| File: | obj-scan-build/../i386/intel/pmap.c |
| Location: | line 1765, column 7 |
| Description: | The left operand of '!=' is a garbage value |
| 1 | /* | |||
| 2 | * Mach Operating System | |||
| 3 | * Copyright (c) 1991,1990,1989,1988 Carnegie Mellon University | |||
| 4 | * All Rights Reserved. | |||
| 5 | * | |||
| 6 | * Permission to use, copy, modify and distribute this software and its | |||
| 7 | * documentation is hereby granted, provided that both the copyright | |||
| 8 | * notice and this permission notice appear in all copies of the | |||
| 9 | * software, derivative works or modified versions, and any portions | |||
| 10 | * thereof, and that both notices appear in supporting documentation. | |||
| 11 | * | |||
| 12 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" | |||
| 13 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR | |||
| 14 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. | |||
| 15 | * | |||
| 16 | * Carnegie Mellon requests users of this software to return to | |||
| 17 | * | |||
| 18 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU | |||
| 19 | * School of Computer Science | |||
| 20 | * Carnegie Mellon University | |||
| 21 | * Pittsburgh PA 15213-3890 | |||
| 22 | * | |||
| 23 | * any improvements or extensions that they make and grant Carnegie Mellon | |||
| 24 | * the rights to redistribute these changes. | |||
| 25 | */ | |||
| 26 | /* | |||
| 27 | * File: pmap.c | |||
| 28 | * Author: Avadis Tevanian, Jr., Michael Wayne Young | |||
| 29 | * (These guys wrote the Vax version) | |||
| 30 | * | |||
| 31 | * Physical Map management code for Intel i386, and i486. | |||
| 32 | * | |||
| 33 | * Manages physical address maps. | |||
| 34 | * | |||
| 35 | * In addition to hardware address maps, this | |||
| 36 | * module is called upon to provide software-use-only | |||
| 37 | * maps which may or may not be stored in the same | |||
| 38 | * form as hardware maps. These pseudo-maps are | |||
| 39 | * used to store intermediate results from copy | |||
| 40 | * operations to and from address spaces. | |||
| 41 | * | |||
| 42 | * Since the information managed by this module is | |||
| 43 | * also stored by the logical address mapping module, | |||
| 44 | * this module may throw away valid virtual-to-physical | |||
| 45 | * mappings at almost any time. However, invalidations | |||
| 46 | * of virtual-to-physical mappings must be done as | |||
| 47 | * requested. | |||
| 48 | * | |||
| 49 | * In order to cope with hardware architectures which | |||
| 50 | * make virtual-to-physical map invalidates expensive, | |||
| 51 | * this module may delay invalidate or reduced protection | |||
| 52 | * operations until such time as they are actually | |||
| 53 | * necessary. This module is given full information as | |||
| 54 | * to which processors are currently using which maps, | |||
| 55 | * and to when physical maps must be made correct. | |||
| 56 | */ | |||
| 57 | ||||
| 58 | #include <string.h> | |||
| 59 | ||||
| 60 | #include <mach/machine/vm_types.h> | |||
| 61 | ||||
| 62 | #include <mach/boolean.h> | |||
| 63 | #include <kern/debug.h> | |||
| 64 | #include <kern/printf.h> | |||
| 65 | #include <kern/thread.h> | |||
| 66 | #include <kern/slab.h> | |||
| 67 | ||||
| 68 | #include <kern/lock.h> | |||
| 69 | ||||
| 70 | #include <vm/pmap.h> | |||
| 71 | #include <vm/vm_map.h> | |||
| 72 | #include <vm/vm_kern.h> | |||
| 73 | #include <i3861/vm_param.h> | |||
| 74 | #include <mach/vm_prot.h> | |||
| 75 | #include <vm/vm_object.h> | |||
| 76 | #include <vm/vm_page.h> | |||
| 77 | #include <vm/vm_user.h> | |||
| 78 | ||||
| 79 | #include <mach/machine/vm_param.h> | |||
| 80 | #include <mach/xen.h> | |||
| 81 | #include <machine/thread.h> | |||
| 82 | #include <i3861/cpu_number.h> | |||
| 83 | #include <i3861/proc_reg.h> | |||
| 84 | #include <i3861/locore.h> | |||
| 85 | #include <i3861/model_dep.h> | |||
| 86 | ||||
| 87 | #ifdef MACH_PSEUDO_PHYS | |||
| 88 | #define WRITE_PTE(pte_p, pte_entry)*(pte_p) = pte_entry?({ vm_offset_t __a = (vm_offset_t) (pte_entry ); (((pt_entry_t) ((mfn_list[(((vm_size_t)(__a)) >> 12) ]))) << 12) | (__a & ((1 << 12)-1)); }):0; *(pte_p) = pte_entry?pa_to_ma(pte_entry)({ vm_offset_t __a = (vm_offset_t) (pte_entry); (((pt_entry_t ) ((mfn_list[(((vm_size_t)(__a)) >> 12)]))) << 12 ) | (__a & ((1 << 12)-1)); }):0; | |||
| 89 | #else /* MACH_PSEUDO_PHYS */ | |||
| 90 | #define WRITE_PTE(pte_p, pte_entry)*(pte_p) = pte_entry?({ vm_offset_t __a = (vm_offset_t) (pte_entry ); (((pt_entry_t) ((mfn_list[(((vm_size_t)(__a)) >> 12) ]))) << 12) | (__a & ((1 << 12)-1)); }):0; *(pte_p) = (pte_entry); | |||
| 91 | #endif /* MACH_PSEUDO_PHYS */ | |||
| 92 | ||||
| 93 | /* | |||
| 94 | * Private data structures. | |||
| 95 | */ | |||
| 96 | ||||
| 97 | /* | |||
| 98 | * For each vm_page_t, there is a list of all currently | |||
| 99 | * valid virtual mappings of that page. An entry is | |||
| 100 | * a pv_entry_t; the list is the pv_table. | |||
| 101 | */ | |||
| 102 | ||||
| 103 | typedef struct pv_entry { | |||
| 104 | struct pv_entry *next; /* next pv_entry */ | |||
| 105 | pmap_t pmap; /* pmap where mapping lies */ | |||
| 106 | vm_offset_t va; /* virtual address for mapping */ | |||
| 107 | } *pv_entry_t; | |||
| 108 | ||||
| 109 | #define PV_ENTRY_NULL((pv_entry_t) 0) ((pv_entry_t) 0) | |||
| 110 | ||||
| 111 | pv_entry_t pv_head_table; /* array of entries, one per page */ | |||
| 112 | ||||
| 113 | /* | |||
| 114 | * pv_list entries are kept on a list that can only be accessed | |||
| 115 | * with the pmap system locked (at SPLVM, not in the cpus_active set). | |||
| 116 | * The list is refilled from the pv_list_cache if it becomes empty. | |||
| 117 | */ | |||
| 118 | pv_entry_t pv_free_list; /* free list at SPLVM */ | |||
| 119 | decl_simple_lock_data(, pv_free_list_lock)struct simple_lock_data_empty pv_free_list_lock; | |||
| 120 | ||||
| 121 | #define PV_ALLOC(pv_e){ ; if ((pv_e = pv_free_list) != 0) { pv_free_list = pv_e-> next; } ((void)(&pv_free_list_lock)); } { \ | |||
| 122 | simple_lock(&pv_free_list_lock); \ | |||
| 123 | if ((pv_e = pv_free_list) != 0) { \ | |||
| 124 | pv_free_list = pv_e->next; \ | |||
| 125 | } \ | |||
| 126 | simple_unlock(&pv_free_list_lock)((void)(&pv_free_list_lock)); \ | |||
| 127 | } | |||
| 128 | ||||
| 129 | #define PV_FREE(pv_e){ ; pv_e->next = pv_free_list; pv_free_list = pv_e; ((void )(&pv_free_list_lock)); } { \ | |||
| 130 | simple_lock(&pv_free_list_lock); \ | |||
| 131 | pv_e->next = pv_free_list; \ | |||
| 132 | pv_free_list = pv_e; \ | |||
| 133 | simple_unlock(&pv_free_list_lock)((void)(&pv_free_list_lock)); \ | |||
| 134 | } | |||
| 135 | ||||
| 136 | struct kmem_cache pv_list_cache; /* cache of pv_entry structures */ | |||
| 137 | ||||
| 138 | /* | |||
| 139 | * Each entry in the pv_head_table is locked by a bit in the | |||
| 140 | * pv_lock_table. The lock bits are accessed by the physical | |||
| 141 | * address of the page they lock. | |||
| 142 | */ | |||
| 143 | ||||
| 144 | char *pv_lock_table; /* pointer to array of bits */ | |||
| 145 | #define pv_lock_table_size(n)(((n)+8 -1)/8) (((n)+BYTE_SIZE8-1)/BYTE_SIZE8) | |||
| 146 | ||||
| 147 | /* Has pmap_init completed? */ | |||
| 148 | boolean_t pmap_initialized = FALSE((boolean_t) 0); | |||
| 149 | ||||
| 150 | /* | |||
| 151 | * Range of kernel virtual addresses available for kernel memory mapping. | |||
| 152 | * Does not include the virtual addresses used to map physical memory 1-1. | |||
| 153 | * Initialized by pmap_bootstrap. | |||
| 154 | */ | |||
| 155 | vm_offset_t kernel_virtual_start; | |||
| 156 | vm_offset_t kernel_virtual_end; | |||
| 157 | ||||
| 158 | /* | |||
| 159 | * Index into pv_head table, its lock bits, and the modify/reference | |||
| 160 | * bits starting at phys_first_addr. | |||
| 161 | */ | |||
| 162 | #define pa_index(pa)((((vm_size_t)(pa - phys_first_addr)) >> 12)) (atop(pa - phys_first_addr)(((vm_size_t)(pa - phys_first_addr)) >> 12)) | |||
| 163 | ||||
| 164 | #define pai_to_pvh(pai)(&pv_head_table[pai]) (&pv_head_table[pai]) | |||
| 165 | #define lock_pvh_pai(pai)(bit_lock(pai, pv_lock_table)) (bit_lock(pai, pv_lock_table)) | |||
| 166 | #define unlock_pvh_pai(pai)(bit_unlock(pai, pv_lock_table)) (bit_unlock(pai, pv_lock_table)) | |||
| 167 | ||||
| 168 | /* | |||
| 169 | * Array of physical page attribites for managed pages. | |||
| 170 | * One byte per physical page. | |||
| 171 | */ | |||
| 172 | char *pmap_phys_attributes; | |||
| 173 | ||||
| 174 | /* | |||
| 175 | * Physical page attributes. Copy bits from PTE definition. | |||
| 176 | */ | |||
| 177 | #define PHYS_MODIFIED0x00000040 INTEL_PTE_MOD0x00000040 /* page modified */ | |||
| 178 | #define PHYS_REFERENCED0x00000020 INTEL_PTE_REF0x00000020 /* page referenced */ | |||
| 179 | ||||
| 180 | /* | |||
| 181 | * Amount of virtual memory mapped by one | |||
| 182 | * page-directory entry. | |||
| 183 | */ | |||
| 184 | #define PDE_MAPPED_SIZE(((vm_offset_t)(1) << 21)) (pdenum2lin(1)((vm_offset_t)(1) << 21)) | |||
| 185 | ||||
| 186 | /* | |||
| 187 | * We allocate page table pages directly from the VM system | |||
| 188 | * through this object. It maps physical memory. | |||
| 189 | */ | |||
| 190 | vm_object_t pmap_object = VM_OBJECT_NULL((vm_object_t) 0); | |||
| 191 | ||||
| 192 | /* | |||
| 193 | * Locking and TLB invalidation | |||
| 194 | */ | |||
| 195 | ||||
| 196 | /* | |||
| 197 | * Locking Protocols: | |||
| 198 | * | |||
| 199 | * There are two structures in the pmap module that need locking: | |||
| 200 | * the pmaps themselves, and the per-page pv_lists (which are locked | |||
| 201 | * by locking the pv_lock_table entry that corresponds to the pv_head | |||
| 202 | * for the list in question.) Most routines want to lock a pmap and | |||
| 203 | * then do operations in it that require pv_list locking -- however | |||
| 204 | * pmap_remove_all and pmap_copy_on_write operate on a physical page | |||
| 205 | * basis and want to do the locking in the reverse order, i.e. lock | |||
| 206 | * a pv_list and then go through all the pmaps referenced by that list. | |||
| 207 | * To protect against deadlock between these two cases, the pmap_lock | |||
| 208 | * is used. There are three different locking protocols as a result: | |||
| 209 | * | |||
| 210 | * 1. pmap operations only (pmap_extract, pmap_access, ...) Lock only | |||
| 211 | * the pmap. | |||
| 212 | * | |||
| 213 | * 2. pmap-based operations (pmap_enter, pmap_remove, ...) Get a read | |||
| 214 | * lock on the pmap_lock (shared read), then lock the pmap | |||
| 215 | * and finally the pv_lists as needed [i.e. pmap lock before | |||
| 216 | * pv_list lock.] | |||
| 217 | * | |||
| 218 | * 3. pv_list-based operations (pmap_remove_all, pmap_copy_on_write, ...) | |||
| 219 | * Get a write lock on the pmap_lock (exclusive write); this | |||
| 220 | * also guaranteees exclusive access to the pv_lists. Lock the | |||
| 221 | * pmaps as needed. | |||
| 222 | * | |||
| 223 | * At no time may any routine hold more than one pmap lock or more than | |||
| 224 | * one pv_list lock. Because interrupt level routines can allocate | |||
| 225 | * mbufs and cause pmap_enter's, the pmap_lock and the lock on the | |||
| 226 | * kernel_pmap can only be held at splvm. | |||
| 227 | */ | |||
| 228 | ||||
| 229 | #if NCPUS1 > 1 | |||
| 230 | /* | |||
| 231 | * We raise the interrupt level to splvm, to block interprocessor | |||
| 232 | * interrupts during pmap operations. We must take the CPU out of | |||
| 233 | * the cpus_active set while interrupts are blocked. | |||
| 234 | */ | |||
| 235 | #define SPLVM(spl)((void)(spl)) { \ | |||
| 236 | spl = splvm(); \ | |||
| 237 | i_bit_clear(cpu_number()(0), &cpus_active); \ | |||
| 238 | } | |||
| 239 | ||||
| 240 | #define SPLX(spl)((void)(spl)) { \ | |||
| 241 | i_bit_set(cpu_number()(0), &cpus_active); \ | |||
| 242 | splx(spl); \ | |||
| 243 | } | |||
| 244 | ||||
| 245 | /* | |||
| 246 | * Lock on pmap system | |||
| 247 | */ | |||
| 248 | lock_data_t pmap_system_lock; | |||
| 249 | ||||
| 250 | #define PMAP_READ_LOCK(pmap, spl)((void)(spl)) { \ | |||
| 251 | SPLVM(spl)((void)(spl)); \ | |||
| 252 | lock_read(&pmap_system_lock); \ | |||
| 253 | simple_lock(&(pmap)->lock); \ | |||
| 254 | } | |||
| 255 | ||||
| 256 | #define PMAP_WRITE_LOCK(spl)((void)(spl)) { \ | |||
| 257 | SPLVM(spl)((void)(spl)); \ | |||
| 258 | lock_write(&pmap_system_lock); \ | |||
| 259 | } | |||
| 260 | ||||
| 261 | #define PMAP_READ_UNLOCK(pmap, spl)((void)(spl)) { \ | |||
| 262 | simple_unlock(&(pmap)->lock)((void)(&(pmap)->lock)); \ | |||
| 263 | lock_read_done(&pmap_system_lock)lock_done(&pmap_system_lock); \ | |||
| 264 | SPLX(spl)((void)(spl)); \ | |||
| 265 | } | |||
| 266 | ||||
| 267 | #define PMAP_WRITE_UNLOCK(spl)((void)(spl)) { \ | |||
| 268 | lock_write_done(&pmap_system_lock)lock_done(&pmap_system_lock); \ | |||
| 269 | SPLX(spl)((void)(spl)); \ | |||
| 270 | } | |||
| 271 | ||||
| 272 | #define PMAP_WRITE_TO_READ_LOCK(pmap) { \ | |||
| 273 | simple_lock(&(pmap)->lock); \ | |||
| 274 | lock_write_to_read(&pmap_system_lock); \ | |||
| 275 | } | |||
| 276 | ||||
| 277 | #define LOCK_PVH(index) (lock_pvh_pai(index)(bit_lock(index, pv_lock_table))) | |||
| 278 | ||||
| 279 | #define UNLOCK_PVH(index) (unlock_pvh_pai(index)(bit_unlock(index, pv_lock_table))) | |||
| 280 | ||||
| 281 | #define PMAP_UPDATE_TLBS(pmap, s, e){ if ((pmap)->cpus_using) { hyp_mmuext_op_void(6); } } \ | |||
| 282 | { \ | |||
| 283 | cpu_set cpu_mask = 1 << cpu_number()(0); \ | |||
| 284 | cpu_set users; \ | |||
| 285 | \ | |||
| 286 | /* Since the pmap is locked, other updates are locked */ \ | |||
| 287 | /* out, and any pmap_activate has finished. */ \ | |||
| 288 | \ | |||
| 289 | /* find other cpus using the pmap */ \ | |||
| 290 | users = (pmap)->cpus_using & ~cpu_mask; \ | |||
| 291 | if (users) { \ | |||
| 292 | /* signal them, and wait for them to finish */ \ | |||
| 293 | /* using the pmap */ \ | |||
| 294 | signal_cpus(users, (pmap), (s), (e)); \ | |||
| 295 | while ((pmap)->cpus_using & cpus_active & ~cpu_mask) \ | |||
| 296 | continue; \ | |||
| 297 | } \ | |||
| 298 | \ | |||
| 299 | /* invalidate our own TLB if pmap is in use */ \ | |||
| 300 | if ((pmap)->cpus_using & cpu_mask) { \ | |||
| 301 | INVALIDATE_TLB((pmap), (s), (e))hyp_mmuext_op_void(6); \ | |||
| 302 | } \ | |||
| 303 | } | |||
| 304 | ||||
| 305 | #else /* NCPUS > 1 */ | |||
| 306 | ||||
| 307 | #define SPLVM(spl)((void)(spl)) ((void)(spl)) | |||
| 308 | #define SPLX(spl)((void)(spl)) ((void)(spl)) | |||
| 309 | ||||
| 310 | #define PMAP_READ_LOCK(pmap, spl)((void)(spl)) SPLVM(spl)((void)(spl)) | |||
| 311 | #define PMAP_WRITE_LOCK(spl)((void)(spl)) SPLVM(spl)((void)(spl)) | |||
| 312 | #define PMAP_READ_UNLOCK(pmap, spl)((void)(spl)) SPLX(spl)((void)(spl)) | |||
| 313 | #define PMAP_WRITE_UNLOCK(spl)((void)(spl)) SPLX(spl)((void)(spl)) | |||
| 314 | #define PMAP_WRITE_TO_READ_LOCK(pmap) | |||
| 315 | ||||
| 316 | #define LOCK_PVH(index) | |||
| 317 | #define UNLOCK_PVH(index) | |||
| 318 | ||||
| 319 | #define PMAP_UPDATE_TLBS(pmap, s, e){ if ((pmap)->cpus_using) { hyp_mmuext_op_void(6); } } { \ | |||
| 320 | /* invalidate our own TLB if pmap is in use */ \ | |||
| 321 | if ((pmap)->cpus_using) { \ | |||
| 322 | INVALIDATE_TLB((pmap), (s), (e))hyp_mmuext_op_void(6); \ | |||
| 323 | } \ | |||
| 324 | } | |||
| 325 | ||||
| 326 | #endif /* NCPUS > 1 */ | |||
| 327 | ||||
| 328 | #define MAX_TBIS_SIZE32 32 /* > this -> TBIA */ /* XXX */ | |||
| 329 | ||||
| 330 | #ifdef MACH_PV_PAGETABLES | |||
| 331 | #if 1 | |||
| 332 | #define INVALIDATE_TLB(pmap, s, e)hyp_mmuext_op_void(6) hyp_mmuext_op_void(MMUEXT_TLB_FLUSH_LOCAL6) | |||
| 333 | #else | |||
| 334 | #define INVALIDATE_TLB(pmap, s, e)hyp_mmuext_op_void(6) do { \ | |||
| 335 | if (__builtin_constant_p((e) - (s)) \ | |||
| 336 | && (e) - (s) == PAGE_SIZE(1 << 12)) \ | |||
| 337 | hyp_invlpg((pmap) == kernel_pmap ? kvtolin(s)((vm_offset_t)(s) - 0xC0000000UL + ((0xc0000000UL))) : (s)); \ | |||
| 338 | else \ | |||
| 339 | hyp_mmuext_op_void(MMUEXT_TLB_FLUSH_LOCAL6); \ | |||
| 340 | } while(0) | |||
| 341 | #endif | |||
| 342 | #else /* MACH_PV_PAGETABLES */ | |||
| 343 | #if 0 | |||
| 344 | /* It is hard to know when a TLB flush becomes less expensive than a bunch of | |||
| 345 | * invlpgs. But it surely is more expensive than just one invlpg. */ | |||
| 346 | #define INVALIDATE_TLB(pmap, s, e)hyp_mmuext_op_void(6) { \ | |||
| 347 | if (__builtin_constant_p((e) - (s)) \ | |||
| 348 | && (e) - (s) == PAGE_SIZE(1 << 12)) \ | |||
| 349 | invlpg_linear(s); \ | |||
| 350 | else \ | |||
| 351 | flush_tlb()({ cr3 = ((cr3)); if (!hyp_mmuext_op_mfn(5, ((mfn_list[(((vm_size_t )((cr3))) >> 12)])))) panic("set_cr3"); }); \ | |||
| 352 | } | |||
| 353 | #else | |||
| 354 | #define INVALIDATE_TLB(pmap, s, e)hyp_mmuext_op_void(6) { \ | |||
| 355 | (void) (pmap); \ | |||
| 356 | (void) (s); \ | |||
| 357 | (void) (e); \ | |||
| 358 | flush_tlb()({ cr3 = ((cr3)); if (!hyp_mmuext_op_mfn(5, ((mfn_list[(((vm_size_t )((cr3))) >> 12)])))) panic("set_cr3"); }); \ | |||
| 359 | } | |||
| 360 | #endif | |||
| 361 | #endif /* MACH_PV_PAGETABLES */ | |||
| 362 | ||||
| 363 | ||||
| 364 | #if NCPUS1 > 1 | |||
| 365 | /* | |||
| 366 | * Structures to keep track of pending TLB invalidations | |||
| 367 | */ | |||
| 368 | ||||
| 369 | #define UPDATE_LIST_SIZE 4 | |||
| 370 | ||||
| 371 | struct pmap_update_item { | |||
| 372 | pmap_t pmap; /* pmap to invalidate */ | |||
| 373 | vm_offset_t start; /* start address to invalidate */ | |||
| 374 | vm_offset_t end; /* end address to invalidate */ | |||
| 375 | } ; | |||
| 376 | ||||
| 377 | typedef struct pmap_update_item *pmap_update_item_t; | |||
| 378 | ||||
| 379 | /* | |||
| 380 | * List of pmap updates. If the list overflows, | |||
| 381 | * the last entry is changed to invalidate all. | |||
| 382 | */ | |||
| 383 | struct pmap_update_list { | |||
| 384 | decl_simple_lock_data(, lock)struct simple_lock_data_empty lock; | |||
| 385 | int count; | |||
| 386 | struct pmap_update_item item[UPDATE_LIST_SIZE]; | |||
| 387 | } ; | |||
| 388 | typedef struct pmap_update_list *pmap_update_list_t; | |||
| 389 | ||||
| 390 | struct pmap_update_list cpu_update_list[NCPUS1]; | |||
| 391 | ||||
| 392 | #endif /* NCPUS > 1 */ | |||
| 393 | ||||
| 394 | /* | |||
| 395 | * Other useful macros. | |||
| 396 | */ | |||
| 397 | #define current_pmap()((((active_threads[(0)])->task->map)->pmap)) (vm_map_pmap(current_thread()->task->map)(((active_threads[(0)])->task->map)->pmap)) | |||
| 398 | #define pmap_in_use(pmap, cpu)(((pmap)->cpus_using & (1 << (cpu))) != 0) (((pmap)->cpus_using & (1 << (cpu))) != 0) | |||
| 399 | ||||
| 400 | struct pmap kernel_pmap_store; | |||
| 401 | pmap_t kernel_pmap; | |||
| 402 | ||||
| 403 | struct kmem_cache pmap_cache; /* cache of pmap structures */ | |||
| 404 | ||||
| 405 | boolean_t pmap_debug = FALSE((boolean_t) 0); /* flag for debugging prints */ | |||
| 406 | ||||
| 407 | #if 0 | |||
| 408 | int ptes_per_vm_page1; /* number of hardware ptes needed | |||
| 409 | to map one VM page. */ | |||
| 410 | #else | |||
| 411 | #define ptes_per_vm_page1 1 | |||
| 412 | #endif | |||
| 413 | ||||
| 414 | unsigned int inuse_ptepages_count = 0; /* debugging */ | |||
| 415 | ||||
| 416 | /* | |||
| 417 | * Pointer to the basic page directory for the kernel. | |||
| 418 | * Initialized by pmap_bootstrap(). | |||
| 419 | */ | |||
| 420 | pt_entry_t *kernel_page_dir; | |||
| 421 | ||||
| 422 | /* | |||
| 423 | * Two slots for temporary physical page mapping, to allow for | |||
| 424 | * physical-to-physical transfers. | |||
| 425 | */ | |||
| 426 | static pmap_mapwindow_t mapwindows[PMAP_NMAPWINDOWS2]; | |||
| 427 | ||||
| 428 | static inline pt_entry_t * | |||
| 429 | pmap_pde(const pmap_t pmap, vm_offset_t addr) | |||
| 430 | { | |||
| 431 | if (pmap == kernel_pmap) | |||
| 432 | addr = kvtolin(addr)((vm_offset_t)(addr) - 0xC0000000UL + ((0xc0000000UL))); | |||
| 433 | return &pmap->dirbase[lin2pdenum(addr)(((addr) >> 21) & 0x7ff)]; | |||
| 434 | } | |||
| 435 | ||||
| 436 | /* | |||
| 437 | * Given an offset and a map, compute the address of the | |||
| 438 | * pte. If the address is invalid with respect to the map | |||
| 439 | * then PT_ENTRY_NULL is returned (and the map may need to grow). | |||
| 440 | * | |||
| 441 | * This is only used internally. | |||
| 442 | */ | |||
| 443 | pt_entry_t * | |||
| 444 | pmap_pte(const pmap_t pmap, vm_offset_t addr) | |||
| 445 | { | |||
| 446 | pt_entry_t *ptp; | |||
| 447 | pt_entry_t pte; | |||
| 448 | ||||
| 449 | if (pmap->dirbase == 0) | |||
| 450 | return(PT_ENTRY_NULL((pt_entry_t *) 0)); | |||
| 451 | pte = *pmap_pde(pmap, addr); | |||
| 452 | if ((pte & INTEL_PTE_VALID0x00000001) == 0) | |||
| 453 | return(PT_ENTRY_NULL((pt_entry_t *) 0)); | |||
| 454 | ptp = (pt_entry_t *)ptetokv(pte)(((vm_offset_t)(({ pt_entry_t __a = (pt_entry_t) ((pte) & 0x00007ffffffff000ULL); ((((unsigned long *) 0xF5800000UL)[__a >> 12]) << 12) | (__a & ((1 << 12)-1)) ; })) + 0xC0000000UL)); | |||
| 455 | return(&ptp[ptenum(addr)(((addr) >> 12) & 0x1ff)]); | |||
| 456 | } | |||
| 457 | ||||
| 458 | #define DEBUG_PTE_PAGE0 0 | |||
| 459 | ||||
| 460 | #if DEBUG_PTE_PAGE0 | |||
| 461 | void ptep_check(ptep_t ptep) | |||
| 462 | { | |||
| 463 | pt_entry_t *pte, *epte; | |||
| 464 | int ctu, ctw; | |||
| 465 | ||||
| 466 | /* check the use and wired counts */ | |||
| 467 | if (ptep == PTE_PAGE_NULL) | |||
| 468 | return; | |||
| 469 | pte = pmap_pte(ptep->pmap, ptep->va); | |||
| 470 | epte = pte + INTEL_PGBYTES4096/sizeof(pt_entry_t); | |||
| 471 | ctu = 0; | |||
| 472 | ctw = 0; | |||
| 473 | while (pte < epte) { | |||
| 474 | if (pte->pfn != 0) { | |||
| 475 | ctu++; | |||
| 476 | if (pte->wired) | |||
| 477 | ctw++; | |||
| 478 | } | |||
| 479 | pte += ptes_per_vm_page1; | |||
| 480 | } | |||
| 481 | ||||
| 482 | if (ctu != ptep->use_count || ctw != ptep->wired_count) { | |||
| 483 | printf("use %d wired %d - actual use %d wired %d\n", | |||
| 484 | ptep->use_count, ptep->wired_count, ctu, ctw); | |||
| 485 | panic("pte count"); | |||
| 486 | } | |||
| 487 | } | |||
| 488 | #endif /* DEBUG_PTE_PAGE */ | |||
| 489 | ||||
| 490 | /* | |||
| 491 | * Map memory at initialization. The physical addresses being | |||
| 492 | * mapped are not managed and are never unmapped. | |||
| 493 | * | |||
| 494 | * For now, VM is already on, we only need to map the | |||
| 495 | * specified memory. | |||
| 496 | */ | |||
| 497 | vm_offset_t pmap_map( | |||
| 498 | vm_offset_t virt, | |||
| 499 | vm_offset_t start, | |||
| 500 | vm_offset_t end, | |||
| 501 | int prot) | |||
| 502 | { | |||
| 503 | int ps; | |||
| 504 | ||||
| 505 | ps = PAGE_SIZE(1 << 12); | |||
| 506 | while (start < end) { | |||
| 507 | pmap_enter(kernel_pmap, virt, start, prot, FALSE((boolean_t) 0)); | |||
| 508 | virt += ps; | |||
| 509 | start += ps; | |||
| 510 | } | |||
| 511 | return(virt); | |||
| 512 | } | |||
| 513 | ||||
| 514 | /* | |||
| 515 | * Back-door routine for mapping kernel VM at initialization. | |||
| 516 | * Useful for mapping memory outside the range | |||
| 517 | * [phys_first_addr, phys_last_addr) (i.e., devices). | |||
| 518 | * Otherwise like pmap_map. | |||
| 519 | */ | |||
| 520 | vm_offset_t pmap_map_bd( | |||
| 521 | vm_offset_t virt, | |||
| 522 | vm_offset_t start, | |||
| 523 | vm_offset_t end, | |||
| 524 | vm_prot_t prot) | |||
| 525 | { | |||
| 526 | pt_entry_t template; | |||
| 527 | pt_entry_t *pte; | |||
| 528 | int spl; | |||
| 529 | #ifdef MACH_PV_PAGETABLES | |||
| 530 | int n, i = 0; | |||
| 531 | struct mmu_update update[HYP_BATCH_MMU_UPDATES256]; | |||
| 532 | #endif /* MACH_PV_PAGETABLES */ | |||
| 533 | ||||
| 534 | template = pa_to_pte(start)((start) & 0x00007ffffffff000ULL) | |||
| 535 | | INTEL_PTE_NCACHE0x00000010|INTEL_PTE_WTHRU0x00000008 | |||
| 536 | | INTEL_PTE_VALID0x00000001; | |||
| 537 | if (CPU_HAS_FEATURE(CPU_FEATURE_PGE)(cpu_features[(13) / 32] & (1 << ((13) % 32)))) | |||
| 538 | template |= INTEL_PTE_GLOBAL0x00000000; | |||
| 539 | if (prot & VM_PROT_WRITE((vm_prot_t) 0x02)) | |||
| 540 | template |= INTEL_PTE_WRITE0x00000002; | |||
| 541 | ||||
| 542 | PMAP_READ_LOCK(pmap, spl)((void)(spl)); | |||
| 543 | while (start < end) { | |||
| 544 | pte = pmap_pte(kernel_pmap, virt); | |||
| 545 | if (pte == PT_ENTRY_NULL((pt_entry_t *) 0)) | |||
| 546 | panic("pmap_map_bd: Invalid kernel address\n"); | |||
| 547 | #ifdef MACH_PV_PAGETABLES | |||
| 548 | update[i].ptr = kv_to_ma(pte)({ vm_offset_t __a = (vm_offset_t) (((vm_offset_t)(pte) - 0xC0000000UL )); (((pt_entry_t) ((mfn_list[(((vm_size_t)(__a)) >> 12 )]))) << 12) | (__a & ((1 << 12)-1)); }); | |||
| 549 | update[i].val = pa_to_ma(template)({ vm_offset_t __a = (vm_offset_t) (template); (((pt_entry_t) ((mfn_list[(((vm_size_t)(__a)) >> 12)]))) << 12) | (__a & ((1 << 12)-1)); }); | |||
| 550 | i++; | |||
| 551 | if (i == HYP_BATCH_MMU_UPDATES256) { | |||
| 552 | hyp_mmu_update(kvtolin(&update)((vm_offset_t)(&update) - 0xC0000000UL + ((0xc0000000UL)) ), i, kvtolin(&n)((vm_offset_t)(&n) - 0xC0000000UL + ((0xc0000000UL))), DOMID_SELF(0x7FF0U)); | |||
| 553 | if (n != i) | |||
| 554 | panic("couldn't pmap_map_bd\n"); | |||
| 555 | i = 0; | |||
| 556 | } | |||
| 557 | #else /* MACH_PV_PAGETABLES */ | |||
| 558 | WRITE_PTE(pte, template)*(pte) = template?({ vm_offset_t __a = (vm_offset_t) (template ); (((pt_entry_t) ((mfn_list[(((vm_size_t)(__a)) >> 12) ]))) << 12) | (__a & ((1 << 12)-1)); }):0; | |||
| 559 | #endif /* MACH_PV_PAGETABLES */ | |||
| 560 | pte_increment_pa(template)((template) += 0xfff +1); | |||
| 561 | virt += PAGE_SIZE(1 << 12); | |||
| 562 | start += PAGE_SIZE(1 << 12); | |||
| 563 | } | |||
| 564 | #ifdef MACH_PV_PAGETABLES | |||
| 565 | if (i > HYP_BATCH_MMU_UPDATES256) | |||
| 566 | panic("overflowed array in pmap_map_bd"); | |||
| 567 | hyp_mmu_update(kvtolin(&update)((vm_offset_t)(&update) - 0xC0000000UL + ((0xc0000000UL)) ), i, kvtolin(&n)((vm_offset_t)(&n) - 0xC0000000UL + ((0xc0000000UL))), DOMID_SELF(0x7FF0U)); | |||
| 568 | if (n != i) | |||
| 569 | panic("couldn't pmap_map_bd\n"); | |||
| 570 | #endif /* MACH_PV_PAGETABLES */ | |||
| 571 | PMAP_READ_UNLOCK(pmap, spl)((void)(spl)); | |||
| 572 | return(virt); | |||
| 573 | } | |||
| 574 | ||||
| 575 | /* | |||
| 576 | * Bootstrap the system enough to run with virtual memory. | |||
| 577 | * Allocate the kernel page directory and page tables, | |||
| 578 | * and direct-map all physical memory. | |||
| 579 | * Called with mapping off. | |||
| 580 | */ | |||
| 581 | void pmap_bootstrap(void) | |||
| 582 | { | |||
| 583 | /* | |||
| 584 | * Mapping is turned off; we must reference only physical addresses. | |||
| 585 | * The load image of the system is to be mapped 1-1 physical = virtual. | |||
| 586 | */ | |||
| 587 | ||||
| 588 | /* | |||
| 589 | * Set ptes_per_vm_page for general use. | |||
| 590 | */ | |||
| 591 | #if 0 | |||
| 592 | ptes_per_vm_page1 = PAGE_SIZE(1 << 12) / INTEL_PGBYTES4096; | |||
| 593 | #endif | |||
| 594 | ||||
| 595 | /* | |||
| 596 | * The kernel's pmap is statically allocated so we don't | |||
| 597 | * have to use pmap_create, which is unlikely to work | |||
| 598 | * correctly at this part of the boot sequence. | |||
| 599 | */ | |||
| 600 | ||||
| 601 | kernel_pmap = &kernel_pmap_store; | |||
| 602 | ||||
| 603 | #if NCPUS1 > 1 | |||
| 604 | lock_init(&pmap_system_lock, FALSE((boolean_t) 0)); /* NOT a sleep lock */ | |||
| 605 | #endif /* NCPUS > 1 */ | |||
| 606 | ||||
| 607 | simple_lock_init(&kernel_pmap->lock); | |||
| 608 | ||||
| 609 | kernel_pmap->ref_count = 1; | |||
| 610 | ||||
| 611 | /* | |||
| 612 | * Determine the kernel virtual address range. | |||
| 613 | * It starts at the end of the physical memory | |||
| 614 | * mapped into the kernel address space, | |||
| 615 | * and extends to a stupid arbitrary limit beyond that. | |||
| 616 | */ | |||
| 617 | kernel_virtual_start = phystokv(phys_last_addr)((vm_offset_t)(phys_last_addr) + 0xC0000000UL); | |||
| 618 | kernel_virtual_end = phystokv(phys_last_addr)((vm_offset_t)(phys_last_addr) + 0xC0000000UL) + VM_KERNEL_MAP_SIZE(224 * 1024 * 1024); | |||
| 619 | ||||
| 620 | if (kernel_virtual_end < kernel_virtual_start | |||
| 621 | || kernel_virtual_end > VM_MAX_KERNEL_ADDRESS(0xF5800000UL - ((0xc0000000UL)) + 0xC0000000UL)) | |||
| 622 | kernel_virtual_end = VM_MAX_KERNEL_ADDRESS(0xF5800000UL - ((0xc0000000UL)) + 0xC0000000UL); | |||
| 623 | ||||
| 624 | /* | |||
| 625 | * Allocate and clear a kernel page directory. | |||
| 626 | */ | |||
| 627 | /* Note: initial Xen mapping holds at least 512kB free mapped page. | |||
| 628 | * We use that for directly building our linear mapping. */ | |||
| 629 | #if PAE1 | |||
| 630 | { | |||
| 631 | vm_offset_t addr; | |||
| 632 | init_alloc_aligned(PDPNUM4 * INTEL_PGBYTES4096, &addr); | |||
| 633 | kernel_pmap->dirbase = kernel_page_dir = (pt_entry_t*)phystokv(addr)((vm_offset_t)(addr) + 0xC0000000UL); | |||
| 634 | } | |||
| 635 | kernel_pmap->pdpbase = (pt_entry_t*)phystokv(pmap_grab_page())((vm_offset_t)(pmap_grab_page()) + 0xC0000000UL); | |||
| 636 | { | |||
| 637 | int i; | |||
| 638 | for (i = 0; i < PDPNUM4; i++) | |||
| 639 | WRITE_PTE(&kernel_pmap->pdpbase[i], pa_to_pte(_kvtophys((void *) kernel_pmap->dirbase + i * INTEL_PGBYTES)) | INTEL_PTE_VALID)*(&kernel_pmap->pdpbase[i]) = ((((vm_offset_t)((void * ) kernel_pmap->dirbase + i * 4096) - 0xC0000000UL)) & 0x00007ffffffff000ULL ) | 0x00000001?({ vm_offset_t __a = (vm_offset_t) (((((vm_offset_t )((void *) kernel_pmap->dirbase + i * 4096) - 0xC0000000UL )) & 0x00007ffffffff000ULL) | 0x00000001); (((pt_entry_t) ((mfn_list[(((vm_size_t)(__a)) >> 12)]))) << 12) | (__a & ((1 << 12)-1)); }):0;; | |||
| 640 | } | |||
| 641 | #else /* PAE */ | |||
| 642 | kernel_pmap->dirbase = kernel_page_dir = (pt_entry_t*)phystokv(pmap_grab_page())((vm_offset_t)(pmap_grab_page()) + 0xC0000000UL); | |||
| 643 | #endif /* PAE */ | |||
| 644 | { | |||
| 645 | int i; | |||
| 646 | for (i = 0; i < NPDES(4 * ((((unsigned long)(1)) << 12)/sizeof(pt_entry_t))); i++) | |||
| 647 | kernel_pmap->dirbase[i] = 0; | |||
| 648 | } | |||
| 649 | ||||
| 650 | #ifdef MACH_PV_PAGETABLES | |||
| 651 | /* We don't actually deal with the CR3 register content at all */ | |||
| 652 | hyp_vm_assist(VMASST_CMD_enable0, VMASST_TYPE_pae_extended_cr33); | |||
| 653 | /* | |||
| 654 | * Xen may only provide as few as 512KB extra bootstrap linear memory, | |||
| 655 | * which is far from enough to map all available memory, so we need to | |||
| 656 | * map more bootstrap linear memory. We here map 1 (resp. 4 for PAE) | |||
| 657 | * other L1 table(s), thus 4MiB extra memory (resp. 8MiB), which is | |||
| 658 | * enough for a pagetable mapping 4GiB. | |||
| 659 | */ | |||
| 660 | #ifdef PAE1 | |||
| 661 | #define NSUP_L14 4 | |||
| 662 | #else | |||
| 663 | #define NSUP_L14 1 | |||
| 664 | #endif | |||
| 665 | pt_entry_t *l1_map[NSUP_L14]; | |||
| 666 | { | |||
| 667 | pt_entry_t *base = (pt_entry_t*) boot_info.pt_base; | |||
| 668 | vm_offset_t la; | |||
| 669 | int n_l1map; | |||
| 670 | for (n_l1map = 0, la = VM_MIN_KERNEL_ADDRESS0xC0000000UL; la >= VM_MIN_KERNEL_ADDRESS0xC0000000UL; la += NPTES((((unsigned long)(1)) << 12)/sizeof(pt_entry_t)) * PAGE_SIZE(1 << 12)) { | |||
| 671 | #ifdef PAE1 | |||
| 672 | pt_entry_t *l2_map = (pt_entry_t*) ptetokv(base[lin2pdpnum(la)])(((vm_offset_t)(({ pt_entry_t __a = (pt_entry_t) ((base[(((la ) >> 30) & 3)]) & 0x00007ffffffff000ULL); ((((unsigned long *) 0xF5800000UL)[__a >> 12]) << 12) | (__a & ((1 << 12)-1)); })) + 0xC0000000UL)); | |||
| 673 | #else /* PAE */ | |||
| 674 | pt_entry_t *l2_map = base; | |||
| 675 | #endif /* PAE */ | |||
| 676 | /* Like lin2pdenum, but works with non-contiguous boot L3 */ | |||
| 677 | l2_map += (la >> PDESHIFT21) & PDEMASK0x1ff; | |||
| 678 | if (!(*l2_map & INTEL_PTE_VALID0x00000001)) { | |||
| 679 | struct mmu_update update; | |||
| 680 | int j, n; | |||
| 681 | ||||
| 682 | l1_map[n_l1map] = (pt_entry_t*) phystokv(pmap_grab_page())((vm_offset_t)(pmap_grab_page()) + 0xC0000000UL); | |||
| 683 | for (j = 0; j < NPTES((((unsigned long)(1)) << 12)/sizeof(pt_entry_t)); j++) | |||
| 684 | l1_map[n_l1map][j] = (((pt_entry_t)pfn_to_mfn(lin2pdenum(la - VM_MIN_KERNEL_ADDRESS) * NPTES + j)(mfn_list[(((la - 0xC0000000UL) >> 21) & 0x7ff) * ( (((unsigned long)(1)) << 12)/sizeof(pt_entry_t)) + j])) << PAGE_SHIFT12) | INTEL_PTE_VALID0x00000001 | INTEL_PTE_WRITE0x00000002; | |||
| 685 | pmap_set_page_readonly_init(l1_map[n_l1map]); | |||
| 686 | if (!hyp_mmuext_op_mfn (MMUEXT_PIN_L1_TABLE0, kv_to_mfn (l1_map[n_l1map])((mfn_list[(((vm_size_t)(((vm_offset_t)(l1_map[n_l1map]) - 0xC0000000UL ))) >> 12)])))) | |||
| 687 | panic("couldn't pin page %p(%p)", l1_map[n_l1map], (vm_offset_t) kv_to_ma (l1_map[n_l1map])({ vm_offset_t __a = (vm_offset_t) (((vm_offset_t)(l1_map[n_l1map ]) - 0xC0000000UL)); (((pt_entry_t) ((mfn_list[(((vm_size_t)( __a)) >> 12)]))) << 12) | (__a & ((1 << 12)-1)); })); | |||
| 688 | update.ptr = kv_to_ma(l2_map)({ vm_offset_t __a = (vm_offset_t) (((vm_offset_t)(l2_map) - 0xC0000000UL )); (((pt_entry_t) ((mfn_list[(((vm_size_t)(__a)) >> 12 )]))) << 12) | (__a & ((1 << 12)-1)); }); | |||
| 689 | update.val = kv_to_ma(l1_map[n_l1map])({ vm_offset_t __a = (vm_offset_t) (((vm_offset_t)(l1_map[n_l1map ]) - 0xC0000000UL)); (((pt_entry_t) ((mfn_list[(((vm_size_t)( __a)) >> 12)]))) << 12) | (__a & ((1 << 12)-1)); }) | INTEL_PTE_VALID0x00000001 | INTEL_PTE_WRITE0x00000002; | |||
| 690 | hyp_mmu_update(kv_to_la(&update)((vm_offset_t)(((vm_offset_t)(((vm_offset_t)(&update) - 0xC0000000UL ))) + ((0xc0000000UL)))), 1, kv_to_la(&n)((vm_offset_t)(((vm_offset_t)(((vm_offset_t)(&n) - 0xC0000000UL ))) + ((0xc0000000UL)))), DOMID_SELF(0x7FF0U)); | |||
| 691 | if (n != 1) | |||
| 692 | panic("couldn't complete bootstrap map"); | |||
| 693 | /* added the last L1 table, can stop */ | |||
| 694 | if (++n_l1map >= NSUP_L14) | |||
| 695 | break; | |||
| 696 | } | |||
| 697 | } | |||
| 698 | } | |||
| 699 | #endif /* MACH_PV_PAGETABLES */ | |||
| 700 | ||||
| 701 | /* | |||
| 702 | * Allocate and set up the kernel page tables. | |||
| 703 | */ | |||
| 704 | { | |||
| 705 | vm_offset_t va; | |||
| 706 | pt_entry_t global = CPU_HAS_FEATURE(CPU_FEATURE_PGE)(cpu_features[(13) / 32] & (1 << ((13) % 32))) ? INTEL_PTE_GLOBAL0x00000000 : 0; | |||
| 707 | ||||
| 708 | /* | |||
| 709 | * Map virtual memory for all known physical memory, 1-1, | |||
| 710 | * from phys_first_addr to phys_last_addr. | |||
| 711 | * Make any mappings completely in the kernel's text segment read-only. | |||
| 712 | * | |||
| 713 | * Also allocate some additional all-null page tables afterwards | |||
| 714 | * for kernel virtual memory allocation, | |||
| 715 | * because this PMAP module is too stupid | |||
| 716 | * to allocate new kernel page tables later. | |||
| 717 | * XX fix this | |||
| 718 | */ | |||
| 719 | for (va = phystokv(phys_first_addr)((vm_offset_t)(phys_first_addr) + 0xC0000000UL); va >= phystokv(phys_first_addr)((vm_offset_t)(phys_first_addr) + 0xC0000000UL) && va < kernel_virtual_end; ) | |||
| 720 | { | |||
| 721 | pt_entry_t *pde = kernel_page_dir + lin2pdenum(kvtolin(va))(((((vm_offset_t)(va) - 0xC0000000UL + ((0xc0000000UL)))) >> 21) & 0x7ff); | |||
| 722 | pt_entry_t *ptable = (pt_entry_t*)phystokv(pmap_grab_page())((vm_offset_t)(pmap_grab_page()) + 0xC0000000UL); | |||
| 723 | pt_entry_t *pte; | |||
| 724 | ||||
| 725 | /* Initialize the page directory entry. */ | |||
| 726 | WRITE_PTE(pde, pa_to_pte((vm_offset_t)_kvtophys(ptable))*(pde) = (((vm_offset_t)((vm_offset_t)(ptable) - 0xC0000000UL )) & 0x00007ffffffff000ULL) | 0x00000001 | 0x00000002?({ vm_offset_t __a = (vm_offset_t) ((((vm_offset_t)((vm_offset_t)(ptable) - 0xC0000000UL)) & 0x00007ffffffff000ULL) | 0x00000001 | 0x00000002 ); (((pt_entry_t) ((mfn_list[(((vm_size_t)(__a)) >> 12) ]))) << 12) | (__a & ((1 << 12)-1)); }):0; | |||
| 727 | | INTEL_PTE_VALID | INTEL_PTE_WRITE)*(pde) = (((vm_offset_t)((vm_offset_t)(ptable) - 0xC0000000UL )) & 0x00007ffffffff000ULL) | 0x00000001 | 0x00000002?({ vm_offset_t __a = (vm_offset_t) ((((vm_offset_t)((vm_offset_t)(ptable) - 0xC0000000UL)) & 0x00007ffffffff000ULL) | 0x00000001 | 0x00000002 ); (((pt_entry_t) ((mfn_list[(((vm_size_t)(__a)) >> 12) ]))) << 12) | (__a & ((1 << 12)-1)); }):0;; | |||
| 728 | ||||
| 729 | /* Initialize the page table. */ | |||
| 730 | for (pte = ptable; (va < phystokv(phys_last_addr)((vm_offset_t)(phys_last_addr) + 0xC0000000UL)) && (pte < ptable+NPTES((((unsigned long)(1)) << 12)/sizeof(pt_entry_t))); pte++) | |||
| 731 | { | |||
| 732 | if ((pte - ptable) < ptenum(va)(((va) >> 12) & 0x1ff)) | |||
| 733 | { | |||
| 734 | WRITE_PTE(pte, 0)*(pte) = 0?({ vm_offset_t __a = (vm_offset_t) (0); (((pt_entry_t ) ((mfn_list[(((vm_size_t)(__a)) >> 12)]))) << 12 ) | (__a & ((1 << 12)-1)); }):0;; | |||
| 735 | } | |||
| 736 | else | |||
| 737 | #ifdef MACH_PV_PAGETABLES | |||
| 738 | if (va == (vm_offset_t) &hyp_shared_info) | |||
| 739 | { | |||
| 740 | *pte = boot_info.shared_info | INTEL_PTE_VALID0x00000001 | INTEL_PTE_WRITE0x00000002; | |||
| 741 | va += INTEL_PGBYTES4096; | |||
| 742 | } | |||
| 743 | else | |||
| 744 | #endif /* MACH_PV_PAGETABLES */ | |||
| 745 | { | |||
| 746 | extern char _start[], etext[]; | |||
| 747 | ||||
| 748 | if (((va >= (vm_offset_t) _start) | |||
| 749 | && (va + INTEL_PGBYTES4096 <= (vm_offset_t)etext)) | |||
| 750 | #ifdef MACH_PV_PAGETABLES | |||
| 751 | || (va >= (vm_offset_t) boot_info.pt_base | |||
| 752 | && (va + INTEL_PGBYTES4096 <= | |||
| 753 | (vm_offset_t) ptable + INTEL_PGBYTES4096)) | |||
| 754 | #endif /* MACH_PV_PAGETABLES */ | |||
| 755 | ) | |||
| 756 | { | |||
| 757 | WRITE_PTE(pte, pa_to_pte(_kvtophys(va))*(pte) = ((((vm_offset_t)(va) - 0xC0000000UL)) & 0x00007ffffffff000ULL ) | 0x00000001 | global?({ vm_offset_t __a = (vm_offset_t) (( (((vm_offset_t)(va) - 0xC0000000UL)) & 0x00007ffffffff000ULL ) | 0x00000001 | global); (((pt_entry_t) ((mfn_list[(((vm_size_t )(__a)) >> 12)]))) << 12) | (__a & ((1 << 12)-1)); }):0; | |||
| 758 | | INTEL_PTE_VALID | global)*(pte) = ((((vm_offset_t)(va) - 0xC0000000UL)) & 0x00007ffffffff000ULL ) | 0x00000001 | global?({ vm_offset_t __a = (vm_offset_t) (( (((vm_offset_t)(va) - 0xC0000000UL)) & 0x00007ffffffff000ULL ) | 0x00000001 | global); (((pt_entry_t) ((mfn_list[(((vm_size_t )(__a)) >> 12)]))) << 12) | (__a & ((1 << 12)-1)); }):0;; | |||
| 759 | } | |||
| 760 | else | |||
| 761 | { | |||
| 762 | #ifdef MACH_PV_PAGETABLES | |||
| 763 | /* Keep supplementary L1 pages read-only */ | |||
| 764 | int i; | |||
| 765 | for (i = 0; i < NSUP_L14; i++) | |||
| 766 | if (va == (vm_offset_t) l1_map[i]) { | |||
| 767 | WRITE_PTE(pte, pa_to_pte(_kvtophys(va))*(pte) = ((((vm_offset_t)(va) - 0xC0000000UL)) & 0x00007ffffffff000ULL ) | 0x00000001 | global?({ vm_offset_t __a = (vm_offset_t) (( (((vm_offset_t)(va) - 0xC0000000UL)) & 0x00007ffffffff000ULL ) | 0x00000001 | global); (((pt_entry_t) ((mfn_list[(((vm_size_t )(__a)) >> 12)]))) << 12) | (__a & ((1 << 12)-1)); }):0; | |||
| 768 | | INTEL_PTE_VALID | global)*(pte) = ((((vm_offset_t)(va) - 0xC0000000UL)) & 0x00007ffffffff000ULL ) | 0x00000001 | global?({ vm_offset_t __a = (vm_offset_t) (( (((vm_offset_t)(va) - 0xC0000000UL)) & 0x00007ffffffff000ULL ) | 0x00000001 | global); (((pt_entry_t) ((mfn_list[(((vm_size_t )(__a)) >> 12)]))) << 12) | (__a & ((1 << 12)-1)); }):0;; | |||
| 769 | break; | |||
| 770 | } | |||
| 771 | if (i == NSUP_L14) | |||
| 772 | #endif /* MACH_PV_PAGETABLES */ | |||
| 773 | WRITE_PTE(pte, pa_to_pte(_kvtophys(va))*(pte) = ((((vm_offset_t)(va) - 0xC0000000UL)) & 0x00007ffffffff000ULL ) | 0x00000001 | 0x00000002 | global?({ vm_offset_t __a = (vm_offset_t ) (((((vm_offset_t)(va) - 0xC0000000UL)) & 0x00007ffffffff000ULL ) | 0x00000001 | 0x00000002 | global); (((pt_entry_t) ((mfn_list [(((vm_size_t)(__a)) >> 12)]))) << 12) | (__a & ((1 << 12)-1)); }):0; | |||
| 774 | | INTEL_PTE_VALID | INTEL_PTE_WRITE | global)*(pte) = ((((vm_offset_t)(va) - 0xC0000000UL)) & 0x00007ffffffff000ULL ) | 0x00000001 | 0x00000002 | global?({ vm_offset_t __a = (vm_offset_t ) (((((vm_offset_t)(va) - 0xC0000000UL)) & 0x00007ffffffff000ULL ) | 0x00000001 | 0x00000002 | global); (((pt_entry_t) ((mfn_list [(((vm_size_t)(__a)) >> 12)]))) << 12) | (__a & ((1 << 12)-1)); }):0; | |||
| 775 | ||||
| 776 | } | |||
| 777 | va += INTEL_PGBYTES4096; | |||
| 778 | } | |||
| 779 | } | |||
| 780 | for (; pte < ptable+NPTES((((unsigned long)(1)) << 12)/sizeof(pt_entry_t)); pte++) | |||
| 781 | { | |||
| 782 | if (va >= kernel_virtual_end - PMAP_NMAPWINDOWS2 * PAGE_SIZE(1 << 12) && va < kernel_virtual_end) | |||
| 783 | { | |||
| 784 | pmap_mapwindow_t *win = &mapwindows[atop(va - (kernel_virtual_end - PMAP_NMAPWINDOWS * PAGE_SIZE))(((vm_size_t)(va - (kernel_virtual_end - 2 * (1 << 12)) )) >> 12)]; | |||
| 785 | win->entry = pte; | |||
| 786 | win->vaddr = va; | |||
| 787 | } | |||
| 788 | WRITE_PTE(pte, 0)*(pte) = 0?({ vm_offset_t __a = (vm_offset_t) (0); (((pt_entry_t ) ((mfn_list[(((vm_size_t)(__a)) >> 12)]))) << 12 ) | (__a & ((1 << 12)-1)); }):0;; | |||
| 789 | va += INTEL_PGBYTES4096; | |||
| 790 | } | |||
| 791 | #ifdef MACH_PV_PAGETABLES | |||
| 792 | pmap_set_page_readonly_init(ptable); | |||
| 793 | if (!hyp_mmuext_op_mfn (MMUEXT_PIN_L1_TABLE0, kv_to_mfn (ptable)((mfn_list[(((vm_size_t)(((vm_offset_t)(ptable) - 0xC0000000UL ))) >> 12)])))) | |||
| 794 | panic("couldn't pin page %p(%p)\n", ptable, (vm_offset_t) kv_to_ma (ptable)({ vm_offset_t __a = (vm_offset_t) (((vm_offset_t)(ptable) - 0xC0000000UL )); (((pt_entry_t) ((mfn_list[(((vm_size_t)(__a)) >> 12 )]))) << 12) | (__a & ((1 << 12)-1)); })); | |||
| 795 | #endif /* MACH_PV_PAGETABLES */ | |||
| 796 | } | |||
| 797 | } | |||
| 798 | ||||
| 799 | /* Architecture-specific code will turn on paging | |||
| 800 | soon after we return from here. */ | |||
| 801 | } | |||
| 802 | ||||
| 803 | #ifdef MACH_PV_PAGETABLES | |||
| 804 | /* These are only required because of Xen security policies */ | |||
| 805 | ||||
| 806 | /* Set back a page read write */ | |||
| 807 | void pmap_set_page_readwrite(void *_vaddr) { | |||
| 808 | vm_offset_t vaddr = (vm_offset_t) _vaddr; | |||
| 809 | vm_offset_t paddr = kvtophys(vaddr); | |||
| 810 | vm_offset_t canon_vaddr = phystokv(paddr)((vm_offset_t)(paddr) + 0xC0000000UL); | |||
| 811 | if (hyp_do_update_va_mapping (kvtolin(vaddr), pa_to_pte (pa_to_ma(paddr)) | INTEL_PTE_VALID | INTEL_PTE_WRITE, UVMF_NONE)({ pt_entry_t __val = (((({ vm_offset_t __a = (vm_offset_t) ( paddr); (((pt_entry_t) ((mfn_list[(((vm_size_t)(__a)) >> 12)]))) << 12) | (__a & ((1 << 12)-1)); })) & 0x00007ffffffff000ULL) | 0x00000001 | 0x00000002); hyp_update_va_mapping (((vm_offset_t)(vaddr) - 0xC0000000UL + ((0xc0000000UL))), __val & 0xffffffffU, ((__val) >> 32), (0UL<<0)); } )) | |||
| 812 | panic("couldn't set hiMMU readwrite for addr %p(%p)\n", vaddr, (vm_offset_t) pa_to_ma (paddr)({ vm_offset_t __a = (vm_offset_t) (paddr); (((pt_entry_t) (( mfn_list[(((vm_size_t)(__a)) >> 12)]))) << 12) | ( __a & ((1 << 12)-1)); })); | |||
| 813 | if (canon_vaddr != vaddr) | |||
| 814 | if (hyp_do_update_va_mapping (kvtolin(canon_vaddr), pa_to_pte (pa_to_ma(paddr)) | INTEL_PTE_VALID | INTEL_PTE_WRITE, UVMF_NONE)({ pt_entry_t __val = (((({ vm_offset_t __a = (vm_offset_t) ( paddr); (((pt_entry_t) ((mfn_list[(((vm_size_t)(__a)) >> 12)]))) << 12) | (__a & ((1 << 12)-1)); })) & 0x00007ffffffff000ULL) | 0x00000001 | 0x00000002); hyp_update_va_mapping (((vm_offset_t)(canon_vaddr) - 0xC0000000UL + ((0xc0000000UL) )), __val & 0xffffffffU, ((__val) >> 32), (0UL<< 0)); })) | |||
| 815 | panic("couldn't set hiMMU readwrite for paddr %p(%p)\n", canon_vaddr, (vm_offset_t) pa_to_ma (paddr)({ vm_offset_t __a = (vm_offset_t) (paddr); (((pt_entry_t) (( mfn_list[(((vm_size_t)(__a)) >> 12)]))) << 12) | ( __a & ((1 << 12)-1)); })); | |||
| 816 | } | |||
| 817 | ||||
| 818 | /* Set a page read only (so as to pin it for instance) */ | |||
| 819 | void pmap_set_page_readonly(void *_vaddr) { | |||
| 820 | vm_offset_t vaddr = (vm_offset_t) _vaddr; | |||
| 821 | vm_offset_t paddr = kvtophys(vaddr); | |||
| 822 | vm_offset_t canon_vaddr = phystokv(paddr)((vm_offset_t)(paddr) + 0xC0000000UL); | |||
| 823 | if (*pmap_pde(kernel_pmap, vaddr) & INTEL_PTE_VALID0x00000001) { | |||
| 824 | if (hyp_do_update_va_mapping (kvtolin(vaddr), pa_to_pte (pa_to_ma(paddr)) | INTEL_PTE_VALID, UVMF_NONE)({ pt_entry_t __val = (((({ vm_offset_t __a = (vm_offset_t) ( paddr); (((pt_entry_t) ((mfn_list[(((vm_size_t)(__a)) >> 12)]))) << 12) | (__a & ((1 << 12)-1)); })) & 0x00007ffffffff000ULL) | 0x00000001); hyp_update_va_mapping( ((vm_offset_t)(vaddr) - 0xC0000000UL + ((0xc0000000UL))), __val & 0xffffffffU, ((__val) >> 32), (0UL<<0)); } )) | |||
| 825 | panic("couldn't set hiMMU readonly for vaddr %p(%p)\n", vaddr, (vm_offset_t) pa_to_ma (paddr)({ vm_offset_t __a = (vm_offset_t) (paddr); (((pt_entry_t) (( mfn_list[(((vm_size_t)(__a)) >> 12)]))) << 12) | ( __a & ((1 << 12)-1)); })); | |||
| 826 | } | |||
| 827 | if (canon_vaddr != vaddr && | |||
| 828 | *pmap_pde(kernel_pmap, canon_vaddr) & INTEL_PTE_VALID0x00000001) { | |||
| 829 | if (hyp_do_update_va_mapping (kvtolin(canon_vaddr), pa_to_pte (pa_to_ma(paddr)) | INTEL_PTE_VALID, UVMF_NONE)({ pt_entry_t __val = (((({ vm_offset_t __a = (vm_offset_t) ( paddr); (((pt_entry_t) ((mfn_list[(((vm_size_t)(__a)) >> 12)]))) << 12) | (__a & ((1 << 12)-1)); })) & 0x00007ffffffff000ULL) | 0x00000001); hyp_update_va_mapping( ((vm_offset_t)(canon_vaddr) - 0xC0000000UL + ((0xc0000000UL)) ), __val & 0xffffffffU, ((__val) >> 32), (0UL<< 0)); })) | |||
| 830 | panic("couldn't set hiMMU readonly for vaddr %p canon_vaddr %p paddr %p (%p)\n", vaddr, canon_vaddr, paddr, (vm_offset_t) pa_to_ma (paddr)({ vm_offset_t __a = (vm_offset_t) (paddr); (((pt_entry_t) (( mfn_list[(((vm_size_t)(__a)) >> 12)]))) << 12) | ( __a & ((1 << 12)-1)); })); | |||
| 831 | } | |||
| 832 | } | |||
| 833 | ||||
| 834 | /* This needs to be called instead of pmap_set_page_readonly as long as RC3 | |||
| 835 | * still points to the bootstrap dirbase, to also fix the bootstrap table. */ | |||
| 836 | void pmap_set_page_readonly_init(void *_vaddr) { | |||
| 837 | vm_offset_t vaddr = (vm_offset_t) _vaddr; | |||
| 838 | #if PAE1 | |||
| 839 | pt_entry_t *pdpbase = (void*) boot_info.pt_base; | |||
| 840 | /* The bootstrap table does not necessarily use contiguous pages for the pde tables */ | |||
| 841 | pt_entry_t *dirbase = (void*) ptetokv(pdpbase[lin2pdpnum(vaddr)])(((vm_offset_t)(({ pt_entry_t __a = (pt_entry_t) ((pdpbase[(( (vaddr) >> 30) & 3)]) & 0x00007ffffffff000ULL); ((((unsigned long *) 0xF5800000UL)[__a >> 12]) << 12) | (__a & ((1 << 12)-1)); })) + 0xC0000000UL)); | |||
| 842 | #else | |||
| 843 | pt_entry_t *dirbase = (void*) boot_info.pt_base; | |||
| 844 | #endif | |||
| 845 | pt_entry_t *pte = &dirbase[lin2pdenum(vaddr)(((vaddr) >> 21) & 0x7ff) & PTEMASK0x1ff]; | |||
| 846 | /* Modify our future kernel map (can't use update_va_mapping for this)... */ | |||
| 847 | if (*pmap_pde(kernel_pmap, vaddr) & INTEL_PTE_VALID0x00000001) { | |||
| 848 | if (!hyp_mmu_update_la (kvtolin(vaddr), pa_to_pte (kv_to_ma(vaddr)) | INTEL_PTE_VALID)hyp_mmu_update_pte( (kernel_pmap->dirbase[((((vm_offset_t) (((vm_offset_t)(vaddr) - 0xC0000000UL + ((0xc0000000UL))))) >> 21) & 0x7ff)] & 0x00007ffffffff000ULL) + ((((vm_offset_t )(((vm_offset_t)(vaddr) - 0xC0000000UL + ((0xc0000000UL))))) >> 12) & 0x1ff) * sizeof(pt_entry_t), ((({ vm_offset_t __a = (vm_offset_t) (((vm_offset_t)(vaddr) - 0xC0000000UL)); (((pt_entry_t ) ((mfn_list[(((vm_size_t)(__a)) >> 12)]))) << 12 ) | (__a & ((1 << 12)-1)); })) & 0x00007ffffffff000ULL ) | 0x00000001)) | |||
| 849 | panic("couldn't set hiMMU readonly for vaddr %p(%p)\n", vaddr, (vm_offset_t) kv_to_ma (vaddr)({ vm_offset_t __a = (vm_offset_t) (((vm_offset_t)(vaddr) - 0xC0000000UL )); (((pt_entry_t) ((mfn_list[(((vm_size_t)(__a)) >> 12 )]))) << 12) | (__a & ((1 << 12)-1)); })); | |||
| 850 | } | |||
| 851 | /* ... and the bootstrap map. */ | |||
| 852 | if (*pte & INTEL_PTE_VALID0x00000001) { | |||
| 853 | if (hyp_do_update_va_mapping (vaddr, pa_to_pte (kv_to_ma(vaddr)) | INTEL_PTE_VALID, UVMF_NONE)({ pt_entry_t __val = (((({ vm_offset_t __a = (vm_offset_t) ( ((vm_offset_t)(vaddr) - 0xC0000000UL)); (((pt_entry_t) ((mfn_list [(((vm_size_t)(__a)) >> 12)]))) << 12) | (__a & ((1 << 12)-1)); })) & 0x00007ffffffff000ULL) | 0x00000001 ); hyp_update_va_mapping(vaddr, __val & 0xffffffffU, ((__val ) >> 32), (0UL<<0)); })) | |||
| 854 | panic("couldn't set MMU readonly for vaddr %p(%p)\n", vaddr, (vm_offset_t) kv_to_ma (vaddr)({ vm_offset_t __a = (vm_offset_t) (((vm_offset_t)(vaddr) - 0xC0000000UL )); (((pt_entry_t) ((mfn_list[(((vm_size_t)(__a)) >> 12 )]))) << 12) | (__a & ((1 << 12)-1)); })); | |||
| 855 | } | |||
| 856 | } | |||
| 857 | ||||
| 858 | void pmap_clear_bootstrap_pagetable(pt_entry_t *base) { | |||
| 859 | int i; | |||
| 860 | pt_entry_t *dir; | |||
| 861 | vm_offset_t va = 0; | |||
| 862 | #if PAE1 | |||
| 863 | int j; | |||
| 864 | #endif /* PAE */ | |||
| 865 | if (!hyp_mmuext_op_mfn (MMUEXT_UNPIN_TABLE4, kv_to_mfn(base)((mfn_list[(((vm_size_t)(((vm_offset_t)(base) - 0xC0000000UL) )) >> 12)])))) | |||
| 866 | panic("pmap_clear_bootstrap_pagetable: couldn't unpin page %p(%p)\n", base, (vm_offset_t) kv_to_ma(base)({ vm_offset_t __a = (vm_offset_t) (((vm_offset_t)(base) - 0xC0000000UL )); (((pt_entry_t) ((mfn_list[(((vm_size_t)(__a)) >> 12 )]))) << 12) | (__a & ((1 << 12)-1)); })); | |||
| 867 | #if PAE1 | |||
| 868 | for (j = 0; j < PDPNUM4; j++) | |||
| 869 | { | |||
| 870 | pt_entry_t pdpe = base[j]; | |||
| 871 | if (pdpe & INTEL_PTE_VALID0x00000001) { | |||
| 872 | dir = (pt_entry_t *) ptetokv(pdpe)(((vm_offset_t)(({ pt_entry_t __a = (pt_entry_t) ((pdpe) & 0x00007ffffffff000ULL); ((((unsigned long *) 0xF5800000UL)[__a >> 12]) << 12) | (__a & ((1 << 12)-1)) ; })) + 0xC0000000UL)); | |||
| 873 | #else /* PAE */ | |||
| 874 | dir = base; | |||
| 875 | #endif /* PAE */ | |||
| 876 | for (i = 0; i < NPTES((((unsigned long)(1)) << 12)/sizeof(pt_entry_t)); i++) { | |||
| 877 | pt_entry_t pde = dir[i]; | |||
| 878 | unsigned long pfn = atop(pte_to_pa(pde))(((vm_size_t)(({ pt_entry_t __a = (pt_entry_t) ((pde) & 0x00007ffffffff000ULL ); ((((unsigned long *) 0xF5800000UL)[__a >> 12]) << 12) | (__a & ((1 << 12)-1)); }))) >> 12); | |||
| 879 | void *pgt = (void*) phystokv(ptoa(pfn))((vm_offset_t)(((vm_offset_t)((pfn) << 12))) + 0xC0000000UL ); | |||
| 880 | if (pde & INTEL_PTE_VALID0x00000001) | |||
| 881 | hyp_free_page(pfn, pgt); | |||
| 882 | va += NPTES((((unsigned long)(1)) << 12)/sizeof(pt_entry_t)) * INTEL_PGBYTES4096; | |||
| 883 | if (va >= HYP_VIRT_START0xF5800000UL) | |||
| 884 | break; | |||
| 885 | } | |||
| 886 | #if PAE1 | |||
| 887 | hyp_free_page(atop(_kvtophys(dir))(((vm_size_t)(((vm_offset_t)(dir) - 0xC0000000UL))) >> 12 ), dir); | |||
| 888 | } else | |||
| 889 | va += NPTES((((unsigned long)(1)) << 12)/sizeof(pt_entry_t)) * NPTES((((unsigned long)(1)) << 12)/sizeof(pt_entry_t)) * INTEL_PGBYTES4096; | |||
| 890 | if (va >= HYP_VIRT_START0xF5800000UL) | |||
| 891 | break; | |||
| 892 | } | |||
| 893 | #endif /* PAE */ | |||
| 894 | hyp_free_page(atop(_kvtophys(base))(((vm_size_t)(((vm_offset_t)(base) - 0xC0000000UL))) >> 12), base); | |||
| 895 | } | |||
| 896 | #endif /* MACH_PV_PAGETABLES */ | |||
| 897 | ||||
| 898 | /* | |||
| 899 | * Create a temporary mapping for a given physical entry | |||
| 900 | * | |||
| 901 | * This can be used to access physical pages which are not mapped 1:1 by | |||
| 902 | * phystokv(). | |||
| 903 | */ | |||
| 904 | pmap_mapwindow_t *pmap_get_mapwindow(pt_entry_t entry) | |||
| 905 | { | |||
| 906 | pmap_mapwindow_t *map; | |||
| 907 | ||||
| 908 | /* Find an empty one. */ | |||
| 909 | for (map = &mapwindows[0]; map < &mapwindows[sizeof (mapwindows) / sizeof (*mapwindows)]; map++) | |||
| 910 | if (!(*map->entry)) | |||
| 911 | break; | |||
| 912 | assert(map < &mapwindows[sizeof (mapwindows) / sizeof (*mapwindows)])({ if (!(map < &mapwindows[sizeof (mapwindows) / sizeof (*mapwindows)])) Assert("map < &mapwindows[sizeof (mapwindows) / sizeof (*mapwindows)]" , "../i386/intel/pmap.c", 912); }); | |||
| 913 | ||||
| 914 | WRITE_PTE(map->entry, entry)*(map->entry) = entry?({ vm_offset_t __a = (vm_offset_t) ( entry); (((pt_entry_t) ((mfn_list[(((vm_size_t)(__a)) >> 12)]))) << 12) | (__a & ((1 << 12)-1)); }):0 ;; | |||
| 915 | return map; | |||
| 916 | } | |||
| 917 | ||||
| 918 | /* | |||
| 919 | * Destroy a temporary mapping for a physical entry | |||
| 920 | */ | |||
| 921 | void pmap_put_mapwindow(pmap_mapwindow_t *map) | |||
| 922 | { | |||
| 923 | WRITE_PTE(map->entry, 0)*(map->entry) = 0?({ vm_offset_t __a = (vm_offset_t) (0); ( ((pt_entry_t) ((mfn_list[(((vm_size_t)(__a)) >> 12)]))) << 12) | (__a & ((1 << 12)-1)); }):0;; | |||
| 924 | PMAP_UPDATE_TLBS(kernel_pmap, map->vaddr, map->vaddr + PAGE_SIZE){ if ((kernel_pmap)->cpus_using) { hyp_mmuext_op_void(6); } }; | |||
| 925 | } | |||
| 926 | ||||
| 927 | void pmap_virtual_space( | |||
| 928 | vm_offset_t *startp, | |||
| 929 | vm_offset_t *endp) | |||
| 930 | { | |||
| 931 | *startp = kernel_virtual_start; | |||
| 932 | *endp = kernel_virtual_end - PMAP_NMAPWINDOWS2 * PAGE_SIZE(1 << 12); | |||
| 933 | } | |||
| 934 | ||||
| 935 | /* | |||
| 936 | * Initialize the pmap module. | |||
| 937 | * Called by vm_init, to initialize any structures that the pmap | |||
| 938 | * system needs to map virtual memory. | |||
| 939 | */ | |||
| 940 | void pmap_init(void) | |||
| 941 | { | |||
| 942 | long npages; | |||
| 943 | vm_offset_t addr; | |||
| 944 | vm_size_t s; | |||
| 945 | #if NCPUS1 > 1 | |||
| 946 | int i; | |||
| 947 | #endif /* NCPUS > 1 */ | |||
| 948 | ||||
| 949 | /* | |||
| 950 | * Allocate memory for the pv_head_table and its lock bits, | |||
| 951 | * the modify bit array, and the pte_page table. | |||
| 952 | */ | |||
| 953 | ||||
| 954 | npages = atop(phys_last_addr - phys_first_addr)(((vm_size_t)(phys_last_addr - phys_first_addr)) >> 12); | |||
| 955 | s = (vm_size_t) (sizeof(struct pv_entry) * npages | |||
| 956 | + pv_lock_table_size(npages)(((npages)+8 -1)/8) | |||
| 957 | + npages); | |||
| 958 | ||||
| 959 | s = round_page(s)((vm_offset_t)((((vm_offset_t)(s)) + ((1 << 12)-1)) & ~((1 << 12)-1))); | |||
| 960 | if (kmem_alloc_wired(kernel_map, &addr, s) != KERN_SUCCESS0) | |||
| 961 | panic("pmap_init"); | |||
| 962 | memset((void *) addr, 0, s); | |||
| 963 | ||||
| 964 | /* | |||
| 965 | * Allocate the structures first to preserve word-alignment. | |||
| 966 | */ | |||
| 967 | pv_head_table = (pv_entry_t) addr; | |||
| 968 | addr = (vm_offset_t) (pv_head_table + npages); | |||
| 969 | ||||
| 970 | pv_lock_table = (char *) addr; | |||
| 971 | addr = (vm_offset_t) (pv_lock_table + pv_lock_table_size(npages)(((npages)+8 -1)/8)); | |||
| 972 | ||||
| 973 | pmap_phys_attributes = (char *) addr; | |||
| 974 | ||||
| 975 | /* | |||
| 976 | * Create the cache of physical maps, | |||
| 977 | * and of the physical-to-virtual entries. | |||
| 978 | */ | |||
| 979 | s = (vm_size_t) sizeof(struct pmap); | |||
| 980 | kmem_cache_init(&pmap_cache, "pmap", s, 0, NULL((void *) 0), NULL((void *) 0), NULL((void *) 0), 0); | |||
| 981 | s = (vm_size_t) sizeof(struct pv_entry); | |||
| 982 | kmem_cache_init(&pv_list_cache, "pv_entry", s, 0, NULL((void *) 0), NULL((void *) 0), NULL((void *) 0), 0); | |||
| 983 | ||||
| 984 | #if NCPUS1 > 1 | |||
| 985 | /* | |||
| 986 | * Set up the pmap request lists | |||
| 987 | */ | |||
| 988 | for (i = 0; i < NCPUS1; i++) { | |||
| 989 | pmap_update_list_t up = &cpu_update_list[i]; | |||
| 990 | ||||
| 991 | simple_lock_init(&up->lock); | |||
| 992 | up->count = 0; | |||
| 993 | } | |||
| 994 | #endif /* NCPUS > 1 */ | |||
| 995 | ||||
| 996 | /* | |||
| 997 | * Indicate that the PMAP module is now fully initialized. | |||
| 998 | */ | |||
| 999 | pmap_initialized = TRUE((boolean_t) 1); | |||
| 1000 | } | |||
| 1001 | ||||
| 1002 | #define valid_page(x)(pmap_initialized && pmap_valid_page(x)) (pmap_initialized && pmap_valid_page(x)) | |||
| 1003 | ||||
| 1004 | boolean_t pmap_verify_free(vm_offset_t phys) | |||
| 1005 | { | |||
| 1006 | pv_entry_t pv_h; | |||
| 1007 | int pai; | |||
| 1008 | int spl; | |||
| 1009 | boolean_t result; | |||
| 1010 | ||||
| 1011 | assert(phys != vm_page_fictitious_addr)({ if (!(phys != vm_page_fictitious_addr)) Assert("phys != vm_page_fictitious_addr" , "../i386/intel/pmap.c", 1011); }); | |||
| 1012 | if (!pmap_initialized) | |||
| 1013 | return(TRUE((boolean_t) 1)); | |||
| 1014 | ||||
| 1015 | if (!pmap_valid_page(phys)) | |||
| 1016 | return(FALSE((boolean_t) 0)); | |||
| 1017 | ||||
| 1018 | PMAP_WRITE_LOCK(spl)((void)(spl)); | |||
| 1019 | ||||
| 1020 | pai = pa_index(phys)((((vm_size_t)(phys - phys_first_addr)) >> 12)); | |||
| 1021 | pv_h = pai_to_pvh(pai)(&pv_head_table[pai]); | |||
| 1022 | ||||
| 1023 | result = (pv_h->pmap == PMAP_NULL((pmap_t) 0)); | |||
| 1024 | PMAP_WRITE_UNLOCK(spl)((void)(spl)); | |||
| 1025 | ||||
| 1026 | return(result); | |||
| 1027 | } | |||
| 1028 | ||||
| 1029 | /* | |||
| 1030 | * Routine: pmap_page_table_page_alloc | |||
| 1031 | * | |||
| 1032 | * Allocates a new physical page to be used as a page-table page. | |||
| 1033 | * | |||
| 1034 | * Must be called with the pmap system and the pmap unlocked, | |||
| 1035 | * since these must be unlocked to use vm_page_grab. | |||
| 1036 | */ | |||
| 1037 | vm_offset_t | |||
| 1038 | pmap_page_table_page_alloc(void) | |||
| 1039 | { | |||
| 1040 | vm_page_t m; | |||
| 1041 | vm_offset_t pa; | |||
| 1042 | ||||
| 1043 | check_simple_locks(); | |||
| 1044 | ||||
| 1045 | /* | |||
| 1046 | * We cannot allocate the pmap_object in pmap_init, | |||
| 1047 | * because it is called before the cache package is up. | |||
| 1048 | * Allocate it now if it is missing. | |||
| 1049 | */ | |||
| 1050 | if (pmap_object == VM_OBJECT_NULL((vm_object_t) 0)) | |||
| 1051 | pmap_object = vm_object_allocate(phys_last_addr - phys_first_addr); | |||
| 1052 | ||||
| 1053 | /* | |||
| 1054 | * Allocate a VM page for the level 2 page table entries. | |||
| 1055 | */ | |||
| 1056 | while ((m = vm_page_grab(FALSE((boolean_t) 0))) == VM_PAGE_NULL((vm_page_t) 0)) | |||
| 1057 | VM_PAGE_WAIT((void (*)()) 0)vm_page_wait((void (*)()) 0); | |||
| 1058 | ||||
| 1059 | /* | |||
| 1060 | * Map the page to its physical address so that it | |||
| 1061 | * can be found later. | |||
| 1062 | */ | |||
| 1063 | pa = m->phys_addr; | |||
| 1064 | vm_object_lock(pmap_object); | |||
| 1065 | vm_page_insert(m, pmap_object, pa); | |||
| 1066 | vm_page_lock_queues(); | |||
| 1067 | vm_page_wire(m); | |||
| 1068 | inuse_ptepages_count++; | |||
| 1069 | vm_page_unlock_queues()((void)(&vm_page_queue_lock)); | |||
| 1070 | vm_object_unlock(pmap_object)((void)(&(pmap_object)->Lock)); | |||
| 1071 | ||||
| 1072 | /* | |||
| 1073 | * Zero the page. | |||
| 1074 | */ | |||
| 1075 | memset((void *)phystokv(pa)((vm_offset_t)(pa) + 0xC0000000UL), 0, PAGE_SIZE(1 << 12)); | |||
| 1076 | ||||
| 1077 | return pa; | |||
| 1078 | } | |||
| 1079 | ||||
| 1080 | #ifdef MACH_XEN | |||
| 1081 | void pmap_map_mfn(void *_addr, unsigned long mfn) { | |||
| 1082 | vm_offset_t addr = (vm_offset_t) _addr; | |||
| 1083 | pt_entry_t *pte, *pdp; | |||
| 1084 | vm_offset_t ptp; | |||
| 1085 | pt_entry_t ma = ((pt_entry_t) mfn) << PAGE_SHIFT12; | |||
| 1086 | ||||
| 1087 | /* Add a ptp if none exist yet for this pte */ | |||
| 1088 | if ((pte = pmap_pte(kernel_pmap, addr)) == PT_ENTRY_NULL((pt_entry_t *) 0)) { | |||
| 1089 | ptp = phystokv(pmap_page_table_page_alloc())((vm_offset_t)(pmap_page_table_page_alloc()) + 0xC0000000UL); | |||
| 1090 | #ifdef MACH_PV_PAGETABLES | |||
| 1091 | pmap_set_page_readonly((void*) ptp); | |||
| 1092 | if (!hyp_mmuext_op_mfn (MMUEXT_PIN_L1_TABLE0, pa_to_mfn(ptp)((mfn_list[(((vm_size_t)(ptp)) >> 12)])))) | |||
| 1093 | panic("couldn't pin page %p(%p)\n",ptp,(vm_offset_t) kv_to_ma(ptp)({ vm_offset_t __a = (vm_offset_t) (((vm_offset_t)(ptp) - 0xC0000000UL )); (((pt_entry_t) ((mfn_list[(((vm_size_t)(__a)) >> 12 )]))) << 12) | (__a & ((1 << 12)-1)); })); | |||
| 1094 | #endif /* MACH_PV_PAGETABLES */ | |||
| 1095 | pdp = pmap_pde(kernel_pmap, addr); | |||
| 1096 | ||||
| 1097 | #ifdef MACH_PV_PAGETABLES | |||
| 1098 | if (!hyp_mmu_update_pte(kv_to_ma(pdp)({ vm_offset_t __a = (vm_offset_t) (((vm_offset_t)(pdp) - 0xC0000000UL )); (((pt_entry_t) ((mfn_list[(((vm_size_t)(__a)) >> 12 )]))) << 12) | (__a & ((1 << 12)-1)); }), | |||
| 1099 | pa_to_pte(kv_to_ma(ptp))((({ vm_offset_t __a = (vm_offset_t) (((vm_offset_t)(ptp) - 0xC0000000UL )); (((pt_entry_t) ((mfn_list[(((vm_size_t)(__a)) >> 12 )]))) << 12) | (__a & ((1 << 12)-1)); })) & 0x00007ffffffff000ULL) | INTEL_PTE_VALID0x00000001 | |||
| 1100 | | INTEL_PTE_USER0x00000004 | |||
| 1101 | | INTEL_PTE_WRITE0x00000002)) | |||
| 1102 | panic("%s:%d could not set pde %p(%p) to %p(%p)\n",__FILE__"../i386/intel/pmap.c",__LINE__1102,kvtophys((vm_offset_t)pdp),(vm_offset_t) kv_to_ma(pdp)({ vm_offset_t __a = (vm_offset_t) (((vm_offset_t)(pdp) - 0xC0000000UL )); (((pt_entry_t) ((mfn_list[(((vm_size_t)(__a)) >> 12 )]))) << 12) | (__a & ((1 << 12)-1)); }), ptp, (vm_offset_t) pa_to_ma(ptp)({ vm_offset_t __a = (vm_offset_t) (ptp); (((pt_entry_t) ((mfn_list [(((vm_size_t)(__a)) >> 12)]))) << 12) | (__a & ((1 << 12)-1)); })); | |||
| 1103 | #else /* MACH_PV_PAGETABLES */ | |||
| 1104 | *pdp = pa_to_pte(kvtophys(ptp))((kvtophys(ptp)) & 0x00007ffffffff000ULL) | INTEL_PTE_VALID0x00000001 | |||
| 1105 | | INTEL_PTE_USER0x00000004 | |||
| 1106 | | INTEL_PTE_WRITE0x00000002; | |||
| 1107 | #endif /* MACH_PV_PAGETABLES */ | |||
| 1108 | pte = pmap_pte(kernel_pmap, addr); | |||
| 1109 | } | |||
| 1110 | ||||
| 1111 | #ifdef MACH_PV_PAGETABLES | |||
| 1112 | if (!hyp_mmu_update_pte(kv_to_ma(pte)({ vm_offset_t __a = (vm_offset_t) (((vm_offset_t)(pte) - 0xC0000000UL )); (((pt_entry_t) ((mfn_list[(((vm_size_t)(__a)) >> 12 )]))) << 12) | (__a & ((1 << 12)-1)); }), ma | INTEL_PTE_VALID0x00000001 | INTEL_PTE_WRITE0x00000002)) | |||
| 1113 | panic("%s:%d could not set pte %p(%p) to %p(%p)\n",__FILE__"../i386/intel/pmap.c",__LINE__1113,pte,(vm_offset_t) kv_to_ma(pte)({ vm_offset_t __a = (vm_offset_t) (((vm_offset_t)(pte) - 0xC0000000UL )); (((pt_entry_t) ((mfn_list[(((vm_size_t)(__a)) >> 12 )]))) << 12) | (__a & ((1 << 12)-1)); }), ma, ma_to_pa(ma)({ pt_entry_t __a = (pt_entry_t) (ma); ((((unsigned long *) 0xF5800000UL )[__a >> 12]) << 12) | (__a & ((1 << 12 )-1)); })); | |||
| 1114 | #else /* MACH_PV_PAGETABLES */ | |||
| 1115 | /* Note: in this case, mfn is actually a pfn. */ | |||
| 1116 | WRITE_PTE(pte, ma | INTEL_PTE_VALID | INTEL_PTE_WRITE)*(pte) = ma | 0x00000001 | 0x00000002?({ vm_offset_t __a = (vm_offset_t ) (ma | 0x00000001 | 0x00000002); (((pt_entry_t) ((mfn_list[( ((vm_size_t)(__a)) >> 12)]))) << 12) | (__a & ((1 << 12)-1)); }):0;; | |||
| 1117 | #endif /* MACH_PV_PAGETABLES */ | |||
| 1118 | } | |||
| 1119 | #endif /* MACH_XEN */ | |||
| 1120 | ||||
| 1121 | /* | |||
| 1122 | * Deallocate a page-table page. | |||
| 1123 | * The page-table page must have all mappings removed, | |||
| 1124 | * and be removed from its page directory. | |||
| 1125 | */ | |||
| 1126 | void | |||
| 1127 | pmap_page_table_page_dealloc(vm_offset_t pa) | |||
| 1128 | { | |||
| 1129 | vm_page_t m; | |||
| 1130 | ||||
| 1131 | vm_object_lock(pmap_object); | |||
| 1132 | m = vm_page_lookup(pmap_object, pa); | |||
| 1133 | vm_page_lock_queues(); | |||
| 1134 | vm_page_free(m); | |||
| 1135 | inuse_ptepages_count--; | |||
| 1136 | vm_page_unlock_queues()((void)(&vm_page_queue_lock)); | |||
| 1137 | vm_object_unlock(pmap_object)((void)(&(pmap_object)->Lock)); | |||
| 1138 | } | |||
| 1139 | ||||
| 1140 | /* | |||
| 1141 | * Create and return a physical map. | |||
| 1142 | * | |||
| 1143 | * If the size specified for the map | |||
| 1144 | * is zero, the map is an actual physical | |||
| 1145 | * map, and may be referenced by the | |||
| 1146 | * hardware. | |||
| 1147 | * | |||
| 1148 | * If the size specified is non-zero, | |||
| 1149 | * the map will be used in software only, and | |||
| 1150 | * is bounded by that size. | |||
| 1151 | */ | |||
| 1152 | pmap_t pmap_create(vm_size_t size) | |||
| 1153 | { | |||
| 1154 | pmap_t p; | |||
| 1155 | pmap_statistics_t stats; | |||
| 1156 | ||||
| 1157 | /* | |||
| 1158 | * A software use-only map doesn't even need a map. | |||
| 1159 | */ | |||
| 1160 | ||||
| 1161 | if (size != 0) { | |||
| 1162 | return(PMAP_NULL((pmap_t) 0)); | |||
| 1163 | } | |||
| 1164 | ||||
| 1165 | /* | |||
| 1166 | * Allocate a pmap struct from the pmap_cache. Then allocate | |||
| 1167 | * the page descriptor table. | |||
| 1168 | */ | |||
| 1169 | ||||
| 1170 | p = (pmap_t) kmem_cache_alloc(&pmap_cache); | |||
| 1171 | if (p == PMAP_NULL((pmap_t) 0)) | |||
| 1172 | panic("pmap_create"); | |||
| 1173 | ||||
| 1174 | if (kmem_alloc_wired(kernel_map, | |||
| 1175 | (vm_offset_t *)&p->dirbase, PDPNUM4 * INTEL_PGBYTES4096) | |||
| 1176 | != KERN_SUCCESS0) | |||
| 1177 | panic("pmap_create"); | |||
| 1178 | ||||
| 1179 | memcpy(p->dirbase, kernel_page_dir, PDPNUM4 * INTEL_PGBYTES4096); | |||
| 1180 | #ifdef LINUX_DEV | |||
| 1181 | #if VM_MIN_KERNEL_ADDRESS0xC0000000UL != 0 | |||
| 1182 | /* Do not map BIOS in user tasks */ | |||
| 1183 | p->dirbase[lin2pdenum(LINEAR_MIN_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS)(((((0xc0000000UL)) - 0xC0000000UL) >> 21) & 0x7ff)] = 0; | |||
| 1184 | #endif | |||
| 1185 | #endif | |||
| 1186 | #ifdef MACH_PV_PAGETABLES | |||
| 1187 | { | |||
| 1188 | int i; | |||
| 1189 | for (i = 0; i < PDPNUM4; i++) | |||
| 1190 | pmap_set_page_readonly((void*) p->dirbase + i * INTEL_PGBYTES4096); | |||
| 1191 | } | |||
| 1192 | #endif /* MACH_PV_PAGETABLES */ | |||
| 1193 | ||||
| 1194 | #if PAE1 | |||
| 1195 | if (kmem_alloc_wired(kernel_map, | |||
| 1196 | (vm_offset_t *)&p->pdpbase, INTEL_PGBYTES4096) | |||
| 1197 | != KERN_SUCCESS0) | |||
| 1198 | panic("pmap_create"); | |||
| 1199 | { | |||
| 1200 | int i; | |||
| 1201 | for (i = 0; i < PDPNUM4; i++) | |||
| 1202 | WRITE_PTE(&p->pdpbase[i], pa_to_pte(kvtophys((vm_offset_t) p->dirbase + i * INTEL_PGBYTES)) | INTEL_PTE_VALID)*(&p->pdpbase[i]) = ((kvtophys((vm_offset_t) p->dirbase + i * 4096)) & 0x00007ffffffff000ULL) | 0x00000001?({ vm_offset_t __a = (vm_offset_t) (((kvtophys((vm_offset_t) p->dirbase + i * 4096)) & 0x00007ffffffff000ULL) | 0x00000001); (((pt_entry_t ) ((mfn_list[(((vm_size_t)(__a)) >> 12)]))) << 12 ) | (__a & ((1 << 12)-1)); }):0;; | |||
| 1203 | } | |||
| 1204 | #ifdef MACH_PV_PAGETABLES | |||
| 1205 | pmap_set_page_readonly(p->pdpbase); | |||
| 1206 | #endif /* MACH_PV_PAGETABLES */ | |||
| 1207 | #endif /* PAE */ | |||
| 1208 | ||||
| 1209 | p->ref_count = 1; | |||
| 1210 | ||||
| 1211 | simple_lock_init(&p->lock); | |||
| 1212 | p->cpus_using = 0; | |||
| 1213 | ||||
| 1214 | /* | |||
| 1215 | * Initialize statistics. | |||
| 1216 | */ | |||
| 1217 | ||||
| 1218 | stats = &p->stats; | |||
| 1219 | stats->resident_count = 0; | |||
| 1220 | stats->wired_count = 0; | |||
| 1221 | ||||
| 1222 | return(p); | |||
| 1223 | } | |||
| 1224 | ||||
| 1225 | /* | |||
| 1226 | * Retire the given physical map from service. | |||
| 1227 | * Should only be called if the map contains | |||
| 1228 | * no valid mappings. | |||
| 1229 | */ | |||
| 1230 | ||||
| 1231 | void pmap_destroy(pmap_t p) | |||
| 1232 | { | |||
| 1233 | pt_entry_t *pdep; | |||
| 1234 | vm_offset_t pa; | |||
| 1235 | int c, s; | |||
| 1236 | vm_page_t m; | |||
| 1237 | ||||
| 1238 | if (p == PMAP_NULL((pmap_t) 0)) | |||
| 1239 | return; | |||
| 1240 | ||||
| 1241 | SPLVM(s)((void)(s)); | |||
| 1242 | simple_lock(&p->lock); | |||
| 1243 | c = --p->ref_count; | |||
| 1244 | simple_unlock(&p->lock)((void)(&p->lock)); | |||
| 1245 | SPLX(s)((void)(s)); | |||
| 1246 | ||||
| 1247 | if (c != 0) { | |||
| 1248 | return; /* still in use */ | |||
| 1249 | } | |||
| 1250 | ||||
| 1251 | /* | |||
| 1252 | * Free the memory maps, then the | |||
| 1253 | * pmap structure. | |||
| 1254 | */ | |||
| 1255 | for (pdep = p->dirbase; | |||
| 1256 | pdep < &p->dirbase[lin2pdenum(LINEAR_MIN_KERNEL_ADDRESS)(((((0xc0000000UL))) >> 21) & 0x7ff)]; | |||
| 1257 | pdep += ptes_per_vm_page1) { | |||
| 1258 | if (*pdep & INTEL_PTE_VALID0x00000001) { | |||
| 1259 | pa = pte_to_pa(*pdep)({ pt_entry_t __a = (pt_entry_t) ((*pdep) & 0x00007ffffffff000ULL ); ((((unsigned long *) 0xF5800000UL)[__a >> 12]) << 12) | (__a & ((1 << 12)-1)); }); | |||
| 1260 | vm_object_lock(pmap_object); | |||
| 1261 | m = vm_page_lookup(pmap_object, pa); | |||
| 1262 | if (m == VM_PAGE_NULL((vm_page_t) 0)) | |||
| 1263 | panic("pmap_destroy: pte page not in object"); | |||
| 1264 | vm_page_lock_queues(); | |||
| 1265 | #ifdef MACH_PV_PAGETABLES | |||
| 1266 | if (!hyp_mmuext_op_mfn (MMUEXT_UNPIN_TABLE4, pa_to_mfn(pa)((mfn_list[(((vm_size_t)(pa)) >> 12)])))) | |||
| 1267 | panic("pmap_destroy: couldn't unpin page %p(%p)\n", pa, (vm_offset_t) kv_to_ma(pa)({ vm_offset_t __a = (vm_offset_t) (((vm_offset_t)(pa) - 0xC0000000UL )); (((pt_entry_t) ((mfn_list[(((vm_size_t)(__a)) >> 12 )]))) << 12) | (__a & ((1 << 12)-1)); })); | |||
| 1268 | pmap_set_page_readwrite((void*) phystokv(pa)((vm_offset_t)(pa) + 0xC0000000UL)); | |||
| 1269 | #endif /* MACH_PV_PAGETABLES */ | |||
| 1270 | vm_page_free(m); | |||
| 1271 | inuse_ptepages_count--; | |||
| 1272 | vm_page_unlock_queues()((void)(&vm_page_queue_lock)); | |||
| 1273 | vm_object_unlock(pmap_object)((void)(&(pmap_object)->Lock)); | |||
| 1274 | } | |||
| 1275 | } | |||
| 1276 | #ifdef MACH_PV_PAGETABLES | |||
| 1277 | { | |||
| 1278 | int i; | |||
| 1279 | for (i = 0; i < PDPNUM4; i++) | |||
| 1280 | pmap_set_page_readwrite((void*) p->dirbase + i * INTEL_PGBYTES4096); | |||
| 1281 | } | |||
| 1282 | #endif /* MACH_PV_PAGETABLES */ | |||
| 1283 | kmem_free(kernel_map, (vm_offset_t)p->dirbase, PDPNUM4 * INTEL_PGBYTES4096); | |||
| 1284 | #if PAE1 | |||
| 1285 | #ifdef MACH_PV_PAGETABLES | |||
| 1286 | pmap_set_page_readwrite(p->pdpbase); | |||
| 1287 | #endif /* MACH_PV_PAGETABLES */ | |||
| 1288 | kmem_free(kernel_map, (vm_offset_t)p->pdpbase, INTEL_PGBYTES4096); | |||
| 1289 | #endif /* PAE */ | |||
| 1290 | kmem_cache_free(&pmap_cache, (vm_offset_t) p); | |||
| 1291 | } | |||
| 1292 | ||||
| 1293 | /* | |||
| 1294 | * Add a reference to the specified pmap. | |||
| 1295 | */ | |||
| 1296 | ||||
| 1297 | void pmap_reference(pmap_t p) | |||
| 1298 | { | |||
| 1299 | int s; | |||
| 1300 | if (p != PMAP_NULL((pmap_t) 0)) { | |||
| 1301 | SPLVM(s)((void)(s)); | |||
| 1302 | simple_lock(&p->lock); | |||
| 1303 | p->ref_count++; | |||
| 1304 | simple_unlock(&p->lock)((void)(&p->lock)); | |||
| 1305 | SPLX(s)((void)(s)); | |||
| 1306 | } | |||
| 1307 | } | |||
| 1308 | ||||
| 1309 | /* | |||
| 1310 | * Remove a range of hardware page-table entries. | |||
| 1311 | * The entries given are the first (inclusive) | |||
| 1312 | * and last (exclusive) entries for the VM pages. | |||
| 1313 | * The virtual address is the va for the first pte. | |||
| 1314 | * | |||
| 1315 | * The pmap must be locked. | |||
| 1316 | * If the pmap is not the kernel pmap, the range must lie | |||
| 1317 | * entirely within one pte-page. This is NOT checked. | |||
| 1318 | * Assumes that the pte-page exists. | |||
| 1319 | */ | |||
| 1320 | ||||
| 1321 | /* static */ | |||
| 1322 | void pmap_remove_range( | |||
| 1323 | pmap_t pmap, | |||
| 1324 | vm_offset_t va, | |||
| 1325 | pt_entry_t *spte, | |||
| 1326 | pt_entry_t *epte) | |||
| 1327 | { | |||
| 1328 | pt_entry_t *cpte; | |||
| 1329 | int num_removed, num_unwired; | |||
| 1330 | int pai; | |||
| 1331 | vm_offset_t pa; | |||
| 1332 | #ifdef MACH_PV_PAGETABLES | |||
| 1333 | int n, ii = 0; | |||
| 1334 | struct mmu_update update[HYP_BATCH_MMU_UPDATES256]; | |||
| 1335 | #endif /* MACH_PV_PAGETABLES */ | |||
| 1336 | ||||
| 1337 | #if DEBUG_PTE_PAGE0 | |||
| 1338 | if (pmap != kernel_pmap) | |||
| 1339 | ptep_check(get_pte_page(spte)); | |||
| 1340 | #endif /* DEBUG_PTE_PAGE */ | |||
| 1341 | num_removed = 0; | |||
| 1342 | num_unwired = 0; | |||
| 1343 | ||||
| 1344 | for (cpte = spte; cpte < epte; | |||
| 1345 | cpte += ptes_per_vm_page1, va += PAGE_SIZE(1 << 12)) { | |||
| 1346 | ||||
| 1347 | if (*cpte == 0) | |||
| 1348 | continue; | |||
| 1349 | pa = pte_to_pa(*cpte)({ pt_entry_t __a = (pt_entry_t) ((*cpte) & 0x00007ffffffff000ULL ); ((((unsigned long *) 0xF5800000UL)[__a >> 12]) << 12) | (__a & ((1 << 12)-1)); }); | |||
| 1350 | ||||
| 1351 | num_removed++; | |||
| 1352 | if (*cpte & INTEL_PTE_WIRED0x00000200) | |||
| 1353 | num_unwired++; | |||
| 1354 | ||||
| 1355 | if (!valid_page(pa)(pmap_initialized && pmap_valid_page(pa))) { | |||
| 1356 | ||||
| 1357 | /* | |||
| 1358 | * Outside range of managed physical memory. | |||
| 1359 | * Just remove the mappings. | |||
| 1360 | */ | |||
| 1361 | int i = ptes_per_vm_page1; | |||
| 1362 | pt_entry_t *lpte = cpte; | |||
| 1363 | do { | |||
| 1364 | #ifdef MACH_PV_PAGETABLES | |||
| 1365 | update[ii].ptr = kv_to_ma(lpte)({ vm_offset_t __a = (vm_offset_t) (((vm_offset_t)(lpte) - 0xC0000000UL )); (((pt_entry_t) ((mfn_list[(((vm_size_t)(__a)) >> 12 )]))) << 12) | (__a & ((1 << 12)-1)); }); | |||
| 1366 | update[ii].val = 0; | |||
| 1367 | ii++; | |||
| 1368 | if (ii == HYP_BATCH_MMU_UPDATES256) { | |||
| 1369 | hyp_mmu_update(kvtolin(&update)((vm_offset_t)(&update) - 0xC0000000UL + ((0xc0000000UL)) ), ii, kvtolin(&n)((vm_offset_t)(&n) - 0xC0000000UL + ((0xc0000000UL))), DOMID_SELF(0x7FF0U)); | |||
| 1370 | if (n != ii) | |||
| 1371 | panic("couldn't pmap_remove_range\n"); | |||
| 1372 | ii = 0; | |||
| 1373 | } | |||
| 1374 | #else /* MACH_PV_PAGETABLES */ | |||
| 1375 | *lpte = 0; | |||
| 1376 | #endif /* MACH_PV_PAGETABLES */ | |||
| 1377 | lpte++; | |||
| 1378 | } while (--i > 0); | |||
| 1379 | continue; | |||
| 1380 | } | |||
| 1381 | ||||
| 1382 | pai = pa_index(pa)((((vm_size_t)(pa - phys_first_addr)) >> 12)); | |||
| 1383 | LOCK_PVH(pai); | |||
| 1384 | ||||
| 1385 | /* | |||
| 1386 | * Get the modify and reference bits. | |||
| 1387 | */ | |||
| 1388 | { | |||
| 1389 | int i; | |||
| 1390 | pt_entry_t *lpte; | |||
| 1391 | ||||
| 1392 | i = ptes_per_vm_page1; | |||
| 1393 | lpte = cpte; | |||
| 1394 | do { | |||
| 1395 | pmap_phys_attributes[pai] |= | |||
| 1396 | *lpte & (PHYS_MODIFIED0x00000040|PHYS_REFERENCED0x00000020); | |||
| 1397 | #ifdef MACH_PV_PAGETABLES | |||
| 1398 | update[ii].ptr = kv_to_ma(lpte)({ vm_offset_t __a = (vm_offset_t) (((vm_offset_t)(lpte) - 0xC0000000UL )); (((pt_entry_t) ((mfn_list[(((vm_size_t)(__a)) >> 12 )]))) << 12) | (__a & ((1 << 12)-1)); }); | |||
| 1399 | update[ii].val = 0; | |||
| 1400 | ii++; | |||
| 1401 | if (ii == HYP_BATCH_MMU_UPDATES256) { | |||
| 1402 | hyp_mmu_update(kvtolin(&update)((vm_offset_t)(&update) - 0xC0000000UL + ((0xc0000000UL)) ), ii, kvtolin(&n)((vm_offset_t)(&n) - 0xC0000000UL + ((0xc0000000UL))), DOMID_SELF(0x7FF0U)); | |||
| 1403 | if (n != ii) | |||
| 1404 | panic("couldn't pmap_remove_range\n"); | |||
| 1405 | ii = 0; | |||
| 1406 | } | |||
| 1407 | #else /* MACH_PV_PAGETABLES */ | |||
| 1408 | *lpte = 0; | |||
| 1409 | #endif /* MACH_PV_PAGETABLES */ | |||
| 1410 | lpte++; | |||
| 1411 | } while (--i > 0); | |||
| 1412 | } | |||
| 1413 | ||||
| 1414 | /* | |||
| 1415 | * Remove the mapping from the pvlist for | |||
| 1416 | * this physical page. | |||
| 1417 | */ | |||
| 1418 | { | |||
| 1419 | pv_entry_t pv_h, prev, cur; | |||
| 1420 | ||||
| 1421 | pv_h = pai_to_pvh(pai)(&pv_head_table[pai]); | |||
| 1422 | if (pv_h->pmap == PMAP_NULL((pmap_t) 0)) { | |||
| 1423 | panic("pmap_remove: null pv_list!"); | |||
| 1424 | } | |||
| 1425 | if (pv_h->va == va && pv_h->pmap == pmap) { | |||
| 1426 | /* | |||
| 1427 | * Header is the pv_entry. Copy the next one | |||
| 1428 | * to header and free the next one (we cannot | |||
| 1429 | * free the header) | |||
| 1430 | */ | |||
| 1431 | cur = pv_h->next; | |||
| 1432 | if (cur != PV_ENTRY_NULL((pv_entry_t) 0)) { | |||
| 1433 | *pv_h = *cur; | |||
| 1434 | PV_FREE(cur){ ; cur->next = pv_free_list; pv_free_list = cur; ((void)( &pv_free_list_lock)); }; | |||
| 1435 | } | |||
| 1436 | else { | |||
| 1437 | pv_h->pmap = PMAP_NULL((pmap_t) 0); | |||
| 1438 | } | |||
| 1439 | } | |||
| 1440 | else { | |||
| 1441 | cur = pv_h; | |||
| 1442 | do { | |||
| 1443 | prev = cur; | |||
| 1444 | if ((cur = prev->next) == PV_ENTRY_NULL((pv_entry_t) 0)) { | |||
| 1445 | panic("pmap-remove: mapping not in pv_list!"); | |||
| 1446 | } | |||
| 1447 | } while (cur->va != va || cur->pmap != pmap); | |||
| 1448 | prev->next = cur->next; | |||
| 1449 | PV_FREE(cur){ ; cur->next = pv_free_list; pv_free_list = cur; ((void)( &pv_free_list_lock)); }; | |||
| 1450 | } | |||
| 1451 | UNLOCK_PVH(pai); | |||
| 1452 | } | |||
| 1453 | } | |||
| 1454 | ||||
| 1455 | #ifdef MACH_PV_PAGETABLES | |||
| 1456 | if (ii > HYP_BATCH_MMU_UPDATES256) | |||
| 1457 | panic("overflowed array in pmap_remove_range"); | |||
| 1458 | hyp_mmu_update(kvtolin(&update)((vm_offset_t)(&update) - 0xC0000000UL + ((0xc0000000UL)) ), ii, kvtolin(&n)((vm_offset_t)(&n) - 0xC0000000UL + ((0xc0000000UL))), DOMID_SELF(0x7FF0U)); | |||
| 1459 | if (n != ii) | |||
| 1460 | panic("couldn't pmap_remove_range\n"); | |||
| 1461 | #endif /* MACH_PV_PAGETABLES */ | |||
| 1462 | ||||
| 1463 | /* | |||
| 1464 | * Update the counts | |||
| 1465 | */ | |||
| 1466 | pmap->stats.resident_count -= num_removed; | |||
| 1467 | pmap->stats.wired_count -= num_unwired; | |||
| 1468 | } | |||
| 1469 | ||||
| 1470 | /* | |||
| 1471 | * Remove the given range of addresses | |||
| 1472 | * from the specified map. | |||
| 1473 | * | |||
| 1474 | * It is assumed that the start and end are properly | |||
| 1475 | * rounded to the hardware page size. | |||
| 1476 | */ | |||
| 1477 | ||||
| 1478 | void pmap_remove( | |||
| 1479 | pmap_t map, | |||
| 1480 | vm_offset_t s, | |||
| 1481 | vm_offset_t e) | |||
| 1482 | { | |||
| 1483 | int spl; | |||
| 1484 | pt_entry_t *pde; | |||
| 1485 | pt_entry_t *spte, *epte; | |||
| 1486 | vm_offset_t l; | |||
| 1487 | vm_offset_t _s = s; | |||
| 1488 | ||||
| 1489 | if (map == PMAP_NULL((pmap_t) 0)) | |||
| 1490 | return; | |||
| 1491 | ||||
| 1492 | PMAP_READ_LOCK(map, spl)((void)(spl)); | |||
| 1493 | ||||
| 1494 | pde = pmap_pde(map, s); | |||
| 1495 | while (s < e) { | |||
| 1496 | l = (s + PDE_MAPPED_SIZE(((vm_offset_t)(1) << 21))) & ~(PDE_MAPPED_SIZE(((vm_offset_t)(1) << 21))-1); | |||
| 1497 | if (l > e) | |||
| 1498 | l = e; | |||
| 1499 | if (*pde & INTEL_PTE_VALID0x00000001) { | |||
| 1500 | spte = (pt_entry_t *)ptetokv(*pde)(((vm_offset_t)(({ pt_entry_t __a = (pt_entry_t) ((*pde) & 0x00007ffffffff000ULL); ((((unsigned long *) 0xF5800000UL)[__a >> 12]) << 12) | (__a & ((1 << 12)-1)) ; })) + 0xC0000000UL)); | |||
| 1501 | spte = &spte[ptenum(s)(((s) >> 12) & 0x1ff)]; | |||
| 1502 | epte = &spte[intel_btop(l-s)(((unsigned long)(l-s)) >> 12)]; | |||
| 1503 | pmap_remove_range(map, s, spte, epte); | |||
| 1504 | } | |||
| 1505 | s = l; | |||
| 1506 | pde++; | |||
| 1507 | } | |||
| 1508 | PMAP_UPDATE_TLBS(map, _s, e){ if ((map)->cpus_using) { hyp_mmuext_op_void(6); } }; | |||
| 1509 | ||||
| 1510 | PMAP_READ_UNLOCK(map, spl)((void)(spl)); | |||
| 1511 | } | |||
| 1512 | ||||
| 1513 | /* | |||
| 1514 | * Routine: pmap_page_protect | |||
| 1515 | * | |||
| 1516 | * Function: | |||
| 1517 | * Lower the permission for all mappings to a given | |||
| 1518 | * page. | |||
| 1519 | */ | |||
| 1520 | void pmap_page_protect( | |||
| 1521 | vm_offset_t phys, | |||
| 1522 | vm_prot_t prot) | |||
| 1523 | { | |||
| 1524 | pv_entry_t pv_h, prev; | |||
| 1525 | pv_entry_t pv_e; | |||
| 1526 | pt_entry_t *pte; | |||
| 1527 | int pai; | |||
| 1528 | pmap_t pmap; | |||
| 1529 | int spl; | |||
| 1530 | boolean_t remove; | |||
| 1531 | ||||
| 1532 | assert(phys != vm_page_fictitious_addr)({ if (!(phys != vm_page_fictitious_addr)) Assert("phys != vm_page_fictitious_addr" , "../i386/intel/pmap.c", 1532); }); | |||
| 1533 | if (!valid_page(phys)(pmap_initialized && pmap_valid_page(phys))) { | |||
| 1534 | /* | |||
| 1535 | * Not a managed page. | |||
| 1536 | */ | |||
| 1537 | return; | |||
| 1538 | } | |||
| 1539 | ||||
| 1540 | /* | |||
| 1541 | * Determine the new protection. | |||
| 1542 | */ | |||
| 1543 | switch (prot) { | |||
| 1544 | case VM_PROT_READ((vm_prot_t) 0x01): | |||
| 1545 | case VM_PROT_READ((vm_prot_t) 0x01)|VM_PROT_EXECUTE((vm_prot_t) 0x04): | |||
| 1546 | remove = FALSE((boolean_t) 0); | |||
| 1547 | break; | |||
| 1548 | case VM_PROT_ALL(((vm_prot_t) 0x01)|((vm_prot_t) 0x02)|((vm_prot_t) 0x04)): | |||
| 1549 | return; /* nothing to do */ | |||
| 1550 | default: | |||
| 1551 | remove = TRUE((boolean_t) 1); | |||
| 1552 | break; | |||
| 1553 | } | |||
| 1554 | ||||
| 1555 | /* | |||
| 1556 | * Lock the pmap system first, since we will be changing | |||
| 1557 | * several pmaps. | |||
| 1558 | */ | |||
| 1559 | ||||
| 1560 | PMAP_WRITE_LOCK(spl)((void)(spl)); | |||
| 1561 | ||||
| 1562 | pai = pa_index(phys)((((vm_size_t)(phys - phys_first_addr)) >> 12)); | |||
| 1563 | pv_h = pai_to_pvh(pai)(&pv_head_table[pai]); | |||
| 1564 | ||||
| 1565 | /* | |||
| 1566 | * Walk down PV list, changing or removing all mappings. | |||
| 1567 | * We do not have to lock the pv_list because we have | |||
| 1568 | * the entire pmap system locked. | |||
| 1569 | */ | |||
| 1570 | if (pv_h->pmap != PMAP_NULL((pmap_t) 0)) { | |||
| 1571 | ||||
| 1572 | prev = pv_e = pv_h; | |||
| 1573 | do { | |||
| 1574 | vm_offset_t va; | |||
| 1575 | ||||
| 1576 | pmap = pv_e->pmap; | |||
| 1577 | /* | |||
| 1578 | * Lock the pmap to block pmap_extract and similar routines. | |||
| 1579 | */ | |||
| 1580 | simple_lock(&pmap->lock); | |||
| 1581 | ||||
| 1582 | va = pv_e->va; | |||
| 1583 | pte = pmap_pte(pmap, va); | |||
| 1584 | ||||
| 1585 | /* | |||
| 1586 | * Consistency checks. | |||
| 1587 | */ | |||
| 1588 | /* assert(*pte & INTEL_PTE_VALID); XXX */ | |||
| 1589 | /* assert(pte_to_phys(*pte) == phys); */ | |||
| 1590 | ||||
| 1591 | /* | |||
| 1592 | * Remove the mapping if new protection is NONE | |||
| 1593 | * or if write-protecting a kernel mapping. | |||
| 1594 | */ | |||
| 1595 | if (remove || pmap == kernel_pmap) { | |||
| 1596 | /* | |||
| 1597 | * Remove the mapping, collecting any modify bits. | |||
| 1598 | */ | |||
| 1599 | if (*pte & INTEL_PTE_WIRED0x00000200) | |||
| 1600 | panic("pmap_remove_all removing a wired page"); | |||
| 1601 | ||||
| 1602 | { | |||
| 1603 | int i = ptes_per_vm_page1; | |||
| 1604 | ||||
| 1605 | do { | |||
| 1606 | pmap_phys_attributes[pai] |= | |||
| 1607 | *pte & (PHYS_MODIFIED0x00000040|PHYS_REFERENCED0x00000020); | |||
| 1608 | #ifdef MACH_PV_PAGETABLES | |||
| 1609 | if (!hyp_mmu_update_pte(kv_to_ma(pte++)({ vm_offset_t __a = (vm_offset_t) (((vm_offset_t)(pte++) - 0xC0000000UL )); (((pt_entry_t) ((mfn_list[(((vm_size_t)(__a)) >> 12 )]))) << 12) | (__a & ((1 << 12)-1)); }), 0)) | |||
| 1610 | panic("%s:%d could not clear pte %p\n",__FILE__"../i386/intel/pmap.c",__LINE__1610,pte-1); | |||
| 1611 | #else /* MACH_PV_PAGETABLES */ | |||
| 1612 | *pte++ = 0; | |||
| 1613 | #endif /* MACH_PV_PAGETABLES */ | |||
| 1614 | } while (--i > 0); | |||
| 1615 | } | |||
| 1616 | ||||
| 1617 | pmap->stats.resident_count--; | |||
| 1618 | ||||
| 1619 | /* | |||
| 1620 | * Remove the pv_entry. | |||
| 1621 | */ | |||
| 1622 | if (pv_e == pv_h) { | |||
| 1623 | /* | |||
| 1624 | * Fix up head later. | |||
| 1625 | */ | |||
| 1626 | pv_h->pmap = PMAP_NULL((pmap_t) 0); | |||
| 1627 | } | |||
| 1628 | else { | |||
| 1629 | /* | |||
| 1630 | * Delete this entry. | |||
| 1631 | */ | |||
| 1632 | prev->next = pv_e->next; | |||
| 1633 | PV_FREE(pv_e){ ; pv_e->next = pv_free_list; pv_free_list = pv_e; ((void )(&pv_free_list_lock)); }; | |||
| 1634 | } | |||
| 1635 | } | |||
| 1636 | else { | |||
| 1637 | /* | |||
| 1638 | * Write-protect. | |||
| 1639 | */ | |||
| 1640 | int i = ptes_per_vm_page1; | |||
| 1641 | ||||
| 1642 | do { | |||
| 1643 | #ifdef MACH_PV_PAGETABLES | |||
| 1644 | if (!hyp_mmu_update_pte(kv_to_ma(pte)({ vm_offset_t __a = (vm_offset_t) (((vm_offset_t)(pte) - 0xC0000000UL )); (((pt_entry_t) ((mfn_list[(((vm_size_t)(__a)) >> 12 )]))) << 12) | (__a & ((1 << 12)-1)); }), *pte & ~INTEL_PTE_WRITE0x00000002)) | |||
| 1645 | panic("%s:%d could not disable write on pte %p\n",__FILE__"../i386/intel/pmap.c",__LINE__1645,pte); | |||
| 1646 | #else /* MACH_PV_PAGETABLES */ | |||
| 1647 | *pte &= ~INTEL_PTE_WRITE0x00000002; | |||
| 1648 | #endif /* MACH_PV_PAGETABLES */ | |||
| 1649 | pte++; | |||
| 1650 | } while (--i > 0); | |||
| 1651 | ||||
| 1652 | /* | |||
| 1653 | * Advance prev. | |||
| 1654 | */ | |||
| 1655 | prev = pv_e; | |||
| 1656 | } | |||
| 1657 | PMAP_UPDATE_TLBS(pmap, va, va + PAGE_SIZE){ if ((pmap)->cpus_using) { hyp_mmuext_op_void(6); } }; | |||
| 1658 | ||||
| 1659 | simple_unlock(&pmap->lock)((void)(&pmap->lock)); | |||
| 1660 | ||||
| 1661 | } while ((pv_e = prev->next) != PV_ENTRY_NULL((pv_entry_t) 0)); | |||
| 1662 | ||||
| 1663 | /* | |||
| 1664 | * If pv_head mapping was removed, fix it up. | |||
| 1665 | */ | |||
| 1666 | if (pv_h->pmap == PMAP_NULL((pmap_t) 0)) { | |||
| 1667 | pv_e = pv_h->next; | |||
| 1668 | if (pv_e != PV_ENTRY_NULL((pv_entry_t) 0)) { | |||
| 1669 | *pv_h = *pv_e; | |||
| 1670 | PV_FREE(pv_e){ ; pv_e->next = pv_free_list; pv_free_list = pv_e; ((void )(&pv_free_list_lock)); }; | |||
| 1671 | } | |||
| 1672 | } | |||
| 1673 | } | |||
| 1674 | ||||
| 1675 | PMAP_WRITE_UNLOCK(spl)((void)(spl)); | |||
| 1676 | } | |||
| 1677 | ||||
| 1678 | /* | |||
| 1679 | * Set the physical protection on the | |||
| 1680 | * specified range of this map as requested. | |||
| 1681 | * Will not increase permissions. | |||
| 1682 | */ | |||
| 1683 | void pmap_protect( | |||
| 1684 | pmap_t map, | |||
| 1685 | vm_offset_t s, | |||
| 1686 | vm_offset_t e, | |||
| 1687 | vm_prot_t prot) | |||
| 1688 | { | |||
| 1689 | pt_entry_t *pde; | |||
| 1690 | pt_entry_t *spte, *epte; | |||
| 1691 | vm_offset_t l; | |||
| 1692 | int spl; | |||
| 1693 | vm_offset_t _s = s; | |||
| 1694 | ||||
| 1695 | if (map == PMAP_NULL((pmap_t) 0)) | |||
| ||||
| 1696 | return; | |||
| 1697 | ||||
| 1698 | /* | |||
| 1699 | * Determine the new protection. | |||
| 1700 | */ | |||
| 1701 | switch (prot) { | |||
| 1702 | case VM_PROT_READ((vm_prot_t) 0x01): | |||
| 1703 | case VM_PROT_READ((vm_prot_t) 0x01)|VM_PROT_EXECUTE((vm_prot_t) 0x04): | |||
| 1704 | break; | |||
| 1705 | case VM_PROT_READ((vm_prot_t) 0x01)|VM_PROT_WRITE((vm_prot_t) 0x02): | |||
| 1706 | case VM_PROT_ALL(((vm_prot_t) 0x01)|((vm_prot_t) 0x02)|((vm_prot_t) 0x04)): | |||
| 1707 | return; /* nothing to do */ | |||
| 1708 | default: | |||
| 1709 | pmap_remove(map, s, e); | |||
| 1710 | return; | |||
| 1711 | } | |||
| 1712 | ||||
| 1713 | /* | |||
| 1714 | * If write-protecting in the kernel pmap, | |||
| 1715 | * remove the mappings; the i386 ignores | |||
| 1716 | * the write-permission bit in kernel mode. | |||
| 1717 | * | |||
| 1718 | * XXX should be #if'd for i386 | |||
| 1719 | */ | |||
| 1720 | if (map == kernel_pmap) { | |||
| 1721 | pmap_remove(map, s, e); | |||
| 1722 | return; | |||
| 1723 | } | |||
| 1724 | ||||
| 1725 | SPLVM(spl)((void)(spl)); | |||
| 1726 | simple_lock(&map->lock); | |||
| 1727 | ||||
| 1728 | pde = pmap_pde(map, s); | |||
| 1729 | while (s < e) { | |||
| 1730 | l = (s + PDE_MAPPED_SIZE(((vm_offset_t)(1) << 21))) & ~(PDE_MAPPED_SIZE(((vm_offset_t)(1) << 21))-1); | |||
| 1731 | if (l > e) | |||
| 1732 | l = e; | |||
| 1733 | if (*pde & INTEL_PTE_VALID0x00000001) { | |||
| 1734 | spte = (pt_entry_t *)ptetokv(*pde)(((vm_offset_t)(({ pt_entry_t __a = (pt_entry_t) ((*pde) & 0x00007ffffffff000ULL); ((((unsigned long *) 0xF5800000UL)[__a >> 12]) << 12) | (__a & ((1 << 12)-1)) ; })) + 0xC0000000UL)); | |||
| 1735 | spte = &spte[ptenum(s)(((s) >> 12) & 0x1ff)]; | |||
| 1736 | epte = &spte[intel_btop(l-s)(((unsigned long)(l-s)) >> 12)]; | |||
| 1737 | ||||
| 1738 | #ifdef MACH_PV_PAGETABLES | |||
| 1739 | int n, i = 0; | |||
| 1740 | struct mmu_update update[HYP_BATCH_MMU_UPDATES256]; | |||
| 1741 | #endif /* MACH_PV_PAGETABLES */ | |||
| 1742 | ||||
| 1743 | while (spte < epte) { | |||
| 1744 | if (*spte & INTEL_PTE_VALID0x00000001) { | |||
| 1745 | #ifdef MACH_PV_PAGETABLES | |||
| 1746 | update[i].ptr = kv_to_ma(spte)({ vm_offset_t __a = (vm_offset_t) (((vm_offset_t)(spte) - 0xC0000000UL )); (((pt_entry_t) ((mfn_list[(((vm_size_t)(__a)) >> 12 )]))) << 12) | (__a & ((1 << 12)-1)); }); | |||
| 1747 | update[i].val = *spte & ~INTEL_PTE_WRITE0x00000002; | |||
| 1748 | i++; | |||
| 1749 | if (i == HYP_BATCH_MMU_UPDATES256) { | |||
| 1750 | hyp_mmu_update(kvtolin(&update)((vm_offset_t)(&update) - 0xC0000000UL + ((0xc0000000UL)) ), i, kvtolin(&n)((vm_offset_t)(&n) - 0xC0000000UL + ((0xc0000000UL))), DOMID_SELF(0x7FF0U)); | |||
| 1751 | if (n != i) | |||
| 1752 | panic("couldn't pmap_protect\n"); | |||
| 1753 | i = 0; | |||
| 1754 | } | |||
| 1755 | #else /* MACH_PV_PAGETABLES */ | |||
| 1756 | *spte &= ~INTEL_PTE_WRITE0x00000002; | |||
| 1757 | #endif /* MACH_PV_PAGETABLES */ | |||
| 1758 | } | |||
| 1759 | spte++; | |||
| 1760 | } | |||
| 1761 | #ifdef MACH_PV_PAGETABLES | |||
| 1762 | if (i > HYP_BATCH_MMU_UPDATES256) | |||
| 1763 | panic("overflowed array in pmap_protect"); | |||
| 1764 | hyp_mmu_update(kvtolin(&update)((vm_offset_t)(&update) - 0xC0000000UL + ((0xc0000000UL)) ), i, kvtolin(&n)((vm_offset_t)(&n) - 0xC0000000UL + ((0xc0000000UL))), DOMID_SELF(0x7FF0U)); | |||
| 1765 | if (n != i) | |||
| ||||
| 1766 | panic("couldn't pmap_protect\n"); | |||
| 1767 | #endif /* MACH_PV_PAGETABLES */ | |||
| 1768 | } | |||
| 1769 | s = l; | |||
| 1770 | pde++; | |||
| 1771 | } | |||
| 1772 | PMAP_UPDATE_TLBS(map, _s, e){ if ((map)->cpus_using) { hyp_mmuext_op_void(6); } }; | |||
| 1773 | ||||
| 1774 | simple_unlock(&map->lock)((void)(&map->lock)); | |||
| 1775 | SPLX(spl)((void)(spl)); | |||
| 1776 | } | |||
| 1777 | ||||
| 1778 | /* | |||
| 1779 | * Insert the given physical page (p) at | |||
| 1780 | * the specified virtual address (v) in the | |||
| 1781 | * target physical map with the protection requested. | |||
| 1782 | * | |||
| 1783 | * If specified, the page will be wired down, meaning | |||
| 1784 | * that the related pte can not be reclaimed. | |||
| 1785 | * | |||
| 1786 | * NB: This is the only routine which MAY NOT lazy-evaluate | |||
| 1787 | * or lose information. That is, this routine must actually | |||
| 1788 | * insert this page into the given map NOW. | |||
| 1789 | */ | |||
| 1790 | void pmap_enter( | |||
| 1791 | pmap_t pmap, | |||
| 1792 | vm_offset_t v, | |||
| 1793 | vm_offset_t pa, | |||
| 1794 | vm_prot_t prot, | |||
| 1795 | boolean_t wired) | |||
| 1796 | { | |||
| 1797 | pt_entry_t *pte; | |||
| 1798 | pv_entry_t pv_h; | |||
| 1799 | int i, pai; | |||
| 1800 | pv_entry_t pv_e; | |||
| 1801 | pt_entry_t template; | |||
| 1802 | int spl; | |||
| 1803 | vm_offset_t old_pa; | |||
| 1804 | ||||
| 1805 | assert(pa != vm_page_fictitious_addr)({ if (!(pa != vm_page_fictitious_addr)) Assert("pa != vm_page_fictitious_addr" , "../i386/intel/pmap.c", 1805); }); | |||
| 1806 | if (pmap_debug) printf("pmap(%lx, %lx)\n", v, pa); | |||
| 1807 | if (pmap == PMAP_NULL((pmap_t) 0)) | |||
| 1808 | return; | |||
| 1809 | ||||
| 1810 | #if !MACH_KDB1 | |||
| 1811 | if (pmap == kernel_pmap && (v < kernel_virtual_start || v >= kernel_virtual_end)) | |||
| 1812 | panic("pmap_enter(%p, %p) falls in physical memory area!\n", v, pa); | |||
| 1813 | #endif | |||
| 1814 | if (pmap == kernel_pmap && (prot & VM_PROT_WRITE((vm_prot_t) 0x02)) == 0 | |||
| 1815 | && !wired /* hack for io_wire */ ) { | |||
| 1816 | /* | |||
| 1817 | * Because the 386 ignores write protection in kernel mode, | |||
| 1818 | * we cannot enter a read-only kernel mapping, and must | |||
| 1819 | * remove an existing mapping if changing it. | |||
| 1820 | * | |||
| 1821 | * XXX should be #if'd for i386 | |||
| 1822 | */ | |||
| 1823 | PMAP_READ_LOCK(pmap, spl)((void)(spl)); | |||
| 1824 | ||||
| 1825 | pte = pmap_pte(pmap, v); | |||
| 1826 | if (pte != PT_ENTRY_NULL((pt_entry_t *) 0) && *pte != 0) { | |||
| 1827 | /* | |||
| 1828 | * Invalidate the translation buffer, | |||
| 1829 | * then remove the mapping. | |||
| 1830 | */ | |||
| 1831 | pmap_remove_range(pmap, v, pte, | |||
| 1832 | pte + ptes_per_vm_page1); | |||
| 1833 | PMAP_UPDATE_TLBS(pmap, v, v + PAGE_SIZE){ if ((pmap)->cpus_using) { hyp_mmuext_op_void(6); } }; | |||
| 1834 | } | |||
| 1835 | PMAP_READ_UNLOCK(pmap, spl)((void)(spl)); | |||
| 1836 | return; | |||
| 1837 | } | |||
| 1838 | ||||
| 1839 | /* | |||
| 1840 | * Must allocate a new pvlist entry while we're unlocked; | |||
| 1841 | * Allocating may cause pageout (which will lock the pmap system). | |||
| 1842 | * If we determine we need a pvlist entry, we will unlock | |||
| 1843 | * and allocate one. Then we will retry, throughing away | |||
| 1844 | * the allocated entry later (if we no longer need it). | |||
| 1845 | */ | |||
| 1846 | pv_e = PV_ENTRY_NULL((pv_entry_t) 0); | |||
| 1847 | Retry: | |||
| 1848 | PMAP_READ_LOCK(pmap, spl)((void)(spl)); | |||
| 1849 | ||||
| 1850 | /* | |||
| 1851 | * Expand pmap to include this pte. Assume that | |||
| 1852 | * pmap is always expanded to include enough hardware | |||
| 1853 | * pages to map one VM page. | |||
| 1854 | */ | |||
| 1855 | ||||
| 1856 | while ((pte = pmap_pte(pmap, v)) == PT_ENTRY_NULL((pt_entry_t *) 0)) { | |||
| 1857 | /* | |||
| 1858 | * Need to allocate a new page-table page. | |||
| 1859 | */ | |||
| 1860 | vm_offset_t ptp; | |||
| 1861 | pt_entry_t *pdp; | |||
| 1862 | int i; | |||
| 1863 | ||||
| 1864 | if (pmap == kernel_pmap) { | |||
| 1865 | /* | |||
| 1866 | * Would have to enter the new page-table page in | |||
| 1867 | * EVERY pmap. | |||
| 1868 | */ | |||
| 1869 | panic("pmap_expand kernel pmap to %#x", v); | |||
| 1870 | } | |||
| 1871 | ||||
| 1872 | /* | |||
| 1873 | * Unlock the pmap and allocate a new page-table page. | |||
| 1874 | */ | |||
| 1875 | PMAP_READ_UNLOCK(pmap, spl)((void)(spl)); | |||
| 1876 | ||||
| 1877 | ptp = phystokv(pmap_page_table_page_alloc())((vm_offset_t)(pmap_page_table_page_alloc()) + 0xC0000000UL); | |||
| 1878 | ||||
| 1879 | /* | |||
| 1880 | * Re-lock the pmap and check that another thread has | |||
| 1881 | * not already allocated the page-table page. If it | |||
| 1882 | * has, discard the new page-table page (and try | |||
| 1883 | * again to make sure). | |||
| 1884 | */ | |||
| 1885 | PMAP_READ_LOCK(pmap, spl)((void)(spl)); | |||
| 1886 | ||||
| 1887 | if (pmap_pte(pmap, v) != PT_ENTRY_NULL((pt_entry_t *) 0)) { | |||
| 1888 | /* | |||
| 1889 | * Oops... | |||
| 1890 | */ | |||
| 1891 | PMAP_READ_UNLOCK(pmap, spl)((void)(spl)); | |||
| 1892 | pmap_page_table_page_dealloc(kvtophys(ptp)); | |||
| 1893 | PMAP_READ_LOCK(pmap, spl)((void)(spl)); | |||
| 1894 | continue; | |||
| 1895 | } | |||
| 1896 | ||||
| 1897 | /* | |||
| 1898 | * Enter the new page table page in the page directory. | |||
| 1899 | */ | |||
| 1900 | i = ptes_per_vm_page1; | |||
| 1901 | /*XX pdp = &pmap->dirbase[pdenum(v) & ~(i-1)];*/ | |||
| 1902 | pdp = pmap_pde(pmap, v); | |||
| 1903 | do { | |||
| 1904 | #ifdef MACH_PV_PAGETABLES | |||
| 1905 | pmap_set_page_readonly((void *) ptp); | |||
| 1906 | if (!hyp_mmuext_op_mfn (MMUEXT_PIN_L1_TABLE0, kv_to_mfn(ptp)((mfn_list[(((vm_size_t)(((vm_offset_t)(ptp) - 0xC0000000UL)) ) >> 12)])))) | |||
| 1907 | panic("couldn't pin page %p(%p)\n",ptp,(vm_offset_t) kv_to_ma(ptp)({ vm_offset_t __a = (vm_offset_t) (((vm_offset_t)(ptp) - 0xC0000000UL )); (((pt_entry_t) ((mfn_list[(((vm_size_t)(__a)) >> 12 )]))) << 12) | (__a & ((1 << 12)-1)); })); | |||
| 1908 | if (!hyp_mmu_update_pte(pa_to_ma(kvtophys((vm_offset_t)pdp))({ vm_offset_t __a = (vm_offset_t) (kvtophys((vm_offset_t)pdp )); (((pt_entry_t) ((mfn_list[(((vm_size_t)(__a)) >> 12 )]))) << 12) | (__a & ((1 << 12)-1)); }), | |||
| 1909 | pa_to_pte(pa_to_ma(kvtophys(ptp)))((({ vm_offset_t __a = (vm_offset_t) (kvtophys(ptp)); (((pt_entry_t ) ((mfn_list[(((vm_size_t)(__a)) >> 12)]))) << 12 ) | (__a & ((1 << 12)-1)); })) & 0x00007ffffffff000ULL ) | INTEL_PTE_VALID0x00000001 | |||
| 1910 | | INTEL_PTE_USER0x00000004 | |||
| 1911 | | INTEL_PTE_WRITE0x00000002)) | |||
| 1912 | panic("%s:%d could not set pde %p(%p,%p) to %p(%p,%p) %p\n",__FILE__"../i386/intel/pmap.c",__LINE__1912, pdp, kvtophys((vm_offset_t)pdp), (vm_offset_t) pa_to_ma(kvtophys((vm_offset_t)pdp))({ vm_offset_t __a = (vm_offset_t) (kvtophys((vm_offset_t)pdp )); (((pt_entry_t) ((mfn_list[(((vm_size_t)(__a)) >> 12 )]))) << 12) | (__a & ((1 << 12)-1)); }), ptp, kvtophys(ptp), (vm_offset_t) pa_to_ma(kvtophys(ptp))({ vm_offset_t __a = (vm_offset_t) (kvtophys(ptp)); (((pt_entry_t ) ((mfn_list[(((vm_size_t)(__a)) >> 12)]))) << 12 ) | (__a & ((1 << 12)-1)); }), (vm_offset_t) pa_to_pte(kv_to_ma(ptp))((({ vm_offset_t __a = (vm_offset_t) (((vm_offset_t)(ptp) - 0xC0000000UL )); (((pt_entry_t) ((mfn_list[(((vm_size_t)(__a)) >> 12 )]))) << 12) | (__a & ((1 << 12)-1)); })) & 0x00007ffffffff000ULL)); | |||
| 1913 | #else /* MACH_PV_PAGETABLES */ | |||
| 1914 | *pdp = pa_to_pte(kvtophys(ptp))((kvtophys(ptp)) & 0x00007ffffffff000ULL) | INTEL_PTE_VALID0x00000001 | |||
| 1915 | | INTEL_PTE_USER0x00000004 | |||
| 1916 | | INTEL_PTE_WRITE0x00000002; | |||
| 1917 | #endif /* MACH_PV_PAGETABLES */ | |||
| 1918 | pdp++; | |||
| 1919 | ptp += INTEL_PGBYTES4096; | |||
| 1920 | } while (--i > 0); | |||
| 1921 | ||||
| 1922 | /* | |||
| 1923 | * Now, get the address of the page-table entry. | |||
| 1924 | */ | |||
| 1925 | continue; | |||
| 1926 | } | |||
| 1927 | ||||
| 1928 | /* | |||
| 1929 | * Special case if the physical page is already mapped | |||
| 1930 | * at this address. | |||
| 1931 | */ | |||
| 1932 | old_pa = pte_to_pa(*pte)({ pt_entry_t __a = (pt_entry_t) ((*pte) & 0x00007ffffffff000ULL ); ((((unsigned long *) 0xF5800000UL)[__a >> 12]) << 12) | (__a & ((1 << 12)-1)); }); | |||
| 1933 | if (*pte && old_pa == pa) { | |||
| 1934 | /* | |||
| 1935 | * May be changing its wired attribute or protection | |||
| 1936 | */ | |||
| 1937 | ||||
| 1938 | if (wired && !(*pte & INTEL_PTE_WIRED0x00000200)) | |||
| 1939 | pmap->stats.wired_count++; | |||
| 1940 | else if (!wired && (*pte & INTEL_PTE_WIRED0x00000200)) | |||
| 1941 | pmap->stats.wired_count--; | |||
| 1942 | ||||
| 1943 | template = pa_to_pte(pa)((pa) & 0x00007ffffffff000ULL) | INTEL_PTE_VALID0x00000001; | |||
| 1944 | if (pmap != kernel_pmap) | |||
| 1945 | template |= INTEL_PTE_USER0x00000004; | |||
| 1946 | if (prot & VM_PROT_WRITE((vm_prot_t) 0x02)) | |||
| 1947 | template |= INTEL_PTE_WRITE0x00000002; | |||
| 1948 | if (machine_slot[cpu_number()(0)].cpu_type >= CPU_TYPE_I486((cpu_type_t) 17) | |||
| 1949 | && pa >= phys_last_addr) | |||
| 1950 | template |= INTEL_PTE_NCACHE0x00000010|INTEL_PTE_WTHRU0x00000008; | |||
| 1951 | if (wired) | |||
| 1952 | template |= INTEL_PTE_WIRED0x00000200; | |||
| 1953 | i = ptes_per_vm_page1; | |||
| 1954 | do { | |||
| 1955 | if (*pte & INTEL_PTE_MOD0x00000040) | |||
| 1956 | template |= INTEL_PTE_MOD0x00000040; | |||
| 1957 | #ifdef MACH_PV_PAGETABLES | |||
| 1958 | if (!hyp_mmu_update_pte(kv_to_ma(pte)({ vm_offset_t __a = (vm_offset_t) (((vm_offset_t)(pte) - 0xC0000000UL )); (((pt_entry_t) ((mfn_list[(((vm_size_t)(__a)) >> 12 )]))) << 12) | (__a & ((1 << 12)-1)); }), pa_to_ma(template)({ vm_offset_t __a = (vm_offset_t) (template); (((pt_entry_t) ((mfn_list[(((vm_size_t)(__a)) >> 12)]))) << 12) | (__a & ((1 << 12)-1)); }))) | |||
| 1959 | panic("%s:%d could not set pte %p to %p\n",__FILE__"../i386/intel/pmap.c",__LINE__1959,pte,template); | |||
| 1960 | #else /* MACH_PV_PAGETABLES */ | |||
| 1961 | WRITE_PTE(pte, template)*(pte) = template?({ vm_offset_t __a = (vm_offset_t) (template ); (((pt_entry_t) ((mfn_list[(((vm_size_t)(__a)) >> 12) ]))) << 12) | (__a & ((1 << 12)-1)); }):0; | |||
| 1962 | #endif /* MACH_PV_PAGETABLES */ | |||
| 1963 | pte++; | |||
| 1964 | pte_increment_pa(template)((template) += 0xfff +1); | |||
| 1965 | } while (--i > 0); | |||
| 1966 | PMAP_UPDATE_TLBS(pmap, v, v + PAGE_SIZE){ if ((pmap)->cpus_using) { hyp_mmuext_op_void(6); } }; | |||
| 1967 | } | |||
| 1968 | else { | |||
| 1969 | ||||
| 1970 | /* | |||
| 1971 | * Remove old mapping from the PV list if necessary. | |||
| 1972 | */ | |||
| 1973 | if (*pte) { | |||
| 1974 | /* | |||
| 1975 | * Don't free the pte page if removing last | |||
| 1976 | * mapping - we will immediately replace it. | |||
| 1977 | */ | |||
| 1978 | pmap_remove_range(pmap, v, pte, | |||
| 1979 | pte + ptes_per_vm_page1); | |||
| 1980 | PMAP_UPDATE_TLBS(pmap, v, v + PAGE_SIZE){ if ((pmap)->cpus_using) { hyp_mmuext_op_void(6); } }; | |||
| 1981 | } | |||
| 1982 | ||||
| 1983 | if (valid_page(pa)(pmap_initialized && pmap_valid_page(pa))) { | |||
| 1984 | ||||
| 1985 | /* | |||
| 1986 | * Enter the mapping in the PV list for this | |||
| 1987 | * physical page. | |||
| 1988 | */ | |||
| 1989 | ||||
| 1990 | pai = pa_index(pa)((((vm_size_t)(pa - phys_first_addr)) >> 12)); | |||
| 1991 | LOCK_PVH(pai); | |||
| 1992 | pv_h = pai_to_pvh(pai)(&pv_head_table[pai]); | |||
| 1993 | ||||
| 1994 | if (pv_h->pmap == PMAP_NULL((pmap_t) 0)) { | |||
| 1995 | /* | |||
| 1996 | * No mappings yet | |||
| 1997 | */ | |||
| 1998 | pv_h->va = v; | |||
| 1999 | pv_h->pmap = pmap; | |||
| 2000 | pv_h->next = PV_ENTRY_NULL((pv_entry_t) 0); | |||
| 2001 | } | |||
| 2002 | else { | |||
| 2003 | #if DEBUG | |||
| 2004 | { | |||
| 2005 | /* check that this mapping is not already there */ | |||
| 2006 | pv_entry_t e = pv_h; | |||
| 2007 | while (e != PV_ENTRY_NULL((pv_entry_t) 0)) { | |||
| 2008 | if (e->pmap == pmap && e->va == v) | |||
| 2009 | panic("pmap_enter: already in pv_list"); | |||
| 2010 | e = e->next; | |||
| 2011 | } | |||
| 2012 | } | |||
| 2013 | #endif /* DEBUG */ | |||
| 2014 | ||||
| 2015 | /* | |||
| 2016 | * Add new pv_entry after header. | |||
| 2017 | */ | |||
| 2018 | if (pv_e == PV_ENTRY_NULL((pv_entry_t) 0)) { | |||
| 2019 | PV_ALLOC(pv_e){ ; if ((pv_e = pv_free_list) != 0) { pv_free_list = pv_e-> next; } ((void)(&pv_free_list_lock)); }; | |||
| 2020 | if (pv_e == PV_ENTRY_NULL((pv_entry_t) 0)) { | |||
| 2021 | UNLOCK_PVH(pai); | |||
| 2022 | PMAP_READ_UNLOCK(pmap, spl)((void)(spl)); | |||
| 2023 | ||||
| 2024 | /* | |||
| 2025 | * Refill from cache. | |||
| 2026 | */ | |||
| 2027 | pv_e = (pv_entry_t) kmem_cache_alloc(&pv_list_cache); | |||
| 2028 | goto Retry; | |||
| 2029 | } | |||
| 2030 | } | |||
| 2031 | pv_e->va = v; | |||
| 2032 | pv_e->pmap = pmap; | |||
| 2033 | pv_e->next = pv_h->next; | |||
| 2034 | pv_h->next = pv_e; | |||
| 2035 | /* | |||
| 2036 | * Remember that we used the pvlist entry. | |||
| 2037 | */ | |||
| 2038 | pv_e = PV_ENTRY_NULL((pv_entry_t) 0); | |||
| 2039 | } | |||
| 2040 | UNLOCK_PVH(pai); | |||
| 2041 | } | |||
| 2042 | ||||
| 2043 | /* | |||
| 2044 | * And count the mapping. | |||
| 2045 | */ | |||
| 2046 | ||||
| 2047 | pmap->stats.resident_count++; | |||
| 2048 | if (wired) | |||
| 2049 | pmap->stats.wired_count++; | |||
| 2050 | ||||
| 2051 | /* | |||
| 2052 | * Build a template to speed up entering - | |||
| 2053 | * only the pfn changes. | |||
| 2054 | */ | |||
| 2055 | template = pa_to_pte(pa)((pa) & 0x00007ffffffff000ULL) | INTEL_PTE_VALID0x00000001; | |||
| 2056 | if (pmap != kernel_pmap) | |||
| 2057 | template |= INTEL_PTE_USER0x00000004; | |||
| 2058 | if (prot & VM_PROT_WRITE((vm_prot_t) 0x02)) | |||
| 2059 | template |= INTEL_PTE_WRITE0x00000002; | |||
| 2060 | if (machine_slot[cpu_number()(0)].cpu_type >= CPU_TYPE_I486((cpu_type_t) 17) | |||
| 2061 | && pa >= phys_last_addr) | |||
| 2062 | template |= INTEL_PTE_NCACHE0x00000010|INTEL_PTE_WTHRU0x00000008; | |||
| 2063 | if (wired) | |||
| 2064 | template |= INTEL_PTE_WIRED0x00000200; | |||
| 2065 | i = ptes_per_vm_page1; | |||
| 2066 | do { | |||
| 2067 | #ifdef MACH_PV_PAGETABLES | |||
| 2068 | if (!(hyp_mmu_update_pte(kv_to_ma(pte)({ vm_offset_t __a = (vm_offset_t) (((vm_offset_t)(pte) - 0xC0000000UL )); (((pt_entry_t) ((mfn_list[(((vm_size_t)(__a)) >> 12 )]))) << 12) | (__a & ((1 << 12)-1)); }), pa_to_ma(template)({ vm_offset_t __a = (vm_offset_t) (template); (((pt_entry_t) ((mfn_list[(((vm_size_t)(__a)) >> 12)]))) << 12) | (__a & ((1 << 12)-1)); })))) | |||
| 2069 | panic("%s:%d could not set pte %p to %p\n",__FILE__"../i386/intel/pmap.c",__LINE__2069,pte,template); | |||
| 2070 | #else /* MACH_PV_PAGETABLES */ | |||
| 2071 | WRITE_PTE(pte, template)*(pte) = template?({ vm_offset_t __a = (vm_offset_t) (template ); (((pt_entry_t) ((mfn_list[(((vm_size_t)(__a)) >> 12) ]))) << 12) | (__a & ((1 << 12)-1)); }):0; | |||
| 2072 | #endif /* MACH_PV_PAGETABLES */ | |||
| 2073 | pte++; | |||
| 2074 | pte_increment_pa(template)((template) += 0xfff +1); | |||
| 2075 | } while (--i > 0); | |||
| 2076 | } | |||
| 2077 | ||||
| 2078 | if (pv_e != PV_ENTRY_NULL((pv_entry_t) 0)) { | |||
| 2079 | PV_FREE(pv_e){ ; pv_e->next = pv_free_list; pv_free_list = pv_e; ((void )(&pv_free_list_lock)); }; | |||
| 2080 | } | |||
| 2081 | ||||
| 2082 | PMAP_READ_UNLOCK(pmap, spl)((void)(spl)); | |||
| 2083 | } | |||
| 2084 | ||||
| 2085 | /* | |||
| 2086 | * Routine: pmap_change_wiring | |||
| 2087 | * Function: Change the wiring attribute for a map/virtual-address | |||
| 2088 | * pair. | |||
| 2089 | * In/out conditions: | |||
| 2090 | * The mapping must already exist in the pmap. | |||
| 2091 | */ | |||
| 2092 | void pmap_change_wiring( | |||
| 2093 | pmap_t map, | |||
| 2094 | vm_offset_t v, | |||
| 2095 | boolean_t wired) | |||
| 2096 | { | |||
| 2097 | pt_entry_t *pte; | |||
| 2098 | int i; | |||
| 2099 | int spl; | |||
| 2100 | ||||
| 2101 | /* | |||
| 2102 | * We must grab the pmap system lock because we may | |||
| 2103 | * change a pte_page queue. | |||
| 2104 | */ | |||
| 2105 | PMAP_READ_LOCK(map, spl)((void)(spl)); | |||
| 2106 | ||||
| 2107 | if ((pte = pmap_pte(map, v)) == PT_ENTRY_NULL((pt_entry_t *) 0)) | |||
| 2108 | panic("pmap_change_wiring: pte missing"); | |||
| 2109 | ||||
| 2110 | if (wired && !(*pte & INTEL_PTE_WIRED0x00000200)) { | |||
| 2111 | /* | |||
| 2112 | * wiring down mapping | |||
| 2113 | */ | |||
| 2114 | map->stats.wired_count++; | |||
| 2115 | i = ptes_per_vm_page1; | |||
| 2116 | do { | |||
| 2117 | *pte++ |= INTEL_PTE_WIRED0x00000200; | |||
| 2118 | } while (--i > 0); | |||
| 2119 | } | |||
| 2120 | else if (!wired && (*pte & INTEL_PTE_WIRED0x00000200)) { | |||
| 2121 | /* | |||
| 2122 | * unwiring mapping | |||
| 2123 | */ | |||
| 2124 | map->stats.wired_count--; | |||
| 2125 | i = ptes_per_vm_page1; | |||
| 2126 | do { | |||
| 2127 | #ifdef MACH_PV_PAGETABLES | |||
| 2128 | if (!(hyp_mmu_update_pte(kv_to_ma(pte)({ vm_offset_t __a = (vm_offset_t) (((vm_offset_t)(pte) - 0xC0000000UL )); (((pt_entry_t) ((mfn_list[(((vm_size_t)(__a)) >> 12 )]))) << 12) | (__a & ((1 << 12)-1)); }), *pte & ~INTEL_PTE_WIRED0x00000200))) | |||
| 2129 | panic("%s:%d could not wire down pte %p\n",__FILE__"../i386/intel/pmap.c",__LINE__2129,pte); | |||
| 2130 | #else /* MACH_PV_PAGETABLES */ | |||
| 2131 | *pte &= ~INTEL_PTE_WIRED0x00000200; | |||
| 2132 | #endif /* MACH_PV_PAGETABLES */ | |||
| 2133 | pte++; | |||
| 2134 | } while (--i > 0); | |||
| 2135 | } | |||
| 2136 | ||||
| 2137 | PMAP_READ_UNLOCK(map, spl)((void)(spl)); | |||
| 2138 | } | |||
| 2139 | ||||
| 2140 | /* | |||
| 2141 | * Routine: pmap_extract | |||
| 2142 | * Function: | |||
| 2143 | * Extract the physical page address associated | |||
| 2144 | * with the given map/virtual_address pair. | |||
| 2145 | */ | |||
| 2146 | ||||
| 2147 | vm_offset_t pmap_extract( | |||
| 2148 | pmap_t pmap, | |||
| 2149 | vm_offset_t va) | |||
| 2150 | { | |||
| 2151 | pt_entry_t *pte; | |||
| 2152 | vm_offset_t pa; | |||
| 2153 | int spl; | |||
| 2154 | ||||
| 2155 | SPLVM(spl)((void)(spl)); | |||
| 2156 | simple_lock(&pmap->lock); | |||
| 2157 | if ((pte = pmap_pte(pmap, va)) == PT_ENTRY_NULL((pt_entry_t *) 0)) | |||
| 2158 | pa = (vm_offset_t) 0; | |||
| 2159 | else if (!(*pte & INTEL_PTE_VALID0x00000001)) | |||
| 2160 | pa = (vm_offset_t) 0; | |||
| 2161 | else | |||
| 2162 | pa = pte_to_pa(*pte)({ pt_entry_t __a = (pt_entry_t) ((*pte) & 0x00007ffffffff000ULL ); ((((unsigned long *) 0xF5800000UL)[__a >> 12]) << 12) | (__a & ((1 << 12)-1)); }) + (va & INTEL_OFFMASK0xfff); | |||
| 2163 | simple_unlock(&pmap->lock)((void)(&pmap->lock)); | |||
| 2164 | SPLX(spl)((void)(spl)); | |||
| 2165 | return(pa); | |||
| 2166 | } | |||
| 2167 | ||||
| 2168 | /* | |||
| 2169 | * Copy the range specified by src_addr/len | |||
| 2170 | * from the source map to the range dst_addr/len | |||
| 2171 | * in the destination map. | |||
| 2172 | * | |||
| 2173 | * This routine is only advisory and need not do anything. | |||
| 2174 | */ | |||
| 2175 | #if 0 | |||
| 2176 | void pmap_copy(dst_pmap, src_pmap, dst_addr, len, src_addr) | |||
| 2177 | pmap_t dst_pmap; | |||
| 2178 | pmap_t src_pmap; | |||
| 2179 | vm_offset_t dst_addr; | |||
| 2180 | vm_size_t len; | |||
| 2181 | vm_offset_t src_addr; | |||
| 2182 | { | |||
| 2183 | } | |||
| 2184 | #endif /* 0 */ | |||
| 2185 | ||||
| 2186 | /* | |||
| 2187 | * Routine: pmap_collect | |||
| 2188 | * Function: | |||
| 2189 | * Garbage collects the physical map system for | |||
| 2190 | * pages which are no longer used. | |||
| 2191 | * Success need not be guaranteed -- that is, there | |||
| 2192 | * may well be pages which are not referenced, but | |||
| 2193 | * others may be collected. | |||
| 2194 | * Usage: | |||
| 2195 | * Called by the pageout daemon when pages are scarce. | |||
| 2196 | */ | |||
| 2197 | void pmap_collect(pmap_t p) | |||
| 2198 | { | |||
| 2199 | pt_entry_t *pdp, *ptp; | |||
| 2200 | pt_entry_t *eptp; | |||
| 2201 | vm_offset_t pa; | |||
| 2202 | int spl, wired; | |||
| 2203 | ||||
| 2204 | if (p == PMAP_NULL((pmap_t) 0)) | |||
| 2205 | return; | |||
| 2206 | ||||
| 2207 | if (p == kernel_pmap) | |||
| 2208 | return; | |||
| 2209 | ||||
| 2210 | /* | |||
| 2211 | * Garbage collect map. | |||
| 2212 | */ | |||
| 2213 | PMAP_READ_LOCK(p, spl)((void)(spl)); | |||
| 2214 | for (pdp = p->dirbase; | |||
| 2215 | pdp < &p->dirbase[lin2pdenum(LINEAR_MIN_KERNEL_ADDRESS)(((((0xc0000000UL))) >> 21) & 0x7ff)]; | |||
| 2216 | pdp += ptes_per_vm_page1) | |||
| 2217 | { | |||
| 2218 | if (*pdp & INTEL_PTE_VALID0x00000001) { | |||
| 2219 | ||||
| 2220 | pa = pte_to_pa(*pdp)({ pt_entry_t __a = (pt_entry_t) ((*pdp) & 0x00007ffffffff000ULL ); ((((unsigned long *) 0xF5800000UL)[__a >> 12]) << 12) | (__a & ((1 << 12)-1)); }); | |||
| 2221 | ptp = (pt_entry_t *)phystokv(pa)((vm_offset_t)(pa) + 0xC0000000UL); | |||
| 2222 | eptp = ptp + NPTES((((unsigned long)(1)) << 12)/sizeof(pt_entry_t))*ptes_per_vm_page1; | |||
| 2223 | ||||
| 2224 | /* | |||
| 2225 | * If the pte page has any wired mappings, we cannot | |||
| 2226 | * free it. | |||
| 2227 | */ | |||
| 2228 | wired = 0; | |||
| 2229 | { | |||
| 2230 | pt_entry_t *ptep; | |||
| 2231 | for (ptep = ptp; ptep < eptp; ptep++) { | |||
| 2232 | if (*ptep & INTEL_PTE_WIRED0x00000200) { | |||
| 2233 | wired = 1; | |||
| 2234 | break; | |||
| 2235 | } | |||
| 2236 | } | |||
| 2237 | } | |||
| 2238 | if (!wired) { | |||
| 2239 | /* | |||
| 2240 | * Remove the virtual addresses mapped by this pte page. | |||
| 2241 | */ | |||
| 2242 | { /*XXX big hack*/ | |||
| 2243 | vm_offset_t va = pdenum2lin(pdp - p->dirbase)((vm_offset_t)(pdp - p->dirbase) << 21); | |||
| 2244 | if (p == kernel_pmap) | |||
| 2245 | va = lintokv(va)((vm_offset_t)(va) - ((0xc0000000UL)) + 0xC0000000UL); | |||
| 2246 | pmap_remove_range(p, | |||
| 2247 | va, | |||
| 2248 | ptp, | |||
| 2249 | eptp); | |||
| 2250 | } | |||
| 2251 | ||||
| 2252 | /* | |||
| 2253 | * Invalidate the page directory pointer. | |||
| 2254 | */ | |||
| 2255 | { | |||
| 2256 | int i = ptes_per_vm_page1; | |||
| 2257 | pt_entry_t *pdep = pdp; | |||
| 2258 | do { | |||
| 2259 | #ifdef MACH_PV_PAGETABLES | |||
| 2260 | unsigned long pte = *pdep; | |||
| 2261 | void *ptable = (void*) ptetokv(pte)(((vm_offset_t)(({ pt_entry_t __a = (pt_entry_t) ((pte) & 0x00007ffffffff000ULL); ((((unsigned long *) 0xF5800000UL)[__a >> 12]) << 12) | (__a & ((1 << 12)-1)) ; })) + 0xC0000000UL)); | |||
| 2262 | if (!(hyp_mmu_update_pte(pa_to_ma(kvtophys((vm_offset_t)pdep++))({ vm_offset_t __a = (vm_offset_t) (kvtophys((vm_offset_t)pdep ++)); (((pt_entry_t) ((mfn_list[(((vm_size_t)(__a)) >> 12 )]))) << 12) | (__a & ((1 << 12)-1)); }), 0))) | |||
| 2263 | panic("%s:%d could not clear pde %p\n",__FILE__"../i386/intel/pmap.c",__LINE__2263,pdep-1); | |||
| 2264 | if (!hyp_mmuext_op_mfn (MMUEXT_UNPIN_TABLE4, kv_to_mfn(ptable)((mfn_list[(((vm_size_t)(((vm_offset_t)(ptable) - 0xC0000000UL ))) >> 12)])))) | |||
| 2265 | panic("couldn't unpin page %p(%p)\n", ptable, (vm_offset_t) pa_to_ma(kvtophys((vm_offset_t)ptable))({ vm_offset_t __a = (vm_offset_t) (kvtophys((vm_offset_t)ptable )); (((pt_entry_t) ((mfn_list[(((vm_size_t)(__a)) >> 12 )]))) << 12) | (__a & ((1 << 12)-1)); })); | |||
| 2266 | pmap_set_page_readwrite(ptable); | |||
| 2267 | #else /* MACH_PV_PAGETABLES */ | |||
| 2268 | *pdep++ = 0; | |||
| 2269 | #endif /* MACH_PV_PAGETABLES */ | |||
| 2270 | } while (--i > 0); | |||
| 2271 | } | |||
| 2272 | ||||
| 2273 | PMAP_READ_UNLOCK(p, spl)((void)(spl)); | |||
| 2274 | ||||
| 2275 | /* | |||
| 2276 | * And free the pte page itself. | |||
| 2277 | */ | |||
| 2278 | { | |||
| 2279 | vm_page_t m; | |||
| 2280 | ||||
| 2281 | vm_object_lock(pmap_object); | |||
| 2282 | m = vm_page_lookup(pmap_object, pa); | |||
| 2283 | if (m == VM_PAGE_NULL((vm_page_t) 0)) | |||
| 2284 | panic("pmap_collect: pte page not in object"); | |||
| 2285 | vm_page_lock_queues(); | |||
| 2286 | vm_page_free(m); | |||
| 2287 | inuse_ptepages_count--; | |||
| 2288 | vm_page_unlock_queues()((void)(&vm_page_queue_lock)); | |||
| 2289 | vm_object_unlock(pmap_object)((void)(&(pmap_object)->Lock)); | |||
| 2290 | } | |||
| 2291 | ||||
| 2292 | PMAP_READ_LOCK(p, spl)((void)(spl)); | |||
| 2293 | } | |||
| 2294 | } | |||
| 2295 | } | |||
| 2296 | PMAP_UPDATE_TLBS(p, VM_MIN_ADDRESS, VM_MAX_ADDRESS){ if ((p)->cpus_using) { hyp_mmuext_op_void(6); } }; | |||
| 2297 | ||||
| 2298 | PMAP_READ_UNLOCK(p, spl)((void)(spl)); | |||
| 2299 | return; | |||
| 2300 | ||||
| 2301 | } | |||
| 2302 | ||||
| 2303 | /* | |||
| 2304 | * Routine: pmap_activate | |||
| 2305 | * Function: | |||
| 2306 | * Binds the given physical map to the given | |||
| 2307 | * processor, and returns a hardware map description. | |||
| 2308 | */ | |||
| 2309 | #if 0 | |||
| 2310 | void pmap_activate(my_pmap, th, my_cpu) | |||
| 2311 | register pmap_t my_pmap; | |||
| 2312 | thread_t th; | |||
| 2313 | int my_cpu; | |||
| 2314 | { | |||
| 2315 | PMAP_ACTIVATE(my_pmap, th, my_cpu); | |||
| 2316 | } | |||
| 2317 | #endif /* 0 */ | |||
| 2318 | ||||
| 2319 | /* | |||
| 2320 | * Routine: pmap_deactivate | |||
| 2321 | * Function: | |||
| 2322 | * Indicates that the given physical map is no longer | |||
| 2323 | * in use on the specified processor. (This is a macro | |||
| 2324 | * in pmap.h) | |||
| 2325 | */ | |||
| 2326 | #if 0 | |||
| 2327 | void pmap_deactivate(pmap, th, which_cpu) | |||
| 2328 | pmap_t pmap; | |||
| 2329 | thread_t th; | |||
| 2330 | int which_cpu; | |||
| 2331 | { | |||
| 2332 | PMAP_DEACTIVATE(pmap, th, which_cpu); | |||
| 2333 | } | |||
| 2334 | #endif /* 0 */ | |||
| 2335 | ||||
| 2336 | /* | |||
| 2337 | * Routine: pmap_kernel | |||
| 2338 | * Function: | |||
| 2339 | * Returns the physical map handle for the kernel. | |||
| 2340 | */ | |||
| 2341 | #if 0 | |||
| 2342 | pmap_t pmap_kernel()(kernel_pmap) | |||
| 2343 | { | |||
| 2344 | return (kernel_pmap); | |||
| 2345 | } | |||
| 2346 | #endif /* 0 */ | |||
| 2347 | ||||
| 2348 | /* | |||
| 2349 | * pmap_zero_page zeros the specified (machine independent) page. | |||
| 2350 | * See machine/phys.c or machine/phys.s for implementation. | |||
| 2351 | */ | |||
| 2352 | #if 0 | |||
| 2353 | pmap_zero_page(phys) | |||
| 2354 | register vm_offset_t phys; | |||
| 2355 | { | |||
| 2356 | register int i; | |||
| 2357 | ||||
| 2358 | assert(phys != vm_page_fictitious_addr)({ if (!(phys != vm_page_fictitious_addr)) Assert("phys != vm_page_fictitious_addr" , "../i386/intel/pmap.c", 2358); }); | |||
| 2359 | i = PAGE_SIZE(1 << 12) / INTEL_PGBYTES4096; | |||
| 2360 | phys = intel_pfn(phys); | |||
| 2361 | ||||
| 2362 | while (i--) | |||
| 2363 | zero_phys(phys++); | |||
| 2364 | } | |||
| 2365 | #endif /* 0 */ | |||
| 2366 | ||||
| 2367 | /* | |||
| 2368 | * pmap_copy_page copies the specified (machine independent) page. | |||
| 2369 | * See machine/phys.c or machine/phys.s for implementation. | |||
| 2370 | */ | |||
| 2371 | #if 0 | |||
| 2372 | pmap_copy_page(src, dst) | |||
| 2373 | vm_offset_t src, dst; | |||
| 2374 | { | |||
| 2375 | int i; | |||
| 2376 | ||||
| 2377 | assert(src != vm_page_fictitious_addr)({ if (!(src != vm_page_fictitious_addr)) Assert("src != vm_page_fictitious_addr" , "../i386/intel/pmap.c", 2377); }); | |||
| 2378 | assert(dst != vm_page_fictitious_addr)({ if (!(dst != vm_page_fictitious_addr)) Assert("dst != vm_page_fictitious_addr" , "../i386/intel/pmap.c", 2378); }); | |||
| 2379 | i = PAGE_SIZE(1 << 12) / INTEL_PGBYTES4096; | |||
| 2380 | ||||
| 2381 | while (i--) { | |||
| 2382 | copy_phys(intel_pfn(src), intel_pfn(dst)); | |||
| 2383 | src += INTEL_PGBYTES4096; | |||
| 2384 | dst += INTEL_PGBYTES4096; | |||
| 2385 | } | |||
| 2386 | } | |||
| 2387 | #endif /* 0 */ | |||
| 2388 | ||||
| 2389 | /* | |||
| 2390 | * Routine: pmap_pageable | |||
| 2391 | * Function: | |||
| 2392 | * Make the specified pages (by pmap, offset) | |||
| 2393 | * pageable (or not) as requested. | |||
| 2394 | * | |||
| 2395 | * A page which is not pageable may not take | |||
| 2396 | * a fault; therefore, its page table entry | |||
| 2397 | * must remain valid for the duration. | |||
| 2398 | * | |||
| 2399 | * This routine is merely advisory; pmap_enter | |||
| 2400 | * will specify that these pages are to be wired | |||
| 2401 | * down (or not) as appropriate. | |||
| 2402 | */ | |||
| 2403 | void | |||
| 2404 | pmap_pageable( | |||
| 2405 | pmap_t pmap, | |||
| 2406 | vm_offset_t start, | |||
| 2407 | vm_offset_t end, | |||
| 2408 | boolean_t pageable) | |||
| 2409 | { | |||
| 2410 | } | |||
| 2411 | ||||
| 2412 | /* | |||
| 2413 | * Clear specified attribute bits. | |||
| 2414 | */ | |||
| 2415 | void | |||
| 2416 | phys_attribute_clear( | |||
| 2417 | vm_offset_t phys, | |||
| 2418 | int bits) | |||
| 2419 | { | |||
| 2420 | pv_entry_t pv_h; | |||
| 2421 | pv_entry_t pv_e; | |||
| 2422 | pt_entry_t *pte; | |||
| 2423 | int pai; | |||
| 2424 | pmap_t pmap; | |||
| 2425 | int spl; | |||
| 2426 | ||||
| 2427 | assert(phys != vm_page_fictitious_addr)({ if (!(phys != vm_page_fictitious_addr)) Assert("phys != vm_page_fictitious_addr" , "../i386/intel/pmap.c", 2427); }); | |||
| 2428 | if (!valid_page(phys)(pmap_initialized && pmap_valid_page(phys))) { | |||
| 2429 | /* | |||
| 2430 | * Not a managed page. | |||
| 2431 | */ | |||
| 2432 | return; | |||
| 2433 | } | |||
| 2434 | ||||
| 2435 | /* | |||
| 2436 | * Lock the pmap system first, since we will be changing | |||
| 2437 | * several pmaps. | |||
| 2438 | */ | |||
| 2439 | ||||
| 2440 | PMAP_WRITE_LOCK(spl)((void)(spl)); | |||
| 2441 | ||||
| 2442 | pai = pa_index(phys)((((vm_size_t)(phys - phys_first_addr)) >> 12)); | |||
| 2443 | pv_h = pai_to_pvh(pai)(&pv_head_table[pai]); | |||
| 2444 | ||||
| 2445 | /* | |||
| 2446 | * Walk down PV list, clearing all modify or reference bits. | |||
| 2447 | * We do not have to lock the pv_list because we have | |||
| 2448 | * the entire pmap system locked. | |||
| 2449 | */ | |||
| 2450 | if (pv_h->pmap != PMAP_NULL((pmap_t) 0)) { | |||
| 2451 | /* | |||
| 2452 | * There are some mappings. | |||
| 2453 | */ | |||
| 2454 | for (pv_e = pv_h; pv_e != PV_ENTRY_NULL((pv_entry_t) 0); pv_e = pv_e->next) { | |||
| 2455 | vm_offset_t va; | |||
| 2456 | ||||
| 2457 | pmap = pv_e->pmap; | |||
| 2458 | /* | |||
| 2459 | * Lock the pmap to block pmap_extract and similar routines. | |||
| 2460 | */ | |||
| 2461 | simple_lock(&pmap->lock); | |||
| 2462 | ||||
| 2463 | va = pv_e->va; | |||
| 2464 | pte = pmap_pte(pmap, va); | |||
| 2465 | ||||
| 2466 | #if 0 | |||
| 2467 | /* | |||
| 2468 | * Consistency checks. | |||
| 2469 | */ | |||
| 2470 | assert(*pte & INTEL_PTE_VALID)({ if (!(*pte & 0x00000001)) Assert("*pte & INTEL_PTE_VALID" , "../i386/intel/pmap.c", 2470); }); | |||
| 2471 | /* assert(pte_to_phys(*pte) == phys); */ | |||
| 2472 | #endif | |||
| 2473 | ||||
| 2474 | /* | |||
| 2475 | * Clear modify or reference bits. | |||
| 2476 | */ | |||
| 2477 | { | |||
| 2478 | int i = ptes_per_vm_page1; | |||
| 2479 | do { | |||
| 2480 | #ifdef MACH_PV_PAGETABLES | |||
| 2481 | if (!(hyp_mmu_update_pte(kv_to_ma(pte)({ vm_offset_t __a = (vm_offset_t) (((vm_offset_t)(pte) - 0xC0000000UL )); (((pt_entry_t) ((mfn_list[(((vm_size_t)(__a)) >> 12 )]))) << 12) | (__a & ((1 << 12)-1)); }), *pte & ~bits))) | |||
| 2482 | panic("%s:%d could not clear bits %lx from pte %p\n",__FILE__"../i386/intel/pmap.c",__LINE__2482,bits,pte); | |||
| 2483 | #else /* MACH_PV_PAGETABLES */ | |||
| 2484 | *pte &= ~bits; | |||
| 2485 | #endif /* MACH_PV_PAGETABLES */ | |||
| 2486 | } while (--i > 0); | |||
| 2487 | } | |||
| 2488 | PMAP_UPDATE_TLBS(pmap, va, va + PAGE_SIZE){ if ((pmap)->cpus_using) { hyp_mmuext_op_void(6); } }; | |||
| 2489 | simple_unlock(&pmap->lock)((void)(&pmap->lock)); | |||
| 2490 | } | |||
| 2491 | } | |||
| 2492 | ||||
| 2493 | pmap_phys_attributes[pai] &= ~bits; | |||
| 2494 | ||||
| 2495 | PMAP_WRITE_UNLOCK(spl)((void)(spl)); | |||
| 2496 | } | |||
| 2497 | ||||
| 2498 | /* | |||
| 2499 | * Check specified attribute bits. | |||
| 2500 | */ | |||
| 2501 | boolean_t | |||
| 2502 | phys_attribute_test( | |||
| 2503 | vm_offset_t phys, | |||
| 2504 | int bits) | |||
| 2505 | { | |||
| 2506 | pv_entry_t pv_h; | |||
| 2507 | pv_entry_t pv_e; | |||
| 2508 | pt_entry_t *pte; | |||
| 2509 | int pai; | |||
| 2510 | pmap_t pmap; | |||
| 2511 | int spl; | |||
| 2512 | ||||
| 2513 | assert(phys != vm_page_fictitious_addr)({ if (!(phys != vm_page_fictitious_addr)) Assert("phys != vm_page_fictitious_addr" , "../i386/intel/pmap.c", 2513); }); | |||
| 2514 | if (!valid_page(phys)(pmap_initialized && pmap_valid_page(phys))) { | |||
| 2515 | /* | |||
| 2516 | * Not a managed page. | |||
| 2517 | */ | |||
| 2518 | return (FALSE((boolean_t) 0)); | |||
| 2519 | } | |||
| 2520 | ||||
| 2521 | /* | |||
| 2522 | * Lock the pmap system first, since we will be checking | |||
| 2523 | * several pmaps. | |||
| 2524 | */ | |||
| 2525 | ||||
| 2526 | PMAP_WRITE_LOCK(spl)((void)(spl)); | |||
| 2527 | ||||
| 2528 | pai = pa_index(phys)((((vm_size_t)(phys - phys_first_addr)) >> 12)); | |||
| 2529 | pv_h = pai_to_pvh(pai)(&pv_head_table[pai]); | |||
| 2530 | ||||
| 2531 | if (pmap_phys_attributes[pai] & bits) { | |||
| 2532 | PMAP_WRITE_UNLOCK(spl)((void)(spl)); | |||
| 2533 | return (TRUE((boolean_t) 1)); | |||
| 2534 | } | |||
| 2535 | ||||
| 2536 | /* | |||
| 2537 | * Walk down PV list, checking all mappings. | |||
| 2538 | * We do not have to lock the pv_list because we have | |||
| 2539 | * the entire pmap system locked. | |||
| 2540 | */ | |||
| 2541 | if (pv_h->pmap != PMAP_NULL((pmap_t) 0)) { | |||
| 2542 | /* | |||
| 2543 | * There are some mappings. | |||
| 2544 | */ | |||
| 2545 | for (pv_e = pv_h; pv_e != PV_ENTRY_NULL((pv_entry_t) 0); pv_e = pv_e->next) { | |||
| 2546 | ||||
| 2547 | pmap = pv_e->pmap; | |||
| 2548 | /* | |||
| 2549 | * Lock the pmap to block pmap_extract and similar routines. | |||
| 2550 | */ | |||
| 2551 | simple_lock(&pmap->lock); | |||
| 2552 | ||||
| 2553 | { | |||
| 2554 | vm_offset_t va; | |||
| 2555 | ||||
| 2556 | va = pv_e->va; | |||
| 2557 | pte = pmap_pte(pmap, va); | |||
| 2558 | ||||
| 2559 | #if 0 | |||
| 2560 | /* | |||
| 2561 | * Consistency checks. | |||
| 2562 | */ | |||
| 2563 | assert(*pte & INTEL_PTE_VALID)({ if (!(*pte & 0x00000001)) Assert("*pte & INTEL_PTE_VALID" , "../i386/intel/pmap.c", 2563); }); | |||
| 2564 | /* assert(pte_to_phys(*pte) == phys); */ | |||
| 2565 | #endif | |||
| 2566 | } | |||
| 2567 | ||||
| 2568 | /* | |||
| 2569 | * Check modify or reference bits. | |||
| 2570 | */ | |||
| 2571 | { | |||
| 2572 | int i = ptes_per_vm_page1; | |||
| 2573 | ||||
| 2574 | do { | |||
| 2575 | if (*pte & bits) { | |||
| 2576 | simple_unlock(&pmap->lock)((void)(&pmap->lock)); | |||
| 2577 | PMAP_WRITE_UNLOCK(spl)((void)(spl)); | |||
| 2578 | return (TRUE((boolean_t) 1)); | |||
| 2579 | } | |||
| 2580 | } while (--i > 0); | |||
| 2581 | } | |||
| 2582 | simple_unlock(&pmap->lock)((void)(&pmap->lock)); | |||
| 2583 | } | |||
| 2584 | } | |||
| 2585 | PMAP_WRITE_UNLOCK(spl)((void)(spl)); | |||
| 2586 | return (FALSE((boolean_t) 0)); | |||
| 2587 | } | |||
| 2588 | ||||
| 2589 | /* | |||
| 2590 | * Clear the modify bits on the specified physical page. | |||
| 2591 | */ | |||
| 2592 | ||||
| 2593 | void pmap_clear_modify(vm_offset_t phys) | |||
| 2594 | { | |||
| 2595 | phys_attribute_clear(phys, PHYS_MODIFIED0x00000040); | |||
| 2596 | } | |||
| 2597 | ||||
| 2598 | /* | |||
| 2599 | * pmap_is_modified: | |||
| 2600 | * | |||
| 2601 | * Return whether or not the specified physical page is modified | |||
| 2602 | * by any physical maps. | |||
| 2603 | */ | |||
| 2604 | ||||
| 2605 | boolean_t pmap_is_modified(vm_offset_t phys) | |||
| 2606 | { | |||
| 2607 | return (phys_attribute_test(phys, PHYS_MODIFIED0x00000040)); | |||
| 2608 | } | |||
| 2609 | ||||
| 2610 | /* | |||
| 2611 | * pmap_clear_reference: | |||
| 2612 | * | |||
| 2613 | * Clear the reference bit on the specified physical page. | |||
| 2614 | */ | |||
| 2615 | ||||
| 2616 | void pmap_clear_reference(vm_offset_t phys) | |||
| 2617 | { | |||
| 2618 | phys_attribute_clear(phys, PHYS_REFERENCED0x00000020); | |||
| 2619 | } | |||
| 2620 | ||||
| 2621 | /* | |||
| 2622 | * pmap_is_referenced: | |||
| 2623 | * | |||
| 2624 | * Return whether or not the specified physical page is referenced | |||
| 2625 | * by any physical maps. | |||
| 2626 | */ | |||
| 2627 | ||||
| 2628 | boolean_t pmap_is_referenced(vm_offset_t phys) | |||
| 2629 | { | |||
| 2630 | return (phys_attribute_test(phys, PHYS_REFERENCED0x00000020)); | |||
| 2631 | } | |||
| 2632 | ||||
| 2633 | #if NCPUS1 > 1 | |||
| 2634 | /* | |||
| 2635 | * TLB Coherence Code (TLB "shootdown" code) | |||
| 2636 | * | |||
| 2637 | * Threads that belong to the same task share the same address space and | |||
| 2638 | * hence share a pmap. However, they may run on distinct cpus and thus | |||
| 2639 | * have distinct TLBs that cache page table entries. In order to guarantee | |||
| 2640 | * the TLBs are consistent, whenever a pmap is changed, all threads that | |||
| 2641 | * are active in that pmap must have their TLB updated. To keep track of | |||
| 2642 | * this information, the set of cpus that are currently using a pmap is | |||
| 2643 | * maintained within each pmap structure (cpus_using). Pmap_activate() and | |||
| 2644 | * pmap_deactivate add and remove, respectively, a cpu from this set. | |||
| 2645 | * Since the TLBs are not addressable over the bus, each processor must | |||
| 2646 | * flush its own TLB; a processor that needs to invalidate another TLB | |||
| 2647 | * needs to interrupt the processor that owns that TLB to signal the | |||
| 2648 | * update. | |||
| 2649 | * | |||
| 2650 | * Whenever a pmap is updated, the lock on that pmap is locked, and all | |||
| 2651 | * cpus using the pmap are signaled to invalidate. All threads that need | |||
| 2652 | * to activate a pmap must wait for the lock to clear to await any updates | |||
| 2653 | * in progress before using the pmap. They must ACQUIRE the lock to add | |||
| 2654 | * their cpu to the cpus_using set. An implicit assumption made | |||
| 2655 | * throughout the TLB code is that all kernel code that runs at or higher | |||
| 2656 | * than splvm blocks out update interrupts, and that such code does not | |||
| 2657 | * touch pageable pages. | |||
| 2658 | * | |||
| 2659 | * A shootdown interrupt serves another function besides signaling a | |||
| 2660 | * processor to invalidate. The interrupt routine (pmap_update_interrupt) | |||
| 2661 | * waits for the both the pmap lock (and the kernel pmap lock) to clear, | |||
| 2662 | * preventing user code from making implicit pmap updates while the | |||
| 2663 | * sending processor is performing its update. (This could happen via a | |||
| 2664 | * user data write reference that turns on the modify bit in the page | |||
| 2665 | * table). It must wait for any kernel updates that may have started | |||
| 2666 | * concurrently with a user pmap update because the IPC code | |||
| 2667 | * changes mappings. | |||
| 2668 | * Spinning on the VALUES of the locks is sufficient (rather than | |||
| 2669 | * having to acquire the locks) because any updates that occur subsequent | |||
| 2670 | * to finding the lock unlocked will be signaled via another interrupt. | |||
| 2671 | * (This assumes the interrupt is cleared before the low level interrupt code | |||
| 2672 | * calls pmap_update_interrupt()). | |||
| 2673 | * | |||
| 2674 | * The signaling processor must wait for any implicit updates in progress | |||
| 2675 | * to terminate before continuing with its update. Thus it must wait for an | |||
| 2676 | * acknowledgement of the interrupt from each processor for which such | |||
| 2677 | * references could be made. For maintaining this information, a set | |||
| 2678 | * cpus_active is used. A cpu is in this set if and only if it can | |||
| 2679 | * use a pmap. When pmap_update_interrupt() is entered, a cpu is removed from | |||
| 2680 | * this set; when all such cpus are removed, it is safe to update. | |||
| 2681 | * | |||
| 2682 | * Before attempting to acquire the update lock on a pmap, a cpu (A) must | |||
| 2683 | * be at least at the priority of the interprocessor interrupt | |||
| 2684 | * (splip<=splvm). Otherwise, A could grab a lock and be interrupted by a | |||
| 2685 | * kernel update; it would spin forever in pmap_update_interrupt() trying | |||
| 2686 | * to acquire the user pmap lock it had already acquired. Furthermore A | |||
| 2687 | * must remove itself from cpus_active. Otherwise, another cpu holding | |||
| 2688 | * the lock (B) could be in the process of sending an update signal to A, | |||
| 2689 | * and thus be waiting for A to remove itself from cpus_active. If A is | |||
| 2690 | * spinning on the lock at priority this will never happen and a deadlock | |||
| 2691 | * will result. | |||
| 2692 | */ | |||
| 2693 | ||||
| 2694 | /* | |||
| 2695 | * Signal another CPU that it must flush its TLB | |||
| 2696 | */ | |||
| 2697 | void signal_cpus( | |||
| 2698 | cpu_set use_list, | |||
| 2699 | pmap_t pmap, | |||
| 2700 | vm_offset_t start, | |||
| 2701 | vm_offset_t end) | |||
| 2702 | { | |||
| 2703 | int which_cpu, j; | |||
| 2704 | pmap_update_list_t update_list_p; | |||
| 2705 | ||||
| 2706 | while ((which_cpu = ffs(use_list)) != 0) { | |||
| 2707 | which_cpu -= 1; /* convert to 0 origin */ | |||
| 2708 | ||||
| 2709 | update_list_p = &cpu_update_list[which_cpu]; | |||
| 2710 | simple_lock(&update_list_p->lock); | |||
| 2711 | ||||
| 2712 | j = update_list_p->count; | |||
| 2713 | if (j >= UPDATE_LIST_SIZE) { | |||
| 2714 | /* | |||
| 2715 | * list overflowed. Change last item to | |||
| 2716 | * indicate overflow. | |||
| 2717 | */ | |||
| 2718 | update_list_p->item[UPDATE_LIST_SIZE-1].pmap = kernel_pmap; | |||
| 2719 | update_list_p->item[UPDATE_LIST_SIZE-1].start = VM_MIN_ADDRESS(0); | |||
| 2720 | update_list_p->item[UPDATE_LIST_SIZE-1].end = VM_MAX_KERNEL_ADDRESS(0xF5800000UL - ((0xc0000000UL)) + 0xC0000000UL); | |||
| 2721 | } | |||
| 2722 | else { | |||
| 2723 | update_list_p->item[j].pmap = pmap; | |||
| 2724 | update_list_p->item[j].start = start; | |||
| 2725 | update_list_p->item[j].end = end; | |||
| 2726 | update_list_p->count = j+1; | |||
| 2727 | } | |||
| 2728 | cpu_update_needed[which_cpu] = TRUE((boolean_t) 1); | |||
| 2729 | simple_unlock(&update_list_p->lock)((void)(&update_list_p->lock)); | |||
| 2730 | ||||
| 2731 | if ((cpus_idle & (1 << which_cpu)) == 0) | |||
| 2732 | interrupt_processor(which_cpu); | |||
| 2733 | use_list &= ~(1 << which_cpu); | |||
| 2734 | } | |||
| 2735 | } | |||
| 2736 | ||||
| 2737 | void process_pmap_updates(pmap_t my_pmap) | |||
| 2738 | { | |||
| 2739 | int my_cpu = cpu_number()(0); | |||
| 2740 | pmap_update_list_t update_list_p; | |||
| 2741 | int j; | |||
| 2742 | pmap_t pmap; | |||
| 2743 | ||||
| 2744 | update_list_p = &cpu_update_list[my_cpu]; | |||
| 2745 | simple_lock(&update_list_p->lock); | |||
| 2746 | ||||
| 2747 | for (j = 0; j < update_list_p->count; j++) { | |||
| 2748 | pmap = update_list_p->item[j].pmap; | |||
| 2749 | if (pmap == my_pmap || | |||
| 2750 | pmap == kernel_pmap) { | |||
| 2751 | ||||
| 2752 | INVALIDATE_TLB(pmap,hyp_mmuext_op_void(6) | |||
| 2753 | update_list_p->item[j].start,hyp_mmuext_op_void(6) | |||
| 2754 | update_list_p->item[j].end)hyp_mmuext_op_void(6); | |||
| 2755 | } | |||
| 2756 | } | |||
| 2757 | update_list_p->count = 0; | |||
| 2758 | cpu_update_needed[my_cpu] = FALSE((boolean_t) 0); | |||
| 2759 | simple_unlock(&update_list_p->lock)((void)(&update_list_p->lock)); | |||
| 2760 | } | |||
| 2761 | ||||
| 2762 | /* | |||
| 2763 | * Interrupt routine for TBIA requested from other processor. | |||
| 2764 | */ | |||
| 2765 | void pmap_update_interrupt(void) | |||
| 2766 | { | |||
| 2767 | int my_cpu; | |||
| 2768 | pmap_t my_pmap; | |||
| 2769 | int s; | |||
| 2770 | ||||
| 2771 | my_cpu = cpu_number()(0); | |||
| 2772 | ||||
| 2773 | /* | |||
| 2774 | * Exit now if we're idle. We'll pick up the update request | |||
| 2775 | * when we go active, and we must not put ourselves back in | |||
| 2776 | * the active set because we'll never process the interrupt | |||
| 2777 | * while we're idle (thus hanging the system). | |||
| 2778 | */ | |||
| 2779 | if (cpus_idle & (1 << my_cpu)) | |||
| 2780 | return; | |||
| 2781 | ||||
| 2782 | if (current_thread()(active_threads[(0)]) == THREAD_NULL((thread_t) 0)) | |||
| 2783 | my_pmap = kernel_pmap; | |||
| 2784 | else { | |||
| 2785 | my_pmap = current_pmap()((((active_threads[(0)])->task->map)->pmap)); | |||
| 2786 | if (!pmap_in_use(my_pmap, my_cpu)(((my_pmap)->cpus_using & (1 << (my_cpu))) != 0)) | |||
| 2787 | my_pmap = kernel_pmap; | |||
| 2788 | } | |||
| 2789 | ||||
| 2790 | /* | |||
| 2791 | * Raise spl to splvm (above splip) to block out pmap_extract | |||
| 2792 | * from IO code (which would put this cpu back in the active | |||
| 2793 | * set). | |||
| 2794 | */ | |||
| 2795 | s = splvm(); | |||
| 2796 | ||||
| 2797 | do { | |||
| 2798 | ||||
| 2799 | /* | |||
| 2800 | * Indicate that we're not using either user or kernel | |||
| 2801 | * pmap. | |||
| 2802 | */ | |||
| 2803 | i_bit_clear(my_cpu, &cpus_active); | |||
| 2804 | ||||
| 2805 | /* | |||
| 2806 | * Wait for any pmap updates in progress, on either user | |||
| 2807 | * or kernel pmap. | |||
| 2808 | */ | |||
| 2809 | while (*(volatile int *)&my_pmap->lock.lock_data || | |||
| 2810 | *(volatile int *)&kernel_pmap->lock.lock_data) | |||
| 2811 | continue; | |||
| 2812 | ||||
| 2813 | process_pmap_updates(my_pmap); | |||
| 2814 | ||||
| 2815 | i_bit_set(my_cpu, &cpus_active); | |||
| 2816 | ||||
| 2817 | } while (cpu_update_needed[my_cpu]); | |||
| 2818 | ||||
| 2819 | splx(s); | |||
| 2820 | } | |||
| 2821 | #else /* NCPUS > 1 */ | |||
| 2822 | /* | |||
| 2823 | * Dummy routine to satisfy external reference. | |||
| 2824 | */ | |||
| 2825 | void pmap_update_interrupt(void) | |||
| 2826 | { | |||
| 2827 | /* should never be called. */ | |||
| 2828 | } | |||
| 2829 | #endif /* NCPUS > 1 */ | |||
| 2830 | ||||
| 2831 | #if defined(__i386__1) | |||
| 2832 | /* Unmap page 0 to trap NULL references. */ | |||
| 2833 | void | |||
| 2834 | pmap_unmap_page_zero (void) | |||
| 2835 | { | |||
| 2836 | int *pte; | |||
| 2837 | ||||
| 2838 | pte = (int *) pmap_pte (kernel_pmap, 0); | |||
| 2839 | if (!pte) | |||
| 2840 | return; | |||
| 2841 | assert (pte)({ if (!(pte)) Assert("pte", "../i386/intel/pmap.c", 2841); } ); | |||
| 2842 | #ifdef MACH_PV_PAGETABLES | |||
| 2843 | if (!hyp_mmu_update_pte(kv_to_ma(pte)({ vm_offset_t __a = (vm_offset_t) (((vm_offset_t)(pte) - 0xC0000000UL )); (((pt_entry_t) ((mfn_list[(((vm_size_t)(__a)) >> 12 )]))) << 12) | (__a & ((1 << 12)-1)); }), 0)) | |||
| 2844 | printf("couldn't unmap page 0\n"); | |||
| 2845 | #else /* MACH_PV_PAGETABLES */ | |||
| 2846 | *pte = 0; | |||
| 2847 | INVALIDATE_TLB(kernel_pmap, 0, PAGE_SIZE)hyp_mmuext_op_void(6); | |||
| 2848 | #endif /* MACH_PV_PAGETABLES */ | |||
| 2849 | } | |||
| 2850 | #endif /* __i386__ */ |