void) task_dowait(task,TRUE((boolean_t) 1)); /* may block */ | |||
353 | ipc_task_disable(task); | |||
354 | ||||
355 | /* | |||
356 | * Terminate each thread in the task. | |||
357 | * | |||
358 | * The task_port is closed down, so no more thread_create | |||
359 | * operations can be done. Thread_force_terminate closes the | |||
360 | * thread port for each thread; when that is done, the | |||
361 | * thread will eventually disappear. Thus the loop will | |||
362 | * terminate. Call thread_force_terminate instead of | |||
363 | * thread_terminate to avoid deadlock checks. Need | |||
364 | * to call thread_block() inside loop because some other | |||
365 | * thread (e.g., the reaper) may have to run to get rid | |||
366 | * of all references to the thread; it won't vanish from | |||
367 | * the task's thread list until the last one is gone. | |||
368 | */ | |||
369 | task_lock(task); | |||
370 | while (!queue_empty(list)(((list)) == (((list)->next)))) { | |||
371 | thread = (thread_t) queue_first(list)((list)->next); | |||
372 | thread_reference(thread); | |||
373 | task_unlock(task)((void)(&(task)->lock)); | |||
374 | thread_force_terminate(thread); | |||
375 | thread_deallocate(thread); | |||
376 | thread_block((void (*)()) 0); | |||
377 | task_lock(task); | |||
378 | } | |||
379 | task_unlock(task)((void)(&(task)->lock)); | |||
380 | ||||
381 | /* | |||
382 | * Shut down IPC. | |||
383 | */ | |||
384 | ipc_task_terminate(task); | |||
385 | ||||
386 | ||||
387 | /* | |||
388 | * Deallocate the task's reference to itself. | |||
389 | */ | |||
390 | task_deallocate(task); | |||
391 | ||||
392 | /* | |||
393 | * If the current thread is in this task, it has not yet | |||
394 | * been terminated (since it was removed from the task's | |||
395 | * thread-list). Put it back in the thread list (for | |||
396 | * completeness), and terminate it. Since it holds the | |||
397 | * last reference to the task, terminating it will deallocate | |||
398 | * the task. | |||
399 | */ | |||
400 | if (cur_thread->task == task) { | |||
401 | task_lock(task); | |||
402 | s = splsched(); | |||
403 | queue_enter(list, cur_thread, thread_t, thread_list){ queue_entry_t prev; prev = (list)->prev; if ((list) == prev ) { (list)->next = (queue_entry_t) (cur_thread); } else { ( (thread_t)prev)->thread_list.next = (queue_entry_t)(cur_thread ); } (cur_thread)->thread_list.prev = prev; (cur_thread)-> thread_list.next = list; (list)->prev = (queue_entry_t) cur_thread ; }; | |||
404 | (void) splx(s); | |||
405 | task_unlock(task)((void)(&(task)->lock)); | |||
406 | (void) thread_terminate(cur_thread); | |||
407 | } | |||
408 | ||||
409 | return KERN_SUCCESS0; | |||
410 | } | |||
411 | ||||
412 | /* | |||
413 | * task_hold: | |||
414 | * | |||
415 | * Suspend execution of the specified task. | |||
416 | * This is a recursive-style suspension of the task, a count of | |||
417 | * suspends is maintained. | |||
418 | * | |||
419 | * CONDITIONS: the task is locked and active. | |||
420 | */ | |||
421 | void task_hold_locked( | |||
422 | task_t task) | |||
423 | { | |||
424 | queue_head_t *list; | |||
425 | thread_t thread, cur_thread; | |||
426 | ||||
427 | assert(task->active)({ if (!(task->active)) Assert("task->active", "../kern/task.c" , 427); }); | |||
428 | ||||
429 | cur_thread = current_thread()(active_threads[(0)]); | |||
430 | ||||
431 | task->suspend_count++; | |||
432 | ||||
433 | /* | |||
434 | * Iterate through all the threads and hold them. | |||
435 | * Do not hold the current thread if it is within the | |||
436 | * task. | |||
437 | */ | |||
438 | list = &task->thread_list; | |||
439 | queue_iterate(list, thread, thread_t, thread_list)for ((thread) = (thread_t) ((list)->next); !(((list)) == ( (queue_entry_t)(thread))); (thread) = (thread_t) ((&(thread )->thread_list)->next)) { | |||
440 | if (thread != cur_thread) | |||
441 | thread_hold(thread); | |||
442 | } | |||
443 | } | |||
444 | ||||
445 | /* | |||
446 | * task_hold: | |||
447 | * | |||
448 | * Suspend execution of the specified task. | |||
449 | * This is a recursive-style suspension of the task, a count of | |||
450 | * suspends is maintained. | |||
451 | */ | |||
452 | kern_return_t task_hold( | |||
453 | task_t task) | |||
454 | { | |||
455 | task_lock(task); | |||
456 | if (!task->active) { | |||
457 | task_unlock(task)((void)(&(task)->lock)); | |||
458 | return KERN_FAILURE5; | |||
459 | } | |||
460 | ||||
461 | task_hold_locked(task); | |||
462 | ||||
463 | task_unlock(task)((void)(&(task)->lock)); | |||
464 | return KERN_SUCCESS0; | |||
465 | } | |||
466 | ||||
467 | /* | |||
468 | * task_dowait: | |||
469 | * | |||
470 | * Wait until the task has really been suspended (all of the threads | |||
471 | * are stopped). Skip the current thread if it is within the task. | |||
472 | * | |||
473 | * If task is deactivated while waiting, return a failure code unless | |||
474 | * must_wait is true. | |||
475 | */ | |||
476 | kern_return_t task_dowait( | |||
477 | task_t task, | |||
478 | boolean_t must_wait) | |||
479 | { | |||
480 | queue_head_t *list; | |||
481 | thread_t thread, cur_thread, prev_thread; | |||
482 | kern_return_t ret = KERN_SUCCESS0; | |||
483 | ||||
484 | /* | |||
485 | * Iterate through all the threads. | |||
486 | * While waiting for each thread, we gain a reference to it | |||
487 | * to prevent it from going away on us. This guarantees | |||
488 | * that the "next" thread in the list will be a valid thread. | |||
489 | * | |||
490 | * We depend on the fact that if threads are created while | |||
491 | * we are looping through the threads, they will be held | |||
492 | * automatically. We don't care about threads that get | |||
493 | * deallocated along the way (the reference prevents it | |||
494 | * from happening to the thread we are working with). | |||
495 | * | |||
496 | * If the current thread is in the affected task, it is skipped. | |||
497 | * | |||
498 | * If the task is deactivated before we're done, and we don't | |||
499 | * have to wait for it (must_wait is FALSE), just bail out. | |||
500 | */ | |||
501 | cur_thread = current_thread()(active_threads[(0)]); | |||
502 | ||||
503 | list = &task->thread_list; | |||
504 | prev_thread = THREAD_NULL((thread_t) 0); | |||
505 | task_lock(task); | |||
506 | queue_iterate(list, thread, thread_t, thread_list)for ((thread) = (thread_t) ((list)->next); !(((list)) == ( (queue_entry_t)(thread))); (thread) = (thread_t) ((&(thread )->thread_list)->next)) { | |||
507 | if (!(task->active) && !(must_wait)) { | |||
508 | ret = KERN_FAILURE5; | |||
509 | break; | |||
510 | } | |||
511 | if (thread != cur_thread) { | |||
512 | thread_reference(thread); | |||
513 | task_unlock(task)((void)(&(task)->lock)); | |||
514 | if (prev_thread != THREAD_NULL((thread_t) 0)) | |||
515 | thread_deallocate(prev_thread); | |||
516 | /* may block */ | |||
517 | (void) thread_dowait(thread, TRUE((boolean_t) 1)); /* may block */ | |||
518 | prev_thread = thread; | |||
519 | task_lock(task); | |||
520 | } | |||
521 | } | |||
522 | task_unlock(task)((void)(&(task)->lock)); | |||
523 | if (prev_thread != THREAD_NULL((thread_t) 0)) | |||
524 | thread_deallocate(prev_thread); /* may block */ | |||
525 | return ret; | |||
526 | } | |||
527 | ||||
528 | kern_return_t task_release( | |||
529 | task_t task) | |||
530 | { | |||
531 | queue_head_t *list; | |||
532 | thread_t thread, next; | |||
533 | ||||
534 | task_lock(task); | |||
535 | if (!task->active) { | |||
536 | task_unlock(task)((void)(&(task)->lock)); | |||
537 | return KERN_FAILURE5; | |||
538 | } | |||
539 | ||||
540 | task->suspend_count--; | |||
541 | ||||
542 | /* | |||
543 | * Iterate through all the threads and release them | |||
544 | */ | |||
545 | list = &task->thread_list; | |||
546 | thread = (thread_t) queue_first(list)((list)->next); | |||
547 | while (!queue_end(list, (queue_entry_t) thread)((list) == ((queue_entry_t) thread))) { | |||
548 | next = (thread_t) queue_next(&thread->thread_list)((&thread->thread_list)->next); | |||
549 | thread_release(thread); | |||
550 | thread = next; | |||
551 | } | |||
552 | task_unlock(task)((void)(&(task)->lock)); | |||
553 | return KERN_SUCCESS0; | |||
554 | } | |||
555 | ||||
556 | kern_return_t task_threads( | |||
557 | task_t task, | |||
558 | thread_array_t *thread_list, | |||
559 | natural_t *count) | |||
560 | { | |||
561 | unsigned int actual; /* this many threads */ | |||
562 | thread_t thread; | |||
563 | thread_t *threads; | |||
564 | int i; | |||
565 | ||||
566 | vm_size_t size, size_needed; | |||
567 | vm_offset_t addr; | |||
568 | ||||
569 | if (task == TASK_NULL((task_t) 0)) | |||
| ||||
570 | return KERN_INVALID_ARGUMENT4; | |||
571 | ||||
572 | size = 0; addr = 0; | |||
573 | ||||
574 | for (;;) { | |||
575 | task_lock(task); | |||
576 | if (!task->active) { | |||
577 | task_unlock(task)((void)(&(task)->lock)); | |||
578 | return KERN_FAILURE5; | |||
579 | } | |||
580 | ||||
581 | actual = task->thread_count; | |||
582 | ||||
583 | /* do we have the memory we need? */ | |||
584 | ||||
585 | size_needed = actual * sizeof(mach_port_t); | |||
586 | if (size_needed <= size) | |||
587 | break; | |||
588 | ||||
589 | /* unlock the task and allocate more memory */ | |||
590 | task_unlock(task)((void)(&(task)->lock)); | |||
591 | ||||
592 | if (size != 0) | |||
593 | kfree(addr, size); | |||
594 | ||||
595 | assert(size_needed > 0)({ if (!(size_needed > 0)) Assert("size_needed > 0", "../kern/task.c" , 595); }); | |||
596 | size = size_needed; | |||
597 | ||||
598 | addr = kalloc(size); | |||
599 | if (addr == 0) | |||
600 | return KERN_RESOURCE_SHORTAGE6; | |||
601 | } | |||
602 | ||||
603 | /* OK, have memory and the task is locked & active */ | |||
604 | ||||
605 | threads = (thread_t *) addr; | |||
606 | ||||
607 | for (i = 0, thread = (thread_t) queue_first(&task->thread_list)((&task->thread_list)->next); | |||
608 | i < actual; | |||
609 | i++, thread = (thread_t) queue_next(&thread->thread_list)((&thread->thread_list)->next)) { | |||
610 | /* take ref for convert_thread_to_port */ | |||
611 | thread_reference(thread); | |||
612 | threads[i] = thread; | |||
| ||||
613 | } | |||
614 | assert(queue_end(&task->thread_list, (queue_entry_t) thread))({ if (!(((&task->thread_list) == ((queue_entry_t) thread )))) Assert("queue_end(&task->thread_list, (queue_entry_t) thread)" , "../kern/task.c", 614); }); | |||
615 | ||||
616 | /* can unlock task now that we've got the thread refs */ | |||
617 | task_unlock(task)((void)(&(task)->lock)); | |||
618 | ||||
619 | if (actual == 0) { | |||
620 | /* no threads, so return null pointer and deallocate memory */ | |||
621 | ||||
622 | *thread_list = 0; | |||
623 | *count = 0; | |||
624 | ||||
625 | if (size != 0) | |||
626 | kfree(addr, size); | |||
627 | } else { | |||
628 | /* if we allocated too much, must copy */ | |||
629 | ||||
630 | if (size_needed < size) { | |||
631 | vm_offset_t newaddr; | |||
632 | ||||
633 | newaddr = kalloc(size_needed); | |||
634 | if (newaddr == 0) { | |||
635 | for (i = 0; i < actual; i++) | |||
636 | thread_deallocate(threads[i]); | |||
637 | kfree(addr, size); | |||
638 | return KERN_RESOURCE_SHORTAGE6; | |||
639 | } | |||
640 | ||||
641 | memcpy((void *) newaddr, (void *) addr, size_needed); | |||
642 | kfree(addr, size); | |||
643 | threads = (thread_t *) newaddr; | |||
644 | } | |||
645 | ||||
646 | *thread_list = (mach_port_t *) threads; | |||
647 | *count = actual; | |||
648 | ||||
649 | /* do the conversion that Mig should handle */ | |||
650 | ||||
651 | for (i = 0; i < actual; i++) | |||
652 | ((ipc_port_t *) threads)[i] = | |||
653 | convert_thread_to_port(threads[i]); | |||
654 | } | |||
655 | ||||
656 | return KERN_SUCCESS0; | |||
657 | } | |||
658 | ||||
659 | kern_return_t task_suspend( | |||
660 | task_t task) | |||
661 | { | |||
662 | boolean_t hold; | |||
663 | ||||
664 | if (task == TASK_NULL((task_t) 0)) | |||
665 | return KERN_INVALID_ARGUMENT4; | |||
666 | ||||
667 | hold = FALSE((boolean_t) 0); | |||
668 | task_lock(task); | |||
669 | if ((task->user_stop_count)++ == 0) | |||
670 | hold = TRUE((boolean_t) 1); | |||
671 | task_unlock(task)((void)(&(task)->lock)); | |||
672 | ||||
673 | /* | |||
674 | * If the stop count was positive, the task is | |||
675 | * already stopped and we can exit. | |||
676 | */ | |||
677 | if (!hold) { | |||
678 | return KERN_SUCCESS0; | |||
679 | } | |||
680 | ||||
681 | /* | |||
682 | * Hold all of the threads in the task, and wait for | |||
683 | * them to stop. If the current thread is within | |||
684 | * this task, hold it separately so that all of the | |||
685 | * other threads can stop first. | |||
686 | */ | |||
687 | ||||
688 | if (task_hold(task) != KERN_SUCCESS0) | |||
689 | return KERN_FAILURE5; | |||
690 | ||||
691 | if (task_dowait(task, FALSE((boolean_t) 0)) != KERN_SUCCESS0) | |||
692 | return KERN_FAILURE5; | |||
693 | ||||
694 | if (current_task()((active_threads[(0)])->task) == task) { | |||
695 | spl_t s; | |||
696 | ||||
697 | thread_hold(current_thread()(active_threads[(0)])); | |||
698 | /* | |||
699 | * We want to call thread_block on our way out, | |||
700 | * to stop running. | |||
701 | */ | |||
702 | s = splsched(); | |||
703 | ast_on(cpu_number(), AST_BLOCK)({ if ((need_ast[(0)] |= (0x4)) != 0x0) { ; } }); | |||
704 | (void) splx(s); | |||
705 | } | |||
706 | ||||
707 | return KERN_SUCCESS0; | |||
708 | } | |||
709 | ||||
710 | kern_return_t task_resume( | |||
711 | task_t task) | |||
712 | { | |||
713 | boolean_t release; | |||
714 | ||||
715 | if (task == TASK_NULL((task_t) 0)) | |||
716 | return KERN_INVALID_ARGUMENT4; | |||
717 | ||||
718 | release = FALSE((boolean_t) 0); | |||
719 | task_lock(task); | |||
720 | if (task->user_stop_count > 0) { | |||
721 | if (--(task->user_stop_count) == 0) | |||
722 | release = TRUE((boolean_t) 1); | |||
723 | } | |||
724 | else { | |||
725 | task_unlock(task)((void)(&(task)->lock)); | |||
726 | return KERN_FAILURE5; | |||
727 | } | |||
728 | task_unlock(task)((void)(&(task)->lock)); | |||
729 | ||||
730 | /* | |||
731 | * Release the task if necessary. | |||
732 | */ | |||
733 | if (release) | |||
734 | return task_release(task); | |||
735 | ||||
736 | return KERN_SUCCESS0; | |||
737 | } | |||
738 | ||||
739 | kern_return_t task_info( | |||
740 | task_t task, | |||
741 | int flavor, | |||
742 | task_info_t task_info_out, /* pointer to OUT array */ | |||
743 | natural_t *task_info_count) /* IN/OUT */ | |||
744 | { | |||
745 | vm_map_t map; | |||
746 | ||||
747 | if (task == TASK_NULL((task_t) 0)) | |||
748 | return KERN_INVALID_ARGUMENT4; | |||
749 | ||||
750 | switch (flavor) { | |||
751 | case TASK_BASIC_INFO1: | |||
752 | { | |||
753 | task_basic_info_t basic_info; | |||
754 | ||||
755 | /* Allow *task_info_count to be two words smaller than | |||
756 | the usual amount, because creation_time is a new member | |||
757 | that some callers might not know about. */ | |||
758 | ||||
759 | if (*task_info_count < TASK_BASIC_INFO_COUNT(sizeof(task_basic_info_data_t) / sizeof(natural_t)) - 2) { | |||
760 | return KERN_INVALID_ARGUMENT4; | |||
761 | } | |||
762 | ||||
763 | basic_info = (task_basic_info_t) task_info_out; | |||
764 | ||||
765 | map = (task == kernel_task) ? kernel_map : task->map; | |||
766 | ||||
767 | basic_info->virtual_size = map->size; | |||
768 | basic_info->resident_size = pmap_resident_count(map->pmap)((map->pmap)->stats.resident_count) | |||
769 | * PAGE_SIZE(1 << 12); | |||
770 | ||||
771 | task_lock(task); | |||
772 | basic_info->base_priority = task->priority; | |||
773 | basic_info->suspend_count = task->user_stop_count; | |||
774 | basic_info->user_time.seconds | |||
775 | = task->total_user_time.seconds; | |||
776 | basic_info->user_time.microseconds | |||
777 | = task->total_user_time.microseconds; | |||
778 | basic_info->system_time.seconds | |||
779 | = task->total_system_time.seconds; | |||
780 | basic_info->system_time.microseconds | |||
781 | = task->total_system_time.microseconds; | |||
782 | basic_info->creation_time = task->creation_time; | |||
783 | task_unlock(task)((void)(&(task)->lock)); | |||
784 | ||||
785 | if (*task_info_count > TASK_BASIC_INFO_COUNT(sizeof(task_basic_info_data_t) / sizeof(natural_t))) | |||
786 | *task_info_count = TASK_BASIC_INFO_COUNT(sizeof(task_basic_info_data_t) / sizeof(natural_t)); | |||
787 | break; | |||
788 | } | |||
789 | ||||
790 | case TASK_EVENTS_INFO2: | |||
791 | { | |||
792 | task_events_info_t event_info; | |||
793 | ||||
794 | if (*task_info_count < TASK_EVENTS_INFO_COUNT(sizeof(task_events_info_data_t) / sizeof(natural_t))) { | |||
795 | return KERN_INVALID_ARGUMENT4; | |||
796 | } | |||
797 | ||||
798 | event_info = (task_events_info_t) task_info_out; | |||
799 | ||||
800 | task_lock(task); | |||
801 | event_info->faults = task->faults; | |||
802 | event_info->zero_fills = task->zero_fills; | |||
803 | event_info->reactivations = task->reactivations; | |||
804 | event_info->pageins = task->pageins; | |||
805 | event_info->cow_faults = task->cow_faults; | |||
806 | event_info->messages_sent = task->messages_sent; | |||
807 | event_info->messages_received = task->messages_received; | |||
808 | task_unlock(task)((void)(&(task)->lock)); | |||
809 | ||||
810 | *task_info_count = TASK_EVENTS_INFO_COUNT(sizeof(task_events_info_data_t) / sizeof(natural_t)); | |||
811 | break; | |||
812 | } | |||
813 | ||||
814 | case TASK_THREAD_TIMES_INFO3: | |||
815 | { | |||
816 | task_thread_times_info_t times_info; | |||
817 | thread_t thread; | |||
818 | ||||
819 | if (*task_info_count < TASK_THREAD_TIMES_INFO_COUNT(sizeof(task_thread_times_info_data_t) / sizeof(natural_t))) { | |||
820 | return KERN_INVALID_ARGUMENT4; | |||
821 | } | |||
822 | ||||
823 | times_info = (task_thread_times_info_t) task_info_out; | |||
824 | times_info->user_time.seconds = 0; | |||
825 | times_info->user_time.microseconds = 0; | |||
826 | times_info->system_time.seconds = 0; | |||
827 | times_info->system_time.microseconds = 0; | |||
828 | ||||
829 | task_lock(task); | |||
830 | queue_iterate(&task->thread_list, thread,for ((thread) = (thread_t) ((&task->thread_list)->next ); !(((&task->thread_list)) == ((queue_entry_t)(thread ))); (thread) = (thread_t) ((&(thread)->thread_list)-> next)) | |||
831 | thread_t, thread_list)for ((thread) = (thread_t) ((&task->thread_list)->next ); !(((&task->thread_list)) == ((queue_entry_t)(thread ))); (thread) = (thread_t) ((&(thread)->thread_list)-> next)) | |||
832 | { | |||
833 | time_value_t user_time, system_time; | |||
834 | spl_t s; | |||
835 | ||||
836 | s = splsched(); | |||
837 | thread_lock(thread); | |||
838 | ||||
839 | thread_read_times(thread, &user_time, &system_time); | |||
840 | ||||
841 | thread_unlock(thread)((void)(&(thread)->lock)); | |||
842 | splx(s); | |||
843 | ||||
844 | time_value_add(×_info->user_time, &user_time){ (×_info->user_time)->microseconds += (&user_time )->microseconds; (×_info->user_time)->seconds += (&user_time)->seconds; if ((×_info->user_time )->microseconds >= (1000000)) { (×_info->user_time )->microseconds -= (1000000); (×_info->user_time )->seconds++; } }; | |||
845 | time_value_add(×_info->system_time, &system_time){ (×_info->system_time)->microseconds += (& system_time)->microseconds; (×_info->system_time )->seconds += (&system_time)->seconds; if ((×_info ->system_time)->microseconds >= (1000000)) { (×_info ->system_time)->microseconds -= (1000000); (×_info ->system_time)->seconds++; } }; | |||
846 | } | |||
847 | task_unlock(task)((void)(&(task)->lock)); | |||
848 | ||||
849 | *task_info_count = TASK_THREAD_TIMES_INFO_COUNT(sizeof(task_thread_times_info_data_t) / sizeof(natural_t)); | |||
850 | break; | |||
851 | } | |||
852 | ||||
853 | default: | |||
854 | return KERN_INVALID_ARGUMENT4; | |||
855 | } | |||
856 | ||||
857 | return KERN_SUCCESS0; | |||
858 | } | |||
859 | ||||
860 | #if MACH_HOST0 | |||
861 | /* | |||
862 | * task_assign: | |||
863 | * | |||
864 | * Change the assigned processor set for the task | |||
865 | */ | |||
866 | kern_return_t | |||
867 | task_assign( | |||
868 | task_t task, | |||
869 | processor_set_t new_pset, | |||
870 | boolean_t assign_threads) | |||
871 | { | |||
872 | kern_return_t ret = KERN_SUCCESS0; | |||
873 | thread_t thread, prev_thread; | |||
874 | queue_head_t *list; | |||
875 | processor_set_t pset; | |||
876 | ||||
877 | if (task == TASK_NULL((task_t) 0) || new_pset == PROCESSOR_SET_NULL((processor_set_t) 0)) { | |||
878 | return KERN_INVALID_ARGUMENT4; | |||
879 | } | |||
880 | ||||
881 | /* | |||
882 | * Freeze task`s assignment. Prelude to assigning | |||
883 | * task. Only one freeze may be held per task. | |||
884 | */ | |||
885 | ||||
886 | task_lock(task); | |||
887 | while (task->may_assign == FALSE((boolean_t) 0)) { | |||
888 | task->assign_active = TRUE((boolean_t) 1); | |||
889 | assert_wait((event_t)&task->assign_active, TRUE((boolean_t) 1)); | |||
890 | task_unlock(task)((void)(&(task)->lock)); | |||
891 | thread_block((void (*)()) 0); | |||
892 | task_lock(task); | |||
893 | } | |||
894 | ||||
895 | /* | |||
896 | * Avoid work if task already in this processor set. | |||
897 | */ | |||
898 | if (task->processor_set == new_pset) { | |||
899 | /* | |||
900 | * No need for task->assign_active wakeup: | |||
901 | * task->may_assign is still TRUE. | |||
902 | */ | |||
903 | task_unlock(task)((void)(&(task)->lock)); | |||
904 | return KERN_SUCCESS0; | |||
905 | } | |||
906 | ||||
907 | task->may_assign = FALSE((boolean_t) 0); | |||
908 | task_unlock(task)((void)(&(task)->lock)); | |||
909 | ||||
910 | /* | |||
911 | * Safe to get the task`s pset: it cannot change while | |||
912 | * task is frozen. | |||
913 | */ | |||
914 | pset = task->processor_set; | |||
915 | ||||
916 | /* | |||
917 | * Lock both psets now. Use ordering to avoid deadlock. | |||
918 | */ | |||
919 | Restart: | |||
920 | if ((vm_offset_t) pset < (vm_offset_t) new_pset) { | |||
921 | pset_lock(pset); | |||
922 | pset_lock(new_pset); | |||
923 | } | |||
924 | else { | |||
925 | pset_lock(new_pset); | |||
926 | pset_lock(pset); | |||
927 | } | |||
928 | ||||
929 | /* | |||
930 | * Check if new_pset is ok to assign to. If not, | |||
931 | * reassign to default_pset. | |||
932 | */ | |||
933 | if (!new_pset->active) { | |||
934 | pset_unlock(pset)((void)(&(pset)->lock)); | |||
935 | pset_unlock(new_pset)((void)(&(new_pset)->lock)); | |||
936 | new_pset = &default_pset; | |||
937 | goto Restart; | |||
938 | } | |||
939 | ||||
940 | pset_reference(new_pset); | |||
941 | ||||
942 | /* | |||
943 | * Now grab the task lock and move the task. | |||
944 | */ | |||
945 | ||||
946 | task_lock(task); | |||
947 | pset_remove_task(pset, task); | |||
948 | pset_add_task(new_pset, task); | |||
949 | ||||
950 | pset_unlock(pset)((void)(&(pset)->lock)); | |||
951 | pset_unlock(new_pset)((void)(&(new_pset)->lock)); | |||
952 | ||||
953 | if (assign_threads == FALSE((boolean_t) 0)) { | |||
954 | /* | |||
955 | * We leave existing threads at their | |||
956 | * old assignments. Unfreeze task`s | |||
957 | * assignment. | |||
958 | */ | |||
959 | task->may_assign = TRUE((boolean_t) 1); | |||
960 | if (task->assign_active) { | |||
961 | task->assign_active = FALSE((boolean_t) 0); | |||
962 | thread_wakeup((event_t) &task->assign_active)thread_wakeup_prim(((event_t) &task->assign_active), ( (boolean_t) 0), 0); | |||
963 | } | |||
964 | task_unlock(task)((void)(&(task)->lock)); | |||
965 | pset_deallocate(pset); | |||
966 | return KERN_SUCCESS0; | |||
967 | } | |||
968 | ||||
969 | /* | |||
970 | * If current thread is in task, freeze its assignment. | |||
971 | */ | |||
972 | if (current_thread()(active_threads[(0)])->task == task) { | |||
973 | task_unlock(task)((void)(&(task)->lock)); | |||
974 | thread_freeze(current_thread()(active_threads[(0)])); | |||
975 | task_lock(task); | |||
976 | } | |||
977 | ||||
978 | /* | |||
979 | * Iterate down the thread list reassigning all the threads. | |||
980 | * New threads pick up task's new processor set automatically. | |||
981 | * Do current thread last because new pset may be empty. | |||
982 | */ | |||
983 | list = &task->thread_list; | |||
984 | prev_thread = THREAD_NULL((thread_t) 0); | |||
985 | queue_iterate(list, thread, thread_t, thread_list)for ((thread) = (thread_t) ((list)->next); !(((list)) == ( (queue_entry_t)(thread))); (thread) = (thread_t) ((&(thread )->thread_list)->next)) { | |||
986 | if (!(task->active)) { | |||
987 | ret = KERN_FAILURE5; | |||
988 | break; | |||
989 | } | |||
990 | if (thread != current_thread()(active_threads[(0)])) { | |||
991 | thread_reference(thread); | |||
992 | task_unlock(task)((void)(&(task)->lock)); | |||
993 | if (prev_thread != THREAD_NULL((thread_t) 0)) | |||
994 | thread_deallocate(prev_thread); /* may block */ | |||
995 | thread_assign(thread,new_pset); /* may block */ | |||
996 | prev_thread = thread; | |||
997 | task_lock(task); | |||
998 | } | |||
999 | } | |||
1000 | ||||
1001 | /* | |||
1002 | * Done, wakeup anyone waiting for us. | |||
1003 | */ | |||
1004 | task->may_assign = TRUE((boolean_t) 1); | |||
1005 | if (task->assign_active) { | |||
1006 | task->assign_active = FALSE((boolean_t) 0); | |||
1007 | thread_wakeup((event_t)&task->assign_active)thread_wakeup_prim(((event_t)&task->assign_active), (( boolean_t) 0), 0); | |||
1008 | } | |||
1009 | task_unlock(task)((void)(&(task)->lock)); | |||
1010 | if (prev_thread != THREAD_NULL((thread_t) 0)) | |||
1011 | thread_deallocate(prev_thread); /* may block */ | |||
1012 | ||||
1013 | /* | |||
1014 | * Finish assignment of current thread. | |||
1015 | */ | |||
1016 | if (current_thread()(active_threads[(0)])->task == task) | |||
1017 | thread_doassign(current_thread()(active_threads[(0)]), new_pset, TRUE((boolean_t) 1)); | |||
1018 | ||||
1019 | pset_deallocate(pset); | |||
1020 | ||||
1021 | return ret; | |||
1022 | } | |||
1023 | #else /* MACH_HOST */ | |||
1024 | /* | |||
1025 | * task_assign: | |||
1026 | * | |||
1027 | * Change the assigned processor set for the task | |||
1028 | */ | |||
1029 | kern_return_t | |||
1030 | task_assign( | |||
1031 | task_t task, | |||
1032 | processor_set_t new_pset, | |||
1033 | boolean_t assign_threads) | |||
1034 | { | |||
1035 | return KERN_FAILURE5; | |||
1036 | } | |||
1037 | #endif /* MACH_HOST */ | |||
1038 | ||||
1039 | ||||
1040 | /* | |||
1041 | * task_assign_default: | |||
1042 | * | |||
1043 | * Version of task_assign to assign to default processor set. | |||
1044 | */ | |||
1045 | kern_return_t | |||
1046 | task_assign_default( | |||
1047 | task_t task, | |||
1048 | boolean_t assign_threads) | |||
1049 | { | |||
1050 | return task_assign(task, &default_pset, assign_threads); | |||
1051 | } | |||
1052 | ||||
1053 | /* | |||
1054 | * task_get_assignment | |||
1055 | * | |||
1056 | * Return name of processor set that task is assigned to. | |||
1057 | */ | |||
1058 | kern_return_t task_get_assignment( | |||
1059 | task_t task, | |||
1060 | processor_set_t *pset) | |||
1061 | { | |||
1062 | if (!task->active) | |||
1063 | return KERN_FAILURE5; | |||
1064 | ||||
1065 | *pset = task->processor_set; | |||
1066 | pset_reference(*pset); | |||
1067 | return KERN_SUCCESS0; | |||
1068 | } | |||
1069 | ||||
1070 | /* | |||
1071 | * task_priority | |||
1072 | * | |||
1073 | * Set priority of task; used only for newly created threads. | |||
1074 | * Optionally change priorities of threads. | |||
1075 | */ | |||
1076 | kern_return_t | |||
1077 | task_priority( | |||
1078 | task_t task, | |||
1079 | int priority, | |||
1080 | boolean_t change_threads) | |||
1081 | { | |||
1082 | kern_return_t ret = KERN_SUCCESS0; | |||
1083 | ||||
1084 | if (task == TASK_NULL((task_t) 0) || invalid_pri(priority)(((priority) < 0) || ((priority) >= 50))) | |||
1085 | return KERN_INVALID_ARGUMENT4; | |||
1086 | ||||
1087 | task_lock(task); | |||
1088 | task->priority = priority; | |||
1089 | ||||
1090 | if (change_threads) { | |||
1091 | thread_t thread; | |||
1092 | queue_head_t *list; | |||
1093 | ||||
1094 | list = &task->thread_list; | |||
1095 | queue_iterate(list, thread, thread_t, thread_list)for ((thread) = (thread_t) ((list)->next); !(((list)) == ( (queue_entry_t)(thread))); (thread) = (thread_t) ((&(thread )->thread_list)->next)) { | |||
1096 | if (thread_priority(thread, priority, FALSE((boolean_t) 0)) | |||
1097 | != KERN_SUCCESS0) | |||
1098 | ret = KERN_FAILURE5; | |||
1099 | } | |||
1100 | } | |||
1101 | ||||
1102 | task_unlock(task)((void)(&(task)->lock)); | |||
1103 | return ret; | |||
1104 | } | |||
1105 | ||||
1106 | /* | |||
1107 | * task_set_name | |||
1108 | * | |||
1109 | * Set the name of task TASK to NAME. This is a debugging aid. | |||
1110 | * NAME will be used in error messages printed by the kernel. | |||
1111 | */ | |||
1112 | kern_return_t | |||
1113 | task_set_name( | |||
1114 | task_t task, | |||
1115 | kernel_debug_name_t name) | |||
1116 | { | |||
1117 | strncpy(task->name, name, sizeof task->name - 1); | |||
1118 | task->name[sizeof task->name - 1] = '\0'; | |||
1119 | return KERN_SUCCESS0; | |||
1120 | } | |||
1121 | ||||
1122 | /* | |||
1123 | * task_collect_scan: | |||
1124 | * | |||
1125 | * Attempt to free resources owned by tasks. | |||
1126 | */ | |||
1127 | ||||
1128 | void task_collect_scan(void) | |||
1129 | { | |||
1130 | task_t task, prev_task; | |||
1131 | processor_set_t pset, prev_pset; | |||
1132 | ||||
1133 | prev_task = TASK_NULL((task_t) 0); | |||
1134 | prev_pset = PROCESSOR_SET_NULL((processor_set_t) 0); | |||
1135 | ||||
1136 | simple_lock(&all_psets_lock); | |||
1137 | queue_iterate(&all_psets, pset, processor_set_t, all_psets)for ((pset) = (processor_set_t) ((&all_psets)->next); ! (((&all_psets)) == ((queue_entry_t)(pset))); (pset) = (processor_set_t ) ((&(pset)->all_psets)->next)) { | |||
1138 | pset_lock(pset); | |||
1139 | queue_iterate(&pset->tasks, task, task_t, pset_tasks)for ((task) = (task_t) ((&pset->tasks)->next); !((( &pset->tasks)) == ((queue_entry_t)(task))); (task) = ( task_t) ((&(task)->pset_tasks)->next)) { | |||
1140 | task_reference(task); | |||
1141 | pset_reference(pset); | |||
1142 | pset_unlock(pset)((void)(&(pset)->lock)); | |||
1143 | simple_unlock(&all_psets_lock)((void)(&all_psets_lock)); | |||
1144 | ||||
1145 | machine_task_collect (task); | |||
1146 | pmap_collect(task->map->pmap); | |||
1147 | ||||
1148 | if (prev_task != TASK_NULL((task_t) 0)) | |||
1149 | task_deallocate(prev_task); | |||
1150 | prev_task = task; | |||
1151 | ||||
1152 | if (prev_pset != PROCESSOR_SET_NULL((processor_set_t) 0)) | |||
1153 | pset_deallocate(prev_pset); | |||
1154 | prev_pset = pset; | |||
1155 | ||||
1156 | simple_lock(&all_psets_lock); | |||
1157 | pset_lock(pset); | |||
1158 | } | |||
1159 | pset_unlock(pset)((void)(&(pset)->lock)); | |||
1160 | } | |||
1161 | simple_unlock(&all_psets_lock)((void)(&all_psets_lock)); | |||
1162 | ||||
1163 | if (prev_task != TASK_NULL((task_t) 0)) | |||
1164 | task_deallocate(prev_task); | |||
1165 | if (prev_pset != PROCESSOR_SET_NULL((processor_set_t) 0)) | |||
1166 | pset_deallocate(prev_pset); | |||
1167 | } | |||
1168 | ||||
1169 | boolean_t task_collect_allowed = TRUE((boolean_t) 1); | |||
1170 | unsigned task_collect_last_tick = 0; | |||
1171 | unsigned task_collect_max_rate = 0; /* in ticks */ | |||
1172 | ||||
1173 | /* | |||
1174 | * consider_task_collect: | |||
1175 | * | |||
1176 | * Called by the pageout daemon when the system needs more free pages. | |||
1177 | */ | |||
1178 | ||||
1179 | void consider_task_collect(void) | |||
1180 | { | |||
1181 | /* | |||
1182 | * By default, don't attempt task collection more frequently | |||
1183 | * than once a second. | |||
1184 | */ | |||
1185 | ||||
1186 | if (task_collect_max_rate == 0) | |||
1187 | task_collect_max_rate = hz; | |||
1188 | ||||
1189 | if (task_collect_allowed && | |||
1190 | (sched_tick > (task_collect_last_tick + task_collect_max_rate))) { | |||
1191 | task_collect_last_tick = sched_tick; | |||
1192 | task_collect_scan(); | |||
1193 | } | |||
1194 | } | |||
1195 | ||||
1196 | kern_return_t | |||
1197 | task_ras_control( | |||
1198 | task_t task, | |||
1199 | vm_offset_t pc, | |||
1200 | vm_offset_t endpc, | |||
1201 | int flavor) | |||
1202 | { | |||
1203 | kern_return_t ret = KERN_FAILURE5; | |||
1204 | ||||
1205 | #if FAST_TAS0 | |||
1206 | int i; | |||
1207 | ||||
1208 | ret = KERN_SUCCESS0; | |||
1209 | task_lock(task); | |||
1210 | switch (flavor) { | |||
1211 | case TASK_RAS_CONTROL_PURGE_ALL0: /* remove all RAS */ | |||
1212 | for (i = 0; i < TASK_FAST_TAS_NRAS; i++) { | |||
1213 | task->fast_tas_base[i] = task->fast_tas_end[i] = 0; | |||
1214 | } | |||
1215 | break; | |||
1216 | case TASK_RAS_CONTROL_PURGE_ONE1: /* remove this RAS, collapse remaining */ | |||
1217 | for (i = 0; i < TASK_FAST_TAS_NRAS; i++) { | |||
1218 | if ( (task->fast_tas_base[i] == pc) | |||
1219 | && (task->fast_tas_end[i] == endpc)) { | |||
1220 | while (i < TASK_FAST_TAS_NRAS-1) { | |||
1221 | task->fast_tas_base[i] = task->fast_tas_base[i+1]; | |||
1222 | task->fast_tas_end[i] = task->fast_tas_end[i+1]; | |||
1223 | i++; | |||
1224 | } | |||
1225 | task->fast_tas_base[TASK_FAST_TAS_NRAS-1] = 0; | |||
1226 | task->fast_tas_end[TASK_FAST_TAS_NRAS-1] = 0; | |||
1227 | break; | |||
1228 | } | |||
1229 | } | |||
1230 | if (i == TASK_FAST_TAS_NRAS) { | |||
1231 | ret = KERN_INVALID_ADDRESS1; | |||
1232 | } | |||
1233 | break; | |||
1234 | case TASK_RAS_CONTROL_PURGE_ALL_AND_INSTALL_ONE2: | |||
1235 | /* remove all RAS an install this RAS */ | |||
1236 | for (i = 0; i < TASK_FAST_TAS_NRAS; i++) { | |||
1237 | task->fast_tas_base[i] = task->fast_tas_end[i] = 0; | |||
1238 | } | |||
1239 | /* FALL THROUGH */ | |||
1240 | case TASK_RAS_CONTROL_INSTALL_ONE3: /* install this RAS */ | |||
1241 | for (i = 0; i < TASK_FAST_TAS_NRAS; i++) { | |||
1242 | if ( (task->fast_tas_base[i] == pc) | |||
1243 | && (task->fast_tas_end[i] == endpc)) { | |||
1244 | /* already installed */ | |||
1245 | break; | |||
1246 | } | |||
1247 | if ((task->fast_tas_base[i] == 0) && (task->fast_tas_end[i] == 0)){ | |||
1248 | task->fast_tas_base[i] = pc; | |||
1249 | task->fast_tas_end[i] = endpc; | |||
1250 | break; | |||
1251 | } | |||
1252 | } | |||
1253 | if (i == TASK_FAST_TAS_NRAS) { | |||
1254 | ret = KERN_RESOURCE_SHORTAGE6; | |||
1255 | } | |||
1256 | break; | |||
1257 | default: ret = KERN_INVALID_VALUE18; | |||
1258 | break; | |||
1259 | } | |||
1260 | task_unlock(task)((void)(&(task)->lock)); | |||
1261 | #endif /* FAST_TAS */ | |||
1262 | return ret; | |||
1263 | } | |||
1264 | ||||
1265 | /* | |||
1266 | * register_new_task_notification | |||
1267 | * | |||
1268 | * Register a port to which a notification about newly created | |||
1269 | * tasks are sent. | |||
1270 | */ | |||
1271 | kern_return_t | |||
1272 | register_new_task_notification( | |||
1273 | const host_t host, | |||
1274 | ipc_port_t notification) | |||
1275 | { | |||
1276 | if (host == HOST_NULL((host_t)0)) | |||
1277 | return KERN_INVALID_HOST22; | |||
1278 | ||||
1279 | if (new_task_notification != NULL((void *) 0)) | |||
1280 | return KERN_NO_ACCESS8; | |||
1281 | ||||
1282 | new_task_notification = notification; | |||
1283 | return KERN_SUCCESS0; | |||
1284 | } |