| File: | obj-scan-build/../linux/src/drivers/scsi/seagate.c |
| Location: | line 823, column 3 |
| Description: | Value stored to 'clock' is never read |
| 1 | /* |
| 2 | * seagate.c Copyright (C) 1992, 1993 Drew Eckhardt |
| 3 | * low level scsi driver for ST01/ST02, Future Domain TMC-885, |
| 4 | * TMC-950 by |
| 5 | * |
| 6 | * Drew Eckhardt |
| 7 | * |
| 8 | * <drew@colorado.edu> |
| 9 | * |
| 10 | * Note : TMC-880 boards don't work because they have two bits in |
| 11 | * the status register flipped, I'll fix this "RSN" |
| 12 | * |
| 13 | * This card does all the I/O via memory mapped I/O, so there is no need |
| 14 | * to check or allocate a region of the I/O address space. |
| 15 | */ |
| 16 | |
| 17 | /* |
| 18 | * Configuration : |
| 19 | * To use without BIOS -DOVERRIDE=base_address -DCONTROLLER=FD or SEAGATE |
| 20 | * -DIRQ will override the default of 5. |
| 21 | * Note: You can now set these options from the kernel's "command line". |
| 22 | * The syntax is: |
| 23 | * |
| 24 | * st0x=ADDRESS,IRQ (for a Seagate controller) |
| 25 | * or: |
| 26 | * tmc8xx=ADDRESS,IRQ (for a TMC-8xx or TMC-950 controller) |
| 27 | * eg: |
| 28 | * tmc8xx=0xC8000,15 |
| 29 | * |
| 30 | * will configure the driver for a TMC-8xx style controller using IRQ 15 |
| 31 | * with a base address of 0xC8000. |
| 32 | * |
| 33 | * -DFAST or -DFAST32 will use blind transfers where possible |
| 34 | * |
| 35 | * -DARBITRATE will cause the host adapter to arbitrate for the |
| 36 | * bus for better SCSI-II compatibility, rather than just |
| 37 | * waiting for BUS FREE and then doing its thing. Should |
| 38 | * let us do one command per Lun when I integrate my |
| 39 | * reorganization changes into the distribution sources. |
| 40 | * |
| 41 | * -DSLOW_HANDSHAKE will allow compatibility with broken devices that don't |
| 42 | * handshake fast enough (ie, some CD ROM's) for the Seagate |
| 43 | * code. |
| 44 | * |
| 45 | * -DSLOW_RATE=x, x some number will let you specify a default |
| 46 | * transfer rate if handshaking isn't working correctly. |
| 47 | */ |
| 48 | |
| 49 | #ifdef MACH1 |
| 50 | #define ARBITRATE |
| 51 | #define SLOW_HANDSHAKE |
| 52 | #define FAST32 |
| 53 | #endif |
| 54 | |
| 55 | #include <linux/module.h> |
| 56 | |
| 57 | #include <asm/io.h> |
| 58 | #include <asm/system.h> |
| 59 | #include <linux/signal.h> |
| 60 | #include <linux/sched.h> |
| 61 | #include <linux/string.h> |
| 62 | #include <linux/config.h> |
| 63 | #include <linux/proc_fs.h> |
| 64 | |
| 65 | #include <linux/blk.h> |
| 66 | #include "scsi.h" |
| 67 | #include "hosts.h" |
| 68 | #include "seagate.h" |
| 69 | #include "constants.h" |
| 70 | #include<linux/stat.h> |
| 71 | |
| 72 | struct proc_dir_entry proc_scsi_seagate = { |
| 73 | PROC_SCSI_SEAGATE, 7, "seagate", |
| 74 | S_IFDIR0040000 | S_IRUGO(00400|00040|00004) | S_IXUGO(00100|00010|00001), 2 |
| 75 | }; |
| 76 | |
| 77 | |
| 78 | #ifndef IRQ5 |
| 79 | #define IRQ5 5 |
| 80 | #endif |
| 81 | |
| 82 | #if (defined(FAST32) && !defined(FAST)) |
| 83 | #define FAST |
| 84 | #endif |
| 85 | |
| 86 | #if defined(SLOW_RATE50) && !defined(SLOW_HANDSHAKE) |
| 87 | #define SLOW_HANDSHAKE |
| 88 | #endif |
| 89 | |
| 90 | #if defined(SLOW_HANDSHAKE) && !defined(SLOW_RATE50) |
| 91 | #define SLOW_RATE50 50 |
| 92 | #endif |
| 93 | |
| 94 | |
| 95 | #if defined(LINKED) |
| 96 | #undef LINKED /* Linked commands are currently broken ! */ |
| 97 | #endif |
| 98 | |
| 99 | static int internal_command(unsigned char target, unsigned char lun, |
| 100 | const void *cmnd, |
| 101 | void *buff, int bufflen, int reselect); |
| 102 | |
| 103 | static int incommand; /* |
| 104 | set if arbitration has finished and we are |
| 105 | in some command phase. |
| 106 | */ |
| 107 | |
| 108 | static const void *base_address = NULL((void *) 0); /* |
| 109 | Where the card ROM starts, |
| 110 | used to calculate memory mapped |
| 111 | register location. |
| 112 | */ |
| 113 | #ifdef notyet |
| 114 | static volatile int abort_confirm = 0; |
| 115 | #endif |
| 116 | |
| 117 | static volatile void *st0x_cr_sr; /* |
| 118 | control register write, |
| 119 | status register read. |
| 120 | 256 bytes in length. |
| 121 | |
| 122 | Read is status of SCSI BUS, |
| 123 | as per STAT masks. |
| 124 | |
| 125 | */ |
| 126 | |
| 127 | |
| 128 | static volatile void *st0x_dr; /* |
| 129 | data register, read write |
| 130 | 256 bytes in length. |
| 131 | */ |
| 132 | |
| 133 | |
| 134 | static volatile int st0x_aborted=0; /* |
| 135 | set when we are aborted, ie by a time out, etc. |
| 136 | */ |
| 137 | |
| 138 | static unsigned char controller_type = 0; /* set to SEAGATE for ST0x boards or FD for TMC-8xx boards */ |
| 139 | static unsigned char irq = IRQ5; |
| 140 | |
| 141 | #define retcode(result)(((result) << 16) | (message << 8) | status) (((result) << 16) | (message << 8) | status) |
| 142 | #define STATUS(*(volatile unsigned char *) st0x_cr_sr) (*(volatile unsigned char *) st0x_cr_sr) |
| 143 | #define CONTROL(*(volatile unsigned char *) st0x_cr_sr) STATUS(*(volatile unsigned char *) st0x_cr_sr) |
| 144 | #define DATA(*(volatile unsigned char *) st0x_dr) (*(volatile unsigned char *) st0x_dr) |
| 145 | #define WRITE_CONTROL(d){ ((*(volatile unsigned char *) (st0x_cr_sr)) = ((d))); } { writeb((d), st0x_cr_sr)((*(volatile unsigned char *) (st0x_cr_sr)) = ((d))); } |
| 146 | #define WRITE_DATA(d){ ((*(volatile unsigned char *) (st0x_dr)) = ((d))); } { writeb((d), st0x_dr)((*(volatile unsigned char *) (st0x_dr)) = ((d))); } |
| 147 | |
| 148 | void st0x_setup (char *str, int *ints) { |
| 149 | controller_type = SEAGATE1; |
| 150 | base_address = (void *) ints[1]; |
| 151 | irq = ints[2]; |
| 152 | } |
| 153 | |
| 154 | void tmc8xx_setup (char *str, int *ints) { |
| 155 | controller_type = FD2; |
| 156 | base_address = (void *) ints[1]; |
| 157 | irq = ints[2]; |
| 158 | } |
| 159 | |
| 160 | |
| 161 | #ifndef OVERRIDE |
| 162 | static const char * seagate_bases[] = { |
| 163 | (char *) 0xc8000, (char *) 0xca000, (char *) 0xcc000, |
| 164 | (char *) 0xce000, (char *) 0xdc000, (char *) 0xde000 |
| 165 | }; |
| 166 | |
| 167 | typedef struct { |
| 168 | const char *signature ; |
| 169 | unsigned offset; |
| 170 | unsigned length; |
| 171 | unsigned char type; |
| 172 | } Signature; |
| 173 | |
| 174 | static const Signature signatures[] = { |
| 175 | #ifdef CONFIG_SCSI_SEAGATE1 |
| 176 | {"ST01 v1.7 (C) Copyright 1987 Seagate", 15, 37, SEAGATE1}, |
| 177 | {"SCSI BIOS 2.00 (C) Copyright 1987 Seagate", 15, 40, SEAGATE1}, |
| 178 | |
| 179 | /* |
| 180 | * The following two lines are NOT mistakes. One detects ROM revision |
| 181 | * 3.0.0, the other 3.2. Since seagate has only one type of SCSI adapter, |
| 182 | * and this is not going to change, the "SEAGATE" and "SCSI" together |
| 183 | * are probably "good enough" |
| 184 | */ |
| 185 | |
| 186 | {"SEAGATE SCSI BIOS ",16, 17, SEAGATE1}, |
| 187 | {"SEAGATE SCSI BIOS ",17, 17, SEAGATE1}, |
| 188 | |
| 189 | /* |
| 190 | * However, future domain makes several incompatible SCSI boards, so specific |
| 191 | * signatures must be used. |
| 192 | */ |
| 193 | |
| 194 | {"FUTURE DOMAIN CORP. (C) 1986-1989 V5.0C2/14/89", 5, 46, FD2}, |
| 195 | {"FUTURE DOMAIN CORP. (C) 1986-1989 V6.0A7/28/89", 5, 46, FD2}, |
| 196 | {"FUTURE DOMAIN CORP. (C) 1986-1990 V6.0105/31/90",5, 47, FD2}, |
| 197 | {"FUTURE DOMAIN CORP. (C) 1986-1990 V6.0209/18/90",5, 47, FD2}, |
| 198 | {"FUTURE DOMAIN CORP. (C) 1986-1990 V7.009/18/90", 5, 46, FD2}, |
| 199 | {"FUTURE DOMAIN CORP. (C) 1992 V8.00.004/02/92", 5, 44, FD2}, |
| 200 | {"IBM F1 BIOS V1.1004/30/92", 5, 25, FD2}, |
| 201 | {"FUTURE DOMAIN TMC-950", 5, 21, FD2}, |
| 202 | #endif /* CONFIG_SCSI_SEAGATE */ |
| 203 | } |
| 204 | ; |
| 205 | |
| 206 | #define NUM_SIGNATURES(sizeof(signatures) / sizeof(Signature)) (sizeof(signatures) / sizeof(Signature)) |
| 207 | #endif /* n OVERRIDE */ |
| 208 | |
| 209 | /* |
| 210 | * hostno stores the hostnumber, as told to us by the init routine. |
| 211 | */ |
| 212 | |
| 213 | static int hostno = -1; |
| 214 | static void seagate_reconnect_intr(int, void *, struct pt_regs *); |
| 215 | |
| 216 | #ifdef FAST |
| 217 | static int fast = 1; |
| 218 | #endif |
| 219 | |
| 220 | #ifdef SLOW_HANDSHAKE |
| 221 | /* |
| 222 | * Support for broken devices : |
| 223 | * The Seagate board has a handshaking problem. Namely, a lack |
| 224 | * thereof for slow devices. You can blast 600K/second through |
| 225 | * it if you are polling for each byte, more if you do a blind |
| 226 | * transfer. In the first case, with a fast device, REQ will |
| 227 | * transition high-low or high-low-high before your loop restarts |
| 228 | * and you'll have no problems. In the second case, the board |
| 229 | * will insert wait states for up to 13.2 usecs for REQ to |
| 230 | * transition low->high, and everything will work. |
| 231 | * |
| 232 | * However, there's nothing in the state machine that says |
| 233 | * you *HAVE* to see a high-low-high set of transitions before |
| 234 | * sending the next byte, and slow things like the Trantor CD ROMS |
| 235 | * will break because of this. |
| 236 | * |
| 237 | * So, we need to slow things down, which isn't as simple as it |
| 238 | * seems. We can't slow things down period, because then people |
| 239 | * who don't recompile their kernels will shoot me for ruining |
| 240 | * their performance. We need to do it on a case per case basis. |
| 241 | * |
| 242 | * The best for performance will be to, only for borken devices |
| 243 | * (this is stored on a per-target basis in the scsi_devices array) |
| 244 | * |
| 245 | * Wait for a low->high transition before continuing with that |
| 246 | * transfer. If we timeout, continue anyways. We don't need |
| 247 | * a long timeout, because REQ should only be asserted until the |
| 248 | * corresponding ACK is received and processed. |
| 249 | * |
| 250 | * Note that we can't use the system timer for this, because of |
| 251 | * resolution, and we *really* can't use the timer chip since |
| 252 | * gettimeofday() and the beeper routines use that. So, |
| 253 | * the best thing for us to do will be to calibrate a timing |
| 254 | * loop in the initialization code using the timer chip before |
| 255 | * gettimeofday() can screw with it. |
| 256 | */ |
| 257 | |
| 258 | static int borken_calibration = 0; |
| 259 | static void borken_init (void) { |
| 260 | register int count = 0, start = jiffies + 1, stop = start + 25; |
| 261 | |
| 262 | while (jiffies < start); |
| 263 | for (;jiffies < stop; ++count); |
| 264 | |
| 265 | /* |
| 266 | * Ok, we now have a count for .25 seconds. Convert to a |
| 267 | * count per second and divide by transfer rate in K. |
| 268 | */ |
| 269 | |
| 270 | borken_calibration = (count * 4) / (SLOW_RATE50*1024); |
| 271 | |
| 272 | if (borken_calibration < 1) |
| 273 | borken_calibration = 1; |
| 274 | #if (DEBUG & DEBUG_BORKEN0x8000) |
| 275 | printk("scsi%d : borken calibrated to %dK/sec, %d cycles per transfer\n", |
| 276 | hostno, BORKEN_RATE, borken_calibration); |
| 277 | #endif |
| 278 | } |
| 279 | |
| 280 | static inlineinline __attribute__((always_inline)) void borken_wait(void) { |
| 281 | register int count; |
| 282 | for (count = borken_calibration; count && (STATUS(*(volatile unsigned char *) st0x_cr_sr) & STAT_REQ0x10); |
| 283 | --count); |
| 284 | #if (DEBUG & DEBUG_BORKEN0x8000) |
| 285 | if (count) |
| 286 | printk("scsi%d : borken timeout\n", hostno); |
| 287 | #endif |
| 288 | } |
| 289 | |
| 290 | #endif /* def SLOW_HANDSHAKE */ |
| 291 | |
| 292 | int seagate_st0x_detect (Scsi_Host_Template * tpnt) |
| 293 | { |
| 294 | struct Scsi_Host *instance; |
| 295 | #ifndef OVERRIDE |
| 296 | int i,j; |
| 297 | #endif |
| 298 | |
| 299 | tpnt->proc_dir = &proc_scsi_seagate; |
| 300 | /* |
| 301 | * First, we try for the manual override. |
| 302 | */ |
| 303 | #ifdef DEBUG |
| 304 | printk("Autodetecting ST0x / TMC-8xx\n"); |
| 305 | #endif |
| 306 | |
| 307 | if (hostno != -1) |
| 308 | { |
| 309 | printk ("ERROR : seagate_st0x_detect() called twice.\n"); |
| 310 | return 0; |
| 311 | } |
| 312 | |
| 313 | /* If the user specified the controller type from the command line, |
| 314 | controller_type will be non-zero, so don't try to detect one */ |
| 315 | |
| 316 | if (!controller_type) { |
| 317 | #ifdef OVERRIDE |
| 318 | base_address = (void *) OVERRIDE; |
| 319 | |
| 320 | /* CONTROLLER is used to override controller (SEAGATE or FD). PM: 07/01/93 */ |
| 321 | #ifdef CONTROLLER |
| 322 | controller_type = CONTROLLER; |
| 323 | #else |
| 324 | #error Please use -DCONTROLLER=SEAGATE1 or -DCONTROLLER=FD2 to override controller type |
| 325 | #endif /* CONTROLLER */ |
| 326 | #ifdef DEBUG |
| 327 | printk("Base address overridden to %x, controller type is %s\n", |
| 328 | base_address,controller_type == SEAGATE1 ? "SEAGATE" : "FD"); |
| 329 | #endif |
| 330 | #else /* OVERRIDE */ |
| 331 | /* |
| 332 | * To detect this card, we simply look for the signature |
| 333 | * from the BIOS version notice in all the possible locations |
| 334 | * of the ROM's. This has a nice side effect of not trashing |
| 335 | * any register locations that might be used by something else. |
| 336 | * |
| 337 | * XXX - note that we probably should be probing the address |
| 338 | * space for the on-board RAM instead. |
| 339 | */ |
| 340 | |
| 341 | for (i = 0; i < (sizeof (seagate_bases) / sizeof (char * )); ++i) |
| 342 | for (j = 0; !base_address && j < NUM_SIGNATURES(sizeof(signatures) / sizeof(Signature)); ++j) |
| 343 | if (!memcmp__builtin_memcmp ((const void *) (seagate_bases[i] + |
| 344 | signatures[j].offset), (const void *) signatures[j].signature, |
| 345 | signatures[j].length)) { |
| 346 | base_address = (const void *) seagate_bases[i]; |
| 347 | controller_type = signatures[j].type; |
| 348 | } |
| 349 | #endif /* OVERRIDE */ |
| 350 | } /* (! controller_type) */ |
| 351 | |
| 352 | tpnt->this_id = (controller_type == SEAGATE1) ? 7 : 6; |
| 353 | tpnt->name = (controller_type == SEAGATE1) ? ST0X_ID_STR"Seagate ST-01/ST-02" : FD_ID_STR"TMC-8XX/TMC-950"; |
| 354 | |
| 355 | if (base_address) |
| 356 | { |
| 357 | st0x_cr_sr =(void *) (((const unsigned char *) base_address) + (controller_type == SEAGATE1 ? 0x1a00 : 0x1c00)); |
| 358 | st0x_dr = (void *) (((const unsigned char *) base_address ) + (controller_type == SEAGATE1 ? 0x1c00 : 0x1e00)); |
| 359 | #ifdef DEBUG |
| 360 | printk("%s detected. Base address = %x, cr = %x, dr = %x\n", tpnt->name, base_address, st0x_cr_sr, st0x_dr); |
| 361 | #endif |
| 362 | /* |
| 363 | * At all times, we will use IRQ 5. Should also check for IRQ3 if we |
| 364 | * loose our first interrupt. |
| 365 | */ |
| 366 | instance = scsi_register(tpnt, 0); |
| 367 | hostno = instance->host_no; |
| 368 | if (request_irq((int) irq, seagate_reconnect_intr, SA_INTERRUPT0x20000000, |
| 369 | (controller_type == SEAGATE1) ? "seagate" : "tmc-8xx", NULL((void *) 0))) { |
| 370 | printk("scsi%d : unable to allocate IRQ%d\n", |
| 371 | hostno, (int) irq); |
| 372 | return 0; |
| 373 | } |
| 374 | instance->irq = irq; |
| 375 | instance->io_port = (unsigned int) base_address; |
| 376 | #ifdef SLOW_HANDSHAKE |
| 377 | borken_init(); |
| 378 | #endif |
| 379 | |
| 380 | printk("%s options:" |
| 381 | #ifdef ARBITRATE |
| 382 | " ARBITRATE" |
| 383 | #endif |
| 384 | #ifdef SLOW_HANDSHAKE |
| 385 | " SLOW_HANDSHAKE" |
| 386 | #endif |
| 387 | #ifdef FAST |
| 388 | #ifdef FAST32 |
| 389 | " FAST32" |
| 390 | #else |
| 391 | " FAST" |
| 392 | #endif |
| 393 | #endif |
| 394 | #ifdef LINKED |
| 395 | " LINKED" |
| 396 | #endif |
| 397 | "\n", tpnt->name); |
| 398 | return 1; |
| 399 | } |
| 400 | else |
| 401 | { |
| 402 | #ifdef DEBUG |
| 403 | printk("ST0x / TMC-8xx not detected.\n"); |
| 404 | #endif |
| 405 | return 0; |
| 406 | } |
| 407 | } |
| 408 | |
| 409 | const char *seagate_st0x_info(struct Scsi_Host * shpnt) { |
| 410 | static char buffer[64]; |
| 411 | sprintflinux_sprintf(buffer, "%s at irq %d, address 0x%05X", |
| 412 | (controller_type == SEAGATE1) ? ST0X_ID_STR"Seagate ST-01/ST-02" : FD_ID_STR"TMC-8XX/TMC-950", |
| 413 | irq, (unsigned int)base_address); |
| 414 | return buffer; |
| 415 | } |
| 416 | |
| 417 | int seagate_st0x_proc_info(char *buffer, char **start, off_t offset, |
| 418 | int length, int hostno, int inout) |
| 419 | { |
| 420 | const char *info = seagate_st0x_info(NULL((void *) 0)); |
| 421 | int len; |
| 422 | int pos; |
| 423 | int begin; |
| 424 | |
| 425 | if (inout) return(-ENOSYS38); |
| 426 | |
| 427 | begin = 0; |
| 428 | strcpy(buffer,info); |
| 429 | strcat(buffer,"\n"); |
| 430 | |
| 431 | pos = len = strlen(buffer); |
| 432 | |
| 433 | if (pos<offset) { |
| 434 | len = 0; |
| 435 | begin = pos; |
| 436 | } |
| 437 | |
| 438 | *start = buffer + (offset - begin); |
| 439 | len -= (offset - begin); |
| 440 | if ( len > length ) len = length; |
| 441 | return(len); |
| 442 | } |
| 443 | |
| 444 | /* |
| 445 | * These are our saved pointers for the outstanding command that is |
| 446 | * waiting for a reconnect |
| 447 | */ |
| 448 | |
| 449 | static unsigned char current_target, current_lun; |
| 450 | static unsigned char *current_cmnd, *current_data; |
| 451 | static int current_nobuffs; |
| 452 | static struct scatterlist *current_buffer; |
| 453 | static int current_bufflen; |
| 454 | |
| 455 | #ifdef LINKED |
| 456 | |
| 457 | /* |
| 458 | * linked_connected indicates whether or not we are currently connected to |
| 459 | * linked_target, linked_lun and in an INFORMATION TRANSFER phase, |
| 460 | * using linked commands. |
| 461 | */ |
| 462 | |
| 463 | static int linked_connected = 0; |
| 464 | static unsigned char linked_target, linked_lun; |
| 465 | #endif |
| 466 | |
| 467 | |
| 468 | static void (*done_fn)(Scsi_Cmnd *) = NULL((void *) 0); |
| 469 | static Scsi_Cmnd * SCint = NULL((void *) 0); |
| 470 | |
| 471 | /* |
| 472 | * These control whether or not disconnect / reconnect will be attempted, |
| 473 | * or are being attempted. |
| 474 | */ |
| 475 | |
| 476 | #define NO_RECONNECT0 0 |
| 477 | #define RECONNECT_NOW1 1 |
| 478 | #define CAN_RECONNECT2 2 |
| 479 | |
| 480 | #ifdef LINKED |
| 481 | |
| 482 | /* |
| 483 | * LINKED_RIGHT indicates that we are currently connected to the correct target |
| 484 | * for this command, LINKED_WRONG indicates that we are connected to the wrong |
| 485 | * target. Note that these imply CAN_RECONNECT. |
| 486 | */ |
| 487 | |
| 488 | #define LINKED_RIGHT 3 |
| 489 | #define LINKED_WRONG 4 |
| 490 | #endif |
| 491 | |
| 492 | /* |
| 493 | * This determines if we are expecting to reconnect or not. |
| 494 | */ |
| 495 | |
| 496 | static int should_reconnect = 0; |
| 497 | |
| 498 | /* |
| 499 | * The seagate_reconnect_intr routine is called when a target reselects the |
| 500 | * host adapter. This occurs on the interrupt triggered by the target |
| 501 | * asserting SEL. |
| 502 | */ |
| 503 | |
| 504 | static void seagate_reconnect_intr(int irq, void *dev_id, struct pt_regs *regs) |
| 505 | { |
| 506 | int temp; |
| 507 | Scsi_Cmnd * SCtmp; |
| 508 | |
| 509 | /* enable all other interrupts. */ |
| 510 | sti()__asm__ __volatile__ ("sti": : :"memory"); |
| 511 | #if (DEBUG & PHASE_RESELECT0x800) |
| 512 | printk("scsi%d : seagate_reconnect_intr() called\n", hostno); |
| 513 | #endif |
| 514 | |
| 515 | if (!should_reconnect) |
| 516 | printk("scsi%d: unexpected interrupt.\n", hostno); |
| 517 | else { |
| 518 | should_reconnect = 0; |
| 519 | |
| 520 | #if (DEBUG & PHASE_RESELECT0x800) |
| 521 | printk("scsi%d : internal_command(" |
| 522 | "%d, %08x, %08x, %d, RECONNECT_NOW\n", hostno, |
| 523 | current_target, current_data, current_bufflen); |
| 524 | #endif |
| 525 | |
| 526 | temp = internal_command (current_target, current_lun, |
| 527 | current_cmnd, current_data, current_bufflen, |
| 528 | RECONNECT_NOW1); |
| 529 | |
| 530 | if (msg_byte(temp)(((temp) >> 8) & 0xff) != DISCONNECT0x04) { |
| 531 | if (done_fn) { |
| 532 | #if (DEBUG & PHASE_RESELECT0x800) |
| 533 | printk("scsi%d : done_fn(%d,%08x)", hostno, |
| 534 | hostno, temp); |
| 535 | #endif |
| 536 | if(!SCint) panic("SCint == NULL in seagate"); |
| 537 | SCtmp = SCint; |
| 538 | SCint = NULL((void *) 0); |
| 539 | SCtmp->result = temp; |
| 540 | done_fn (SCtmp); |
| 541 | } else |
| 542 | printk("done_fn() not defined.\n"); |
| 543 | } |
| 544 | } |
| 545 | } |
| 546 | |
| 547 | /* |
| 548 | * The seagate_st0x_queue_command() function provides a queued interface |
| 549 | * to the seagate SCSI driver. Basically, it just passes control onto the |
| 550 | * seagate_command() function, after fixing it so that the done_fn() |
| 551 | * is set to the one passed to the function. We have to be very careful, |
| 552 | * because there are some commands on some devices that do not disconnect, |
| 553 | * and if we simply call the done_fn when the command is done then another |
| 554 | * command is started and queue_command is called again... We end up |
| 555 | * overflowing the kernel stack, and this tends not to be such a good idea. |
| 556 | */ |
| 557 | |
| 558 | static int recursion_depth = 0; |
| 559 | |
| 560 | int seagate_st0x_queue_command (Scsi_Cmnd * SCpnt, void (*done)(Scsi_Cmnd *)) |
| 561 | { |
| 562 | int result, reconnect; |
| 563 | Scsi_Cmnd * SCtmp; |
| 564 | |
| 565 | done_fn = done; |
| 566 | current_target = SCpnt->target; |
| 567 | current_lun = SCpnt->lun; |
| 568 | current_cmnd = SCpnt->cmnd; |
| 569 | current_data = (unsigned char *) SCpnt->request_buffer; |
| 570 | current_bufflen = SCpnt->request_bufflen; |
| 571 | SCint = SCpnt; |
| 572 | if(recursion_depth) { |
| 573 | return 0; |
| 574 | }; |
| 575 | recursion_depth++; |
| 576 | do{ |
| 577 | #ifdef LINKED |
| 578 | /* |
| 579 | * Set linked command bit in control field of SCSI command. |
| 580 | */ |
| 581 | |
| 582 | current_cmnd[SCpnt->cmd_len] |= 0x01; |
| 583 | if (linked_connected) { |
| 584 | #if (DEBUG & DEBUG_LINKED0x4000) |
| 585 | printk("scsi%d : using linked commands, current I_T_L nexus is ", |
| 586 | hostno); |
| 587 | #endif |
| 588 | if ((linked_target == current_target) && |
| 589 | (linked_lun == current_lun)) { |
| 590 | #if (DEBUG & DEBUG_LINKED0x4000) |
| 591 | printk("correct\n"); |
| 592 | #endif |
| 593 | reconnect = LINKED_RIGHT; |
| 594 | } else { |
| 595 | #if (DEBUG & DEBUG_LINKED0x4000) |
| 596 | printk("incorrect\n"); |
| 597 | #endif |
| 598 | reconnect = LINKED_WRONG; |
| 599 | } |
| 600 | } else |
| 601 | #endif /* LINKED */ |
| 602 | reconnect = CAN_RECONNECT2; |
| 603 | |
| 604 | |
| 605 | |
| 606 | |
| 607 | |
| 608 | result = internal_command (SCint->target, SCint->lun, SCint->cmnd, SCint->request_buffer, |
| 609 | SCint->request_bufflen, |
| 610 | reconnect); |
| 611 | if (msg_byte(result)(((result) >> 8) & 0xff) == DISCONNECT0x04) break; |
| 612 | SCtmp = SCint; |
| 613 | SCint = NULL((void *) 0); |
| 614 | SCtmp->result = result; |
| 615 | done_fn (SCtmp); |
| 616 | } while(SCint); |
| 617 | recursion_depth--; |
| 618 | return 0; |
| 619 | } |
| 620 | |
| 621 | int seagate_st0x_command (Scsi_Cmnd * SCpnt) { |
| 622 | return internal_command (SCpnt->target, SCpnt->lun, SCpnt->cmnd, SCpnt->request_buffer, |
| 623 | SCpnt->request_bufflen, |
| 624 | (int) NO_RECONNECT0); |
| 625 | } |
| 626 | |
| 627 | static int internal_command(unsigned char target, unsigned char lun, const void *cmnd, |
| 628 | void *buff, int bufflen, int reselect) { |
| 629 | int len = 0; |
| 630 | unsigned char *data = NULL((void *) 0); |
| 631 | struct scatterlist *buffer = NULL((void *) 0); |
| 632 | int nobuffs = 0; |
| 633 | int clock; |
| 634 | int temp; |
| 635 | #ifdef SLOW_HANDSHAKE |
| 636 | int borken; /* Does the current target require Very Slow I/O ? */ |
| 637 | #endif |
| 638 | |
| 639 | |
| 640 | #if (DEBUG & PHASE_DATAIN8) || (DEBUG & PHASE_DATOUT) |
| 641 | int transfered = 0; |
| 642 | #endif |
| 643 | |
| 644 | #if (((DEBUG & PHASE_ETC(8 | PHASE_DATA_OUT | 0x20 | 0x40 | 0x80 | 0x100)) == PHASE_ETC(8 | PHASE_DATA_OUT | 0x20 | 0x40 | 0x80 | 0x100)) || (DEBUG & PRINT_COMMAND0x200) || \ |
| 645 | (DEBUG & PHASE_EXIT0x400)) |
| 646 | int i; |
| 647 | #endif |
| 648 | |
| 649 | #if ((DEBUG & PHASE_ETC(8 | PHASE_DATA_OUT | 0x20 | 0x40 | 0x80 | 0x100)) == PHASE_ETC(8 | PHASE_DATA_OUT | 0x20 | 0x40 | 0x80 | 0x100)) |
| 650 | int phase=0, newphase; |
| 651 | #endif |
| 652 | |
| 653 | int done = 0; |
| 654 | unsigned char status = 0; |
| 655 | unsigned char message = 0; |
| 656 | register unsigned char status_read; |
| 657 | |
| 658 | unsigned transfersize = 0, underflow = 0; |
| 659 | |
| 660 | incommand = 0; |
| 661 | st0x_aborted = 0; |
| 662 | |
| 663 | #ifdef SLOW_HANDSHAKE |
| 664 | borken = (int) SCint->device->borken; |
| 665 | #endif |
| 666 | |
| 667 | #if (DEBUG & PRINT_COMMAND0x200) |
| 668 | printk ("scsi%d : target = %d, command = ", hostno, target); |
| 669 | print_command((unsigned char *) cmnd); |
| 670 | printk("\n"); |
| 671 | #endif |
| 672 | |
| 673 | #if (DEBUG & PHASE_RESELECT0x800) |
| 674 | switch (reselect) { |
| 675 | case RECONNECT_NOW1 : |
| 676 | printk("scsi%d : reconnecting\n", hostno); |
| 677 | break; |
| 678 | #ifdef LINKED |
| 679 | case LINKED_RIGHT : |
| 680 | printk("scsi%d : connected, can reconnect\n", hostno); |
| 681 | break; |
| 682 | case LINKED_WRONG : |
| 683 | printk("scsi%d : connected to wrong target, can reconnect\n", |
| 684 | hostno); |
| 685 | break; |
| 686 | #endif |
| 687 | case CAN_RECONNECT2 : |
| 688 | printk("scsi%d : allowed to reconnect\n", hostno); |
| 689 | break; |
| 690 | default : |
| 691 | printk("scsi%d : not allowed to reconnect\n", hostno); |
| 692 | } |
| 693 | #endif |
| 694 | |
| 695 | |
| 696 | if (target == (controller_type == SEAGATE1 ? 7 : 6)) |
| 697 | return DID_BAD_TARGET0x04; |
| 698 | |
| 699 | /* |
| 700 | * We work it differently depending on if this is "the first time," |
| 701 | * or a reconnect. If this is a reselect phase, then SEL will |
| 702 | * be asserted, and we must skip selection / arbitration phases. |
| 703 | */ |
| 704 | |
| 705 | switch (reselect) { |
| 706 | case RECONNECT_NOW1: |
| 707 | #if (DEBUG & PHASE_RESELECT0x800) |
| 708 | printk("scsi%d : phase RESELECT \n", hostno); |
| 709 | #endif |
| 710 | |
| 711 | /* |
| 712 | * At this point, we should find the logical or of our ID and the original |
| 713 | * target's ID on the BUS, with BSY, SEL, and I/O signals asserted. |
| 714 | * |
| 715 | * After ARBITRATION phase is completed, only SEL, BSY, and the |
| 716 | * target ID are asserted. A valid initiator ID is not on the bus |
| 717 | * until IO is asserted, so we must wait for that. |
| 718 | */ |
| 719 | clock = jiffies + 10; |
| 720 | for (;;) { |
| 721 | temp = STATUS(*(volatile unsigned char *) st0x_cr_sr); |
| 722 | if ((temp & STAT_IO0x04) && !(temp & STAT_BSY0x01)) |
| 723 | break; |
| 724 | |
| 725 | if (jiffies > clock) { |
| 726 | #if (DEBUG & PHASE_RESELECT0x800) |
| 727 | printk("scsi%d : RESELECT timed out while waiting for IO .\n", |
| 728 | hostno); |
| 729 | #endif |
| 730 | return (DID_BAD_INTR0x09 << 16); |
| 731 | } |
| 732 | } |
| 733 | |
| 734 | /* |
| 735 | * After I/O is asserted by the target, we can read our ID and its |
| 736 | * ID off of the BUS. |
| 737 | */ |
| 738 | |
| 739 | if (!((temp = DATA(*(volatile unsigned char *) st0x_dr)) & (controller_type == SEAGATE1 ? 0x80 : 0x40))) |
| 740 | { |
| 741 | #if (DEBUG & PHASE_RESELECT0x800) |
| 742 | printk("scsi%d : detected reconnect request to different target.\n" |
| 743 | "\tData bus = %d\n", hostno, temp); |
| 744 | #endif |
| 745 | return (DID_BAD_INTR0x09 << 16); |
| 746 | } |
| 747 | |
| 748 | if (!(temp & (1 << current_target))) |
| 749 | { |
| 750 | printk("scsi%d : Unexpected reselect interrupt. Data bus = %d\n", |
| 751 | hostno, temp); |
| 752 | return (DID_BAD_INTR0x09 << 16); |
| 753 | } |
| 754 | |
| 755 | buffer=current_buffer; |
| 756 | cmnd=current_cmnd; /* WDE add */ |
| 757 | data=current_data; /* WDE add */ |
| 758 | len=current_bufflen; /* WDE add */ |
| 759 | nobuffs=current_nobuffs; |
| 760 | |
| 761 | /* |
| 762 | * We have determined that we have been selected. At this point, |
| 763 | * we must respond to the reselection by asserting BSY ourselves |
| 764 | */ |
| 765 | |
| 766 | #if 1 |
| 767 | CONTROL(*(volatile unsigned char *) st0x_cr_sr) = (BASE_CMD0x20 | CMD_DRVR_ENABLE0x80 | CMD_BSY0x04); |
| 768 | #else |
| 769 | CONTROL(*(volatile unsigned char *) st0x_cr_sr) = (BASE_CMD0x20 | CMD_BSY0x04); |
| 770 | #endif |
| 771 | |
| 772 | /* |
| 773 | * The target will drop SEL, and raise BSY, at which time we must drop |
| 774 | * BSY. |
| 775 | */ |
| 776 | |
| 777 | for (clock = jiffies + 10; (jiffies < clock) && (STATUS(*(volatile unsigned char *) st0x_cr_sr) & STAT_SEL0x20);); |
| 778 | |
| 779 | if (jiffies >= clock) |
| 780 | { |
| 781 | CONTROL(*(volatile unsigned char *) st0x_cr_sr) = (BASE_CMD0x20 | CMD_INTR0x40); |
| 782 | #if (DEBUG & PHASE_RESELECT0x800) |
| 783 | printk("scsi%d : RESELECT timed out while waiting for SEL.\n", |
| 784 | hostno); |
| 785 | #endif |
| 786 | return (DID_BAD_INTR0x09 << 16); |
| 787 | } |
| 788 | |
| 789 | CONTROL(*(volatile unsigned char *) st0x_cr_sr) = BASE_CMD0x20; |
| 790 | |
| 791 | /* |
| 792 | * At this point, we have connected with the target and can get |
| 793 | * on with our lives. |
| 794 | */ |
| 795 | break; |
| 796 | case CAN_RECONNECT2: |
| 797 | |
| 798 | #ifdef LINKED |
| 799 | /* |
| 800 | * This is a bletcherous hack, just as bad as the Unix #! interpreter stuff. |
| 801 | * If it turns out we are using the wrong I_T_L nexus, the easiest way to deal |
| 802 | * with it is to go into our INFORMATION TRANSFER PHASE code, send a ABORT |
| 803 | * message on MESSAGE OUT phase, and then loop back to here. |
| 804 | */ |
| 805 | |
| 806 | connect_loop : |
| 807 | |
| 808 | #endif |
| 809 | |
| 810 | #if (DEBUG & PHASE_BUS_FREE1) |
| 811 | printk ("scsi%d : phase = BUS FREE \n", hostno); |
| 812 | #endif |
| 813 | |
| 814 | /* |
| 815 | * BUS FREE PHASE |
| 816 | * |
| 817 | * On entry, we make sure that the BUS is in a BUS FREE |
| 818 | * phase, by insuring that both BSY and SEL are low for |
| 819 | * at least one bus settle delay. Several reads help |
| 820 | * eliminate wire glitch. |
| 821 | */ |
| 822 | |
| 823 | clock = jiffies + ST0X_BUS_FREE_DELAY25; |
Value stored to 'clock' is never read | |
| 824 | |
| 825 | #if !defined (ARBITRATE) |
| 826 | while (((STATUS(*(volatile unsigned char *) st0x_cr_sr) | STATUS(*(volatile unsigned char *) st0x_cr_sr) | STATUS(*(volatile unsigned char *) st0x_cr_sr)) & |
| 827 | (STAT_BSY0x01 | STAT_SEL0x20)) && |
| 828 | (!st0x_aborted) && (jiffies < clock)); |
| 829 | |
| 830 | if (jiffies > clock) |
| 831 | return retcode(DID_BUS_BUSY)(((0x02) << 16) | (message << 8) | status); |
| 832 | else if (st0x_aborted) |
| 833 | return retcode(st0x_aborted)(((st0x_aborted) << 16) | (message << 8) | status ); |
| 834 | #endif |
| 835 | |
| 836 | #if (DEBUG & PHASE_SELECTION4) |
| 837 | printk("scsi%d : phase = SELECTION\n", hostno); |
| 838 | #endif |
| 839 | |
| 840 | clock = jiffies + ST0X_SELECTION_DELAY25; |
| 841 | |
| 842 | /* |
| 843 | * Arbitration/selection procedure : |
| 844 | * 1. Disable drivers |
| 845 | * 2. Write HOST adapter address bit |
| 846 | * 3. Set start arbitration. |
| 847 | * 4. We get either ARBITRATION COMPLETE or SELECT at this |
| 848 | * point. |
| 849 | * 5. OR our ID and targets on bus. |
| 850 | * 6. Enable SCSI drivers and asserted SEL and ATTN |
| 851 | */ |
| 852 | |
| 853 | #if defined(ARBITRATE) |
| 854 | cli()__asm__ __volatile__ ("cli": : :"memory"); |
| 855 | CONTROL(*(volatile unsigned char *) st0x_cr_sr) = 0; |
| 856 | DATA(*(volatile unsigned char *) st0x_dr) = (controller_type == SEAGATE1) ? 0x80 : 0x40; |
| 857 | CONTROL(*(volatile unsigned char *) st0x_cr_sr) = CMD_START_ARB0x10; |
| 858 | sti()__asm__ __volatile__ ("sti": : :"memory"); |
| 859 | while (!((status_read = STATUS(*(volatile unsigned char *) st0x_cr_sr)) & (STAT_ARB_CMPL0x80 | STAT_SEL0x20)) && |
| 860 | (jiffies < clock) && !st0x_aborted); |
| 861 | |
| 862 | if (!(status_read & STAT_ARB_CMPL0x80)) { |
| 863 | #if (DEBUG & PHASE_SELECTION4) |
| 864 | if (status_read & STAT_SEL0x20) |
| 865 | printk("scsi%d : arbitration lost\n", hostno); |
| 866 | else |
| 867 | printk("scsi%d : arbitration timeout.\n", hostno); |
| 868 | #endif |
| 869 | CONTROL(*(volatile unsigned char *) st0x_cr_sr) = BASE_CMD0x20; |
| 870 | return retcode(DID_NO_CONNECT)(((0x01) << 16) | (message << 8) | status); |
| 871 | }; |
| 872 | |
| 873 | #if (DEBUG & PHASE_SELECTION4) |
| 874 | printk("scsi%d : arbitration complete\n", hostno); |
| 875 | #endif |
| 876 | #endif |
| 877 | |
| 878 | |
| 879 | /* |
| 880 | * When the SCSI device decides that we're gawking at it, it will |
| 881 | * respond by asserting BUSY on the bus. |
| 882 | * |
| 883 | * Note : the Seagate ST-01/02 product manual says that we should |
| 884 | * twiddle the DATA register before the control register. However, |
| 885 | * this does not work reliably so we do it the other way around. |
| 886 | * |
| 887 | * Probably could be a problem with arbitration too, we really should |
| 888 | * try this with a SCSI protocol or logic analyzer to see what is |
| 889 | * going on. |
| 890 | */ |
| 891 | cli()__asm__ __volatile__ ("cli": : :"memory"); |
| 892 | DATA(*(volatile unsigned char *) st0x_dr) = (unsigned char) ((1 << target) | (controller_type == SEAGATE1 ? 0x80 : 0x40)); |
| 893 | CONTROL(*(volatile unsigned char *) st0x_cr_sr) = BASE_CMD0x20 | CMD_DRVR_ENABLE0x80 | CMD_SEL0x02 | |
| 894 | (reselect ? CMD_ATTN0x08 : 0); |
| 895 | sti()__asm__ __volatile__ ("sti": : :"memory"); |
| 896 | while (!((status_read = STATUS(*(volatile unsigned char *) st0x_cr_sr)) & STAT_BSY0x01) && |
| 897 | (jiffies < clock) && !st0x_aborted) |
| 898 | |
| 899 | #if 0 && (DEBUG & PHASE_SELECTION4) |
| 900 | { |
| 901 | temp = clock - jiffies; |
| 902 | |
| 903 | if (!(jiffies % 5)) |
| 904 | printk("seagate_st0x_timeout : %d \r",temp); |
| 905 | |
| 906 | } |
| 907 | printk("Done. \n"); |
| 908 | printk("scsi%d : status = %02x, seagate_st0x_timeout = %d, aborted = %02x \n", |
| 909 | hostno, status_read, temp, st0x_aborted); |
| 910 | #else |
| 911 | ; |
| 912 | #endif |
| 913 | |
| 914 | |
| 915 | if ((jiffies >= clock) && !(status_read & STAT_BSY0x01)) |
| 916 | { |
| 917 | #if (DEBUG & PHASE_SELECTION4) |
| 918 | printk ("scsi%d : NO CONNECT with target %d, status = %x \n", |
| 919 | hostno, target, STATUS(*(volatile unsigned char *) st0x_cr_sr)); |
| 920 | #endif |
| 921 | return retcode(DID_NO_CONNECT)(((0x01) << 16) | (message << 8) | status); |
| 922 | } |
| 923 | |
| 924 | /* |
| 925 | * If we have been aborted, and we have a command in progress, IE the |
| 926 | * target still has BSY asserted, then we will reset the bus, and |
| 927 | * notify the midlevel driver to expect sense. |
| 928 | */ |
| 929 | |
| 930 | if (st0x_aborted) { |
| 931 | CONTROL(*(volatile unsigned char *) st0x_cr_sr) = BASE_CMD0x20; |
| 932 | if (STATUS(*(volatile unsigned char *) st0x_cr_sr) & STAT_BSY0x01) { |
| 933 | printk("scsi%d : BST asserted after we've been aborted.\n", |
| 934 | hostno); |
| 935 | seagate_st0x_reset(NULL((void *) 0), 0); |
| 936 | return retcode(DID_RESET)(((0x08) << 16) | (message << 8) | status); |
| 937 | } |
| 938 | return retcode(st0x_aborted)(((st0x_aborted) << 16) | (message << 8) | status ); |
| 939 | } |
| 940 | |
| 941 | /* Establish current pointers. Take into account scatter / gather */ |
| 942 | |
| 943 | if ((nobuffs = SCint->use_sg)) { |
| 944 | #if (DEBUG & DEBUG_SG0x2000) |
| 945 | { |
| 946 | int i; |
| 947 | printk("scsi%d : scatter gather requested, using %d buffers.\n", |
| 948 | hostno, nobuffs); |
| 949 | for (i = 0; i < nobuffs; ++i) |
| 950 | printk("scsi%d : buffer %d address = %08x length = %d\n", |
| 951 | hostno, i, buffer[i].address, buffer[i].length); |
| 952 | } |
| 953 | #endif |
| 954 | |
| 955 | buffer = (struct scatterlist *) SCint->buffer; |
| 956 | len = buffer->length; |
| 957 | data = (unsigned char *) buffer->address; |
| 958 | } else { |
| 959 | #if (DEBUG & DEBUG_SG0x2000) |
| 960 | printk("scsi%d : scatter gather not requested.\n", hostno); |
| 961 | #endif |
| 962 | buffer = NULL((void *) 0); |
| 963 | len = SCint->request_bufflen; |
| 964 | data = (unsigned char *) SCint->request_buffer; |
| 965 | } |
| 966 | |
| 967 | #if (DEBUG & (PHASE_DATAIN8 | PHASE_DATAOUT0x10)) |
| 968 | printk("scsi%d : len = %d\n", hostno, len); |
| 969 | #endif |
| 970 | |
| 971 | break; |
| 972 | #ifdef LINKED |
| 973 | case LINKED_RIGHT: |
| 974 | break; |
| 975 | case LINKED_WRONG: |
| 976 | break; |
| 977 | #endif |
| 978 | } |
| 979 | |
| 980 | /* |
| 981 | * There are several conditions under which we wish to send a message : |
| 982 | * 1. When we are allowing disconnect / reconnect, and need to establish |
| 983 | * the I_T_L nexus via an IDENTIFY with the DiscPriv bit set. |
| 984 | * |
| 985 | * 2. When we are doing linked commands, are have the wrong I_T_L nexus |
| 986 | * established and want to send an ABORT message. |
| 987 | */ |
| 988 | |
| 989 | |
| 990 | CONTROL(*(volatile unsigned char *) st0x_cr_sr) = BASE_CMD0x20 | CMD_DRVR_ENABLE0x80 | |
| 991 | (((reselect == CAN_RECONNECT2) |
| 992 | #ifdef LINKED |
| 993 | || (reselect == LINKED_WRONG) |
| 994 | #endif |
| 995 | ) ? CMD_ATTN0x08 : 0) ; |
| 996 | |
| 997 | /* |
| 998 | * INFORMATION TRANSFER PHASE |
| 999 | * |
| 1000 | * The nasty looking read / write inline assembler loops we use for |
| 1001 | * DATAIN and DATAOUT phases are approximately 4-5 times as fast as |
| 1002 | * the 'C' versions - since we're moving 1024 bytes of data, this |
| 1003 | * really adds up. |
| 1004 | */ |
| 1005 | |
| 1006 | #if ((DEBUG & PHASE_ETC(8 | PHASE_DATA_OUT | 0x20 | 0x40 | 0x80 | 0x100)) == PHASE_ETC(8 | PHASE_DATA_OUT | 0x20 | 0x40 | 0x80 | 0x100)) |
| 1007 | printk("scsi%d : phase = INFORMATION TRANSFER\n", hostno); |
| 1008 | #endif |
| 1009 | |
| 1010 | incommand = 1; |
| 1011 | transfersize = SCint->transfersize; |
| 1012 | underflow = SCint->underflow; |
| 1013 | |
| 1014 | |
| 1015 | /* |
| 1016 | * Now, we poll the device for status information, |
| 1017 | * and handle any requests it makes. Note that since we are unsure of |
| 1018 | * how much data will be flowing across the system, etc and cannot |
| 1019 | * make reasonable timeouts, that we will instead have the midlevel |
| 1020 | * driver handle any timeouts that occur in this phase. |
| 1021 | */ |
| 1022 | |
| 1023 | while (((status_read = STATUS(*(volatile unsigned char *) st0x_cr_sr)) & STAT_BSY0x01) && !st0x_aborted && !done) |
| 1024 | { |
| 1025 | #ifdef PARITY |
| 1026 | if (status_read & STAT_PARITY0x40) |
| 1027 | { |
| 1028 | printk("scsi%d : got parity error\n", hostno); |
| 1029 | st0x_aborted = DID_PARITY0x06; |
| 1030 | } |
| 1031 | #endif |
| 1032 | |
| 1033 | if (status_read & STAT_REQ0x10) |
| 1034 | { |
| 1035 | #if ((DEBUG & PHASE_ETC(8 | PHASE_DATA_OUT | 0x20 | 0x40 | 0x80 | 0x100)) == PHASE_ETC(8 | PHASE_DATA_OUT | 0x20 | 0x40 | 0x80 | 0x100)) |
| 1036 | if ((newphase = (status_read & REQ_MASK(0x08 | 0x04 | 0x02))) != phase) |
| 1037 | { |
| 1038 | phase = newphase; |
| 1039 | switch (phase) |
| 1040 | { |
| 1041 | case REQ_DATAOUT0: |
| 1042 | printk("scsi%d : phase = DATA OUT\n", |
| 1043 | hostno); |
| 1044 | break; |
| 1045 | case REQ_DATAIN0x04 : |
| 1046 | printk("scsi%d : phase = DATA IN\n", |
| 1047 | hostno); |
| 1048 | break; |
| 1049 | case REQ_CMDOUT0x08 : |
| 1050 | printk("scsi%d : phase = COMMAND OUT\n", |
| 1051 | hostno); |
| 1052 | break; |
| 1053 | case REQ_STATIN(0x08 | 0x04) : |
| 1054 | printk("scsi%d : phase = STATUS IN\n", |
| 1055 | hostno); |
| 1056 | break; |
| 1057 | case REQ_MSGOUT(0x02 | 0x08) : |
| 1058 | printk("scsi%d : phase = MESSAGE OUT\n", |
| 1059 | hostno); |
| 1060 | break; |
| 1061 | case REQ_MSGIN(0x02 | 0x08 | 0x04) : |
| 1062 | printk("scsi%d : phase = MESSAGE IN\n", |
| 1063 | hostno); |
| 1064 | break; |
| 1065 | default : |
| 1066 | printk("scsi%d : phase = UNKNOWN\n", |
| 1067 | hostno); |
| 1068 | st0x_aborted = DID_ERROR0x07; |
| 1069 | } |
| 1070 | } |
| 1071 | #endif |
| 1072 | switch (status_read & REQ_MASK(0x08 | 0x04 | 0x02)) |
| 1073 | { |
| 1074 | case REQ_DATAOUT0 : |
| 1075 | /* |
| 1076 | * If we are in fast mode, then we simply splat the data out |
| 1077 | * in word-sized chunks as fast as we can. |
| 1078 | */ |
| 1079 | |
| 1080 | #ifdef FAST |
| 1081 | if (!len) { |
| 1082 | #if 0 |
| 1083 | printk("scsi%d: underflow to target %d lun %d \n", |
| 1084 | hostno, target, lun); |
| 1085 | st0x_aborted = DID_ERROR0x07; |
| 1086 | fast = 0; |
| 1087 | #endif |
| 1088 | break; |
| 1089 | } |
| 1090 | |
| 1091 | if (fast && transfersize && !(len % transfersize) && (len >= transfersize) |
| 1092 | #ifdef FAST32 |
| 1093 | && !(transfersize % 4) |
| 1094 | #endif |
| 1095 | ) { |
| 1096 | #if (DEBUG & DEBUG_FAST0x1000) |
| 1097 | printk("scsi%d : FAST transfer, underflow = %d, transfersize = %d\n" |
| 1098 | " len = %d, data = %08x\n", hostno, SCint->underflow, |
| 1099 | SCint->transfersize, len, data); |
| 1100 | #endif |
| 1101 | |
| 1102 | { |
| 1103 | #ifdef FAST32 |
| 1104 | unsigned int *iop = phys_to_virt (st0x_dr); |
| 1105 | const unsigned int *dp = (unsigned int *) data; |
| 1106 | int xferlen = transfersize >> 2; |
| 1107 | #else |
| 1108 | unsigned char *iop = phys_to_virt (st0x_dr); |
| 1109 | const unsigned char *dp = data; |
| 1110 | int xferlen = transfersize; |
| 1111 | #endif |
| 1112 | for (; xferlen; --xferlen) |
| 1113 | *iop = *dp++; |
| 1114 | } |
| 1115 | |
| 1116 | len -= transfersize; |
| 1117 | data += transfersize; |
| 1118 | |
| 1119 | #if (DEBUG & DEBUG_FAST0x1000) |
| 1120 | printk("scsi%d : FAST transfer complete len = %d data = %08x\n", |
| 1121 | hostno, len, data); |
| 1122 | #endif |
| 1123 | |
| 1124 | |
| 1125 | } else |
| 1126 | #endif |
| 1127 | |
| 1128 | { |
| 1129 | /* |
| 1130 | * We loop as long as we are in a data out phase, there is data to send, |
| 1131 | * and BSY is still active. |
| 1132 | */ |
| 1133 | |
| 1134 | while (len) |
| 1135 | { |
| 1136 | unsigned char stat; |
| 1137 | |
| 1138 | stat = STATUS(*(volatile unsigned char *) st0x_cr_sr); |
| 1139 | if (!(stat & STAT_BSY0x01) || ((stat & REQ_MASK(0x08 | 0x04 | 0x02)) != REQ_DATAOUT0)) |
| 1140 | break; |
| 1141 | if (stat & STAT_REQ0x10) |
| 1142 | { |
| 1143 | WRITE_DATA (*data++){ ((*(volatile unsigned char *) (st0x_dr)) = ((*data++))); }; |
| 1144 | --len; |
| 1145 | } |
| 1146 | } |
| 1147 | } |
| 1148 | |
| 1149 | if (!len && nobuffs) { |
| 1150 | --nobuffs; |
| 1151 | ++buffer; |
| 1152 | len = buffer->length; |
| 1153 | data = (unsigned char *) buffer->address; |
| 1154 | #if (DEBUG & DEBUG_SG0x2000) |
| 1155 | printk("scsi%d : next scatter-gather buffer len = %d address = %08x\n", |
| 1156 | hostno, len, data); |
| 1157 | #endif |
| 1158 | } |
| 1159 | break; |
| 1160 | |
| 1161 | case REQ_DATAIN0x04 : |
| 1162 | #ifdef SLOW_HANDSHAKE |
| 1163 | if (borken) { |
| 1164 | #if (DEBUG & (PHASE_DATAIN8)) |
| 1165 | transfered += len; |
| 1166 | #endif |
| 1167 | for (; len && (STATUS(*(volatile unsigned char *) st0x_cr_sr) & (REQ_MASK(0x08 | 0x04 | 0x02) | STAT_REQ0x10)) == (REQ_DATAIN0x04 | |
| 1168 | STAT_REQ0x10); --len) { |
| 1169 | *data++ = DATA(*(volatile unsigned char *) st0x_dr); |
| 1170 | borken_wait(); |
| 1171 | } |
| 1172 | #if (DEBUG & (PHASE_DATAIN8)) |
| 1173 | transfered -= len; |
| 1174 | #endif |
| 1175 | } else |
| 1176 | #endif |
| 1177 | #ifdef FAST |
| 1178 | if (fast && transfersize && !(len % transfersize) && (len >= transfersize) |
| 1179 | #ifdef FAST32 |
| 1180 | && !(transfersize % 4) |
| 1181 | #endif |
| 1182 | ) { |
| 1183 | #if (DEBUG & DEBUG_FAST0x1000) |
| 1184 | printk("scsi%d : FAST transfer, underflow = %d, transfersize = %d\n" |
| 1185 | " len = %d, data = %08x\n", hostno, SCint->underflow, |
| 1186 | SCint->transfersize, len, data); |
| 1187 | #endif |
| 1188 | { |
| 1189 | #ifdef FAST32 |
| 1190 | const unsigned int *iop = phys_to_virt (st0x_dr); |
| 1191 | unsigned int *dp = (unsigned int *) data; |
| 1192 | int xferlen = len >> 2; |
| 1193 | #else |
| 1194 | const unsigned char *iop = phys_to_virt (st0x_dr); |
| 1195 | unsigned char *dp = data; |
| 1196 | int xferlen = len; |
| 1197 | #endif |
| 1198 | for (; xferlen; --xferlen) |
| 1199 | *dp++ = *iop; |
| 1200 | } |
| 1201 | |
| 1202 | len -= transfersize; |
| 1203 | data += transfersize; |
| 1204 | |
| 1205 | #if (DEBUG & PHASE_DATAIN8) |
| 1206 | printk("scsi%d: transfered += %d\n", hostno, transfersize); |
| 1207 | transfered += transfersize; |
| 1208 | #endif |
| 1209 | |
| 1210 | #if (DEBUG & DEBUG_FAST0x1000) |
| 1211 | printk("scsi%d : FAST transfer complete len = %d data = %08x\n", |
| 1212 | hostno, len, data); |
| 1213 | #endif |
| 1214 | |
| 1215 | } else |
| 1216 | #endif |
| 1217 | { |
| 1218 | |
| 1219 | #if (DEBUG & PHASE_DATAIN8) |
| 1220 | printk("scsi%d: transfered += %d\n", hostno, len); |
| 1221 | transfered += len; /* Assume we'll transfer it all, then |
| 1222 | subtract what we *didn't* transfer */ |
| 1223 | #endif |
| 1224 | |
| 1225 | /* |
| 1226 | * We loop as long as we are in a data in phase, there is room to read, |
| 1227 | * and BSY is still active |
| 1228 | */ |
| 1229 | |
| 1230 | while (len) |
| 1231 | { |
| 1232 | unsigned char stat; |
| 1233 | |
| 1234 | stat = STATUS(*(volatile unsigned char *) st0x_cr_sr); |
| 1235 | if (!(stat & STAT_BSY0x01) || ((stat & REQ_MASK(0x08 | 0x04 | 0x02)) != REQ_DATAIN0x04)) |
| 1236 | break; |
| 1237 | if (stat & STAT_REQ0x10) |
| 1238 | { |
| 1239 | *data++ = DATA(*(volatile unsigned char *) st0x_dr); |
| 1240 | --len; |
| 1241 | } |
| 1242 | } |
| 1243 | |
| 1244 | #if (DEBUG & PHASE_DATAIN8) |
| 1245 | printk("scsi%d: transfered -= %d\n", hostno, len); |
| 1246 | transfered -= len; /* Since we assumed all of Len got |
| 1247 | * transfered, correct our mistake */ |
| 1248 | #endif |
| 1249 | } |
| 1250 | |
| 1251 | if (!len && nobuffs) { |
| 1252 | --nobuffs; |
| 1253 | ++buffer; |
| 1254 | len = buffer->length; |
| 1255 | data = (unsigned char *) buffer->address; |
| 1256 | #if (DEBUG & DEBUG_SG0x2000) |
| 1257 | printk("scsi%d : next scatter-gather buffer len = %d address = %08x\n", |
| 1258 | hostno, len, data); |
| 1259 | #endif |
| 1260 | } |
| 1261 | |
| 1262 | break; |
| 1263 | |
| 1264 | case REQ_CMDOUT0x08 : |
| 1265 | while (((status_read = STATUS(*(volatile unsigned char *) st0x_cr_sr)) & STAT_BSY0x01) && |
| 1266 | ((status_read & REQ_MASK(0x08 | 0x04 | 0x02)) == REQ_CMDOUT0x08)) |
| 1267 | if (status_read & STAT_REQ0x10) { |
| 1268 | DATA(*(volatile unsigned char *) st0x_dr) = *(const unsigned char *) cmnd; |
| 1269 | cmnd = 1+(const unsigned char *) cmnd; |
| 1270 | #ifdef SLOW_HANDSHAKE |
| 1271 | if (borken) |
| 1272 | borken_wait(); |
| 1273 | #endif |
| 1274 | } |
| 1275 | break; |
| 1276 | |
| 1277 | case REQ_STATIN(0x08 | 0x04) : |
| 1278 | status = DATA(*(volatile unsigned char *) st0x_dr); |
| 1279 | break; |
| 1280 | |
| 1281 | case REQ_MSGOUT(0x02 | 0x08) : |
| 1282 | /* |
| 1283 | * We can only have sent a MSG OUT if we requested to do this |
| 1284 | * by raising ATTN. So, we must drop ATTN. |
| 1285 | */ |
| 1286 | |
| 1287 | CONTROL(*(volatile unsigned char *) st0x_cr_sr) = BASE_CMD0x20 | CMD_DRVR_ENABLE0x80; |
| 1288 | /* |
| 1289 | * If we are reconnecting, then we must send an IDENTIFY message in |
| 1290 | * response to MSGOUT. |
| 1291 | */ |
| 1292 | switch (reselect) { |
| 1293 | case CAN_RECONNECT2: |
| 1294 | DATA(*(volatile unsigned char *) st0x_dr) = IDENTIFY(1, lun)(0x80 | ((1) ? 0x40 : 0) | ((lun) & 0x07)); |
| 1295 | |
| 1296 | #if (DEBUG & (PHASE_RESELECT0x800 | PHASE_MSGOUT0x80)) |
| 1297 | printk("scsi%d : sent IDENTIFY message.\n", hostno); |
| 1298 | #endif |
| 1299 | break; |
| 1300 | #ifdef LINKED |
| 1301 | case LINKED_WRONG: |
| 1302 | DATA(*(volatile unsigned char *) st0x_dr) = ABORT0x06; |
| 1303 | linked_connected = 0; |
| 1304 | reselect = CAN_RECONNECT2; |
| 1305 | goto connect_loop; |
| 1306 | #if (DEBUG & (PHASE_MSGOUT0x80 | DEBUG_LINKED0x4000)) |
| 1307 | printk("scsi%d : sent ABORT message to cancel incorrect I_T_L nexus.\n", hostno); |
| 1308 | #endif |
| 1309 | #endif /* LINKED */ |
| 1310 | #if (DEBUG & DEBUG_LINKED0x4000) |
| 1311 | printk("correct\n"); |
| 1312 | #endif |
| 1313 | default: |
| 1314 | DATA(*(volatile unsigned char *) st0x_dr) = NOP0x08; |
| 1315 | printk("scsi%d : target %d requested MSGOUT, sent NOP message.\n", hostno, target); |
| 1316 | } |
| 1317 | break; |
| 1318 | |
| 1319 | case REQ_MSGIN(0x02 | 0x08 | 0x04) : |
| 1320 | switch (message = DATA(*(volatile unsigned char *) st0x_dr)) { |
| 1321 | case DISCONNECT0x04 : |
| 1322 | should_reconnect = 1; |
| 1323 | current_data = data; /* WDE add */ |
| 1324 | current_buffer = buffer; |
| 1325 | current_bufflen = len; /* WDE add */ |
| 1326 | current_nobuffs = nobuffs; |
| 1327 | #ifdef LINKED |
| 1328 | linked_connected = 0; |
| 1329 | #endif |
| 1330 | done=1; |
| 1331 | #if (DEBUG & (PHASE_RESELECT0x800 | PHASE_MSGIN0x40)) |
| 1332 | printk("scsi%d : disconnected.\n", hostno); |
| 1333 | #endif |
| 1334 | break; |
| 1335 | |
| 1336 | #ifdef LINKED |
| 1337 | case LINKED_CMD_COMPLETE0x0a: |
| 1338 | case LINKED_FLG_CMD_COMPLETE0x0b: |
| 1339 | #endif |
| 1340 | case COMMAND_COMPLETE0x00 : |
| 1341 | /* |
| 1342 | * Note : we should check for underflow here. |
| 1343 | */ |
| 1344 | #if (DEBUG & PHASE_MSGIN0x40) |
| 1345 | printk("scsi%d : command complete.\n", hostno); |
| 1346 | #endif |
| 1347 | done = 1; |
| 1348 | break; |
| 1349 | case ABORT0x06 : |
| 1350 | #if (DEBUG & PHASE_MSGIN0x40) |
| 1351 | printk("scsi%d : abort message.\n", hostno); |
| 1352 | #endif |
| 1353 | done=1; |
| 1354 | break; |
| 1355 | case SAVE_POINTERS0x02 : |
| 1356 | current_buffer = buffer; |
| 1357 | current_bufflen = len; /* WDE add */ |
| 1358 | current_data = data; /* WDE mod */ |
| 1359 | current_nobuffs = nobuffs; |
| 1360 | #if (DEBUG & PHASE_MSGIN0x40) |
| 1361 | printk("scsi%d : pointers saved.\n", hostno); |
| 1362 | #endif |
| 1363 | break; |
| 1364 | case RESTORE_POINTERS0x03: |
| 1365 | buffer=current_buffer; |
| 1366 | cmnd=current_cmnd; |
| 1367 | data=current_data; /* WDE mod */ |
| 1368 | len=current_bufflen; |
| 1369 | nobuffs=current_nobuffs; |
| 1370 | #if (DEBUG & PHASE_MSGIN0x40) |
| 1371 | printk("scsi%d : pointers restored.\n", hostno); |
| 1372 | #endif |
| 1373 | break; |
| 1374 | default: |
| 1375 | |
| 1376 | /* |
| 1377 | * IDENTIFY distinguishes itself from the other messages by setting the |
| 1378 | * high byte. |
| 1379 | * |
| 1380 | * Note : we need to handle at least one outstanding command per LUN, |
| 1381 | * and need to hash the SCSI command for that I_T_L nexus based on the |
| 1382 | * known ID (at this point) and LUN. |
| 1383 | */ |
| 1384 | |
| 1385 | if (message & 0x80) { |
| 1386 | #if (DEBUG & PHASE_MSGIN0x40) |
| 1387 | printk("scsi%d : IDENTIFY message received from id %d, lun %d.\n", |
| 1388 | hostno, target, message & 7); |
| 1389 | #endif |
| 1390 | } else { |
| 1391 | |
| 1392 | /* |
| 1393 | * We should go into a MESSAGE OUT phase, and send a MESSAGE_REJECT |
| 1394 | * if we run into a message that we don't like. The seagate driver |
| 1395 | * needs some serious restructuring first though. |
| 1396 | */ |
| 1397 | |
| 1398 | #if (DEBUG & PHASE_MSGIN0x40) |
| 1399 | printk("scsi%d : unknown message %d from target %d.\n", |
| 1400 | hostno, message, target); |
| 1401 | #endif |
| 1402 | } |
| 1403 | } |
| 1404 | break; |
| 1405 | |
| 1406 | default : |
| 1407 | printk("scsi%d : unknown phase.\n", hostno); |
| 1408 | st0x_aborted = DID_ERROR0x07; |
| 1409 | } |
| 1410 | |
| 1411 | #ifdef SLOW_HANDSHAKE |
| 1412 | /* |
| 1413 | * I really don't care to deal with borken devices in each single |
| 1414 | * byte transfer case (ie, message in, message out, status), so |
| 1415 | * I'll do the wait here if necessary. |
| 1416 | */ |
| 1417 | if (borken) |
| 1418 | borken_wait(); |
| 1419 | #endif |
| 1420 | |
| 1421 | } /* if ends */ |
| 1422 | } /* while ends */ |
| 1423 | |
| 1424 | #if (DEBUG & (PHASE_DATAIN8 | PHASE_DATAOUT0x10 | PHASE_EXIT0x400)) |
| 1425 | printk("scsi%d : Transfered %d bytes\n", hostno, transfered); |
| 1426 | #endif |
| 1427 | |
| 1428 | #if (DEBUG & PHASE_EXIT0x400) |
| 1429 | #if 0 /* Doesn't work for scatter / gather */ |
| 1430 | printk("Buffer : \n"); |
| 1431 | for (i = 0; i < 20; ++i) |
| 1432 | printk ("%02x ", ((unsigned char *) data)[i]); /* WDE mod */ |
| 1433 | printk("\n"); |
| 1434 | #endif |
| 1435 | printk("scsi%d : status = ", hostno); |
| 1436 | print_status(status); |
| 1437 | printk("message = %02x\n", message); |
| 1438 | #endif |
| 1439 | |
| 1440 | |
| 1441 | /* We shouldn't reach this until *after* BSY has been deasserted */ |
| 1442 | #ifdef notyet |
| 1443 | if (st0x_aborted) { |
| 1444 | if (STATUS(*(volatile unsigned char *) st0x_cr_sr) & STAT_BSY0x01) { |
| 1445 | seagate_st0x_reset(NULL((void *) 0)); |
| 1446 | st0x_aborted = DID_RESET0x08; |
| 1447 | } |
| 1448 | abort_confirm = 1; |
| 1449 | } |
| 1450 | #endif |
| 1451 | |
| 1452 | #ifdef LINKED |
| 1453 | else { |
| 1454 | /* |
| 1455 | * Fix the message byte so that unsuspecting high level drivers don't |
| 1456 | * puke when they see a LINKED COMMAND message in place of the COMMAND |
| 1457 | * COMPLETE they may be expecting. Shouldn't be necessary, but it's |
| 1458 | * better to be on the safe side. |
| 1459 | * |
| 1460 | * A non LINKED* message byte will indicate that the command completed, |
| 1461 | * and we are now disconnected. |
| 1462 | */ |
| 1463 | |
| 1464 | switch (message) { |
| 1465 | case LINKED_CMD_COMPLETE0x0a : |
| 1466 | case LINKED_FLG_CMD_COMPLETE0x0b : |
| 1467 | message = COMMAND_COMPLETE0x00; |
| 1468 | linked_target = current_target; |
| 1469 | linked_lun = current_lun; |
| 1470 | linked_connected = 1; |
| 1471 | #if (DEBUG & DEBUG_LINKED0x4000) |
| 1472 | printk("scsi%d : keeping I_T_L nexus established for linked command.\n", |
| 1473 | hostno); |
| 1474 | #endif |
| 1475 | /* |
| 1476 | * We also will need to adjust status to accommodate intermediate conditions. |
| 1477 | */ |
| 1478 | if ((status == INTERMEDIATE_GOOD0x08) || |
| 1479 | (status == INTERMEDIATE_C_GOOD0x0a)) |
| 1480 | status = GOOD0x00; |
| 1481 | |
| 1482 | break; |
| 1483 | /* |
| 1484 | * We should also handle what are "normal" termination messages |
| 1485 | * here (ABORT, BUS_DEVICE_RESET?, and COMMAND_COMPLETE individually, |
| 1486 | * and flake if things aren't right. |
| 1487 | */ |
| 1488 | |
| 1489 | default : |
| 1490 | #if (DEBUG & DEBUG_LINKED0x4000) |
| 1491 | printk("scsi%d : closing I_T_L nexus.\n", hostno); |
| 1492 | #endif |
| 1493 | linked_connected = 0; |
| 1494 | } |
| 1495 | } |
| 1496 | #endif /* LINKED */ |
| 1497 | |
| 1498 | |
| 1499 | |
| 1500 | |
| 1501 | if (should_reconnect) { |
| 1502 | #if (DEBUG & PHASE_RESELECT0x800) |
| 1503 | printk("scsi%d : exiting seagate_st0x_queue_command() with reconnect enabled.\n", |
| 1504 | hostno); |
| 1505 | #endif |
| 1506 | CONTROL(*(volatile unsigned char *) st0x_cr_sr) = BASE_CMD0x20 | CMD_INTR0x40 ; |
| 1507 | } else |
| 1508 | CONTROL(*(volatile unsigned char *) st0x_cr_sr) = BASE_CMD0x20; |
| 1509 | |
| 1510 | return retcode (st0x_aborted)(((st0x_aborted) << 16) | (message << 8) | status ); |
| 1511 | } |
| 1512 | |
| 1513 | int seagate_st0x_abort (Scsi_Cmnd * SCpnt) |
| 1514 | { |
| 1515 | st0x_aborted = DID_ABORT0x05; |
| 1516 | |
| 1517 | return SCSI_ABORT_PENDING2; |
| 1518 | } |
| 1519 | |
| 1520 | /* |
| 1521 | the seagate_st0x_reset function resets the SCSI bus |
| 1522 | */ |
| 1523 | |
| 1524 | int seagate_st0x_reset (Scsi_Cmnd * SCpnt, unsigned int reset_flags) |
| 1525 | { |
| 1526 | unsigned clock; |
| 1527 | /* |
| 1528 | No timeouts - this command is going to fail because |
| 1529 | it was reset. |
| 1530 | */ |
| 1531 | |
| 1532 | #ifdef DEBUG |
| 1533 | printk("In seagate_st0x_reset()\n"); |
| 1534 | #endif |
| 1535 | |
| 1536 | |
| 1537 | /* assert RESET signal on SCSI bus. */ |
| 1538 | |
| 1539 | CONTROL(*(volatile unsigned char *) st0x_cr_sr) = BASE_CMD0x20 | CMD_RST0x01; |
| 1540 | clock=jiffies+2; |
| 1541 | |
| 1542 | |
| 1543 | /* Wait. */ |
| 1544 | |
| 1545 | while (jiffies < clock); |
| 1546 | |
| 1547 | CONTROL(*(volatile unsigned char *) st0x_cr_sr) = BASE_CMD0x20; |
| 1548 | |
| 1549 | st0x_aborted = DID_RESET0x08; |
| 1550 | |
| 1551 | #ifdef DEBUG |
| 1552 | printk("SCSI bus reset.\n"); |
| 1553 | #endif |
| 1554 | return SCSI_RESET_WAKEUP4; |
| 1555 | } |
| 1556 | |
| 1557 | #include <asm/segment.h> |
| 1558 | #include "sd.h" |
| 1559 | #include <scsi/scsi_ioctl.h> |
| 1560 | |
| 1561 | int seagate_st0x_biosparam(Disk * disk, kdev_t dev, int* ip) { |
| 1562 | unsigned char buf[256 + sizeof(int) * 2], cmd[6], *data, *page; |
| 1563 | int *sizes, result, formatted_sectors, total_sectors; |
| 1564 | int cylinders, heads, sectors; |
| 1565 | int capacity; |
| 1566 | |
| 1567 | /* |
| 1568 | * Only SCSI-I CCS drives and later implement the necessary mode sense |
| 1569 | * pages. |
| 1570 | */ |
| 1571 | |
| 1572 | if (disk->device->scsi_level < 2) |
| 1573 | return -1; |
| 1574 | |
| 1575 | sizes = (int *) buf; |
| 1576 | data = (unsigned char *) (sizes + 2); |
| 1577 | |
| 1578 | cmd[0] = MODE_SENSE0x1a; |
| 1579 | cmd[1] = (disk->device->lun << 5) & 0xe5; |
| 1580 | cmd[2] = 0x04; /* Read page 4, rigid disk geometry page current values */ |
| 1581 | cmd[3] = 0; |
| 1582 | cmd[4] = 255; |
| 1583 | cmd[5] = 0; |
| 1584 | |
| 1585 | /* |
| 1586 | * We are transferring 0 bytes in the out direction, and expect to get back |
| 1587 | * 24 bytes for each mode page. |
| 1588 | */ |
| 1589 | |
| 1590 | sizes[0] = 0; |
| 1591 | sizes[1] = 256; |
| 1592 | |
| 1593 | memcpy (data, cmd, 6)(__builtin_constant_p(6) ? __constant_memcpy((data),(cmd),(6) ) : __memcpy((data),(cmd),(6))); |
| 1594 | |
| 1595 | if (!(result = kernel_scsi_ioctl (disk->device, SCSI_IOCTL_SEND_COMMAND1, (void *) buf))) { |
| 1596 | /* |
| 1597 | * The mode page lies beyond the MODE SENSE header, with length 4, and |
| 1598 | * the BLOCK DESCRIPTOR, with length header[3]. |
| 1599 | */ |
| 1600 | |
| 1601 | page = data + 4 + data[3]; |
| 1602 | heads = (int) page[5]; |
| 1603 | cylinders = (page[2] << 16) | (page[3] << 8) | page[4]; |
| 1604 | |
| 1605 | cmd[2] = 0x03; /* Read page 3, format page current values */ |
| 1606 | memcpy (data, cmd, 6)(__builtin_constant_p(6) ? __constant_memcpy((data),(cmd),(6) ) : __memcpy((data),(cmd),(6))); |
| 1607 | |
| 1608 | if (!(result = kernel_scsi_ioctl (disk->device, SCSI_IOCTL_SEND_COMMAND1, (void *) buf))) { |
| 1609 | page = data + 4 + data[3]; |
| 1610 | sectors = (page[10] << 8) | page[11]; |
| 1611 | |
| 1612 | |
| 1613 | /* |
| 1614 | * Get the total number of formatted sectors from the block descriptor, |
| 1615 | * so we can tell how many are being used for alternates. |
| 1616 | */ |
| 1617 | |
| 1618 | formatted_sectors = (data[4 + 1] << 16) | (data[4 + 2] << 8) | |
| 1619 | data[4 + 3] ; |
| 1620 | |
| 1621 | total_sectors = (heads * cylinders * sectors); |
| 1622 | |
| 1623 | /* |
| 1624 | * Adjust the real geometry by subtracting |
| 1625 | * (spare sectors / (heads * tracks)) cylinders from the number of cylinders. |
| 1626 | * |
| 1627 | * It appears that the CE cylinder CAN be a partial cylinder. |
| 1628 | */ |
| 1629 | |
| 1630 | |
| 1631 | printk("scsi%d : heads = %d cylinders = %d sectors = %d total = %d formatted = %d\n", |
| 1632 | hostno, heads, cylinders, sectors, total_sectors, formatted_sectors); |
| 1633 | |
| 1634 | if (!heads || !sectors || !cylinders) |
| 1635 | result = -1; |
| 1636 | else |
| 1637 | cylinders -= ((total_sectors - formatted_sectors) / (heads * sectors)); |
| 1638 | |
| 1639 | /* |
| 1640 | * Now, we need to do a sanity check on the geometry to see if it is |
| 1641 | * BIOS compatible. The maximum BIOS geometry is 1024 cylinders * |
| 1642 | * 256 heads * 64 sectors. |
| 1643 | */ |
| 1644 | |
| 1645 | if ((cylinders > 1024) || (sectors > 64)) { |
| 1646 | /* The Seagate's seem to have some mapping |
| 1647 | * Multiple heads * sectors * cyl to get capacity |
| 1648 | * Then start rounding down. */ |
| 1649 | capacity = heads * sectors * cylinders; |
| 1650 | sectors = 17; /* Old MFM Drives use this, so does the Seagate */ |
| 1651 | heads = 2; |
| 1652 | capacity = capacity / sectors; |
| 1653 | while (cylinders > 1024) |
| 1654 | { |
| 1655 | heads *= 2; /* For some reason, they go in multiples */ |
| 1656 | cylinders = capacity / heads; |
| 1657 | } |
| 1658 | } |
| 1659 | ip[0] = heads; |
| 1660 | ip[1] = sectors; |
| 1661 | ip[2] = cylinders; |
| 1662 | |
| 1663 | /* |
| 1664 | * There should be an alternate mapping for things the seagate doesn't |
| 1665 | * understand, but I couldn't say what it is with reasonable certainty. |
| 1666 | */ |
| 1667 | |
| 1668 | } |
| 1669 | } |
| 1670 | |
| 1671 | return result; |
| 1672 | } |
| 1673 | |
| 1674 | #ifdef MODULE |
| 1675 | /* Eventually this will go into an include file, but this will be later */ |
| 1676 | Scsi_Host_Template driver_template = SEAGATE_ST0X{ ((void *) 0), ((void *) 0), ((void *) 0), seagate_st0x_proc_info , ((void *) 0), seagate_st0x_detect, ((void *) 0), seagate_st0x_info , seagate_st0x_command, seagate_st0x_queue_command, seagate_st0x_abort , seagate_st0x_reset, ((void *) 0), seagate_st0x_biosparam, 1 , 7, 0xff, 1, 0, 0, 0}; |
| 1677 | |
| 1678 | #include "scsi_module.c" |
| 1679 | #endif |