File: | obj-scan-build/../i386/intel/pmap.c |
Location: | line 568, column 6 |
Description: | The left operand of '!=' is a garbage value |
1 | /* | |||
2 | * Mach Operating System | |||
3 | * Copyright (c) 1991,1990,1989,1988 Carnegie Mellon University | |||
4 | * All Rights Reserved. | |||
5 | * | |||
6 | * Permission to use, copy, modify and distribute this software and its | |||
7 | * documentation is hereby granted, provided that both the copyright | |||
8 | * notice and this permission notice appear in all copies of the | |||
9 | * software, derivative works or modified versions, and any portions | |||
10 | * thereof, and that both notices appear in supporting documentation. | |||
11 | * | |||
12 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" | |||
13 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR | |||
14 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. | |||
15 | * | |||
16 | * Carnegie Mellon requests users of this software to return to | |||
17 | * | |||
18 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU | |||
19 | * School of Computer Science | |||
20 | * Carnegie Mellon University | |||
21 | * Pittsburgh PA 15213-3890 | |||
22 | * | |||
23 | * any improvements or extensions that they make and grant Carnegie Mellon | |||
24 | * the rights to redistribute these changes. | |||
25 | */ | |||
26 | /* | |||
27 | * File: pmap.c | |||
28 | * Author: Avadis Tevanian, Jr., Michael Wayne Young | |||
29 | * (These guys wrote the Vax version) | |||
30 | * | |||
31 | * Physical Map management code for Intel i386, and i486. | |||
32 | * | |||
33 | * Manages physical address maps. | |||
34 | * | |||
35 | * In addition to hardware address maps, this | |||
36 | * module is called upon to provide software-use-only | |||
37 | * maps which may or may not be stored in the same | |||
38 | * form as hardware maps. These pseudo-maps are | |||
39 | * used to store intermediate results from copy | |||
40 | * operations to and from address spaces. | |||
41 | * | |||
42 | * Since the information managed by this module is | |||
43 | * also stored by the logical address mapping module, | |||
44 | * this module may throw away valid virtual-to-physical | |||
45 | * mappings at almost any time. However, invalidations | |||
46 | * of virtual-to-physical mappings must be done as | |||
47 | * requested. | |||
48 | * | |||
49 | * In order to cope with hardware architectures which | |||
50 | * make virtual-to-physical map invalidates expensive, | |||
51 | * this module may delay invalidate or reduced protection | |||
52 | * operations until such time as they are actually | |||
53 | * necessary. This module is given full information as | |||
54 | * to which processors are currently using which maps, | |||
55 | * and to when physical maps must be made correct. | |||
56 | */ | |||
57 | ||||
58 | #include <string.h> | |||
59 | ||||
60 | #include <mach/machine/vm_types.h> | |||
61 | ||||
62 | #include <mach/boolean.h> | |||
63 | #include <kern/debug.h> | |||
64 | #include <kern/printf.h> | |||
65 | #include <kern/thread.h> | |||
66 | #include <kern/slab.h> | |||
67 | ||||
68 | #include <kern/lock.h> | |||
69 | ||||
70 | #include <vm/pmap.h> | |||
71 | #include <vm/vm_map.h> | |||
72 | #include <vm/vm_kern.h> | |||
73 | #include <i3861/vm_param.h> | |||
74 | #include <mach/vm_prot.h> | |||
75 | #include <vm/vm_object.h> | |||
76 | #include <vm/vm_page.h> | |||
77 | #include <vm/vm_user.h> | |||
78 | ||||
79 | #include <mach/machine/vm_param.h> | |||
80 | #include <mach/xen.h> | |||
81 | #include <machine/thread.h> | |||
82 | #include <i3861/cpu_number.h> | |||
83 | #include <i3861/proc_reg.h> | |||
84 | #include <i3861/locore.h> | |||
85 | #include <i3861/model_dep.h> | |||
86 | ||||
87 | #ifdef MACH_PSEUDO_PHYS | |||
88 | #define WRITE_PTE(pte_p, pte_entry)*(pte_p) = pte_entry?({ vm_offset_t __a = (vm_offset_t) (pte_entry ); (((pt_entry_t) ((mfn_list[(((vm_size_t)(__a)) >> 12) ]))) << 12) | (__a & ((1 << 12)-1)); }):0; *(pte_p) = pte_entry?pa_to_ma(pte_entry)({ vm_offset_t __a = (vm_offset_t) (pte_entry); (((pt_entry_t ) ((mfn_list[(((vm_size_t)(__a)) >> 12)]))) << 12 ) | (__a & ((1 << 12)-1)); }):0; | |||
89 | #else /* MACH_PSEUDO_PHYS */ | |||
90 | #define WRITE_PTE(pte_p, pte_entry)*(pte_p) = pte_entry?({ vm_offset_t __a = (vm_offset_t) (pte_entry ); (((pt_entry_t) ((mfn_list[(((vm_size_t)(__a)) >> 12) ]))) << 12) | (__a & ((1 << 12)-1)); }):0; *(pte_p) = (pte_entry); | |||
91 | #endif /* MACH_PSEUDO_PHYS */ | |||
92 | ||||
93 | /* | |||
94 | * Private data structures. | |||
95 | */ | |||
96 | ||||
97 | /* | |||
98 | * For each vm_page_t, there is a list of all currently | |||
99 | * valid virtual mappings of that page. An entry is | |||
100 | * a pv_entry_t; the list is the pv_table. | |||
101 | */ | |||
102 | ||||
103 | typedef struct pv_entry { | |||
104 | struct pv_entry *next; /* next pv_entry */ | |||
105 | pmap_t pmap; /* pmap where mapping lies */ | |||
106 | vm_offset_t va; /* virtual address for mapping */ | |||
107 | } *pv_entry_t; | |||
108 | ||||
109 | #define PV_ENTRY_NULL((pv_entry_t) 0) ((pv_entry_t) 0) | |||
110 | ||||
111 | pv_entry_t pv_head_table; /* array of entries, one per page */ | |||
112 | ||||
113 | /* | |||
114 | * pv_list entries are kept on a list that can only be accessed | |||
115 | * with the pmap system locked (at SPLVM, not in the cpus_active set). | |||
116 | * The list is refilled from the pv_list_cache if it becomes empty. | |||
117 | */ | |||
118 | pv_entry_t pv_free_list; /* free list at SPLVM */ | |||
119 | decl_simple_lock_data(, pv_free_list_lock)struct simple_lock_data_empty pv_free_list_lock; | |||
120 | ||||
121 | #define PV_ALLOC(pv_e){ ; if ((pv_e = pv_free_list) != 0) { pv_free_list = pv_e-> next; } ((void)(&pv_free_list_lock)); } { \ | |||
122 | simple_lock(&pv_free_list_lock); \ | |||
123 | if ((pv_e = pv_free_list) != 0) { \ | |||
124 | pv_free_list = pv_e->next; \ | |||
125 | } \ | |||
126 | simple_unlock(&pv_free_list_lock)((void)(&pv_free_list_lock)); \ | |||
127 | } | |||
128 | ||||
129 | #define PV_FREE(pv_e){ ; pv_e->next = pv_free_list; pv_free_list = pv_e; ((void )(&pv_free_list_lock)); } { \ | |||
130 | simple_lock(&pv_free_list_lock); \ | |||
131 | pv_e->next = pv_free_list; \ | |||
132 | pv_free_list = pv_e; \ | |||
133 | simple_unlock(&pv_free_list_lock)((void)(&pv_free_list_lock)); \ | |||
134 | } | |||
135 | ||||
136 | struct kmem_cache pv_list_cache; /* cache of pv_entry structures */ | |||
137 | ||||
138 | /* | |||
139 | * Each entry in the pv_head_table is locked by a bit in the | |||
140 | * pv_lock_table. The lock bits are accessed by the physical | |||
141 | * address of the page they lock. | |||
142 | */ | |||
143 | ||||
144 | char *pv_lock_table; /* pointer to array of bits */ | |||
145 | #define pv_lock_table_size(n)(((n)+8 -1)/8) (((n)+BYTE_SIZE8-1)/BYTE_SIZE8) | |||
146 | ||||
147 | /* Has pmap_init completed? */ | |||
148 | boolean_t pmap_initialized = FALSE((boolean_t) 0); | |||
149 | ||||
150 | /* | |||
151 | * Range of kernel virtual addresses available for kernel memory mapping. | |||
152 | * Does not include the virtual addresses used to map physical memory 1-1. | |||
153 | * Initialized by pmap_bootstrap. | |||
154 | */ | |||
155 | vm_offset_t kernel_virtual_start; | |||
156 | vm_offset_t kernel_virtual_end; | |||
157 | ||||
158 | /* | |||
159 | * Index into pv_head table, its lock bits, and the modify/reference | |||
160 | * bits starting at phys_first_addr. | |||
161 | */ | |||
162 | #define pa_index(pa)((((vm_size_t)(pa - phys_first_addr)) >> 12)) (atop(pa - phys_first_addr)(((vm_size_t)(pa - phys_first_addr)) >> 12)) | |||
163 | ||||
164 | #define pai_to_pvh(pai)(&pv_head_table[pai]) (&pv_head_table[pai]) | |||
165 | #define lock_pvh_pai(pai)(bit_lock(pai, pv_lock_table)) (bit_lock(pai, pv_lock_table)) | |||
166 | #define unlock_pvh_pai(pai)(bit_unlock(pai, pv_lock_table)) (bit_unlock(pai, pv_lock_table)) | |||
167 | ||||
168 | /* | |||
169 | * Array of physical page attribites for managed pages. | |||
170 | * One byte per physical page. | |||
171 | */ | |||
172 | char *pmap_phys_attributes; | |||
173 | ||||
174 | /* | |||
175 | * Physical page attributes. Copy bits from PTE definition. | |||
176 | */ | |||
177 | #define PHYS_MODIFIED0x00000040 INTEL_PTE_MOD0x00000040 /* page modified */ | |||
178 | #define PHYS_REFERENCED0x00000020 INTEL_PTE_REF0x00000020 /* page referenced */ | |||
179 | ||||
180 | /* | |||
181 | * Amount of virtual memory mapped by one | |||
182 | * page-directory entry. | |||
183 | */ | |||
184 | #define PDE_MAPPED_SIZE(((vm_offset_t)(1) << 21)) (pdenum2lin(1)((vm_offset_t)(1) << 21)) | |||
185 | ||||
186 | /* | |||
187 | * We allocate page table pages directly from the VM system | |||
188 | * through this object. It maps physical memory. | |||
189 | */ | |||
190 | vm_object_t pmap_object = VM_OBJECT_NULL((vm_object_t) 0); | |||
191 | ||||
192 | /* | |||
193 | * Locking and TLB invalidation | |||
194 | */ | |||
195 | ||||
196 | /* | |||
197 | * Locking Protocols: | |||
198 | * | |||
199 | * There are two structures in the pmap module that need locking: | |||
200 | * the pmaps themselves, and the per-page pv_lists (which are locked | |||
201 | * by locking the pv_lock_table entry that corresponds to the pv_head | |||
202 | * for the list in question.) Most routines want to lock a pmap and | |||
203 | * then do operations in it that require pv_list locking -- however | |||
204 | * pmap_remove_all and pmap_copy_on_write operate on a physical page | |||
205 | * basis and want to do the locking in the reverse order, i.e. lock | |||
206 | * a pv_list and then go through all the pmaps referenced by that list. | |||
207 | * To protect against deadlock between these two cases, the pmap_lock | |||
208 | * is used. There are three different locking protocols as a result: | |||
209 | * | |||
210 | * 1. pmap operations only (pmap_extract, pmap_access, ...) Lock only | |||
211 | * the pmap. | |||
212 | * | |||
213 | * 2. pmap-based operations (pmap_enter, pmap_remove, ...) Get a read | |||
214 | * lock on the pmap_lock (shared read), then lock the pmap | |||
215 | * and finally the pv_lists as needed [i.e. pmap lock before | |||
216 | * pv_list lock.] | |||
217 | * | |||
218 | * 3. pv_list-based operations (pmap_remove_all, pmap_copy_on_write, ...) | |||
219 | * Get a write lock on the pmap_lock (exclusive write); this | |||
220 | * also guaranteees exclusive access to the pv_lists. Lock the | |||
221 | * pmaps as needed. | |||
222 | * | |||
223 | * At no time may any routine hold more than one pmap lock or more than | |||
224 | * one pv_list lock. Because interrupt level routines can allocate | |||
225 | * mbufs and cause pmap_enter's, the pmap_lock and the lock on the | |||
226 | * kernel_pmap can only be held at splvm. | |||
227 | */ | |||
228 | ||||
229 | #if NCPUS1 > 1 | |||
230 | /* | |||
231 | * We raise the interrupt level to splvm, to block interprocessor | |||
232 | * interrupts during pmap operations. We must take the CPU out of | |||
233 | * the cpus_active set while interrupts are blocked. | |||
234 | */ | |||
235 | #define SPLVM(spl)((void)(spl)) { \ | |||
236 | spl = splvm(); \ | |||
237 | i_bit_clear(cpu_number()(0), &cpus_active); \ | |||
238 | } | |||
239 | ||||
240 | #define SPLX(spl)((void)(spl)) { \ | |||
241 | i_bit_set(cpu_number()(0), &cpus_active); \ | |||
242 | splx(spl); \ | |||
243 | } | |||
244 | ||||
245 | /* | |||
246 | * Lock on pmap system | |||
247 | */ | |||
248 | lock_data_t pmap_system_lock; | |||
249 | ||||
250 | #define PMAP_READ_LOCK(pmap, spl)((void)(spl)) { \ | |||
251 | SPLVM(spl)((void)(spl)); \ | |||
252 | lock_read(&pmap_system_lock); \ | |||
253 | simple_lock(&(pmap)->lock); \ | |||
254 | } | |||
255 | ||||
256 | #define PMAP_WRITE_LOCK(spl)((void)(spl)) { \ | |||
257 | SPLVM(spl)((void)(spl)); \ | |||
258 | lock_write(&pmap_system_lock); \ | |||
259 | } | |||
260 | ||||
261 | #define PMAP_READ_UNLOCK(pmap, spl)((void)(spl)) { \ | |||
262 | simple_unlock(&(pmap)->lock)((void)(&(pmap)->lock)); \ | |||
263 | lock_read_done(&pmap_system_lock)lock_done(&pmap_system_lock); \ | |||
264 | SPLX(spl)((void)(spl)); \ | |||
265 | } | |||
266 | ||||
267 | #define PMAP_WRITE_UNLOCK(spl)((void)(spl)) { \ | |||
268 | lock_write_done(&pmap_system_lock)lock_done(&pmap_system_lock); \ | |||
269 | SPLX(spl)((void)(spl)); \ | |||
270 | } | |||
271 | ||||
272 | #define PMAP_WRITE_TO_READ_LOCK(pmap) { \ | |||
273 | simple_lock(&(pmap)->lock); \ | |||
274 | lock_write_to_read(&pmap_system_lock); \ | |||
275 | } | |||
276 | ||||
277 | #define LOCK_PVH(index) (lock_pvh_pai(index)(bit_lock(index, pv_lock_table))) | |||
278 | ||||
279 | #define UNLOCK_PVH(index) (unlock_pvh_pai(index)(bit_unlock(index, pv_lock_table))) | |||
280 | ||||
281 | #define PMAP_UPDATE_TLBS(pmap, s, e){ if ((pmap)->cpus_using) { hyp_mmuext_op_void(6); } } \ | |||
282 | { \ | |||
283 | cpu_set cpu_mask = 1 << cpu_number()(0); \ | |||
284 | cpu_set users; \ | |||
285 | \ | |||
286 | /* Since the pmap is locked, other updates are locked */ \ | |||
287 | /* out, and any pmap_activate has finished. */ \ | |||
288 | \ | |||
289 | /* find other cpus using the pmap */ \ | |||
290 | users = (pmap)->cpus_using & ~cpu_mask; \ | |||
291 | if (users) { \ | |||
292 | /* signal them, and wait for them to finish */ \ | |||
293 | /* using the pmap */ \ | |||
294 | signal_cpus(users, (pmap), (s), (e)); \ | |||
295 | while ((pmap)->cpus_using & cpus_active & ~cpu_mask) \ | |||
296 | continue; \ | |||
297 | } \ | |||
298 | \ | |||
299 | /* invalidate our own TLB if pmap is in use */ \ | |||
300 | if ((pmap)->cpus_using & cpu_mask) { \ | |||
301 | INVALIDATE_TLB((pmap), (s), (e))hyp_mmuext_op_void(6); \ | |||
302 | } \ | |||
303 | } | |||
304 | ||||
305 | #else /* NCPUS > 1 */ | |||
306 | ||||
307 | #define SPLVM(spl)((void)(spl)) ((void)(spl)) | |||
308 | #define SPLX(spl)((void)(spl)) ((void)(spl)) | |||
309 | ||||
310 | #define PMAP_READ_LOCK(pmap, spl)((void)(spl)) SPLVM(spl)((void)(spl)) | |||
311 | #define PMAP_WRITE_LOCK(spl)((void)(spl)) SPLVM(spl)((void)(spl)) | |||
312 | #define PMAP_READ_UNLOCK(pmap, spl)((void)(spl)) SPLX(spl)((void)(spl)) | |||
313 | #define PMAP_WRITE_UNLOCK(spl)((void)(spl)) SPLX(spl)((void)(spl)) | |||
314 | #define PMAP_WRITE_TO_READ_LOCK(pmap) | |||
315 | ||||
316 | #define LOCK_PVH(index) | |||
317 | #define UNLOCK_PVH(index) | |||
318 | ||||
319 | #define PMAP_UPDATE_TLBS(pmap, s, e){ if ((pmap)->cpus_using) { hyp_mmuext_op_void(6); } } { \ | |||
320 | /* invalidate our own TLB if pmap is in use */ \ | |||
321 | if ((pmap)->cpus_using) { \ | |||
322 | INVALIDATE_TLB((pmap), (s), (e))hyp_mmuext_op_void(6); \ | |||
323 | } \ | |||
324 | } | |||
325 | ||||
326 | #endif /* NCPUS > 1 */ | |||
327 | ||||
328 | #define MAX_TBIS_SIZE32 32 /* > this -> TBIA */ /* XXX */ | |||
329 | ||||
330 | #ifdef MACH_PV_PAGETABLES | |||
331 | #if 1 | |||
332 | #define INVALIDATE_TLB(pmap, s, e)hyp_mmuext_op_void(6) hyp_mmuext_op_void(MMUEXT_TLB_FLUSH_LOCAL6) | |||
333 | #else | |||
334 | #define INVALIDATE_TLB(pmap, s, e)hyp_mmuext_op_void(6) do { \ | |||
335 | if (__builtin_constant_p((e) - (s)) \ | |||
336 | && (e) - (s) == PAGE_SIZE(1 << 12)) \ | |||
337 | hyp_invlpg((pmap) == kernel_pmap ? kvtolin(s)((vm_offset_t)(s) - 0xC0000000UL + ((0xc0000000UL))) : (s)); \ | |||
338 | else \ | |||
339 | hyp_mmuext_op_void(MMUEXT_TLB_FLUSH_LOCAL6); \ | |||
340 | } while(0) | |||
341 | #endif | |||
342 | #else /* MACH_PV_PAGETABLES */ | |||
343 | #if 0 | |||
344 | /* It is hard to know when a TLB flush becomes less expensive than a bunch of | |||
345 | * invlpgs. But it surely is more expensive than just one invlpg. */ | |||
346 | #define INVALIDATE_TLB(pmap, s, e)hyp_mmuext_op_void(6) { \ | |||
347 | if (__builtin_constant_p((e) - (s)) \ | |||
348 | && (e) - (s) == PAGE_SIZE(1 << 12)) \ | |||
349 | invlpg_linear(s); \ | |||
350 | else \ | |||
351 | flush_tlb()({ cr3 = ((cr3)); if (!hyp_mmuext_op_mfn(5, ((mfn_list[(((vm_size_t )((cr3))) >> 12)])))) panic("set_cr3"); }); \ | |||
352 | } | |||
353 | #else | |||
354 | #define INVALIDATE_TLB(pmap, s, e)hyp_mmuext_op_void(6) { \ | |||
355 | (void) (pmap); \ | |||
356 | (void) (s); \ | |||
357 | (void) (e); \ | |||
358 | flush_tlb()({ cr3 = ((cr3)); if (!hyp_mmuext_op_mfn(5, ((mfn_list[(((vm_size_t )((cr3))) >> 12)])))) panic("set_cr3"); }); \ | |||
359 | } | |||
360 | #endif | |||
361 | #endif /* MACH_PV_PAGETABLES */ | |||
362 | ||||
363 | ||||
364 | #if NCPUS1 > 1 | |||
365 | /* | |||
366 | * Structures to keep track of pending TLB invalidations | |||
367 | */ | |||
368 | ||||
369 | #define UPDATE_LIST_SIZE 4 | |||
370 | ||||
371 | struct pmap_update_item { | |||
372 | pmap_t pmap; /* pmap to invalidate */ | |||
373 | vm_offset_t start; /* start address to invalidate */ | |||
374 | vm_offset_t end; /* end address to invalidate */ | |||
375 | } ; | |||
376 | ||||
377 | typedef struct pmap_update_item *pmap_update_item_t; | |||
378 | ||||
379 | /* | |||
380 | * List of pmap updates. If the list overflows, | |||
381 | * the last entry is changed to invalidate all. | |||
382 | */ | |||
383 | struct pmap_update_list { | |||
384 | decl_simple_lock_data(, lock)struct simple_lock_data_empty lock; | |||
385 | int count; | |||
386 | struct pmap_update_item item[UPDATE_LIST_SIZE]; | |||
387 | } ; | |||
388 | typedef struct pmap_update_list *pmap_update_list_t; | |||
389 | ||||
390 | struct pmap_update_list cpu_update_list[NCPUS1]; | |||
391 | ||||
392 | #endif /* NCPUS > 1 */ | |||
393 | ||||
394 | /* | |||
395 | * Other useful macros. | |||
396 | */ | |||
397 | #define current_pmap()((((active_threads[(0)])->task->map)->pmap)) (vm_map_pmap(current_thread()->task->map)(((active_threads[(0)])->task->map)->pmap)) | |||
398 | #define pmap_in_use(pmap, cpu)(((pmap)->cpus_using & (1 << (cpu))) != 0) (((pmap)->cpus_using & (1 << (cpu))) != 0) | |||
399 | ||||
400 | struct pmap kernel_pmap_store; | |||
401 | pmap_t kernel_pmap; | |||
402 | ||||
403 | struct kmem_cache pmap_cache; /* cache of pmap structures */ | |||
404 | ||||
405 | boolean_t pmap_debug = FALSE((boolean_t) 0); /* flag for debugging prints */ | |||
406 | ||||
407 | #if 0 | |||
408 | int ptes_per_vm_page1; /* number of hardware ptes needed | |||
409 | to map one VM page. */ | |||
410 | #else | |||
411 | #define ptes_per_vm_page1 1 | |||
412 | #endif | |||
413 | ||||
414 | unsigned int inuse_ptepages_count = 0; /* debugging */ | |||
415 | ||||
416 | /* | |||
417 | * Pointer to the basic page directory for the kernel. | |||
418 | * Initialized by pmap_bootstrap(). | |||
419 | */ | |||
420 | pt_entry_t *kernel_page_dir; | |||
421 | ||||
422 | /* | |||
423 | * Two slots for temporary physical page mapping, to allow for | |||
424 | * physical-to-physical transfers. | |||
425 | */ | |||
426 | static pmap_mapwindow_t mapwindows[PMAP_NMAPWINDOWS2]; | |||
427 | ||||
428 | static inline pt_entry_t * | |||
429 | pmap_pde(const pmap_t pmap, vm_offset_t addr) | |||
430 | { | |||
431 | if (pmap == kernel_pmap) | |||
432 | addr = kvtolin(addr)((vm_offset_t)(addr) - 0xC0000000UL + ((0xc0000000UL))); | |||
433 | return &pmap->dirbase[lin2pdenum(addr)(((addr) >> 21) & 0x7ff)]; | |||
434 | } | |||
435 | ||||
436 | /* | |||
437 | * Given an offset and a map, compute the address of the | |||
438 | * pte. If the address is invalid with respect to the map | |||
439 | * then PT_ENTRY_NULL is returned (and the map may need to grow). | |||
440 | * | |||
441 | * This is only used internally. | |||
442 | */ | |||
443 | pt_entry_t * | |||
444 | pmap_pte(const pmap_t pmap, vm_offset_t addr) | |||
445 | { | |||
446 | pt_entry_t *ptp; | |||
447 | pt_entry_t pte; | |||
448 | ||||
449 | if (pmap->dirbase == 0) | |||
450 | return(PT_ENTRY_NULL((pt_entry_t *) 0)); | |||
451 | pte = *pmap_pde(pmap, addr); | |||
452 | if ((pte & INTEL_PTE_VALID0x00000001) == 0) | |||
453 | return(PT_ENTRY_NULL((pt_entry_t *) 0)); | |||
454 | ptp = (pt_entry_t *)ptetokv(pte)(((vm_offset_t)(({ pt_entry_t __a = (pt_entry_t) ((pte) & 0x00007ffffffff000ULL); ((((unsigned long *) 0xF5800000UL)[__a >> 12]) << 12) | (__a & ((1 << 12)-1)) ; })) + 0xC0000000UL)); | |||
455 | return(&ptp[ptenum(addr)(((addr) >> 12) & 0x1ff)]); | |||
456 | } | |||
457 | ||||
458 | #define DEBUG_PTE_PAGE0 0 | |||
459 | ||||
460 | #if DEBUG_PTE_PAGE0 | |||
461 | void ptep_check(ptep_t ptep) | |||
462 | { | |||
463 | pt_entry_t *pte, *epte; | |||
464 | int ctu, ctw; | |||
465 | ||||
466 | /* check the use and wired counts */ | |||
467 | if (ptep == PTE_PAGE_NULL) | |||
468 | return; | |||
469 | pte = pmap_pte(ptep->pmap, ptep->va); | |||
470 | epte = pte + INTEL_PGBYTES4096/sizeof(pt_entry_t); | |||
471 | ctu = 0; | |||
472 | ctw = 0; | |||
473 | while (pte < epte) { | |||
474 | if (pte->pfn != 0) { | |||
475 | ctu++; | |||
476 | if (pte->wired) | |||
477 | ctw++; | |||
478 | } | |||
479 | pte += ptes_per_vm_page1; | |||
480 | } | |||
481 | ||||
482 | if (ctu != ptep->use_count || ctw != ptep->wired_count) { | |||
483 | printf("use %d wired %d - actual use %d wired %d\n", | |||
484 | ptep->use_count, ptep->wired_count, ctu, ctw); | |||
485 | panic("pte count"); | |||
486 | } | |||
487 | } | |||
488 | #endif /* DEBUG_PTE_PAGE */ | |||
489 | ||||
490 | /* | |||
491 | * Map memory at initialization. The physical addresses being | |||
492 | * mapped are not managed and are never unmapped. | |||
493 | * | |||
494 | * For now, VM is already on, we only need to map the | |||
495 | * specified memory. | |||
496 | */ | |||
497 | vm_offset_t pmap_map( | |||
498 | vm_offset_t virt, | |||
499 | vm_offset_t start, | |||
500 | vm_offset_t end, | |||
501 | int prot) | |||
502 | { | |||
503 | int ps; | |||
504 | ||||
505 | ps = PAGE_SIZE(1 << 12); | |||
506 | while (start < end) { | |||
507 | pmap_enter(kernel_pmap, virt, start, prot, FALSE((boolean_t) 0)); | |||
508 | virt += ps; | |||
509 | start += ps; | |||
510 | } | |||
511 | return(virt); | |||
512 | } | |||
513 | ||||
514 | /* | |||
515 | * Back-door routine for mapping kernel VM at initialization. | |||
516 | * Useful for mapping memory outside the range | |||
517 | * [phys_first_addr, phys_last_addr) (i.e., devices). | |||
518 | * Otherwise like pmap_map. | |||
519 | */ | |||
520 | vm_offset_t pmap_map_bd( | |||
521 | vm_offset_t virt, | |||
522 | vm_offset_t start, | |||
523 | vm_offset_t end, | |||
524 | vm_prot_t prot) | |||
525 | { | |||
526 | pt_entry_t template; | |||
527 | pt_entry_t *pte; | |||
528 | int spl; | |||
529 | #ifdef MACH_PV_PAGETABLES | |||
530 | int n, i = 0; | |||
| ||||
531 | struct mmu_update update[HYP_BATCH_MMU_UPDATES256]; | |||
532 | #endif /* MACH_PV_PAGETABLES */ | |||
533 | ||||
534 | template = pa_to_pte(start)((start) & 0x00007ffffffff000ULL) | |||
535 | | INTEL_PTE_NCACHE0x00000010|INTEL_PTE_WTHRU0x00000008 | |||
536 | | INTEL_PTE_VALID0x00000001; | |||
537 | if (CPU_HAS_FEATURE(CPU_FEATURE_PGE)(cpu_features[(13) / 32] & (1 << ((13) % 32)))) | |||
538 | template |= INTEL_PTE_GLOBAL0x00000000; | |||
539 | if (prot & VM_PROT_WRITE((vm_prot_t) 0x02)) | |||
540 | template |= INTEL_PTE_WRITE0x00000002; | |||
541 | ||||
542 | PMAP_READ_LOCK(pmap, spl)((void)(spl)); | |||
543 | while (start < end) { | |||
544 | pte = pmap_pte(kernel_pmap, virt); | |||
545 | if (pte == PT_ENTRY_NULL((pt_entry_t *) 0)) | |||
546 | panic("pmap_map_bd: Invalid kernel address\n"); | |||
547 | #ifdef MACH_PV_PAGETABLES | |||
548 | update[i].ptr = kv_to_ma(pte)({ vm_offset_t __a = (vm_offset_t) (((vm_offset_t)(pte) - 0xC0000000UL )); (((pt_entry_t) ((mfn_list[(((vm_size_t)(__a)) >> 12 )]))) << 12) | (__a & ((1 << 12)-1)); }); | |||
549 | update[i].val = pa_to_ma(template)({ vm_offset_t __a = (vm_offset_t) (template); (((pt_entry_t) ((mfn_list[(((vm_size_t)(__a)) >> 12)]))) << 12) | (__a & ((1 << 12)-1)); }); | |||
550 | i++; | |||
551 | if (i == HYP_BATCH_MMU_UPDATES256) { | |||
552 | hyp_mmu_update(kvtolin(&update)((vm_offset_t)(&update) - 0xC0000000UL + ((0xc0000000UL)) ), i, kvtolin(&n)((vm_offset_t)(&n) - 0xC0000000UL + ((0xc0000000UL))), DOMID_SELF(0x7FF0U)); | |||
553 | if (n != i) | |||
554 | panic("couldn't pmap_map_bd\n"); | |||
555 | i = 0; | |||
556 | } | |||
557 | #else /* MACH_PV_PAGETABLES */ | |||
558 | WRITE_PTE(pte, template)*(pte) = template?({ vm_offset_t __a = (vm_offset_t) (template ); (((pt_entry_t) ((mfn_list[(((vm_size_t)(__a)) >> 12) ]))) << 12) | (__a & ((1 << 12)-1)); }):0; | |||
559 | #endif /* MACH_PV_PAGETABLES */ | |||
560 | pte_increment_pa(template)((template) += 0xfff +1); | |||
561 | virt += PAGE_SIZE(1 << 12); | |||
562 | start += PAGE_SIZE(1 << 12); | |||
563 | } | |||
564 | #ifdef MACH_PV_PAGETABLES | |||
565 | if (i > HYP_BATCH_MMU_UPDATES256) | |||
566 | panic("overflowed array in pmap_map_bd"); | |||
567 | hyp_mmu_update(kvtolin(&update)((vm_offset_t)(&update) - 0xC0000000UL + ((0xc0000000UL)) ), i, kvtolin(&n)((vm_offset_t)(&n) - 0xC0000000UL + ((0xc0000000UL))), DOMID_SELF(0x7FF0U)); | |||
568 | if (n != i) | |||
| ||||
569 | panic("couldn't pmap_map_bd\n"); | |||
570 | #endif /* MACH_PV_PAGETABLES */ | |||
571 | PMAP_READ_UNLOCK(pmap, spl)((void)(spl)); | |||
572 | return(virt); | |||
573 | } | |||
574 | ||||
575 | /* | |||
576 | * Bootstrap the system enough to run with virtual memory. | |||
577 | * Allocate the kernel page directory and page tables, | |||
578 | * and direct-map all physical memory. | |||
579 | * Called with mapping off. | |||
580 | */ | |||
581 | void pmap_bootstrap(void) | |||
582 | { | |||
583 | /* | |||
584 | * Mapping is turned off; we must reference only physical addresses. | |||
585 | * The load image of the system is to be mapped 1-1 physical = virtual. | |||
586 | */ | |||
587 | ||||
588 | /* | |||
589 | * Set ptes_per_vm_page for general use. | |||
590 | */ | |||
591 | #if 0 | |||
592 | ptes_per_vm_page1 = PAGE_SIZE(1 << 12) / INTEL_PGBYTES4096; | |||
593 | #endif | |||
594 | ||||
595 | /* | |||
596 | * The kernel's pmap is statically allocated so we don't | |||
597 | * have to use pmap_create, which is unlikely to work | |||
598 | * correctly at this part of the boot sequence. | |||
599 | */ | |||
600 | ||||
601 | kernel_pmap = &kernel_pmap_store; | |||
602 | ||||
603 | #if NCPUS1 > 1 | |||
604 | lock_init(&pmap_system_lock, FALSE((boolean_t) 0)); /* NOT a sleep lock */ | |||
605 | #endif /* NCPUS > 1 */ | |||
606 | ||||
607 | simple_lock_init(&kernel_pmap->lock); | |||
608 | ||||
609 | kernel_pmap->ref_count = 1; | |||
610 | ||||
611 | /* | |||
612 | * Determine the kernel virtual address range. | |||
613 | * It starts at the end of the physical memory | |||
614 | * mapped into the kernel address space, | |||
615 | * and extends to a stupid arbitrary limit beyond that. | |||
616 | */ | |||
617 | kernel_virtual_start = phystokv(phys_last_addr)((vm_offset_t)(phys_last_addr) + 0xC0000000UL); | |||
618 | kernel_virtual_end = phystokv(phys_last_addr)((vm_offset_t)(phys_last_addr) + 0xC0000000UL) + VM_KERNEL_MAP_SIZE(224 * 1024 * 1024); | |||
619 | ||||
620 | if (kernel_virtual_end < kernel_virtual_start | |||
621 | || kernel_virtual_end > VM_MAX_KERNEL_ADDRESS(0xF5800000UL - ((0xc0000000UL)) + 0xC0000000UL)) | |||
622 | kernel_virtual_end = VM_MAX_KERNEL_ADDRESS(0xF5800000UL - ((0xc0000000UL)) + 0xC0000000UL); | |||
623 | ||||
624 | /* | |||
625 | * Allocate and clear a kernel page directory. | |||
626 | */ | |||
627 | /* Note: initial Xen mapping holds at least 512kB free mapped page. | |||
628 | * We use that for directly building our linear mapping. */ | |||
629 | #if PAE1 | |||
630 | { | |||
631 | vm_offset_t addr; | |||
632 | init_alloc_aligned(PDPNUM4 * INTEL_PGBYTES4096, &addr); | |||
633 | kernel_pmap->dirbase = kernel_page_dir = (pt_entry_t*)phystokv(addr)((vm_offset_t)(addr) + 0xC0000000UL); | |||
634 | } | |||
635 | kernel_pmap->pdpbase = (pt_entry_t*)phystokv(pmap_grab_page())((vm_offset_t)(pmap_grab_page()) + 0xC0000000UL); | |||
636 | { | |||
637 | int i; | |||
638 | for (i = 0; i < PDPNUM4; i++) | |||
639 | WRITE_PTE(&kernel_pmap->pdpbase[i], pa_to_pte(_kvtophys((void *) kernel_pmap->dirbase + i * INTEL_PGBYTES)) | INTEL_PTE_VALID)*(&kernel_pmap->pdpbase[i]) = ((((vm_offset_t)((void * ) kernel_pmap->dirbase + i * 4096) - 0xC0000000UL)) & 0x00007ffffffff000ULL ) | 0x00000001?({ vm_offset_t __a = (vm_offset_t) (((((vm_offset_t )((void *) kernel_pmap->dirbase + i * 4096) - 0xC0000000UL )) & 0x00007ffffffff000ULL) | 0x00000001); (((pt_entry_t) ((mfn_list[(((vm_size_t)(__a)) >> 12)]))) << 12) | (__a & ((1 << 12)-1)); }):0;; | |||
640 | } | |||
641 | #else /* PAE */ | |||
642 | kernel_pmap->dirbase = kernel_page_dir = (pt_entry_t*)phystokv(pmap_grab_page())((vm_offset_t)(pmap_grab_page()) + 0xC0000000UL); | |||
643 | #endif /* PAE */ | |||
644 | { | |||
645 | int i; | |||
646 | for (i = 0; i < NPDES(4 * ((((unsigned long)(1)) << 12)/sizeof(pt_entry_t))); i++) | |||
647 | kernel_pmap->dirbase[i] = 0; | |||
648 | } | |||
649 | ||||
650 | #ifdef MACH_PV_PAGETABLES | |||
651 | /* We don't actually deal with the CR3 register content at all */ | |||
652 | hyp_vm_assist(VMASST_CMD_enable0, VMASST_TYPE_pae_extended_cr33); | |||
653 | /* | |||
654 | * Xen may only provide as few as 512KB extra bootstrap linear memory, | |||
655 | * which is far from enough to map all available memory, so we need to | |||
656 | * map more bootstrap linear memory. We here map 1 (resp. 4 for PAE) | |||
657 | * other L1 table(s), thus 4MiB extra memory (resp. 8MiB), which is | |||
658 | * enough for a pagetable mapping 4GiB. | |||
659 | */ | |||
660 | #ifdef PAE1 | |||
661 | #define NSUP_L14 4 | |||
662 | #else | |||
663 | #define NSUP_L14 1 | |||
664 | #endif | |||
665 | pt_entry_t *l1_map[NSUP_L14]; | |||
666 | { | |||
667 | pt_entry_t *base = (pt_entry_t*) boot_info.pt_base; | |||
668 | vm_offset_t la; | |||
669 | int n_l1map; | |||
670 | for (n_l1map = 0, la = VM_MIN_KERNEL_ADDRESS0xC0000000UL; la >= VM_MIN_KERNEL_ADDRESS0xC0000000UL; la += NPTES((((unsigned long)(1)) << 12)/sizeof(pt_entry_t)) * PAGE_SIZE(1 << 12)) { | |||
671 | #ifdef PAE1 | |||
672 | pt_entry_t *l2_map = (pt_entry_t*) ptetokv(base[lin2pdpnum(la)])(((vm_offset_t)(({ pt_entry_t __a = (pt_entry_t) ((base[(((la ) >> 30) & 3)]) & 0x00007ffffffff000ULL); ((((unsigned long *) 0xF5800000UL)[__a >> 12]) << 12) | (__a & ((1 << 12)-1)); })) + 0xC0000000UL)); | |||
673 | #else /* PAE */ | |||
674 | pt_entry_t *l2_map = base; | |||
675 | #endif /* PAE */ | |||
676 | /* Like lin2pdenum, but works with non-contiguous boot L3 */ | |||
677 | l2_map += (la >> PDESHIFT21) & PDEMASK0x1ff; | |||
678 | if (!(*l2_map & INTEL_PTE_VALID0x00000001)) { | |||
679 | struct mmu_update update; | |||
680 | int j, n; | |||
681 | ||||
682 | l1_map[n_l1map] = (pt_entry_t*) phystokv(pmap_grab_page())((vm_offset_t)(pmap_grab_page()) + 0xC0000000UL); | |||
683 | for (j = 0; j < NPTES((((unsigned long)(1)) << 12)/sizeof(pt_entry_t)); j++) | |||
684 | l1_map[n_l1map][j] = (((pt_entry_t)pfn_to_mfn(lin2pdenum(la - VM_MIN_KERNEL_ADDRESS) * NPTES + j)(mfn_list[(((la - 0xC0000000UL) >> 21) & 0x7ff) * ( (((unsigned long)(1)) << 12)/sizeof(pt_entry_t)) + j])) << PAGE_SHIFT12) | INTEL_PTE_VALID0x00000001 | INTEL_PTE_WRITE0x00000002; | |||
685 | pmap_set_page_readonly_init(l1_map[n_l1map]); | |||
686 | if (!hyp_mmuext_op_mfn (MMUEXT_PIN_L1_TABLE0, kv_to_mfn (l1_map[n_l1map])((mfn_list[(((vm_size_t)(((vm_offset_t)(l1_map[n_l1map]) - 0xC0000000UL ))) >> 12)])))) | |||
687 | panic("couldn't pin page %p(%p)", l1_map[n_l1map], (vm_offset_t) kv_to_ma (l1_map[n_l1map])({ vm_offset_t __a = (vm_offset_t) (((vm_offset_t)(l1_map[n_l1map ]) - 0xC0000000UL)); (((pt_entry_t) ((mfn_list[(((vm_size_t)( __a)) >> 12)]))) << 12) | (__a & ((1 << 12)-1)); })); | |||
688 | update.ptr = kv_to_ma(l2_map)({ vm_offset_t __a = (vm_offset_t) (((vm_offset_t)(l2_map) - 0xC0000000UL )); (((pt_entry_t) ((mfn_list[(((vm_size_t)(__a)) >> 12 )]))) << 12) | (__a & ((1 << 12)-1)); }); | |||
689 | update.val = kv_to_ma(l1_map[n_l1map])({ vm_offset_t __a = (vm_offset_t) (((vm_offset_t)(l1_map[n_l1map ]) - 0xC0000000UL)); (((pt_entry_t) ((mfn_list[(((vm_size_t)( __a)) >> 12)]))) << 12) | (__a & ((1 << 12)-1)); }) | INTEL_PTE_VALID0x00000001 | INTEL_PTE_WRITE0x00000002; | |||
690 | hyp_mmu_update(kv_to_la(&update)((vm_offset_t)(((vm_offset_t)(((vm_offset_t)(&update) - 0xC0000000UL ))) + ((0xc0000000UL)))), 1, kv_to_la(&n)((vm_offset_t)(((vm_offset_t)(((vm_offset_t)(&n) - 0xC0000000UL ))) + ((0xc0000000UL)))), DOMID_SELF(0x7FF0U)); | |||
691 | if (n != 1) | |||
692 | panic("couldn't complete bootstrap map"); | |||
693 | /* added the last L1 table, can stop */ | |||
694 | if (++n_l1map >= NSUP_L14) | |||
695 | break; | |||
696 | } | |||
697 | } | |||
698 | } | |||
699 | #endif /* MACH_PV_PAGETABLES */ | |||
700 | ||||
701 | /* | |||
702 | * Allocate and set up the kernel page tables. | |||
703 | */ | |||
704 | { | |||
705 | vm_offset_t va; | |||
706 | pt_entry_t global = CPU_HAS_FEATURE(CPU_FEATURE_PGE)(cpu_features[(13) / 32] & (1 << ((13) % 32))) ? INTEL_PTE_GLOBAL0x00000000 : 0; | |||
707 | ||||
708 | /* | |||
709 | * Map virtual memory for all known physical memory, 1-1, | |||
710 | * from phys_first_addr to phys_last_addr. | |||
711 | * Make any mappings completely in the kernel's text segment read-only. | |||
712 | * | |||
713 | * Also allocate some additional all-null page tables afterwards | |||
714 | * for kernel virtual memory allocation, | |||
715 | * because this PMAP module is too stupid | |||
716 | * to allocate new kernel page tables later. | |||
717 | * XX fix this | |||
718 | */ | |||
719 | for (va = phystokv(phys_first_addr)((vm_offset_t)(phys_first_addr) + 0xC0000000UL); va >= phystokv(phys_first_addr)((vm_offset_t)(phys_first_addr) + 0xC0000000UL) && va < kernel_virtual_end; ) | |||
720 | { | |||
721 | pt_entry_t *pde = kernel_page_dir + lin2pdenum(kvtolin(va))(((((vm_offset_t)(va) - 0xC0000000UL + ((0xc0000000UL)))) >> 21) & 0x7ff); | |||
722 | pt_entry_t *ptable = (pt_entry_t*)phystokv(pmap_grab_page())((vm_offset_t)(pmap_grab_page()) + 0xC0000000UL); | |||
723 | pt_entry_t *pte; | |||
724 | ||||
725 | /* Initialize the page directory entry. */ | |||
726 | WRITE_PTE(pde, pa_to_pte((vm_offset_t)_kvtophys(ptable))*(pde) = (((vm_offset_t)((vm_offset_t)(ptable) - 0xC0000000UL )) & 0x00007ffffffff000ULL) | 0x00000001 | 0x00000002?({ vm_offset_t __a = (vm_offset_t) ((((vm_offset_t)((vm_offset_t)(ptable) - 0xC0000000UL)) & 0x00007ffffffff000ULL) | 0x00000001 | 0x00000002 ); (((pt_entry_t) ((mfn_list[(((vm_size_t)(__a)) >> 12) ]))) << 12) | (__a & ((1 << 12)-1)); }):0; | |||
727 | | INTEL_PTE_VALID | INTEL_PTE_WRITE)*(pde) = (((vm_offset_t)((vm_offset_t)(ptable) - 0xC0000000UL )) & 0x00007ffffffff000ULL) | 0x00000001 | 0x00000002?({ vm_offset_t __a = (vm_offset_t) ((((vm_offset_t)((vm_offset_t)(ptable) - 0xC0000000UL)) & 0x00007ffffffff000ULL) | 0x00000001 | 0x00000002 ); (((pt_entry_t) ((mfn_list[(((vm_size_t)(__a)) >> 12) ]))) << 12) | (__a & ((1 << 12)-1)); }):0;; | |||
728 | ||||
729 | /* Initialize the page table. */ | |||
730 | for (pte = ptable; (va < phystokv(phys_last_addr)((vm_offset_t)(phys_last_addr) + 0xC0000000UL)) && (pte < ptable+NPTES((((unsigned long)(1)) << 12)/sizeof(pt_entry_t))); pte++) | |||
731 | { | |||
732 | if ((pte - ptable) < ptenum(va)(((va) >> 12) & 0x1ff)) | |||
733 | { | |||
734 | WRITE_PTE(pte, 0)*(pte) = 0?({ vm_offset_t __a = (vm_offset_t) (0); (((pt_entry_t ) ((mfn_list[(((vm_size_t)(__a)) >> 12)]))) << 12 ) | (__a & ((1 << 12)-1)); }):0;; | |||
735 | } | |||
736 | else | |||
737 | #ifdef MACH_PV_PAGETABLES | |||
738 | if (va == (vm_offset_t) &hyp_shared_info) | |||
739 | { | |||
740 | *pte = boot_info.shared_info | INTEL_PTE_VALID0x00000001 | INTEL_PTE_WRITE0x00000002; | |||
741 | va += INTEL_PGBYTES4096; | |||
742 | } | |||
743 | else | |||
744 | #endif /* MACH_PV_PAGETABLES */ | |||
745 | { | |||
746 | extern char _start[], etext[]; | |||
747 | ||||
748 | if (((va >= (vm_offset_t) _start) | |||
749 | && (va + INTEL_PGBYTES4096 <= (vm_offset_t)etext)) | |||
750 | #ifdef MACH_PV_PAGETABLES | |||
751 | || (va >= (vm_offset_t) boot_info.pt_base | |||
752 | && (va + INTEL_PGBYTES4096 <= | |||
753 | (vm_offset_t) ptable + INTEL_PGBYTES4096)) | |||
754 | #endif /* MACH_PV_PAGETABLES */ | |||
755 | ) | |||
756 | { | |||
757 | WRITE_PTE(pte, pa_to_pte(_kvtophys(va))*(pte) = ((((vm_offset_t)(va) - 0xC0000000UL)) & 0x00007ffffffff000ULL ) | 0x00000001 | global?({ vm_offset_t __a = (vm_offset_t) (( (((vm_offset_t)(va) - 0xC0000000UL)) & 0x00007ffffffff000ULL ) | 0x00000001 | global); (((pt_entry_t) ((mfn_list[(((vm_size_t )(__a)) >> 12)]))) << 12) | (__a & ((1 << 12)-1)); }):0; | |||
758 | | INTEL_PTE_VALID | global)*(pte) = ((((vm_offset_t)(va) - 0xC0000000UL)) & 0x00007ffffffff000ULL ) | 0x00000001 | global?({ vm_offset_t __a = (vm_offset_t) (( (((vm_offset_t)(va) - 0xC0000000UL)) & 0x00007ffffffff000ULL ) | 0x00000001 | global); (((pt_entry_t) ((mfn_list[(((vm_size_t )(__a)) >> 12)]))) << 12) | (__a & ((1 << 12)-1)); }):0;; | |||
759 | } | |||
760 | else | |||
761 | { | |||
762 | #ifdef MACH_PV_PAGETABLES | |||
763 | /* Keep supplementary L1 pages read-only */ | |||
764 | int i; | |||
765 | for (i = 0; i < NSUP_L14; i++) | |||
766 | if (va == (vm_offset_t) l1_map[i]) { | |||
767 | WRITE_PTE(pte, pa_to_pte(_kvtophys(va))*(pte) = ((((vm_offset_t)(va) - 0xC0000000UL)) & 0x00007ffffffff000ULL ) | 0x00000001 | global?({ vm_offset_t __a = (vm_offset_t) (( (((vm_offset_t)(va) - 0xC0000000UL)) & 0x00007ffffffff000ULL ) | 0x00000001 | global); (((pt_entry_t) ((mfn_list[(((vm_size_t )(__a)) >> 12)]))) << 12) | (__a & ((1 << 12)-1)); }):0; | |||
768 | | INTEL_PTE_VALID | global)*(pte) = ((((vm_offset_t)(va) - 0xC0000000UL)) & 0x00007ffffffff000ULL ) | 0x00000001 | global?({ vm_offset_t __a = (vm_offset_t) (( (((vm_offset_t)(va) - 0xC0000000UL)) & 0x00007ffffffff000ULL ) | 0x00000001 | global); (((pt_entry_t) ((mfn_list[(((vm_size_t )(__a)) >> 12)]))) << 12) | (__a & ((1 << 12)-1)); }):0;; | |||
769 | break; | |||
770 | } | |||
771 | if (i == NSUP_L14) | |||
772 | #endif /* MACH_PV_PAGETABLES */ | |||
773 | WRITE_PTE(pte, pa_to_pte(_kvtophys(va))*(pte) = ((((vm_offset_t)(va) - 0xC0000000UL)) & 0x00007ffffffff000ULL ) | 0x00000001 | 0x00000002 | global?({ vm_offset_t __a = (vm_offset_t ) (((((vm_offset_t)(va) - 0xC0000000UL)) & 0x00007ffffffff000ULL ) | 0x00000001 | 0x00000002 | global); (((pt_entry_t) ((mfn_list [(((vm_size_t)(__a)) >> 12)]))) << 12) | (__a & ((1 << 12)-1)); }):0; | |||
774 | | INTEL_PTE_VALID | INTEL_PTE_WRITE | global)*(pte) = ((((vm_offset_t)(va) - 0xC0000000UL)) & 0x00007ffffffff000ULL ) | 0x00000001 | 0x00000002 | global?({ vm_offset_t __a = (vm_offset_t ) (((((vm_offset_t)(va) - 0xC0000000UL)) & 0x00007ffffffff000ULL ) | 0x00000001 | 0x00000002 | global); (((pt_entry_t) ((mfn_list [(((vm_size_t)(__a)) >> 12)]))) << 12) | (__a & ((1 << 12)-1)); }):0; | |||
775 | ||||
776 | } | |||
777 | va += INTEL_PGBYTES4096; | |||
778 | } | |||
779 | } | |||
780 | for (; pte < ptable+NPTES((((unsigned long)(1)) << 12)/sizeof(pt_entry_t)); pte++) | |||
781 | { | |||
782 | if (va >= kernel_virtual_end - PMAP_NMAPWINDOWS2 * PAGE_SIZE(1 << 12) && va < kernel_virtual_end) | |||
783 | { | |||
784 | pmap_mapwindow_t *win = &mapwindows[atop(va - (kernel_virtual_end - PMAP_NMAPWINDOWS * PAGE_SIZE))(((vm_size_t)(va - (kernel_virtual_end - 2 * (1 << 12)) )) >> 12)]; | |||
785 | win->entry = pte; | |||
786 | win->vaddr = va; | |||
787 | } | |||
788 | WRITE_PTE(pte, 0)*(pte) = 0?({ vm_offset_t __a = (vm_offset_t) (0); (((pt_entry_t ) ((mfn_list[(((vm_size_t)(__a)) >> 12)]))) << 12 ) | (__a & ((1 << 12)-1)); }):0;; | |||
789 | va += INTEL_PGBYTES4096; | |||
790 | } | |||
791 | #ifdef MACH_PV_PAGETABLES | |||
792 | pmap_set_page_readonly_init(ptable); | |||
793 | if (!hyp_mmuext_op_mfn (MMUEXT_PIN_L1_TABLE0, kv_to_mfn (ptable)((mfn_list[(((vm_size_t)(((vm_offset_t)(ptable) - 0xC0000000UL ))) >> 12)])))) | |||
794 | panic("couldn't pin page %p(%p)\n", ptable, (vm_offset_t) kv_to_ma (ptable)({ vm_offset_t __a = (vm_offset_t) (((vm_offset_t)(ptable) - 0xC0000000UL )); (((pt_entry_t) ((mfn_list[(((vm_size_t)(__a)) >> 12 )]))) << 12) | (__a & ((1 << 12)-1)); })); | |||
795 | #endif /* MACH_PV_PAGETABLES */ | |||
796 | } | |||
797 | } | |||
798 | ||||
799 | /* Architecture-specific code will turn on paging | |||
800 | soon after we return from here. */ | |||
801 | } | |||
802 | ||||
803 | #ifdef MACH_PV_PAGETABLES | |||
804 | /* These are only required because of Xen security policies */ | |||
805 | ||||
806 | /* Set back a page read write */ | |||
807 | void pmap_set_page_readwrite(void *_vaddr) { | |||
808 | vm_offset_t vaddr = (vm_offset_t) _vaddr; | |||
809 | vm_offset_t paddr = kvtophys(vaddr); | |||
810 | vm_offset_t canon_vaddr = phystokv(paddr)((vm_offset_t)(paddr) + 0xC0000000UL); | |||
811 | if (hyp_do_update_va_mapping (kvtolin(vaddr), pa_to_pte (pa_to_ma(paddr)) | INTEL_PTE_VALID | INTEL_PTE_WRITE, UVMF_NONE)({ pt_entry_t __val = (((({ vm_offset_t __a = (vm_offset_t) ( paddr); (((pt_entry_t) ((mfn_list[(((vm_size_t)(__a)) >> 12)]))) << 12) | (__a & ((1 << 12)-1)); })) & 0x00007ffffffff000ULL) | 0x00000001 | 0x00000002); hyp_update_va_mapping (((vm_offset_t)(vaddr) - 0xC0000000UL + ((0xc0000000UL))), __val & 0xffffffffU, ((__val) >> 32), (0UL<<0)); } )) | |||
812 | panic("couldn't set hiMMU readwrite for addr %p(%p)\n", vaddr, (vm_offset_t) pa_to_ma (paddr)({ vm_offset_t __a = (vm_offset_t) (paddr); (((pt_entry_t) (( mfn_list[(((vm_size_t)(__a)) >> 12)]))) << 12) | ( __a & ((1 << 12)-1)); })); | |||
813 | if (canon_vaddr != vaddr) | |||
814 | if (hyp_do_update_va_mapping (kvtolin(canon_vaddr), pa_to_pte (pa_to_ma(paddr)) | INTEL_PTE_VALID | INTEL_PTE_WRITE, UVMF_NONE)({ pt_entry_t __val = (((({ vm_offset_t __a = (vm_offset_t) ( paddr); (((pt_entry_t) ((mfn_list[(((vm_size_t)(__a)) >> 12)]))) << 12) | (__a & ((1 << 12)-1)); })) & 0x00007ffffffff000ULL) | 0x00000001 | 0x00000002); hyp_update_va_mapping (((vm_offset_t)(canon_vaddr) - 0xC0000000UL + ((0xc0000000UL) )), __val & 0xffffffffU, ((__val) >> 32), (0UL<< 0)); })) | |||
815 | panic("couldn't set hiMMU readwrite for paddr %p(%p)\n", canon_vaddr, (vm_offset_t) pa_to_ma (paddr)({ vm_offset_t __a = (vm_offset_t) (paddr); (((pt_entry_t) (( mfn_list[(((vm_size_t)(__a)) >> 12)]))) << 12) | ( __a & ((1 << 12)-1)); })); | |||
816 | } | |||
817 | ||||
818 | /* Set a page read only (so as to pin it for instance) */ | |||
819 | void pmap_set_page_readonly(void *_vaddr) { | |||
820 | vm_offset_t vaddr = (vm_offset_t) _vaddr; | |||
821 | vm_offset_t paddr = kvtophys(vaddr); | |||
822 | vm_offset_t canon_vaddr = phystokv(paddr)((vm_offset_t)(paddr) + 0xC0000000UL); | |||
823 | if (*pmap_pde(kernel_pmap, vaddr) & INTEL_PTE_VALID0x00000001) { | |||
824 | if (hyp_do_update_va_mapping (kvtolin(vaddr), pa_to_pte (pa_to_ma(paddr)) | INTEL_PTE_VALID, UVMF_NONE)({ pt_entry_t __val = (((({ vm_offset_t __a = (vm_offset_t) ( paddr); (((pt_entry_t) ((mfn_list[(((vm_size_t)(__a)) >> 12)]))) << 12) | (__a & ((1 << 12)-1)); })) & 0x00007ffffffff000ULL) | 0x00000001); hyp_update_va_mapping( ((vm_offset_t)(vaddr) - 0xC0000000UL + ((0xc0000000UL))), __val & 0xffffffffU, ((__val) >> 32), (0UL<<0)); } )) | |||
825 | panic("couldn't set hiMMU readonly for vaddr %p(%p)\n", vaddr, (vm_offset_t) pa_to_ma (paddr)({ vm_offset_t __a = (vm_offset_t) (paddr); (((pt_entry_t) (( mfn_list[(((vm_size_t)(__a)) >> 12)]))) << 12) | ( __a & ((1 << 12)-1)); })); | |||
826 | } | |||
827 | if (canon_vaddr != vaddr && | |||
828 | *pmap_pde(kernel_pmap, canon_vaddr) & INTEL_PTE_VALID0x00000001) { | |||
829 | if (hyp_do_update_va_mapping (kvtolin(canon_vaddr), pa_to_pte (pa_to_ma(paddr)) | INTEL_PTE_VALID, UVMF_NONE)({ pt_entry_t __val = (((({ vm_offset_t __a = (vm_offset_t) ( paddr); (((pt_entry_t) ((mfn_list[(((vm_size_t)(__a)) >> 12)]))) << 12) | (__a & ((1 << 12)-1)); })) & 0x00007ffffffff000ULL) | 0x00000001); hyp_update_va_mapping( ((vm_offset_t)(canon_vaddr) - 0xC0000000UL + ((0xc0000000UL)) ), __val & 0xffffffffU, ((__val) >> 32), (0UL<< 0)); })) | |||
830 | panic("couldn't set hiMMU readonly for vaddr %p canon_vaddr %p paddr %p (%p)\n", vaddr, canon_vaddr, paddr, (vm_offset_t) pa_to_ma (paddr)({ vm_offset_t __a = (vm_offset_t) (paddr); (((pt_entry_t) (( mfn_list[(((vm_size_t)(__a)) >> 12)]))) << 12) | ( __a & ((1 << 12)-1)); })); | |||
831 | } | |||
832 | } | |||
833 | ||||
834 | /* This needs to be called instead of pmap_set_page_readonly as long as RC3 | |||
835 | * still points to the bootstrap dirbase, to also fix the bootstrap table. */ | |||
836 | void pmap_set_page_readonly_init(void *_vaddr) { | |||
837 | vm_offset_t vaddr = (vm_offset_t) _vaddr; | |||
838 | #if PAE1 | |||
839 | pt_entry_t *pdpbase = (void*) boot_info.pt_base; | |||
840 | /* The bootstrap table does not necessarily use contiguous pages for the pde tables */ | |||
841 | pt_entry_t *dirbase = (void*) ptetokv(pdpbase[lin2pdpnum(vaddr)])(((vm_offset_t)(({ pt_entry_t __a = (pt_entry_t) ((pdpbase[(( (vaddr) >> 30) & 3)]) & 0x00007ffffffff000ULL); ((((unsigned long *) 0xF5800000UL)[__a >> 12]) << 12) | (__a & ((1 << 12)-1)); })) + 0xC0000000UL)); | |||
842 | #else | |||
843 | pt_entry_t *dirbase = (void*) boot_info.pt_base; | |||
844 | #endif | |||
845 | pt_entry_t *pte = &dirbase[lin2pdenum(vaddr)(((vaddr) >> 21) & 0x7ff) & PTEMASK0x1ff]; | |||
846 | /* Modify our future kernel map (can't use update_va_mapping for this)... */ | |||
847 | if (*pmap_pde(kernel_pmap, vaddr) & INTEL_PTE_VALID0x00000001) { | |||
848 | if (!hyp_mmu_update_la (kvtolin(vaddr), pa_to_pte (kv_to_ma(vaddr)) | INTEL_PTE_VALID)hyp_mmu_update_pte( (kernel_pmap->dirbase[((((vm_offset_t) (((vm_offset_t)(vaddr) - 0xC0000000UL + ((0xc0000000UL))))) >> 21) & 0x7ff)] & 0x00007ffffffff000ULL) + ((((vm_offset_t )(((vm_offset_t)(vaddr) - 0xC0000000UL + ((0xc0000000UL))))) >> 12) & 0x1ff) * sizeof(pt_entry_t), ((({ vm_offset_t __a = (vm_offset_t) (((vm_offset_t)(vaddr) - 0xC0000000UL)); (((pt_entry_t ) ((mfn_list[(((vm_size_t)(__a)) >> 12)]))) << 12 ) | (__a & ((1 << 12)-1)); })) & 0x00007ffffffff000ULL ) | 0x00000001)) | |||
849 | panic("couldn't set hiMMU readonly for vaddr %p(%p)\n", vaddr, (vm_offset_t) kv_to_ma (vaddr)({ vm_offset_t __a = (vm_offset_t) (((vm_offset_t)(vaddr) - 0xC0000000UL )); (((pt_entry_t) ((mfn_list[(((vm_size_t)(__a)) >> 12 )]))) << 12) | (__a & ((1 << 12)-1)); })); | |||
850 | } | |||
851 | /* ... and the bootstrap map. */ | |||
852 | if (*pte & INTEL_PTE_VALID0x00000001) { | |||
853 | if (hyp_do_update_va_mapping (vaddr, pa_to_pte (kv_to_ma(vaddr)) | INTEL_PTE_VALID, UVMF_NONE)({ pt_entry_t __val = (((({ vm_offset_t __a = (vm_offset_t) ( ((vm_offset_t)(vaddr) - 0xC0000000UL)); (((pt_entry_t) ((mfn_list [(((vm_size_t)(__a)) >> 12)]))) << 12) | (__a & ((1 << 12)-1)); })) & 0x00007ffffffff000ULL) | 0x00000001 ); hyp_update_va_mapping(vaddr, __val & 0xffffffffU, ((__val ) >> 32), (0UL<<0)); })) | |||
854 | panic("couldn't set MMU readonly for vaddr %p(%p)\n", vaddr, (vm_offset_t) kv_to_ma (vaddr)({ vm_offset_t __a = (vm_offset_t) (((vm_offset_t)(vaddr) - 0xC0000000UL )); (((pt_entry_t) ((mfn_list[(((vm_size_t)(__a)) >> 12 )]))) << 12) | (__a & ((1 << 12)-1)); })); | |||
855 | } | |||
856 | } | |||
857 | ||||
858 | void pmap_clear_bootstrap_pagetable(pt_entry_t *base) { | |||
859 | int i; | |||
860 | pt_entry_t *dir; | |||
861 | vm_offset_t va = 0; | |||
862 | #if PAE1 | |||
863 | int j; | |||
864 | #endif /* PAE */ | |||
865 | if (!hyp_mmuext_op_mfn (MMUEXT_UNPIN_TABLE4, kv_to_mfn(base)((mfn_list[(((vm_size_t)(((vm_offset_t)(base) - 0xC0000000UL) )) >> 12)])))) | |||
866 | panic("pmap_clear_bootstrap_pagetable: couldn't unpin page %p(%p)\n", base, (vm_offset_t) kv_to_ma(base)({ vm_offset_t __a = (vm_offset_t) (((vm_offset_t)(base) - 0xC0000000UL )); (((pt_entry_t) ((mfn_list[(((vm_size_t)(__a)) >> 12 )]))) << 12) | (__a & ((1 << 12)-1)); })); | |||
867 | #if PAE1 | |||
868 | for (j = 0; j < PDPNUM4; j++) | |||
869 | { | |||
870 | pt_entry_t pdpe = base[j]; | |||
871 | if (pdpe & INTEL_PTE_VALID0x00000001) { | |||
872 | dir = (pt_entry_t *) ptetokv(pdpe)(((vm_offset_t)(({ pt_entry_t __a = (pt_entry_t) ((pdpe) & 0x00007ffffffff000ULL); ((((unsigned long *) 0xF5800000UL)[__a >> 12]) << 12) | (__a & ((1 << 12)-1)) ; })) + 0xC0000000UL)); | |||
873 | #else /* PAE */ | |||
874 | dir = base; | |||
875 | #endif /* PAE */ | |||
876 | for (i = 0; i < NPTES((((unsigned long)(1)) << 12)/sizeof(pt_entry_t)); i++) { | |||
877 | pt_entry_t pde = dir[i]; | |||
878 | unsigned long pfn = atop(pte_to_pa(pde))(((vm_size_t)(({ pt_entry_t __a = (pt_entry_t) ((pde) & 0x00007ffffffff000ULL ); ((((unsigned long *) 0xF5800000UL)[__a >> 12]) << 12) | (__a & ((1 << 12)-1)); }))) >> 12); | |||
879 | void *pgt = (void*) phystokv(ptoa(pfn))((vm_offset_t)(((vm_offset_t)((pfn) << 12))) + 0xC0000000UL ); | |||
880 | if (pde & INTEL_PTE_VALID0x00000001) | |||
881 | hyp_free_page(pfn, pgt); | |||
882 | va += NPTES((((unsigned long)(1)) << 12)/sizeof(pt_entry_t)) * INTEL_PGBYTES4096; | |||
883 | if (va >= HYP_VIRT_START0xF5800000UL) | |||
884 | break; | |||
885 | } | |||
886 | #if PAE1 | |||
887 | hyp_free_page(atop(_kvtophys(dir))(((vm_size_t)(((vm_offset_t)(dir) - 0xC0000000UL))) >> 12 ), dir); | |||
888 | } else | |||
889 | va += NPTES((((unsigned long)(1)) << 12)/sizeof(pt_entry_t)) * NPTES((((unsigned long)(1)) << 12)/sizeof(pt_entry_t)) * INTEL_PGBYTES4096; | |||
890 | if (va >= HYP_VIRT_START0xF5800000UL) | |||
891 | break; | |||
892 | } | |||
893 | #endif /* PAE */ | |||
894 | hyp_free_page(atop(_kvtophys(base))(((vm_size_t)(((vm_offset_t)(base) - 0xC0000000UL))) >> 12), base); | |||
895 | } | |||
896 | #endif /* MACH_PV_PAGETABLES */ | |||
897 | ||||
898 | /* | |||
899 | * Create a temporary mapping for a given physical entry | |||
900 | * | |||
901 | * This can be used to access physical pages which are not mapped 1:1 by | |||
902 | * phystokv(). | |||
903 | */ | |||
904 | pmap_mapwindow_t *pmap_get_mapwindow(pt_entry_t entry) | |||
905 | { | |||
906 | pmap_mapwindow_t *map; | |||
907 | ||||
908 | /* Find an empty one. */ | |||
909 | for (map = &mapwindows[0]; map < &mapwindows[sizeof (mapwindows) / sizeof (*mapwindows)]; map++) | |||
910 | if (!(*map->entry)) | |||
911 | break; | |||
912 | assert(map < &mapwindows[sizeof (mapwindows) / sizeof (*mapwindows)])({ if (!(map < &mapwindows[sizeof (mapwindows) / sizeof (*mapwindows)])) Assert("map < &mapwindows[sizeof (mapwindows) / sizeof (*mapwindows)]" , "../i386/intel/pmap.c", 912); }); | |||
913 | ||||
914 | WRITE_PTE(map->entry, entry)*(map->entry) = entry?({ vm_offset_t __a = (vm_offset_t) ( entry); (((pt_entry_t) ((mfn_list[(((vm_size_t)(__a)) >> 12)]))) << 12) | (__a & ((1 << 12)-1)); }):0 ;; | |||
915 | return map; | |||
916 | } | |||
917 | ||||
918 | /* | |||
919 | * Destroy a temporary mapping for a physical entry | |||
920 | */ | |||
921 | void pmap_put_mapwindow(pmap_mapwindow_t *map) | |||
922 | { | |||
923 | WRITE_PTE(map->entry, 0)*(map->entry) = 0?({ vm_offset_t __a = (vm_offset_t) (0); ( ((pt_entry_t) ((mfn_list[(((vm_size_t)(__a)) >> 12)]))) << 12) | (__a & ((1 << 12)-1)); }):0;; | |||
924 | PMAP_UPDATE_TLBS(kernel_pmap, map->vaddr, map->vaddr + PAGE_SIZE){ if ((kernel_pmap)->cpus_using) { hyp_mmuext_op_void(6); } }; | |||
925 | } | |||
926 | ||||
927 | void pmap_virtual_space( | |||
928 | vm_offset_t *startp, | |||
929 | vm_offset_t *endp) | |||
930 | { | |||
931 | *startp = kernel_virtual_start; | |||
932 | *endp = kernel_virtual_end - PMAP_NMAPWINDOWS2 * PAGE_SIZE(1 << 12); | |||
933 | } | |||
934 | ||||
935 | /* | |||
936 | * Initialize the pmap module. | |||
937 | * Called by vm_init, to initialize any structures that the pmap | |||
938 | * system needs to map virtual memory. | |||
939 | */ | |||
940 | void pmap_init(void) | |||
941 | { | |||
942 | long npages; | |||
943 | vm_offset_t addr; | |||
944 | vm_size_t s; | |||
945 | #if NCPUS1 > 1 | |||
946 | int i; | |||
947 | #endif /* NCPUS > 1 */ | |||
948 | ||||
949 | /* | |||
950 | * Allocate memory for the pv_head_table and its lock bits, | |||
951 | * the modify bit array, and the pte_page table. | |||
952 | */ | |||
953 | ||||
954 | npages = atop(phys_last_addr - phys_first_addr)(((vm_size_t)(phys_last_addr - phys_first_addr)) >> 12); | |||
955 | s = (vm_size_t) (sizeof(struct pv_entry) * npages | |||
956 | + pv_lock_table_size(npages)(((npages)+8 -1)/8) | |||
957 | + npages); | |||
958 | ||||
959 | s = round_page(s)((vm_offset_t)((((vm_offset_t)(s)) + ((1 << 12)-1)) & ~((1 << 12)-1))); | |||
960 | if (kmem_alloc_wired(kernel_map, &addr, s) != KERN_SUCCESS0) | |||
961 | panic("pmap_init"); | |||
962 | memset((void *) addr, 0, s); | |||
963 | ||||
964 | /* | |||
965 | * Allocate the structures first to preserve word-alignment. | |||
966 | */ | |||
967 | pv_head_table = (pv_entry_t) addr; | |||
968 | addr = (vm_offset_t) (pv_head_table + npages); | |||
969 | ||||
970 | pv_lock_table = (char *) addr; | |||
971 | addr = (vm_offset_t) (pv_lock_table + pv_lock_table_size(npages)(((npages)+8 -1)/8)); | |||
972 | ||||
973 | pmap_phys_attributes = (char *) addr; | |||
974 | ||||
975 | /* | |||
976 | * Create the cache of physical maps, | |||
977 | * and of the physical-to-virtual entries. | |||
978 | */ | |||
979 | s = (vm_size_t) sizeof(struct pmap); | |||
980 | kmem_cache_init(&pmap_cache, "pmap", s, 0, NULL((void *) 0), NULL((void *) 0), NULL((void *) 0), 0); | |||
981 | s = (vm_size_t) sizeof(struct pv_entry); | |||
982 | kmem_cache_init(&pv_list_cache, "pv_entry", s, 0, NULL((void *) 0), NULL((void *) 0), NULL((void *) 0), 0); | |||
983 | ||||
984 | #if NCPUS1 > 1 | |||
985 | /* | |||
986 | * Set up the pmap request lists | |||
987 | */ | |||
988 | for (i = 0; i < NCPUS1; i++) { | |||
989 | pmap_update_list_t up = &cpu_update_list[i]; | |||
990 | ||||
991 | simple_lock_init(&up->lock); | |||
992 | up->count = 0; | |||
993 | } | |||
994 | #endif /* NCPUS > 1 */ | |||
995 | ||||
996 | /* | |||
997 | * Indicate that the PMAP module is now fully initialized. | |||
998 | */ | |||
999 | pmap_initialized = TRUE((boolean_t) 1); | |||
1000 | } | |||
1001 | ||||
1002 | #define valid_page(x)(pmap_initialized && pmap_valid_page(x)) (pmap_initialized && pmap_valid_page(x)) | |||
1003 | ||||
1004 | boolean_t pmap_verify_free(vm_offset_t phys) | |||
1005 | { | |||
1006 | pv_entry_t pv_h; | |||
1007 | int pai; | |||
1008 | int spl; | |||
1009 | boolean_t result; | |||
1010 | ||||
1011 | assert(phys != vm_page_fictitious_addr)({ if (!(phys != vm_page_fictitious_addr)) Assert("phys != vm_page_fictitious_addr" , "../i386/intel/pmap.c", 1011); }); | |||
1012 | if (!pmap_initialized) | |||
1013 | return(TRUE((boolean_t) 1)); | |||
1014 | ||||
1015 | if (!pmap_valid_page(phys)) | |||
1016 | return(FALSE((boolean_t) 0)); | |||
1017 | ||||
1018 | PMAP_WRITE_LOCK(spl)((void)(spl)); | |||
1019 | ||||
1020 | pai = pa_index(phys)((((vm_size_t)(phys - phys_first_addr)) >> 12)); | |||
1021 | pv_h = pai_to_pvh(pai)(&pv_head_table[pai]); | |||
1022 | ||||
1023 | result = (pv_h->pmap == PMAP_NULL((pmap_t) 0)); | |||
1024 | PMAP_WRITE_UNLOCK(spl)((void)(spl)); | |||
1025 | ||||
1026 | return(result); | |||
1027 | } | |||
1028 | ||||
1029 | /* | |||
1030 | * Routine: pmap_page_table_page_alloc | |||
1031 | * | |||
1032 | * Allocates a new physical page to be used as a page-table page. | |||
1033 | * | |||
1034 | * Must be called with the pmap system and the pmap unlocked, | |||
1035 | * since these must be unlocked to use vm_page_grab. | |||
1036 | */ | |||
1037 | vm_offset_t | |||
1038 | pmap_page_table_page_alloc(void) | |||
1039 | { | |||
1040 | vm_page_t m; | |||
1041 | vm_offset_t pa; | |||
1042 | ||||
1043 | check_simple_locks(); | |||
1044 | ||||
1045 | /* | |||
1046 | * We cannot allocate the pmap_object in pmap_init, | |||
1047 | * because it is called before the cache package is up. | |||
1048 | * Allocate it now if it is missing. | |||
1049 | */ | |||
1050 | if (pmap_object == VM_OBJECT_NULL((vm_object_t) 0)) | |||
1051 | pmap_object = vm_object_allocate(phys_last_addr - phys_first_addr); | |||
1052 | ||||
1053 | /* | |||
1054 | * Allocate a VM page for the level 2 page table entries. | |||
1055 | */ | |||
1056 | while ((m = vm_page_grab(FALSE((boolean_t) 0))) == VM_PAGE_NULL((vm_page_t) 0)) | |||
1057 | VM_PAGE_WAIT((void (*)()) 0)vm_page_wait((void (*)()) 0); | |||
1058 | ||||
1059 | /* | |||
1060 | * Map the page to its physical address so that it | |||
1061 | * can be found later. | |||
1062 | */ | |||
1063 | pa = m->phys_addr; | |||
1064 | vm_object_lock(pmap_object); | |||
1065 | vm_page_insert(m, pmap_object, pa); | |||
1066 | vm_page_lock_queues(); | |||
1067 | vm_page_wire(m); | |||
1068 | inuse_ptepages_count++; | |||
1069 | vm_page_unlock_queues()((void)(&vm_page_queue_lock)); | |||
1070 | vm_object_unlock(pmap_object)((void)(&(pmap_object)->Lock)); | |||
1071 | ||||
1072 | /* | |||
1073 | * Zero the page. | |||
1074 | */ | |||
1075 | memset((void *)phystokv(pa)((vm_offset_t)(pa) + 0xC0000000UL), 0, PAGE_SIZE(1 << 12)); | |||
1076 | ||||
1077 | return pa; | |||
1078 | } | |||
1079 | ||||
1080 | #ifdef MACH_XEN | |||
1081 | void pmap_map_mfn(void *_addr, unsigned long mfn) { | |||
1082 | vm_offset_t addr = (vm_offset_t) _addr; | |||
1083 | pt_entry_t *pte, *pdp; | |||
1084 | vm_offset_t ptp; | |||
1085 | pt_entry_t ma = ((pt_entry_t) mfn) << PAGE_SHIFT12; | |||
1086 | ||||
1087 | /* Add a ptp if none exist yet for this pte */ | |||
1088 | if ((pte = pmap_pte(kernel_pmap, addr)) == PT_ENTRY_NULL((pt_entry_t *) 0)) { | |||
1089 | ptp = phystokv(pmap_page_table_page_alloc())((vm_offset_t)(pmap_page_table_page_alloc()) + 0xC0000000UL); | |||
1090 | #ifdef MACH_PV_PAGETABLES | |||
1091 | pmap_set_page_readonly((void*) ptp); | |||
1092 | if (!hyp_mmuext_op_mfn (MMUEXT_PIN_L1_TABLE0, pa_to_mfn(ptp)((mfn_list[(((vm_size_t)(ptp)) >> 12)])))) | |||
1093 | panic("couldn't pin page %p(%p)\n",ptp,(vm_offset_t) kv_to_ma(ptp)({ vm_offset_t __a = (vm_offset_t) (((vm_offset_t)(ptp) - 0xC0000000UL )); (((pt_entry_t) ((mfn_list[(((vm_size_t)(__a)) >> 12 )]))) << 12) | (__a & ((1 << 12)-1)); })); | |||
1094 | #endif /* MACH_PV_PAGETABLES */ | |||
1095 | pdp = pmap_pde(kernel_pmap, addr); | |||
1096 | ||||
1097 | #ifdef MACH_PV_PAGETABLES | |||
1098 | if (!hyp_mmu_update_pte(kv_to_ma(pdp)({ vm_offset_t __a = (vm_offset_t) (((vm_offset_t)(pdp) - 0xC0000000UL )); (((pt_entry_t) ((mfn_list[(((vm_size_t)(__a)) >> 12 )]))) << 12) | (__a & ((1 << 12)-1)); }), | |||
1099 | pa_to_pte(kv_to_ma(ptp))((({ vm_offset_t __a = (vm_offset_t) (((vm_offset_t)(ptp) - 0xC0000000UL )); (((pt_entry_t) ((mfn_list[(((vm_size_t)(__a)) >> 12 )]))) << 12) | (__a & ((1 << 12)-1)); })) & 0x00007ffffffff000ULL) | INTEL_PTE_VALID0x00000001 | |||
1100 | | INTEL_PTE_USER0x00000004 | |||
1101 | | INTEL_PTE_WRITE0x00000002)) | |||
1102 | panic("%s:%d could not set pde %p(%p) to %p(%p)\n",__FILE__"../i386/intel/pmap.c",__LINE__1102,kvtophys((vm_offset_t)pdp),(vm_offset_t) kv_to_ma(pdp)({ vm_offset_t __a = (vm_offset_t) (((vm_offset_t)(pdp) - 0xC0000000UL )); (((pt_entry_t) ((mfn_list[(((vm_size_t)(__a)) >> 12 )]))) << 12) | (__a & ((1 << 12)-1)); }), ptp, (vm_offset_t) pa_to_ma(ptp)({ vm_offset_t __a = (vm_offset_t) (ptp); (((pt_entry_t) ((mfn_list [(((vm_size_t)(__a)) >> 12)]))) << 12) | (__a & ((1 << 12)-1)); })); | |||
1103 | #else /* MACH_PV_PAGETABLES */ | |||
1104 | *pdp = pa_to_pte(kvtophys(ptp))((kvtophys(ptp)) & 0x00007ffffffff000ULL) | INTEL_PTE_VALID0x00000001 | |||
1105 | | INTEL_PTE_USER0x00000004 | |||
1106 | | INTEL_PTE_WRITE0x00000002; | |||
1107 | #endif /* MACH_PV_PAGETABLES */ | |||
1108 | pte = pmap_pte(kernel_pmap, addr); | |||
1109 | } | |||
1110 | ||||
1111 | #ifdef MACH_PV_PAGETABLES | |||
1112 | if (!hyp_mmu_update_pte(kv_to_ma(pte)({ vm_offset_t __a = (vm_offset_t) (((vm_offset_t)(pte) - 0xC0000000UL )); (((pt_entry_t) ((mfn_list[(((vm_size_t)(__a)) >> 12 )]))) << 12) | (__a & ((1 << 12)-1)); }), ma | INTEL_PTE_VALID0x00000001 | INTEL_PTE_WRITE0x00000002)) | |||
1113 | panic("%s:%d could not set pte %p(%p) to %p(%p)\n",__FILE__"../i386/intel/pmap.c",__LINE__1113,pte,(vm_offset_t) kv_to_ma(pte)({ vm_offset_t __a = (vm_offset_t) (((vm_offset_t)(pte) - 0xC0000000UL )); (((pt_entry_t) ((mfn_list[(((vm_size_t)(__a)) >> 12 )]))) << 12) | (__a & ((1 << 12)-1)); }), ma, ma_to_pa(ma)({ pt_entry_t __a = (pt_entry_t) (ma); ((((unsigned long *) 0xF5800000UL )[__a >> 12]) << 12) | (__a & ((1 << 12 )-1)); })); | |||
1114 | #else /* MACH_PV_PAGETABLES */ | |||
1115 | /* Note: in this case, mfn is actually a pfn. */ | |||
1116 | WRITE_PTE(pte, ma | INTEL_PTE_VALID | INTEL_PTE_WRITE)*(pte) = ma | 0x00000001 | 0x00000002?({ vm_offset_t __a = (vm_offset_t ) (ma | 0x00000001 | 0x00000002); (((pt_entry_t) ((mfn_list[( ((vm_size_t)(__a)) >> 12)]))) << 12) | (__a & ((1 << 12)-1)); }):0;; | |||
1117 | #endif /* MACH_PV_PAGETABLES */ | |||
1118 | } | |||
1119 | #endif /* MACH_XEN */ | |||
1120 | ||||
1121 | /* | |||
1122 | * Deallocate a page-table page. | |||
1123 | * The page-table page must have all mappings removed, | |||
1124 | * and be removed from its page directory. | |||
1125 | */ | |||
1126 | void | |||
1127 | pmap_page_table_page_dealloc(vm_offset_t pa) | |||
1128 | { | |||
1129 | vm_page_t m; | |||
1130 | ||||
1131 | vm_object_lock(pmap_object); | |||
1132 | m = vm_page_lookup(pmap_object, pa); | |||
1133 | vm_page_lock_queues(); | |||
1134 | vm_page_free(m); | |||
1135 | inuse_ptepages_count--; | |||
1136 | vm_page_unlock_queues()((void)(&vm_page_queue_lock)); | |||
1137 | vm_object_unlock(pmap_object)((void)(&(pmap_object)->Lock)); | |||
1138 | } | |||
1139 | ||||
1140 | /* | |||
1141 | * Create and return a physical map. | |||
1142 | * | |||
1143 | * If the size specified for the map | |||
1144 | * is zero, the map is an actual physical | |||
1145 | * map, and may be referenced by the | |||
1146 | * hardware. | |||
1147 | * | |||
1148 | * If the size specified is non-zero, | |||
1149 | * the map will be used in software only, and | |||
1150 | * is bounded by that size. | |||
1151 | */ | |||
1152 | pmap_t pmap_create(vm_size_t size) | |||
1153 | { | |||
1154 | pmap_t p; | |||
1155 | pmap_statistics_t stats; | |||
1156 | ||||
1157 | /* | |||
1158 | * A software use-only map doesn't even need a map. | |||
1159 | */ | |||
1160 | ||||
1161 | if (size != 0) { | |||
1162 | return(PMAP_NULL((pmap_t) 0)); | |||
1163 | } | |||
1164 | ||||
1165 | /* | |||
1166 | * Allocate a pmap struct from the pmap_cache. Then allocate | |||
1167 | * the page descriptor table. | |||
1168 | */ | |||
1169 | ||||
1170 | p = (pmap_t) kmem_cache_alloc(&pmap_cache); | |||
1171 | if (p == PMAP_NULL((pmap_t) 0)) | |||
1172 | panic("pmap_create"); | |||
1173 | ||||
1174 | if (kmem_alloc_wired(kernel_map, | |||
1175 | (vm_offset_t *)&p->dirbase, PDPNUM4 * INTEL_PGBYTES4096) | |||
1176 | != KERN_SUCCESS0) | |||
1177 | panic("pmap_create"); | |||
1178 | ||||
1179 | memcpy(p->dirbase, kernel_page_dir, PDPNUM4 * INTEL_PGBYTES4096); | |||
1180 | #ifdef LINUX_DEV | |||
1181 | #if VM_MIN_KERNEL_ADDRESS0xC0000000UL != 0 | |||
1182 | /* Do not map BIOS in user tasks */ | |||
1183 | p->dirbase[lin2pdenum(LINEAR_MIN_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS)(((((0xc0000000UL)) - 0xC0000000UL) >> 21) & 0x7ff)] = 0; | |||
1184 | #endif | |||
1185 | #endif | |||
1186 | #ifdef MACH_PV_PAGETABLES | |||
1187 | { | |||
1188 | int i; | |||
1189 | for (i = 0; i < PDPNUM4; i++) | |||
1190 | pmap_set_page_readonly((void*) p->dirbase + i * INTEL_PGBYTES4096); | |||
1191 | } | |||
1192 | #endif /* MACH_PV_PAGETABLES */ | |||
1193 | ||||
1194 | #if PAE1 | |||
1195 | if (kmem_alloc_wired(kernel_map, | |||
1196 | (vm_offset_t *)&p->pdpbase, INTEL_PGBYTES4096) | |||
1197 | != KERN_SUCCESS0) | |||
1198 | panic("pmap_create"); | |||
1199 | { | |||
1200 | int i; | |||
1201 | for (i = 0; i < PDPNUM4; i++) | |||
1202 | WRITE_PTE(&p->pdpbase[i], pa_to_pte(kvtophys((vm_offset_t) p->dirbase + i * INTEL_PGBYTES)) | INTEL_PTE_VALID)*(&p->pdpbase[i]) = ((kvtophys((vm_offset_t) p->dirbase + i * 4096)) & 0x00007ffffffff000ULL) | 0x00000001?({ vm_offset_t __a = (vm_offset_t) (((kvtophys((vm_offset_t) p->dirbase + i * 4096)) & 0x00007ffffffff000ULL) | 0x00000001); (((pt_entry_t ) ((mfn_list[(((vm_size_t)(__a)) >> 12)]))) << 12 ) | (__a & ((1 << 12)-1)); }):0;; | |||
1203 | } | |||
1204 | #ifdef MACH_PV_PAGETABLES | |||
1205 | pmap_set_page_readonly(p->pdpbase); | |||
1206 | #endif /* MACH_PV_PAGETABLES */ | |||
1207 | #endif /* PAE */ | |||
1208 | ||||
1209 | p->ref_count = 1; | |||
1210 | ||||
1211 | simple_lock_init(&p->lock); | |||
1212 | p->cpus_using = 0; | |||
1213 | ||||
1214 | /* | |||
1215 | * Initialize statistics. | |||
1216 | */ | |||
1217 | ||||
1218 | stats = &p->stats; | |||
1219 | stats->resident_count = 0; | |||
1220 | stats->wired_count = 0; | |||
1221 | ||||
1222 | return(p); | |||
1223 | } | |||
1224 | ||||
1225 | /* | |||
1226 | * Retire the given physical map from service. | |||
1227 | * Should only be called if the map contains | |||
1228 | * no valid mappings. | |||
1229 | */ | |||
1230 | ||||
1231 | void pmap_destroy(pmap_t p) | |||
1232 | { | |||
1233 | pt_entry_t *pdep; | |||
1234 | vm_offset_t pa; | |||
1235 | int c, s; | |||
1236 | vm_page_t m; | |||
1237 | ||||
1238 | if (p == PMAP_NULL((pmap_t) 0)) | |||
1239 | return; | |||
1240 | ||||
1241 | SPLVM(s)((void)(s)); | |||
1242 | simple_lock(&p->lock); | |||
1243 | c = --p->ref_count; | |||
1244 | simple_unlock(&p->lock)((void)(&p->lock)); | |||
1245 | SPLX(s)((void)(s)); | |||
1246 | ||||
1247 | if (c != 0) { | |||
1248 | return; /* still in use */ | |||
1249 | } | |||
1250 | ||||
1251 | /* | |||
1252 | * Free the memory maps, then the | |||
1253 | * pmap structure. | |||
1254 | */ | |||
1255 | for (pdep = p->dirbase; | |||
1256 | pdep < &p->dirbase[lin2pdenum(LINEAR_MIN_KERNEL_ADDRESS)(((((0xc0000000UL))) >> 21) & 0x7ff)]; | |||
1257 | pdep += ptes_per_vm_page1) { | |||
1258 | if (*pdep & INTEL_PTE_VALID0x00000001) { | |||
1259 | pa = pte_to_pa(*pdep)({ pt_entry_t __a = (pt_entry_t) ((*pdep) & 0x00007ffffffff000ULL ); ((((unsigned long *) 0xF5800000UL)[__a >> 12]) << 12) | (__a & ((1 << 12)-1)); }); | |||
1260 | vm_object_lock(pmap_object); | |||
1261 | m = vm_page_lookup(pmap_object, pa); | |||
1262 | if (m == VM_PAGE_NULL((vm_page_t) 0)) | |||
1263 | panic("pmap_destroy: pte page not in object"); | |||
1264 | vm_page_lock_queues(); | |||
1265 | #ifdef MACH_PV_PAGETABLES | |||
1266 | if (!hyp_mmuext_op_mfn (MMUEXT_UNPIN_TABLE4, pa_to_mfn(pa)((mfn_list[(((vm_size_t)(pa)) >> 12)])))) | |||
1267 | panic("pmap_destroy: couldn't unpin page %p(%p)\n", pa, (vm_offset_t) kv_to_ma(pa)({ vm_offset_t __a = (vm_offset_t) (((vm_offset_t)(pa) - 0xC0000000UL )); (((pt_entry_t) ((mfn_list[(((vm_size_t)(__a)) >> 12 )]))) << 12) | (__a & ((1 << 12)-1)); })); | |||
1268 | pmap_set_page_readwrite((void*) phystokv(pa)((vm_offset_t)(pa) + 0xC0000000UL)); | |||
1269 | #endif /* MACH_PV_PAGETABLES */ | |||
1270 | vm_page_free(m); | |||
1271 | inuse_ptepages_count--; | |||
1272 | vm_page_unlock_queues()((void)(&vm_page_queue_lock)); | |||
1273 | vm_object_unlock(pmap_object)((void)(&(pmap_object)->Lock)); | |||
1274 | } | |||
1275 | } | |||
1276 | #ifdef MACH_PV_PAGETABLES | |||
1277 | { | |||
1278 | int i; | |||
1279 | for (i = 0; i < PDPNUM4; i++) | |||
1280 | pmap_set_page_readwrite((void*) p->dirbase + i * INTEL_PGBYTES4096); | |||
1281 | } | |||
1282 | #endif /* MACH_PV_PAGETABLES */ | |||
1283 | kmem_free(kernel_map, (vm_offset_t)p->dirbase, PDPNUM4 * INTEL_PGBYTES4096); | |||
1284 | #if PAE1 | |||
1285 | #ifdef MACH_PV_PAGETABLES | |||
1286 | pmap_set_page_readwrite(p->pdpbase); | |||
1287 | #endif /* MACH_PV_PAGETABLES */ | |||
1288 | kmem_free(kernel_map, (vm_offset_t)p->pdpbase, INTEL_PGBYTES4096); | |||
1289 | #endif /* PAE */ | |||
1290 | kmem_cache_free(&pmap_cache, (vm_offset_t) p); | |||
1291 | } | |||
1292 | ||||
1293 | /* | |||
1294 | * Add a reference to the specified pmap. | |||
1295 | */ | |||
1296 | ||||
1297 | void pmap_reference(pmap_t p) | |||
1298 | { | |||
1299 | int s; | |||
1300 | if (p != PMAP_NULL((pmap_t) 0)) { | |||
1301 | SPLVM(s)((void)(s)); | |||
1302 | simple_lock(&p->lock); | |||
1303 | p->ref_count++; | |||
1304 | simple_unlock(&p->lock)((void)(&p->lock)); | |||
1305 | SPLX(s)((void)(s)); | |||
1306 | } | |||
1307 | } | |||
1308 | ||||
1309 | /* | |||
1310 | * Remove a range of hardware page-table entries. | |||
1311 | * The entries given are the first (inclusive) | |||
1312 | * and last (exclusive) entries for the VM pages. | |||
1313 | * The virtual address is the va for the first pte. | |||
1314 | * | |||
1315 | * The pmap must be locked. | |||
1316 | * If the pmap is not the kernel pmap, the range must lie | |||
1317 | * entirely within one pte-page. This is NOT checked. | |||
1318 | * Assumes that the pte-page exists. | |||
1319 | */ | |||
1320 | ||||
1321 | /* static */ | |||
1322 | void pmap_remove_range( | |||
1323 | pmap_t pmap, | |||
1324 | vm_offset_t va, | |||
1325 | pt_entry_t *spte, | |||
1326 | pt_entry_t *epte) | |||
1327 | { | |||
1328 | pt_entry_t *cpte; | |||
1329 | int num_removed, num_unwired; | |||
1330 | int pai; | |||
1331 | vm_offset_t pa; | |||
1332 | #ifdef MACH_PV_PAGETABLES | |||
1333 | int n, ii = 0; | |||
1334 | struct mmu_update update[HYP_BATCH_MMU_UPDATES256]; | |||
1335 | #endif /* MACH_PV_PAGETABLES */ | |||
1336 | ||||
1337 | #if DEBUG_PTE_PAGE0 | |||
1338 | if (pmap != kernel_pmap) | |||
1339 | ptep_check(get_pte_page(spte)); | |||
1340 | #endif /* DEBUG_PTE_PAGE */ | |||
1341 | num_removed = 0; | |||
1342 | num_unwired = 0; | |||
1343 | ||||
1344 | for (cpte = spte; cpte < epte; | |||
1345 | cpte += ptes_per_vm_page1, va += PAGE_SIZE(1 << 12)) { | |||
1346 | ||||
1347 | if (*cpte == 0) | |||
1348 | continue; | |||
1349 | pa = pte_to_pa(*cpte)({ pt_entry_t __a = (pt_entry_t) ((*cpte) & 0x00007ffffffff000ULL ); ((((unsigned long *) 0xF5800000UL)[__a >> 12]) << 12) | (__a & ((1 << 12)-1)); }); | |||
1350 | ||||
1351 | num_removed++; | |||
1352 | if (*cpte & INTEL_PTE_WIRED0x00000200) | |||
1353 | num_unwired++; | |||
1354 | ||||
1355 | if (!valid_page(pa)(pmap_initialized && pmap_valid_page(pa))) { | |||
1356 | ||||
1357 | /* | |||
1358 | * Outside range of managed physical memory. | |||
1359 | * Just remove the mappings. | |||
1360 | */ | |||
1361 | int i = ptes_per_vm_page1; | |||
1362 | pt_entry_t *lpte = cpte; | |||
1363 | do { | |||
1364 | #ifdef MACH_PV_PAGETABLES | |||
1365 | update[ii].ptr = kv_to_ma(lpte)({ vm_offset_t __a = (vm_offset_t) (((vm_offset_t)(lpte) - 0xC0000000UL )); (((pt_entry_t) ((mfn_list[(((vm_size_t)(__a)) >> 12 )]))) << 12) | (__a & ((1 << 12)-1)); }); | |||
1366 | update[ii].val = 0; | |||
1367 | ii++; | |||
1368 | if (ii == HYP_BATCH_MMU_UPDATES256) { | |||
1369 | hyp_mmu_update(kvtolin(&update)((vm_offset_t)(&update) - 0xC0000000UL + ((0xc0000000UL)) ), ii, kvtolin(&n)((vm_offset_t)(&n) - 0xC0000000UL + ((0xc0000000UL))), DOMID_SELF(0x7FF0U)); | |||
1370 | if (n != ii) | |||
1371 | panic("couldn't pmap_remove_range\n"); | |||
1372 | ii = 0; | |||
1373 | } | |||
1374 | #else /* MACH_PV_PAGETABLES */ | |||
1375 | *lpte = 0; | |||
1376 | #endif /* MACH_PV_PAGETABLES */ | |||
1377 | lpte++; | |||
1378 | } while (--i > 0); | |||
1379 | continue; | |||
1380 | } | |||
1381 | ||||
1382 | pai = pa_index(pa)((((vm_size_t)(pa - phys_first_addr)) >> 12)); | |||
1383 | LOCK_PVH(pai); | |||
1384 | ||||
1385 | /* | |||
1386 | * Get the modify and reference bits. | |||
1387 | */ | |||
1388 | { | |||
1389 | int i; | |||
1390 | pt_entry_t *lpte; | |||
1391 | ||||
1392 | i = ptes_per_vm_page1; | |||
1393 | lpte = cpte; | |||
1394 | do { | |||
1395 | pmap_phys_attributes[pai] |= | |||
1396 | *lpte & (PHYS_MODIFIED0x00000040|PHYS_REFERENCED0x00000020); | |||
1397 | #ifdef MACH_PV_PAGETABLES | |||
1398 | update[ii].ptr = kv_to_ma(lpte)({ vm_offset_t __a = (vm_offset_t) (((vm_offset_t)(lpte) - 0xC0000000UL )); (((pt_entry_t) ((mfn_list[(((vm_size_t)(__a)) >> 12 )]))) << 12) | (__a & ((1 << 12)-1)); }); | |||
1399 | update[ii].val = 0; | |||
1400 | ii++; | |||
1401 | if (ii == HYP_BATCH_MMU_UPDATES256) { | |||
1402 | hyp_mmu_update(kvtolin(&update)((vm_offset_t)(&update) - 0xC0000000UL + ((0xc0000000UL)) ), ii, kvtolin(&n)((vm_offset_t)(&n) - 0xC0000000UL + ((0xc0000000UL))), DOMID_SELF(0x7FF0U)); | |||
1403 | if (n != ii) | |||
1404 | panic("couldn't pmap_remove_range\n"); | |||
1405 | ii = 0; | |||
1406 | } | |||
1407 | #else /* MACH_PV_PAGETABLES */ | |||
1408 | *lpte = 0; | |||
1409 | #endif /* MACH_PV_PAGETABLES */ | |||
1410 | lpte++; | |||
1411 | } while (--i > 0); | |||
1412 | } | |||
1413 | ||||
1414 | /* | |||
1415 | * Remove the mapping from the pvlist for | |||
1416 | * this physical page. | |||
1417 | */ | |||
1418 | { | |||
1419 | pv_entry_t pv_h, prev, cur; | |||
1420 | ||||
1421 | pv_h = pai_to_pvh(pai)(&pv_head_table[pai]); | |||
1422 | if (pv_h->pmap == PMAP_NULL((pmap_t) 0)) { | |||
1423 | panic("pmap_remove: null pv_list!"); | |||
1424 | } | |||
1425 | if (pv_h->va == va && pv_h->pmap == pmap) { | |||
1426 | /* | |||
1427 | * Header is the pv_entry. Copy the next one | |||
1428 | * to header and free the next one (we cannot | |||
1429 | * free the header) | |||
1430 | */ | |||
1431 | cur = pv_h->next; | |||
1432 | if (cur != PV_ENTRY_NULL((pv_entry_t) 0)) { | |||
1433 | *pv_h = *cur; | |||
1434 | PV_FREE(cur){ ; cur->next = pv_free_list; pv_free_list = cur; ((void)( &pv_free_list_lock)); }; | |||
1435 | } | |||
1436 | else { | |||
1437 | pv_h->pmap = PMAP_NULL((pmap_t) 0); | |||
1438 | } | |||
1439 | } | |||
1440 | else { | |||
1441 | cur = pv_h; | |||
1442 | do { | |||
1443 | prev = cur; | |||
1444 | if ((cur = prev->next) == PV_ENTRY_NULL((pv_entry_t) 0)) { | |||
1445 | panic("pmap-remove: mapping not in pv_list!"); | |||
1446 | } | |||
1447 | } while (cur->va != va || cur->pmap != pmap); | |||
1448 | prev->next = cur->next; | |||
1449 | PV_FREE(cur){ ; cur->next = pv_free_list; pv_free_list = cur; ((void)( &pv_free_list_lock)); }; | |||
1450 | } | |||
1451 | UNLOCK_PVH(pai); | |||
1452 | } | |||
1453 | } | |||
1454 | ||||
1455 | #ifdef MACH_PV_PAGETABLES | |||
1456 | if (ii > HYP_BATCH_MMU_UPDATES256) | |||
1457 | panic("overflowed array in pmap_remove_range"); | |||
1458 | hyp_mmu_update(kvtolin(&update)((vm_offset_t)(&update) - 0xC0000000UL + ((0xc0000000UL)) ), ii, kvtolin(&n)((vm_offset_t)(&n) - 0xC0000000UL + ((0xc0000000UL))), DOMID_SELF(0x7FF0U)); | |||
1459 | if (n != ii) | |||
1460 | panic("couldn't pmap_remove_range\n"); | |||
1461 | #endif /* MACH_PV_PAGETABLES */ | |||
1462 | ||||
1463 | /* | |||
1464 | * Update the counts | |||
1465 | */ | |||
1466 | pmap->stats.resident_count -= num_removed; | |||
1467 | pmap->stats.wired_count -= num_unwired; | |||
1468 | } | |||
1469 | ||||
1470 | /* | |||
1471 | * Remove the given range of addresses | |||
1472 | * from the specified map. | |||
1473 | * | |||
1474 | * It is assumed that the start and end are properly | |||
1475 | * rounded to the hardware page size. | |||
1476 | */ | |||
1477 | ||||
1478 | void pmap_remove( | |||
1479 | pmap_t map, | |||
1480 | vm_offset_t s, | |||
1481 | vm_offset_t e) | |||
1482 | { | |||
1483 | int spl; | |||
1484 | pt_entry_t *pde; | |||
1485 | pt_entry_t *spte, *epte; | |||
1486 | vm_offset_t l; | |||
1487 | vm_offset_t _s = s; | |||
1488 | ||||
1489 | if (map == PMAP_NULL((pmap_t) 0)) | |||
1490 | return; | |||
1491 | ||||
1492 | PMAP_READ_LOCK(map, spl)((void)(spl)); | |||
1493 | ||||
1494 | pde = pmap_pde(map, s); | |||
1495 | while (s < e) { | |||
1496 | l = (s + PDE_MAPPED_SIZE(((vm_offset_t)(1) << 21))) & ~(PDE_MAPPED_SIZE(((vm_offset_t)(1) << 21))-1); | |||
1497 | if (l > e) | |||
1498 | l = e; | |||
1499 | if (*pde & INTEL_PTE_VALID0x00000001) { | |||
1500 | spte = (pt_entry_t *)ptetokv(*pde)(((vm_offset_t)(({ pt_entry_t __a = (pt_entry_t) ((*pde) & 0x00007ffffffff000ULL); ((((unsigned long *) 0xF5800000UL)[__a >> 12]) << 12) | (__a & ((1 << 12)-1)) ; })) + 0xC0000000UL)); | |||
1501 | spte = &spte[ptenum(s)(((s) >> 12) & 0x1ff)]; | |||
1502 | epte = &spte[intel_btop(l-s)(((unsigned long)(l-s)) >> 12)]; | |||
1503 | pmap_remove_range(map, s, spte, epte); | |||
1504 | } | |||
1505 | s = l; | |||
1506 | pde++; | |||
1507 | } | |||
1508 | PMAP_UPDATE_TLBS(map, _s, e){ if ((map)->cpus_using) { hyp_mmuext_op_void(6); } }; | |||
1509 | ||||
1510 | PMAP_READ_UNLOCK(map, spl)((void)(spl)); | |||
1511 | } | |||
1512 | ||||
1513 | /* | |||
1514 | * Routine: pmap_page_protect | |||
1515 | * | |||
1516 | * Function: | |||
1517 | * Lower the permission for all mappings to a given | |||
1518 | * page. | |||
1519 | */ | |||
1520 | void pmap_page_protect( | |||
1521 | vm_offset_t phys, | |||
1522 | vm_prot_t prot) | |||
1523 | { | |||
1524 | pv_entry_t pv_h, prev; | |||
1525 | pv_entry_t pv_e; | |||
1526 | pt_entry_t *pte; | |||
1527 | int pai; | |||
1528 | pmap_t pmap; | |||
1529 | int spl; | |||
1530 | boolean_t remove; | |||
1531 | ||||
1532 | assert(phys != vm_page_fictitious_addr)({ if (!(phys != vm_page_fictitious_addr)) Assert("phys != vm_page_fictitious_addr" , "../i386/intel/pmap.c", 1532); }); | |||
1533 | if (!valid_page(phys)(pmap_initialized && pmap_valid_page(phys))) { | |||
1534 | /* | |||
1535 | * Not a managed page. | |||
1536 | */ | |||
1537 | return; | |||
1538 | } | |||
1539 | ||||
1540 | /* | |||
1541 | * Determine the new protection. | |||
1542 | */ | |||
1543 | switch (prot) { | |||
1544 | case VM_PROT_READ((vm_prot_t) 0x01): | |||
1545 | case VM_PROT_READ((vm_prot_t) 0x01)|VM_PROT_EXECUTE((vm_prot_t) 0x04): | |||
1546 | remove = FALSE((boolean_t) 0); | |||
1547 | break; | |||
1548 | case VM_PROT_ALL(((vm_prot_t) 0x01)|((vm_prot_t) 0x02)|((vm_prot_t) 0x04)): | |||
1549 | return; /* nothing to do */ | |||
1550 | default: | |||
1551 | remove = TRUE((boolean_t) 1); | |||
1552 | break; | |||
1553 | } | |||
1554 | ||||
1555 | /* | |||
1556 | * Lock the pmap system first, since we will be changing | |||
1557 | * several pmaps. | |||
1558 | */ | |||
1559 | ||||
1560 | PMAP_WRITE_LOCK(spl)((void)(spl)); | |||
1561 | ||||
1562 | pai = pa_index(phys)((((vm_size_t)(phys - phys_first_addr)) >> 12)); | |||
1563 | pv_h = pai_to_pvh(pai)(&pv_head_table[pai]); | |||
1564 | ||||
1565 | /* | |||
1566 | * Walk down PV list, changing or removing all mappings. | |||
1567 | * We do not have to lock the pv_list because we have | |||
1568 | * the entire pmap system locked. | |||
1569 | */ | |||
1570 | if (pv_h->pmap != PMAP_NULL((pmap_t) 0)) { | |||
1571 | ||||
1572 | prev = pv_e = pv_h; | |||
1573 | do { | |||
1574 | vm_offset_t va; | |||
1575 | ||||
1576 | pmap = pv_e->pmap; | |||
1577 | /* | |||
1578 | * Lock the pmap to block pmap_extract and similar routines. | |||
1579 | */ | |||
1580 | simple_lock(&pmap->lock); | |||
1581 | ||||
1582 | va = pv_e->va; | |||
1583 | pte = pmap_pte(pmap, va); | |||
1584 | ||||
1585 | /* | |||
1586 | * Consistency checks. | |||
1587 | */ | |||
1588 | /* assert(*pte & INTEL_PTE_VALID); XXX */ | |||
1589 | /* assert(pte_to_phys(*pte) == phys); */ | |||
1590 | ||||
1591 | /* | |||
1592 | * Remove the mapping if new protection is NONE | |||
1593 | * or if write-protecting a kernel mapping. | |||
1594 | */ | |||
1595 | if (remove || pmap == kernel_pmap) { | |||
1596 | /* | |||
1597 | * Remove the mapping, collecting any modify bits. | |||
1598 | */ | |||
1599 | if (*pte & INTEL_PTE_WIRED0x00000200) | |||
1600 | panic("pmap_remove_all removing a wired page"); | |||
1601 | ||||
1602 | { | |||
1603 | int i = ptes_per_vm_page1; | |||
1604 | ||||
1605 | do { | |||
1606 | pmap_phys_attributes[pai] |= | |||
1607 | *pte & (PHYS_MODIFIED0x00000040|PHYS_REFERENCED0x00000020); | |||
1608 | #ifdef MACH_PV_PAGETABLES | |||
1609 | if (!hyp_mmu_update_pte(kv_to_ma(pte++)({ vm_offset_t __a = (vm_offset_t) (((vm_offset_t)(pte++) - 0xC0000000UL )); (((pt_entry_t) ((mfn_list[(((vm_size_t)(__a)) >> 12 )]))) << 12) | (__a & ((1 << 12)-1)); }), 0)) | |||
1610 | panic("%s:%d could not clear pte %p\n",__FILE__"../i386/intel/pmap.c",__LINE__1610,pte-1); | |||
1611 | #else /* MACH_PV_PAGETABLES */ | |||
1612 | *pte++ = 0; | |||
1613 | #endif /* MACH_PV_PAGETABLES */ | |||
1614 | } while (--i > 0); | |||
1615 | } | |||
1616 | ||||
1617 | pmap->stats.resident_count--; | |||
1618 | ||||
1619 | /* | |||
1620 | * Remove the pv_entry. | |||
1621 | */ | |||
1622 | if (pv_e == pv_h) { | |||
1623 | /* | |||
1624 | * Fix up head later. | |||
1625 | */ | |||
1626 | pv_h->pmap = PMAP_NULL((pmap_t) 0); | |||
1627 | } | |||
1628 | else { | |||
1629 | /* | |||
1630 | * Delete this entry. | |||
1631 | */ | |||
1632 | prev->next = pv_e->next; | |||
1633 | PV_FREE(pv_e){ ; pv_e->next = pv_free_list; pv_free_list = pv_e; ((void )(&pv_free_list_lock)); }; | |||
1634 | } | |||
1635 | } | |||
1636 | else { | |||
1637 | /* | |||
1638 | * Write-protect. | |||
1639 | */ | |||
1640 | int i = ptes_per_vm_page1; | |||
1641 | ||||
1642 | do { | |||
1643 | #ifdef MACH_PV_PAGETABLES | |||
1644 | if (!hyp_mmu_update_pte(kv_to_ma(pte)({ vm_offset_t __a = (vm_offset_t) (((vm_offset_t)(pte) - 0xC0000000UL )); (((pt_entry_t) ((mfn_list[(((vm_size_t)(__a)) >> 12 )]))) << 12) | (__a & ((1 << 12)-1)); }), *pte & ~INTEL_PTE_WRITE0x00000002)) | |||
1645 | panic("%s:%d could not disable write on pte %p\n",__FILE__"../i386/intel/pmap.c",__LINE__1645,pte); | |||
1646 | #else /* MACH_PV_PAGETABLES */ | |||
1647 | *pte &= ~INTEL_PTE_WRITE0x00000002; | |||
1648 | #endif /* MACH_PV_PAGETABLES */ | |||
1649 | pte++; | |||
1650 | } while (--i > 0); | |||
1651 | ||||
1652 | /* | |||
1653 | * Advance prev. | |||
1654 | */ | |||
1655 | prev = pv_e; | |||
1656 | } | |||
1657 | PMAP_UPDATE_TLBS(pmap, va, va + PAGE_SIZE){ if ((pmap)->cpus_using) { hyp_mmuext_op_void(6); } }; | |||
1658 | ||||
1659 | simple_unlock(&pmap->lock)((void)(&pmap->lock)); | |||
1660 | ||||
1661 | } while ((pv_e = prev->next) != PV_ENTRY_NULL((pv_entry_t) 0)); | |||
1662 | ||||
1663 | /* | |||
1664 | * If pv_head mapping was removed, fix it up. | |||
1665 | */ | |||
1666 | if (pv_h->pmap == PMAP_NULL((pmap_t) 0)) { | |||
1667 | pv_e = pv_h->next; | |||
1668 | if (pv_e != PV_ENTRY_NULL((pv_entry_t) 0)) { | |||
1669 | *pv_h = *pv_e; | |||
1670 | PV_FREE(pv_e){ ; pv_e->next = pv_free_list; pv_free_list = pv_e; ((void )(&pv_free_list_lock)); }; | |||
1671 | } | |||
1672 | } | |||
1673 | } | |||
1674 | ||||
1675 | PMAP_WRITE_UNLOCK(spl)((void)(spl)); | |||
1676 | } | |||
1677 | ||||
1678 | /* | |||
1679 | * Set the physical protection on the | |||
1680 | * specified range of this map as requested. | |||
1681 | * Will not increase permissions. | |||
1682 | */ | |||
1683 | void pmap_protect( | |||
1684 | pmap_t map, | |||
1685 | vm_offset_t s, | |||
1686 | vm_offset_t e, | |||
1687 | vm_prot_t prot) | |||
1688 | { | |||
1689 | pt_entry_t *pde; | |||
1690 | pt_entry_t *spte, *epte; | |||
1691 | vm_offset_t l; | |||
1692 | int spl; | |||
1693 | vm_offset_t _s = s; | |||
1694 | ||||
1695 | if (map == PMAP_NULL((pmap_t) 0)) | |||
1696 | return; | |||
1697 | ||||
1698 | /* | |||
1699 | * Determine the new protection. | |||
1700 | */ | |||
1701 | switch (prot) { | |||
1702 | case VM_PROT_READ((vm_prot_t) 0x01): | |||
1703 | case VM_PROT_READ((vm_prot_t) 0x01)|VM_PROT_EXECUTE((vm_prot_t) 0x04): | |||
1704 | break; | |||
1705 | case VM_PROT_READ((vm_prot_t) 0x01)|VM_PROT_WRITE((vm_prot_t) 0x02): | |||
1706 | case VM_PROT_ALL(((vm_prot_t) 0x01)|((vm_prot_t) 0x02)|((vm_prot_t) 0x04)): | |||
1707 | return; /* nothing to do */ | |||
1708 | default: | |||
1709 | pmap_remove(map, s, e); | |||
1710 | return; | |||
1711 | } | |||
1712 | ||||
1713 | /* | |||
1714 | * If write-protecting in the kernel pmap, | |||
1715 | * remove the mappings; the i386 ignores | |||
1716 | * the write-permission bit in kernel mode. | |||
1717 | * | |||
1718 | * XXX should be #if'd for i386 | |||
1719 | */ | |||
1720 | if (map == kernel_pmap) { | |||
1721 | pmap_remove(map, s, e); | |||
1722 | return; | |||
1723 | } | |||
1724 | ||||
1725 | SPLVM(spl)((void)(spl)); | |||
1726 | simple_lock(&map->lock); | |||
1727 | ||||
1728 | pde = pmap_pde(map, s); | |||
1729 | while (s < e) { | |||
1730 | l = (s + PDE_MAPPED_SIZE(((vm_offset_t)(1) << 21))) & ~(PDE_MAPPED_SIZE(((vm_offset_t)(1) << 21))-1); | |||
1731 | if (l > e) | |||
1732 | l = e; | |||
1733 | if (*pde & INTEL_PTE_VALID0x00000001) { | |||
1734 | spte = (pt_entry_t *)ptetokv(*pde)(((vm_offset_t)(({ pt_entry_t __a = (pt_entry_t) ((*pde) & 0x00007ffffffff000ULL); ((((unsigned long *) 0xF5800000UL)[__a >> 12]) << 12) | (__a & ((1 << 12)-1)) ; })) + 0xC0000000UL)); | |||
1735 | spte = &spte[ptenum(s)(((s) >> 12) & 0x1ff)]; | |||
1736 | epte = &spte[intel_btop(l-s)(((unsigned long)(l-s)) >> 12)]; | |||
1737 | ||||
1738 | #ifdef MACH_PV_PAGETABLES | |||
1739 | int n, i = 0; | |||
1740 | struct mmu_update update[HYP_BATCH_MMU_UPDATES256]; | |||
1741 | #endif /* MACH_PV_PAGETABLES */ | |||
1742 | ||||
1743 | while (spte < epte) { | |||
1744 | if (*spte & INTEL_PTE_VALID0x00000001) { | |||
1745 | #ifdef MACH_PV_PAGETABLES | |||
1746 | update[i].ptr = kv_to_ma(spte)({ vm_offset_t __a = (vm_offset_t) (((vm_offset_t)(spte) - 0xC0000000UL )); (((pt_entry_t) ((mfn_list[(((vm_size_t)(__a)) >> 12 )]))) << 12) | (__a & ((1 << 12)-1)); }); | |||
1747 | update[i].val = *spte & ~INTEL_PTE_WRITE0x00000002; | |||
1748 | i++; | |||
1749 | if (i == HYP_BATCH_MMU_UPDATES256) { | |||
1750 | hyp_mmu_update(kvtolin(&update)((vm_offset_t)(&update) - 0xC0000000UL + ((0xc0000000UL)) ), i, kvtolin(&n)((vm_offset_t)(&n) - 0xC0000000UL + ((0xc0000000UL))), DOMID_SELF(0x7FF0U)); | |||
1751 | if (n != i) | |||
1752 | panic("couldn't pmap_protect\n"); | |||
1753 | i = 0; | |||
1754 | } | |||
1755 | #else /* MACH_PV_PAGETABLES */ | |||
1756 | *spte &= ~INTEL_PTE_WRITE0x00000002; | |||
1757 | #endif /* MACH_PV_PAGETABLES */ | |||
1758 | } | |||
1759 | spte++; | |||
1760 | } | |||
1761 | #ifdef MACH_PV_PAGETABLES | |||
1762 | if (i > HYP_BATCH_MMU_UPDATES256) | |||
1763 | panic("overflowed array in pmap_protect"); | |||
1764 | hyp_mmu_update(kvtolin(&update)((vm_offset_t)(&update) - 0xC0000000UL + ((0xc0000000UL)) ), i, kvtolin(&n)((vm_offset_t)(&n) - 0xC0000000UL + ((0xc0000000UL))), DOMID_SELF(0x7FF0U)); | |||
1765 | if (n != i) | |||
1766 | panic("couldn't pmap_protect\n"); | |||
1767 | #endif /* MACH_PV_PAGETABLES */ | |||
1768 | } | |||
1769 | s = l; | |||
1770 | pde++; | |||
1771 | } | |||
1772 | PMAP_UPDATE_TLBS(map, _s, e){ if ((map)->cpus_using) { hyp_mmuext_op_void(6); } }; | |||
1773 | ||||
1774 | simple_unlock(&map->lock)((void)(&map->lock)); | |||
1775 | SPLX(spl)((void)(spl)); | |||
1776 | } | |||
1777 | ||||
1778 | /* | |||
1779 | * Insert the given physical page (p) at | |||
1780 | * the specified virtual address (v) in the | |||
1781 | * target physical map with the protection requested. | |||
1782 | * | |||
1783 | * If specified, the page will be wired down, meaning | |||
1784 | * that the related pte can not be reclaimed. | |||
1785 | * | |||
1786 | * NB: This is the only routine which MAY NOT lazy-evaluate | |||
1787 | * or lose information. That is, this routine must actually | |||
1788 | * insert this page into the given map NOW. | |||
1789 | */ | |||
1790 | void pmap_enter( | |||
1791 | pmap_t pmap, | |||
1792 | vm_offset_t v, | |||
1793 | vm_offset_t pa, | |||
1794 | vm_prot_t prot, | |||
1795 | boolean_t wired) | |||
1796 | { | |||
1797 | pt_entry_t *pte; | |||
1798 | pv_entry_t pv_h; | |||
1799 | int i, pai; | |||
1800 | pv_entry_t pv_e; | |||
1801 | pt_entry_t template; | |||
1802 | int spl; | |||
1803 | vm_offset_t old_pa; | |||
1804 | ||||
1805 | assert(pa != vm_page_fictitious_addr)({ if (!(pa != vm_page_fictitious_addr)) Assert("pa != vm_page_fictitious_addr" , "../i386/intel/pmap.c", 1805); }); | |||
1806 | if (pmap_debug) printf("pmap(%lx, %lx)\n", v, pa); | |||
1807 | if (pmap == PMAP_NULL((pmap_t) 0)) | |||
1808 | return; | |||
1809 | ||||
1810 | #if !MACH_KDB1 | |||
1811 | if (pmap == kernel_pmap && (v < kernel_virtual_start || v >= kernel_virtual_end)) | |||
1812 | panic("pmap_enter(%p, %p) falls in physical memory area!\n", v, pa); | |||
1813 | #endif | |||
1814 | if (pmap == kernel_pmap && (prot & VM_PROT_WRITE((vm_prot_t) 0x02)) == 0 | |||
1815 | && !wired /* hack for io_wire */ ) { | |||
1816 | /* | |||
1817 | * Because the 386 ignores write protection in kernel mode, | |||
1818 | * we cannot enter a read-only kernel mapping, and must | |||
1819 | * remove an existing mapping if changing it. | |||
1820 | * | |||
1821 | * XXX should be #if'd for i386 | |||
1822 | */ | |||
1823 | PMAP_READ_LOCK(pmap, spl)((void)(spl)); | |||
1824 | ||||
1825 | pte = pmap_pte(pmap, v); | |||
1826 | if (pte != PT_ENTRY_NULL((pt_entry_t *) 0) && *pte != 0) { | |||
1827 | /* | |||
1828 | * Invalidate the translation buffer, | |||
1829 | * then remove the mapping. | |||
1830 | */ | |||
1831 | pmap_remove_range(pmap, v, pte, | |||
1832 | pte + ptes_per_vm_page1); | |||
1833 | PMAP_UPDATE_TLBS(pmap, v, v + PAGE_SIZE){ if ((pmap)->cpus_using) { hyp_mmuext_op_void(6); } }; | |||
1834 | } | |||
1835 | PMAP_READ_UNLOCK(pmap, spl)((void)(spl)); | |||
1836 | return; | |||
1837 | } | |||
1838 | ||||
1839 | /* | |||
1840 | * Must allocate a new pvlist entry while we're unlocked; | |||
1841 | * Allocating may cause pageout (which will lock the pmap system). | |||
1842 | * If we determine we need a pvlist entry, we will unlock | |||
1843 | * and allocate one. Then we will retry, throughing away | |||
1844 | * the allocated entry later (if we no longer need it). | |||
1845 | */ | |||
1846 | pv_e = PV_ENTRY_NULL((pv_entry_t) 0); | |||
1847 | Retry: | |||
1848 | PMAP_READ_LOCK(pmap, spl)((void)(spl)); | |||
1849 | ||||
1850 | /* | |||
1851 | * Expand pmap to include this pte. Assume that | |||
1852 | * pmap is always expanded to include enough hardware | |||
1853 | * pages to map one VM page. | |||
1854 | */ | |||
1855 | ||||
1856 | while ((pte = pmap_pte(pmap, v)) == PT_ENTRY_NULL((pt_entry_t *) 0)) { | |||
1857 | /* | |||
1858 | * Need to allocate a new page-table page. | |||
1859 | */ | |||
1860 | vm_offset_t ptp; | |||
1861 | pt_entry_t *pdp; | |||
1862 | int i; | |||
1863 | ||||
1864 | if (pmap == kernel_pmap) { | |||
1865 | /* | |||
1866 | * Would have to enter the new page-table page in | |||
1867 | * EVERY pmap. | |||
1868 | */ | |||
1869 | panic("pmap_expand kernel pmap to %#x", v); | |||
1870 | } | |||
1871 | ||||
1872 | /* | |||
1873 | * Unlock the pmap and allocate a new page-table page. | |||
1874 | */ | |||
1875 | PMAP_READ_UNLOCK(pmap, spl)((void)(spl)); | |||
1876 | ||||
1877 | ptp = phystokv(pmap_page_table_page_alloc())((vm_offset_t)(pmap_page_table_page_alloc()) + 0xC0000000UL); | |||
1878 | ||||
1879 | /* | |||
1880 | * Re-lock the pmap and check that another thread has | |||
1881 | * not already allocated the page-table page. If it | |||
1882 | * has, discard the new page-table page (and try | |||
1883 | * again to make sure). | |||
1884 | */ | |||
1885 | PMAP_READ_LOCK(pmap, spl)((void)(spl)); | |||
1886 | ||||
1887 | if (pmap_pte(pmap, v) != PT_ENTRY_NULL((pt_entry_t *) 0)) { | |||
1888 | /* | |||
1889 | * Oops... | |||
1890 | */ | |||
1891 | PMAP_READ_UNLOCK(pmap, spl)((void)(spl)); | |||
1892 | pmap_page_table_page_dealloc(kvtophys(ptp)); | |||
1893 | PMAP_READ_LOCK(pmap, spl)((void)(spl)); | |||
1894 | continue; | |||
1895 | } | |||
1896 | ||||
1897 | /* | |||
1898 | * Enter the new page table page in the page directory. | |||
1899 | */ | |||
1900 | i = ptes_per_vm_page1; | |||
1901 | /*XX pdp = &pmap->dirbase[pdenum(v) & ~(i-1)];*/ | |||
1902 | pdp = pmap_pde(pmap, v); | |||
1903 | do { | |||
1904 | #ifdef MACH_PV_PAGETABLES | |||
1905 | pmap_set_page_readonly((void *) ptp); | |||
1906 | if (!hyp_mmuext_op_mfn (MMUEXT_PIN_L1_TABLE0, kv_to_mfn(ptp)((mfn_list[(((vm_size_t)(((vm_offset_t)(ptp) - 0xC0000000UL)) ) >> 12)])))) | |||
1907 | panic("couldn't pin page %p(%p)\n",ptp,(vm_offset_t) kv_to_ma(ptp)({ vm_offset_t __a = (vm_offset_t) (((vm_offset_t)(ptp) - 0xC0000000UL )); (((pt_entry_t) ((mfn_list[(((vm_size_t)(__a)) >> 12 )]))) << 12) | (__a & ((1 << 12)-1)); })); | |||
1908 | if (!hyp_mmu_update_pte(pa_to_ma(kvtophys((vm_offset_t)pdp))({ vm_offset_t __a = (vm_offset_t) (kvtophys((vm_offset_t)pdp )); (((pt_entry_t) ((mfn_list[(((vm_size_t)(__a)) >> 12 )]))) << 12) | (__a & ((1 << 12)-1)); }), | |||
1909 | pa_to_pte(pa_to_ma(kvtophys(ptp)))((({ vm_offset_t __a = (vm_offset_t) (kvtophys(ptp)); (((pt_entry_t ) ((mfn_list[(((vm_size_t)(__a)) >> 12)]))) << 12 ) | (__a & ((1 << 12)-1)); })) & 0x00007ffffffff000ULL ) | INTEL_PTE_VALID0x00000001 | |||
1910 | | INTEL_PTE_USER0x00000004 | |||
1911 | | INTEL_PTE_WRITE0x00000002)) | |||
1912 | panic("%s:%d could not set pde %p(%p,%p) to %p(%p,%p) %p\n",__FILE__"../i386/intel/pmap.c",__LINE__1912, pdp, kvtophys((vm_offset_t)pdp), (vm_offset_t) pa_to_ma(kvtophys((vm_offset_t)pdp))({ vm_offset_t __a = (vm_offset_t) (kvtophys((vm_offset_t)pdp )); (((pt_entry_t) ((mfn_list[(((vm_size_t)(__a)) >> 12 )]))) << 12) | (__a & ((1 << 12)-1)); }), ptp, kvtophys(ptp), (vm_offset_t) pa_to_ma(kvtophys(ptp))({ vm_offset_t __a = (vm_offset_t) (kvtophys(ptp)); (((pt_entry_t ) ((mfn_list[(((vm_size_t)(__a)) >> 12)]))) << 12 ) | (__a & ((1 << 12)-1)); }), (vm_offset_t) pa_to_pte(kv_to_ma(ptp))((({ vm_offset_t __a = (vm_offset_t) (((vm_offset_t)(ptp) - 0xC0000000UL )); (((pt_entry_t) ((mfn_list[(((vm_size_t)(__a)) >> 12 )]))) << 12) | (__a & ((1 << 12)-1)); })) & 0x00007ffffffff000ULL)); | |||
1913 | #else /* MACH_PV_PAGETABLES */ | |||
1914 | *pdp = pa_to_pte(kvtophys(ptp))((kvtophys(ptp)) & 0x00007ffffffff000ULL) | INTEL_PTE_VALID0x00000001 | |||
1915 | | INTEL_PTE_USER0x00000004 | |||
1916 | | INTEL_PTE_WRITE0x00000002; | |||
1917 | #endif /* MACH_PV_PAGETABLES */ | |||
1918 | pdp++; | |||
1919 | ptp += INTEL_PGBYTES4096; | |||
1920 | } while (--i > 0); | |||
1921 | ||||
1922 | /* | |||
1923 | * Now, get the address of the page-table entry. | |||
1924 | */ | |||
1925 | continue; | |||
1926 | } | |||
1927 | ||||
1928 | /* | |||
1929 | * Special case if the physical page is already mapped | |||
1930 | * at this address. | |||
1931 | */ | |||
1932 | old_pa = pte_to_pa(*pte)({ pt_entry_t __a = (pt_entry_t) ((*pte) & 0x00007ffffffff000ULL ); ((((unsigned long *) 0xF5800000UL)[__a >> 12]) << 12) | (__a & ((1 << 12)-1)); }); | |||
1933 | if (*pte && old_pa == pa) { | |||
1934 | /* | |||
1935 | * May be changing its wired attribute or protection | |||
1936 | */ | |||
1937 | ||||
1938 | if (wired && !(*pte & INTEL_PTE_WIRED0x00000200)) | |||
1939 | pmap->stats.wired_count++; | |||
1940 | else if (!wired && (*pte & INTEL_PTE_WIRED0x00000200)) | |||
1941 | pmap->stats.wired_count--; | |||
1942 | ||||
1943 | template = pa_to_pte(pa)((pa) & 0x00007ffffffff000ULL) | INTEL_PTE_VALID0x00000001; | |||
1944 | if (pmap != kernel_pmap) | |||
1945 | template |= INTEL_PTE_USER0x00000004; | |||
1946 | if (prot & VM_PROT_WRITE((vm_prot_t) 0x02)) | |||
1947 | template |= INTEL_PTE_WRITE0x00000002; | |||
1948 | if (machine_slot[cpu_number()(0)].cpu_type >= CPU_TYPE_I486((cpu_type_t) 17) | |||
1949 | && pa >= phys_last_addr) | |||
1950 | template |= INTEL_PTE_NCACHE0x00000010|INTEL_PTE_WTHRU0x00000008; | |||
1951 | if (wired) | |||
1952 | template |= INTEL_PTE_WIRED0x00000200; | |||
1953 | i = ptes_per_vm_page1; | |||
1954 | do { | |||
1955 | if (*pte & INTEL_PTE_MOD0x00000040) | |||
1956 | template |= INTEL_PTE_MOD0x00000040; | |||
1957 | #ifdef MACH_PV_PAGETABLES | |||
1958 | if (!hyp_mmu_update_pte(kv_to_ma(pte)({ vm_offset_t __a = (vm_offset_t) (((vm_offset_t)(pte) - 0xC0000000UL )); (((pt_entry_t) ((mfn_list[(((vm_size_t)(__a)) >> 12 )]))) << 12) | (__a & ((1 << 12)-1)); }), pa_to_ma(template)({ vm_offset_t __a = (vm_offset_t) (template); (((pt_entry_t) ((mfn_list[(((vm_size_t)(__a)) >> 12)]))) << 12) | (__a & ((1 << 12)-1)); }))) | |||
1959 | panic("%s:%d could not set pte %p to %p\n",__FILE__"../i386/intel/pmap.c",__LINE__1959,pte,template); | |||
1960 | #else /* MACH_PV_PAGETABLES */ | |||
1961 | WRITE_PTE(pte, template)*(pte) = template?({ vm_offset_t __a = (vm_offset_t) (template ); (((pt_entry_t) ((mfn_list[(((vm_size_t)(__a)) >> 12) ]))) << 12) | (__a & ((1 << 12)-1)); }):0; | |||
1962 | #endif /* MACH_PV_PAGETABLES */ | |||
1963 | pte++; | |||
1964 | pte_increment_pa(template)((template) += 0xfff +1); | |||
1965 | } while (--i > 0); | |||
1966 | PMAP_UPDATE_TLBS(pmap, v, v + PAGE_SIZE){ if ((pmap)->cpus_using) { hyp_mmuext_op_void(6); } }; | |||
1967 | } | |||
1968 | else { | |||
1969 | ||||
1970 | /* | |||
1971 | * Remove old mapping from the PV list if necessary. | |||
1972 | */ | |||
1973 | if (*pte) { | |||
1974 | /* | |||
1975 | * Don't free the pte page if removing last | |||
1976 | * mapping - we will immediately replace it. | |||
1977 | */ | |||
1978 | pmap_remove_range(pmap, v, pte, | |||
1979 | pte + ptes_per_vm_page1); | |||
1980 | PMAP_UPDATE_TLBS(pmap, v, v + PAGE_SIZE){ if ((pmap)->cpus_using) { hyp_mmuext_op_void(6); } }; | |||
1981 | } | |||
1982 | ||||
1983 | if (valid_page(pa)(pmap_initialized && pmap_valid_page(pa))) { | |||
1984 | ||||
1985 | /* | |||
1986 | * Enter the mapping in the PV list for this | |||
1987 | * physical page. | |||
1988 | */ | |||
1989 | ||||
1990 | pai = pa_index(pa)((((vm_size_t)(pa - phys_first_addr)) >> 12)); | |||
1991 | LOCK_PVH(pai); | |||
1992 | pv_h = pai_to_pvh(pai)(&pv_head_table[pai]); | |||
1993 | ||||
1994 | if (pv_h->pmap == PMAP_NULL((pmap_t) 0)) { | |||
1995 | /* | |||
1996 | * No mappings yet | |||
1997 | */ | |||
1998 | pv_h->va = v; | |||
1999 | pv_h->pmap = pmap; | |||
2000 | pv_h->next = PV_ENTRY_NULL((pv_entry_t) 0); | |||
2001 | } | |||
2002 | else { | |||
2003 | #if DEBUG | |||
2004 | { | |||
2005 | /* check that this mapping is not already there */ | |||
2006 | pv_entry_t e = pv_h; | |||
2007 | while (e != PV_ENTRY_NULL((pv_entry_t) 0)) { | |||
2008 | if (e->pmap == pmap && e->va == v) | |||
2009 | panic("pmap_enter: already in pv_list"); | |||
2010 | e = e->next; | |||
2011 | } | |||
2012 | } | |||
2013 | #endif /* DEBUG */ | |||
2014 | ||||
2015 | /* | |||
2016 | * Add new pv_entry after header. | |||
2017 | */ | |||
2018 | if (pv_e == PV_ENTRY_NULL((pv_entry_t) 0)) { | |||
2019 | PV_ALLOC(pv_e){ ; if ((pv_e = pv_free_list) != 0) { pv_free_list = pv_e-> next; } ((void)(&pv_free_list_lock)); }; | |||
2020 | if (pv_e == PV_ENTRY_NULL((pv_entry_t) 0)) { | |||
2021 | UNLOCK_PVH(pai); | |||
2022 | PMAP_READ_UNLOCK(pmap, spl)((void)(spl)); | |||
2023 | ||||
2024 | /* | |||
2025 | * Refill from cache. | |||
2026 | */ | |||
2027 | pv_e = (pv_entry_t) kmem_cache_alloc(&pv_list_cache); | |||
2028 | goto Retry; | |||
2029 | } | |||
2030 | } | |||
2031 | pv_e->va = v; | |||
2032 | pv_e->pmap = pmap; | |||
2033 | pv_e->next = pv_h->next; | |||
2034 | pv_h->next = pv_e; | |||
2035 | /* | |||
2036 | * Remember that we used the pvlist entry. | |||
2037 | */ | |||
2038 | pv_e = PV_ENTRY_NULL((pv_entry_t) 0); | |||
2039 | } | |||
2040 | UNLOCK_PVH(pai); | |||
2041 | } | |||
2042 | ||||
2043 | /* | |||
2044 | * And count the mapping. | |||
2045 | */ | |||
2046 | ||||
2047 | pmap->stats.resident_count++; | |||
2048 | if (wired) | |||
2049 | pmap->stats.wired_count++; | |||
2050 | ||||
2051 | /* | |||
2052 | * Build a template to speed up entering - | |||
2053 | * only the pfn changes. | |||
2054 | */ | |||
2055 | template = pa_to_pte(pa)((pa) & 0x00007ffffffff000ULL) | INTEL_PTE_VALID0x00000001; | |||
2056 | if (pmap != kernel_pmap) | |||
2057 | template |= INTEL_PTE_USER0x00000004; | |||
2058 | if (prot & VM_PROT_WRITE((vm_prot_t) 0x02)) | |||
2059 | template |= INTEL_PTE_WRITE0x00000002; | |||
2060 | if (machine_slot[cpu_number()(0)].cpu_type >= CPU_TYPE_I486((cpu_type_t) 17) | |||
2061 | && pa >= phys_last_addr) | |||
2062 | template |= INTEL_PTE_NCACHE0x00000010|INTEL_PTE_WTHRU0x00000008; | |||
2063 | if (wired) | |||
2064 | template |= INTEL_PTE_WIRED0x00000200; | |||
2065 | i = ptes_per_vm_page1; | |||
2066 | do { | |||
2067 | #ifdef MACH_PV_PAGETABLES | |||
2068 | if (!(hyp_mmu_update_pte(kv_to_ma(pte)({ vm_offset_t __a = (vm_offset_t) (((vm_offset_t)(pte) - 0xC0000000UL )); (((pt_entry_t) ((mfn_list[(((vm_size_t)(__a)) >> 12 )]))) << 12) | (__a & ((1 << 12)-1)); }), pa_to_ma(template)({ vm_offset_t __a = (vm_offset_t) (template); (((pt_entry_t) ((mfn_list[(((vm_size_t)(__a)) >> 12)]))) << 12) | (__a & ((1 << 12)-1)); })))) | |||
2069 | panic("%s:%d could not set pte %p to %p\n",__FILE__"../i386/intel/pmap.c",__LINE__2069,pte,template); | |||
2070 | #else /* MACH_PV_PAGETABLES */ | |||
2071 | WRITE_PTE(pte, template)*(pte) = template?({ vm_offset_t __a = (vm_offset_t) (template ); (((pt_entry_t) ((mfn_list[(((vm_size_t)(__a)) >> 12) ]))) << 12) | (__a & ((1 << 12)-1)); }):0; | |||
2072 | #endif /* MACH_PV_PAGETABLES */ | |||
2073 | pte++; | |||
2074 | pte_increment_pa(template)((template) += 0xfff +1); | |||
2075 | } while (--i > 0); | |||
2076 | } | |||
2077 | ||||
2078 | if (pv_e != PV_ENTRY_NULL((pv_entry_t) 0)) { | |||
2079 | PV_FREE(pv_e){ ; pv_e->next = pv_free_list; pv_free_list = pv_e; ((void )(&pv_free_list_lock)); }; | |||
2080 | } | |||
2081 | ||||
2082 | PMAP_READ_UNLOCK(pmap, spl)((void)(spl)); | |||
2083 | } | |||
2084 | ||||
2085 | /* | |||
2086 | * Routine: pmap_change_wiring | |||
2087 | * Function: Change the wiring attribute for a map/virtual-address | |||
2088 | * pair. | |||
2089 | * In/out conditions: | |||
2090 | * The mapping must already exist in the pmap. | |||
2091 | */ | |||
2092 | void pmap_change_wiring( | |||
2093 | pmap_t map, | |||
2094 | vm_offset_t v, | |||
2095 | boolean_t wired) | |||
2096 | { | |||
2097 | pt_entry_t *pte; | |||
2098 | int i; | |||
2099 | int spl; | |||
2100 | ||||
2101 | /* | |||
2102 | * We must grab the pmap system lock because we may | |||
2103 | * change a pte_page queue. | |||
2104 | */ | |||
2105 | PMAP_READ_LOCK(map, spl)((void)(spl)); | |||
2106 | ||||
2107 | if ((pte = pmap_pte(map, v)) == PT_ENTRY_NULL((pt_entry_t *) 0)) | |||
2108 | panic("pmap_change_wiring: pte missing"); | |||
2109 | ||||
2110 | if (wired && !(*pte & INTEL_PTE_WIRED0x00000200)) { | |||
2111 | /* | |||
2112 | * wiring down mapping | |||
2113 | */ | |||
2114 | map->stats.wired_count++; | |||
2115 | i = ptes_per_vm_page1; | |||
2116 | do { | |||
2117 | *pte++ |= INTEL_PTE_WIRED0x00000200; | |||
2118 | } while (--i > 0); | |||
2119 | } | |||
2120 | else if (!wired && (*pte & INTEL_PTE_WIRED0x00000200)) { | |||
2121 | /* | |||
2122 | * unwiring mapping | |||
2123 | */ | |||
2124 | map->stats.wired_count--; | |||
2125 | i = ptes_per_vm_page1; | |||
2126 | do { | |||
2127 | #ifdef MACH_PV_PAGETABLES | |||
2128 | if (!(hyp_mmu_update_pte(kv_to_ma(pte)({ vm_offset_t __a = (vm_offset_t) (((vm_offset_t)(pte) - 0xC0000000UL )); (((pt_entry_t) ((mfn_list[(((vm_size_t)(__a)) >> 12 )]))) << 12) | (__a & ((1 << 12)-1)); }), *pte & ~INTEL_PTE_WIRED0x00000200))) | |||
2129 | panic("%s:%d could not wire down pte %p\n",__FILE__"../i386/intel/pmap.c",__LINE__2129,pte); | |||
2130 | #else /* MACH_PV_PAGETABLES */ | |||
2131 | *pte &= ~INTEL_PTE_WIRED0x00000200; | |||
2132 | #endif /* MACH_PV_PAGETABLES */ | |||
2133 | pte++; | |||
2134 | } while (--i > 0); | |||
2135 | } | |||
2136 | ||||
2137 | PMAP_READ_UNLOCK(map, spl)((void)(spl)); | |||
2138 | } | |||
2139 | ||||
2140 | /* | |||
2141 | * Routine: pmap_extract | |||
2142 | * Function: | |||
2143 | * Extract the physical page address associated | |||
2144 | * with the given map/virtual_address pair. | |||
2145 | */ | |||
2146 | ||||
2147 | vm_offset_t pmap_extract( | |||
2148 | pmap_t pmap, | |||
2149 | vm_offset_t va) | |||
2150 | { | |||
2151 | pt_entry_t *pte; | |||
2152 | vm_offset_t pa; | |||
2153 | int spl; | |||
2154 | ||||
2155 | SPLVM(spl)((void)(spl)); | |||
2156 | simple_lock(&pmap->lock); | |||
2157 | if ((pte = pmap_pte(pmap, va)) == PT_ENTRY_NULL((pt_entry_t *) 0)) | |||
2158 | pa = (vm_offset_t) 0; | |||
2159 | else if (!(*pte & INTEL_PTE_VALID0x00000001)) | |||
2160 | pa = (vm_offset_t) 0; | |||
2161 | else | |||
2162 | pa = pte_to_pa(*pte)({ pt_entry_t __a = (pt_entry_t) ((*pte) & 0x00007ffffffff000ULL ); ((((unsigned long *) 0xF5800000UL)[__a >> 12]) << 12) | (__a & ((1 << 12)-1)); }) + (va & INTEL_OFFMASK0xfff); | |||
2163 | simple_unlock(&pmap->lock)((void)(&pmap->lock)); | |||
2164 | SPLX(spl)((void)(spl)); | |||
2165 | return(pa); | |||
2166 | } | |||
2167 | ||||
2168 | /* | |||
2169 | * Copy the range specified by src_addr/len | |||
2170 | * from the source map to the range dst_addr/len | |||
2171 | * in the destination map. | |||
2172 | * | |||
2173 | * This routine is only advisory and need not do anything. | |||
2174 | */ | |||
2175 | #if 0 | |||
2176 | void pmap_copy(dst_pmap, src_pmap, dst_addr, len, src_addr) | |||
2177 | pmap_t dst_pmap; | |||
2178 | pmap_t src_pmap; | |||
2179 | vm_offset_t dst_addr; | |||
2180 | vm_size_t len; | |||
2181 | vm_offset_t src_addr; | |||
2182 | { | |||
2183 | } | |||
2184 | #endif /* 0 */ | |||
2185 | ||||
2186 | /* | |||
2187 | * Routine: pmap_collect | |||
2188 | * Function: | |||
2189 | * Garbage collects the physical map system for | |||
2190 | * pages which are no longer used. | |||
2191 | * Success need not be guaranteed -- that is, there | |||
2192 | * may well be pages which are not referenced, but | |||
2193 | * others may be collected. | |||
2194 | * Usage: | |||
2195 | * Called by the pageout daemon when pages are scarce. | |||
2196 | */ | |||
2197 | void pmap_collect(pmap_t p) | |||
2198 | { | |||
2199 | pt_entry_t *pdp, *ptp; | |||
2200 | pt_entry_t *eptp; | |||
2201 | vm_offset_t pa; | |||
2202 | int spl, wired; | |||
2203 | ||||
2204 | if (p == PMAP_NULL((pmap_t) 0)) | |||
2205 | return; | |||
2206 | ||||
2207 | if (p == kernel_pmap) | |||
2208 | return; | |||
2209 | ||||
2210 | /* | |||
2211 | * Garbage collect map. | |||
2212 | */ | |||
2213 | PMAP_READ_LOCK(p, spl)((void)(spl)); | |||
2214 | for (pdp = p->dirbase; | |||
2215 | pdp < &p->dirbase[lin2pdenum(LINEAR_MIN_KERNEL_ADDRESS)(((((0xc0000000UL))) >> 21) & 0x7ff)]; | |||
2216 | pdp += ptes_per_vm_page1) | |||
2217 | { | |||
2218 | if (*pdp & INTEL_PTE_VALID0x00000001) { | |||
2219 | ||||
2220 | pa = pte_to_pa(*pdp)({ pt_entry_t __a = (pt_entry_t) ((*pdp) & 0x00007ffffffff000ULL ); ((((unsigned long *) 0xF5800000UL)[__a >> 12]) << 12) | (__a & ((1 << 12)-1)); }); | |||
2221 | ptp = (pt_entry_t *)phystokv(pa)((vm_offset_t)(pa) + 0xC0000000UL); | |||
2222 | eptp = ptp + NPTES((((unsigned long)(1)) << 12)/sizeof(pt_entry_t))*ptes_per_vm_page1; | |||
2223 | ||||
2224 | /* | |||
2225 | * If the pte page has any wired mappings, we cannot | |||
2226 | * free it. | |||
2227 | */ | |||
2228 | wired = 0; | |||
2229 | { | |||
2230 | pt_entry_t *ptep; | |||
2231 | for (ptep = ptp; ptep < eptp; ptep++) { | |||
2232 | if (*ptep & INTEL_PTE_WIRED0x00000200) { | |||
2233 | wired = 1; | |||
2234 | break; | |||
2235 | } | |||
2236 | } | |||
2237 | } | |||
2238 | if (!wired) { | |||
2239 | /* | |||
2240 | * Remove the virtual addresses mapped by this pte page. | |||
2241 | */ | |||
2242 | { /*XXX big hack*/ | |||
2243 | vm_offset_t va = pdenum2lin(pdp - p->dirbase)((vm_offset_t)(pdp - p->dirbase) << 21); | |||
2244 | if (p == kernel_pmap) | |||
2245 | va = lintokv(va)((vm_offset_t)(va) - ((0xc0000000UL)) + 0xC0000000UL); | |||
2246 | pmap_remove_range(p, | |||
2247 | va, | |||
2248 | ptp, | |||
2249 | eptp); | |||
2250 | } | |||
2251 | ||||
2252 | /* | |||
2253 | * Invalidate the page directory pointer. | |||
2254 | */ | |||
2255 | { | |||
2256 | int i = ptes_per_vm_page1; | |||
2257 | pt_entry_t *pdep = pdp; | |||
2258 | do { | |||
2259 | #ifdef MACH_PV_PAGETABLES | |||
2260 | unsigned long pte = *pdep; | |||
2261 | void *ptable = (void*) ptetokv(pte)(((vm_offset_t)(({ pt_entry_t __a = (pt_entry_t) ((pte) & 0x00007ffffffff000ULL); ((((unsigned long *) 0xF5800000UL)[__a >> 12]) << 12) | (__a & ((1 << 12)-1)) ; })) + 0xC0000000UL)); | |||
2262 | if (!(hyp_mmu_update_pte(pa_to_ma(kvtophys((vm_offset_t)pdep++))({ vm_offset_t __a = (vm_offset_t) (kvtophys((vm_offset_t)pdep ++)); (((pt_entry_t) ((mfn_list[(((vm_size_t)(__a)) >> 12 )]))) << 12) | (__a & ((1 << 12)-1)); }), 0))) | |||
2263 | panic("%s:%d could not clear pde %p\n",__FILE__"../i386/intel/pmap.c",__LINE__2263,pdep-1); | |||
2264 | if (!hyp_mmuext_op_mfn (MMUEXT_UNPIN_TABLE4, kv_to_mfn(ptable)((mfn_list[(((vm_size_t)(((vm_offset_t)(ptable) - 0xC0000000UL ))) >> 12)])))) | |||
2265 | panic("couldn't unpin page %p(%p)\n", ptable, (vm_offset_t) pa_to_ma(kvtophys((vm_offset_t)ptable))({ vm_offset_t __a = (vm_offset_t) (kvtophys((vm_offset_t)ptable )); (((pt_entry_t) ((mfn_list[(((vm_size_t)(__a)) >> 12 )]))) << 12) | (__a & ((1 << 12)-1)); })); | |||
2266 | pmap_set_page_readwrite(ptable); | |||
2267 | #else /* MACH_PV_PAGETABLES */ | |||
2268 | *pdep++ = 0; | |||
2269 | #endif /* MACH_PV_PAGETABLES */ | |||
2270 | } while (--i > 0); | |||
2271 | } | |||
2272 | ||||
2273 | PMAP_READ_UNLOCK(p, spl)((void)(spl)); | |||
2274 | ||||
2275 | /* | |||
2276 | * And free the pte page itself. | |||
2277 | */ | |||
2278 | { | |||
2279 | vm_page_t m; | |||
2280 | ||||
2281 | vm_object_lock(pmap_object); | |||
2282 | m = vm_page_lookup(pmap_object, pa); | |||
2283 | if (m == VM_PAGE_NULL((vm_page_t) 0)) | |||
2284 | panic("pmap_collect: pte page not in object"); | |||
2285 | vm_page_lock_queues(); | |||
2286 | vm_page_free(m); | |||
2287 | inuse_ptepages_count--; | |||
2288 | vm_page_unlock_queues()((void)(&vm_page_queue_lock)); | |||
2289 | vm_object_unlock(pmap_object)((void)(&(pmap_object)->Lock)); | |||
2290 | } | |||
2291 | ||||
2292 | PMAP_READ_LOCK(p, spl)((void)(spl)); | |||
2293 | } | |||
2294 | } | |||
2295 | } | |||
2296 | PMAP_UPDATE_TLBS(p, VM_MIN_ADDRESS, VM_MAX_ADDRESS){ if ((p)->cpus_using) { hyp_mmuext_op_void(6); } }; | |||
2297 | ||||
2298 | PMAP_READ_UNLOCK(p, spl)((void)(spl)); | |||
2299 | return; | |||
2300 | ||||
2301 | } | |||
2302 | ||||
2303 | /* | |||
2304 | * Routine: pmap_activate | |||
2305 | * Function: | |||
2306 | * Binds the given physical map to the given | |||
2307 | * processor, and returns a hardware map description. | |||
2308 | */ | |||
2309 | #if 0 | |||
2310 | void pmap_activate(my_pmap, th, my_cpu) | |||
2311 | register pmap_t my_pmap; | |||
2312 | thread_t th; | |||
2313 | int my_cpu; | |||
2314 | { | |||
2315 | PMAP_ACTIVATE(my_pmap, th, my_cpu); | |||
2316 | } | |||
2317 | #endif /* 0 */ | |||
2318 | ||||
2319 | /* | |||
2320 | * Routine: pmap_deactivate | |||
2321 | * Function: | |||
2322 | * Indicates that the given physical map is no longer | |||
2323 | * in use on the specified processor. (This is a macro | |||
2324 | * in pmap.h) | |||
2325 | */ | |||
2326 | #if 0 | |||
2327 | void pmap_deactivate(pmap, th, which_cpu) | |||
2328 | pmap_t pmap; | |||
2329 | thread_t th; | |||
2330 | int which_cpu; | |||
2331 | { | |||
2332 | PMAP_DEACTIVATE(pmap, th, which_cpu); | |||
2333 | } | |||
2334 | #endif /* 0 */ | |||
2335 | ||||
2336 | /* | |||
2337 | * Routine: pmap_kernel | |||
2338 | * Function: | |||
2339 | * Returns the physical map handle for the kernel. | |||
2340 | */ | |||
2341 | #if 0 | |||
2342 | pmap_t pmap_kernel()(kernel_pmap) | |||
2343 | { | |||
2344 | return (kernel_pmap); | |||
2345 | } | |||
2346 | #endif /* 0 */ | |||
2347 | ||||
2348 | /* | |||
2349 | * pmap_zero_page zeros the specified (machine independent) page. | |||
2350 | * See machine/phys.c or machine/phys.s for implementation. | |||
2351 | */ | |||
2352 | #if 0 | |||
2353 | pmap_zero_page(phys) | |||
2354 | register vm_offset_t phys; | |||
2355 | { | |||
2356 | register int i; | |||
2357 | ||||
2358 | assert(phys != vm_page_fictitious_addr)({ if (!(phys != vm_page_fictitious_addr)) Assert("phys != vm_page_fictitious_addr" , "../i386/intel/pmap.c", 2358); }); | |||
2359 | i = PAGE_SIZE(1 << 12) / INTEL_PGBYTES4096; | |||
2360 | phys = intel_pfn(phys); | |||
2361 | ||||
2362 | while (i--) | |||
2363 | zero_phys(phys++); | |||
2364 | } | |||
2365 | #endif /* 0 */ | |||
2366 | ||||
2367 | /* | |||
2368 | * pmap_copy_page copies the specified (machine independent) page. | |||
2369 | * See machine/phys.c or machine/phys.s for implementation. | |||
2370 | */ | |||
2371 | #if 0 | |||
2372 | pmap_copy_page(src, dst) | |||
2373 | vm_offset_t src, dst; | |||
2374 | { | |||
2375 | int i; | |||
2376 | ||||
2377 | assert(src != vm_page_fictitious_addr)({ if (!(src != vm_page_fictitious_addr)) Assert("src != vm_page_fictitious_addr" , "../i386/intel/pmap.c", 2377); }); | |||
2378 | assert(dst != vm_page_fictitious_addr)({ if (!(dst != vm_page_fictitious_addr)) Assert("dst != vm_page_fictitious_addr" , "../i386/intel/pmap.c", 2378); }); | |||
2379 | i = PAGE_SIZE(1 << 12) / INTEL_PGBYTES4096; | |||
2380 | ||||
2381 | while (i--) { | |||
2382 | copy_phys(intel_pfn(src), intel_pfn(dst)); | |||
2383 | src += INTEL_PGBYTES4096; | |||
2384 | dst += INTEL_PGBYTES4096; | |||
2385 | } | |||
2386 | } | |||
2387 | #endif /* 0 */ | |||
2388 | ||||
2389 | /* | |||
2390 | * Routine: pmap_pageable | |||
2391 | * Function: | |||
2392 | * Make the specified pages (by pmap, offset) | |||
2393 | * pageable (or not) as requested. | |||
2394 | * | |||
2395 | * A page which is not pageable may not take | |||
2396 | * a fault; therefore, its page table entry | |||
2397 | * must remain valid for the duration. | |||
2398 | * | |||
2399 | * This routine is merely advisory; pmap_enter | |||
2400 | * will specify that these pages are to be wired | |||
2401 | * down (or not) as appropriate. | |||
2402 | */ | |||
2403 | void | |||
2404 | pmap_pageable( | |||
2405 | pmap_t pmap, | |||
2406 | vm_offset_t start, | |||
2407 | vm_offset_t end, | |||
2408 | boolean_t pageable) | |||
2409 | { | |||
2410 | } | |||
2411 | ||||
2412 | /* | |||
2413 | * Clear specified attribute bits. | |||
2414 | */ | |||
2415 | void | |||
2416 | phys_attribute_clear( | |||
2417 | vm_offset_t phys, | |||
2418 | int bits) | |||
2419 | { | |||
2420 | pv_entry_t pv_h; | |||
2421 | pv_entry_t pv_e; | |||
2422 | pt_entry_t *pte; | |||
2423 | int pai; | |||
2424 | pmap_t pmap; | |||
2425 | int spl; | |||
2426 | ||||
2427 | assert(phys != vm_page_fictitious_addr)({ if (!(phys != vm_page_fictitious_addr)) Assert("phys != vm_page_fictitious_addr" , "../i386/intel/pmap.c", 2427); }); | |||
2428 | if (!valid_page(phys)(pmap_initialized && pmap_valid_page(phys))) { | |||
2429 | /* | |||
2430 | * Not a managed page. | |||
2431 | */ | |||
2432 | return; | |||
2433 | } | |||
2434 | ||||
2435 | /* | |||
2436 | * Lock the pmap system first, since we will be changing | |||
2437 | * several pmaps. | |||
2438 | */ | |||
2439 | ||||
2440 | PMAP_WRITE_LOCK(spl)((void)(spl)); | |||
2441 | ||||
2442 | pai = pa_index(phys)((((vm_size_t)(phys - phys_first_addr)) >> 12)); | |||
2443 | pv_h = pai_to_pvh(pai)(&pv_head_table[pai]); | |||
2444 | ||||
2445 | /* | |||
2446 | * Walk down PV list, clearing all modify or reference bits. | |||
2447 | * We do not have to lock the pv_list because we have | |||
2448 | * the entire pmap system locked. | |||
2449 | */ | |||
2450 | if (pv_h->pmap != PMAP_NULL((pmap_t) 0)) { | |||
2451 | /* | |||
2452 | * There are some mappings. | |||
2453 | */ | |||
2454 | for (pv_e = pv_h; pv_e != PV_ENTRY_NULL((pv_entry_t) 0); pv_e = pv_e->next) { | |||
2455 | vm_offset_t va; | |||
2456 | ||||
2457 | pmap = pv_e->pmap; | |||
2458 | /* | |||
2459 | * Lock the pmap to block pmap_extract and similar routines. | |||
2460 | */ | |||
2461 | simple_lock(&pmap->lock); | |||
2462 | ||||
2463 | va = pv_e->va; | |||
2464 | pte = pmap_pte(pmap, va); | |||
2465 | ||||
2466 | #if 0 | |||
2467 | /* | |||
2468 | * Consistency checks. | |||
2469 | */ | |||
2470 | assert(*pte & INTEL_PTE_VALID)({ if (!(*pte & 0x00000001)) Assert("*pte & INTEL_PTE_VALID" , "../i386/intel/pmap.c", 2470); }); | |||
2471 | /* assert(pte_to_phys(*pte) == phys); */ | |||
2472 | #endif | |||
2473 | ||||
2474 | /* | |||
2475 | * Clear modify or reference bits. | |||
2476 | */ | |||
2477 | { | |||
2478 | int i = ptes_per_vm_page1; | |||
2479 | do { | |||
2480 | #ifdef MACH_PV_PAGETABLES | |||
2481 | if (!(hyp_mmu_update_pte(kv_to_ma(pte)({ vm_offset_t __a = (vm_offset_t) (((vm_offset_t)(pte) - 0xC0000000UL )); (((pt_entry_t) ((mfn_list[(((vm_size_t)(__a)) >> 12 )]))) << 12) | (__a & ((1 << 12)-1)); }), *pte & ~bits))) | |||
2482 | panic("%s:%d could not clear bits %lx from pte %p\n",__FILE__"../i386/intel/pmap.c",__LINE__2482,bits,pte); | |||
2483 | #else /* MACH_PV_PAGETABLES */ | |||
2484 | *pte &= ~bits; | |||
2485 | #endif /* MACH_PV_PAGETABLES */ | |||
2486 | } while (--i > 0); | |||
2487 | } | |||
2488 | PMAP_UPDATE_TLBS(pmap, va, va + PAGE_SIZE){ if ((pmap)->cpus_using) { hyp_mmuext_op_void(6); } }; | |||
2489 | simple_unlock(&pmap->lock)((void)(&pmap->lock)); | |||
2490 | } | |||
2491 | } | |||
2492 | ||||
2493 | pmap_phys_attributes[pai] &= ~bits; | |||
2494 | ||||
2495 | PMAP_WRITE_UNLOCK(spl)((void)(spl)); | |||
2496 | } | |||
2497 | ||||
2498 | /* | |||
2499 | * Check specified attribute bits. | |||
2500 | */ | |||
2501 | boolean_t | |||
2502 | phys_attribute_test( | |||
2503 | vm_offset_t phys, | |||
2504 | int bits) | |||
2505 | { | |||
2506 | pv_entry_t pv_h; | |||
2507 | pv_entry_t pv_e; | |||
2508 | pt_entry_t *pte; | |||
2509 | int pai; | |||
2510 | pmap_t pmap; | |||
2511 | int spl; | |||
2512 | ||||
2513 | assert(phys != vm_page_fictitious_addr)({ if (!(phys != vm_page_fictitious_addr)) Assert("phys != vm_page_fictitious_addr" , "../i386/intel/pmap.c", 2513); }); | |||
2514 | if (!valid_page(phys)(pmap_initialized && pmap_valid_page(phys))) { | |||
2515 | /* | |||
2516 | * Not a managed page. | |||
2517 | */ | |||
2518 | return (FALSE((boolean_t) 0)); | |||
2519 | } | |||
2520 | ||||
2521 | /* | |||
2522 | * Lock the pmap system first, since we will be checking | |||
2523 | * several pmaps. | |||
2524 | */ | |||
2525 | ||||
2526 | PMAP_WRITE_LOCK(spl)((void)(spl)); | |||
2527 | ||||
2528 | pai = pa_index(phys)((((vm_size_t)(phys - phys_first_addr)) >> 12)); | |||
2529 | pv_h = pai_to_pvh(pai)(&pv_head_table[pai]); | |||
2530 | ||||
2531 | if (pmap_phys_attributes[pai] & bits) { | |||
2532 | PMAP_WRITE_UNLOCK(spl)((void)(spl)); | |||
2533 | return (TRUE((boolean_t) 1)); | |||
2534 | } | |||
2535 | ||||
2536 | /* | |||
2537 | * Walk down PV list, checking all mappings. | |||
2538 | * We do not have to lock the pv_list because we have | |||
2539 | * the entire pmap system locked. | |||
2540 | */ | |||
2541 | if (pv_h->pmap != PMAP_NULL((pmap_t) 0)) { | |||
2542 | /* | |||
2543 | * There are some mappings. | |||
2544 | */ | |||
2545 | for (pv_e = pv_h; pv_e != PV_ENTRY_NULL((pv_entry_t) 0); pv_e = pv_e->next) { | |||
2546 | ||||
2547 | pmap = pv_e->pmap; | |||
2548 | /* | |||
2549 | * Lock the pmap to block pmap_extract and similar routines. | |||
2550 | */ | |||
2551 | simple_lock(&pmap->lock); | |||
2552 | ||||
2553 | { | |||
2554 | vm_offset_t va; | |||
2555 | ||||
2556 | va = pv_e->va; | |||
2557 | pte = pmap_pte(pmap, va); | |||
2558 | ||||
2559 | #if 0 | |||
2560 | /* | |||
2561 | * Consistency checks. | |||
2562 | */ | |||
2563 | assert(*pte & INTEL_PTE_VALID)({ if (!(*pte & 0x00000001)) Assert("*pte & INTEL_PTE_VALID" , "../i386/intel/pmap.c", 2563); }); | |||
2564 | /* assert(pte_to_phys(*pte) == phys); */ | |||
2565 | #endif | |||
2566 | } | |||
2567 | ||||
2568 | /* | |||
2569 | * Check modify or reference bits. | |||
2570 | */ | |||
2571 | { | |||
2572 | int i = ptes_per_vm_page1; | |||
2573 | ||||
2574 | do { | |||
2575 | if (*pte & bits) { | |||
2576 | simple_unlock(&pmap->lock)((void)(&pmap->lock)); | |||
2577 | PMAP_WRITE_UNLOCK(spl)((void)(spl)); | |||
2578 | return (TRUE((boolean_t) 1)); | |||
2579 | } | |||
2580 | } while (--i > 0); | |||
2581 | } | |||
2582 | simple_unlock(&pmap->lock)((void)(&pmap->lock)); | |||
2583 | } | |||
2584 | } | |||
2585 | PMAP_WRITE_UNLOCK(spl)((void)(spl)); | |||
2586 | return (FALSE((boolean_t) 0)); | |||
2587 | } | |||
2588 | ||||
2589 | /* | |||
2590 | * Clear the modify bits on the specified physical page. | |||
2591 | */ | |||
2592 | ||||
2593 | void pmap_clear_modify(vm_offset_t phys) | |||
2594 | { | |||
2595 | phys_attribute_clear(phys, PHYS_MODIFIED0x00000040); | |||
2596 | } | |||
2597 | ||||
2598 | /* | |||
2599 | * pmap_is_modified: | |||
2600 | * | |||
2601 | * Return whether or not the specified physical page is modified | |||
2602 | * by any physical maps. | |||
2603 | */ | |||
2604 | ||||
2605 | boolean_t pmap_is_modified(vm_offset_t phys) | |||
2606 | { | |||
2607 | return (phys_attribute_test(phys, PHYS_MODIFIED0x00000040)); | |||
2608 | } | |||
2609 | ||||
2610 | /* | |||
2611 | * pmap_clear_reference: | |||
2612 | * | |||
2613 | * Clear the reference bit on the specified physical page. | |||
2614 | */ | |||
2615 | ||||
2616 | void pmap_clear_reference(vm_offset_t phys) | |||
2617 | { | |||
2618 | phys_attribute_clear(phys, PHYS_REFERENCED0x00000020); | |||
2619 | } | |||
2620 | ||||
2621 | /* | |||
2622 | * pmap_is_referenced: | |||
2623 | * | |||
2624 | * Return whether or not the specified physical page is referenced | |||
2625 | * by any physical maps. | |||
2626 | */ | |||
2627 | ||||
2628 | boolean_t pmap_is_referenced(vm_offset_t phys) | |||
2629 | { | |||
2630 | return (phys_attribute_test(phys, PHYS_REFERENCED0x00000020)); | |||
2631 | } | |||
2632 | ||||
2633 | #if NCPUS1 > 1 | |||
2634 | /* | |||
2635 | * TLB Coherence Code (TLB "shootdown" code) | |||
2636 | * | |||
2637 | * Threads that belong to the same task share the same address space and | |||
2638 | * hence share a pmap. However, they may run on distinct cpus and thus | |||
2639 | * have distinct TLBs that cache page table entries. In order to guarantee | |||
2640 | * the TLBs are consistent, whenever a pmap is changed, all threads that | |||
2641 | * are active in that pmap must have their TLB updated. To keep track of | |||
2642 | * this information, the set of cpus that are currently using a pmap is | |||
2643 | * maintained within each pmap structure (cpus_using). Pmap_activate() and | |||
2644 | * pmap_deactivate add and remove, respectively, a cpu from this set. | |||
2645 | * Since the TLBs are not addressable over the bus, each processor must | |||
2646 | * flush its own TLB; a processor that needs to invalidate another TLB | |||
2647 | * needs to interrupt the processor that owns that TLB to signal the | |||
2648 | * update. | |||
2649 | * | |||
2650 | * Whenever a pmap is updated, the lock on that pmap is locked, and all | |||
2651 | * cpus using the pmap are signaled to invalidate. All threads that need | |||
2652 | * to activate a pmap must wait for the lock to clear to await any updates | |||
2653 | * in progress before using the pmap. They must ACQUIRE the lock to add | |||
2654 | * their cpu to the cpus_using set. An implicit assumption made | |||
2655 | * throughout the TLB code is that all kernel code that runs at or higher | |||
2656 | * than splvm blocks out update interrupts, and that such code does not | |||
2657 | * touch pageable pages. | |||
2658 | * | |||
2659 | * A shootdown interrupt serves another function besides signaling a | |||
2660 | * processor to invalidate. The interrupt routine (pmap_update_interrupt) | |||
2661 | * waits for the both the pmap lock (and the kernel pmap lock) to clear, | |||
2662 | * preventing user code from making implicit pmap updates while the | |||
2663 | * sending processor is performing its update. (This could happen via a | |||
2664 | * user data write reference that turns on the modify bit in the page | |||
2665 | * table). It must wait for any kernel updates that may have started | |||
2666 | * concurrently with a user pmap update because the IPC code | |||
2667 | * changes mappings. | |||
2668 | * Spinning on the VALUES of the locks is sufficient (rather than | |||
2669 | * having to acquire the locks) because any updates that occur subsequent | |||
2670 | * to finding the lock unlocked will be signaled via another interrupt. | |||
2671 | * (This assumes the interrupt is cleared before the low level interrupt code | |||
2672 | * calls pmap_update_interrupt()). | |||
2673 | * | |||
2674 | * The signaling processor must wait for any implicit updates in progress | |||
2675 | * to terminate before continuing with its update. Thus it must wait for an | |||
2676 | * acknowledgement of the interrupt from each processor for which such | |||
2677 | * references could be made. For maintaining this information, a set | |||
2678 | * cpus_active is used. A cpu is in this set if and only if it can | |||
2679 | * use a pmap. When pmap_update_interrupt() is entered, a cpu is removed from | |||
2680 | * this set; when all such cpus are removed, it is safe to update. | |||
2681 | * | |||
2682 | * Before attempting to acquire the update lock on a pmap, a cpu (A) must | |||
2683 | * be at least at the priority of the interprocessor interrupt | |||
2684 | * (splip<=splvm). Otherwise, A could grab a lock and be interrupted by a | |||
2685 | * kernel update; it would spin forever in pmap_update_interrupt() trying | |||
2686 | * to acquire the user pmap lock it had already acquired. Furthermore A | |||
2687 | * must remove itself from cpus_active. Otherwise, another cpu holding | |||
2688 | * the lock (B) could be in the process of sending an update signal to A, | |||
2689 | * and thus be waiting for A to remove itself from cpus_active. If A is | |||
2690 | * spinning on the lock at priority this will never happen and a deadlock | |||
2691 | * will result. | |||
2692 | */ | |||
2693 | ||||
2694 | /* | |||
2695 | * Signal another CPU that it must flush its TLB | |||
2696 | */ | |||
2697 | void signal_cpus( | |||
2698 | cpu_set use_list, | |||
2699 | pmap_t pmap, | |||
2700 | vm_offset_t start, | |||
2701 | vm_offset_t end) | |||
2702 | { | |||
2703 | int which_cpu, j; | |||
2704 | pmap_update_list_t update_list_p; | |||
2705 | ||||
2706 | while ((which_cpu = ffs(use_list)) != 0) { | |||
2707 | which_cpu -= 1; /* convert to 0 origin */ | |||
2708 | ||||
2709 | update_list_p = &cpu_update_list[which_cpu]; | |||
2710 | simple_lock(&update_list_p->lock); | |||
2711 | ||||
2712 | j = update_list_p->count; | |||
2713 | if (j >= UPDATE_LIST_SIZE) { | |||
2714 | /* | |||
2715 | * list overflowed. Change last item to | |||
2716 | * indicate overflow. | |||
2717 | */ | |||
2718 | update_list_p->item[UPDATE_LIST_SIZE-1].pmap = kernel_pmap; | |||
2719 | update_list_p->item[UPDATE_LIST_SIZE-1].start = VM_MIN_ADDRESS(0); | |||
2720 | update_list_p->item[UPDATE_LIST_SIZE-1].end = VM_MAX_KERNEL_ADDRESS(0xF5800000UL - ((0xc0000000UL)) + 0xC0000000UL); | |||
2721 | } | |||
2722 | else { | |||
2723 | update_list_p->item[j].pmap = pmap; | |||
2724 | update_list_p->item[j].start = start; | |||
2725 | update_list_p->item[j].end = end; | |||
2726 | update_list_p->count = j+1; | |||
2727 | } | |||
2728 | cpu_update_needed[which_cpu] = TRUE((boolean_t) 1); | |||
2729 | simple_unlock(&update_list_p->lock)((void)(&update_list_p->lock)); | |||
2730 | ||||
2731 | if ((cpus_idle & (1 << which_cpu)) == 0) | |||
2732 | interrupt_processor(which_cpu); | |||
2733 | use_list &= ~(1 << which_cpu); | |||
2734 | } | |||
2735 | } | |||
2736 | ||||
2737 | void process_pmap_updates(pmap_t my_pmap) | |||
2738 | { | |||
2739 | int my_cpu = cpu_number()(0); | |||
2740 | pmap_update_list_t update_list_p; | |||
2741 | int j; | |||
2742 | pmap_t pmap; | |||
2743 | ||||
2744 | update_list_p = &cpu_update_list[my_cpu]; | |||
2745 | simple_lock(&update_list_p->lock); | |||
2746 | ||||
2747 | for (j = 0; j < update_list_p->count; j++) { | |||
2748 | pmap = update_list_p->item[j].pmap; | |||
2749 | if (pmap == my_pmap || | |||
2750 | pmap == kernel_pmap) { | |||
2751 | ||||
2752 | INVALIDATE_TLB(pmap,hyp_mmuext_op_void(6) | |||
2753 | update_list_p->item[j].start,hyp_mmuext_op_void(6) | |||
2754 | update_list_p->item[j].end)hyp_mmuext_op_void(6); | |||
2755 | } | |||
2756 | } | |||
2757 | update_list_p->count = 0; | |||
2758 | cpu_update_needed[my_cpu] = FALSE((boolean_t) 0); | |||
2759 | simple_unlock(&update_list_p->lock)((void)(&update_list_p->lock)); | |||
2760 | } | |||
2761 | ||||
2762 | /* | |||
2763 | * Interrupt routine for TBIA requested from other processor. | |||
2764 | */ | |||
2765 | void pmap_update_interrupt(void) | |||
2766 | { | |||
2767 | int my_cpu; | |||
2768 | pmap_t my_pmap; | |||
2769 | int s; | |||
2770 | ||||
2771 | my_cpu = cpu_number()(0); | |||
2772 | ||||
2773 | /* | |||
2774 | * Exit now if we're idle. We'll pick up the update request | |||
2775 | * when we go active, and we must not put ourselves back in | |||
2776 | * the active set because we'll never process the interrupt | |||
2777 | * while we're idle (thus hanging the system). | |||
2778 | */ | |||
2779 | if (cpus_idle & (1 << my_cpu)) | |||
2780 | return; | |||
2781 | ||||
2782 | if (current_thread()(active_threads[(0)]) == THREAD_NULL((thread_t) 0)) | |||
2783 | my_pmap = kernel_pmap; | |||
2784 | else { | |||
2785 | my_pmap = current_pmap()((((active_threads[(0)])->task->map)->pmap)); | |||
2786 | if (!pmap_in_use(my_pmap, my_cpu)(((my_pmap)->cpus_using & (1 << (my_cpu))) != 0)) | |||
2787 | my_pmap = kernel_pmap; | |||
2788 | } | |||
2789 | ||||
2790 | /* | |||
2791 | * Raise spl to splvm (above splip) to block out pmap_extract | |||
2792 | * from IO code (which would put this cpu back in the active | |||
2793 | * set). | |||
2794 | */ | |||
2795 | s = splvm(); | |||
2796 | ||||
2797 | do { | |||
2798 | ||||
2799 | /* | |||
2800 | * Indicate that we're not using either user or kernel | |||
2801 | * pmap. | |||
2802 | */ | |||
2803 | i_bit_clear(my_cpu, &cpus_active); | |||
2804 | ||||
2805 | /* | |||
2806 | * Wait for any pmap updates in progress, on either user | |||
2807 | * or kernel pmap. | |||
2808 | */ | |||
2809 | while (*(volatile int *)&my_pmap->lock.lock_data || | |||
2810 | *(volatile int *)&kernel_pmap->lock.lock_data) | |||
2811 | continue; | |||
2812 | ||||
2813 | process_pmap_updates(my_pmap); | |||
2814 | ||||
2815 | i_bit_set(my_cpu, &cpus_active); | |||
2816 | ||||
2817 | } while (cpu_update_needed[my_cpu]); | |||
2818 | ||||
2819 | splx(s); | |||
2820 | } | |||
2821 | #else /* NCPUS > 1 */ | |||
2822 | /* | |||
2823 | * Dummy routine to satisfy external reference. | |||
2824 | */ | |||
2825 | void pmap_update_interrupt(void) | |||
2826 | { | |||
2827 | /* should never be called. */ | |||
2828 | } | |||
2829 | #endif /* NCPUS > 1 */ | |||
2830 | ||||
2831 | #if defined(__i386__1) | |||
2832 | /* Unmap page 0 to trap NULL references. */ | |||
2833 | void | |||
2834 | pmap_unmap_page_zero (void) | |||
2835 | { | |||
2836 | int *pte; | |||
2837 | ||||
2838 | pte = (int *) pmap_pte (kernel_pmap, 0); | |||
2839 | if (!pte) | |||
2840 | return; | |||
2841 | assert (pte)({ if (!(pte)) Assert("pte", "../i386/intel/pmap.c", 2841); } ); | |||
2842 | #ifdef MACH_PV_PAGETABLES | |||
2843 | if (!hyp_mmu_update_pte(kv_to_ma(pte)({ vm_offset_t __a = (vm_offset_t) (((vm_offset_t)(pte) - 0xC0000000UL )); (((pt_entry_t) ((mfn_list[(((vm_size_t)(__a)) >> 12 )]))) << 12) | (__a & ((1 << 12)-1)); }), 0)) | |||
2844 | printf("couldn't unmap page 0\n"); | |||
2845 | #else /* MACH_PV_PAGETABLES */ | |||
2846 | *pte = 0; | |||
2847 | INVALIDATE_TLB(kernel_pmap, 0, PAGE_SIZE)hyp_mmuext_op_void(6); | |||
2848 | #endif /* MACH_PV_PAGETABLES */ | |||
2849 | } | |||
2850 | #endif /* __i386__ */ |