| File: | obj-scan-build/../linux/src/drivers/scsi/in2000.c |
| Location: | line 1633, column 7 |
| Description: | Value stored to 'x' is never read |
| 1 | /* |
| 2 | * in2000.c - Linux device driver for the |
| 3 | * Always IN2000 ISA SCSI card. |
| 4 | * |
| 5 | * Copyright (c) 1996 John Shifflett, GeoLog Consulting |
| 6 | * john@geolog.com |
| 7 | * jshiffle@netcom.com |
| 8 | * |
| 9 | * This program is free software; you can redistribute it and/or modify |
| 10 | * it under the terms of the GNU General Public License as published by |
| 11 | * the Free Software Foundation; either version 2, or (at your option) |
| 12 | * any later version. |
| 13 | * |
| 14 | * This program is distributed in the hope that it will be useful, |
| 15 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 16 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 17 | * GNU General Public License for more details. |
| 18 | * |
| 19 | * |
| 20 | * Drew Eckhardt's excellent 'Generic NCR5380' sources provided |
| 21 | * much of the inspiration and some of the code for this driver. |
| 22 | * The Linux IN2000 driver distributed in the Linux kernels through |
| 23 | * version 1.2.13 was an extremely valuable reference on the arcane |
| 24 | * (and still mysterious) workings of the IN2000's fifo. It also |
| 25 | * is where I lifted in2000_biosparam(), the gist of the card |
| 26 | * detection scheme, and other bits of code. Many thanks to the |
| 27 | * talented and courageous people who wrote, contributed to, and |
| 28 | * maintained that driver (including Brad McLean, Shaun Savage, |
| 29 | * Bill Earnest, Larry Doolittle, Roger Sunshine, John Luckey, |
| 30 | * Matt Postiff, Peter Lu, zerucha@shell.portal.com, and Eric |
| 31 | * Youngdale). I should also mention the driver written by |
| 32 | * Hamish Macdonald for the (GASP!) Amiga A2091 card, included |
| 33 | * in the Linux-m68k distribution; it gave me a good initial |
| 34 | * understanding of the proper way to run a WD33c93 chip, and I |
| 35 | * ended up stealing lots of code from it. |
| 36 | * |
| 37 | * _This_ driver is (I feel) an improvement over the old one in |
| 38 | * several respects: |
| 39 | * - All problems relating to the data size of a SCSI request are |
| 40 | * gone (as far as I know). The old driver couldn't handle |
| 41 | * swapping to partitions because that involved 4k blocks, nor |
| 42 | * could it deal with the st.c tape driver unmodified, because |
| 43 | * that usually involved 4k - 32k blocks. The old driver never |
| 44 | * quite got away from a morbid dependence on 2k block sizes - |
| 45 | * which of course is the size of the card's fifo. |
| 46 | * |
| 47 | * - Target Disconnection/Reconnection is now supported. Any |
| 48 | * system with more than one device active on the SCSI bus |
| 49 | * will benefit from this. The driver defaults to what I'm |
| 50 | * calling 'adaptive disconnect' - meaning that each command |
| 51 | * is evaluated individually as to whether or not it should |
| 52 | * be run with the option to disconnect/reselect (if the |
| 53 | * device chooses), or as a "SCSI-bus-hog". |
| 54 | * |
| 55 | * - Synchronous data transfers are now supported. Because there |
| 56 | * are a few devices (and many improperly terminated systems) |
| 57 | * that choke when doing sync, the default is sync DISABLED |
| 58 | * for all devices. This faster protocol can (and should!) |
| 59 | * be enabled on selected devices via the command-line. |
| 60 | * |
| 61 | * - Runtime operating parameters can now be specified through |
| 62 | * either the LILO or the 'insmod' command line. For LILO do: |
| 63 | * "in2000=blah,blah,blah" |
| 64 | * and with insmod go like: |
| 65 | * "insmod /usr/src/linux/modules/in2000.o setup_strings=blah,blah" |
| 66 | * The defaults should be good for most people. See the comment |
| 67 | * for 'setup_strings' below for more details. |
| 68 | * |
| 69 | * - The old driver relied exclusively on what the Western Digital |
| 70 | * docs call "Combination Level 2 Commands", which are a great |
| 71 | * idea in that the CPU is relieved of a lot of interrupt |
| 72 | * overhead. However, by accepting a certain (user-settable) |
| 73 | * amount of additional interrupts, this driver achieves |
| 74 | * better control over the SCSI bus, and data transfers are |
| 75 | * almost as fast while being much easier to define, track, |
| 76 | * and debug. |
| 77 | * |
| 78 | * - You can force detection of a card whose BIOS has been disabled. |
| 79 | * |
| 80 | * - Multiple IN2000 cards might almost be supported. I've tried to |
| 81 | * keep it in mind, but have no way to test... |
| 82 | * |
| 83 | * |
| 84 | * TODO: |
| 85 | * tagged queuing. multiple cards. |
| 86 | * |
| 87 | * |
| 88 | * NOTE: |
| 89 | * When using this or any other SCSI driver as a module, you'll |
| 90 | * find that with the stock kernel, at most _two_ SCSI hard |
| 91 | * drives will be linked into the device list (ie, usable). |
| 92 | * If your IN2000 card has more than 2 disks on its bus, you |
| 93 | * might want to change the define of 'SD_EXTRA_DEVS' in the |
| 94 | * 'hosts.h' file from 2 to whatever is appropriate. It took |
| 95 | * me a while to track down this surprisingly obscure and |
| 96 | * undocumented little "feature". |
| 97 | * |
| 98 | * |
| 99 | * People with bug reports, wish-lists, complaints, comments, |
| 100 | * or improvements are asked to pah-leeez email me (John Shifflett) |
| 101 | * at john@geolog.com or jshiffle@netcom.com! I'm anxious to get |
| 102 | * this thing into as good a shape as possible, and I'm positive |
| 103 | * there are lots of lurking bugs and "Stupid Places". |
| 104 | * |
| 105 | */ |
| 106 | |
| 107 | #include <linux/module.h> |
| 108 | |
| 109 | #include <asm/system.h> |
| 110 | #include <linux/sched.h> |
| 111 | #include <linux/string.h> |
| 112 | #include <linux/delay.h> |
| 113 | #include <linux/proc_fs.h> |
| 114 | #include <asm/io.h> |
| 115 | #include <linux/ioport.h> |
| 116 | #include <linux/blkdev.h> |
| 117 | |
| 118 | #include <linux/blk.h> |
| 119 | #include <linux/stat.h> |
| 120 | |
| 121 | #include "scsi.h" |
| 122 | #include "sd.h" |
| 123 | #include "hosts.h" |
| 124 | |
| 125 | #define IN2000_VERSION"1.33" "1.33" |
| 126 | #define IN2000_DATE"26/August/1998" "26/August/1998" |
| 127 | |
| 128 | #include "in2000.h" |
| 129 | |
| 130 | |
| 131 | /* |
| 132 | * 'setup_strings' is a single string used to pass operating parameters and |
| 133 | * settings from the kernel/module command-line to the driver. 'setup_args[]' |
| 134 | * is an array of strings that define the compile-time default values for |
| 135 | * these settings. If Linux boots with a LILO or insmod command-line, those |
| 136 | * settings are combined with 'setup_args[]'. Note that LILO command-lines |
| 137 | * are prefixed with "in2000=" while insmod uses a "setup_strings=" prefix. |
| 138 | * The driver recognizes the following keywords (lower case required) and |
| 139 | * arguments: |
| 140 | * |
| 141 | * - ioport:addr -Where addr is IO address of a (usually ROM-less) card. |
| 142 | * - noreset -No optional args. Prevents SCSI bus reset at boot time. |
| 143 | * - nosync:x -x is a bitmask where the 1st 7 bits correspond with |
| 144 | * the 7 possible SCSI devices (bit 0 for device #0, etc). |
| 145 | * Set a bit to PREVENT sync negotiation on that device. |
| 146 | * The driver default is sync DISABLED on all devices. |
| 147 | * - period:ns -ns is the minimum # of nanoseconds in a SCSI data transfer |
| 148 | * period. Default is 500; acceptable values are 250 - 1000. |
| 149 | * - disconnect:x -x = 0 to never allow disconnects, 2 to always allow them. |
| 150 | * x = 1 does 'adaptive' disconnects, which is the default |
| 151 | * and generally the best choice. |
| 152 | * - debug:x -If 'DEBUGGING_ON' is defined, x is a bitmask that causes |
| 153 | * various types of debug output to printed - see the DB_xxx |
| 154 | * defines in in2000.h |
| 155 | * - proc:x -If 'PROC_INTERFACE' is defined, x is a bitmask that |
| 156 | * determines how the /proc interface works and what it |
| 157 | * does - see the PR_xxx defines in in2000.h |
| 158 | * |
| 159 | * Syntax Notes: |
| 160 | * - Numeric arguments can be decimal or the '0x' form of hex notation. There |
| 161 | * _must_ be a colon between a keyword and its numeric argument, with no |
| 162 | * spaces. |
| 163 | * - Keywords are separated by commas, no spaces, in the standard kernel |
| 164 | * command-line manner. |
| 165 | * - A keyword in the 'nth' comma-separated command-line member will overwrite |
| 166 | * the 'nth' element of setup_args[]. A blank command-line member (in |
| 167 | * other words, a comma with no preceding keyword) will _not_ overwrite |
| 168 | * the corresponding setup_args[] element. |
| 169 | * |
| 170 | * A few LILO examples (for insmod, use 'setup_strings' instead of 'in2000'): |
| 171 | * - in2000=ioport:0x220,noreset |
| 172 | * - in2000=period:250,disconnect:2,nosync:0x03 |
| 173 | * - in2000=debug:0x1e |
| 174 | * - in2000=proc:3 |
| 175 | */ |
| 176 | |
| 177 | /* Normally, no defaults are specified... */ |
| 178 | static char *setup_args[] = |
| 179 | {"","","","","","","","",""}; |
| 180 | |
| 181 | /* filled in by 'insmod' */ |
| 182 | static char *setup_strings = 0; |
| 183 | |
| 184 | #ifdef MODULE_PARM |
| 185 | MODULE_PARM(setup_strings, "s"); |
| 186 | #endif |
| 187 | |
| 188 | |
| 189 | static struct Scsi_Host *instance_list = 0; |
| 190 | |
| 191 | |
| 192 | |
| 193 | static inlineinline __attribute__((always_inline)) ucharunsigned char read_3393(struct IN2000_hostdata *hostdata, ucharunsigned char reg_num) |
| 194 | { |
| 195 | write1_io(reg_num,IO_WD_ADDR)(((__builtin_constant_p((hostdata->io_base+(0x00))) && (hostdata->io_base+(0x00)) < 256) ? __outbc(((reg_num) ),(hostdata->io_base+(0x00))) : __outb(((reg_num)),(hostdata ->io_base+(0x00))))); |
| 196 | return read1_io(IO_WD_DATA)(((__builtin_constant_p((hostdata->io_base+(0x01))) && (hostdata->io_base+(0x01)) < 256) ? __inbc(hostdata-> io_base+(0x01)) : __inb(hostdata->io_base+(0x01)))); |
| 197 | } |
| 198 | |
| 199 | |
| 200 | #define READ_AUX_STAT()(((__builtin_constant_p((hostdata->io_base+(0x00))) && (hostdata->io_base+(0x00)) < 256) ? __inbc(hostdata-> io_base+(0x00)) : __inb(hostdata->io_base+(0x00)))) read1_io(IO_WD_ASR)(((__builtin_constant_p((hostdata->io_base+(0x00))) && (hostdata->io_base+(0x00)) < 256) ? __inbc(hostdata-> io_base+(0x00)) : __inb(hostdata->io_base+(0x00)))) |
| 201 | |
| 202 | |
| 203 | static inlineinline __attribute__((always_inline)) void write_3393(struct IN2000_hostdata *hostdata, ucharunsigned char reg_num, ucharunsigned char value) |
| 204 | { |
| 205 | write1_io(reg_num,IO_WD_ADDR)(((__builtin_constant_p((hostdata->io_base+(0x00))) && (hostdata->io_base+(0x00)) < 256) ? __outbc(((reg_num) ),(hostdata->io_base+(0x00))) : __outb(((reg_num)),(hostdata ->io_base+(0x00))))); |
| 206 | write1_io(value,IO_WD_DATA)(((__builtin_constant_p((hostdata->io_base+(0x01))) && (hostdata->io_base+(0x01)) < 256) ? __outbc(((value)), (hostdata->io_base+(0x01))) : __outb(((value)),(hostdata-> io_base+(0x01))))); |
| 207 | } |
| 208 | |
| 209 | |
| 210 | static inlineinline __attribute__((always_inline)) void write_3393_cmd(struct IN2000_hostdata *hostdata, ucharunsigned char cmd) |
| 211 | { |
| 212 | /* while (READ_AUX_STAT() & ASR_CIP) |
| 213 | printk("|");*/ |
| 214 | write1_io(WD_COMMAND,IO_WD_ADDR)(((__builtin_constant_p((hostdata->io_base+(0x00))) && (hostdata->io_base+(0x00)) < 256) ? __outbc(((0x18)),( hostdata->io_base+(0x00))) : __outb(((0x18)),(hostdata-> io_base+(0x00))))); |
| 215 | write1_io(cmd,IO_WD_DATA)(((__builtin_constant_p((hostdata->io_base+(0x01))) && (hostdata->io_base+(0x01)) < 256) ? __outbc(((cmd)),(hostdata ->io_base+(0x01))) : __outb(((cmd)),(hostdata->io_base+ (0x01))))); |
| 216 | } |
| 217 | |
| 218 | |
| 219 | static ucharunsigned char read_1_byte(struct IN2000_hostdata *hostdata) |
| 220 | { |
| 221 | ucharunsigned char asr, x = 0; |
| 222 | |
| 223 | write_3393(hostdata,WD_CONTROL0x01, CTRL_IDI0x04 | CTRL_EDI0x08 | CTRL_POLLED0x00); |
| 224 | write_3393_cmd(hostdata,WD_CMD_TRANS_INFO0x20|0x80); |
| 225 | do { |
| 226 | asr = READ_AUX_STAT()(((__builtin_constant_p((hostdata->io_base+(0x00))) && (hostdata->io_base+(0x00)) < 256) ? __inbc(hostdata-> io_base+(0x00)) : __inb(hostdata->io_base+(0x00)))); |
| 227 | if (asr & ASR_DBR0x01) |
| 228 | x = read_3393(hostdata,WD_DATA0x19); |
| 229 | } while (!(asr & ASR_INT0x80)); |
| 230 | return x; |
| 231 | } |
| 232 | |
| 233 | |
| 234 | static void write_3393_count(struct IN2000_hostdata *hostdata, unsigned long value) |
| 235 | { |
| 236 | write1_io(WD_TRANSFER_COUNT_MSB,IO_WD_ADDR)(((__builtin_constant_p((hostdata->io_base+(0x00))) && (hostdata->io_base+(0x00)) < 256) ? __outbc(((0x12)),( hostdata->io_base+(0x00))) : __outb(((0x12)),(hostdata-> io_base+(0x00))))); |
| 237 | write1_io((value >> 16),IO_WD_DATA)(((__builtin_constant_p((hostdata->io_base+(0x01))) && (hostdata->io_base+(0x01)) < 256) ? __outbc((((value >> 16))),(hostdata->io_base+(0x01))) : __outb((((value >> 16))),(hostdata->io_base+(0x01))))); |
| 238 | write1_io((value >> 8),IO_WD_DATA)(((__builtin_constant_p((hostdata->io_base+(0x01))) && (hostdata->io_base+(0x01)) < 256) ? __outbc((((value >> 8))),(hostdata->io_base+(0x01))) : __outb((((value >> 8))),(hostdata->io_base+(0x01))))); |
| 239 | write1_io(value,IO_WD_DATA)(((__builtin_constant_p((hostdata->io_base+(0x01))) && (hostdata->io_base+(0x01)) < 256) ? __outbc(((value)), (hostdata->io_base+(0x01))) : __outb(((value)),(hostdata-> io_base+(0x01))))); |
| 240 | } |
| 241 | |
| 242 | |
| 243 | static unsigned long read_3393_count(struct IN2000_hostdata *hostdata) |
| 244 | { |
| 245 | unsigned long value; |
| 246 | |
| 247 | write1_io(WD_TRANSFER_COUNT_MSB,IO_WD_ADDR)(((__builtin_constant_p((hostdata->io_base+(0x00))) && (hostdata->io_base+(0x00)) < 256) ? __outbc(((0x12)),( hostdata->io_base+(0x00))) : __outb(((0x12)),(hostdata-> io_base+(0x00))))); |
| 248 | value = read1_io(IO_WD_DATA)(((__builtin_constant_p((hostdata->io_base+(0x01))) && (hostdata->io_base+(0x01)) < 256) ? __inbc(hostdata-> io_base+(0x01)) : __inb(hostdata->io_base+(0x01)))) << 16; |
| 249 | value |= read1_io(IO_WD_DATA)(((__builtin_constant_p((hostdata->io_base+(0x01))) && (hostdata->io_base+(0x01)) < 256) ? __inbc(hostdata-> io_base+(0x01)) : __inb(hostdata->io_base+(0x01)))) << 8; |
| 250 | value |= read1_io(IO_WD_DATA)(((__builtin_constant_p((hostdata->io_base+(0x01))) && (hostdata->io_base+(0x01)) < 256) ? __inbc(hostdata-> io_base+(0x01)) : __inb(hostdata->io_base+(0x01)))); |
| 251 | return value; |
| 252 | } |
| 253 | |
| 254 | |
| 255 | /* The 33c93 needs to be told which direction a command transfers its |
| 256 | * data; we use this function to figure it out. Returns true if there |
| 257 | * will be a DATA_OUT phase with this command, false otherwise. |
| 258 | * (Thanks to Joerg Dorchain for the research and suggestion.) |
| 259 | */ |
| 260 | static int is_dir_out(Scsi_Cmnd *cmd) |
| 261 | { |
| 262 | switch (cmd->cmnd[0]) { |
| 263 | case WRITE_60x0a: case WRITE_100x2a: case WRITE_120xaa: |
| 264 | case WRITE_LONG0x3f: case WRITE_SAME0x41: case WRITE_BUFFER0x3b: |
| 265 | case WRITE_VERIFY0x2e: case WRITE_VERIFY_120xae: |
| 266 | case COMPARE0x39: case COPY0x18: case COPY_VERIFY0x3a: |
| 267 | case SEARCH_EQUAL0x31: case SEARCH_HIGH0x30: case SEARCH_LOW0x32: |
| 268 | case SEARCH_EQUAL_120xb1: case SEARCH_HIGH_120xb0: case SEARCH_LOW_120xb2: |
| 269 | case FORMAT_UNIT0x04: case REASSIGN_BLOCKS0x07: case RESERVE0x16: |
| 270 | case MODE_SELECT0x15: case MODE_SELECT_100x55: case LOG_SELECT0x4c: |
| 271 | case SEND_DIAGNOSTIC0x1d: case CHANGE_DEFINITION0x40: case UPDATE_BLOCK0x3d: |
| 272 | case SET_WINDOW0x24: case MEDIUM_SCAN0x38: case SEND_VOLUME_TAG0xb6: |
| 273 | case 0xea: |
| 274 | return 1; |
| 275 | default: |
| 276 | return 0; |
| 277 | } |
| 278 | } |
| 279 | |
| 280 | |
| 281 | |
| 282 | static struct sx_period sx_table[] = { |
| 283 | { 1, 0x20}, |
| 284 | {252, 0x20}, |
| 285 | {376, 0x30}, |
| 286 | {500, 0x40}, |
| 287 | {624, 0x50}, |
| 288 | {752, 0x60}, |
| 289 | {876, 0x70}, |
| 290 | {1000,0x00}, |
| 291 | {0, 0} }; |
| 292 | |
| 293 | static int round_period(unsigned int period) |
| 294 | { |
| 295 | int x; |
| 296 | |
| 297 | for (x=1; sx_table[x].period_ns; x++) { |
| 298 | if ((period <= sx_table[x-0].period_ns) && |
| 299 | (period > sx_table[x-1].period_ns)) { |
| 300 | return x; |
| 301 | } |
| 302 | } |
| 303 | return 7; |
| 304 | } |
| 305 | |
| 306 | static ucharunsigned char calc_sync_xfer(unsigned int period, unsigned int offset) |
| 307 | { |
| 308 | ucharunsigned char result; |
| 309 | |
| 310 | period *= 4; /* convert SDTR code to ns */ |
| 311 | result = sx_table[round_period(period)].reg_value; |
| 312 | result |= (offset < OPTIMUM_SX_OFF12)?offset:OPTIMUM_SX_OFF12; |
| 313 | return result; |
| 314 | } |
| 315 | |
| 316 | |
| 317 | |
| 318 | static void in2000_execute(struct Scsi_Host *instance); |
| 319 | |
| 320 | int in2000_queuecommand (Scsi_Cmnd *cmd, void (*done)(Scsi_Cmnd *)) |
| 321 | { |
| 322 | struct IN2000_hostdata *hostdata; |
| 323 | Scsi_Cmnd *tmp; |
| 324 | unsigned long flags; |
| 325 | |
| 326 | hostdata = (struct IN2000_hostdata *)cmd->host->hostdata; |
| 327 | |
| 328 | DB(DB_QUEUE_COMMAND,printk("Q-%d-%02x-%ld(",cmd->target,cmd->cmnd[0],cmd->pid))if (hostdata->args & (1<<2)) printk("Q-%d-%02x-%ld(" ,cmd->target,cmd->cmnd[0],cmd->pid); |
| 329 | |
| 330 | /* Set up a few fields in the Scsi_Cmnd structure for our own use: |
| 331 | * - host_scribble is the pointer to the next cmd in the input queue |
| 332 | * - scsi_done points to the routine we call when a cmd is finished |
| 333 | * - result is what you'd expect |
| 334 | */ |
| 335 | |
| 336 | cmd->host_scribble = NULL((void *) 0); |
| 337 | cmd->scsi_done = done; |
| 338 | cmd->result = 0; |
| 339 | |
| 340 | /* We use the Scsi_Pointer structure that's included with each command |
| 341 | * as a scratchpad (as it's intended to be used!). The handy thing about |
| 342 | * the SCp.xxx fields is that they're always associated with a given |
| 343 | * cmd, and are preserved across disconnect-reselect. This means we |
| 344 | * can pretty much ignore SAVE_POINTERS and RESTORE_POINTERS messages |
| 345 | * if we keep all the critical pointers and counters in SCp: |
| 346 | * - SCp.ptr is the pointer into the RAM buffer |
| 347 | * - SCp.this_residual is the size of that buffer |
| 348 | * - SCp.buffer points to the current scatter-gather buffer |
| 349 | * - SCp.buffers_residual tells us how many S.G. buffers there are |
| 350 | * - SCp.have_data_in helps keep track of >2048 byte transfers |
| 351 | * - SCp.sent_command is not used |
| 352 | * - SCp.phase records this command's SRCID_ER bit setting |
| 353 | */ |
| 354 | |
| 355 | if (cmd->use_sg) { |
| 356 | cmd->SCp.buffer = (struct scatterlist *)cmd->buffer; |
| 357 | cmd->SCp.buffers_residual = cmd->use_sg - 1; |
| 358 | cmd->SCp.ptr = (char *)cmd->SCp.buffer->address; |
| 359 | cmd->SCp.this_residual = cmd->SCp.buffer->length; |
| 360 | } |
| 361 | else { |
| 362 | cmd->SCp.buffer = NULL((void *) 0); |
| 363 | cmd->SCp.buffers_residual = 0; |
| 364 | cmd->SCp.ptr = (char *)cmd->request_buffer; |
| 365 | cmd->SCp.this_residual = cmd->request_bufflen; |
| 366 | } |
| 367 | cmd->SCp.have_data_in = 0; |
| 368 | |
| 369 | /* We don't set SCp.phase here - that's done in in2000_execute() */ |
| 370 | |
| 371 | /* WD docs state that at the conclusion of a "LEVEL2" command, the |
| 372 | * status byte can be retrieved from the LUN register. Apparently, |
| 373 | * this is the case only for *uninterrupted* LEVEL2 commands! If |
| 374 | * there are any unexpected phases entered, even if they are 100% |
| 375 | * legal (different devices may choose to do things differently), |
| 376 | * the LEVEL2 command sequence is exited. This often occurs prior |
| 377 | * to receiving the status byte, in which case the driver does a |
| 378 | * status phase interrupt and gets the status byte on its own. |
| 379 | * While such a command can then be "resumed" (ie restarted to |
| 380 | * finish up as a LEVEL2 command), the LUN register will NOT be |
| 381 | * a valid status byte at the command's conclusion, and we must |
| 382 | * use the byte obtained during the earlier interrupt. Here, we |
| 383 | * preset SCp.Status to an illegal value (0xff) so that when |
| 384 | * this command finally completes, we can tell where the actual |
| 385 | * status byte is stored. |
| 386 | */ |
| 387 | |
| 388 | cmd->SCp.Status = ILLEGAL_STATUS_BYTE0xff; |
| 389 | |
| 390 | /* We need to disable interrupts before messing with the input |
| 391 | * queue and calling in2000_execute(). |
| 392 | */ |
| 393 | |
| 394 | save_flags(flags)__asm__ __volatile__("pushf ; pop %0" : "=r" (flags): :"memory" ); |
| 395 | cli()__asm__ __volatile__ ("cli": : :"memory"); |
| 396 | |
| 397 | /* |
| 398 | * Add the cmd to the end of 'input_Q'. Note that REQUEST_SENSE |
| 399 | * commands are added to the head of the queue so that the desired |
| 400 | * sense data is not lost before REQUEST_SENSE executes. |
| 401 | */ |
| 402 | |
| 403 | if (!(hostdata->input_Q) || (cmd->cmnd[0] == REQUEST_SENSE0x03)) { |
| 404 | cmd->host_scribble = (ucharunsigned char *)hostdata->input_Q; |
| 405 | hostdata->input_Q = cmd; |
| 406 | } |
| 407 | else { /* find the end of the queue */ |
| 408 | for (tmp=(Scsi_Cmnd *)hostdata->input_Q; tmp->host_scribble; |
| 409 | tmp=(Scsi_Cmnd *)tmp->host_scribble) |
| 410 | ; |
| 411 | tmp->host_scribble = (ucharunsigned char *)cmd; |
| 412 | } |
| 413 | |
| 414 | /* We know that there's at least one command in 'input_Q' now. |
| 415 | * Go see if any of them are runnable! |
| 416 | */ |
| 417 | |
| 418 | in2000_execute(cmd->host); |
| 419 | |
| 420 | DB(DB_QUEUE_COMMAND,printk(")Q-%ld ",cmd->pid))if (hostdata->args & (1<<2)) printk(")Q-%ld ",cmd ->pid); |
| 421 | |
| 422 | restore_flags(flags)__asm__ __volatile__("push %0 ; popf": :"g" (flags):"memory"); |
| 423 | return 0; |
| 424 | } |
| 425 | |
| 426 | |
| 427 | |
| 428 | /* |
| 429 | * This routine attempts to start a scsi command. If the host_card is |
| 430 | * already connected, we give up immediately. Otherwise, look through |
| 431 | * the input_Q, using the first command we find that's intended |
| 432 | * for a currently non-busy target/lun. |
| 433 | * Note that this function is always called with interrupts already |
| 434 | * disabled (either from in2000_queuecommand() or in2000_intr()). |
| 435 | */ |
| 436 | static void in2000_execute (struct Scsi_Host *instance) |
| 437 | { |
| 438 | struct IN2000_hostdata *hostdata; |
| 439 | Scsi_Cmnd *cmd, *prev; |
| 440 | int i; |
| 441 | unsigned short *sp; |
| 442 | unsigned short f; |
| 443 | unsigned short flushbuf[16]; |
| 444 | |
| 445 | |
| 446 | hostdata = (struct IN2000_hostdata *)instance->hostdata; |
| 447 | |
| 448 | DB(DB_EXECUTE,printk("EX("))if (hostdata->args & (1<<3)) printk("EX("); |
| 449 | |
| 450 | if (hostdata->selecting || hostdata->connected) { |
| 451 | |
| 452 | DB(DB_EXECUTE,printk(")EX-0 "))if (hostdata->args & (1<<3)) printk(")EX-0 "); |
| 453 | |
| 454 | return; |
| 455 | } |
| 456 | |
| 457 | /* |
| 458 | * Search through the input_Q for a command destined |
| 459 | * for an idle target/lun. |
| 460 | */ |
| 461 | |
| 462 | cmd = (Scsi_Cmnd *)hostdata->input_Q; |
| 463 | prev = 0; |
| 464 | while (cmd) { |
| 465 | if (!(hostdata->busy[cmd->target] & (1 << cmd->lun))) |
| 466 | break; |
| 467 | prev = cmd; |
| 468 | cmd = (Scsi_Cmnd *)cmd->host_scribble; |
| 469 | } |
| 470 | |
| 471 | /* quit if queue empty or all possible targets are busy */ |
| 472 | |
| 473 | if (!cmd) { |
| 474 | |
| 475 | DB(DB_EXECUTE,printk(")EX-1 "))if (hostdata->args & (1<<3)) printk(")EX-1 "); |
| 476 | |
| 477 | return; |
| 478 | } |
| 479 | |
| 480 | /* remove command from queue */ |
| 481 | |
| 482 | if (prev) |
| 483 | prev->host_scribble = cmd->host_scribble; |
| 484 | else |
| 485 | hostdata->input_Q = (Scsi_Cmnd *)cmd->host_scribble; |
| 486 | |
| 487 | #ifdef PROC_STATISTICS |
| 488 | hostdata->cmd_cnt[cmd->target]++; |
| 489 | #endif |
| 490 | |
| 491 | /* |
| 492 | * Start the selection process |
| 493 | */ |
| 494 | |
| 495 | if (is_dir_out(cmd)) |
| 496 | write_3393(hostdata,WD_DESTINATION_ID0x15, cmd->target); |
| 497 | else |
| 498 | write_3393(hostdata,WD_DESTINATION_ID0x15, cmd->target | DSTID_DPD0x40); |
| 499 | |
| 500 | /* Now we need to figure out whether or not this command is a good |
| 501 | * candidate for disconnect/reselect. We guess to the best of our |
| 502 | * ability, based on a set of hierarchical rules. When several |
| 503 | * devices are operating simultaneously, disconnects are usually |
| 504 | * an advantage. In a single device system, or if only 1 device |
| 505 | * is being accessed, transfers usually go faster if disconnects |
| 506 | * are not allowed: |
| 507 | * |
| 508 | * + Commands should NEVER disconnect if hostdata->disconnect = |
| 509 | * DIS_NEVER (this holds for tape drives also), and ALWAYS |
| 510 | * disconnect if hostdata->disconnect = DIS_ALWAYS. |
| 511 | * + Tape drive commands should always be allowed to disconnect. |
| 512 | * + Disconnect should be allowed if disconnected_Q isn't empty. |
| 513 | * + Commands should NOT disconnect if input_Q is empty. |
| 514 | * + Disconnect should be allowed if there are commands in input_Q |
| 515 | * for a different target/lun. In this case, the other commands |
| 516 | * should be made disconnect-able, if not already. |
| 517 | * |
| 518 | * I know, I know - this code would flunk me out of any |
| 519 | * "C Programming 101" class ever offered. But it's easy |
| 520 | * to change around and experiment with for now. |
| 521 | */ |
| 522 | |
| 523 | cmd->SCp.phase = 0; /* assume no disconnect */ |
| 524 | if (hostdata->disconnect == DIS_NEVER0) |
| 525 | goto no; |
| 526 | if (hostdata->disconnect == DIS_ALWAYS2) |
| 527 | goto yes; |
| 528 | if (cmd->device->type == 1) /* tape drive? */ |
| 529 | goto yes; |
| 530 | if (hostdata->disconnected_Q) /* other commands disconnected? */ |
| 531 | goto yes; |
| 532 | if (!(hostdata->input_Q)) /* input_Q empty? */ |
| 533 | goto no; |
| 534 | for (prev=(Scsi_Cmnd *)hostdata->input_Q; prev; |
| 535 | prev=(Scsi_Cmnd *)prev->host_scribble) { |
| 536 | if ((prev->target != cmd->target) || (prev->lun != cmd->lun)) { |
| 537 | for (prev=(Scsi_Cmnd *)hostdata->input_Q; prev; |
| 538 | prev=(Scsi_Cmnd *)prev->host_scribble) |
| 539 | prev->SCp.phase = 1; |
| 540 | goto yes; |
| 541 | } |
| 542 | } |
| 543 | goto no; |
| 544 | |
| 545 | yes: |
| 546 | cmd->SCp.phase = 1; |
| 547 | |
| 548 | #ifdef PROC_STATISTICS |
| 549 | hostdata->disc_allowed_cnt[cmd->target]++; |
| 550 | #endif |
| 551 | |
| 552 | no: |
| 553 | write_3393(hostdata,WD_SOURCE_ID0x16,((cmd->SCp.phase)?SRCID_ER0x80:0)); |
| 554 | |
| 555 | write_3393(hostdata,WD_TARGET_LUN0x0f, cmd->lun); |
| 556 | write_3393(hostdata,WD_SYNCHRONOUS_TRANSFER0x11,hostdata->sync_xfer[cmd->target]); |
| 557 | hostdata->busy[cmd->target] |= (1 << cmd->lun); |
| 558 | |
| 559 | if ((hostdata->level2 <= L2_NONE0) || |
| 560 | (hostdata->sync_stat[cmd->target] == SS_UNSET0)) { |
| 561 | |
| 562 | /* |
| 563 | * Do a 'Select-With-ATN' command. This will end with |
| 564 | * one of the following interrupts: |
| 565 | * CSR_RESEL_AM: failure - can try again later. |
| 566 | * CSR_TIMEOUT: failure - give up. |
| 567 | * CSR_SELECT: success - proceed. |
| 568 | */ |
| 569 | |
| 570 | hostdata->selecting = cmd; |
| 571 | |
| 572 | /* Every target has its own synchronous transfer setting, kept in |
| 573 | * the sync_xfer array, and a corresponding status byte in sync_stat[]. |
| 574 | * Each target's sync_stat[] entry is initialized to SS_UNSET, and its |
| 575 | * sync_xfer[] entry is initialized to the default/safe value. SS_UNSET |
| 576 | * means that the parameters are undetermined as yet, and that we |
| 577 | * need to send an SDTR message to this device after selection is |
| 578 | * complete. We set SS_FIRST to tell the interrupt routine to do so, |
| 579 | * unless we don't want to even _try_ synchronous transfers: In this |
| 580 | * case we set SS_SET to make the defaults final. |
| 581 | */ |
| 582 | if (hostdata->sync_stat[cmd->target] == SS_UNSET0) { |
| 583 | if (hostdata->sync_off & (1 << cmd->target)) |
| 584 | hostdata->sync_stat[cmd->target] = SS_SET3; |
| 585 | else |
| 586 | hostdata->sync_stat[cmd->target] = SS_FIRST1; |
| 587 | } |
| 588 | hostdata->state = S_SELECTING1; |
| 589 | write_3393_count(hostdata,0); /* this guarantees a DATA_PHASE interrupt */ |
| 590 | write_3393_cmd(hostdata,WD_CMD_SEL_ATN0x06); |
| 591 | } |
| 592 | |
| 593 | else { |
| 594 | |
| 595 | /* |
| 596 | * Do a 'Select-With-ATN-Xfer' command. This will end with |
| 597 | * one of the following interrupts: |
| 598 | * CSR_RESEL_AM: failure - can try again later. |
| 599 | * CSR_TIMEOUT: failure - give up. |
| 600 | * anything else: success - proceed. |
| 601 | */ |
| 602 | |
| 603 | hostdata->connected = cmd; |
| 604 | write_3393(hostdata,WD_COMMAND_PHASE0x10, 0); |
| 605 | |
| 606 | /* copy command_descriptor_block into WD chip |
| 607 | * (take advantage of auto-incrementing) |
| 608 | */ |
| 609 | |
| 610 | write1_io(WD_CDB_1, IO_WD_ADDR)(((__builtin_constant_p((hostdata->io_base+(0x00))) && (hostdata->io_base+(0x00)) < 256) ? __outbc(((0x03)),( hostdata->io_base+(0x00))) : __outb(((0x03)),(hostdata-> io_base+(0x00))))); |
| 611 | for (i=0; i<cmd->cmd_len; i++) |
| 612 | write1_io(cmd->cmnd[i], IO_WD_DATA)(((__builtin_constant_p((hostdata->io_base+(0x01))) && (hostdata->io_base+(0x01)) < 256) ? __outbc(((cmd-> cmnd[i])),(hostdata->io_base+(0x01))) : __outb(((cmd->cmnd [i])),(hostdata->io_base+(0x01))))); |
| 613 | |
| 614 | /* The wd33c93 only knows about Group 0, 1, and 5 commands when |
| 615 | * it's doing a 'select-and-transfer'. To be safe, we write the |
| 616 | * size of the CDB into the OWN_ID register for every case. This |
| 617 | * way there won't be problems with vendor-unique, audio, etc. |
| 618 | */ |
| 619 | |
| 620 | write_3393(hostdata, WD_OWN_ID0x00, cmd->cmd_len); |
| 621 | |
| 622 | /* When doing a non-disconnect command, we can save ourselves a DATA |
| 623 | * phase interrupt later by setting everything up now. With writes we |
| 624 | * need to pre-fill the fifo; if there's room for the 32 flush bytes, |
| 625 | * put them in there too - that'll avoid a fifo interrupt. Reads are |
| 626 | * somewhat simpler. |
| 627 | * KLUDGE NOTE: It seems that you can't completely fill the fifo here: |
| 628 | * This results in the IO_FIFO_COUNT register rolling over to zero, |
| 629 | * and apparently the gate array logic sees this as empty, not full, |
| 630 | * so the 3393 chip is never signalled to start reading from the |
| 631 | * fifo. Or maybe it's seen as a permanent fifo interrupt condition. |
| 632 | * Regardless, we fix this by temporarily pretending that the fifo |
| 633 | * is 16 bytes smaller. (I see now that the old driver has a comment |
| 634 | * about "don't fill completely" in an analogous place - must be the |
| 635 | * same deal.) This results in CDROM, swap partitions, and tape drives |
| 636 | * needing an extra interrupt per write command - I think we can live |
| 637 | * with that! |
| 638 | */ |
| 639 | |
| 640 | if (!(cmd->SCp.phase)) { |
| 641 | write_3393_count(hostdata, cmd->SCp.this_residual); |
| 642 | write_3393(hostdata,WD_CONTROL0x01, CTRL_IDI0x04 | CTRL_EDI0x08 | CTRL_BUS0x40); |
| 643 | write1_io(0, IO_FIFO_WRITE)(((__builtin_constant_p((hostdata->io_base+(0x05))) && (hostdata->io_base+(0x05)) < 256) ? __outbc(((0)),(hostdata ->io_base+(0x05))) : __outb(((0)),(hostdata->io_base+(0x05 ))))); /* clear fifo counter, write mode */ |
| 644 | |
| 645 | if (is_dir_out(cmd)) { |
| 646 | hostdata->fifo = FI_FIFO_WRITING2; |
| 647 | if ((i = cmd->SCp.this_residual) > (IN2000_FIFO_SIZE2048 - 16) ) |
| 648 | i = IN2000_FIFO_SIZE2048 - 16; |
| 649 | cmd->SCp.have_data_in = i; /* this much data in fifo */ |
| 650 | i >>= 1; /* Gulp. Assuming modulo 2. */ |
| 651 | sp = (unsigned short *)cmd->SCp.ptr; |
| 652 | f = hostdata->io_base + IO_FIFO0x02; |
| 653 | |
| 654 | #ifdef FAST_WRITE_IO |
| 655 | |
| 656 | FAST_WRITE2_IO()({ int __dummy_1,__dummy_2; __asm__ __volatile__ ("\n cld \n orl %%ecx, %%ecx \n jz 1f \n rep \n outsw %%ds:(%%esi),(%%dx) \n 1: " : "=S" (sp) ,"=c" (__dummy_1) ,"=d" (__dummy_2) : "2" (f), "0" (sp), "1" (i) ); }); |
| 657 | #else |
| 658 | while (i--) |
| 659 | write2_io(*sp++,IO_FIFO)(((__builtin_constant_p((hostdata->io_base+(0x02))) && (hostdata->io_base+(0x02)) < 256) ? __outwc(((*sp++)), (hostdata->io_base+(0x02))) : __outw(((*sp++)),(hostdata-> io_base+(0x02))))); |
| 660 | |
| 661 | #endif |
| 662 | |
| 663 | /* Is there room for the flush bytes? */ |
| 664 | |
| 665 | if (cmd->SCp.have_data_in <= ((IN2000_FIFO_SIZE2048 - 16) - 32)) { |
| 666 | sp = flushbuf; |
| 667 | i = 16; |
| 668 | |
| 669 | #ifdef FAST_WRITE_IO |
| 670 | |
| 671 | FAST_WRITE2_IO()({ int __dummy_1,__dummy_2; __asm__ __volatile__ ("\n cld \n orl %%ecx, %%ecx \n jz 1f \n rep \n outsw %%ds:(%%esi),(%%dx) \n 1: " : "=S" (sp) ,"=c" (__dummy_1) ,"=d" (__dummy_2) : "2" (f), "0" (sp), "1" (i) ); }); |
| 672 | #else |
| 673 | while (i--) |
| 674 | write2_io(0,IO_FIFO)(((__builtin_constant_p((hostdata->io_base+(0x02))) && (hostdata->io_base+(0x02)) < 256) ? __outwc(((0)),(hostdata ->io_base+(0x02))) : __outw(((0)),(hostdata->io_base+(0x02 ))))); |
| 675 | |
| 676 | #endif |
| 677 | |
| 678 | } |
| 679 | } |
| 680 | |
| 681 | else { |
| 682 | write1_io(0, IO_FIFO_READ)(((__builtin_constant_p((hostdata->io_base+(0x07))) && (hostdata->io_base+(0x07)) < 256) ? __outbc(((0)),(hostdata ->io_base+(0x07))) : __outb(((0)),(hostdata->io_base+(0x07 ))))); /* put fifo in read mode */ |
| 683 | hostdata->fifo = FI_FIFO_READING1; |
| 684 | cmd->SCp.have_data_in = 0; /* nothing transfered yet */ |
| 685 | } |
| 686 | |
| 687 | } |
| 688 | else { |
| 689 | write_3393_count(hostdata,0); /* this guarantees a DATA_PHASE interrupt */ |
| 690 | } |
| 691 | hostdata->state = S_RUNNING_LEVEL22; |
| 692 | write_3393_cmd(hostdata,WD_CMD_SEL_ATN_XFER0x08); |
| 693 | } |
| 694 | |
| 695 | /* |
| 696 | * Since the SCSI bus can handle only 1 connection at a time, |
| 697 | * we get out of here now. If the selection fails, or when |
| 698 | * the command disconnects, we'll come back to this routine |
| 699 | * to search the input_Q again... |
| 700 | */ |
| 701 | |
| 702 | DB(DB_EXECUTE,printk("%s%ld)EX-2 ",(cmd->SCp.phase)?"d:":"",cmd->pid))if (hostdata->args & (1<<3)) printk("%s%ld)EX-2 " ,(cmd->SCp.phase)?"d:":"",cmd->pid); |
| 703 | |
| 704 | } |
| 705 | |
| 706 | |
| 707 | |
| 708 | static void transfer_pio(ucharunsigned char *buf, int cnt, |
| 709 | int data_in_dir, struct IN2000_hostdata *hostdata) |
| 710 | { |
| 711 | ucharunsigned char asr; |
| 712 | |
| 713 | DB(DB_TRANSFER,printk("(%p,%d,%s)",buf,cnt,data_in_dir?"in":"out"))if (hostdata->args & (1<<5)) printk("(%p,%d,%s)" ,buf,cnt,data_in_dir?"in":"out"); |
| 714 | |
| 715 | write_3393(hostdata,WD_CONTROL0x01, CTRL_IDI0x04 | CTRL_EDI0x08 | CTRL_POLLED0x00); |
| 716 | write_3393_count(hostdata,cnt); |
| 717 | write_3393_cmd(hostdata,WD_CMD_TRANS_INFO0x20); |
| 718 | if (data_in_dir) { |
| 719 | do { |
| 720 | asr = READ_AUX_STAT()(((__builtin_constant_p((hostdata->io_base+(0x00))) && (hostdata->io_base+(0x00)) < 256) ? __inbc(hostdata-> io_base+(0x00)) : __inb(hostdata->io_base+(0x00)))); |
| 721 | if (asr & ASR_DBR0x01) |
| 722 | *buf++ = read_3393(hostdata,WD_DATA0x19); |
| 723 | } while (!(asr & ASR_INT0x80)); |
| 724 | } |
| 725 | else { |
| 726 | do { |
| 727 | asr = READ_AUX_STAT()(((__builtin_constant_p((hostdata->io_base+(0x00))) && (hostdata->io_base+(0x00)) < 256) ? __inbc(hostdata-> io_base+(0x00)) : __inb(hostdata->io_base+(0x00)))); |
| 728 | if (asr & ASR_DBR0x01) |
| 729 | write_3393(hostdata,WD_DATA0x19, *buf++); |
| 730 | } while (!(asr & ASR_INT0x80)); |
| 731 | } |
| 732 | |
| 733 | /* Note: we are returning with the interrupt UN-cleared. |
| 734 | * Since (presumably) an entire I/O operation has |
| 735 | * completed, the bus phase is probably different, and |
| 736 | * the interrupt routine will discover this when it |
| 737 | * responds to the uncleared int. |
| 738 | */ |
| 739 | |
| 740 | } |
| 741 | |
| 742 | |
| 743 | |
| 744 | static void transfer_bytes(Scsi_Cmnd *cmd, int data_in_dir) |
| 745 | { |
| 746 | struct IN2000_hostdata *hostdata; |
| 747 | unsigned short *sp; |
| 748 | unsigned short f; |
| 749 | int i; |
| 750 | |
| 751 | hostdata = (struct IN2000_hostdata *)cmd->host->hostdata; |
| 752 | |
| 753 | /* Normally, you'd expect 'this_residual' to be non-zero here. |
| 754 | * In a series of scatter-gather transfers, however, this |
| 755 | * routine will usually be called with 'this_residual' equal |
| 756 | * to 0 and 'buffers_residual' non-zero. This means that a |
| 757 | * previous transfer completed, clearing 'this_residual', and |
| 758 | * now we need to setup the next scatter-gather buffer as the |
| 759 | * source or destination for THIS transfer. |
| 760 | */ |
| 761 | if (!cmd->SCp.this_residual && cmd->SCp.buffers_residual) { |
| 762 | ++cmd->SCp.buffer; |
| 763 | --cmd->SCp.buffers_residual; |
| 764 | cmd->SCp.this_residual = cmd->SCp.buffer->length; |
| 765 | cmd->SCp.ptr = cmd->SCp.buffer->address; |
| 766 | } |
| 767 | |
| 768 | /* Set up hardware registers */ |
| 769 | |
| 770 | write_3393(hostdata,WD_SYNCHRONOUS_TRANSFER0x11,hostdata->sync_xfer[cmd->target]); |
| 771 | write_3393_count(hostdata,cmd->SCp.this_residual); |
| 772 | write_3393(hostdata,WD_CONTROL0x01, CTRL_IDI0x04 | CTRL_EDI0x08 | CTRL_BUS0x40); |
| 773 | write1_io(0,IO_FIFO_WRITE)(((__builtin_constant_p((hostdata->io_base+(0x05))) && (hostdata->io_base+(0x05)) < 256) ? __outbc(((0)),(hostdata ->io_base+(0x05))) : __outb(((0)),(hostdata->io_base+(0x05 ))))); /* zero counter, assume write */ |
| 774 | |
| 775 | /* Reading is easy. Just issue the command and return - we'll |
| 776 | * get an interrupt later when we have actual data to worry about. |
| 777 | */ |
| 778 | |
| 779 | if (data_in_dir) { |
| 780 | write1_io(0,IO_FIFO_READ)(((__builtin_constant_p((hostdata->io_base+(0x07))) && (hostdata->io_base+(0x07)) < 256) ? __outbc(((0)),(hostdata ->io_base+(0x07))) : __outb(((0)),(hostdata->io_base+(0x07 ))))); |
| 781 | if ((hostdata->level2 >= L2_DATA3) || |
| 782 | (hostdata->level2 == L2_BASIC2 && cmd->SCp.phase == 0)) { |
| 783 | write_3393(hostdata,WD_COMMAND_PHASE0x10,0x45); |
| 784 | write_3393_cmd(hostdata,WD_CMD_SEL_ATN_XFER0x08); |
| 785 | hostdata->state = S_RUNNING_LEVEL22; |
| 786 | } |
| 787 | else |
| 788 | write_3393_cmd(hostdata,WD_CMD_TRANS_INFO0x20); |
| 789 | hostdata->fifo = FI_FIFO_READING1; |
| 790 | cmd->SCp.have_data_in = 0; |
| 791 | return; |
| 792 | } |
| 793 | |
| 794 | /* Writing is more involved - we'll start the WD chip and write as |
| 795 | * much data to the fifo as we can right now. Later interrupts will |
| 796 | * write any bytes that don't make it at this stage. |
| 797 | */ |
| 798 | |
| 799 | if ((hostdata->level2 >= L2_DATA3) || |
| 800 | (hostdata->level2 == L2_BASIC2 && cmd->SCp.phase == 0)) { |
| 801 | write_3393(hostdata,WD_COMMAND_PHASE0x10,0x45); |
| 802 | write_3393_cmd(hostdata,WD_CMD_SEL_ATN_XFER0x08); |
| 803 | hostdata->state = S_RUNNING_LEVEL22; |
| 804 | } |
| 805 | else |
| 806 | write_3393_cmd(hostdata,WD_CMD_TRANS_INFO0x20); |
| 807 | hostdata->fifo = FI_FIFO_WRITING2; |
| 808 | sp = (unsigned short *)cmd->SCp.ptr; |
| 809 | |
| 810 | if ((i = cmd->SCp.this_residual) > IN2000_FIFO_SIZE2048) |
| 811 | i = IN2000_FIFO_SIZE2048; |
| 812 | cmd->SCp.have_data_in = i; |
| 813 | i >>= 1; /* Gulp. We assume this_residual is modulo 2 */ |
| 814 | f = hostdata->io_base + IO_FIFO0x02; |
| 815 | |
| 816 | #ifdef FAST_WRITE_IO |
| 817 | |
| 818 | FAST_WRITE2_IO()({ int __dummy_1,__dummy_2; __asm__ __volatile__ ("\n cld \n orl %%ecx, %%ecx \n jz 1f \n rep \n outsw %%ds:(%%esi),(%%dx) \n 1: " : "=S" (sp) ,"=c" (__dummy_1) ,"=d" (__dummy_2) : "2" (f), "0" (sp), "1" (i) ); }); |
| 819 | #else |
| 820 | while (i--) |
| 821 | write2_io(*sp++,IO_FIFO)(((__builtin_constant_p((hostdata->io_base+(0x02))) && (hostdata->io_base+(0x02)) < 256) ? __outwc(((*sp++)), (hostdata->io_base+(0x02))) : __outw(((*sp++)),(hostdata-> io_base+(0x02))))); |
| 822 | |
| 823 | #endif |
| 824 | |
| 825 | } |
| 826 | |
| 827 | |
| 828 | /* We need to use spin_lock_irqsave() & spin_unlock_irqrestore() in this |
| 829 | * function in order to work in an SMP environment. (I'd be surprised |
| 830 | * if the driver is ever used by anyone on a real multi-CPU motherboard, |
| 831 | * but it _does_ need to be able to compile and run in an SMP kernel.) |
| 832 | */ |
| 833 | |
| 834 | static void in2000_intr (int irqnum, void * dev_id, struct pt_regs *ptregs) |
| 835 | { |
| 836 | struct Scsi_Host *instance; |
| 837 | struct IN2000_hostdata *hostdata; |
| 838 | Scsi_Cmnd *patch, *cmd; |
| 839 | ucharunsigned char asr, sr, phs, id, lun, *ucp, msg; |
| 840 | int i,j; |
| 841 | unsigned long length; |
| 842 | unsigned short *sp; |
| 843 | unsigned short f; |
| 844 | unsigned long flags; |
| 845 | |
| 846 | for (instance = instance_list; instance; instance = instance->next) { |
| 847 | if (instance->irq == irqnum) |
| 848 | break; |
| 849 | } |
| 850 | if (!instance) { |
| 851 | printk("*** Hmm... interrupts are screwed up! ***\n"); |
| 852 | return; |
| 853 | } |
| 854 | hostdata = (struct IN2000_hostdata *)instance->hostdata; |
| 855 | |
| 856 | /* Get the spin_lock and disable further ints, for SMP */ |
| 857 | |
| 858 | CLISPIN_LOCK(flags)do { __asm__ __volatile__("pushf ; pop %0" : "=r" (flags): :"memory" ); __asm__ __volatile__ ("cli": : :"memory"); } while(0); |
| 859 | |
| 860 | #ifdef PROC_STATISTICS |
| 861 | hostdata->int_cnt++; |
| 862 | #endif |
| 863 | |
| 864 | /* The IN2000 card has 2 interrupt sources OR'ed onto its IRQ line - the |
| 865 | * WD3393 chip and the 2k fifo (which is actually a dual-port RAM combined |
| 866 | * with a big logic array, so it's a little different than what you might |
| 867 | * expect). As far as I know, there's no reason that BOTH can't be active |
| 868 | * at the same time, but there's a problem: while we can read the 3393 |
| 869 | * to tell if _it_ wants an interrupt, I don't know of a way to ask the |
| 870 | * fifo the same question. The best we can do is check the 3393 and if |
| 871 | * it _isn't_ the source of the interrupt, then we can be pretty sure |
| 872 | * that the fifo is the culprit. |
| 873 | * UPDATE: I have it on good authority (Bill Earnest) that bit 0 of the |
| 874 | * IO_FIFO_COUNT register mirrors the fifo interrupt state. I |
| 875 | * assume that bit clear means interrupt active. As it turns |
| 876 | * out, the driver really doesn't need to check for this after |
| 877 | * all, so my remarks above about a 'problem' can safely be |
| 878 | * ignored. The way the logic is set up, there's no advantage |
| 879 | * (that I can see) to worrying about it. |
| 880 | * |
| 881 | * It seems that the fifo interrupt signal is negated when we extract |
| 882 | * bytes during read or write bytes during write. |
| 883 | * - fifo will interrupt when data is moving from it to the 3393, and |
| 884 | * there are 31 (or less?) bytes left to go. This is sort of short- |
| 885 | * sighted: what if you don't WANT to do more? In any case, our |
| 886 | * response is to push more into the fifo - either actual data or |
| 887 | * dummy bytes if need be. Note that we apparently have to write at |
| 888 | * least 32 additional bytes to the fifo after an interrupt in order |
| 889 | * to get it to release the ones it was holding on to - writing fewer |
| 890 | * than 32 will result in another fifo int. |
| 891 | * UPDATE: Again, info from Bill Earnest makes this more understandable: |
| 892 | * 32 bytes = two counts of the fifo counter register. He tells |
| 893 | * me that the fifo interrupt is a non-latching signal derived |
| 894 | * from a straightforward boolean interpretation of the 7 |
| 895 | * highest bits of the fifo counter and the fifo-read/fifo-write |
| 896 | * state. Who'd a thought? |
| 897 | */ |
| 898 | |
| 899 | write1_io(0, IO_LED_ON)(((__builtin_constant_p((hostdata->io_base+(0x09))) && (hostdata->io_base+(0x09)) < 256) ? __outbc(((0)),(hostdata ->io_base+(0x09))) : __outb(((0)),(hostdata->io_base+(0x09 ))))); |
| 900 | asr = READ_AUX_STAT()(((__builtin_constant_p((hostdata->io_base+(0x00))) && (hostdata->io_base+(0x00)) < 256) ? __inbc(hostdata-> io_base+(0x00)) : __inb(hostdata->io_base+(0x00)))); |
| 901 | if (!(asr & ASR_INT0x80)) { /* no WD33c93 interrupt? */ |
| 902 | |
| 903 | /* Ok. This is definitely a FIFO-only interrupt. |
| 904 | * |
| 905 | * If FI_FIFO_READING is set, there are up to 2048 bytes waiting to be read, |
| 906 | * maybe more to come from the SCSI bus. Read as many as we can out of the |
| 907 | * fifo and into memory at the location of SCp.ptr[SCp.have_data_in], and |
| 908 | * update have_data_in afterwards. |
| 909 | * |
| 910 | * If we have FI_FIFO_WRITING, the FIFO has almost run out of bytes to move |
| 911 | * into the WD3393 chip (I think the interrupt happens when there are 31 |
| 912 | * bytes left, but it may be fewer...). The 3393 is still waiting, so we |
| 913 | * shove some more into the fifo, which gets things moving again. If the |
| 914 | * original SCSI command specified more than 2048 bytes, there may still |
| 915 | * be some of that data left: fine - use it (from SCp.ptr[SCp.have_data_in]). |
| 916 | * Don't forget to update have_data_in. If we've already written out the |
| 917 | * entire buffer, feed 32 dummy bytes to the fifo - they're needed to |
| 918 | * push out the remaining real data. |
| 919 | * (Big thanks to Bill Earnest for getting me out of the mud in here.) |
| 920 | */ |
| 921 | |
| 922 | cmd = (Scsi_Cmnd *)hostdata->connected; /* assume we're connected */ |
| 923 | CHECK_NULL(cmd,"fifo_int") |
| 924 | |
| 925 | if (hostdata->fifo == FI_FIFO_READING1) { |
| 926 | |
| 927 | DB(DB_FIFO,printk("{R:%02x} ",read1_io(IO_FIFO_COUNT)))if (hostdata->args & (1<<1)) printk("{R:%02x} ", (((__builtin_constant_p((hostdata->io_base+(0x04))) && (hostdata->io_base+(0x04)) < 256) ? __inbc(hostdata-> io_base+(0x04)) : __inb(hostdata->io_base+(0x04))))); |
| 928 | |
| 929 | sp = (unsigned short *)(cmd->SCp.ptr + cmd->SCp.have_data_in); |
| 930 | i = read1_io(IO_FIFO_COUNT)(((__builtin_constant_p((hostdata->io_base+(0x04))) && (hostdata->io_base+(0x04)) < 256) ? __inbc(hostdata-> io_base+(0x04)) : __inb(hostdata->io_base+(0x04)))) & 0xfe; |
| 931 | i <<= 2; /* # of words waiting in the fifo */ |
| 932 | f = hostdata->io_base + IO_FIFO0x02; |
| 933 | |
| 934 | #ifdef FAST_READ_IO |
| 935 | |
| 936 | FAST_READ2_IO()({ int __dummy_1,__dummy_2; __asm__ __volatile__ ("\n cld \n orl %%ecx, %%ecx \n jz 1f \n rep \n insw (%%dx),%%es:(%%edi) \n 1: " : "=D" (sp) ,"=c" (__dummy_1) ,"=d" (__dummy_2) : "2" (f), "0" (sp), "1" (i) ); }); |
| 937 | #else |
| 938 | while (i--) |
| 939 | *sp++ = read2_io(IO_FIFO)(((__builtin_constant_p((hostdata->io_base+(0x02))) && (hostdata->io_base+(0x02)) < 256) ? __inwc(hostdata-> io_base+(0x02)) : __inw(hostdata->io_base+(0x02)))); |
| 940 | |
| 941 | #endif |
| 942 | |
| 943 | i = sp - (unsigned short *)(cmd->SCp.ptr + cmd->SCp.have_data_in); |
| 944 | i <<= 1; |
| 945 | cmd->SCp.have_data_in += i; |
| 946 | } |
| 947 | |
| 948 | else if (hostdata->fifo == FI_FIFO_WRITING2) { |
| 949 | |
| 950 | DB(DB_FIFO,printk("{W:%02x} ",read1_io(IO_FIFO_COUNT)))if (hostdata->args & (1<<1)) printk("{W:%02x} ", (((__builtin_constant_p((hostdata->io_base+(0x04))) && (hostdata->io_base+(0x04)) < 256) ? __inbc(hostdata-> io_base+(0x04)) : __inb(hostdata->io_base+(0x04))))); |
| 951 | |
| 952 | /* If all bytes have been written to the fifo, flush out the stragglers. |
| 953 | * Note that while writing 16 dummy words seems arbitrary, we don't |
| 954 | * have another choice that I can see. What we really want is to read |
| 955 | * the 3393 transfer count register (that would tell us how many bytes |
| 956 | * needed flushing), but the TRANSFER_INFO command hasn't completed |
| 957 | * yet (not enough bytes!) and that register won't be accessible. So, |
| 958 | * we use 16 words - a number obtained through trial and error. |
| 959 | * UPDATE: Bill says this is exactly what Always does, so there. |
| 960 | * More thanks due him for help in this section. |
| 961 | */ |
| 962 | |
| 963 | if (cmd->SCp.this_residual == cmd->SCp.have_data_in) { |
| 964 | i = 16; |
| 965 | while (i--) /* write 32 dummy bytes */ |
| 966 | write2_io(0,IO_FIFO)(((__builtin_constant_p((hostdata->io_base+(0x02))) && (hostdata->io_base+(0x02)) < 256) ? __outwc(((0)),(hostdata ->io_base+(0x02))) : __outw(((0)),(hostdata->io_base+(0x02 ))))); |
| 967 | } |
| 968 | |
| 969 | /* If there are still bytes left in the SCSI buffer, write as many as we |
| 970 | * can out to the fifo. |
| 971 | */ |
| 972 | |
| 973 | else { |
| 974 | sp = (unsigned short *)(cmd->SCp.ptr + cmd->SCp.have_data_in); |
| 975 | i = cmd->SCp.this_residual - cmd->SCp.have_data_in; /* bytes yet to go */ |
| 976 | j = read1_io(IO_FIFO_COUNT)(((__builtin_constant_p((hostdata->io_base+(0x04))) && (hostdata->io_base+(0x04)) < 256) ? __inbc(hostdata-> io_base+(0x04)) : __inb(hostdata->io_base+(0x04)))) & 0xfe; |
| 977 | j <<= 2; /* how many words the fifo has room for */ |
| 978 | if ((j << 1) > i) |
| 979 | j = (i >> 1); |
| 980 | while (j--) |
| 981 | write2_io(*sp++,IO_FIFO)(((__builtin_constant_p((hostdata->io_base+(0x02))) && (hostdata->io_base+(0x02)) < 256) ? __outwc(((*sp++)), (hostdata->io_base+(0x02))) : __outw(((*sp++)),(hostdata-> io_base+(0x02))))); |
| 982 | |
| 983 | i = sp - (unsigned short *)(cmd->SCp.ptr + cmd->SCp.have_data_in); |
| 984 | i <<= 1; |
| 985 | cmd->SCp.have_data_in += i; |
| 986 | } |
| 987 | } |
| 988 | |
| 989 | else { |
| 990 | printk("*** Spurious FIFO interrupt ***"); |
| 991 | } |
| 992 | |
| 993 | write1_io(0, IO_LED_OFF)(((__builtin_constant_p((hostdata->io_base+(0x08))) && (hostdata->io_base+(0x08)) < 256) ? __outbc(((0)),(hostdata ->io_base+(0x08))) : __outb(((0)),(hostdata->io_base+(0x08 ))))); |
| 994 | |
| 995 | /* release the SMP spin_lock and restore irq state */ |
| 996 | CLISPIN_UNLOCK(flags)__asm__ __volatile__("push %0 ; popf": :"g" (flags):"memory"); |
| 997 | return; |
| 998 | } |
| 999 | |
| 1000 | /* This interrupt was triggered by the WD33c93 chip. The fifo interrupt |
| 1001 | * may also be asserted, but we don't bother to check it: we get more |
| 1002 | * detailed info from FIFO_READING and FIFO_WRITING (see below). |
| 1003 | */ |
| 1004 | |
| 1005 | cmd = (Scsi_Cmnd *)hostdata->connected; /* assume we're connected */ |
| 1006 | sr = read_3393(hostdata,WD_SCSI_STATUS0x17); /* clear the interrupt */ |
| 1007 | phs = read_3393(hostdata,WD_COMMAND_PHASE0x10); |
| 1008 | |
| 1009 | if (!cmd && (sr != CSR_RESEL_AM0x81 && sr != CSR_TIMEOUT0x42 && sr != CSR_SELECT0x11)) { |
| 1010 | printk("\nNR:wd-intr-1\n"); |
| 1011 | write1_io(0, IO_LED_OFF)(((__builtin_constant_p((hostdata->io_base+(0x08))) && (hostdata->io_base+(0x08)) < 256) ? __outbc(((0)),(hostdata ->io_base+(0x08))) : __outb(((0)),(hostdata->io_base+(0x08 ))))); |
| 1012 | |
| 1013 | /* release the SMP spin_lock and restore irq state */ |
| 1014 | CLISPIN_UNLOCK(flags)__asm__ __volatile__("push %0 ; popf": :"g" (flags):"memory"); |
| 1015 | return; |
| 1016 | } |
| 1017 | |
| 1018 | DB(DB_INTR,printk("{%02x:%02x-",asr,sr))if (hostdata->args & (1<<4)) printk("{%02x:%02x-" ,asr,sr); |
| 1019 | |
| 1020 | /* After starting a FIFO-based transfer, the next _WD3393_ interrupt is |
| 1021 | * guaranteed to be in response to the completion of the transfer. |
| 1022 | * If we were reading, there's probably data in the fifo that needs |
| 1023 | * to be copied into RAM - do that here. Also, we have to update |
| 1024 | * 'this_residual' and 'ptr' based on the contents of the |
| 1025 | * TRANSFER_COUNT register, in case the device decided to do an |
| 1026 | * intermediate disconnect (a device may do this if it has to |
| 1027 | * do a seek, or just to be nice and let other devices have |
| 1028 | * some bus time during long transfers). |
| 1029 | * After doing whatever is necessary with the fifo, we go on and |
| 1030 | * service the WD3393 interrupt normally. |
| 1031 | */ |
| 1032 | |
| 1033 | if (hostdata->fifo == FI_FIFO_READING1) { |
| 1034 | |
| 1035 | /* buffer index = start-of-buffer + #-of-bytes-already-read */ |
| 1036 | |
| 1037 | sp = (unsigned short *)(cmd->SCp.ptr + cmd->SCp.have_data_in); |
| 1038 | |
| 1039 | /* bytes remaining in fifo = (total-wanted - #-not-got) - #-already-read */ |
| 1040 | |
| 1041 | i = (cmd->SCp.this_residual - read_3393_count(hostdata)) - cmd->SCp.have_data_in; |
| 1042 | i >>= 1; /* Gulp. We assume this will always be modulo 2 */ |
| 1043 | f = hostdata->io_base + IO_FIFO0x02; |
| 1044 | |
| 1045 | #ifdef FAST_READ_IO |
| 1046 | |
| 1047 | FAST_READ2_IO()({ int __dummy_1,__dummy_2; __asm__ __volatile__ ("\n cld \n orl %%ecx, %%ecx \n jz 1f \n rep \n insw (%%dx),%%es:(%%edi) \n 1: " : "=D" (sp) ,"=c" (__dummy_1) ,"=d" (__dummy_2) : "2" (f), "0" (sp), "1" (i) ); }); |
| 1048 | #else |
| 1049 | while (i--) |
| 1050 | *sp++ = read2_io(IO_FIFO)(((__builtin_constant_p((hostdata->io_base+(0x02))) && (hostdata->io_base+(0x02)) < 256) ? __inwc(hostdata-> io_base+(0x02)) : __inw(hostdata->io_base+(0x02)))); |
| 1051 | |
| 1052 | #endif |
| 1053 | |
| 1054 | hostdata->fifo = FI_FIFO_UNUSED0; |
| 1055 | length = cmd->SCp.this_residual; |
| 1056 | cmd->SCp.this_residual = read_3393_count(hostdata); |
| 1057 | cmd->SCp.ptr += (length - cmd->SCp.this_residual); |
| 1058 | |
| 1059 | DB(DB_TRANSFER,printk("(%p,%d)",cmd->SCp.ptr,cmd->SCp.this_residual))if (hostdata->args & (1<<5)) printk("(%p,%d)",cmd ->SCp.ptr,cmd->SCp.this_residual); |
| 1060 | |
| 1061 | } |
| 1062 | |
| 1063 | else if (hostdata->fifo == FI_FIFO_WRITING2) { |
| 1064 | hostdata->fifo = FI_FIFO_UNUSED0; |
| 1065 | length = cmd->SCp.this_residual; |
| 1066 | cmd->SCp.this_residual = read_3393_count(hostdata); |
| 1067 | cmd->SCp.ptr += (length - cmd->SCp.this_residual); |
| 1068 | |
| 1069 | DB(DB_TRANSFER,printk("(%p,%d)",cmd->SCp.ptr,cmd->SCp.this_residual))if (hostdata->args & (1<<5)) printk("(%p,%d)",cmd ->SCp.ptr,cmd->SCp.this_residual); |
| 1070 | |
| 1071 | } |
| 1072 | |
| 1073 | /* Respond to the specific WD3393 interrupt - there are quite a few! */ |
| 1074 | |
| 1075 | switch (sr) { |
| 1076 | |
| 1077 | case CSR_TIMEOUT0x42: |
| 1078 | DB(DB_INTR,printk("TIMEOUT"))if (hostdata->args & (1<<4)) printk("TIMEOUT"); |
| 1079 | |
| 1080 | if (hostdata->state == S_RUNNING_LEVEL22) |
| 1081 | hostdata->connected = NULL((void *) 0); |
| 1082 | else { |
| 1083 | cmd = (Scsi_Cmnd *)hostdata->selecting; /* get a valid cmd */ |
| 1084 | CHECK_NULL(cmd,"csr_timeout") |
| 1085 | hostdata->selecting = NULL((void *) 0); |
| 1086 | } |
| 1087 | |
| 1088 | cmd->result = DID_NO_CONNECT0x01 << 16; |
| 1089 | hostdata->busy[cmd->target] &= ~(1 << cmd->lun); |
| 1090 | hostdata->state = S_UNCONNECTED0; |
| 1091 | cmd->scsi_done(cmd); |
| 1092 | |
| 1093 | /* We are not connected to a target - check to see if there |
| 1094 | * are commands waiting to be executed. |
| 1095 | */ |
| 1096 | |
| 1097 | in2000_execute(instance); |
| 1098 | break; |
| 1099 | |
| 1100 | |
| 1101 | /* Note: this interrupt should not occur in a LEVEL2 command */ |
| 1102 | |
| 1103 | case CSR_SELECT0x11: |
| 1104 | DB(DB_INTR,printk("SELECT"))if (hostdata->args & (1<<4)) printk("SELECT"); |
| 1105 | hostdata->connected = cmd = (Scsi_Cmnd *)hostdata->selecting; |
| 1106 | CHECK_NULL(cmd,"csr_select") |
| 1107 | hostdata->selecting = NULL((void *) 0); |
| 1108 | |
| 1109 | /* construct an IDENTIFY message with correct disconnect bit */ |
| 1110 | |
| 1111 | hostdata->outgoing_msg[0] = (0x80 | 0x00 | cmd->lun); |
| 1112 | if (cmd->SCp.phase) |
| 1113 | hostdata->outgoing_msg[0] |= 0x40; |
| 1114 | |
| 1115 | if (hostdata->sync_stat[cmd->target] == SS_FIRST1) { |
| 1116 | #ifdef SYNC_DEBUG |
| 1117 | printk(" sending SDTR "); |
| 1118 | #endif |
| 1119 | |
| 1120 | hostdata->sync_stat[cmd->target] = SS_WAITING2; |
| 1121 | |
| 1122 | /* tack on a 2nd message to ask about synchronous transfers */ |
| 1123 | |
| 1124 | hostdata->outgoing_msg[1] = EXTENDED_MESSAGE0x01; |
| 1125 | hostdata->outgoing_msg[2] = 3; |
| 1126 | hostdata->outgoing_msg[3] = EXTENDED_SDTR0x01; |
| 1127 | hostdata->outgoing_msg[4] = OPTIMUM_SX_PER252/4; |
| 1128 | hostdata->outgoing_msg[5] = OPTIMUM_SX_OFF12; |
| 1129 | hostdata->outgoing_len = 6; |
| 1130 | } |
| 1131 | else |
| 1132 | hostdata->outgoing_len = 1; |
| 1133 | |
| 1134 | hostdata->state = S_CONNECTED3; |
| 1135 | break; |
| 1136 | |
| 1137 | |
| 1138 | case CSR_XFER_DONE0x18|PHS_DATA_IN0x01: |
| 1139 | case CSR_UNEXP0x48 |PHS_DATA_IN0x01: |
| 1140 | case CSR_SRV_REQ0x88 |PHS_DATA_IN0x01: |
| 1141 | DB(DB_INTR,printk("IN-%d.%d",cmd->SCp.this_residual,cmd->SCp.buffers_residual))if (hostdata->args & (1<<4)) printk("IN-%d.%d",cmd ->SCp.this_residual,cmd->SCp.buffers_residual); |
| 1142 | transfer_bytes(cmd, DATA_IN_DIR1); |
| 1143 | if (hostdata->state != S_RUNNING_LEVEL22) |
| 1144 | hostdata->state = S_CONNECTED3; |
| 1145 | break; |
| 1146 | |
| 1147 | |
| 1148 | case CSR_XFER_DONE0x18|PHS_DATA_OUT0x00: |
| 1149 | case CSR_UNEXP0x48 |PHS_DATA_OUT0x00: |
| 1150 | case CSR_SRV_REQ0x88 |PHS_DATA_OUT0x00: |
| 1151 | DB(DB_INTR,printk("OUT-%d.%d",cmd->SCp.this_residual,cmd->SCp.buffers_residual))if (hostdata->args & (1<<4)) printk("OUT-%d.%d", cmd->SCp.this_residual,cmd->SCp.buffers_residual); |
| 1152 | transfer_bytes(cmd, DATA_OUT_DIR0); |
| 1153 | if (hostdata->state != S_RUNNING_LEVEL22) |
| 1154 | hostdata->state = S_CONNECTED3; |
| 1155 | break; |
| 1156 | |
| 1157 | |
| 1158 | /* Note: this interrupt should not occur in a LEVEL2 command */ |
| 1159 | |
| 1160 | case CSR_XFER_DONE0x18|PHS_COMMAND0x02: |
| 1161 | case CSR_UNEXP0x48 |PHS_COMMAND0x02: |
| 1162 | case CSR_SRV_REQ0x88 |PHS_COMMAND0x02: |
| 1163 | DB(DB_INTR,printk("CMND-%02x,%ld",cmd->cmnd[0],cmd->pid))if (hostdata->args & (1<<4)) printk("CMND-%02x,%ld" ,cmd->cmnd[0],cmd->pid); |
| 1164 | transfer_pio(cmd->cmnd, cmd->cmd_len, DATA_OUT_DIR0, hostdata); |
| 1165 | hostdata->state = S_CONNECTED3; |
| 1166 | break; |
| 1167 | |
| 1168 | |
| 1169 | case CSR_XFER_DONE0x18|PHS_STATUS0x03: |
| 1170 | case CSR_UNEXP0x48 |PHS_STATUS0x03: |
| 1171 | case CSR_SRV_REQ0x88 |PHS_STATUS0x03: |
| 1172 | DB(DB_INTR,printk("STATUS="))if (hostdata->args & (1<<4)) printk("STATUS="); |
| 1173 | |
| 1174 | cmd->SCp.Status = read_1_byte(hostdata); |
| 1175 | DB(DB_INTR,printk("%02x",cmd->SCp.Status))if (hostdata->args & (1<<4)) printk("%02x",cmd-> SCp.Status); |
| 1176 | if (hostdata->level2 >= L2_BASIC2) { |
| 1177 | sr = read_3393(hostdata,WD_SCSI_STATUS0x17); /* clear interrupt */ |
| 1178 | hostdata->state = S_RUNNING_LEVEL22; |
| 1179 | write_3393(hostdata,WD_COMMAND_PHASE0x10, 0x50); |
| 1180 | write_3393_cmd(hostdata,WD_CMD_SEL_ATN_XFER0x08); |
| 1181 | } |
| 1182 | else { |
| 1183 | hostdata->state = S_CONNECTED3; |
| 1184 | } |
| 1185 | break; |
| 1186 | |
| 1187 | |
| 1188 | case CSR_XFER_DONE0x18|PHS_MESS_IN0x07: |
| 1189 | case CSR_UNEXP0x48 |PHS_MESS_IN0x07: |
| 1190 | case CSR_SRV_REQ0x88 |PHS_MESS_IN0x07: |
| 1191 | DB(DB_INTR,printk("MSG_IN="))if (hostdata->args & (1<<4)) printk("MSG_IN="); |
| 1192 | |
| 1193 | msg = read_1_byte(hostdata); |
| 1194 | sr = read_3393(hostdata,WD_SCSI_STATUS0x17); /* clear interrupt */ |
| 1195 | |
| 1196 | hostdata->incoming_msg[hostdata->incoming_ptr] = msg; |
| 1197 | if (hostdata->incoming_msg[0] == EXTENDED_MESSAGE0x01) |
| 1198 | msg = EXTENDED_MESSAGE0x01; |
| 1199 | else |
| 1200 | hostdata->incoming_ptr = 0; |
| 1201 | |
| 1202 | cmd->SCp.Message = msg; |
| 1203 | switch (msg) { |
| 1204 | |
| 1205 | case COMMAND_COMPLETE0x00: |
| 1206 | DB(DB_INTR,printk("CCMP-%ld",cmd->pid))if (hostdata->args & (1<<4)) printk("CCMP-%ld",cmd ->pid); |
| 1207 | write_3393_cmd(hostdata,WD_CMD_NEGATE_ACK0x03); |
| 1208 | hostdata->state = S_PRE_CMP_DISC5; |
| 1209 | break; |
| 1210 | |
| 1211 | case SAVE_POINTERS0x02: |
| 1212 | DB(DB_INTR,printk("SDP"))if (hostdata->args & (1<<4)) printk("SDP"); |
| 1213 | write_3393_cmd(hostdata,WD_CMD_NEGATE_ACK0x03); |
| 1214 | hostdata->state = S_CONNECTED3; |
| 1215 | break; |
| 1216 | |
| 1217 | case RESTORE_POINTERS0x03: |
| 1218 | DB(DB_INTR,printk("RDP"))if (hostdata->args & (1<<4)) printk("RDP"); |
| 1219 | if (hostdata->level2 >= L2_BASIC2) { |
| 1220 | write_3393(hostdata,WD_COMMAND_PHASE0x10, 0x45); |
| 1221 | write_3393_cmd(hostdata,WD_CMD_SEL_ATN_XFER0x08); |
| 1222 | hostdata->state = S_RUNNING_LEVEL22; |
| 1223 | } |
| 1224 | else { |
| 1225 | write_3393_cmd(hostdata,WD_CMD_NEGATE_ACK0x03); |
| 1226 | hostdata->state = S_CONNECTED3; |
| 1227 | } |
| 1228 | break; |
| 1229 | |
| 1230 | case DISCONNECT0x04: |
| 1231 | DB(DB_INTR,printk("DIS"))if (hostdata->args & (1<<4)) printk("DIS"); |
| 1232 | cmd->device->disconnect = 1; |
| 1233 | write_3393_cmd(hostdata,WD_CMD_NEGATE_ACK0x03); |
| 1234 | hostdata->state = S_PRE_TMP_DISC4; |
| 1235 | break; |
| 1236 | |
| 1237 | case MESSAGE_REJECT0x07: |
| 1238 | DB(DB_INTR,printk("REJ"))if (hostdata->args & (1<<4)) printk("REJ"); |
| 1239 | #ifdef SYNC_DEBUG |
| 1240 | printk("-REJ-"); |
| 1241 | #endif |
| 1242 | if (hostdata->sync_stat[cmd->target] == SS_WAITING2) |
| 1243 | hostdata->sync_stat[cmd->target] = SS_SET3; |
| 1244 | write_3393_cmd(hostdata,WD_CMD_NEGATE_ACK0x03); |
| 1245 | hostdata->state = S_CONNECTED3; |
| 1246 | break; |
| 1247 | |
| 1248 | case EXTENDED_MESSAGE0x01: |
| 1249 | DB(DB_INTR,printk("EXT"))if (hostdata->args & (1<<4)) printk("EXT"); |
| 1250 | |
| 1251 | ucp = hostdata->incoming_msg; |
| 1252 | |
| 1253 | #ifdef SYNC_DEBUG |
| 1254 | printk("%02x",ucp[hostdata->incoming_ptr]); |
| 1255 | #endif |
| 1256 | /* Is this the last byte of the extended message? */ |
| 1257 | |
| 1258 | if ((hostdata->incoming_ptr >= 2) && |
| 1259 | (hostdata->incoming_ptr == (ucp[1] + 1))) { |
| 1260 | |
| 1261 | switch (ucp[2]) { /* what's the EXTENDED code? */ |
| 1262 | case EXTENDED_SDTR0x01: |
| 1263 | id = calc_sync_xfer(ucp[3],ucp[4]); |
| 1264 | if (hostdata->sync_stat[cmd->target] != SS_WAITING2) { |
| 1265 | |
| 1266 | /* A device has sent an unsolicited SDTR message; rather than go |
| 1267 | * through the effort of decoding it and then figuring out what |
| 1268 | * our reply should be, we're just gonna say that we have a |
| 1269 | * synchronous fifo depth of 0. This will result in asynchronous |
| 1270 | * transfers - not ideal but so much easier. |
| 1271 | * Actually, this is OK because it assures us that if we don't |
| 1272 | * specifically ask for sync transfers, we won't do any. |
| 1273 | */ |
| 1274 | |
| 1275 | write_3393_cmd(hostdata,WD_CMD_ASSERT_ATN0x02); /* want MESS_OUT */ |
| 1276 | hostdata->outgoing_msg[0] = EXTENDED_MESSAGE0x01; |
| 1277 | hostdata->outgoing_msg[1] = 3; |
| 1278 | hostdata->outgoing_msg[2] = EXTENDED_SDTR0x01; |
| 1279 | hostdata->outgoing_msg[3] = hostdata->default_sx_per/4; |
| 1280 | hostdata->outgoing_msg[4] = 0; |
| 1281 | hostdata->outgoing_len = 5; |
| 1282 | hostdata->sync_xfer[cmd->target] = |
| 1283 | calc_sync_xfer(hostdata->default_sx_per/4,0); |
| 1284 | } |
| 1285 | else { |
| 1286 | hostdata->sync_xfer[cmd->target] = id; |
| 1287 | } |
| 1288 | #ifdef SYNC_DEBUG |
| 1289 | printk("sync_xfer=%02x",hostdata->sync_xfer[cmd->target]); |
| 1290 | #endif |
| 1291 | hostdata->sync_stat[cmd->target] = SS_SET3; |
| 1292 | write_3393_cmd(hostdata,WD_CMD_NEGATE_ACK0x03); |
| 1293 | hostdata->state = S_CONNECTED3; |
| 1294 | break; |
| 1295 | case EXTENDED_WDTR0x03: |
| 1296 | write_3393_cmd(hostdata,WD_CMD_ASSERT_ATN0x02); /* want MESS_OUT */ |
| 1297 | printk("sending WDTR "); |
| 1298 | hostdata->outgoing_msg[0] = EXTENDED_MESSAGE0x01; |
| 1299 | hostdata->outgoing_msg[1] = 2; |
| 1300 | hostdata->outgoing_msg[2] = EXTENDED_WDTR0x03; |
| 1301 | hostdata->outgoing_msg[3] = 0; /* 8 bit transfer width */ |
| 1302 | hostdata->outgoing_len = 4; |
| 1303 | write_3393_cmd(hostdata,WD_CMD_NEGATE_ACK0x03); |
| 1304 | hostdata->state = S_CONNECTED3; |
| 1305 | break; |
| 1306 | default: |
| 1307 | write_3393_cmd(hostdata,WD_CMD_ASSERT_ATN0x02); /* want MESS_OUT */ |
| 1308 | printk("Rejecting Unknown Extended Message(%02x). ",ucp[2]); |
| 1309 | hostdata->outgoing_msg[0] = MESSAGE_REJECT0x07; |
| 1310 | hostdata->outgoing_len = 1; |
| 1311 | write_3393_cmd(hostdata,WD_CMD_NEGATE_ACK0x03); |
| 1312 | hostdata->state = S_CONNECTED3; |
| 1313 | break; |
| 1314 | } |
| 1315 | hostdata->incoming_ptr = 0; |
| 1316 | } |
| 1317 | |
| 1318 | /* We need to read more MESS_IN bytes for the extended message */ |
| 1319 | |
| 1320 | else { |
| 1321 | hostdata->incoming_ptr++; |
| 1322 | write_3393_cmd(hostdata,WD_CMD_NEGATE_ACK0x03); |
| 1323 | hostdata->state = S_CONNECTED3; |
| 1324 | } |
| 1325 | break; |
| 1326 | |
| 1327 | default: |
| 1328 | printk("Rejecting Unknown Message(%02x) ",msg); |
| 1329 | write_3393_cmd(hostdata,WD_CMD_ASSERT_ATN0x02); /* want MESS_OUT */ |
| 1330 | hostdata->outgoing_msg[0] = MESSAGE_REJECT0x07; |
| 1331 | hostdata->outgoing_len = 1; |
| 1332 | write_3393_cmd(hostdata,WD_CMD_NEGATE_ACK0x03); |
| 1333 | hostdata->state = S_CONNECTED3; |
| 1334 | } |
| 1335 | break; |
| 1336 | |
| 1337 | |
| 1338 | /* Note: this interrupt will occur only after a LEVEL2 command */ |
| 1339 | |
| 1340 | case CSR_SEL_XFER_DONE0x16: |
| 1341 | |
| 1342 | /* Make sure that reselection is enabled at this point - it may |
| 1343 | * have been turned off for the command that just completed. |
| 1344 | */ |
| 1345 | |
| 1346 | write_3393(hostdata,WD_SOURCE_ID0x16, SRCID_ER0x80); |
| 1347 | if (phs == 0x60) { |
| 1348 | DB(DB_INTR,printk("SX-DONE-%ld",cmd->pid))if (hostdata->args & (1<<4)) printk("SX-DONE-%ld" ,cmd->pid); |
| 1349 | cmd->SCp.Message = COMMAND_COMPLETE0x00; |
| 1350 | lun = read_3393(hostdata,WD_TARGET_LUN0x0f); |
| 1351 | DB(DB_INTR,printk(":%d.%d",cmd->SCp.Status,lun))if (hostdata->args & (1<<4)) printk(":%d.%d",cmd ->SCp.Status,lun); |
| 1352 | hostdata->connected = NULL((void *) 0); |
| 1353 | hostdata->busy[cmd->target] &= ~(1 << cmd->lun); |
| 1354 | hostdata->state = S_UNCONNECTED0; |
| 1355 | if (cmd->SCp.Status == ILLEGAL_STATUS_BYTE0xff) |
| 1356 | cmd->SCp.Status = lun; |
| 1357 | if (cmd->cmnd[0] == REQUEST_SENSE0x03 && cmd->SCp.Status != GOOD0x00) |
| 1358 | cmd->result = (cmd->result & 0x00ffff) | (DID_ERROR0x07 << 16); |
| 1359 | else |
| 1360 | cmd->result = cmd->SCp.Status | (cmd->SCp.Message << 8); |
| 1361 | cmd->scsi_done(cmd); |
| 1362 | |
| 1363 | /* We are no longer connected to a target - check to see if |
| 1364 | * there are commands waiting to be executed. |
| 1365 | */ |
| 1366 | |
| 1367 | in2000_execute(instance); |
| 1368 | } |
| 1369 | else { |
| 1370 | printk("%02x:%02x:%02x-%ld: Unknown SEL_XFER_DONE phase!!---",asr,sr,phs,cmd->pid); |
| 1371 | } |
| 1372 | break; |
| 1373 | |
| 1374 | |
| 1375 | /* Note: this interrupt will occur only after a LEVEL2 command */ |
| 1376 | |
| 1377 | case CSR_SDP0x21: |
| 1378 | DB(DB_INTR,printk("SDP"))if (hostdata->args & (1<<4)) printk("SDP"); |
| 1379 | hostdata->state = S_RUNNING_LEVEL22; |
| 1380 | write_3393(hostdata,WD_COMMAND_PHASE0x10, 0x41); |
| 1381 | write_3393_cmd(hostdata,WD_CMD_SEL_ATN_XFER0x08); |
| 1382 | break; |
| 1383 | |
| 1384 | |
| 1385 | case CSR_XFER_DONE0x18|PHS_MESS_OUT0x06: |
| 1386 | case CSR_UNEXP0x48 |PHS_MESS_OUT0x06: |
| 1387 | case CSR_SRV_REQ0x88 |PHS_MESS_OUT0x06: |
| 1388 | DB(DB_INTR,printk("MSG_OUT="))if (hostdata->args & (1<<4)) printk("MSG_OUT="); |
| 1389 | |
| 1390 | /* To get here, we've probably requested MESSAGE_OUT and have |
| 1391 | * already put the correct bytes in outgoing_msg[] and filled |
| 1392 | * in outgoing_len. We simply send them out to the SCSI bus. |
| 1393 | * Sometimes we get MESSAGE_OUT phase when we're not expecting |
| 1394 | * it - like when our SDTR message is rejected by a target. Some |
| 1395 | * targets send the REJECT before receiving all of the extended |
| 1396 | * message, and then seem to go back to MESSAGE_OUT for a byte |
| 1397 | * or two. Not sure why, or if I'm doing something wrong to |
| 1398 | * cause this to happen. Regardless, it seems that sending |
| 1399 | * NOP messages in these situations results in no harm and |
| 1400 | * makes everyone happy. |
| 1401 | */ |
| 1402 | |
| 1403 | if (hostdata->outgoing_len == 0) { |
| 1404 | hostdata->outgoing_len = 1; |
| 1405 | hostdata->outgoing_msg[0] = NOP0x08; |
| 1406 | } |
| 1407 | transfer_pio(hostdata->outgoing_msg, hostdata->outgoing_len, |
| 1408 | DATA_OUT_DIR0, hostdata); |
| 1409 | DB(DB_INTR,printk("%02x",hostdata->outgoing_msg[0]))if (hostdata->args & (1<<4)) printk("%02x",hostdata ->outgoing_msg[0]); |
| 1410 | hostdata->outgoing_len = 0; |
| 1411 | hostdata->state = S_CONNECTED3; |
| 1412 | break; |
| 1413 | |
| 1414 | |
| 1415 | case CSR_UNEXP_DISC0x41: |
| 1416 | |
| 1417 | /* I think I've seen this after a request-sense that was in response |
| 1418 | * to an error condition, but not sure. We certainly need to do |
| 1419 | * something when we get this interrupt - the question is 'what?'. |
| 1420 | * Let's think positively, and assume some command has finished |
| 1421 | * in a legal manner (like a command that provokes a request-sense), |
| 1422 | * so we treat it as a normal command-complete-disconnect. |
| 1423 | */ |
| 1424 | |
| 1425 | |
| 1426 | /* Make sure that reselection is enabled at this point - it may |
| 1427 | * have been turned off for the command that just completed. |
| 1428 | */ |
| 1429 | |
| 1430 | write_3393(hostdata,WD_SOURCE_ID0x16, SRCID_ER0x80); |
| 1431 | if (cmd == NULL((void *) 0)) { |
| 1432 | printk(" - Already disconnected! "); |
| 1433 | hostdata->state = S_UNCONNECTED0; |
| 1434 | |
| 1435 | /* release the SMP spin_lock and restore irq state */ |
| 1436 | CLISPIN_UNLOCK(flags)__asm__ __volatile__("push %0 ; popf": :"g" (flags):"memory"); |
| 1437 | return; |
| 1438 | } |
| 1439 | DB(DB_INTR,printk("UNEXP_DISC-%ld",cmd->pid))if (hostdata->args & (1<<4)) printk("UNEXP_DISC-%ld" ,cmd->pid); |
| 1440 | hostdata->connected = NULL((void *) 0); |
| 1441 | hostdata->busy[cmd->target] &= ~(1 << cmd->lun); |
| 1442 | hostdata->state = S_UNCONNECTED0; |
| 1443 | if (cmd->cmnd[0] == REQUEST_SENSE0x03 && cmd->SCp.Status != GOOD0x00) |
| 1444 | cmd->result = (cmd->result & 0x00ffff) | (DID_ERROR0x07 << 16); |
| 1445 | else |
| 1446 | cmd->result = cmd->SCp.Status | (cmd->SCp.Message << 8); |
| 1447 | cmd->scsi_done(cmd); |
| 1448 | |
| 1449 | /* We are no longer connected to a target - check to see if |
| 1450 | * there are commands waiting to be executed. |
| 1451 | */ |
| 1452 | |
| 1453 | in2000_execute(instance); |
| 1454 | break; |
| 1455 | |
| 1456 | |
| 1457 | case CSR_DISC0x85: |
| 1458 | |
| 1459 | /* Make sure that reselection is enabled at this point - it may |
| 1460 | * have been turned off for the command that just completed. |
| 1461 | */ |
| 1462 | |
| 1463 | write_3393(hostdata,WD_SOURCE_ID0x16, SRCID_ER0x80); |
| 1464 | DB(DB_INTR,printk("DISC-%ld",cmd->pid))if (hostdata->args & (1<<4)) printk("DISC-%ld",cmd ->pid); |
| 1465 | if (cmd == NULL((void *) 0)) { |
| 1466 | printk(" - Already disconnected! "); |
| 1467 | hostdata->state = S_UNCONNECTED0; |
| 1468 | } |
| 1469 | switch (hostdata->state) { |
| 1470 | case S_PRE_CMP_DISC5: |
| 1471 | hostdata->connected = NULL((void *) 0); |
| 1472 | hostdata->busy[cmd->target] &= ~(1 << cmd->lun); |
| 1473 | hostdata->state = S_UNCONNECTED0; |
| 1474 | DB(DB_INTR,printk(":%d",cmd->SCp.Status))if (hostdata->args & (1<<4)) printk(":%d",cmd-> SCp.Status); |
| 1475 | if (cmd->cmnd[0] == REQUEST_SENSE0x03 && cmd->SCp.Status != GOOD0x00) |
| 1476 | cmd->result = (cmd->result & 0x00ffff) | (DID_ERROR0x07 << 16); |
| 1477 | else |
| 1478 | cmd->result = cmd->SCp.Status | (cmd->SCp.Message << 8); |
| 1479 | cmd->scsi_done(cmd); |
| 1480 | break; |
| 1481 | case S_PRE_TMP_DISC4: |
| 1482 | case S_RUNNING_LEVEL22: |
| 1483 | cmd->host_scribble = (ucharunsigned char *)hostdata->disconnected_Q; |
| 1484 | hostdata->disconnected_Q = cmd; |
| 1485 | hostdata->connected = NULL((void *) 0); |
| 1486 | hostdata->state = S_UNCONNECTED0; |
| 1487 | |
| 1488 | #ifdef PROC_STATISTICS |
| 1489 | hostdata->disc_done_cnt[cmd->target]++; |
| 1490 | #endif |
| 1491 | |
| 1492 | break; |
| 1493 | default: |
| 1494 | printk("*** Unexpected DISCONNECT interrupt! ***"); |
| 1495 | hostdata->state = S_UNCONNECTED0; |
| 1496 | } |
| 1497 | |
| 1498 | /* We are no longer connected to a target - check to see if |
| 1499 | * there are commands waiting to be executed. |
| 1500 | */ |
| 1501 | |
| 1502 | in2000_execute(instance); |
| 1503 | break; |
| 1504 | |
| 1505 | |
| 1506 | case CSR_RESEL_AM0x81: |
| 1507 | DB(DB_INTR,printk("RESEL"))if (hostdata->args & (1<<4)) printk("RESEL"); |
| 1508 | |
| 1509 | /* First we have to make sure this reselection didn't */ |
| 1510 | /* happen during Arbitration/Selection of some other device. */ |
| 1511 | /* If yes, put losing command back on top of input_Q. */ |
| 1512 | |
| 1513 | if (hostdata->level2 <= L2_NONE0) { |
| 1514 | |
| 1515 | if (hostdata->selecting) { |
| 1516 | cmd = (Scsi_Cmnd *)hostdata->selecting; |
| 1517 | hostdata->selecting = NULL((void *) 0); |
| 1518 | hostdata->busy[cmd->target] &= ~(1 << cmd->lun); |
| 1519 | cmd->host_scribble = (ucharunsigned char *)hostdata->input_Q; |
| 1520 | hostdata->input_Q = cmd; |
| 1521 | } |
| 1522 | } |
| 1523 | |
| 1524 | else { |
| 1525 | |
| 1526 | if (cmd) { |
| 1527 | if (phs == 0x00) { |
| 1528 | hostdata->busy[cmd->target] &= ~(1 << cmd->lun); |
| 1529 | cmd->host_scribble = (ucharunsigned char *)hostdata->input_Q; |
| 1530 | hostdata->input_Q = cmd; |
| 1531 | } |
| 1532 | else { |
| 1533 | printk("---%02x:%02x:%02x-TROUBLE: Intrusive ReSelect!---",asr,sr,phs); |
| 1534 | while (1) |
| 1535 | printk("\r"); |
| 1536 | } |
| 1537 | } |
| 1538 | |
| 1539 | } |
| 1540 | |
| 1541 | /* OK - find out which device reselected us. */ |
| 1542 | |
| 1543 | id = read_3393(hostdata,WD_SOURCE_ID0x16); |
| 1544 | id &= SRCID_MASK0x07; |
| 1545 | |
| 1546 | /* and extract the lun from the ID message. (Note that we don't |
| 1547 | * bother to check for a valid message here - I guess this is |
| 1548 | * not the right way to go, but....) |
| 1549 | */ |
| 1550 | |
| 1551 | lun = read_3393(hostdata,WD_DATA0x19); |
| 1552 | if (hostdata->level2 < L2_RESELECT5) |
| 1553 | write_3393_cmd(hostdata,WD_CMD_NEGATE_ACK0x03); |
| 1554 | lun &= 7; |
| 1555 | |
| 1556 | /* Now we look for the command that's reconnecting. */ |
| 1557 | |
| 1558 | cmd = (Scsi_Cmnd *)hostdata->disconnected_Q; |
| 1559 | patch = NULL((void *) 0); |
| 1560 | while (cmd) { |
| 1561 | if (id == cmd->target && lun == cmd->lun) |
| 1562 | break; |
| 1563 | patch = cmd; |
| 1564 | cmd = (Scsi_Cmnd *)cmd->host_scribble; |
| 1565 | } |
| 1566 | |
| 1567 | /* Hmm. Couldn't find a valid command.... What to do? */ |
| 1568 | |
| 1569 | if (!cmd) { |
| 1570 | printk("---TROUBLE: target %d.%d not in disconnect queue---",id,lun); |
| 1571 | break; |
| 1572 | } |
| 1573 | |
| 1574 | /* Ok, found the command - now start it up again. */ |
| 1575 | |
| 1576 | if (patch) |
| 1577 | patch->host_scribble = cmd->host_scribble; |
| 1578 | else |
| 1579 | hostdata->disconnected_Q = (Scsi_Cmnd *)cmd->host_scribble; |
| 1580 | hostdata->connected = cmd; |
| 1581 | |
| 1582 | /* We don't need to worry about 'initialize_SCp()' or 'hostdata->busy[]' |
| 1583 | * because these things are preserved over a disconnect. |
| 1584 | * But we DO need to fix the DPD bit so it's correct for this command. |
| 1585 | */ |
| 1586 | |
| 1587 | if (is_dir_out(cmd)) |
| 1588 | write_3393(hostdata,WD_DESTINATION_ID0x15,cmd->target); |
| 1589 | else |
| 1590 | write_3393(hostdata,WD_DESTINATION_ID0x15,cmd->target | DSTID_DPD0x40); |
| 1591 | if (hostdata->level2 >= L2_RESELECT5) { |
| 1592 | write_3393_count(hostdata,0); /* we want a DATA_PHASE interrupt */ |
| 1593 | write_3393(hostdata,WD_COMMAND_PHASE0x10, 0x45); |
| 1594 | write_3393_cmd(hostdata,WD_CMD_SEL_ATN_XFER0x08); |
| 1595 | hostdata->state = S_RUNNING_LEVEL22; |
| 1596 | } |
| 1597 | else |
| 1598 | hostdata->state = S_CONNECTED3; |
| 1599 | |
| 1600 | DB(DB_INTR,printk("-%ld",cmd->pid))if (hostdata->args & (1<<4)) printk("-%ld",cmd-> pid); |
| 1601 | break; |
| 1602 | |
| 1603 | default: |
| 1604 | printk("--UNKNOWN INTERRUPT:%02x:%02x:%02x--",asr,sr,phs); |
| 1605 | } |
| 1606 | |
| 1607 | write1_io(0, IO_LED_OFF)(((__builtin_constant_p((hostdata->io_base+(0x08))) && (hostdata->io_base+(0x08)) < 256) ? __outbc(((0)),(hostdata ->io_base+(0x08))) : __outb(((0)),(hostdata->io_base+(0x08 ))))); |
| 1608 | |
| 1609 | DB(DB_INTR,printk("} "))if (hostdata->args & (1<<4)) printk("} "); |
| 1610 | |
| 1611 | /* release the SMP spin_lock and restore irq state */ |
| 1612 | CLISPIN_UNLOCK(flags)__asm__ __volatile__("push %0 ; popf": :"g" (flags):"memory"); |
| 1613 | |
| 1614 | } |
| 1615 | |
| 1616 | |
| 1617 | |
| 1618 | #define RESET_CARD0 0 |
| 1619 | #define RESET_CARD_AND_BUS1 1 |
| 1620 | #define B_FLAG0x80 0x80 |
| 1621 | |
| 1622 | static int reset_hardware(struct Scsi_Host *instance, int type) |
| 1623 | { |
| 1624 | struct IN2000_hostdata *hostdata; |
| 1625 | int qt,x; |
| 1626 | unsigned long flags; |
| 1627 | |
| 1628 | hostdata = (struct IN2000_hostdata *)instance->hostdata; |
| 1629 | |
| 1630 | write1_io(0, IO_LED_ON)(((__builtin_constant_p((hostdata->io_base+(0x09))) && (hostdata->io_base+(0x09)) < 256) ? __outbc(((0)),(hostdata ->io_base+(0x09))) : __outb(((0)),(hostdata->io_base+(0x09 ))))); |
| 1631 | if (type == RESET_CARD_AND_BUS1) { |
| 1632 | write1_io(0,IO_CARD_RESET)(((__builtin_constant_p((hostdata->io_base+(0x03))) && (hostdata->io_base+(0x03)) < 256) ? __outbc(((0)),(hostdata ->io_base+(0x03))) : __outb(((0)),(hostdata->io_base+(0x03 ))))); |
| 1633 | x = read1_io(IO_HARDWARE)(((__builtin_constant_p((hostdata->io_base+(0x0a))) && (hostdata->io_base+(0x0a)) < 256) ? __inbc(hostdata-> io_base+(0x0a)) : __inb(hostdata->io_base+(0x0a)))); |
Value stored to 'x' is never read | |
| 1634 | } |
| 1635 | x = read_3393(hostdata,WD_SCSI_STATUS0x17); /* clear any WD intrpt */ |
| 1636 | write_3393(hostdata,WD_OWN_ID0x00, instance->this_id | |
| 1637 | OWNID_EAF0x08 | OWNID_RAF0x20 | OWNID_FS_80x00); |
| 1638 | write_3393(hostdata,WD_CONTROL0x01, CTRL_IDI0x04 | CTRL_EDI0x08 | CTRL_POLLED0x00); |
| 1639 | write_3393(hostdata,WD_SYNCHRONOUS_TRANSFER0x11, |
| 1640 | calc_sync_xfer(hostdata->default_sx_per/4,DEFAULT_SX_OFF0)); |
| 1641 | save_flags(flags)__asm__ __volatile__("pushf ; pop %0" : "=r" (flags): :"memory" ); |
| 1642 | cli()__asm__ __volatile__ ("cli": : :"memory"); |
| 1643 | write1_io(0,IO_FIFO_WRITE)(((__builtin_constant_p((hostdata->io_base+(0x05))) && (hostdata->io_base+(0x05)) < 256) ? __outbc(((0)),(hostdata ->io_base+(0x05))) : __outb(((0)),(hostdata->io_base+(0x05 ))))); /* clear fifo counter */ |
| 1644 | write1_io(0,IO_FIFO_READ)(((__builtin_constant_p((hostdata->io_base+(0x07))) && (hostdata->io_base+(0x07)) < 256) ? __outbc(((0)),(hostdata ->io_base+(0x07))) : __outb(((0)),(hostdata->io_base+(0x07 ))))); /* start fifo out in read mode */ |
| 1645 | write_3393(hostdata,WD_COMMAND0x18, WD_CMD_RESET0x00); |
| 1646 | while (!(READ_AUX_STAT()(((__builtin_constant_p((hostdata->io_base+(0x00))) && (hostdata->io_base+(0x00)) < 256) ? __inbc(hostdata-> io_base+(0x00)) : __inb(hostdata->io_base+(0x00)))) & ASR_INT0x80)) |
| 1647 | ; /* wait for RESET to complete */ |
| 1648 | |
| 1649 | x = read_3393(hostdata,WD_SCSI_STATUS0x17); /* clear interrupt */ |
| 1650 | restore_flags(flags)__asm__ __volatile__("push %0 ; popf": :"g" (flags):"memory"); |
| 1651 | write_3393(hostdata,WD_QUEUE_TAG0x1a,0xa5); /* any random number */ |
| 1652 | qt = read_3393(hostdata,WD_QUEUE_TAG0x1a); |
| 1653 | if (qt == 0xa5) { |
| 1654 | x |= B_FLAG0x80; |
| 1655 | write_3393(hostdata,WD_QUEUE_TAG0x1a,0); |
| 1656 | } |
| 1657 | write_3393(hostdata,WD_TIMEOUT_PERIOD0x02, TIMEOUT_PERIOD_VALUE20); |
| 1658 | write_3393(hostdata,WD_CONTROL0x01, CTRL_IDI0x04 | CTRL_EDI0x08 | CTRL_POLLED0x00); |
| 1659 | write1_io(0, IO_LED_OFF)(((__builtin_constant_p((hostdata->io_base+(0x08))) && (hostdata->io_base+(0x08)) < 256) ? __outbc(((0)),(hostdata ->io_base+(0x08))) : __outb(((0)),(hostdata->io_base+(0x08 ))))); |
| 1660 | return x; |
| 1661 | } |
| 1662 | |
| 1663 | |
| 1664 | |
| 1665 | int in2000_reset(Scsi_Cmnd *cmd, unsigned int reset_flags) |
| 1666 | { |
| 1667 | unsigned long flags; |
| 1668 | struct Scsi_Host *instance; |
| 1669 | struct IN2000_hostdata *hostdata; |
| 1670 | int x; |
| 1671 | |
| 1672 | instance = cmd->host; |
| 1673 | hostdata = (struct IN2000_hostdata *)instance->hostdata; |
| 1674 | |
| 1675 | printk("scsi%d: Reset. ", instance->host_no); |
| 1676 | save_flags(flags)__asm__ __volatile__("pushf ; pop %0" : "=r" (flags): :"memory" ); |
| 1677 | cli()__asm__ __volatile__ ("cli": : :"memory"); |
| 1678 | |
| 1679 | /* do scsi-reset here */ |
| 1680 | |
| 1681 | reset_hardware(instance, RESET_CARD_AND_BUS1); |
| 1682 | for (x = 0; x < 8; x++) { |
| 1683 | hostdata->busy[x] = 0; |
| 1684 | hostdata->sync_xfer[x] = calc_sync_xfer(DEFAULT_SX_PER500/4,DEFAULT_SX_OFF0); |
| 1685 | hostdata->sync_stat[x] = SS_UNSET0; /* using default sync values */ |
| 1686 | } |
| 1687 | hostdata->input_Q = NULL((void *) 0); |
| 1688 | hostdata->selecting = NULL((void *) 0); |
| 1689 | hostdata->connected = NULL((void *) 0); |
| 1690 | hostdata->disconnected_Q = NULL((void *) 0); |
| 1691 | hostdata->state = S_UNCONNECTED0; |
| 1692 | hostdata->fifo = FI_FIFO_UNUSED0; |
| 1693 | hostdata->incoming_ptr = 0; |
| 1694 | hostdata->outgoing_len = 0; |
| 1695 | |
| 1696 | cmd->result = DID_RESET0x08 << 16; |
| 1697 | restore_flags(flags)__asm__ __volatile__("push %0 ; popf": :"g" (flags):"memory"); |
| 1698 | return 0; |
| 1699 | } |
| 1700 | |
| 1701 | |
| 1702 | |
| 1703 | int in2000_abort (Scsi_Cmnd *cmd) |
| 1704 | { |
| 1705 | struct Scsi_Host *instance; |
| 1706 | struct IN2000_hostdata *hostdata; |
| 1707 | Scsi_Cmnd *tmp, *prev; |
| 1708 | unsigned long flags; |
| 1709 | ucharunsigned char sr, asr; |
| 1710 | unsigned long timeout; |
| 1711 | |
| 1712 | save_flags (flags)__asm__ __volatile__("pushf ; pop %0" : "=r" (flags): :"memory" ); |
| 1713 | cli()__asm__ __volatile__ ("cli": : :"memory"); |
| 1714 | |
| 1715 | instance = cmd->host; |
| 1716 | hostdata = (struct IN2000_hostdata *)instance->hostdata; |
| 1717 | |
| 1718 | printk ("scsi%d: Abort-", instance->host_no); |
| 1719 | printk("(asr=%02x,count=%ld,resid=%d,buf_resid=%d,have_data=%d,FC=%02x)- ", |
| 1720 | READ_AUX_STAT()(((__builtin_constant_p((hostdata->io_base+(0x00))) && (hostdata->io_base+(0x00)) < 256) ? __inbc(hostdata-> io_base+(0x00)) : __inb(hostdata->io_base+(0x00)))),read_3393_count(hostdata),cmd->SCp.this_residual,cmd->SCp.buffers_residual, |
| 1721 | cmd->SCp.have_data_in,read1_io(IO_FIFO_COUNT)(((__builtin_constant_p((hostdata->io_base+(0x04))) && (hostdata->io_base+(0x04)) < 256) ? __inbc(hostdata-> io_base+(0x04)) : __inb(hostdata->io_base+(0x04))))); |
| 1722 | |
| 1723 | /* |
| 1724 | * Case 1 : If the command hasn't been issued yet, we simply remove it |
| 1725 | * from the inout_Q. |
| 1726 | */ |
| 1727 | |
| 1728 | tmp = (Scsi_Cmnd *)hostdata->input_Q; |
| 1729 | prev = 0; |
| 1730 | while (tmp) { |
| 1731 | if (tmp == cmd) { |
| 1732 | if (prev) |
| 1733 | prev->host_scribble = cmd->host_scribble; |
| 1734 | cmd->host_scribble = NULL((void *) 0); |
| 1735 | cmd->result = DID_ABORT0x05 << 16; |
| 1736 | printk("scsi%d: Abort - removing command %ld from input_Q. ", |
| 1737 | instance->host_no, cmd->pid); |
| 1738 | cmd->scsi_done(cmd); |
| 1739 | restore_flags(flags)__asm__ __volatile__("push %0 ; popf": :"g" (flags):"memory"); |
| 1740 | return SCSI_ABORT_SUCCESS1; |
| 1741 | } |
| 1742 | prev = tmp; |
| 1743 | tmp = (Scsi_Cmnd *)tmp->host_scribble; |
| 1744 | } |
| 1745 | |
| 1746 | /* |
| 1747 | * Case 2 : If the command is connected, we're going to fail the abort |
| 1748 | * and let the high level SCSI driver retry at a later time or |
| 1749 | * issue a reset. |
| 1750 | * |
| 1751 | * Timeouts, and therefore aborted commands, will be highly unlikely |
| 1752 | * and handling them cleanly in this situation would make the common |
| 1753 | * case of noresets less efficient, and would pollute our code. So, |
| 1754 | * we fail. |
| 1755 | */ |
| 1756 | |
| 1757 | if (hostdata->connected == cmd) { |
| 1758 | |
| 1759 | printk("scsi%d: Aborting connected command %ld - ", |
| 1760 | instance->host_no, cmd->pid); |
| 1761 | |
| 1762 | printk("sending wd33c93 ABORT command - "); |
| 1763 | write_3393(hostdata, WD_CONTROL0x01, CTRL_IDI0x04 | CTRL_EDI0x08 | CTRL_POLLED0x00); |
| 1764 | write_3393_cmd(hostdata, WD_CMD_ABORT0x01); |
| 1765 | |
| 1766 | /* Now we have to attempt to flush out the FIFO... */ |
| 1767 | |
| 1768 | printk("flushing fifo - "); |
| 1769 | timeout = 1000000; |
| 1770 | do { |
| 1771 | asr = READ_AUX_STAT()(((__builtin_constant_p((hostdata->io_base+(0x00))) && (hostdata->io_base+(0x00)) < 256) ? __inbc(hostdata-> io_base+(0x00)) : __inb(hostdata->io_base+(0x00)))); |
| 1772 | if (asr & ASR_DBR0x01) |
| 1773 | read_3393(hostdata, WD_DATA0x19); |
| 1774 | } while (!(asr & ASR_INT0x80) && timeout-- > 0); |
| 1775 | sr = read_3393(hostdata, WD_SCSI_STATUS0x17); |
| 1776 | printk("asr=%02x, sr=%02x, %ld bytes un-transferred (timeout=%ld) - ", |
| 1777 | asr, sr, read_3393_count(hostdata), timeout); |
| 1778 | |
| 1779 | /* |
| 1780 | * Abort command processed. |
| 1781 | * Still connected. |
| 1782 | * We must disconnect. |
| 1783 | */ |
| 1784 | |
| 1785 | printk("sending wd33c93 DISCONNECT command - "); |
| 1786 | write_3393_cmd(hostdata, WD_CMD_DISCONNECT0x04); |
| 1787 | |
| 1788 | timeout = 1000000; |
| 1789 | asr = READ_AUX_STAT()(((__builtin_constant_p((hostdata->io_base+(0x00))) && (hostdata->io_base+(0x00)) < 256) ? __inbc(hostdata-> io_base+(0x00)) : __inb(hostdata->io_base+(0x00)))); |
| 1790 | while ((asr & ASR_CIP0x10) && timeout-- > 0) |
| 1791 | asr = READ_AUX_STAT()(((__builtin_constant_p((hostdata->io_base+(0x00))) && (hostdata->io_base+(0x00)) < 256) ? __inbc(hostdata-> io_base+(0x00)) : __inb(hostdata->io_base+(0x00)))); |
| 1792 | sr = read_3393(hostdata, WD_SCSI_STATUS0x17); |
| 1793 | printk("asr=%02x, sr=%02x.",asr,sr); |
| 1794 | |
| 1795 | hostdata->busy[cmd->target] &= ~(1 << cmd->lun); |
| 1796 | hostdata->connected = NULL((void *) 0); |
| 1797 | hostdata->state = S_UNCONNECTED0; |
| 1798 | cmd->result = DID_ABORT0x05 << 16; |
| 1799 | cmd->scsi_done(cmd); |
| 1800 | |
| 1801 | in2000_execute (instance); |
| 1802 | |
| 1803 | restore_flags(flags)__asm__ __volatile__("push %0 ; popf": :"g" (flags):"memory"); |
| 1804 | return SCSI_ABORT_SUCCESS1; |
| 1805 | } |
| 1806 | |
| 1807 | /* |
| 1808 | * Case 3: If the command is currently disconnected from the bus, |
| 1809 | * we're not going to expend much effort here: Let's just return |
| 1810 | * an ABORT_SNOOZE and hope for the best... |
| 1811 | */ |
| 1812 | |
| 1813 | for (tmp=(Scsi_Cmnd *)hostdata->disconnected_Q; tmp; |
| 1814 | tmp=(Scsi_Cmnd *)tmp->host_scribble) |
| 1815 | if (cmd == tmp) { |
| 1816 | restore_flags(flags)__asm__ __volatile__("push %0 ; popf": :"g" (flags):"memory"); |
| 1817 | printk("Sending ABORT_SNOOZE. "); |
| 1818 | return SCSI_ABORT_SNOOZE0; |
| 1819 | } |
| 1820 | |
| 1821 | /* |
| 1822 | * Case 4 : If we reached this point, the command was not found in any of |
| 1823 | * the queues. |
| 1824 | * |
| 1825 | * We probably reached this point because of an unlikely race condition |
| 1826 | * between the command completing successfully and the abortion code, |
| 1827 | * so we won't panic, but we will notify the user in case something really |
| 1828 | * broke. |
| 1829 | */ |
| 1830 | |
| 1831 | in2000_execute (instance); |
| 1832 | |
| 1833 | restore_flags(flags)__asm__ __volatile__("push %0 ; popf": :"g" (flags):"memory"); |
| 1834 | printk("scsi%d: warning : SCSI command probably completed successfully" |
| 1835 | " before abortion. ", instance->host_no); |
| 1836 | return SCSI_ABORT_NOT_RUNNING4; |
| 1837 | } |
| 1838 | |
| 1839 | |
| 1840 | |
| 1841 | #define MAX_IN2000_HOSTS3 3 |
| 1842 | #define MAX_SETUP_ARGS(sizeof(setup_args) / sizeof(char *)) (sizeof(setup_args) / sizeof(char *)) |
| 1843 | #define SETUP_BUFFER_SIZE200 200 |
| 1844 | static char setup_buffer[SETUP_BUFFER_SIZE200]; |
| 1845 | static char setup_used[MAX_SETUP_ARGS(sizeof(setup_args) / sizeof(char *))]; |
| 1846 | static int done_setup = 0; |
| 1847 | |
| 1848 | in2000__INITFUNC( void in2000_setup (char *str, int *ints) )void in2000_setup (char *str, int *ints) |
| 1849 | { |
| 1850 | int i; |
| 1851 | char *p1,*p2; |
| 1852 | |
| 1853 | strncpy(setup_buffer,str,SETUP_BUFFER_SIZE200); |
| 1854 | setup_buffer[SETUP_BUFFER_SIZE200 - 1] = '\0'; |
| 1855 | p1 = setup_buffer; |
| 1856 | i = 0; |
| 1857 | while (*p1 && (i < MAX_SETUP_ARGS(sizeof(setup_args) / sizeof(char *)))) { |
| 1858 | p2 = strchr(p1, ','); |
| 1859 | if (p2) { |
| 1860 | *p2 = '\0'; |
| 1861 | if (p1 != p2) |
| 1862 | setup_args[i] = p1; |
| 1863 | p1 = p2 + 1; |
| 1864 | i++; |
| 1865 | } |
| 1866 | else { |
| 1867 | setup_args[i] = p1; |
| 1868 | break; |
| 1869 | } |
| 1870 | } |
| 1871 | for (i=0; i<MAX_SETUP_ARGS(sizeof(setup_args) / sizeof(char *)); i++) |
| 1872 | setup_used[i] = 0; |
| 1873 | done_setup = 1; |
| 1874 | } |
| 1875 | |
| 1876 | |
| 1877 | /* check_setup_args() returns index if key found, 0 if not |
| 1878 | */ |
| 1879 | |
| 1880 | in2000__INITFUNC( static int check_setup_args(char *key, int *flags, int *val, char *buf) )static int check_setup_args(char *key, int *flags, int *val, char *buf) |
| 1881 | { |
| 1882 | int x; |
| 1883 | char *cp; |
| 1884 | |
| 1885 | for (x=0; x<MAX_SETUP_ARGS(sizeof(setup_args) / sizeof(char *)); x++) { |
| 1886 | if (setup_used[x]) |
| 1887 | continue; |
| 1888 | if (!strncmp(setup_args[x], key, strlen(key))) |
| 1889 | break; |
| 1890 | } |
| 1891 | if (x == MAX_SETUP_ARGS(sizeof(setup_args) / sizeof(char *))) |
| 1892 | return 0; |
| 1893 | setup_used[x] = 1; |
| 1894 | cp = setup_args[x] + strlen(key); |
| 1895 | *val = -1; |
| 1896 | if (*cp != ':') |
| 1897 | return ++x; |
| 1898 | cp++; |
| 1899 | if ((*cp >= '0') && (*cp <= '9')) { |
| 1900 | *val = simple_strtoul(cp,NULL((void *) 0),0); |
| 1901 | } |
| 1902 | return ++x; |
| 1903 | } |
| 1904 | |
| 1905 | |
| 1906 | |
| 1907 | /* The "correct" (ie portable) way to access memory-mapped hardware |
| 1908 | * such as the IN2000 EPROM and dip switch is through the use of |
| 1909 | * special macros declared in 'asm/io.h'. We use readb() and readl() |
| 1910 | * when reading from the card's BIOS area in in2000_detect(). |
| 1911 | */ |
| 1912 | static const unsigned int *bios_tab[] in2000__INITDATA = { |
| 1913 | (unsigned int *)0xc8000, |
| 1914 | (unsigned int *)0xd0000, |
| 1915 | (unsigned int *)0xd8000, |
| 1916 | 0 |
| 1917 | }; |
| 1918 | |
| 1919 | static const unsigned short base_tab[] in2000__INITDATA = { |
| 1920 | 0x220, |
| 1921 | 0x200, |
| 1922 | 0x110, |
| 1923 | 0x100, |
| 1924 | }; |
| 1925 | |
| 1926 | static const int int_tab[] in2000__INITDATA = { |
| 1927 | 15, |
| 1928 | 14, |
| 1929 | 11, |
| 1930 | 10 |
| 1931 | }; |
| 1932 | |
| 1933 | |
| 1934 | in2000__INITFUNC( int in2000_detect(Scsi_Host_Template * tpnt) )int in2000_detect(Scsi_Host_Template * tpnt) |
| 1935 | { |
| 1936 | struct Scsi_Host *instance; |
| 1937 | struct IN2000_hostdata *hostdata; |
| 1938 | int detect_count; |
| 1939 | int bios; |
| 1940 | int x; |
| 1941 | unsigned short base; |
| 1942 | ucharunsigned char switches; |
| 1943 | ucharunsigned char hrev; |
| 1944 | int flags; |
| 1945 | int val; |
| 1946 | char buf[32]; |
| 1947 | |
| 1948 | /* Thanks to help from Bill Earnest, probing for IN2000 cards is a |
| 1949 | * pretty straightforward and fool-proof operation. There are 3 |
| 1950 | * possible locations for the IN2000 EPROM in memory space - if we |
| 1951 | * find a BIOS signature, we can read the dip switch settings from |
| 1952 | * the byte at BIOS+32 (shadowed in by logic on the card). From 2 |
| 1953 | * of the switch bits we get the card's address in IO space. There's |
| 1954 | * an image of the dip switch there, also, so we have a way to back- |
| 1955 | * check that this really is an IN2000 card. Very nifty. Use the |
| 1956 | * 'ioport:xx' command-line parameter if your BIOS EPROM is absent |
| 1957 | * or disabled. |
| 1958 | */ |
| 1959 | |
| 1960 | if (!done_setup && setup_strings) |
| 1961 | in2000_setup(setup_strings,0); |
| 1962 | |
| 1963 | detect_count = 0; |
| 1964 | for (bios = 0; bios_tab[bios]; bios++) { |
| 1965 | if (check_setup_args("ioport",&flags,&val,buf)) { |
| 1966 | base = val; |
| 1967 | switches = ~inb(base + IO_SWITCHES)((__builtin_constant_p((base + 0x08)) && (base + 0x08 ) < 256) ? __inbc(base + 0x08) : __inb(base + 0x08)) & 0xff; |
| 1968 | printk("Forcing IN2000 detection at IOport 0x%x ",base); |
| 1969 | bios = 2; |
| 1970 | } |
| 1971 | /* |
| 1972 | * There have been a couple of BIOS versions with different layouts |
| 1973 | * for the obvious ID strings. We look for the 2 most common ones and |
| 1974 | * hope that they cover all the cases... |
| 1975 | */ |
| 1976 | else if (readl(bios_tab[bios]+0x04)(*(volatile unsigned int *) (bios_tab[bios]+0x04)) == 0x41564f4e || |
| 1977 | readl(bios_tab[bios]+0x0c)(*(volatile unsigned int *) (bios_tab[bios]+0x0c)) == 0x61776c41) { |
| 1978 | printk("Found IN2000 BIOS at 0x%x ",(unsigned int)bios_tab[bios]); |
| 1979 | |
| 1980 | /* Read the switch image that's mapped into EPROM space */ |
| 1981 | |
| 1982 | switches = ~((readb(bios_tab[bios]+0x08)(*(volatile unsigned char *) (bios_tab[bios]+0x08)) & 0xff)); |
| 1983 | |
| 1984 | /* Find out where the IO space is */ |
| 1985 | |
| 1986 | x = switches & (SW_ADDR00x01 | SW_ADDR10x02); |
| 1987 | base = base_tab[x]; |
| 1988 | |
| 1989 | /* Check for the IN2000 signature in IO space. */ |
| 1990 | |
| 1991 | x = ~inb(base + IO_SWITCHES)((__builtin_constant_p((base + 0x08)) && (base + 0x08 ) < 256) ? __inbc(base + 0x08) : __inb(base + 0x08)) & 0xff; |
| 1992 | if (x != switches) { |
| 1993 | printk("Bad IO signature: %02x vs %02x.\n",x,switches); |
| 1994 | continue; |
| 1995 | } |
| 1996 | } |
| 1997 | else |
| 1998 | continue; |
| 1999 | |
| 2000 | /* OK. We have a base address for the IO ports - run a few safety checks */ |
| 2001 | |
| 2002 | if (!(switches & SW_BIT70x80)) { /* I _think_ all cards do this */ |
| 2003 | printk("There is no IN-2000 SCSI card at IOport 0x%03x!\n",base); |
| 2004 | continue; |
| 2005 | } |
| 2006 | |
| 2007 | /* Let's assume any hardware version will work, although the driver |
| 2008 | * has only been tested on 0x21, 0x22, 0x25, 0x26, and 0x27. We'll |
| 2009 | * print out the rev number for reference later, but accept them all. |
| 2010 | */ |
| 2011 | |
| 2012 | hrev = inb(base + IO_HARDWARE)((__builtin_constant_p((base + 0x0a)) && (base + 0x0a ) < 256) ? __inbc(base + 0x0a) : __inb(base + 0x0a)); |
| 2013 | |
| 2014 | /* Bit 2 tells us if interrupts are disabled */ |
| 2015 | if (switches & SW_DISINT0x04) { |
| 2016 | printk("The IN-2000 SCSI card at IOport 0x%03x ",base); |
| 2017 | printk("is not configured for interrupt operation!\n"); |
| 2018 | printk("This driver requires an interrupt: cancelling detection.\n"); |
| 2019 | continue; |
| 2020 | } |
| 2021 | |
| 2022 | /* Ok. We accept that there's an IN2000 at ioaddr 'base'. Now |
| 2023 | * initialize it. |
| 2024 | */ |
| 2025 | |
| 2026 | tpnt->proc_dir = &proc_scsi_in2000; /* done more than once? harmless. */ |
| 2027 | detect_count++; |
| 2028 | instance = scsi_register(tpnt, sizeof(struct IN2000_hostdata)); |
| 2029 | if (!instance_list) |
| 2030 | instance_list = instance; |
| 2031 | hostdata = (struct IN2000_hostdata *)instance->hostdata; |
| 2032 | instance->io_port = hostdata->io_base = base; |
| 2033 | hostdata->dip_switch = switches; |
| 2034 | hostdata->hrev = hrev; |
| 2035 | |
| 2036 | write1_io(0,IO_FIFO_WRITE)(((__builtin_constant_p((hostdata->io_base+(0x05))) && (hostdata->io_base+(0x05)) < 256) ? __outbc(((0)),(hostdata ->io_base+(0x05))) : __outb(((0)),(hostdata->io_base+(0x05 ))))); /* clear fifo counter */ |
| 2037 | write1_io(0,IO_FIFO_READ)(((__builtin_constant_p((hostdata->io_base+(0x07))) && (hostdata->io_base+(0x07)) < 256) ? __outbc(((0)),(hostdata ->io_base+(0x07))) : __outb(((0)),(hostdata->io_base+(0x07 ))))); /* start fifo out in read mode */ |
| 2038 | write1_io(0,IO_INTR_MASK)(((__builtin_constant_p((hostdata->io_base+(0x0c))) && (hostdata->io_base+(0x0c)) < 256) ? __outbc(((0)),(hostdata ->io_base+(0x0c))) : __outb(((0)),(hostdata->io_base+(0x0c ))))); /* allow all ints */ |
| 2039 | x = int_tab[(switches & (SW_INT00x08 | SW_INT10x10)) >> SW_INT_SHIFT3]; |
| 2040 | if (request_irq(x, in2000_intr, SA_INTERRUPT0x20000000, "in2000", NULL((void *) 0))) { |
| 2041 | printk("in2000_detect: Unable to allocate IRQ.\n"); |
| 2042 | detect_count--; |
| 2043 | continue; |
| 2044 | } |
| 2045 | instance->irq = x; |
| 2046 | instance->n_io_port = 13; |
| 2047 | request_region(base, 13, "in2000"); /* lock in this IO space for our use */ |
| 2048 | |
| 2049 | for (x = 0; x < 8; x++) { |
| 2050 | hostdata->busy[x] = 0; |
| 2051 | hostdata->sync_xfer[x] = calc_sync_xfer(DEFAULT_SX_PER500/4,DEFAULT_SX_OFF0); |
| 2052 | hostdata->sync_stat[x] = SS_UNSET0; /* using default sync values */ |
| 2053 | #ifdef PROC_STATISTICS |
| 2054 | hostdata->cmd_cnt[x] = 0; |
| 2055 | hostdata->disc_allowed_cnt[x] = 0; |
| 2056 | hostdata->disc_done_cnt[x] = 0; |
| 2057 | #endif |
| 2058 | } |
| 2059 | hostdata->input_Q = NULL((void *) 0); |
| 2060 | hostdata->selecting = NULL((void *) 0); |
| 2061 | hostdata->connected = NULL((void *) 0); |
| 2062 | hostdata->disconnected_Q = NULL((void *) 0); |
| 2063 | hostdata->state = S_UNCONNECTED0; |
| 2064 | hostdata->fifo = FI_FIFO_UNUSED0; |
| 2065 | hostdata->level2 = L2_BASIC2; |
| 2066 | hostdata->disconnect = DIS_ADAPTIVE1; |
| 2067 | hostdata->args = DEBUG_DEFAULTS0; |
| 2068 | hostdata->incoming_ptr = 0; |
| 2069 | hostdata->outgoing_len = 0; |
| 2070 | hostdata->default_sx_per = DEFAULT_SX_PER500; |
| 2071 | |
| 2072 | /* Older BIOS's had a 'sync on/off' switch - use its setting */ |
| 2073 | |
| 2074 | if (readl(bios_tab[bios]+0x04)(*(volatile unsigned int *) (bios_tab[bios]+0x04)) == 0x41564f4e && (switches & SW_SYNC_DOS50x20)) |
| 2075 | hostdata->sync_off = 0x00; /* sync defaults to on */ |
| 2076 | else |
| 2077 | hostdata->sync_off = 0xff; /* sync defaults to off */ |
| 2078 | |
| 2079 | #ifdef PROC_INTERFACE |
| 2080 | hostdata->proc = PR_VERSION1<<0|PR_INFO1<<1|PR_STATISTICS1<<2| |
| 2081 | PR_CONNECTED1<<3|PR_INPUTQ1<<4|PR_DISCQ1<<5| |
| 2082 | PR_STOP1<<7; |
| 2083 | #ifdef PROC_STATISTICS |
| 2084 | hostdata->int_cnt = 0; |
| 2085 | #endif |
| 2086 | #endif |
| 2087 | |
| 2088 | if (check_setup_args("nosync",&flags,&val,buf)) |
| 2089 | hostdata->sync_off = val; |
| 2090 | |
| 2091 | if (check_setup_args("period",&flags,&val,buf)) |
| 2092 | hostdata->default_sx_per = sx_table[round_period((unsigned int)val)].period_ns; |
| 2093 | |
| 2094 | if (check_setup_args("disconnect",&flags,&val,buf)) { |
| 2095 | if ((val >= DIS_NEVER0) && (val <= DIS_ALWAYS2)) |
| 2096 | hostdata->disconnect = val; |
| 2097 | else |
| 2098 | hostdata->disconnect = DIS_ADAPTIVE1; |
| 2099 | } |
| 2100 | |
| 2101 | if (check_setup_args("noreset",&flags,&val,buf)) |
| 2102 | hostdata->args ^= A_NO_SCSI_RESET1<<15; |
| 2103 | |
| 2104 | if (check_setup_args("level2",&flags,&val,buf)) |
| 2105 | hostdata->level2 = val; |
| 2106 | |
| 2107 | if (check_setup_args("debug",&flags,&val,buf)) |
| 2108 | hostdata->args = (val & DB_MASK0x3f); |
| 2109 | |
| 2110 | #ifdef PROC_INTERFACE |
| 2111 | if (check_setup_args("proc",&flags,&val,buf)) |
| 2112 | hostdata->proc = val; |
| 2113 | #endif |
| 2114 | |
| 2115 | |
| 2116 | x = reset_hardware(instance,(hostdata->args & A_NO_SCSI_RESET1<<15)?RESET_CARD0:RESET_CARD_AND_BUS1); |
| 2117 | |
| 2118 | hostdata->microcode = read_3393(hostdata,WD_CDB_10x03); |
| 2119 | if (x & 0x01) { |
| 2120 | if (x & B_FLAG0x80) |
| 2121 | hostdata->chip = C_WD33C93B2; |
| 2122 | else |
| 2123 | hostdata->chip = C_WD33C93A1; |
| 2124 | } |
| 2125 | else |
| 2126 | hostdata->chip = C_WD33C930; |
| 2127 | |
| 2128 | printk("dip_switch=%02x irq=%d ioport=%02x floppy=%s sync/DOS5=%s ", |
| 2129 | (switches & 0x7f), |
| 2130 | instance->irq,hostdata->io_base, |
| 2131 | (switches & SW_FLOPPY0x40)?"Yes":"No", |
| 2132 | (switches & SW_SYNC_DOS50x20)?"Yes":"No"); |
| 2133 | printk("hardware_ver=%02x chip=%s microcode=%02x\n", |
| 2134 | hrev, |
| 2135 | (hostdata->chip==C_WD33C930)?"WD33c93": |
| 2136 | (hostdata->chip==C_WD33C93A1)?"WD33c93A": |
| 2137 | (hostdata->chip==C_WD33C93B2)?"WD33c93B":"unknown", |
| 2138 | hostdata->microcode); |
| 2139 | #ifdef DEBUGGING_ON |
| 2140 | printk("setup_args = "); |
| 2141 | for (x=0; x<MAX_SETUP_ARGS(sizeof(setup_args) / sizeof(char *)); x++) |
| 2142 | printk("%s,",setup_args[x]); |
| 2143 | printk("\n"); |
| 2144 | #endif |
| 2145 | if (hostdata->sync_off == 0xff) |
| 2146 | printk("Sync-transfer DISABLED on all devices: ENABLE from command-line\n"); |
| 2147 | printk("IN2000 driver version %s - %s\n",IN2000_VERSION"1.33",IN2000_DATE"26/August/1998"); |
| 2148 | } |
| 2149 | |
| 2150 | return detect_count; |
| 2151 | } |
| 2152 | |
| 2153 | |
| 2154 | /* NOTE: I lifted this function straight out of the old driver, |
| 2155 | * and have not tested it. Presumably it does what it's |
| 2156 | * supposed to do... |
| 2157 | */ |
| 2158 | |
| 2159 | int in2000_biosparam(Disk *disk, kdev_t dev, int *iinfo) |
| 2160 | { |
| 2161 | int size; |
| 2162 | |
| 2163 | size = disk->capacity; |
| 2164 | iinfo[0] = 64; |
| 2165 | iinfo[1] = 32; |
| 2166 | iinfo[2] = size >> 11; |
| 2167 | |
| 2168 | /* This should approximate the large drive handling that the DOS ASPI manager |
| 2169 | uses. Drives very near the boundaries may not be handled correctly (i.e. |
| 2170 | near 2.0 Gb and 4.0 Gb) */ |
| 2171 | |
| 2172 | if (iinfo[2] > 1024) { |
| 2173 | iinfo[0] = 64; |
| 2174 | iinfo[1] = 63; |
| 2175 | iinfo[2] = disk->capacity / (iinfo[0] * iinfo[1]); |
| 2176 | } |
| 2177 | if (iinfo[2] > 1024) { |
| 2178 | iinfo[0] = 128; |
| 2179 | iinfo[1] = 63; |
| 2180 | iinfo[2] = disk->capacity / (iinfo[0] * iinfo[1]); |
| 2181 | } |
| 2182 | if (iinfo[2] > 1024) { |
| 2183 | iinfo[0] = 255; |
| 2184 | iinfo[1] = 63; |
| 2185 | iinfo[2] = disk->capacity / (iinfo[0] * iinfo[1]); |
| 2186 | } |
| 2187 | return 0; |
| 2188 | } |
| 2189 | |
| 2190 | |
| 2191 | |
| 2192 | struct proc_dir_entry proc_scsi_in2000 = { |
| 2193 | PROC_SCSI_IN2000, 6, "in2000", |
| 2194 | S_IFDIR0040000 | S_IRUGO(00400|00040|00004) | S_IXUGO(00100|00010|00001), 2 |
| 2195 | }; |
| 2196 | |
| 2197 | |
| 2198 | int in2000_proc_info(char *buf, char **start, off_t off, int len, int hn, int in) |
| 2199 | { |
| 2200 | |
| 2201 | #ifdef PROC_INTERFACE |
| 2202 | |
| 2203 | char *bp; |
| 2204 | char tbuf[128]; |
| 2205 | unsigned long flags; |
| 2206 | struct Scsi_Host *instance; |
| 2207 | struct IN2000_hostdata *hd; |
| 2208 | Scsi_Cmnd *cmd; |
| 2209 | int x,i; |
| 2210 | static int stop = 0; |
| 2211 | |
| 2212 | for (instance=instance_list; instance; instance=instance->next) { |
| 2213 | if (instance->host_no == hn) |
| 2214 | break; |
| 2215 | } |
| 2216 | if (!instance) { |
| 2217 | printk("*** Hmm... Can't find host #%d!\n",hn); |
| 2218 | return (-ESRCH3); |
| 2219 | } |
| 2220 | hd = (struct IN2000_hostdata *)instance->hostdata; |
| 2221 | |
| 2222 | /* If 'in' is TRUE we need to _read_ the proc file. We accept the following |
| 2223 | * keywords (same format as command-line, but only ONE per read): |
| 2224 | * debug |
| 2225 | * disconnect |
| 2226 | * period |
| 2227 | * resync |
| 2228 | * proc |
| 2229 | */ |
| 2230 | |
| 2231 | if (in) { |
| 2232 | buf[len] = '\0'; |
| 2233 | bp = buf; |
| 2234 | if (!strncmp(bp,"debug:",6)) { |
| 2235 | bp += 6; |
| 2236 | hd->args = simple_strtoul(bp,NULL((void *) 0),0) & DB_MASK0x3f; |
| 2237 | } |
| 2238 | else if (!strncmp(bp,"disconnect:",11)) { |
| 2239 | bp += 11; |
| 2240 | x = simple_strtoul(bp,NULL((void *) 0),0); |
| 2241 | if (x < DIS_NEVER0 || x > DIS_ALWAYS2) |
| 2242 | x = DIS_ADAPTIVE1; |
| 2243 | hd->disconnect = x; |
| 2244 | } |
| 2245 | else if (!strncmp(bp,"period:",7)) { |
| 2246 | bp += 7; |
| 2247 | x = simple_strtoul(bp,NULL((void *) 0),0); |
| 2248 | hd->default_sx_per = sx_table[round_period((unsigned int)x)].period_ns; |
| 2249 | } |
| 2250 | else if (!strncmp(bp,"resync:",7)) { |
| 2251 | bp += 7; |
| 2252 | x = simple_strtoul(bp,NULL((void *) 0),0); |
| 2253 | for (i=0; i<7; i++) |
| 2254 | if (x & (1<<i)) |
| 2255 | hd->sync_stat[i] = SS_UNSET0; |
| 2256 | } |
| 2257 | else if (!strncmp(bp,"proc:",5)) { |
| 2258 | bp += 5; |
| 2259 | hd->proc = simple_strtoul(bp,NULL((void *) 0),0); |
| 2260 | } |
| 2261 | else if (!strncmp(bp,"level2:",7)) { |
| 2262 | bp += 7; |
| 2263 | hd->level2 = simple_strtoul(bp,NULL((void *) 0),0); |
| 2264 | } |
| 2265 | return len; |
| 2266 | } |
| 2267 | |
| 2268 | save_flags(flags)__asm__ __volatile__("pushf ; pop %0" : "=r" (flags): :"memory" ); |
| 2269 | cli()__asm__ __volatile__ ("cli": : :"memory"); |
| 2270 | bp = buf; |
| 2271 | *bp = '\0'; |
| 2272 | if (hd->proc & PR_VERSION1<<0) { |
| 2273 | /* Don't create varied object files each time this file is compiled. */ |
| 2274 | /* sprintf(tbuf,"\nVersion %s - %s. Compiled %s %s", |
| 2275 | IN2000_VERSION,IN2000_DATE,__DATE__,__TIME__); */ |
| 2276 | sprintflinux_sprintf(tbuf,"\nVersion %s - %s.", |
| 2277 | IN2000_VERSION"1.33",IN2000_DATE"26/August/1998"); |
| 2278 | strcat(bp,tbuf); |
| 2279 | } |
| 2280 | if (hd->proc & PR_INFO1<<1) { |
| 2281 | sprintflinux_sprintf(tbuf,"\ndip_switch=%02x: irq=%d io=%02x floppy=%s sync/DOS5=%s", |
| 2282 | (hd->dip_switch & 0x7f), instance->irq, hd->io_base, |
| 2283 | (hd->dip_switch & 0x40)?"Yes":"No", |
| 2284 | (hd->dip_switch & 0x20)?"Yes":"No"); |
| 2285 | strcat(bp,tbuf); |
| 2286 | strcat(bp,"\nsync_xfer[] = "); |
| 2287 | for (x=0; x<7; x++) { |
| 2288 | sprintflinux_sprintf(tbuf,"\t%02x",hd->sync_xfer[x]); |
| 2289 | strcat(bp,tbuf); |
| 2290 | } |
| 2291 | strcat(bp,"\nsync_stat[] = "); |
| 2292 | for (x=0; x<7; x++) { |
| 2293 | sprintflinux_sprintf(tbuf,"\t%02x",hd->sync_stat[x]); |
| 2294 | strcat(bp,tbuf); |
| 2295 | } |
| 2296 | } |
| 2297 | #ifdef PROC_STATISTICS |
| 2298 | if (hd->proc & PR_STATISTICS1<<2) { |
| 2299 | strcat(bp,"\ncommands issued: "); |
| 2300 | for (x=0; x<7; x++) { |
| 2301 | sprintflinux_sprintf(tbuf,"\t%ld",hd->cmd_cnt[x]); |
| 2302 | strcat(bp,tbuf); |
| 2303 | } |
| 2304 | strcat(bp,"\ndisconnects allowed:"); |
| 2305 | for (x=0; x<7; x++) { |
| 2306 | sprintflinux_sprintf(tbuf,"\t%ld",hd->disc_allowed_cnt[x]); |
| 2307 | strcat(bp,tbuf); |
| 2308 | } |
| 2309 | strcat(bp,"\ndisconnects done: "); |
| 2310 | for (x=0; x<7; x++) { |
| 2311 | sprintflinux_sprintf(tbuf,"\t%ld",hd->disc_done_cnt[x]); |
| 2312 | strcat(bp,tbuf); |
| 2313 | } |
| 2314 | sprintflinux_sprintf(tbuf,"\ninterrupts: \t%ld",hd->int_cnt); |
| 2315 | strcat(bp,tbuf); |
| 2316 | } |
| 2317 | #endif |
| 2318 | if (hd->proc & PR_CONNECTED1<<3) { |
| 2319 | strcat(bp,"\nconnected: "); |
| 2320 | if (hd->connected) { |
| 2321 | cmd = (Scsi_Cmnd *)hd->connected; |
| 2322 | sprintflinux_sprintf(tbuf," %ld-%d:%d(%02x)", |
| 2323 | cmd->pid, cmd->target, cmd->lun, cmd->cmnd[0]); |
| 2324 | strcat(bp,tbuf); |
| 2325 | } |
| 2326 | } |
| 2327 | if (hd->proc & PR_INPUTQ1<<4) { |
| 2328 | strcat(bp,"\ninput_Q: "); |
| 2329 | cmd = (Scsi_Cmnd *)hd->input_Q; |
| 2330 | while (cmd) { |
| 2331 | sprintflinux_sprintf(tbuf," %ld-%d:%d(%02x)", |
| 2332 | cmd->pid, cmd->target, cmd->lun, cmd->cmnd[0]); |
| 2333 | strcat(bp,tbuf); |
| 2334 | cmd = (Scsi_Cmnd *)cmd->host_scribble; |
| 2335 | } |
| 2336 | } |
| 2337 | if (hd->proc & PR_DISCQ1<<5) { |
| 2338 | strcat(bp,"\ndisconnected_Q:"); |
| 2339 | cmd = (Scsi_Cmnd *)hd->disconnected_Q; |
| 2340 | while (cmd) { |
| 2341 | sprintflinux_sprintf(tbuf," %ld-%d:%d(%02x)", |
| 2342 | cmd->pid, cmd->target, cmd->lun, cmd->cmnd[0]); |
| 2343 | strcat(bp,tbuf); |
| 2344 | cmd = (Scsi_Cmnd *)cmd->host_scribble; |
| 2345 | } |
| 2346 | } |
| 2347 | if (hd->proc & PR_TEST1<<6) { |
| 2348 | ; /* insert your own custom function here */ |
| 2349 | } |
| 2350 | strcat(bp,"\n"); |
| 2351 | restore_flags(flags)__asm__ __volatile__("push %0 ; popf": :"g" (flags):"memory"); |
| 2352 | *start = buf; |
| 2353 | if (stop) { |
| 2354 | stop = 0; |
| 2355 | return 0; /* return 0 to signal end-of-file */ |
| 2356 | } |
| 2357 | if (off > 0x40000) /* ALWAYS stop after 256k bytes have been read */ |
| 2358 | stop = 1;; |
| 2359 | if (hd->proc & PR_STOP1<<7) /* stop every other time */ |
| 2360 | stop = 1; |
| 2361 | return strlen(bp); |
| 2362 | |
| 2363 | #else /* PROC_INTERFACE */ |
| 2364 | |
| 2365 | return 0; |
| 2366 | |
| 2367 | #endif /* PROC_INTERFACE */ |
| 2368 | |
| 2369 | } |
| 2370 | |
| 2371 | |
| 2372 | #ifdef MODULE |
| 2373 | |
| 2374 | Scsi_Host_Template driver_template = IN2000{ ((void *) 0), ((void *) 0), &proc_scsi_in2000, in2000_proc_info , "Always IN2000", in2000_detect, ((void *) 0), ((void *) 0), ((void *) 0), in2000_queuecommand, in2000_abort, in2000_reset , ((void *) 0), in2000_biosparam, 16, 7, 0xff, 2, 0, 0, 0 }; |
| 2375 | |
| 2376 | #include "scsi_module.c" |
| 2377 | |
| 2378 | #endif |
| 2379 |