| File: | obj-scan-build/../linux/src/drivers/scsi/sym53c8xx.c |
| Location: | line 13056, column 2 |
| Description: | Value stored to 'vendor_id' is never read |
| 1 | /****************************************************************************** |
| 2 | ** High Performance device driver for the Symbios 53C896 controller. |
| 3 | ** |
| 4 | ** Copyright (C) 1998-2000 Gerard Roudier <groudier@club-internet.fr> |
| 5 | ** |
| 6 | ** This driver also supports all the Symbios 53C8XX controller family, |
| 7 | ** except 53C810 revisions < 16, 53C825 revisions < 16 and all |
| 8 | ** revisions of 53C815 controllers. |
| 9 | ** |
| 10 | ** This driver is based on the Linux port of the FreeBSD ncr driver. |
| 11 | ** |
| 12 | ** Copyright (C) 1994 Wolfgang Stanglmeier |
| 13 | ** |
| 14 | **----------------------------------------------------------------------------- |
| 15 | ** |
| 16 | ** This program is free software; you can redistribute it and/or modify |
| 17 | ** it under the terms of the GNU General Public License as published by |
| 18 | ** the Free Software Foundation; either version 2 of the License, or |
| 19 | ** (at your option) any later version. |
| 20 | ** |
| 21 | ** This program is distributed in the hope that it will be useful, |
| 22 | ** but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 23 | ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 24 | ** GNU General Public License for more details. |
| 25 | ** |
| 26 | ** You should have received a copy of the GNU General Public License |
| 27 | ** along with this program; if not, write to the Free Software |
| 28 | ** Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
| 29 | ** |
| 30 | **----------------------------------------------------------------------------- |
| 31 | ** |
| 32 | ** The Linux port of the FreeBSD ncr driver has been achieved in |
| 33 | ** november 1995 by: |
| 34 | ** |
| 35 | ** Gerard Roudier <groudier@club-internet.fr> |
| 36 | ** |
| 37 | ** Being given that this driver originates from the FreeBSD version, and |
| 38 | ** in order to keep synergy on both, any suggested enhancements and corrections |
| 39 | ** received on Linux are automatically a potential candidate for the FreeBSD |
| 40 | ** version. |
| 41 | ** |
| 42 | ** The original driver has been written for 386bsd and FreeBSD by |
| 43 | ** Wolfgang Stanglmeier <wolf@cologne.de> |
| 44 | ** Stefan Esser <se@mi.Uni-Koeln.de> |
| 45 | ** |
| 46 | **----------------------------------------------------------------------------- |
| 47 | ** |
| 48 | ** Major contributions: |
| 49 | ** -------------------- |
| 50 | ** |
| 51 | ** NVRAM detection and reading. |
| 52 | ** Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk> |
| 53 | ** |
| 54 | ******************************************************************************* |
| 55 | */ |
| 56 | |
| 57 | /* |
| 58 | ** Supported SCSI features: |
| 59 | ** Synchronous data transfers |
| 60 | ** Wide16 SCSI BUS |
| 61 | ** Disconnection/Reselection |
| 62 | ** Tagged command queuing |
| 63 | ** SCSI Parity checking |
| 64 | ** |
| 65 | ** Supported NCR/SYMBIOS chips: |
| 66 | ** 53C810A (8 bits, Fast 10, no rom BIOS) |
| 67 | ** 53C825A (Wide, Fast 10, on-board rom BIOS) |
| 68 | ** 53C860 (8 bits, Fast 20, no rom BIOS) |
| 69 | ** 53C875 (Wide, Fast 20, on-board rom BIOS) |
| 70 | ** 53C876 (Wide, Fast 20 Dual, on-board rom BIOS) |
| 71 | ** 53C895 (Wide, Fast 40, on-board rom BIOS) |
| 72 | ** 53C895A (Wide, Fast 40, on-board rom BIOS) |
| 73 | ** 53C896 (Wide, Fast 40 Dual, on-board rom BIOS) |
| 74 | ** 53C897 (Wide, Fast 40 Dual, on-board rom BIOS) |
| 75 | ** 53C1510D (Wide, Fast 40 Dual, on-board rom BIOS) |
| 76 | ** 53C1010 (Wide, Fast 80 Dual, on-board rom BIOS) |
| 77 | ** 53C1010_66(Wide, Fast 80 Dual, on-board rom BIOS, 33/66MHz PCI) |
| 78 | ** |
| 79 | ** Other features: |
| 80 | ** Memory mapped IO |
| 81 | ** Module |
| 82 | ** Shared IRQ |
| 83 | */ |
| 84 | |
| 85 | /* |
| 86 | ** Name and version of the driver |
| 87 | */ |
| 88 | #define SCSI_NCR_DRIVER_NAME"sym53c8xx-1.7.1-20000726" "sym53c8xx-1.7.1-20000726" |
| 89 | |
| 90 | #define SCSI_NCR_DEBUG_FLAGS(0) (0) |
| 91 | |
| 92 | #define NAME53C"sym53c" "sym53c" |
| 93 | #define NAME53C8XX"sym53c8xx" "sym53c8xx" |
| 94 | |
| 95 | /*========================================================== |
| 96 | ** |
| 97 | ** Include files |
| 98 | ** |
| 99 | **========================================================== |
| 100 | */ |
| 101 | |
| 102 | #define LinuxVersionCode(v, p, s)(((v)<<16)+((p)<<8)+(s)) (((v)<<16)+((p)<<8)+(s)) |
| 103 | |
| 104 | #ifdef MODULE |
| 105 | #include <linux/module.h> |
| 106 | #endif |
| 107 | |
| 108 | #include <asm/dma.h> |
| 109 | #include <asm/io.h> |
| 110 | #include <asm/system.h> |
| 111 | #if LINUX_VERSION_CODE131108 >= LinuxVersionCode(2,3,17)(((2)<<16)+((3)<<8)+(17)) |
| 112 | #include <linux/spinlock.h> |
| 113 | #elif LINUX_VERSION_CODE131108 >= LinuxVersionCode(2,1,93)(((2)<<16)+((1)<<8)+(93)) |
| 114 | #include <asm/spinlock.h> |
| 115 | #endif |
| 116 | #include <linux/delay.h> |
| 117 | #include <linux/signal.h> |
| 118 | #include <linux/sched.h> |
| 119 | #include <linux/errno.h> |
| 120 | #include <linux/pci.h> |
| 121 | #include <linux/string.h> |
| 122 | #include <linux/malloc.h> |
| 123 | #include <linux/mm.h> |
| 124 | #include <linux/ioport.h> |
| 125 | #include <linux/time.h> |
| 126 | #include <linux/timer.h> |
| 127 | #include <linux/stat.h> |
| 128 | |
| 129 | #include <linux/version.h> |
| 130 | #include <linux/blk.h> |
| 131 | |
| 132 | #ifdef CONFIG_ALL_PPC |
| 133 | #include <asm/prom.h> |
| 134 | #endif |
| 135 | |
| 136 | #if LINUX_VERSION_CODE131108 >= LinuxVersionCode(2,1,35)(((2)<<16)+((1)<<8)+(35)) |
| 137 | #include <linux/init.h> |
| 138 | #endif |
| 139 | |
| 140 | #ifndef __init |
| 141 | #define __init |
| 142 | #endif |
| 143 | #ifndef __initdata |
| 144 | #define __initdata |
| 145 | #endif |
| 146 | |
| 147 | #if LINUX_VERSION_CODE131108 <= LinuxVersionCode(2,1,92)(((2)<<16)+((1)<<8)+(92)) |
| 148 | #include <linux/bios32.h> |
| 149 | #endif |
| 150 | |
| 151 | #include "scsi.h" |
| 152 | #include "hosts.h" |
| 153 | #include "constants.h" |
| 154 | #include "sd.h" |
| 155 | |
| 156 | #include <linux/types.h> |
| 157 | |
| 158 | /* |
| 159 | ** Define BITS_PER_LONG for earlier linux versions. |
| 160 | */ |
| 161 | #ifndef BITS_PER_LONG32 |
| 162 | #if (~0UL) == 0xffffffffUL |
| 163 | #define BITS_PER_LONG32 32 |
| 164 | #else |
| 165 | #define BITS_PER_LONG32 64 |
| 166 | #endif |
| 167 | #endif |
| 168 | |
| 169 | /* |
| 170 | ** Define the BSD style u_int32 and u_int64 type. |
| 171 | ** Are in fact u_int32_t and u_int64_t :-) |
| 172 | */ |
| 173 | typedef u32 u_int32; |
| 174 | typedef u64 u_int64; |
| 175 | |
| 176 | #include "sym53c8xx.h" |
| 177 | |
| 178 | /* |
| 179 | ** Donnot compile integrity checking code for Linux-2.3.0 |
| 180 | ** and above since SCSI data structures are not ready yet. |
| 181 | */ |
| 182 | /* #if LINUX_VERSION_CODE < LinuxVersionCode(2,3,0) */ |
| 183 | #if 0 |
| 184 | #define SCSI_NCR_INTEGRITY_CHECKING |
| 185 | #endif |
| 186 | |
| 187 | #define MIN(a,b)(((a) < (b)) ? (a) : (b)) (((a) < (b)) ? (a) : (b)) |
| 188 | #define MAX(a,b)(((a) > (b)) ? (a) : (b)) (((a) > (b)) ? (a) : (b)) |
| 189 | |
| 190 | /* |
| 191 | ** Hmmm... What complex some PCI-HOST bridges actually are, |
| 192 | ** despite the fact that the PCI specifications are looking |
| 193 | ** so smart and simple! ;-) |
| 194 | */ |
| 195 | #if LINUX_VERSION_CODE131108 >= LinuxVersionCode(2,3,47)(((2)<<16)+((3)<<8)+(47)) |
| 196 | #define SCSI_NCR_DYNAMIC_DMA_MAPPING |
| 197 | #endif |
| 198 | |
| 199 | /*========================================================== |
| 200 | ** |
| 201 | ** A la VMS/CAM-3 queue management. |
| 202 | ** Implemented from linux list management. |
| 203 | ** |
| 204 | **========================================================== |
| 205 | */ |
| 206 | |
| 207 | typedef struct xpt_quehead { |
| 208 | struct xpt_quehead *flink; /* Forward pointer */ |
| 209 | struct xpt_quehead *blink; /* Backward pointer */ |
| 210 | } XPT_QUEHEAD; |
| 211 | |
| 212 | #define xpt_que_init(ptr)do { (ptr)->flink = (ptr); (ptr)->blink = (ptr); } while (0) do { \ |
| 213 | (ptr)->flink = (ptr); (ptr)->blink = (ptr); \ |
| 214 | } while (0) |
| 215 | |
| 216 | static inlineinline __attribute__((always_inline)) void __xpt_que_add(struct xpt_quehead * new, |
| 217 | struct xpt_quehead * blink, |
| 218 | struct xpt_quehead * flink) |
| 219 | { |
| 220 | flink->blink = new; |
| 221 | new->flink = flink; |
| 222 | new->blink = blink; |
| 223 | blink->flink = new; |
| 224 | } |
| 225 | |
| 226 | static inlineinline __attribute__((always_inline)) void __xpt_que_del(struct xpt_quehead * blink, |
| 227 | struct xpt_quehead * flink) |
| 228 | { |
| 229 | flink->blink = blink; |
| 230 | blink->flink = flink; |
| 231 | } |
| 232 | |
| 233 | static inlineinline __attribute__((always_inline)) int xpt_que_empty(struct xpt_quehead *head) |
| 234 | { |
| 235 | return head->flink == head; |
| 236 | } |
| 237 | |
| 238 | static inlineinline __attribute__((always_inline)) void xpt_que_splice(struct xpt_quehead *list, |
| 239 | struct xpt_quehead *head) |
| 240 | { |
| 241 | struct xpt_quehead *first = list->flink; |
| 242 | |
| 243 | if (first != list) { |
| 244 | struct xpt_quehead *last = list->blink; |
| 245 | struct xpt_quehead *at = head->flink; |
| 246 | |
| 247 | first->blink = head; |
| 248 | head->flink = first; |
| 249 | |
| 250 | last->flink = at; |
| 251 | at->blink = last; |
| 252 | } |
| 253 | } |
| 254 | |
| 255 | #define xpt_que_entry(ptr, type, member)((type *)((char *)(ptr)-(unsigned long)(&((type *)0)-> member))) \ |
| 256 | ((type *)((char *)(ptr)-(unsigned long)(&((type *)0)->member))) |
| 257 | |
| 258 | |
| 259 | #define xpt_insque(new, pos)__xpt_que_add(new, pos, (pos)->flink) __xpt_que_add(new, pos, (pos)->flink) |
| 260 | |
| 261 | #define xpt_remque(el)__xpt_que_del((el)->blink, (el)->flink) __xpt_que_del((el)->blink, (el)->flink) |
| 262 | |
| 263 | #define xpt_insque_head(new, head)__xpt_que_add(new, head, (head)->flink) __xpt_que_add(new, head, (head)->flink) |
| 264 | |
| 265 | static inlineinline __attribute__((always_inline)) struct xpt_quehead *xpt_remque_head(struct xpt_quehead *head) |
| 266 | { |
| 267 | struct xpt_quehead *elem = head->flink; |
| 268 | |
| 269 | if (elem != head) |
| 270 | __xpt_que_del(head, elem->flink); |
| 271 | else |
| 272 | elem = 0; |
| 273 | return elem; |
| 274 | } |
| 275 | |
| 276 | #define xpt_insque_tail(new, head)__xpt_que_add(new, (head)->blink, head) __xpt_que_add(new, (head)->blink, head) |
| 277 | |
| 278 | static inlineinline __attribute__((always_inline)) struct xpt_quehead *xpt_remque_tail(struct xpt_quehead *head) |
| 279 | { |
| 280 | struct xpt_quehead *elem = head->blink; |
| 281 | |
| 282 | if (elem != head) |
| 283 | __xpt_que_del(elem->blink, head); |
| 284 | else |
| 285 | elem = 0; |
| 286 | return elem; |
| 287 | } |
| 288 | |
| 289 | /*========================================================== |
| 290 | ** |
| 291 | ** Configuration and Debugging |
| 292 | ** |
| 293 | **========================================================== |
| 294 | */ |
| 295 | |
| 296 | /* |
| 297 | ** SCSI address of this device. |
| 298 | ** The boot routines should have set it. |
| 299 | ** If not, use this. |
| 300 | */ |
| 301 | |
| 302 | #ifndef SCSI_NCR_MYADDR(7) |
| 303 | #define SCSI_NCR_MYADDR(7) (7) |
| 304 | #endif |
| 305 | |
| 306 | /* |
| 307 | ** The maximum number of tags per logic unit. |
| 308 | ** Used only for devices that support tags. |
| 309 | */ |
| 310 | |
| 311 | #ifndef SCSI_NCR_MAX_TAGS(8) |
| 312 | #define SCSI_NCR_MAX_TAGS(8) (8) |
| 313 | #endif |
| 314 | |
| 315 | /* |
| 316 | ** TAGS are actually unlimited (256 tags/lun). |
| 317 | ** But Linux only supports 255. :) |
| 318 | */ |
| 319 | #if SCSI_NCR_MAX_TAGS(8) > 255 |
| 320 | #define MAX_TAGS(8) 255 |
| 321 | #else |
| 322 | #define MAX_TAGS(8) SCSI_NCR_MAX_TAGS(8) |
| 323 | #endif |
| 324 | |
| 325 | /* |
| 326 | ** Since the ncr chips only have a 8 bit ALU, we try to be clever |
| 327 | ** about offset calculation in the TASK TABLE per LUN that is an |
| 328 | ** array of DWORDS = 4 bytes. |
| 329 | */ |
| 330 | #if MAX_TAGS(8) > (512/4) |
| 331 | #define MAX_TASKS(256/4) (1024/4) |
| 332 | #elif MAX_TAGS(8) > (256/4) |
| 333 | #define MAX_TASKS(256/4) (512/4) |
| 334 | #else |
| 335 | #define MAX_TASKS(256/4) (256/4) |
| 336 | #endif |
| 337 | |
| 338 | /* |
| 339 | ** This one means 'NO TAG for this job' |
| 340 | */ |
| 341 | #define NO_TAG(256) (256) |
| 342 | |
| 343 | /* |
| 344 | ** Number of targets supported by the driver. |
| 345 | ** n permits target numbers 0..n-1. |
| 346 | ** Default is 16, meaning targets #0..#15. |
| 347 | ** #7 .. is myself. |
| 348 | */ |
| 349 | |
| 350 | #ifdef SCSI_NCR_MAX_TARGET(16) |
| 351 | #define MAX_TARGET((16)) (SCSI_NCR_MAX_TARGET(16)) |
| 352 | #else |
| 353 | #define MAX_TARGET((16)) (16) |
| 354 | #endif |
| 355 | |
| 356 | /* |
| 357 | ** Number of logic units supported by the driver. |
| 358 | ** n enables logic unit numbers 0..n-1. |
| 359 | ** The common SCSI devices require only |
| 360 | ** one lun, so take 1 as the default. |
| 361 | */ |
| 362 | |
| 363 | #ifdef SCSI_NCR_MAX_LUN(16) |
| 364 | #define MAX_LUN64 64 |
| 365 | #else |
| 366 | #define MAX_LUN64 (1) |
| 367 | #endif |
| 368 | |
| 369 | /* |
| 370 | ** Asynchronous pre-scaler (ns). Shall be 40 for |
| 371 | ** the SCSI timings to be compliant. |
| 372 | */ |
| 373 | |
| 374 | #ifndef SCSI_NCR_MIN_ASYNC(40) |
| 375 | #define SCSI_NCR_MIN_ASYNC(40) (40) |
| 376 | #endif |
| 377 | |
| 378 | /* |
| 379 | ** The maximum number of jobs scheduled for starting. |
| 380 | ** We allocate 4 entries more than the value we announce |
| 381 | ** to the SCSI upper layer. Guess why ! :-) |
| 382 | */ |
| 383 | |
| 384 | #ifdef SCSI_NCR_CAN_QUEUE(8*(8) + 2*(16)) |
| 385 | #define MAX_START((8*(8) + 2*(16)) + 4) (SCSI_NCR_CAN_QUEUE(8*(8) + 2*(16)) + 4) |
| 386 | #else |
| 387 | #define MAX_START((8*(8) + 2*(16)) + 4) (MAX_TARGET((16)) + 7 * MAX_TAGS(8)) |
| 388 | #endif |
| 389 | |
| 390 | /* |
| 391 | ** We donnot want to allocate more than 1 PAGE for the |
| 392 | ** the start queue and the done queue. We hard-code entry |
| 393 | ** size to 8 in order to let cpp do the checking. |
| 394 | ** Allows 512-4=508 pending IOs for i386 but Linux seems for |
| 395 | ** now not able to provide the driver with this amount of IOs. |
| 396 | */ |
| 397 | #if MAX_START((8*(8) + 2*(16)) + 4) > PAGE_SIZE(1 << 12)/8 |
| 398 | #undef MAX_START((8*(8) + 2*(16)) + 4) |
| 399 | #define MAX_START((8*(8) + 2*(16)) + 4) (PAGE_SIZE(1 << 12)/8) |
| 400 | #endif |
| 401 | |
| 402 | /* |
| 403 | ** The maximum number of segments a transfer is split into. |
| 404 | ** We support up to 127 segments for both read and write. |
| 405 | */ |
| 406 | |
| 407 | #define MAX_SCATTER((127)) (SCSI_NCR_MAX_SCATTER(127)) |
| 408 | #define SCR_SG_SIZE(2) (2) |
| 409 | |
| 410 | /* |
| 411 | ** other |
| 412 | */ |
| 413 | |
| 414 | #define NCR_SNOOP_TIMEOUT(1000000) (1000000) |
| 415 | |
| 416 | /*========================================================== |
| 417 | ** |
| 418 | ** Miscallaneous BSDish defines. |
| 419 | ** |
| 420 | **========================================================== |
| 421 | */ |
| 422 | |
| 423 | #define u_charunsigned char unsigned char |
| 424 | #define u_shortunsigned short unsigned short |
| 425 | #define u_intunsigned int unsigned int |
| 426 | #define u_longunsigned long unsigned long |
| 427 | |
| 428 | #ifndef bcopy |
| 429 | #define bcopy(s, d, n)(__builtin_constant_p((n)) ? __constant_memcpy(((d)),((s)),(( n))) : __memcpy(((d)),((s)),((n)))) memcpy((d), (s), (n))(__builtin_constant_p((n)) ? __constant_memcpy(((d)),((s)),(( n))) : __memcpy(((d)),((s)),((n)))) |
| 430 | #endif |
| 431 | |
| 432 | #ifndef bzero |
| 433 | #define bzero(d, n)(__builtin_constant_p(0) ? (__builtin_constant_p(((n))) ? __constant_c_and_count_memset ((((d))),((0x01010101UL*(unsigned char)(0))),(((n)))) : __constant_c_memset ((((d))),((0x01010101UL*(unsigned char)(0))),(((n))))) : (__builtin_constant_p (((n))) ? __memset_generic(((((d)))),(((0))),((((n))))) : __memset_generic ((((d))),((0)),(((n)))))) memset((d), 0, (n))(__builtin_constant_p(0) ? (__builtin_constant_p(((n))) ? __constant_c_and_count_memset ((((d))),((0x01010101UL*(unsigned char)(0))),(((n)))) : __constant_c_memset ((((d))),((0x01010101UL*(unsigned char)(0))),(((n))))) : (__builtin_constant_p (((n))) ? __memset_generic(((((d)))),(((0))),((((n))))) : __memset_generic ((((d))),((0)),(((n)))))) |
| 434 | #endif |
| 435 | |
| 436 | #ifndef offsetof |
| 437 | #define offsetof(t, m)((size_t) (&((t *)0)->m)) ((size_t) (&((t *)0)->m)) |
| 438 | #endif |
| 439 | |
| 440 | /* |
| 441 | ** Simple Wrapper to kernel PCI bus interface. |
| 442 | ** |
| 443 | ** This wrapper allows to get rid of old kernel PCI interface |
| 444 | ** and still allows to preserve linux-2.0 compatibilty. |
| 445 | ** In fact, it is mostly an incomplete emulation of the new |
| 446 | ** PCI code for pre-2.2 kernels. When kernel-2.0 support |
| 447 | ** will be dropped, we will just have to remove most of this |
| 448 | ** code. |
| 449 | */ |
| 450 | |
| 451 | #if LINUX_VERSION_CODE131108 >= LinuxVersionCode(2,2,0)(((2)<<16)+((2)<<8)+(0)) |
| 452 | |
| 453 | typedef struct pci_dev *pcidev_t; |
| 454 | #define PCIDEV_NULL(~0u) (0) |
| 455 | #define PciBusNumber(d)((d)>>8) (d)->bus->number |
| 456 | #define PciDeviceFn(d)((d)&0xff) (d)->devfn |
| 457 | #define PciVendorId(d) (d)->vendor |
| 458 | #define PciDeviceId(d) (d)->device |
| 459 | #define PciIrqLine(d) (d)->irq |
| 460 | |
| 461 | #if LINUX_VERSION_CODE131108 > LinuxVersionCode(2,3,12)(((2)<<16)+((3)<<8)+(12)) |
| 462 | |
| 463 | static int __init |
| 464 | pci_get_base_address(struct pci_dev *pdev, int index, u_longunsigned long *base) |
| 465 | { |
| 466 | *base = pdev->resource[index].start; |
| 467 | if ((pdev->resource[index].flags & 0x7) == 0x4) |
| 468 | ++index; |
| 469 | return ++index; |
| 470 | } |
| 471 | #else |
| 472 | static int __init |
| 473 | pci_get_base_address(struct pci_dev *pdev, int index, u_longunsigned long *base) |
| 474 | { |
| 475 | *base = pdev->base_address[index++]; |
| 476 | if ((*base & 0x7) == 0x4) { |
| 477 | #if BITS_PER_LONG32 > 32 |
| 478 | *base |= (((u_longunsigned long)pdev->base_address[index]) << 32); |
| 479 | #endif |
| 480 | ++index; |
| 481 | } |
| 482 | return index; |
| 483 | } |
| 484 | #endif |
| 485 | |
| 486 | #else /* Incomplete emulation of current PCI code for pre-2.2 kernels */ |
| 487 | |
| 488 | typedef unsigned int pcidev_t; |
| 489 | #define PCIDEV_NULL(~0u) (~0u) |
| 490 | #define PciBusNumber(d)((d)>>8) ((d)>>8) |
| 491 | #define PciDeviceFn(d)((d)&0xff) ((d)&0xff) |
| 492 | #define __PciDev(busn, devfn)(((busn)<<8)+(devfn)) (((busn)<<8)+(devfn)) |
| 493 | |
| 494 | #define pci_presentpcibios_present pcibios_present |
| 495 | |
| 496 | #define pci_read_config_byte(d, w, v)pcibios_read_config_byte(((d)>>8), ((d)&0xff), w, v ) \ |
| 497 | pcibios_read_config_byte(PciBusNumber(d)((d)>>8), PciDeviceFn(d)((d)&0xff), w, v) |
| 498 | #define pci_read_config_word(d, w, v)pcibios_read_config_word(((d)>>8), ((d)&0xff), w, v ) \ |
| 499 | pcibios_read_config_word(PciBusNumber(d)((d)>>8), PciDeviceFn(d)((d)&0xff), w, v) |
| 500 | #define pci_read_config_dword(d, w, v)pcibios_read_config_dword(((d)>>8), ((d)&0xff), w, v ) \ |
| 501 | pcibios_read_config_dword(PciBusNumber(d)((d)>>8), PciDeviceFn(d)((d)&0xff), w, v) |
| 502 | |
| 503 | #define pci_write_config_byte(d, w, v)pcibios_write_config_byte(((d)>>8), ((d)&0xff), w, v ) \ |
| 504 | pcibios_write_config_byte(PciBusNumber(d)((d)>>8), PciDeviceFn(d)((d)&0xff), w, v) |
| 505 | #define pci_write_config_word(d, w, v)pcibios_write_config_word(((d)>>8), ((d)&0xff), w, v ) \ |
| 506 | pcibios_write_config_word(PciBusNumber(d)((d)>>8), PciDeviceFn(d)((d)&0xff), w, v) |
| 507 | #define pci_write_config_dword(d, w, v)pcibios_write_config_dword(((d)>>8), ((d)&0xff), w, v) \ |
| 508 | pcibios_write_config_dword(PciBusNumber(d)((d)>>8), PciDeviceFn(d)((d)&0xff), w, v) |
| 509 | |
| 510 | static pcidev_t __init |
| 511 | pci_find_device(unsigned int vendor, unsigned int device, pcidev_t prev) |
| 512 | { |
| 513 | static unsigned short pci_index; |
| 514 | int retv; |
| 515 | unsigned char bus_number, device_fn; |
| 516 | |
| 517 | if (prev == PCIDEV_NULL(~0u)) |
| 518 | pci_index = 0; |
| 519 | else |
| 520 | ++pci_index; |
| 521 | retv = pcibios_find_device (vendor, device, pci_index, |
| 522 | &bus_number, &device_fn); |
| 523 | return retv ? PCIDEV_NULL(~0u) : __PciDev(bus_number, device_fn)(((bus_number)<<8)+(device_fn)); |
| 524 | } |
| 525 | |
| 526 | static u_shortunsigned short __init PciVendorId(pcidev_t dev) |
| 527 | { |
| 528 | u_shortunsigned short vendor_id; |
| 529 | pci_read_config_word(dev, PCI_VENDOR_ID, &vendor_id)pcibios_read_config_word(((dev)>>8), ((dev)&0xff), 0x00 , &vendor_id); |
| 530 | return vendor_id; |
| 531 | } |
| 532 | |
| 533 | static u_shortunsigned short __init PciDeviceId(pcidev_t dev) |
| 534 | { |
| 535 | u_shortunsigned short device_id; |
| 536 | pci_read_config_word(dev, PCI_DEVICE_ID, &device_id)pcibios_read_config_word(((dev)>>8), ((dev)&0xff), 0x02 , &device_id); |
| 537 | return device_id; |
| 538 | } |
| 539 | |
| 540 | static u_intunsigned int __init PciIrqLine(pcidev_t dev) |
| 541 | { |
| 542 | u_charunsigned char irq; |
| 543 | pci_read_config_byte(dev, PCI_INTERRUPT_LINE, &irq)pcibios_read_config_byte(((dev)>>8), ((dev)&0xff), 0x3c , &irq); |
| 544 | return irq; |
| 545 | } |
| 546 | |
| 547 | static int __init |
| 548 | pci_get_base_address(pcidev_t dev, int offset, u_longunsigned long *base) |
| 549 | { |
| 550 | u_int32 tmp; |
| 551 | |
| 552 | pci_read_config_dword(dev, PCI_BASE_ADDRESS_0 + offset, &tmp)pcibios_read_config_dword(((dev)>>8), ((dev)&0xff), 0x10 + offset, &tmp); |
| 553 | *base = tmp; |
| 554 | offset += sizeof(u_int32); |
| 555 | if ((tmp & 0x7) == 0x4) { |
| 556 | #if BITS_PER_LONG32 > 32 |
| 557 | pci_read_config_dword(dev, PCI_BASE_ADDRESS_0 + offset, &tmp)pcibios_read_config_dword(((dev)>>8), ((dev)&0xff), 0x10 + offset, &tmp); |
| 558 | *base |= (((u_longunsigned long)tmp) << 32); |
| 559 | #endif |
| 560 | offset += sizeof(u_int32); |
| 561 | } |
| 562 | return offset; |
| 563 | } |
| 564 | |
| 565 | #endif /* LINUX_VERSION_CODE >= LinuxVersionCode(2,2,0) */ |
| 566 | |
| 567 | /*========================================================== |
| 568 | ** |
| 569 | ** Debugging tags |
| 570 | ** |
| 571 | **========================================================== |
| 572 | */ |
| 573 | |
| 574 | #define DEBUG_ALLOC(0x0001) (0x0001) |
| 575 | #define DEBUG_PHASE(0x0002) (0x0002) |
| 576 | #define DEBUG_QUEUE(0x0008) (0x0008) |
| 577 | #define DEBUG_RESULT(0x0010) (0x0010) |
| 578 | #define DEBUG_POINTER(0x0020) (0x0020) |
| 579 | #define DEBUG_SCRIPT(0x0040) (0x0040) |
| 580 | #define DEBUG_TINY(0x0080) (0x0080) |
| 581 | #define DEBUG_TIMING(0x0100) (0x0100) |
| 582 | #define DEBUG_NEGO(0x0200) (0x0200) |
| 583 | #define DEBUG_TAGS(0x0400) (0x0400) |
| 584 | #define DEBUG_IC(0x0800) (0x0800) |
| 585 | |
| 586 | /* |
| 587 | ** Enable/Disable debug messages. |
| 588 | ** Can be changed at runtime too. |
| 589 | */ |
| 590 | |
| 591 | #ifdef SCSI_NCR_DEBUG_INFO_SUPPORT |
| 592 | static int ncr_debug = SCSI_NCR_DEBUG_FLAGS(0); |
| 593 | #define DEBUG_FLAGSncr_debug ncr_debug |
| 594 | #else |
| 595 | #define DEBUG_FLAGSncr_debug SCSI_NCR_DEBUG_FLAGS(0) |
| 596 | #endif |
| 597 | |
| 598 | /* |
| 599 | ** SMP threading. |
| 600 | ** |
| 601 | ** Assuming that SMP systems are generally high end systems and may |
| 602 | ** use several SCSI adapters, we are using one lock per controller |
| 603 | ** instead of some global one. For the moment (linux-2.1.95), driver's |
| 604 | ** entry points are called with the 'io_request_lock' lock held, so: |
| 605 | ** - We are uselessly loosing a couple of micro-seconds to lock the |
| 606 | ** controller data structure. |
| 607 | ** - But the driver is not broken by design for SMP and so can be |
| 608 | ** more resistant to bugs or bad changes in the IO sub-system code. |
| 609 | ** - A small advantage could be that the interrupt code is grained as |
| 610 | ** wished (e.g.: threaded by controller). |
| 611 | */ |
| 612 | |
| 613 | #if LINUX_VERSION_CODE131108 >= LinuxVersionCode(2,1,93)(((2)<<16)+((1)<<8)+(93)) |
| 614 | |
| 615 | spinlock_t sym53c8xx_lock = SPIN_LOCK_UNLOCKED; |
| 616 | #define NCR_LOCK_DRIVER(flags)do { __asm__ __volatile__("pushf ; pop %0" : "=r" (flags): :"memory" ); __asm__ __volatile__ ("cli": : :"memory"); } while (0) spin_lock_irqsave(&sym53c8xx_lock, flags) |
| 617 | #define NCR_UNLOCK_DRIVER(flags)do { __asm__ __volatile__("push %0 ; popf": :"g" (flags):"memory" ); } while (0) spin_unlock_irqrestore(&sym53c8xx_lock,flags) |
| 618 | |
| 619 | #define NCR_INIT_LOCK_NCB(np)do { } while (0) spin_lock_init(&np->smp_lock); |
| 620 | #define NCR_LOCK_NCB(np, flags)do { __asm__ __volatile__("pushf ; pop %0" : "=r" (flags): :"memory" ); __asm__ __volatile__ ("cli": : :"memory"); } while (0) spin_lock_irqsave(&np->smp_lock, flags) |
| 621 | #define NCR_UNLOCK_NCB(np, flags)do { __asm__ __volatile__("push %0 ; popf": :"g" (flags):"memory" ); } while (0) spin_unlock_irqrestore(&np->smp_lock, flags) |
| 622 | |
| 623 | #define NCR_LOCK_SCSI_DONE(np, flags)do {;} while (0) \ |
| 624 | spin_lock_irqsave(&io_request_lock, flags) |
| 625 | #define NCR_UNLOCK_SCSI_DONE(np, flags)do {;} while (0) \ |
| 626 | spin_unlock_irqrestore(&io_request_lock, flags) |
| 627 | |
| 628 | #else |
| 629 | |
| 630 | #define NCR_LOCK_DRIVER(flags)do { __asm__ __volatile__("pushf ; pop %0" : "=r" (flags): :"memory" ); __asm__ __volatile__ ("cli": : :"memory"); } while (0) do { save_flags(flags)__asm__ __volatile__("pushf ; pop %0" : "=r" (flags): :"memory" ); cli()__asm__ __volatile__ ("cli": : :"memory"); } while (0) |
| 631 | #define NCR_UNLOCK_DRIVER(flags)do { __asm__ __volatile__("push %0 ; popf": :"g" (flags):"memory" ); } while (0) do { restore_flags(flags)__asm__ __volatile__("push %0 ; popf": :"g" (flags):"memory"); } while (0) |
| 632 | |
| 633 | #define NCR_INIT_LOCK_NCB(np)do { } while (0) do { } while (0) |
| 634 | #define NCR_LOCK_NCB(np, flags)do { __asm__ __volatile__("pushf ; pop %0" : "=r" (flags): :"memory" ); __asm__ __volatile__ ("cli": : :"memory"); } while (0) do { save_flags(flags)__asm__ __volatile__("pushf ; pop %0" : "=r" (flags): :"memory" ); cli()__asm__ __volatile__ ("cli": : :"memory"); } while (0) |
| 635 | #define NCR_UNLOCK_NCB(np, flags)do { __asm__ __volatile__("push %0 ; popf": :"g" (flags):"memory" ); } while (0) do { restore_flags(flags)__asm__ __volatile__("push %0 ; popf": :"g" (flags):"memory"); } while (0) |
| 636 | |
| 637 | #define NCR_LOCK_SCSI_DONE(np, flags)do {;} while (0) do {;} while (0) |
| 638 | #define NCR_UNLOCK_SCSI_DONE(np, flags)do {;} while (0) do {;} while (0) |
| 639 | |
| 640 | #endif |
| 641 | |
| 642 | /* |
| 643 | ** Memory mapped IO |
| 644 | ** |
| 645 | ** Since linux-2.1, we must use ioremap() to map the io memory space. |
| 646 | ** iounmap() to unmap it. That allows portability. |
| 647 | ** Linux 1.3.X and 2.0.X allow to remap physical pages addresses greater |
| 648 | ** than the highest physical memory address to kernel virtual pages with |
| 649 | ** vremap() / vfree(). That was not portable but worked with i386 |
| 650 | ** architecture. |
| 651 | */ |
| 652 | |
| 653 | #if LINUX_VERSION_CODE131108 < LinuxVersionCode(2,1,0)(((2)<<16)+((1)<<8)+(0)) |
| 654 | #define ioremapvremap vremap |
| 655 | #define iounmapvfree vfree |
| 656 | #endif |
| 657 | |
| 658 | #ifdef __sparc__ |
| 659 | # include <asm/irq.h> |
| 660 | # if LINUX_VERSION_CODE131108 < LinuxVersionCode(2,3,0)(((2)<<16)+((3)<<8)+(0)) |
| 661 | /* ioremap/iounmap broken in 2.2.x on Sparc. -DaveM */ |
| 662 | # define ioremapvremap(base, size) ((u_longunsigned long) __va(base)) |
| 663 | # define iounmapvfree(vaddr) |
| 664 | # endif |
| 665 | # define pcivtobus(p)(p) bus_dvma_to_mem(p) |
| 666 | # define memcpy_to_pci(a, b, c)(__builtin_constant_p(((c))) ? __constant_memcpy(((void *)((a ))),(((b))),(((c)))) : __memcpy(((void *)((a))),(((b))),(((c) )))) memcpy_toio((void *)(a), (const void *)(b), (c))(__builtin_constant_p(((c))) ? __constant_memcpy(((void *)((void *)(a))),(((const void *)(b))),(((c)))) : __memcpy(((void *)( (void *)(a))),(((const void *)(b))),(((c))))) |
| 667 | #elif defined(__alpha__) |
| 668 | # define pcivtobus(p)(p) ((p) & 0xfffffffful) |
| 669 | # define memcpy_to_pci(a, b, c)(__builtin_constant_p(((c))) ? __constant_memcpy(((void *)((a ))),(((b))),(((c)))) : __memcpy(((void *)((a))),(((b))),(((c) )))) memcpy_toio((a), (b), (c))(__builtin_constant_p(((c))) ? __constant_memcpy(((void *)((a ))),(((b))),(((c)))) : __memcpy(((void *)((a))),(((b))),(((c) )))) |
| 670 | #else /* others */ |
| 671 | # define pcivtobus(p)(p) (p) |
| 672 | # define memcpy_to_pci(a, b, c)(__builtin_constant_p(((c))) ? __constant_memcpy(((void *)((a ))),(((b))),(((c)))) : __memcpy(((void *)((a))),(((b))),(((c) )))) memcpy_toio((a), (b), (c))(__builtin_constant_p(((c))) ? __constant_memcpy(((void *)((a ))),(((b))),(((c)))) : __memcpy(((void *)((a))),(((b))),(((c) )))) |
| 673 | #endif |
| 674 | |
| 675 | #ifndef SCSI_NCR_PCI_MEM_NOT_SUPPORTED |
| 676 | static u_longunsigned long __init remap_pci_mem(u_longunsigned long base, u_longunsigned long size) |
| 677 | { |
| 678 | u_longunsigned long page_base = ((u_longunsigned long) base) & PAGE_MASK((1 << 12)-1); |
| 679 | u_longunsigned long page_offs = ((u_longunsigned long) base) - page_base; |
| 680 | u_longunsigned long page_remapped = (u_longunsigned long) ioremapvremap(page_base, page_offs+size); |
| 681 | |
| 682 | return page_remapped? (page_remapped + page_offs) : 0UL; |
| 683 | } |
| 684 | |
| 685 | static void __init unmap_pci_mem(u_longunsigned long vaddr, u_longunsigned long size) |
| 686 | { |
| 687 | if (vaddr) |
| 688 | iounmapvfree((void *) (vaddr & PAGE_MASK((1 << 12)-1))); |
| 689 | } |
| 690 | |
| 691 | #endif /* not def SCSI_NCR_PCI_MEM_NOT_SUPPORTED */ |
| 692 | |
| 693 | /* |
| 694 | ** Insert a delay in micro-seconds and milli-seconds. |
| 695 | ** ------------------------------------------------- |
| 696 | ** Under Linux, udelay() is restricted to delay < 1 milli-second. |
| 697 | ** In fact, it generally works for up to 1 second delay. |
| 698 | ** Since 2.1.105, the mdelay() function is provided for delays |
| 699 | ** in milli-seconds. |
| 700 | ** Under 2.0 kernels, udelay() is an inline function that is very |
| 701 | ** inaccurate on Pentium processors. |
| 702 | */ |
| 703 | |
| 704 | #if LINUX_VERSION_CODE131108 >= LinuxVersionCode(2,1,105)(((2)<<16)+((1)<<8)+(105)) |
| 705 | #define UDELAY udelay |
| 706 | #define MDELAY mdelay |
| 707 | #else |
| 708 | static void UDELAY(long us) { udelay(us)(__builtin_constant_p(us) ? __const_udelay((us) * 0x10c6ul) : __udelay(us)); } |
| 709 | static void MDELAY(long ms) { while (ms--) UDELAY(1000); } |
| 710 | #endif |
| 711 | |
| 712 | /* |
| 713 | ** Simple power of two buddy-like allocator |
| 714 | ** ---------------------------------------- |
| 715 | ** This simple code is not intended to be fast, but to provide |
| 716 | ** power of 2 aligned memory allocations. |
| 717 | ** Since the SCRIPTS processor only supplies 8 bit arithmetic, |
| 718 | ** this allocator allows simple and fast address calculations |
| 719 | ** from the SCRIPTS code. In addition, cache line alignment |
| 720 | ** is guaranteed for power of 2 cache line size. |
| 721 | ** Enhanced in linux-2.3.44 to provide a memory pool per pcidev |
| 722 | ** to support dynamic dma mapping. (I would have preferred a |
| 723 | ** real bus astraction, btw). |
| 724 | */ |
| 725 | |
| 726 | #if LINUX_VERSION_CODE131108 >= LinuxVersionCode(2,1,0)(((2)<<16)+((1)<<8)+(0)) |
| 727 | #define __GetFreePages(flags, order)__get_free_pages(flags, order, 0) __get_free_pages(flags, order) |
| 728 | #else |
| 729 | #define __GetFreePages(flags, order)__get_free_pages(flags, order, 0) __get_free_pages(flags, order, 0) |
| 730 | #endif |
| 731 | |
| 732 | #define MEMO_SHIFT4 4 /* 16 bytes minimum memory chunk */ |
| 733 | #if PAGE_SIZE(1 << 12) >= 8192 |
| 734 | #define MEMO_PAGE_ORDER1 0 /* 1 PAGE maximum */ |
| 735 | #else |
| 736 | #define MEMO_PAGE_ORDER1 1 /* 2 PAGES maximum */ |
| 737 | #endif |
| 738 | #define MEMO_FREE_UNUSED /* Free unused pages immediately */ |
| 739 | #define MEMO_WARN1 1 |
| 740 | #define MEMO_GFP_FLAGS0x01 GFP_ATOMIC0x01 |
| 741 | #define MEMO_CLUSTER_SHIFT(12 +1) (PAGE_SHIFT12+MEMO_PAGE_ORDER1) |
| 742 | #define MEMO_CLUSTER_SIZE(1UL << (12 +1)) (1UL << MEMO_CLUSTER_SHIFT(12 +1)) |
| 743 | #define MEMO_CLUSTER_MASK((1UL << (12 +1))-1) (MEMO_CLUSTER_SIZE(1UL << (12 +1))-1) |
| 744 | |
| 745 | typedef u_longunsigned long m_addr_t; /* Enough bits to bit-hack addresses */ |
| 746 | typedef pcidev_t m_bush_t; /* Something that addresses DMAable */ |
| 747 | |
| 748 | typedef struct m_link { /* Link between free memory chunks */ |
| 749 | struct m_link *next; |
| 750 | } m_link_s; |
| 751 | |
| 752 | #ifdef SCSI_NCR_DYNAMIC_DMA_MAPPING |
| 753 | typedef struct m_vtob { /* Virtual to Bus address translation */ |
| 754 | struct m_vtob *next; |
| 755 | m_addr_t vaddr; |
| 756 | m_addr_t baddr; |
| 757 | } m_vtob_s; |
| 758 | #define VTOB_HASH_SHIFT 5 |
| 759 | #define VTOB_HASH_SIZE (1UL << VTOB_HASH_SHIFT) |
| 760 | #define VTOB_HASH_MASK (VTOB_HASH_SIZE-1) |
| 761 | #define VTOB_HASH_CODE(m) \ |
| 762 | ((((m_addr_t) (m)) >> MEMO_CLUSTER_SHIFT(12 +1)) & VTOB_HASH_MASK) |
| 763 | #endif |
| 764 | |
| 765 | typedef struct m_pool { /* Memory pool of a given kind */ |
| 766 | #ifdef SCSI_NCR_DYNAMIC_DMA_MAPPING |
| 767 | m_bush_t bush; |
| 768 | m_addr_t (*getp)(struct m_pool *); |
| 769 | void (*freep)(struct m_pool *, m_addr_t); |
| 770 | #define M_GETP()__get_free_pages(0x01, 1, 0) mp->getp(mp) |
| 771 | #define M_FREEP(p)free_pages(p, 1) mp->freep(mp, p) |
| 772 | #define GetPages() __GetFreePages(MEMO_GFP_FLAGS, MEMO_PAGE_ORDER)__get_free_pages(0x01, 1, 0) |
| 773 | #define FreePages(p) free_pages(p, MEMO_PAGE_ORDER1) |
| 774 | int nump; |
| 775 | m_vtob_s *(vtob[VTOB_HASH_SIZE]); |
| 776 | struct m_pool *next; |
| 777 | #else |
| 778 | #define M_GETP()__get_free_pages(0x01, 1, 0) __GetFreePages(MEMO_GFP_FLAGS, MEMO_PAGE_ORDER)__get_free_pages(0x01, 1, 0) |
| 779 | #define M_FREEP(p)free_pages(p, 1) free_pages(p, MEMO_PAGE_ORDER1) |
| 780 | #endif /* SCSI_NCR_DYNAMIC_DMA_MAPPING */ |
| 781 | struct m_link h[PAGE_SHIFT12-MEMO_SHIFT4+MEMO_PAGE_ORDER1+1]; |
| 782 | } m_pool_s; |
| 783 | |
| 784 | static void *___m_alloc(m_pool_s *mp, int size) |
| 785 | { |
| 786 | int i = 0; |
| 787 | int s = (1 << MEMO_SHIFT4); |
| 788 | int j; |
| 789 | m_addr_t a; |
| 790 | m_link_s *h = mp->h; |
| 791 | |
| 792 | if (size > (PAGE_SIZE(1 << 12) << MEMO_PAGE_ORDER1)) |
| 793 | return 0; |
| 794 | |
| 795 | while (size > s) { |
| 796 | s <<= 1; |
| 797 | ++i; |
| 798 | } |
| 799 | |
| 800 | j = i; |
| 801 | while (!h[j].next) { |
| 802 | if (s == (PAGE_SIZE(1 << 12) << MEMO_PAGE_ORDER1)) { |
| 803 | h[j].next = (m_link_s *) M_GETP()__get_free_pages(0x01, 1, 0); |
| 804 | if (h[j].next) |
| 805 | h[j].next->next = 0; |
| 806 | break; |
| 807 | } |
| 808 | ++j; |
| 809 | s <<= 1; |
| 810 | } |
| 811 | a = (m_addr_t) h[j].next; |
| 812 | if (a) { |
| 813 | h[j].next = h[j].next->next; |
| 814 | while (j > i) { |
| 815 | j -= 1; |
| 816 | s >>= 1; |
| 817 | h[j].next = (m_link_s *) (a+s); |
| 818 | h[j].next->next = 0; |
| 819 | } |
| 820 | } |
| 821 | #ifdef DEBUG |
| 822 | printk("___m_alloc(%d) = %p\n", size, (void *) a); |
| 823 | #endif |
| 824 | return (void *) a; |
| 825 | } |
| 826 | |
| 827 | static void ___m_free(m_pool_s *mp, void *ptr, int size) |
| 828 | { |
| 829 | int i = 0; |
| 830 | int s = (1 << MEMO_SHIFT4); |
| 831 | m_link_s *q; |
| 832 | m_addr_t a, b; |
| 833 | m_link_s *h = mp->h; |
| 834 | |
| 835 | #ifdef DEBUG |
| 836 | printk("___m_free(%p, %d)\n", ptr, size); |
| 837 | #endif |
| 838 | |
| 839 | if (size > (PAGE_SIZE(1 << 12) << MEMO_PAGE_ORDER1)) |
| 840 | return; |
| 841 | |
| 842 | while (size > s) { |
| 843 | s <<= 1; |
| 844 | ++i; |
| 845 | } |
| 846 | |
| 847 | a = (m_addr_t) ptr; |
| 848 | |
| 849 | while (1) { |
| 850 | #ifdef MEMO_FREE_UNUSED |
| 851 | if (s == (PAGE_SIZE(1 << 12) << MEMO_PAGE_ORDER1)) { |
| 852 | M_FREEP(a)free_pages(a, 1); |
| 853 | break; |
| 854 | } |
| 855 | #endif |
| 856 | b = a ^ s; |
| 857 | q = &h[i]; |
| 858 | while (q->next && q->next != (m_link_s *) b) { |
| 859 | q = q->next; |
| 860 | } |
| 861 | if (!q->next) { |
| 862 | ((m_link_s *) a)->next = h[i].next; |
| 863 | h[i].next = (m_link_s *) a; |
| 864 | break; |
| 865 | } |
| 866 | q->next = q->next->next; |
| 867 | a = a & b; |
| 868 | s <<= 1; |
| 869 | ++i; |
| 870 | } |
| 871 | } |
| 872 | |
| 873 | static void *__m_calloc2(m_pool_s *mp, int size, char *name, int uflags) |
| 874 | { |
| 875 | void *p; |
| 876 | |
| 877 | p = ___m_alloc(mp, size); |
| 878 | |
| 879 | if (DEBUG_FLAGSncr_debug & DEBUG_ALLOC(0x0001)) |
| 880 | printk ("new %-10s[%4d] @%p.\n", name, size, p); |
| 881 | |
| 882 | if (p) |
| 883 | bzero(p, size)(__builtin_constant_p(0) ? (__builtin_constant_p(((size))) ? __constant_c_and_count_memset ((((p))),((0x01010101UL*(unsigned char)(0))),(((size)))) : __constant_c_memset ((((p))),((0x01010101UL*(unsigned char)(0))),(((size))))) : ( __builtin_constant_p(((size))) ? __memset_generic(((((p)))),( ((0))),((((size))))) : __memset_generic((((p))),((0)),(((size )))))); |
| 884 | else if (uflags & MEMO_WARN1) |
| 885 | printk (NAME53C8XX"sym53c8xx" ": failed to allocate %s[%d]\n", name, size); |
| 886 | |
| 887 | return p; |
| 888 | } |
| 889 | |
| 890 | #define __m_calloc(mp, s, n)__m_calloc2(mp, s, n, 1) __m_calloc2(mp, s, n, MEMO_WARN1) |
| 891 | |
| 892 | static void __m_free(m_pool_s *mp, void *ptr, int size, char *name) |
| 893 | { |
| 894 | if (DEBUG_FLAGSncr_debug & DEBUG_ALLOC(0x0001)) |
| 895 | printk ("freeing %-10s[%4d] @%p.\n", name, size, ptr); |
| 896 | |
| 897 | ___m_free(mp, ptr, size); |
| 898 | |
| 899 | } |
| 900 | |
| 901 | /* |
| 902 | * With pci bus iommu support, we use a default pool of unmapped memory |
| 903 | * for memory we donnot need to DMA from/to and one pool per pcidev for |
| 904 | * memory accessed by the PCI chip. `mp0' is the default not DMAable pool. |
| 905 | */ |
| 906 | |
| 907 | #ifndef SCSI_NCR_DYNAMIC_DMA_MAPPING |
| 908 | |
| 909 | static m_pool_s mp0; |
| 910 | |
| 911 | #else |
| 912 | |
| 913 | static m_addr_t ___mp0_getp(m_pool_s *mp) |
| 914 | { |
| 915 | m_addr_t m = GetPages(); |
| 916 | if (m) |
| 917 | ++mp->nump; |
| 918 | return m; |
| 919 | } |
| 920 | |
| 921 | static void ___mp0_freep(m_pool_s *mp, m_addr_t m) |
| 922 | { |
| 923 | FreePages(m); |
| 924 | --mp->nump; |
| 925 | } |
| 926 | |
| 927 | static m_pool_s mp0 = {0, ___mp0_getp, ___mp0_freep}; |
| 928 | |
| 929 | #endif /* SCSI_NCR_DYNAMIC_DMA_MAPPING */ |
| 930 | |
| 931 | static void *m_calloc(int size, char *name) |
| 932 | { |
| 933 | u_longunsigned long flags; |
| 934 | void *m; |
| 935 | NCR_LOCK_DRIVER(flags)do { __asm__ __volatile__("pushf ; pop %0" : "=r" (flags): :"memory" ); __asm__ __volatile__ ("cli": : :"memory"); } while (0); |
| 936 | m = __m_calloc(&mp0, size, name)__m_calloc2(&mp0, size, name, 1); |
| 937 | NCR_UNLOCK_DRIVER(flags)do { __asm__ __volatile__("push %0 ; popf": :"g" (flags):"memory" ); } while (0); |
| 938 | return m; |
| 939 | } |
| 940 | |
| 941 | static void m_free(void *ptr, int size, char *name) |
| 942 | { |
| 943 | u_longunsigned long flags; |
| 944 | NCR_LOCK_DRIVER(flags)do { __asm__ __volatile__("pushf ; pop %0" : "=r" (flags): :"memory" ); __asm__ __volatile__ ("cli": : :"memory"); } while (0); |
| 945 | __m_free(&mp0, ptr, size, name); |
| 946 | NCR_UNLOCK_DRIVER(flags)do { __asm__ __volatile__("push %0 ; popf": :"g" (flags):"memory" ); } while (0); |
| 947 | } |
| 948 | |
| 949 | /* |
| 950 | * DMAable pools. |
| 951 | */ |
| 952 | |
| 953 | #ifndef SCSI_NCR_DYNAMIC_DMA_MAPPING |
| 954 | |
| 955 | /* Without pci bus iommu support, all the memory is assumed DMAable */ |
| 956 | |
| 957 | #define __m_calloc_dma(b, s, n)m_calloc(s, n) m_calloc(s, n) |
| 958 | #define __m_free_dma(b, p, s, n)m_free(p, s, n) m_free(p, s, n) |
| 959 | #define __vtobus(b, p)virt_to_phys(p) virt_to_busvirt_to_phys(p) |
| 960 | |
| 961 | #else |
| 962 | |
| 963 | /* |
| 964 | * With pci bus iommu support, we maintain one pool per pcidev and a |
| 965 | * hashed reverse table for virtual to bus physical address translations. |
| 966 | */ |
| 967 | static m_addr_t ___dma_getp(m_pool_s *mp) |
| 968 | { |
| 969 | m_addr_t vp; |
| 970 | m_vtob_s *vbp; |
| 971 | |
| 972 | vbp = __m_calloc(&mp0, sizeof(*vbp), "VTOB")__m_calloc2(&mp0, sizeof(*vbp), "VTOB", 1); |
| 973 | if (vbp) { |
| 974 | dma_addr_t daddr; |
| 975 | vp = (m_addr_t) pci_alloc_consistent(mp->bush, |
| 976 | PAGE_SIZE(1 << 12)<<MEMO_PAGE_ORDER1, |
| 977 | &daddr); |
| 978 | if (vp) { |
| 979 | int hc = VTOB_HASH_CODE(vp); |
| 980 | vbp->vaddr = vp; |
| 981 | vbp->baddr = daddr; |
| 982 | vbp->next = mp->vtob[hc]; |
| 983 | mp->vtob[hc] = vbp; |
| 984 | ++mp->nump; |
| 985 | return vp; |
| 986 | } |
| 987 | else |
| 988 | __m_free(&mp0, vbp, sizeof(*vbp), "VTOB"); |
| 989 | } |
| 990 | return 0; |
| 991 | } |
| 992 | |
| 993 | static void ___dma_freep(m_pool_s *mp, m_addr_t m) |
| 994 | { |
| 995 | m_vtob_s **vbpp, *vbp; |
| 996 | int hc = VTOB_HASH_CODE(m); |
| 997 | |
| 998 | vbpp = &mp->vtob[hc]; |
| 999 | while (*vbpp && (*vbpp)->vaddr != m) |
| 1000 | vbpp = &(*vbpp)->next; |
| 1001 | if (*vbpp) { |
| 1002 | vbp = *vbpp; |
| 1003 | *vbpp = (*vbpp)->next; |
| 1004 | pci_free_consistent(mp->bush, PAGE_SIZE(1 << 12)<<MEMO_PAGE_ORDER1, |
| 1005 | (void *)vbp->vaddr, (dma_addr_t)vbp->baddr); |
| 1006 | __m_free(&mp0, vbp, sizeof(*vbp), "VTOB"); |
| 1007 | --mp->nump; |
| 1008 | } |
| 1009 | } |
| 1010 | |
| 1011 | static inlineinline __attribute__((always_inline)) m_pool_s *___get_dma_pool(m_bush_t bush) |
| 1012 | { |
| 1013 | m_pool_s *mp; |
| 1014 | for (mp = mp0.next; mp && mp->bush != bush; mp = mp->next); |
| 1015 | return mp; |
| 1016 | } |
| 1017 | |
| 1018 | static m_pool_s *___cre_dma_pool(m_bush_t bush) |
| 1019 | { |
| 1020 | m_pool_s *mp; |
| 1021 | mp = __m_calloc(&mp0, sizeof(*mp), "MPOOL")__m_calloc2(&mp0, sizeof(*mp), "MPOOL", 1); |
| 1022 | if (mp) { |
| 1023 | bzero(mp, sizeof(*mp))(__builtin_constant_p(0) ? (__builtin_constant_p(((sizeof(*mp )))) ? __constant_c_and_count_memset((((mp))),((0x01010101UL* (unsigned char)(0))),(((sizeof(*mp))))) : __constant_c_memset ((((mp))),((0x01010101UL*(unsigned char)(0))),(((sizeof(*mp)) )))) : (__builtin_constant_p(((sizeof(*mp)))) ? __memset_generic (((((mp)))),(((0))),((((sizeof(*mp)))))) : __memset_generic(( ((mp))),((0)),(((sizeof(*mp))))))); |
| 1024 | mp->bush = bush; |
| 1025 | mp->getp = ___dma_getp; |
| 1026 | mp->freep = ___dma_freep; |
| 1027 | mp->next = mp0.next; |
| 1028 | mp0.next = mp; |
| 1029 | } |
| 1030 | return mp; |
| 1031 | } |
| 1032 | |
| 1033 | static void ___del_dma_pool(m_pool_s *p) |
| 1034 | { |
| 1035 | struct m_pool **pp = &mp0.next; |
| 1036 | |
| 1037 | while (*pp && *pp != p) |
| 1038 | pp = &(*pp)->next; |
| 1039 | if (*pp) { |
| 1040 | *pp = (*pp)->next; |
| 1041 | __m_free(&mp0, p, sizeof(*p), "MPOOL"); |
| 1042 | } |
| 1043 | } |
| 1044 | |
| 1045 | static void *__m_calloc_dma(m_bush_t bush, int size, char *name)m_calloc(int size, char *name) |
| 1046 | { |
| 1047 | u_longunsigned long flags; |
| 1048 | struct m_pool *mp; |
| 1049 | void *m = 0; |
| 1050 | |
| 1051 | NCR_LOCK_DRIVER(flags)do { __asm__ __volatile__("pushf ; pop %0" : "=r" (flags): :"memory" ); __asm__ __volatile__ ("cli": : :"memory"); } while (0); |
| 1052 | mp = ___get_dma_pool(bush); |
| 1053 | if (!mp) |
| 1054 | mp = ___cre_dma_pool(bush); |
| 1055 | if (mp) |
| 1056 | m = __m_calloc(mp, size, name)__m_calloc2(mp, size, name, 1); |
| 1057 | if (mp && !mp->nump) |
| 1058 | ___del_dma_pool(mp); |
| 1059 | NCR_UNLOCK_DRIVER(flags)do { __asm__ __volatile__("push %0 ; popf": :"g" (flags):"memory" ); } while (0); |
| 1060 | |
| 1061 | return m; |
| 1062 | } |
| 1063 | |
| 1064 | static void __m_free_dma(m_bush_t bush, void *m, int size, char *name)m_free(void *m, int size, char *name) |
| 1065 | { |
| 1066 | u_longunsigned long flags; |
| 1067 | struct m_pool *mp; |
| 1068 | |
| 1069 | NCR_LOCK_DRIVER(flags)do { __asm__ __volatile__("pushf ; pop %0" : "=r" (flags): :"memory" ); __asm__ __volatile__ ("cli": : :"memory"); } while (0); |
| 1070 | mp = ___get_dma_pool(bush); |
| 1071 | if (mp) |
| 1072 | __m_free(mp, m, size, name); |
| 1073 | if (mp && !mp->nump) |
| 1074 | ___del_dma_pool(mp); |
| 1075 | NCR_UNLOCK_DRIVER(flags)do { __asm__ __volatile__("push %0 ; popf": :"g" (flags):"memory" ); } while (0); |
| 1076 | } |
| 1077 | |
| 1078 | static m_addr_t __vtobus(m_bush_t bush, void *m)virt_to_phys(void *m) |
| 1079 | { |
| 1080 | u_longunsigned long flags; |
| 1081 | m_pool_s *mp; |
| 1082 | int hc = VTOB_HASH_CODE(m); |
| 1083 | m_vtob_s *vp = 0; |
| 1084 | m_addr_t a = ((m_addr_t) m) & ~MEMO_CLUSTER_MASK((1UL << (12 +1))-1); |
| 1085 | |
| 1086 | NCR_LOCK_DRIVER(flags)do { __asm__ __volatile__("pushf ; pop %0" : "=r" (flags): :"memory" ); __asm__ __volatile__ ("cli": : :"memory"); } while (0); |
| 1087 | mp = ___get_dma_pool(bush); |
| 1088 | if (mp) { |
| 1089 | vp = mp->vtob[hc]; |
| 1090 | while (vp && (m_addr_t) vp->vaddr != a) |
| 1091 | vp = vp->next; |
| 1092 | } |
| 1093 | NCR_UNLOCK_DRIVER(flags)do { __asm__ __volatile__("push %0 ; popf": :"g" (flags):"memory" ); } while (0); |
| 1094 | return vp ? vp->baddr + (((m_addr_t) m) - a) : 0; |
| 1095 | } |
| 1096 | |
| 1097 | #endif /* SCSI_NCR_DYNAMIC_DMA_MAPPING */ |
| 1098 | |
| 1099 | #define _m_calloc_dma(np, s, n)m_calloc(s, n) __m_calloc_dma(np->pdev, s, n)m_calloc(s, n) |
| 1100 | #define _m_free_dma(np, p, s, n)m_free(p, s, n) __m_free_dma(np->pdev, p, s, n)m_free(p, s, n) |
| 1101 | #define m_calloc_dma(s, n)m_calloc(s, n) _m_calloc_dma(np, s, n)m_calloc(s, n) |
| 1102 | #define m_free_dma(p, s, n)m_free(p, s, n) _m_free_dma(np, p, s, n)m_free(p, s, n) |
| 1103 | #define _vtobus(np, p)virt_to_phys(p) __vtobus(np->pdev, p)virt_to_phys(p) |
| 1104 | #define vtobus(p)virt_to_phys(p) _vtobus(np, p)virt_to_phys(p) |
| 1105 | |
| 1106 | /* |
| 1107 | * Deal with DMA mapping/unmapping. |
| 1108 | */ |
| 1109 | |
| 1110 | #ifndef SCSI_NCR_DYNAMIC_DMA_MAPPING |
| 1111 | |
| 1112 | /* Linux versions prior to pci bus iommu kernel interface */ |
| 1113 | |
| 1114 | #define __unmap_scsi_data(pdev, cmd)do {; } while (0) do {; } while (0) |
| 1115 | #define __map_scsi_single_data(pdev, cmd)(virt_to_phys((cmd)->request_buffer)) (__vtobus(pdev,(cmd)->request_buffer)virt_to_phys((cmd)->request_buffer)) |
| 1116 | #define __map_scsi_sg_data(pdev, cmd)((cmd)->use_sg) ((cmd)->use_sg) |
| 1117 | #define __sync_scsi_data(pdev, cmd)do {; } while (0) do {; } while (0) |
| 1118 | |
| 1119 | #define scsi_sg_dma_address(sc)virt_to_phys((sc)->address) vtobus((sc)->address)virt_to_phys((sc)->address) |
| 1120 | #define scsi_sg_dma_len(sc)((sc)->length) ((sc)->length) |
| 1121 | |
| 1122 | #else |
| 1123 | |
| 1124 | /* Linux version with pci bus iommu kernel interface */ |
| 1125 | |
| 1126 | /* To keep track of the dma mapping (sg/single) that has been set */ |
| 1127 | #define __data_mapped SCp.phase |
| 1128 | #define __data_mapping SCp.have_data_in |
| 1129 | |
| 1130 | static void __unmap_scsi_data(pcidev_t pdev, Scsi_Cmnd *cmd)do {; } while (0) |
| 1131 | { |
| 1132 | int dma_dir = scsi_to_pci_dma_dir(cmd->sc_data_direction); |
| 1133 | |
| 1134 | switch(cmd->__data_mapped) { |
| 1135 | case 2: |
| 1136 | pci_unmap_sg(pdev, cmd->buffer, cmd->use_sg, dma_dir); |
| 1137 | break; |
| 1138 | case 1: |
| 1139 | pci_unmap_single(pdev, cmd->__data_mapping, |
| 1140 | cmd->request_bufflen, dma_dir); |
| 1141 | break; |
| 1142 | } |
| 1143 | cmd->__data_mapped = 0; |
| 1144 | } |
| 1145 | |
| 1146 | static u_longunsigned long __map_scsi_single_data(pcidev_t pdev, Scsi_Cmnd *cmd)(virt_to_phys((Scsi_Cmnd *cmd)->request_buffer)) |
| 1147 | { |
| 1148 | dma_addr_t mapping; |
| 1149 | int dma_dir = scsi_to_pci_dma_dir(cmd->sc_data_direction); |
| 1150 | |
| 1151 | if (cmd->request_bufflen == 0) |
| 1152 | return 0; |
| 1153 | |
| 1154 | mapping = pci_map_single(pdev, cmd->request_buffer, |
| 1155 | cmd->request_bufflen, dma_dir); |
| 1156 | cmd->__data_mapped = 1; |
| 1157 | cmd->__data_mapping = mapping; |
| 1158 | |
| 1159 | return mapping; |
| 1160 | } |
| 1161 | |
| 1162 | static int __map_scsi_sg_data(pcidev_t pdev, Scsi_Cmnd *cmd)((Scsi_Cmnd *cmd)->use_sg) |
| 1163 | { |
| 1164 | int use_sg; |
| 1165 | int dma_dir = scsi_to_pci_dma_dir(cmd->sc_data_direction); |
| 1166 | |
| 1167 | if (cmd->use_sg == 0) |
| 1168 | return 0; |
| 1169 | |
| 1170 | use_sg = pci_map_sg(pdev, cmd->buffer, cmd->use_sg, dma_dir); |
| 1171 | cmd->__data_mapped = 2; |
| 1172 | cmd->__data_mapping = use_sg; |
| 1173 | |
| 1174 | return use_sg; |
| 1175 | } |
| 1176 | |
| 1177 | static void __sync_scsi_data(pcidev_t pdev, Scsi_Cmnd *cmd)do {; } while (0) |
| 1178 | { |
| 1179 | int dma_dir = scsi_to_pci_dma_dir(cmd->sc_data_direction); |
| 1180 | |
| 1181 | switch(cmd->__data_mapped) { |
| 1182 | case 2: |
| 1183 | pci_dma_sync_sg(pdev, cmd->buffer, cmd->use_sg, dma_dir); |
| 1184 | break; |
| 1185 | case 1: |
| 1186 | pci_dma_sync_single(pdev, cmd->__data_mapping, |
| 1187 | cmd->request_bufflen, dma_dir); |
| 1188 | break; |
| 1189 | } |
| 1190 | } |
| 1191 | |
| 1192 | #define scsi_sg_dma_address(sc)virt_to_phys((sc)->address) sg_dma_address(sc) |
| 1193 | #define scsi_sg_dma_len(sc)((sc)->length) sg_dma_len(sc) |
| 1194 | |
| 1195 | #endif /* SCSI_NCR_DYNAMIC_DMA_MAPPING */ |
| 1196 | |
| 1197 | #define unmap_scsi_data(np, cmd)do {; } while (0) __unmap_scsi_data(np->pdev, cmd)do {; } while (0) |
| 1198 | #define map_scsi_single_data(np, cmd)(virt_to_phys((cmd)->request_buffer)) __map_scsi_single_data(np->pdev, cmd)(virt_to_phys((cmd)->request_buffer)) |
| 1199 | #define map_scsi_sg_data(np, cmd)((cmd)->use_sg) __map_scsi_sg_data(np->pdev, cmd)((cmd)->use_sg) |
| 1200 | #define sync_scsi_data(np, cmd)do {; } while (0) __sync_scsi_data(np->pdev, cmd)do {; } while (0) |
| 1201 | |
| 1202 | |
| 1203 | /* |
| 1204 | * Print out some buffer. |
| 1205 | */ |
| 1206 | static void ncr_print_hex(u_charunsigned char *p, int n) |
| 1207 | { |
| 1208 | while (n-- > 0) |
| 1209 | printk (" %x", *p++); |
| 1210 | } |
| 1211 | |
| 1212 | static void ncr_printl_hex(char *label, u_charunsigned char *p, int n) |
| 1213 | { |
| 1214 | printk("%s", label); |
| 1215 | ncr_print_hex(p, n); |
| 1216 | printk (".\n"); |
| 1217 | } |
| 1218 | |
| 1219 | /* |
| 1220 | ** Transfer direction |
| 1221 | ** |
| 1222 | ** Until some linux kernel version near 2.3.40, low-level scsi |
| 1223 | ** drivers were not told about data transfer direction. |
| 1224 | ** We check the existence of this feature that has been expected |
| 1225 | ** for a _long_ time by all SCSI driver developers by just |
| 1226 | ** testing against the definition of SCSI_DATA_UNKNOWN. Indeed |
| 1227 | ** this is a hack, but testing against a kernel version would |
| 1228 | ** have been a shame. ;-) |
| 1229 | */ |
| 1230 | #ifdef SCSI_DATA_UNKNOWN0 |
| 1231 | |
| 1232 | #define scsi_data_direction(cmd) (cmd->sc_data_direction) |
| 1233 | |
| 1234 | #else |
| 1235 | |
| 1236 | #define SCSI_DATA_UNKNOWN0 0 |
| 1237 | #define SCSI_DATA_WRITE1 1 |
| 1238 | #define SCSI_DATA_READ2 2 |
| 1239 | #define SCSI_DATA_NONE3 3 |
| 1240 | |
| 1241 | static __inline____inline__ __attribute__((always_inline)) int scsi_data_direction(Scsi_Cmnd *cmd) |
| 1242 | { |
| 1243 | int direction; |
| 1244 | |
| 1245 | switch((int) cmd->cmnd[0]) { |
| 1246 | case 0x08: /* READ(6) 08 */ |
| 1247 | case 0x28: /* READ(10) 28 */ |
| 1248 | case 0xA8: /* READ(12) A8 */ |
| 1249 | direction = SCSI_DATA_READ2; |
| 1250 | break; |
| 1251 | case 0x0A: /* WRITE(6) 0A */ |
| 1252 | case 0x2A: /* WRITE(10) 2A */ |
| 1253 | case 0xAA: /* WRITE(12) AA */ |
| 1254 | direction = SCSI_DATA_WRITE1; |
| 1255 | break; |
| 1256 | default: |
| 1257 | direction = SCSI_DATA_UNKNOWN0; |
| 1258 | break; |
| 1259 | } |
| 1260 | |
| 1261 | return direction; |
| 1262 | } |
| 1263 | |
| 1264 | #endif /* SCSI_DATA_UNKNOWN */ |
| 1265 | |
| 1266 | /* |
| 1267 | ** Head of list of NCR boards |
| 1268 | ** |
| 1269 | ** For kernel version < 1.3.70, host is retrieved by its irq level. |
| 1270 | ** For later kernels, the internal host control block address |
| 1271 | ** (struct ncb) is used as device id parameter of the irq stuff. |
| 1272 | */ |
| 1273 | |
| 1274 | static struct Scsi_Host *first_host = NULL((void *) 0); |
| 1275 | |
| 1276 | |
| 1277 | /* |
| 1278 | ** /proc directory entry and proc_info function |
| 1279 | */ |
| 1280 | #ifdef SCSI_NCR_PROC_INFO_SUPPORT |
| 1281 | #if LINUX_VERSION_CODE131108 < LinuxVersionCode(2,3,27)(((2)<<16)+((3)<<8)+(27)) |
| 1282 | static struct proc_dir_entry proc_scsi_sym53c8xx = { |
| 1283 | PROC_SCSI_SYM53C8XX, 9, NAME53C8XX"sym53c8xx", |
| 1284 | S_IFDIR0040000 | S_IRUGO(00400|00040|00004) | S_IXUGO(00100|00010|00001), 2 |
| 1285 | }; |
| 1286 | #endif |
| 1287 | static int sym53c8xx_proc_info(char *buffer, char **start, off_t offset, |
| 1288 | int length, int hostno, int func); |
| 1289 | #endif |
| 1290 | |
| 1291 | /* |
| 1292 | ** Driver setup. |
| 1293 | ** |
| 1294 | ** This structure is initialized from linux config options. |
| 1295 | ** It can be overridden at boot-up by the boot command line. |
| 1296 | */ |
| 1297 | static struct ncr_driver_setup |
| 1298 | driver_setup = SCSI_NCR_DRIVER_SETUP{ (1), (1), (1), (3), (3), (0), 0, 0, 1, 0, (0), (250/((20))) , 0x00, 7, (0), 1, (2), (0), 0, 1, 0, 0, 255, 0x00 }; |
| 1299 | |
| 1300 | #ifdef SCSI_NCR_BOOT_COMMAND_LINE_SUPPORT |
| 1301 | static struct ncr_driver_setup |
| 1302 | driver_safe_setup __initdata = SCSI_NCR_DRIVER_SAFE_SETUP{ 0, 1, 0, 0, 0, 0, 0, 0, 1, 2, 0, 255, 0x00, 255, 0, 0, 10, 1 , 1, 1, 0, 0, 255 }; |
| 1303 | # ifdef MODULE |
| 1304 | char *sym53c8xx = 0; /* command line passed by insmod */ |
| 1305 | # if LINUX_VERSION_CODE131108 >= LinuxVersionCode(2,1,30)(((2)<<16)+((1)<<8)+(30)) |
| 1306 | MODULE_PARM(sym53c8xx, "s"); |
| 1307 | # endif |
| 1308 | # endif |
| 1309 | #endif |
| 1310 | |
| 1311 | /* |
| 1312 | ** Other Linux definitions |
| 1313 | */ |
| 1314 | #define SetScsiResult(cmd, h_sts, s_sts)cmd->result = (((h_sts) << 16) + ((s_sts) & 0x7f )) \ |
| 1315 | cmd->result = (((h_sts) << 16) + ((s_sts) & 0x7f)) |
| 1316 | |
| 1317 | /* We may have to remind our amnesiac SCSI layer of the reason of the abort */ |
| 1318 | #if 0 |
| 1319 | #define SetScsiAbortResult(cmd)cmd->result = (((0x05) << 16) + ((0xff) & 0x7f)) \ |
| 1320 | SetScsiResult( \cmd->result = ((((cmd)->abort_reason == 0x03 ? 0x03 : 0x05 ) << 16) + ((0xff) & 0x7f)) |
| 1321 | cmd, \cmd->result = ((((cmd)->abort_reason == 0x03 ? 0x03 : 0x05 ) << 16) + ((0xff) & 0x7f)) |
| 1322 | (cmd)->abort_reason == DID_TIME_OUT ? DID_TIME_OUT : DID_ABORT, \cmd->result = ((((cmd)->abort_reason == 0x03 ? 0x03 : 0x05 ) << 16) + ((0xff) & 0x7f)) |
| 1323 | 0xff)cmd->result = ((((cmd)->abort_reason == 0x03 ? 0x03 : 0x05 ) << 16) + ((0xff) & 0x7f)) |
| 1324 | #else |
| 1325 | #define SetScsiAbortResult(cmd)cmd->result = (((0x05) << 16) + ((0xff) & 0x7f)) SetScsiResult(cmd, DID_ABORT, 0xff)cmd->result = (((0x05) << 16) + ((0xff) & 0x7f)) |
| 1326 | #endif |
| 1327 | |
| 1328 | static void sym53c8xx_select_queue_depths( |
| 1329 | struct Scsi_Host *host, struct scsi_device *devlist); |
| 1330 | static void sym53c8xx_intr(int irq, void *dev_id, struct pt_regs * regs); |
| 1331 | static void sym53c8xx_timeout(unsigned long np); |
| 1332 | |
| 1333 | #define initverbose(driver_setup.verbose) (driver_setup.verbose) |
| 1334 | #define bootverbose(np->verbose) (np->verbose) |
| 1335 | |
| 1336 | #ifdef SCSI_NCR_NVRAM_SUPPORT |
| 1337 | static u_charunsigned char Tekram_sync[16] __initdata = |
| 1338 | {25,31,37,43, 50,62,75,125, 12,15,18,21, 6,7,9,10}; |
| 1339 | #endif /* SCSI_NCR_NVRAM_SUPPORT */ |
| 1340 | |
| 1341 | /* |
| 1342 | ** Structures used by sym53c8xx_detect/sym53c8xx_pci_init to |
| 1343 | ** transmit device configuration to the ncr_attach() function. |
| 1344 | */ |
| 1345 | typedef struct { |
| 1346 | int bus; |
| 1347 | u_charunsigned char device_fn; |
| 1348 | u_longunsigned long base; |
| 1349 | u_longunsigned long base_2; |
| 1350 | u_longunsigned long io_port; |
| 1351 | int irq; |
| 1352 | /* port and reg fields to use INB, OUTB macros */ |
| 1353 | u_longunsigned long base_io; |
| 1354 | volatile struct ncr_reg *reg; |
| 1355 | } ncr_slot; |
| 1356 | |
| 1357 | typedef struct { |
| 1358 | int type; |
| 1359 | #define SCSI_NCR_SYMBIOS_NVRAM(1) (1) |
| 1360 | #define SCSI_NCR_TEKRAM_NVRAM(2) (2) |
| 1361 | #ifdef SCSI_NCR_NVRAM_SUPPORT |
| 1362 | union { |
| 1363 | Symbios_nvram Symbios; |
| 1364 | Tekram_nvram Tekram; |
| 1365 | } data; |
| 1366 | #endif |
| 1367 | } ncr_nvram; |
| 1368 | |
| 1369 | /* |
| 1370 | ** Structure used by sym53c8xx_detect/sym53c8xx_pci_init |
| 1371 | ** to save data on each detected board for ncr_attach(). |
| 1372 | */ |
| 1373 | typedef struct { |
| 1374 | pcidev_t pdev; |
| 1375 | ncr_slot slot; |
| 1376 | ncr_chip chip; |
| 1377 | ncr_nvram *nvram; |
| 1378 | u_charunsigned char host_id; |
| 1379 | #ifdef SCSI_NCR_PQS_PDS_SUPPORT |
| 1380 | u_charunsigned char pqs_pds; |
| 1381 | #endif |
| 1382 | int attach_done; |
| 1383 | } ncr_device; |
| 1384 | |
| 1385 | /*========================================================== |
| 1386 | ** |
| 1387 | ** assert () |
| 1388 | ** |
| 1389 | **========================================================== |
| 1390 | ** |
| 1391 | ** modified copy from 386bsd:/usr/include/sys/assert.h |
| 1392 | ** |
| 1393 | **---------------------------------------------------------- |
| 1394 | */ |
| 1395 | |
| 1396 | #define assert(expression){ if (!(expression)) { (void)panic( "assertion \"%s\" failed: file \"%s\", line %d\n" , "expression", "../linux/src/drivers/scsi/sym53c8xx.c", 1396 ); } } { \ |
| 1397 | if (!(expression)) { \ |
| 1398 | (void)panic( \ |
| 1399 | "assertion \"%s\" failed: file \"%s\", line %d\n", \ |
| 1400 | #expression, \ |
| 1401 | __FILE__"../linux/src/drivers/scsi/sym53c8xx.c", __LINE__1401); \ |
| 1402 | } \ |
| 1403 | } |
| 1404 | |
| 1405 | /*========================================================== |
| 1406 | ** |
| 1407 | ** Command control block states. |
| 1408 | ** |
| 1409 | **========================================================== |
| 1410 | */ |
| 1411 | |
| 1412 | #define HS_IDLE(0) (0) |
| 1413 | #define HS_BUSY(1) (1) |
| 1414 | #define HS_NEGOTIATE(2) (2) /* sync/wide data transfer*/ |
| 1415 | #define HS_DISCONNECT(3) (3) /* Disconnected by target */ |
| 1416 | |
| 1417 | #define HS_DONEMASK(0x80) (0x80) |
| 1418 | #define HS_COMPLETE(4|(0x80)) (4|HS_DONEMASK(0x80)) |
| 1419 | #define HS_SEL_TIMEOUT(5|(0x80)) (5|HS_DONEMASK(0x80)) /* Selection timeout */ |
| 1420 | #define HS_RESET(6|(0x80)) (6|HS_DONEMASK(0x80)) /* SCSI reset */ |
| 1421 | #define HS_ABORTED(7|(0x80)) (7|HS_DONEMASK(0x80)) /* Transfer aborted */ |
| 1422 | #define HS_TIMEOUT(8|(0x80)) (8|HS_DONEMASK(0x80)) /* Software timeout */ |
| 1423 | #define HS_FAIL(9|(0x80)) (9|HS_DONEMASK(0x80)) /* SCSI or PCI bus errors */ |
| 1424 | #define HS_UNEXPECTED(10|(0x80)) (10|HS_DONEMASK(0x80))/* Unexpected disconnect */ |
| 1425 | |
| 1426 | #define DSA_INVALID0xffffffff 0xffffffff |
| 1427 | |
| 1428 | /*========================================================== |
| 1429 | ** |
| 1430 | ** Software Interrupt Codes |
| 1431 | ** |
| 1432 | **========================================================== |
| 1433 | */ |
| 1434 | |
| 1435 | #define SIR_BAD_STATUS(1) (1) |
| 1436 | #define SIR_SEL_ATN_NO_MSG_OUT(2) (2) |
| 1437 | #define SIR_MSG_RECEIVED(3) (3) |
| 1438 | #define SIR_MSG_WEIRD(4) (4) |
| 1439 | #define SIR_NEGO_FAILED(5) (5) |
| 1440 | #define SIR_NEGO_PROTO(6) (6) |
| 1441 | #define SIR_SCRIPT_STOPPED(7) (7) |
| 1442 | #define SIR_REJECT_TO_SEND(8) (8) |
| 1443 | #define SIR_SWIDE_OVERRUN(9) (9) |
| 1444 | #define SIR_SODL_UNDERRUN(10) (10) |
| 1445 | #define SIR_RESEL_NO_MSG_IN(11) (11) |
| 1446 | #define SIR_RESEL_NO_IDENTIFY(12) (12) |
| 1447 | #define SIR_RESEL_BAD_LUN(13) (13) |
| 1448 | #define SIR_TARGET_SELECTED(14) (14) |
| 1449 | #define SIR_RESEL_BAD_I_T_L(15) (15) |
| 1450 | #define SIR_RESEL_BAD_I_T_L_Q(16) (16) |
| 1451 | #define SIR_ABORT_SENT(17) (17) |
| 1452 | #define SIR_RESEL_ABORTED(18) (18) |
| 1453 | #define SIR_MSG_OUT_DONE(19) (19) |
| 1454 | #define SIR_AUTO_SENSE_DONE(20) (20) |
| 1455 | #define SIR_DUMMY_INTERRUPT(21) (21) |
| 1456 | #define SIR_DATA_OVERRUN(22) (22) |
| 1457 | #define SIR_BAD_PHASE(23) (23) |
| 1458 | #define SIR_MAX(23) (23) |
| 1459 | |
| 1460 | /*========================================================== |
| 1461 | ** |
| 1462 | ** Extended error bits. |
| 1463 | ** xerr_status field of struct ccb. |
| 1464 | ** |
| 1465 | **========================================================== |
| 1466 | */ |
| 1467 | |
| 1468 | #define XE_EXTRA_DATA(1) (1) /* unexpected data phase */ |
| 1469 | #define XE_BAD_PHASE(2) (2) /* illegal phase (4/5) */ |
| 1470 | #define XE_PARITY_ERR(4) (4) /* unrecovered SCSI parity error */ |
| 1471 | #define XE_SODL_UNRUN(1<<3) (1<<3) |
| 1472 | #define XE_SWIDE_OVRUN(1<<4) (1<<4) |
| 1473 | |
| 1474 | /*========================================================== |
| 1475 | ** |
| 1476 | ** Negotiation status. |
| 1477 | ** nego_status field of struct ccb. |
| 1478 | ** |
| 1479 | **========================================================== |
| 1480 | */ |
| 1481 | |
| 1482 | #define NS_NOCHANGE(0) (0) |
| 1483 | #define NS_SYNC(1) (1) |
| 1484 | #define NS_WIDE(2) (2) |
| 1485 | #define NS_PPR(4) (4) |
| 1486 | |
| 1487 | /*========================================================== |
| 1488 | ** |
| 1489 | ** "Special features" of targets. |
| 1490 | ** quirks field of struct tcb. |
| 1491 | ** actualquirks field of struct ccb. |
| 1492 | ** |
| 1493 | **========================================================== |
| 1494 | */ |
| 1495 | |
| 1496 | #define QUIRK_AUTOSAVE(0x01) (0x01) |
| 1497 | |
| 1498 | /*========================================================== |
| 1499 | ** |
| 1500 | ** Capability bits in Inquire response byte 7. |
| 1501 | ** |
| 1502 | **========================================================== |
| 1503 | */ |
| 1504 | |
| 1505 | #define INQ7_QUEUE(0x02) (0x02) |
| 1506 | #define INQ7_SYNC(0x10) (0x10) |
| 1507 | #define INQ7_WIDE16(0x20) (0x20) |
| 1508 | |
| 1509 | /*========================================================== |
| 1510 | ** |
| 1511 | ** A CCB hashed table is used to retrieve CCB address |
| 1512 | ** from DSA value. |
| 1513 | ** |
| 1514 | **========================================================== |
| 1515 | */ |
| 1516 | |
| 1517 | #define CCB_HASH_SHIFT8 8 |
| 1518 | #define CCB_HASH_SIZE(1UL << 8) (1UL << CCB_HASH_SHIFT8) |
| 1519 | #define CCB_HASH_MASK((1UL << 8)-1) (CCB_HASH_SIZE(1UL << 8)-1) |
| 1520 | #define CCB_HASH_CODE(dsa)(((dsa) >> 11) & ((1UL << 8)-1)) (((dsa) >> 11) & CCB_HASH_MASK((1UL << 8)-1)) |
| 1521 | |
| 1522 | /*========================================================== |
| 1523 | ** |
| 1524 | ** Declaration of structs. |
| 1525 | ** |
| 1526 | **========================================================== |
| 1527 | */ |
| 1528 | |
| 1529 | struct tcb; |
| 1530 | struct lcb; |
| 1531 | struct ccb; |
| 1532 | struct ncb; |
| 1533 | struct script; |
| 1534 | |
| 1535 | typedef struct ncb * ncb_p; |
| 1536 | typedef struct tcb * tcb_p; |
| 1537 | typedef struct lcb * lcb_p; |
| 1538 | typedef struct ccb * ccb_p; |
| 1539 | |
| 1540 | struct link { |
| 1541 | ncrcmd l_cmd; |
| 1542 | ncrcmd l_paddr; |
| 1543 | }; |
| 1544 | |
| 1545 | struct usrcmd { |
| 1546 | u_longunsigned long target; |
| 1547 | u_longunsigned long lun; |
| 1548 | u_longunsigned long data; |
| 1549 | u_longunsigned long cmd; |
| 1550 | }; |
| 1551 | |
| 1552 | #define UC_SETSYNC10 10 |
| 1553 | #define UC_SETTAGS11 11 |
| 1554 | #define UC_SETDEBUG12 12 |
| 1555 | #define UC_SETORDER13 13 |
| 1556 | #define UC_SETWIDE14 14 |
| 1557 | #define UC_SETFLAG15 15 |
| 1558 | #define UC_SETVERBOSE17 17 |
| 1559 | #define UC_RESETDEV18 18 |
| 1560 | #define UC_CLEARDEV19 19 |
| 1561 | |
| 1562 | #define UF_TRACE(0x01) (0x01) |
| 1563 | #define UF_NODISC(0x02) (0x02) |
| 1564 | #define UF_NOSCAN(0x04) (0x04) |
| 1565 | |
| 1566 | /*======================================================================== |
| 1567 | ** |
| 1568 | ** Declaration of structs: target control block |
| 1569 | ** |
| 1570 | **======================================================================== |
| 1571 | */ |
| 1572 | struct tcb { |
| 1573 | /*---------------------------------------------------------------- |
| 1574 | ** LUN tables. |
| 1575 | ** An array of bus addresses is used on reselection by |
| 1576 | ** the SCRIPT. |
| 1577 | **---------------------------------------------------------------- |
| 1578 | */ |
| 1579 | u_int32 *luntbl; /* lcbs bus address table */ |
| 1580 | u_int32 b_luntbl; /* bus address of this table */ |
| 1581 | u_int32 b_lun0; /* bus address of lun0 */ |
| 1582 | lcb_p l0p; /* lcb of LUN #0 (normal case) */ |
| 1583 | #if MAX_LUN64 > 1 |
| 1584 | lcb_p *lmp; /* Other lcb's [1..MAX_LUN] */ |
| 1585 | #endif |
| 1586 | /*---------------------------------------------------------------- |
| 1587 | ** Target capabilities. |
| 1588 | **---------------------------------------------------------------- |
| 1589 | */ |
| 1590 | u_charunsigned char inq_done; /* Target capabilities received */ |
| 1591 | u_charunsigned char inq_byte7; /* Contains these capabilities */ |
| 1592 | |
| 1593 | /*---------------------------------------------------------------- |
| 1594 | ** Some flags. |
| 1595 | **---------------------------------------------------------------- |
| 1596 | */ |
| 1597 | u_charunsigned char to_reset; /* This target is to be reset */ |
| 1598 | |
| 1599 | /*---------------------------------------------------------------- |
| 1600 | ** Pointer to the ccb used for negotiation. |
| 1601 | ** Prevent from starting a negotiation for all queued commands |
| 1602 | ** when tagged command queuing is enabled. |
| 1603 | **---------------------------------------------------------------- |
| 1604 | */ |
| 1605 | ccb_p nego_cp; |
| 1606 | |
| 1607 | /*---------------------------------------------------------------- |
| 1608 | ** negotiation of wide and synch transfer and device quirks. |
| 1609 | ** sval, wval and uval are read from SCRIPTS and so have alignment |
| 1610 | ** constraints. |
| 1611 | **---------------------------------------------------------------- |
| 1612 | */ |
| 1613 | /*0*/ u_charunsigned char minsync; |
| 1614 | /*1*/ u_charunsigned char sval; |
| 1615 | /*2*/ u_shortunsigned short period; |
| 1616 | /*0*/ u_charunsigned char maxoffs; |
| 1617 | /*1*/ u_charunsigned char quirks; |
| 1618 | /*2*/ u_charunsigned char widedone; |
| 1619 | /*3*/ u_charunsigned char wval; |
| 1620 | /*0*/ u_charunsigned char uval; |
| 1621 | |
| 1622 | #ifdef SCSI_NCR_INTEGRITY_CHECKING |
| 1623 | u_charunsigned char ic_min_sync; |
| 1624 | u_charunsigned char ic_max_width; |
| 1625 | u_charunsigned char ic_done; |
| 1626 | #endif |
| 1627 | u_charunsigned char ic_maximums_set; |
| 1628 | u_charunsigned char ppr_negotiation; |
| 1629 | |
| 1630 | /*---------------------------------------------------------------- |
| 1631 | ** User settable limits and options. |
| 1632 | ** These limits are read from the NVRAM if present. |
| 1633 | **---------------------------------------------------------------- |
| 1634 | */ |
| 1635 | u_charunsigned char usrsync; |
| 1636 | u_charunsigned char usrwide; |
| 1637 | u_shortunsigned short usrtags; |
| 1638 | u_charunsigned char usrflag; |
| 1639 | }; |
| 1640 | |
| 1641 | /*======================================================================== |
| 1642 | ** |
| 1643 | ** Declaration of structs: lun control block |
| 1644 | ** |
| 1645 | **======================================================================== |
| 1646 | */ |
| 1647 | struct lcb { |
| 1648 | /*---------------------------------------------------------------- |
| 1649 | ** On reselection, SCRIPTS use this value as a JUMP address |
| 1650 | ** after the IDENTIFY has been successfully received. |
| 1651 | ** This field is set to 'resel_tag' if TCQ is enabled and |
| 1652 | ** to 'resel_notag' if TCQ is disabled. |
| 1653 | ** (Must be at zero due to bad lun handling on reselection) |
| 1654 | **---------------------------------------------------------------- |
| 1655 | */ |
| 1656 | /*0*/ u_int32 resel_task; |
| 1657 | |
| 1658 | /*---------------------------------------------------------------- |
| 1659 | ** Task table used by the script processor to retrieve the |
| 1660 | ** task corresponding to a reselected nexus. The TAG is used |
| 1661 | ** as offset to determine the corresponding entry. |
| 1662 | ** Each entry contains the associated CCB bus address. |
| 1663 | **---------------------------------------------------------------- |
| 1664 | */ |
| 1665 | u_int32 tasktbl_0; /* Used if TCQ not enabled */ |
| 1666 | u_int32 *tasktbl; |
| 1667 | u_int32 b_tasktbl; |
| 1668 | |
| 1669 | /*---------------------------------------------------------------- |
| 1670 | ** CCB queue management. |
| 1671 | **---------------------------------------------------------------- |
| 1672 | */ |
| 1673 | XPT_QUEHEAD busy_ccbq; /* Queue of busy CCBs */ |
| 1674 | XPT_QUEHEAD wait_ccbq; /* Queue of waiting for IO CCBs */ |
| 1675 | u_shortunsigned short busyccbs; /* CCBs busy for this lun */ |
| 1676 | u_shortunsigned short queuedccbs; /* CCBs queued to the controller*/ |
| 1677 | u_shortunsigned short queuedepth; /* Queue depth for this lun */ |
| 1678 | u_shortunsigned short scdev_depth; /* SCSI device queue depth */ |
| 1679 | u_shortunsigned short maxnxs; /* Max possible nexuses */ |
| 1680 | |
| 1681 | /*---------------------------------------------------------------- |
| 1682 | ** Control of tagged command queuing. |
| 1683 | ** Tags allocation is performed using a circular buffer. |
| 1684 | ** This avoids using a loop for tag allocation. |
| 1685 | **---------------------------------------------------------------- |
| 1686 | */ |
| 1687 | u_shortunsigned short ia_tag; /* Tag allocation index */ |
| 1688 | u_shortunsigned short if_tag; /* Tag release index */ |
| 1689 | u_charunsigned char *cb_tags; /* Circular tags buffer */ |
| 1690 | u_charunsigned char inq_byte7; /* Store unit CmdQ capability */ |
| 1691 | u_charunsigned char usetags; /* Command queuing is active */ |
| 1692 | u_charunsigned char to_clear; /* User wants to clear all tasks*/ |
| 1693 | u_shortunsigned short maxtags; /* Max NR of tags asked by user */ |
| 1694 | u_shortunsigned short numtags; /* Current number of tags */ |
| 1695 | |
| 1696 | /*---------------------------------------------------------------- |
| 1697 | ** QUEUE FULL and ORDERED tag control. |
| 1698 | **---------------------------------------------------------------- |
| 1699 | */ |
| 1700 | u_shortunsigned short num_good; /* Nr of GOOD since QUEUE FULL */ |
| 1701 | u_shortunsigned short tags_sum[2]; /* Tags sum counters */ |
| 1702 | u_charunsigned char tags_si; /* Current index to tags sum */ |
| 1703 | u_longunsigned long tags_stime; /* Last time we switch tags_sum */ |
| 1704 | }; |
| 1705 | |
| 1706 | /*======================================================================== |
| 1707 | ** |
| 1708 | ** Declaration of structs: actions for a task. |
| 1709 | ** |
| 1710 | **======================================================================== |
| 1711 | ** |
| 1712 | ** It is part of the CCB and is called by the scripts processor to |
| 1713 | ** start or restart the data structure (nexus). |
| 1714 | ** |
| 1715 | **------------------------------------------------------------------------ |
| 1716 | */ |
| 1717 | struct action { |
| 1718 | u_int32 start; |
| 1719 | u_int32 restart; |
| 1720 | }; |
| 1721 | |
| 1722 | /*======================================================================== |
| 1723 | ** |
| 1724 | ** Declaration of structs: Phase mismatch context. |
| 1725 | ** |
| 1726 | **======================================================================== |
| 1727 | ** |
| 1728 | ** It is part of the CCB and is used as parameters for the DATA |
| 1729 | ** pointer. We need two contexts to handle correctly the SAVED |
| 1730 | ** DATA POINTER. |
| 1731 | ** |
| 1732 | **------------------------------------------------------------------------ |
| 1733 | */ |
| 1734 | struct pm_ctx { |
| 1735 | struct scr_tblmove sg; /* Updated interrupted SG block */ |
| 1736 | u_int32 ret; /* SCRIPT return address */ |
| 1737 | }; |
| 1738 | |
| 1739 | /*======================================================================== |
| 1740 | ** |
| 1741 | ** Declaration of structs: global HEADER. |
| 1742 | ** |
| 1743 | **======================================================================== |
| 1744 | ** |
| 1745 | ** In earlier driver versions, this substructure was copied from the |
| 1746 | ** ccb to a global address after selection (or reselection) and copied |
| 1747 | ** back before disconnect. Since we are now using LOAD/STORE DSA |
| 1748 | ** RELATIVE instructions, the script is able to access directly these |
| 1749 | ** fields, and so, this header is no more copied. |
| 1750 | ** |
| 1751 | **------------------------------------------------------------------------ |
| 1752 | */ |
| 1753 | |
| 1754 | struct head { |
| 1755 | /*---------------------------------------------------------------- |
| 1756 | ** Start and restart SCRIPTS addresses (must be at 0). |
| 1757 | **---------------------------------------------------------------- |
| 1758 | */ |
| 1759 | struct action go; |
| 1760 | |
| 1761 | /*---------------------------------------------------------------- |
| 1762 | ** Saved data pointer. |
| 1763 | ** Points to the position in the script responsible for the |
| 1764 | ** actual transfer of data. |
| 1765 | ** It's written after reception of a SAVE_DATA_POINTER message. |
| 1766 | ** The goalpointer points after the last transfer command. |
| 1767 | **---------------------------------------------------------------- |
| 1768 | */ |
| 1769 | u_int32 savep; |
| 1770 | u_int32 lastp; |
| 1771 | u_int32 goalp; |
| 1772 | |
| 1773 | /*---------------------------------------------------------------- |
| 1774 | ** Alternate data pointer. |
| 1775 | ** They are copied back to savep/lastp/goalp by the SCRIPTS |
| 1776 | ** when the direction is unknown and the device claims data out. |
| 1777 | **---------------------------------------------------------------- |
| 1778 | */ |
| 1779 | u_int32 wlastp; |
| 1780 | u_int32 wgoalp; |
| 1781 | |
| 1782 | /*---------------------------------------------------------------- |
| 1783 | ** Status fields. |
| 1784 | **---------------------------------------------------------------- |
| 1785 | */ |
| 1786 | u_charunsigned char status[4]; /* host status */ |
| 1787 | }; |
| 1788 | |
| 1789 | /* |
| 1790 | ** LUN control block lookup. |
| 1791 | ** We use a direct pointer for LUN #0, and a table of pointers |
| 1792 | ** which is only allocated for devices that support LUN(s) > 0. |
| 1793 | */ |
| 1794 | #if MAX_LUN64 <= 1 |
| 1795 | #define ncr_lp(np, tp, lun)(!lun) ? (tp)->l0p : (tp)->lmp ? (tp)->lmp[(lun)] : 0 (!lun) ? (tp)->l0p : 0 |
| 1796 | #else |
| 1797 | #define ncr_lp(np, tp, lun)(!lun) ? (tp)->l0p : (tp)->lmp ? (tp)->lmp[(lun)] : 0 \ |
| 1798 | (!lun) ? (tp)->l0p : (tp)->lmp ? (tp)->lmp[(lun)] : 0 |
| 1799 | #endif |
| 1800 | |
| 1801 | /* |
| 1802 | ** The status bytes are used by the host and the script processor. |
| 1803 | ** |
| 1804 | ** The four bytes (status[4]) are copied to the scratchb register |
| 1805 | ** (declared as scr0..scr3 in ncr_reg.h) just after the select/reselect, |
| 1806 | ** and copied back just after disconnecting. |
| 1807 | ** Inside the script the XX_REG are used. |
| 1808 | */ |
| 1809 | |
| 1810 | /* |
| 1811 | ** Last four bytes (script) |
| 1812 | */ |
| 1813 | #define QU_REGscr0 scr0 |
| 1814 | #define HS_REGscr1 scr1 |
| 1815 | #define HS_PRTnc_scr1 nc_scr1 |
| 1816 | #define SS_REGscr2 scr2 |
| 1817 | #define SS_PRTnc_scr2 nc_scr2 |
| 1818 | #define HF_REGscr3 scr3 |
| 1819 | #define HF_PRTnc_scr3 nc_scr3 |
| 1820 | |
| 1821 | /* |
| 1822 | ** Last four bytes (host) |
| 1823 | */ |
| 1824 | #define actualquirksphys.header.status[0] phys.header.status[0] |
| 1825 | #define host_statusphys.header.status[1] phys.header.status[1] |
| 1826 | #define scsi_statusphys.header.status[2] phys.header.status[2] |
| 1827 | #define host_flagsphys.header.status[3] phys.header.status[3] |
| 1828 | |
| 1829 | /* |
| 1830 | ** Host flags |
| 1831 | */ |
| 1832 | #define HF_IN_PM01u 1u |
| 1833 | #define HF_IN_PM1(1u<<1) (1u<<1) |
| 1834 | #define HF_ACT_PM(1u<<2) (1u<<2) |
| 1835 | #define HF_DP_SAVED(1u<<3) (1u<<3) |
| 1836 | #define HF_AUTO_SENSE(1u<<4) (1u<<4) |
| 1837 | #define HF_DATA_IN(1u<<5) (1u<<5) |
| 1838 | #define HF_PM_TO_C(1u<<6) (1u<<6) |
| 1839 | #define HF_EXT_ERR(1u<<7) (1u<<7) |
| 1840 | |
| 1841 | #ifdef SCSI_NCR_IARB_SUPPORT |
| 1842 | #define HF_HINT_IARB (1u<<7) |
| 1843 | #endif |
| 1844 | |
| 1845 | /* |
| 1846 | ** This one is stolen from QU_REG.:) |
| 1847 | */ |
| 1848 | #define HF_DATA_ST(1u<<7) (1u<<7) |
| 1849 | |
| 1850 | /*========================================================== |
| 1851 | ** |
| 1852 | ** Declaration of structs: Data structure block |
| 1853 | ** |
| 1854 | **========================================================== |
| 1855 | ** |
| 1856 | ** During execution of a ccb by the script processor, |
| 1857 | ** the DSA (data structure address) register points |
| 1858 | ** to this substructure of the ccb. |
| 1859 | ** This substructure contains the header with |
| 1860 | ** the script-processor-changable data and |
| 1861 | ** data blocks for the indirect move commands. |
| 1862 | ** |
| 1863 | **---------------------------------------------------------- |
| 1864 | */ |
| 1865 | |
| 1866 | struct dsb { |
| 1867 | |
| 1868 | /* |
| 1869 | ** Header. |
| 1870 | */ |
| 1871 | |
| 1872 | struct head header; |
| 1873 | |
| 1874 | /* |
| 1875 | ** Table data for Script |
| 1876 | */ |
| 1877 | |
| 1878 | struct scr_tblsel select; |
| 1879 | struct scr_tblmove smsg ; |
| 1880 | struct scr_tblmove smsg_ext ; |
| 1881 | struct scr_tblmove cmd ; |
| 1882 | struct scr_tblmove sense ; |
| 1883 | struct scr_tblmove wresid; |
| 1884 | struct scr_tblmove data [MAX_SCATTER((127))]; |
| 1885 | |
| 1886 | /* |
| 1887 | ** Phase mismatch contexts. |
| 1888 | ** We need two to handle correctly the |
| 1889 | ** SAVED DATA POINTER. |
| 1890 | */ |
| 1891 | |
| 1892 | struct pm_ctx pm0; |
| 1893 | struct pm_ctx pm1; |
| 1894 | }; |
| 1895 | |
| 1896 | |
| 1897 | /*======================================================================== |
| 1898 | ** |
| 1899 | ** Declaration of structs: Command control block. |
| 1900 | ** |
| 1901 | **======================================================================== |
| 1902 | */ |
| 1903 | struct ccb { |
| 1904 | /*---------------------------------------------------------------- |
| 1905 | ** This is the data structure which is pointed by the DSA |
| 1906 | ** register when it is executed by the script processor. |
| 1907 | ** It must be the first entry. |
| 1908 | **---------------------------------------------------------------- |
| 1909 | */ |
| 1910 | struct dsb phys; |
| 1911 | |
| 1912 | /*---------------------------------------------------------------- |
| 1913 | ** The general SCSI driver provides a |
| 1914 | ** pointer to a control block. |
| 1915 | **---------------------------------------------------------------- |
| 1916 | */ |
| 1917 | Scsi_Cmnd *cmd; /* SCSI command */ |
| 1918 | u_charunsigned char cdb_buf[16]; /* Copy of CDB */ |
| 1919 | u_charunsigned char sense_buf[64]; |
| 1920 | int data_len; /* Total data length */ |
| 1921 | int segments; /* Number of SG segments */ |
| 1922 | |
| 1923 | /*---------------------------------------------------------------- |
| 1924 | ** Message areas. |
| 1925 | ** We prepare a message to be sent after selection. |
| 1926 | ** We may use a second one if the command is rescheduled |
| 1927 | ** due to CHECK_CONDITION or QUEUE FULL status. |
| 1928 | ** Contents are IDENTIFY and SIMPLE_TAG. |
| 1929 | ** While negotiating sync or wide transfer, |
| 1930 | ** a SDTR or WDTR message is appended. |
| 1931 | **---------------------------------------------------------------- |
| 1932 | */ |
| 1933 | u_charunsigned char scsi_smsg [12]; |
| 1934 | u_charunsigned char scsi_smsg2[12]; |
| 1935 | |
| 1936 | /*---------------------------------------------------------------- |
| 1937 | ** Miscellaneous status'. |
| 1938 | **---------------------------------------------------------------- |
| 1939 | */ |
| 1940 | u_charunsigned char nego_status; /* Negotiation status */ |
| 1941 | u_charunsigned char xerr_status; /* Extended error flags */ |
| 1942 | u_int32 extra_bytes; /* Extraneous bytes transferred */ |
| 1943 | |
| 1944 | /*---------------------------------------------------------------- |
| 1945 | ** Saved info for auto-sense |
| 1946 | **---------------------------------------------------------------- |
| 1947 | */ |
| 1948 | u_charunsigned char sv_scsi_status; |
| 1949 | u_charunsigned char sv_xerr_status; |
| 1950 | |
| 1951 | /*---------------------------------------------------------------- |
| 1952 | ** Other fields. |
| 1953 | **---------------------------------------------------------------- |
| 1954 | */ |
| 1955 | u_longunsigned long p_ccb; /* BUS address of this CCB */ |
| 1956 | u_charunsigned char sensecmd[6]; /* Sense command */ |
| 1957 | u_charunsigned char to_abort; /* This CCB is to be aborted */ |
| 1958 | u_shortunsigned short tag; /* Tag for this transfer */ |
| 1959 | /* NO_TAG means no tag */ |
| 1960 | u_charunsigned char tags_si; /* Lun tags sum index (0,1) */ |
| 1961 | |
| 1962 | u_charunsigned char target; |
| 1963 | u_charunsigned char lun; |
| 1964 | u_shortunsigned short queued; |
| 1965 | ccb_p link_ccb; /* Host adapter CCB chain */ |
| 1966 | ccb_p link_ccbh; /* Host adapter CCB hash chain */ |
| 1967 | XPT_QUEHEAD link_ccbq; /* Link to unit CCB queue */ |
| 1968 | u_int32 startp; /* Initial data pointer */ |
| 1969 | u_int32 lastp0; /* Initial 'lastp' */ |
| 1970 | int ext_sg; /* Extreme data pointer, used */ |
| 1971 | int ext_ofs; /* to calculate the residual. */ |
| 1972 | int resid; |
| 1973 | }; |
| 1974 | |
| 1975 | #define CCB_PHYS(cp,lbl)(cp->p_ccb + ((size_t) (&((struct ccb *)0)->lbl))) (cp->p_ccb + offsetof(struct ccb, lbl)((size_t) (&((struct ccb *)0)->lbl))) |
| 1976 | |
| 1977 | |
| 1978 | /*======================================================================== |
| 1979 | ** |
| 1980 | ** Declaration of structs: NCR device descriptor |
| 1981 | ** |
| 1982 | **======================================================================== |
| 1983 | */ |
| 1984 | struct ncb { |
| 1985 | /*---------------------------------------------------------------- |
| 1986 | ** Idle task and invalid task actions and their bus |
| 1987 | ** addresses. |
| 1988 | **---------------------------------------------------------------- |
| 1989 | */ |
| 1990 | struct action idletask; |
| 1991 | struct action notask; |
| 1992 | struct action bad_i_t_l; |
| 1993 | struct action bad_i_t_l_q; |
| 1994 | u_longunsigned long p_idletask; |
| 1995 | u_longunsigned long p_notask; |
| 1996 | u_longunsigned long p_bad_i_t_l; |
| 1997 | u_longunsigned long p_bad_i_t_l_q; |
| 1998 | |
| 1999 | /*---------------------------------------------------------------- |
| 2000 | ** Dummy lun table to protect us against target returning bad |
| 2001 | ** lun number on reselection. |
| 2002 | **---------------------------------------------------------------- |
| 2003 | */ |
| 2004 | u_int32 *badluntbl; /* Table physical address */ |
| 2005 | u_int32 resel_badlun; /* SCRIPT handler BUS address */ |
| 2006 | |
| 2007 | /*---------------------------------------------------------------- |
| 2008 | ** Bit 32-63 of the on-chip RAM bus address in LE format. |
| 2009 | ** The START_RAM64 script loads the MMRS and MMWS from this |
| 2010 | ** field. |
| 2011 | **---------------------------------------------------------------- |
| 2012 | */ |
| 2013 | u_int32 scr_ram_seg; |
| 2014 | |
| 2015 | /*---------------------------------------------------------------- |
| 2016 | ** CCBs management queues. |
| 2017 | **---------------------------------------------------------------- |
| 2018 | */ |
| 2019 | Scsi_Cmnd *waiting_list; /* Commands waiting for a CCB */ |
| 2020 | /* when lcb is not allocated. */ |
| 2021 | Scsi_Cmnd *done_list; /* Commands waiting for done() */ |
| 2022 | /* callback to be invoked. */ |
| 2023 | #if LINUX_VERSION_CODE131108 >= LinuxVersionCode(2,1,93)(((2)<<16)+((1)<<8)+(93)) |
| 2024 | spinlock_t smp_lock; /* Lock for SMP threading */ |
| 2025 | #endif |
| 2026 | |
| 2027 | /*---------------------------------------------------------------- |
| 2028 | ** Chip and controller indentification. |
| 2029 | **---------------------------------------------------------------- |
| 2030 | */ |
| 2031 | int unit; /* Unit number */ |
| 2032 | char chip_name[8]; /* Chip name */ |
| 2033 | char inst_name[16]; /* ncb instance name */ |
| 2034 | |
| 2035 | /*---------------------------------------------------------------- |
| 2036 | ** Initial value of some IO register bits. |
| 2037 | ** These values are assumed to have been set by BIOS, and may |
| 2038 | ** be used for probing adapter implementation differences. |
| 2039 | **---------------------------------------------------------------- |
| 2040 | */ |
| 2041 | u_charunsigned char sv_scntl0, sv_scntl3, sv_dmode, sv_dcntl, sv_ctest3, sv_ctest4, |
| 2042 | sv_ctest5, sv_gpcntl, sv_stest2, sv_stest4, sv_stest1, sv_scntl4; |
| 2043 | |
| 2044 | /*---------------------------------------------------------------- |
| 2045 | ** Actual initial value of IO register bits used by the |
| 2046 | ** driver. They are loaded at initialisation according to |
| 2047 | ** features that are to be enabled. |
| 2048 | **---------------------------------------------------------------- |
| 2049 | */ |
| 2050 | u_charunsigned char rv_scntl0, rv_scntl3, rv_dmode, rv_dcntl, rv_ctest3, rv_ctest4, |
| 2051 | rv_ctest5, rv_stest2, rv_ccntl0, rv_ccntl1, rv_scntl4; |
| 2052 | |
| 2053 | /*---------------------------------------------------------------- |
| 2054 | ** Target data. |
| 2055 | ** Target control block bus address array used by the SCRIPT |
| 2056 | ** on reselection. |
| 2057 | **---------------------------------------------------------------- |
| 2058 | */ |
| 2059 | struct tcb target[MAX_TARGET((16))]; |
| 2060 | u_int32 *targtbl; |
| 2061 | |
| 2062 | /*---------------------------------------------------------------- |
| 2063 | ** Virtual and physical bus addresses of the chip. |
| 2064 | **---------------------------------------------------------------- |
| 2065 | */ |
| 2066 | #ifndef SCSI_NCR_PCI_MEM_NOT_SUPPORTED |
| 2067 | u_longunsigned long base_va; /* MMIO base virtual address */ |
| 2068 | u_longunsigned long base2_va; /* On-chip RAM virtual address */ |
| 2069 | #endif |
| 2070 | u_longunsigned long base_ba; /* MMIO base bus address */ |
| 2071 | u_longunsigned long base_io; /* IO space base address */ |
| 2072 | u_longunsigned long base_ws; /* (MM)IO window size */ |
| 2073 | u_longunsigned long base2_ba; /* On-chip RAM bus address */ |
| 2074 | u_longunsigned long base2_ws; /* On-chip RAM window size */ |
| 2075 | u_intunsigned int irq; /* IRQ number */ |
| 2076 | volatile /* Pointer to volatile for */ |
| 2077 | struct ncr_reg *reg; /* memory mapped IO. */ |
| 2078 | |
| 2079 | /*---------------------------------------------------------------- |
| 2080 | ** SCRIPTS virtual and physical bus addresses. |
| 2081 | ** 'script' is loaded in the on-chip RAM if present. |
| 2082 | ** 'scripth' stays in main memory for all chips except the |
| 2083 | ** 53C895A and 53C896 that provide 8K on-chip RAM. |
| 2084 | **---------------------------------------------------------------- |
| 2085 | */ |
| 2086 | struct script *script0; /* Copies of script and scripth */ |
| 2087 | struct scripth *scripth0; /* relocated for this ncb. */ |
| 2088 | u_longunsigned long p_script; /* Actual script and scripth */ |
| 2089 | u_longunsigned long p_scripth; /* bus addresses. */ |
| 2090 | u_longunsigned long p_scripth0; |
| 2091 | |
| 2092 | /*---------------------------------------------------------------- |
| 2093 | ** General controller parameters and configuration. |
| 2094 | **---------------------------------------------------------------- |
| 2095 | */ |
| 2096 | pcidev_t pdev; |
| 2097 | u_shortunsigned short device_id; /* PCI device id */ |
| 2098 | u_charunsigned char revision_id; /* PCI device revision id */ |
| 2099 | u_charunsigned char bus; /* PCI BUS number */ |
| 2100 | u_charunsigned char device_fn; /* PCI BUS device and function */ |
| 2101 | u_charunsigned char myaddr; /* SCSI id of the adapter */ |
| 2102 | u_charunsigned char maxburst; /* log base 2 of dwords burst */ |
| 2103 | u_charunsigned char maxwide; /* Maximum transfer width */ |
| 2104 | u_charunsigned char minsync; /* Minimum sync period factor */ |
| 2105 | u_charunsigned char maxsync; /* Maximum sync period factor */ |
| 2106 | u_charunsigned char maxoffs; /* Max scsi offset */ |
| 2107 | u_charunsigned char multiplier; /* Clock multiplier (1,2,4) */ |
| 2108 | u_charunsigned char clock_divn; /* Number of clock divisors */ |
| 2109 | u_longunsigned long clock_khz; /* SCSI clock frequency in KHz */ |
| 2110 | u_intunsigned int features; /* Chip features map */ |
| 2111 | |
| 2112 | /*---------------------------------------------------------------- |
| 2113 | ** Range for the PCI clock frequency measurement result |
| 2114 | ** that ensures the algorithm used by the driver can be |
| 2115 | ** trusted for the SCSI clock frequency measurement. |
| 2116 | ** (Assuming a PCI clock frequency of 33 MHz). |
| 2117 | **---------------------------------------------------------------- |
| 2118 | */ |
| 2119 | u_intunsigned int pciclock_min; |
| 2120 | u_intunsigned int pciclock_max; |
| 2121 | |
| 2122 | /*---------------------------------------------------------------- |
| 2123 | ** Start queue management. |
| 2124 | ** It is filled up by the host processor and accessed by the |
| 2125 | ** SCRIPTS processor in order to start SCSI commands. |
| 2126 | **---------------------------------------------------------------- |
| 2127 | */ |
| 2128 | u_longunsigned long p_squeue; /* Start queue BUS address */ |
| 2129 | u_int32 *squeue; /* Start queue virtual address */ |
| 2130 | u_shortunsigned short squeueput; /* Next free slot of the queue */ |
| 2131 | u_shortunsigned short actccbs; /* Number of allocated CCBs */ |
| 2132 | u_shortunsigned short queuedepth; /* Start queue depth */ |
| 2133 | |
| 2134 | /*---------------------------------------------------------------- |
| 2135 | ** Command completion queue. |
| 2136 | ** It is the same size as the start queue to avoid overflow. |
| 2137 | **---------------------------------------------------------------- |
| 2138 | */ |
| 2139 | u_shortunsigned short dqueueget; /* Next position to scan */ |
| 2140 | u_int32 *dqueue; /* Completion (done) queue */ |
| 2141 | |
| 2142 | /*---------------------------------------------------------------- |
| 2143 | ** Timeout handler. |
| 2144 | **---------------------------------------------------------------- |
| 2145 | */ |
| 2146 | struct timer_list timer; /* Timer handler link header */ |
| 2147 | u_longunsigned long lasttime; |
| 2148 | u_longunsigned long settle_time; /* Resetting the SCSI BUS */ |
| 2149 | |
| 2150 | /*---------------------------------------------------------------- |
| 2151 | ** Debugging and profiling. |
| 2152 | **---------------------------------------------------------------- |
| 2153 | */ |
| 2154 | struct ncr_reg regdump; /* Register dump */ |
| 2155 | u_longunsigned long regtime; /* Time it has been done */ |
| 2156 | |
| 2157 | /*---------------------------------------------------------------- |
| 2158 | ** Miscellaneous buffers accessed by the scripts-processor. |
| 2159 | ** They shall be DWORD aligned, because they may be read or |
| 2160 | ** written with a script command. |
| 2161 | **---------------------------------------------------------------- |
| 2162 | */ |
| 2163 | u_charunsigned char msgout[12]; /* Buffer for MESSAGE OUT */ |
| 2164 | u_charunsigned char msgin [12]; /* Buffer for MESSAGE IN */ |
| 2165 | u_int32 lastmsg; /* Last SCSI message sent */ |
| 2166 | u_charunsigned char scratch; /* Scratch for SCSI receive */ |
| 2167 | |
| 2168 | /*---------------------------------------------------------------- |
| 2169 | ** Miscellaneous configuration and status parameters. |
| 2170 | **---------------------------------------------------------------- |
| 2171 | */ |
| 2172 | u_charunsigned char scsi_mode; /* Current SCSI BUS mode */ |
| 2173 | u_charunsigned char order; /* Tag order to use */ |
| 2174 | u_charunsigned char verbose; /* Verbosity for this controller*/ |
| 2175 | u_int32 ncr_cache; /* Used for cache test at init. */ |
| 2176 | u_longunsigned long p_ncb; /* BUS address of this NCB */ |
| 2177 | |
| 2178 | /*---------------------------------------------------------------- |
| 2179 | ** CCB lists and queue. |
| 2180 | **---------------------------------------------------------------- |
| 2181 | */ |
| 2182 | ccb_p ccbh[CCB_HASH_SIZE(1UL << 8)]; /* CCB hashed by DSA value */ |
| 2183 | struct ccb *ccbc; /* CCB chain */ |
| 2184 | XPT_QUEHEAD free_ccbq; /* Queue of available CCBs */ |
| 2185 | |
| 2186 | /*---------------------------------------------------------------- |
| 2187 | ** IMMEDIATE ARBITRATION (IARB) control. |
| 2188 | ** We keep track in 'last_cp' of the last CCB that has been |
| 2189 | ** queued to the SCRIPTS processor and clear 'last_cp' when |
| 2190 | ** this CCB completes. If last_cp is not zero at the moment |
| 2191 | ** we queue a new CCB, we set a flag in 'last_cp' that is |
| 2192 | ** used by the SCRIPTS as a hint for setting IARB. |
| 2193 | ** We donnot set more than 'iarb_max' consecutive hints for |
| 2194 | ** IARB in order to leave devices a chance to reselect. |
| 2195 | ** By the way, any non zero value of 'iarb_max' is unfair. :) |
| 2196 | **---------------------------------------------------------------- |
| 2197 | */ |
| 2198 | #ifdef SCSI_NCR_IARB_SUPPORT |
| 2199 | struct ccb *last_cp; /* Last queud CCB used for IARB */ |
| 2200 | u_shortunsigned short iarb_max; /* Max. # consecutive IARB hints*/ |
| 2201 | u_shortunsigned short iarb_count; /* Actual # of these hints */ |
| 2202 | #endif |
| 2203 | |
| 2204 | /*---------------------------------------------------------------- |
| 2205 | ** We need the LCB in order to handle disconnections and |
| 2206 | ** to count active CCBs for task management. So, we use |
| 2207 | ** a unique CCB for LUNs we donnot have the LCB yet. |
| 2208 | ** This queue normally should have at most 1 element. |
| 2209 | **---------------------------------------------------------------- |
| 2210 | */ |
| 2211 | XPT_QUEHEAD b0_ccbq; |
| 2212 | |
| 2213 | /*---------------------------------------------------------------- |
| 2214 | ** We use a different scatter function for 896 rev 1. |
| 2215 | **---------------------------------------------------------------- |
| 2216 | */ |
| 2217 | int (*scatter) (ncb_p, ccb_p, Scsi_Cmnd *); |
| 2218 | |
| 2219 | /*---------------------------------------------------------------- |
| 2220 | ** Command abort handling. |
| 2221 | ** We need to synchronize tightly with the SCRIPTS |
| 2222 | ** processor in order to handle things correctly. |
| 2223 | **---------------------------------------------------------------- |
| 2224 | */ |
| 2225 | u_charunsigned char abrt_msg[4]; /* Message to send buffer */ |
| 2226 | struct scr_tblmove abrt_tbl; /* Table for the MOV of it */ |
| 2227 | struct scr_tblsel abrt_sel; /* Sync params for selection */ |
| 2228 | u_charunsigned char istat_sem; /* Tells the chip to stop (SEM) */ |
| 2229 | |
| 2230 | /*---------------------------------------------------------------- |
| 2231 | ** Fields that should be removed or changed. |
| 2232 | **---------------------------------------------------------------- |
| 2233 | */ |
| 2234 | struct usrcmd user; /* Command from user */ |
| 2235 | volatile u_charunsigned char release_stage; /* Synchronisation stage on release */ |
| 2236 | |
| 2237 | /*---------------------------------------------------------------- |
| 2238 | ** Fields that are used (primarily) for integrity check |
| 2239 | **---------------------------------------------------------------- |
| 2240 | */ |
| 2241 | unsigned char check_integrity; /* Enable midlayer integ. check on |
| 2242 | * bus scan. */ |
| 2243 | #ifdef SCSI_NCR_INTEGRITY_CHECKING |
| 2244 | unsigned char check_integ_par; /* Set if par or Init. Det. error |
| 2245 | * used only during integ check */ |
| 2246 | #endif |
| 2247 | }; |
| 2248 | |
| 2249 | #define NCB_PHYS(np, lbl)(np->p_ncb + ((size_t) (&((struct ncb *)0)->lbl))) (np->p_ncb + offsetof(struct ncb, lbl)((size_t) (&((struct ncb *)0)->lbl))) |
| 2250 | #define NCB_SCRIPT_PHYS(np,lbl)(np->p_script + ((size_t) (&((struct script *)0)->lbl ))) (np->p_script + offsetof (struct script, lbl)((size_t) (&((struct script *)0)->lbl))) |
| 2251 | #define NCB_SCRIPTH_PHYS(np,lbl)(np->p_scripth + ((size_t) (&((struct scripth *)0)-> lbl))) (np->p_scripth + offsetof (struct scripth,lbl)((size_t) (&((struct scripth *)0)->lbl))) |
| 2252 | #define NCB_SCRIPTH0_PHYS(np,lbl)(np->p_scripth0+((size_t) (&((struct scripth *)0)-> lbl))) (np->p_scripth0+offsetof (struct scripth,lbl)((size_t) (&((struct scripth *)0)->lbl))) |
| 2253 | |
| 2254 | /*========================================================== |
| 2255 | ** |
| 2256 | ** |
| 2257 | ** Script for NCR-Processor. |
| 2258 | ** |
| 2259 | ** Use ncr_script_fill() to create the variable parts. |
| 2260 | ** Use ncr_script_copy_and_bind() to make a copy and |
| 2261 | ** bind to physical addresses. |
| 2262 | ** |
| 2263 | ** |
| 2264 | **========================================================== |
| 2265 | ** |
| 2266 | ** We have to know the offsets of all labels before |
| 2267 | ** we reach them (for forward jumps). |
| 2268 | ** Therefore we declare a struct here. |
| 2269 | ** If you make changes inside the script, |
| 2270 | ** DONT FORGET TO CHANGE THE LENGTHS HERE! |
| 2271 | ** |
| 2272 | **---------------------------------------------------------- |
| 2273 | */ |
| 2274 | |
| 2275 | /* |
| 2276 | ** Script fragments which are loaded into the on-chip RAM |
| 2277 | ** of 825A, 875, 876, 895, 895A and 896 chips. |
| 2278 | */ |
| 2279 | struct script { |
| 2280 | ncrcmd start [ 14]; |
| 2281 | ncrcmd getjob_begin [ 4]; |
| 2282 | ncrcmd getjob_end [ 4]; |
| 2283 | ncrcmd select [ 8]; |
| 2284 | ncrcmd wf_sel_done [ 2]; |
| 2285 | ncrcmd send_ident [ 2]; |
| 2286 | #ifdef SCSI_NCR_IARB_SUPPORT |
| 2287 | ncrcmd select2 [ 8]; |
| 2288 | #else |
| 2289 | ncrcmd select2 [ 2]; |
| 2290 | #endif |
| 2291 | ncrcmd command [ 2]; |
| 2292 | ncrcmd dispatch [ 28]; |
| 2293 | ncrcmd sel_no_cmd [ 10]; |
| 2294 | ncrcmd init [ 6]; |
| 2295 | ncrcmd clrack [ 4]; |
| 2296 | ncrcmd disp_status [ 4]; |
| 2297 | ncrcmd datai_done [ 26]; |
| 2298 | ncrcmd datao_done [ 12]; |
| 2299 | ncrcmd ign_i_w_r_msg [ 4]; |
| 2300 | ncrcmd datai_phase [ 2]; |
| 2301 | ncrcmd datao_phase [ 4]; |
| 2302 | ncrcmd msg_in [ 2]; |
| 2303 | ncrcmd msg_in2 [ 10]; |
| 2304 | #ifdef SCSI_NCR_IARB_SUPPORT |
| 2305 | ncrcmd status [ 14]; |
| 2306 | #else |
| 2307 | ncrcmd status [ 10]; |
| 2308 | #endif |
| 2309 | ncrcmd complete [ 8]; |
| 2310 | #ifdef SCSI_NCR_PCIQ_MAY_REORDER_WRITES |
| 2311 | ncrcmd complete2 [ 12]; |
| 2312 | #else |
| 2313 | ncrcmd complete2 [ 10]; |
| 2314 | #endif |
| 2315 | #ifdef SCSI_NCR_PCIQ_SYNC_ON_INTR |
| 2316 | ncrcmd done [ 18]; |
| 2317 | #else |
| 2318 | ncrcmd done [ 14]; |
| 2319 | #endif |
| 2320 | ncrcmd done_end [ 2]; |
| 2321 | ncrcmd save_dp [ 8]; |
| 2322 | ncrcmd restore_dp [ 4]; |
| 2323 | ncrcmd disconnect [ 20]; |
| 2324 | #ifdef SCSI_NCR_IARB_SUPPORT |
| 2325 | ncrcmd idle [ 4]; |
| 2326 | #else |
| 2327 | ncrcmd idle [ 2]; |
| 2328 | #endif |
| 2329 | #ifdef SCSI_NCR_IARB_SUPPORT |
| 2330 | ncrcmd ungetjob [ 6]; |
| 2331 | #else |
| 2332 | ncrcmd ungetjob [ 4]; |
| 2333 | #endif |
| 2334 | ncrcmd reselect [ 4]; |
| 2335 | ncrcmd reselected [ 20]; |
| 2336 | ncrcmd resel_scntl4 [ 30]; |
| 2337 | #if MAX_TASKS(256/4)*4 > 512 |
| 2338 | ncrcmd resel_tag [ 18]; |
| 2339 | #elif MAX_TASKS(256/4)*4 > 256 |
| 2340 | ncrcmd resel_tag [ 12]; |
| 2341 | #else |
| 2342 | ncrcmd resel_tag [ 8]; |
| 2343 | #endif |
| 2344 | ncrcmd resel_go [ 6]; |
| 2345 | ncrcmd resel_notag [ 2]; |
| 2346 | ncrcmd resel_dsa [ 8]; |
| 2347 | ncrcmd data_in [MAX_SCATTER((127)) * SCR_SG_SIZE(2)]; |
| 2348 | ncrcmd data_in2 [ 4]; |
| 2349 | ncrcmd data_out [MAX_SCATTER((127)) * SCR_SG_SIZE(2)]; |
| 2350 | ncrcmd data_out2 [ 4]; |
| 2351 | ncrcmd pm0_data [ 12]; |
| 2352 | ncrcmd pm0_data_out [ 6]; |
| 2353 | ncrcmd pm0_data_end [ 6]; |
| 2354 | ncrcmd pm1_data [ 12]; |
| 2355 | ncrcmd pm1_data_out [ 6]; |
| 2356 | ncrcmd pm1_data_end [ 6]; |
| 2357 | }; |
| 2358 | |
| 2359 | /* |
| 2360 | ** Script fragments which stay in main memory for all chips |
| 2361 | ** except for the 895A and 896 that support 8K on-chip RAM. |
| 2362 | */ |
| 2363 | struct scripth { |
| 2364 | ncrcmd start64 [ 2]; |
| 2365 | ncrcmd no_data [ 2]; |
| 2366 | ncrcmd sel_for_abort [ 18]; |
| 2367 | ncrcmd sel_for_abort_1 [ 2]; |
| 2368 | ncrcmd select_no_atn [ 8]; |
| 2369 | ncrcmd wf_sel_done_no_atn [ 4]; |
| 2370 | |
| 2371 | ncrcmd msg_in_etc [ 14]; |
| 2372 | ncrcmd msg_received [ 4]; |
| 2373 | ncrcmd msg_weird_seen [ 4]; |
| 2374 | ncrcmd msg_extended [ 20]; |
| 2375 | ncrcmd msg_bad [ 6]; |
| 2376 | ncrcmd msg_weird [ 4]; |
| 2377 | ncrcmd msg_weird1 [ 8]; |
| 2378 | |
| 2379 | ncrcmd wdtr_resp [ 6]; |
| 2380 | ncrcmd send_wdtr [ 4]; |
| 2381 | ncrcmd sdtr_resp [ 6]; |
| 2382 | ncrcmd send_sdtr [ 4]; |
| 2383 | ncrcmd ppr_resp [ 6]; |
| 2384 | ncrcmd send_ppr [ 4]; |
| 2385 | ncrcmd nego_bad_phase [ 4]; |
| 2386 | ncrcmd msg_out [ 4]; |
| 2387 | ncrcmd msg_out_done [ 4]; |
| 2388 | ncrcmd data_ovrun [ 2]; |
| 2389 | ncrcmd data_ovrun1 [ 22]; |
| 2390 | ncrcmd data_ovrun2 [ 8]; |
| 2391 | ncrcmd abort_resel [ 16]; |
| 2392 | ncrcmd resend_ident [ 4]; |
| 2393 | ncrcmd ident_break [ 4]; |
| 2394 | ncrcmd ident_break_atn [ 4]; |
| 2395 | ncrcmd sdata_in [ 6]; |
| 2396 | ncrcmd data_io [ 2]; |
| 2397 | ncrcmd data_io_com [ 8]; |
| 2398 | ncrcmd data_io_out [ 12]; |
| 2399 | ncrcmd resel_bad_lun [ 4]; |
| 2400 | ncrcmd bad_i_t_l [ 4]; |
| 2401 | ncrcmd bad_i_t_l_q [ 4]; |
| 2402 | ncrcmd bad_status [ 6]; |
| 2403 | ncrcmd tweak_pmj [ 12]; |
| 2404 | ncrcmd pm_handle [ 20]; |
| 2405 | ncrcmd pm_handle1 [ 4]; |
| 2406 | ncrcmd pm_save [ 4]; |
| 2407 | ncrcmd pm0_save [ 14]; |
| 2408 | ncrcmd pm1_save [ 14]; |
| 2409 | |
| 2410 | /* WSR handling */ |
| 2411 | #ifdef SYM_DEBUG_PM_WITH_WSR |
| 2412 | ncrcmd pm_wsr_handle [ 44]; |
| 2413 | #else |
| 2414 | ncrcmd pm_wsr_handle [ 42]; |
| 2415 | #endif |
| 2416 | ncrcmd wsr_ma_helper [ 4]; |
| 2417 | |
| 2418 | /* Data area */ |
| 2419 | ncrcmd zero [ 1]; |
| 2420 | ncrcmd scratch [ 1]; |
| 2421 | ncrcmd scratch1 [ 1]; |
| 2422 | ncrcmd pm0_data_addr [ 1]; |
| 2423 | ncrcmd pm1_data_addr [ 1]; |
| 2424 | ncrcmd saved_dsa [ 1]; |
| 2425 | ncrcmd saved_drs [ 1]; |
| 2426 | ncrcmd done_pos [ 1]; |
| 2427 | ncrcmd startpos [ 1]; |
| 2428 | ncrcmd targtbl [ 1]; |
| 2429 | /* End of data area */ |
| 2430 | |
| 2431 | #ifdef SCSI_NCR_PCI_MEM_NOT_SUPPORTED |
| 2432 | ncrcmd start_ram [ 1]; |
| 2433 | ncrcmd script0_ba [ 4]; |
| 2434 | ncrcmd start_ram64 [ 3]; |
| 2435 | ncrcmd script0_ba64 [ 3]; |
| 2436 | ncrcmd scripth0_ba64 [ 6]; |
| 2437 | ncrcmd ram_seg64 [ 1]; |
| 2438 | #endif |
| 2439 | ncrcmd snooptest [ 6]; |
| 2440 | ncrcmd snoopend [ 2]; |
| 2441 | }; |
| 2442 | |
| 2443 | /*========================================================== |
| 2444 | ** |
| 2445 | ** |
| 2446 | ** Function headers. |
| 2447 | ** |
| 2448 | ** |
| 2449 | **========================================================== |
| 2450 | */ |
| 2451 | |
| 2452 | static ccb_p ncr_alloc_ccb (ncb_p np); |
| 2453 | static void ncr_complete (ncb_p np, ccb_p cp); |
| 2454 | static void ncr_exception (ncb_p np); |
| 2455 | static void ncr_free_ccb (ncb_p np, ccb_p cp); |
| 2456 | static ccb_p ncr_ccb_from_dsa(ncb_p np, u_longunsigned long dsa); |
| 2457 | static void ncr_init_tcb (ncb_p np, u_charunsigned char tn); |
| 2458 | static lcb_p ncr_alloc_lcb (ncb_p np, u_charunsigned char tn, u_charunsigned char ln); |
| 2459 | static lcb_p ncr_setup_lcb (ncb_p np, u_charunsigned char tn, u_charunsigned char ln, |
| 2460 | u_charunsigned char *inq_data); |
| 2461 | static void ncr_getclock (ncb_p np, int mult); |
| 2462 | static u_intunsigned int ncr_getpciclock (ncb_p np); |
| 2463 | static void ncr_selectclock (ncb_p np, u_charunsigned char scntl3); |
| 2464 | static ccb_p ncr_get_ccb (ncb_p np, u_charunsigned char tn, u_charunsigned char ln); |
| 2465 | static void ncr_init (ncb_p np, int reset, char * msg, u_longunsigned long code); |
| 2466 | static void ncr_int_sbmc (ncb_p np); |
| 2467 | static void ncr_int_par (ncb_p np, u_shortunsigned short sist); |
| 2468 | static void ncr_int_ma (ncb_p np); |
| 2469 | static void ncr_int_sir (ncb_p np); |
| 2470 | static void ncr_int_sto (ncb_p np); |
| 2471 | static void ncr_int_udc (ncb_p np); |
| 2472 | static void ncr_negotiate (ncb_p np, tcb_p tp); |
| 2473 | static int ncr_prepare_nego(ncb_p np, ccb_p cp, u_charunsigned char *msgptr); |
| 2474 | #ifdef SCSI_NCR_INTEGRITY_CHECKING |
| 2475 | static int ncr_ic_nego(ncb_p np, ccb_p cp, Scsi_Cmnd *cmd, u_charunsigned char *msgptr); |
| 2476 | #endif |
| 2477 | static void ncr_script_copy_and_bind |
| 2478 | (ncb_p np, ncrcmd *src, ncrcmd *dst, int len); |
| 2479 | static void ncr_script_fill (struct script * scr, struct scripth * scripth); |
| 2480 | static int ncr_scatter_896R1 (ncb_p np, ccb_p cp, Scsi_Cmnd *cmd); |
| 2481 | static int ncr_scatter (ncb_p np, ccb_p cp, Scsi_Cmnd *cmd); |
| 2482 | static void ncr_getsync (ncb_p np, u_charunsigned char sfac, u_charunsigned char *fakp, u_charunsigned char *scntl3p); |
| 2483 | static void ncr_get_xfer_info(ncb_p np, tcb_p tp, u_charunsigned char *factor, u_charunsigned char *offset, u_charunsigned char *width); |
| 2484 | static void ncr_setsync (ncb_p np, ccb_p cp, u_charunsigned char scntl3, u_charunsigned char sxfer, u_charunsigned char scntl4); |
| 2485 | static void ncr_set_sync_wide_status (ncb_p np, u_charunsigned char target); |
| 2486 | static void ncr_setup_tags (ncb_p np, u_charunsigned char tn, u_charunsigned char ln); |
| 2487 | static void ncr_setwide (ncb_p np, ccb_p cp, u_charunsigned char wide, u_charunsigned char ack); |
| 2488 | static void ncr_setsyncwide (ncb_p np, ccb_p cp, u_charunsigned char scntl3, u_charunsigned char sxfer, u_charunsigned char scntl4, u_charunsigned char wide); |
| 2489 | static int ncr_show_msg (u_charunsigned char * msg); |
| 2490 | static void ncr_print_msg (ccb_p cp, char *label, u_charunsigned char * msg); |
| 2491 | static int ncr_snooptest (ncb_p np); |
| 2492 | static void ncr_timeout (ncb_p np); |
| 2493 | static void ncr_wakeup (ncb_p np, u_longunsigned long code); |
| 2494 | static int ncr_wakeup_done (ncb_p np); |
| 2495 | static void ncr_start_next_ccb (ncb_p np, lcb_p lp, int maxn); |
| 2496 | static void ncr_put_start_queue(ncb_p np, ccb_p cp); |
| 2497 | static void ncr_chip_reset (ncb_p np); |
| 2498 | static void ncr_soft_reset (ncb_p np); |
| 2499 | static void ncr_start_reset (ncb_p np); |
| 2500 | static int ncr_reset_scsi_bus (ncb_p np, int enab_int, int settle_delay); |
| 2501 | static int ncr_compute_residual (ncb_p np, ccb_p cp); |
| 2502 | |
| 2503 | #ifdef SCSI_NCR_USER_COMMAND_SUPPORT |
| 2504 | static void ncr_usercmd (ncb_p np); |
| 2505 | #endif |
| 2506 | |
| 2507 | static int ncr_attach (Scsi_Host_Template *tpnt, int unit, ncr_device *device); |
| 2508 | static void ncr_free_resources(ncb_p np); |
| 2509 | |
| 2510 | static void insert_into_waiting_list(ncb_p np, Scsi_Cmnd *cmd); |
| 2511 | static Scsi_Cmnd *retrieve_from_waiting_list(int to_remove, ncb_p np, Scsi_Cmnd *cmd); |
| 2512 | static void process_waiting_list(ncb_p np, int sts); |
| 2513 | |
| 2514 | #define remove_from_waiting_list(np, cmd)retrieve_from_waiting_list(1, (np), (cmd)) \ |
| 2515 | retrieve_from_waiting_list(1, (np), (cmd)) |
| 2516 | #define requeue_waiting_list(np)process_waiting_list((np), 0x00) process_waiting_list((np), DID_OK0x00) |
| 2517 | #define reset_waiting_list(np)process_waiting_list((np), 0x08) process_waiting_list((np), DID_RESET0x08) |
| 2518 | |
| 2519 | #ifdef SCSI_NCR_NVRAM_SUPPORT |
| 2520 | static void ncr_get_nvram (ncr_device *devp, ncr_nvram *nvp); |
| 2521 | static int sym_read_Tekram_nvram (ncr_slot *np, u_shortunsigned short device_id, |
| 2522 | Tekram_nvram *nvram); |
| 2523 | static int sym_read_Symbios_nvram (ncr_slot *np, Symbios_nvram *nvram); |
| 2524 | #endif |
| 2525 | |
| 2526 | /*========================================================== |
| 2527 | ** |
| 2528 | ** |
| 2529 | ** Global static data. |
| 2530 | ** |
| 2531 | ** |
| 2532 | **========================================================== |
| 2533 | */ |
| 2534 | |
| 2535 | static inlineinline __attribute__((always_inline)) char *ncr_name (ncb_p np) |
| 2536 | { |
| 2537 | return np->inst_name; |
| 2538 | } |
| 2539 | |
| 2540 | |
| 2541 | /*========================================================== |
| 2542 | ** |
| 2543 | ** |
| 2544 | ** Scripts for NCR-Processor. |
| 2545 | ** |
| 2546 | ** Use ncr_script_bind for binding to physical addresses. |
| 2547 | ** |
| 2548 | ** |
| 2549 | **========================================================== |
| 2550 | ** |
| 2551 | ** NADDR generates a reference to a field of the controller data. |
| 2552 | ** PADDR generates a reference to another part of the script. |
| 2553 | ** RADDR generates a reference to a script processor register. |
| 2554 | ** FADDR generates a reference to a script processor register |
| 2555 | ** with offset. |
| 2556 | ** |
| 2557 | **---------------------------------------------------------- |
| 2558 | */ |
| 2559 | |
| 2560 | #define RELOC_SOFTC0x40000000 0x40000000 |
| 2561 | #define RELOC_LABEL0x50000000 0x50000000 |
| 2562 | #define RELOC_REGISTER0x60000000 0x60000000 |
| 2563 | #if 0 |
| 2564 | #define RELOC_KVAR 0x70000000 |
| 2565 | #endif |
| 2566 | #define RELOC_LABELH0x80000000 0x80000000 |
| 2567 | #define RELOC_MASK0xf0000000 0xf0000000 |
| 2568 | |
| 2569 | #define NADDR(label)(0x40000000 | ((size_t) (&((struct ncb *)0)->label))) (RELOC_SOFTC0x40000000 | offsetof(struct ncb, label)((size_t) (&((struct ncb *)0)->label))) |
| 2570 | #define PADDR(label)(0x50000000 | ((size_t) (&((struct script *)0)->label) )) (RELOC_LABEL0x50000000 | offsetof(struct script, label)((size_t) (&((struct script *)0)->label))) |
| 2571 | #define PADDRH(label)(0x80000000 | ((size_t) (&((struct scripth *)0)->label ))) (RELOC_LABELH0x80000000 | offsetof(struct scripth, label)((size_t) (&((struct scripth *)0)->label))) |
| 2572 | #define RADDR(label)(0x60000000 | (((size_t) (&((struct ncr_reg *)0)->nc_label )))) (RELOC_REGISTER0x60000000 | REG(label)(((size_t) (&((struct ncr_reg *)0)->nc_label)))) |
| 2573 | #define FADDR(label,ofs)(0x60000000 | (((((size_t) (&((struct ncr_reg *)0)->nc_label ))))+(ofs)))(RELOC_REGISTER0x60000000 | ((REG(label)(((size_t) (&((struct ncr_reg *)0)->nc_label))))+(ofs))) |
| 2574 | #define KVAR(which)(RELOC_KVAR | (which)) (RELOC_KVAR | (which)) |
| 2575 | |
| 2576 | #define SCR_DATA_ZERO0xf00ff00f 0xf00ff00f |
| 2577 | |
| 2578 | #ifdef RELOC_KVAR |
| 2579 | #define SCRIPT_KVAR_JIFFIES (0) |
| 2580 | #define SCRIPT_KVAR_FIRST SCRIPT_KVAR_JIFFIES |
| 2581 | #define SCRIPT_KVAR_LAST SCRIPT_KVAR_JIFFIES |
| 2582 | /* |
| 2583 | * Kernel variables referenced in the scripts. |
| 2584 | * THESE MUST ALL BE ALIGNED TO A 4-BYTE BOUNDARY. |
| 2585 | */ |
| 2586 | static void *script_kvars[] __initdata = |
| 2587 | { (void *)&jiffies }; |
| 2588 | #endif |
| 2589 | |
| 2590 | static struct script script0 __initdata = { |
| 2591 | /*--------------------------< START >-----------------------*/ { |
| 2592 | /* |
| 2593 | ** This NOP will be patched with LED ON |
| 2594 | ** SCR_REG_REG (gpreg, SCR_AND, 0xfe) |
| 2595 | */ |
| 2596 | SCR_NO_OP0x80000000, |
| 2597 | 0, |
| 2598 | /* |
| 2599 | ** Clear SIGP. |
| 2600 | */ |
| 2601 | SCR_FROM_REG (ctest2)(0x70000000 | ((((((((size_t) (&((struct ncr_reg *)0)-> nc_ctest2)))) & 0x7f) << 16ul) + (((((size_t) (& ((struct ncr_reg *)0)->nc_ctest2)))) & 0x80))) | (0x02000000 ) | (((0)&0xff)<<8ul)), |
| 2602 | 0, |
| 2603 | |
| 2604 | /* |
| 2605 | ** Stop here if the C code wants to perform |
| 2606 | ** some error recovery procedure manually. |
| 2607 | ** (Indicate this by setting SEM in ISTAT) |
| 2608 | */ |
| 2609 | SCR_FROM_REG (istat)(0x70000000 | ((((((((size_t) (&((struct ncr_reg *)0)-> nc_istat)))) & 0x7f) << 16ul) + (((((size_t) (& ((struct ncr_reg *)0)->nc_istat)))) & 0x80))) | (0x02000000 ) | (((0)&0xff)<<8ul)), |
| 2610 | 0, |
| 2611 | /* |
| 2612 | ** Report to the C code the next position in |
| 2613 | ** the start queue the SCRIPTS will schedule. |
| 2614 | ** The C code must not change SCRATCHA. |
| 2615 | */ |
| 2616 | SCR_LOAD_ABS (scratcha, 4)(0xe1000000 | 0x02000000 | (((((((size_t) (&((struct ncr_reg *)0)->nc_scratcha)))) & 0xff) << 16ul)) | (4)), |
| 2617 | PADDRH (startpos)(0x80000000 | ((size_t) (&((struct scripth *)0)->startpos ))), |
| 2618 | SCR_INT0x98080000 ^ IFTRUE (MASK (SEM, SEM))(0x00000000 | ((0x00040000 | (((0x10 ^ 0xff) & 0xff) << 8ul)|((0x10) & 0xff)))), |
| 2619 | SIR_SCRIPT_STOPPED(7), |
| 2620 | |
| 2621 | /* |
| 2622 | ** Start the next job. |
| 2623 | ** |
| 2624 | ** @DSA = start point for this job. |
| 2625 | ** SCRATCHA = address of this job in the start queue. |
| 2626 | ** |
| 2627 | ** We will restore startpos with SCRATCHA if we fails the |
| 2628 | ** arbitration or if it is the idle job. |
| 2629 | ** |
| 2630 | ** The below GETJOB_BEGIN to GETJOB_END section of SCRIPTS |
| 2631 | ** is a critical path. If it is partially executed, it then |
| 2632 | ** may happen that the job address is not yet in the DSA |
| 2633 | ** and the the next queue position points to the next JOB. |
| 2634 | */ |
| 2635 | SCR_LOAD_ABS (dsa, 4)(0xe1000000 | 0x02000000 | (((((((size_t) (&((struct ncr_reg *)0)->nc_dsa)))) & 0xff) << 16ul)) | (4)), |
| 2636 | PADDRH (startpos)(0x80000000 | ((size_t) (&((struct scripth *)0)->startpos ))), |
| 2637 | SCR_LOAD_REL (temp, 4)(0xe1000000 | 0x02000000|0x10000000 | (((((((size_t) (&(( struct ncr_reg *)0)->nc_temp)))) & 0xff) << 16ul )) | (4)), |
| 2638 | 4, |
| 2639 | }/*-------------------------< GETJOB_BEGIN >------------------*/,{ |
| 2640 | SCR_STORE_ABS (temp, 4)(0xe0000000 | 0x02000000 | (((((((size_t) (&((struct ncr_reg *)0)->nc_temp)))) & 0xff) << 16ul)) | (4)), |
| 2641 | PADDRH (startpos)(0x80000000 | ((size_t) (&((struct scripth *)0)->startpos ))), |
| 2642 | SCR_LOAD_REL (dsa, 4)(0xe1000000 | 0x02000000|0x10000000 | (((((((size_t) (&(( struct ncr_reg *)0)->nc_dsa)))) & 0xff) << 16ul) ) | (4)), |
| 2643 | 0, |
| 2644 | }/*-------------------------< GETJOB_END >--------------------*/,{ |
| 2645 | SCR_LOAD_REL (temp, 4)(0xe1000000 | 0x02000000|0x10000000 | (((((((size_t) (&(( struct ncr_reg *)0)->nc_temp)))) & 0xff) << 16ul )) | (4)), |
| 2646 | 0, |
| 2647 | SCR_RETURN0x90080000, |
| 2648 | 0, |
| 2649 | |
| 2650 | }/*-------------------------< SELECT >----------------------*/,{ |
| 2651 | /* |
| 2652 | ** DSA contains the address of a scheduled |
| 2653 | ** data structure. |
| 2654 | ** |
| 2655 | ** SCRATCHA contains the address of the start queue |
| 2656 | ** entry which points to the next job. |
| 2657 | ** |
| 2658 | ** Set Initiator mode. |
| 2659 | ** |
| 2660 | ** (Target mode is left as an exercise for the reader) |
| 2661 | */ |
| 2662 | |
| 2663 | SCR_CLR (SCR_TRG)(0x60000000 | (0x00000200)), |
| 2664 | 0, |
| 2665 | /* |
| 2666 | ** And try to select this target. |
| 2667 | */ |
| 2668 | SCR_SEL_TBL_ATN0x43000000 ^ offsetof (struct dsb, select)((size_t) (&((struct dsb *)0)->select)), |
| 2669 | PADDR (ungetjob)(0x50000000 | ((size_t) (&((struct script *)0)->ungetjob ))), |
| 2670 | /* |
| 2671 | ** Now there are 4 possibilities: |
| 2672 | ** |
| 2673 | ** (1) The ncr looses arbitration. |
| 2674 | ** This is ok, because it will try again, |
| 2675 | ** when the bus becomes idle. |
| 2676 | ** (But beware of the timeout function!) |
| 2677 | ** |
| 2678 | ** (2) The ncr is reselected. |
| 2679 | ** Then the script processor takes the jump |
| 2680 | ** to the RESELECT label. |
| 2681 | ** |
| 2682 | ** (3) The ncr wins arbitration. |
| 2683 | ** Then it will execute SCRIPTS instruction until |
| 2684 | ** the next instruction that checks SCSI phase. |
| 2685 | ** Then will stop and wait for selection to be |
| 2686 | ** complete or selection time-out to occur. |
| 2687 | ** |
| 2688 | ** After having won arbitration, the ncr SCRIPTS |
| 2689 | ** processor is able to execute instructions while |
| 2690 | ** the SCSI core is performing SCSI selection. But |
| 2691 | ** some script instruction that is not waiting for |
| 2692 | ** a valid phase (or selection timeout) to occur |
| 2693 | ** breaks the selection procedure, by probably |
| 2694 | ** affecting timing requirements. |
| 2695 | ** So we have to wait immediately for the next phase |
| 2696 | ** or the selection to complete or time-out. |
| 2697 | */ |
| 2698 | |
| 2699 | /* |
| 2700 | ** load the savep (saved pointer) into |
| 2701 | ** the actual data pointer. |
| 2702 | */ |
| 2703 | SCR_LOAD_REL (temp, 4)(0xe1000000 | 0x02000000|0x10000000 | (((((((size_t) (&(( struct ncr_reg *)0)->nc_temp)))) & 0xff) << 16ul )) | (4)), |
| 2704 | offsetof (struct ccb, phys.header.savep)((size_t) (&((struct ccb *)0)->phys.header.savep)), |
| 2705 | /* |
| 2706 | ** Initialize the status registers |
| 2707 | */ |
| 2708 | SCR_LOAD_REL (scr0, 4)(0xe1000000 | 0x02000000|0x10000000 | (((((((size_t) (&(( struct ncr_reg *)0)->nc_scr0)))) & 0xff) << 16ul )) | (4)), |
| 2709 | offsetof (struct ccb, phys.header.status)((size_t) (&((struct ccb *)0)->phys.header.status)), |
| 2710 | |
| 2711 | }/*-------------------------< WF_SEL_DONE >----------------------*/,{ |
| 2712 | SCR_INT0x98080000 ^ IFFALSE (WHEN (SCR_MSG_OUT))(0x00080000 | ((0x00030000 | (0x06000000)))), |
| 2713 | SIR_SEL_ATN_NO_MSG_OUT(2), |
| 2714 | }/*-------------------------< SEND_IDENT >----------------------*/,{ |
| 2715 | /* |
| 2716 | ** Selection complete. |
| 2717 | ** Send the IDENTIFY and SIMPLE_TAG messages |
| 2718 | ** (and the M_X_SYNC_REQ / M_X_WIDE_REQ message) |
| 2719 | */ |
| 2720 | SCR_MOVE_TBL(0x10000000 | 0x08000000) ^ SCR_MSG_OUT0x06000000, |
| 2721 | offsetof (struct dsb, smsg)((size_t) (&((struct dsb *)0)->smsg)), |
| 2722 | }/*-------------------------< SELECT2 >----------------------*/,{ |
| 2723 | #ifdef SCSI_NCR_IARB_SUPPORT |
| 2724 | /* |
| 2725 | ** Set IMMEDIATE ARBITRATION if we have been given |
| 2726 | ** a hint to do so. (Some job to do after this one). |
| 2727 | */ |
| 2728 | SCR_FROM_REG (HF_REG)(0x70000000 | ((((((((size_t) (&((struct ncr_reg *)0)-> nc_scr3)))) & 0x7f) << 16ul) + (((((size_t) (&( (struct ncr_reg *)0)->nc_scr3)))) & 0x80))) | (0x02000000 ) | (((0)&0xff)<<8ul)), |
| 2729 | 0, |
| 2730 | SCR_JUMPR0x80880000 ^ IFFALSE (MASK (HF_HINT_IARB, HF_HINT_IARB))(0x00080000 | ((0x00040000 | (((HF_HINT_IARB ^ 0xff) & 0xff ) << 8ul)|((HF_HINT_IARB) & 0xff)))), |
| 2731 | 8, |
| 2732 | SCR_REG_REG (scntl1, SCR_OR, IARB)(0x78000000 | ((((((((size_t) (&((struct ncr_reg *)0)-> nc_scntl1)))) & 0x7f) << 16ul) + (((((size_t) (& ((struct ncr_reg *)0)->nc_scntl1)))) & 0x80))) | (0x02000000 ) | (((0x02)&0xff)<<8ul)), |
| 2733 | 0, |
| 2734 | #endif |
| 2735 | /* |
| 2736 | ** Anticipate the COMMAND phase. |
| 2737 | ** This is the PHASE we expect at this point. |
| 2738 | */ |
| 2739 | SCR_JUMP0x80080000 ^ IFFALSE (WHEN (SCR_COMMAND))(0x00080000 | ((0x00030000 | (0x02000000)))), |
| 2740 | PADDR (sel_no_cmd)(0x50000000 | ((size_t) (&((struct script *)0)->sel_no_cmd ))), |
| 2741 | |
| 2742 | }/*-------------------------< COMMAND >--------------------*/,{ |
| 2743 | /* |
| 2744 | ** ... and send the command |
| 2745 | */ |
| 2746 | SCR_MOVE_TBL(0x10000000 | 0x08000000) ^ SCR_COMMAND0x02000000, |
| 2747 | offsetof (struct dsb, cmd)((size_t) (&((struct dsb *)0)->cmd)), |
| 2748 | |
| 2749 | }/*-----------------------< DISPATCH >----------------------*/,{ |
| 2750 | /* |
| 2751 | ** MSG_IN is the only phase that shall be |
| 2752 | ** entered at least once for each (re)selection. |
| 2753 | ** So we test it first. |
| 2754 | */ |
| 2755 | SCR_JUMP0x80080000 ^ IFTRUE (WHEN (SCR_MSG_IN))(0x00000000 | ((0x00030000 | (0x07000000)))), |
| 2756 | PADDR (msg_in)(0x50000000 | ((size_t) (&((struct script *)0)->msg_in ))), |
| 2757 | SCR_JUMP0x80080000 ^ IFTRUE (IF (SCR_DATA_OUT))(0x00000000 | ((0x00020000 | (0x00000000)))), |
| 2758 | PADDR (datao_phase)(0x50000000 | ((size_t) (&((struct script *)0)->datao_phase ))), |
| 2759 | SCR_JUMP0x80080000 ^ IFTRUE (IF (SCR_DATA_IN))(0x00000000 | ((0x00020000 | (0x01000000)))), |
| 2760 | PADDR (datai_phase)(0x50000000 | ((size_t) (&((struct script *)0)->datai_phase ))), |
| 2761 | SCR_JUMP0x80080000 ^ IFTRUE (IF (SCR_STATUS))(0x00000000 | ((0x00020000 | (0x03000000)))), |
| 2762 | PADDR (status)(0x50000000 | ((size_t) (&((struct script *)0)->status ))), |
| 2763 | SCR_JUMP0x80080000 ^ IFTRUE (IF (SCR_COMMAND))(0x00000000 | ((0x00020000 | (0x02000000)))), |
| 2764 | PADDR (command)(0x50000000 | ((size_t) (&((struct script *)0)->command ))), |
| 2765 | SCR_JUMP0x80080000 ^ IFTRUE (IF (SCR_MSG_OUT))(0x00000000 | ((0x00020000 | (0x06000000)))), |
| 2766 | PADDRH (msg_out)(0x80000000 | ((size_t) (&((struct scripth *)0)->msg_out ))), |
| 2767 | /* |
| 2768 | * Discard as many illegal phases as |
| 2769 | * required and tell the C code about. |
| 2770 | */ |
| 2771 | SCR_JUMPR0x80880000 ^ IFFALSE (WHEN (SCR_ILG_OUT))(0x00080000 | ((0x00030000 | (0x04000000)))), |
| 2772 | 16, |
| 2773 | SCR_MOVE_ABS (1)((0x00000000 | 0x08000000) | (1)) ^ SCR_ILG_OUT0x04000000, |
| 2774 | NADDR (scratch)(0x40000000 | ((size_t) (&((struct ncb *)0)->scratch)) ), |
| 2775 | SCR_JUMPR0x80880000 ^ IFTRUE (WHEN (SCR_ILG_OUT))(0x00000000 | ((0x00030000 | (0x04000000)))), |
| 2776 | -16, |
| 2777 | SCR_JUMPR0x80880000 ^ IFFALSE (WHEN (SCR_ILG_IN))(0x00080000 | ((0x00030000 | (0x05000000)))), |
| 2778 | 16, |
| 2779 | SCR_MOVE_ABS (1)((0x00000000 | 0x08000000) | (1)) ^ SCR_ILG_IN0x05000000, |
| 2780 | NADDR (scratch)(0x40000000 | ((size_t) (&((struct ncb *)0)->scratch)) ), |
| 2781 | SCR_JUMPR0x80880000 ^ IFTRUE (WHEN (SCR_ILG_IN))(0x00000000 | ((0x00030000 | (0x05000000)))), |
| 2782 | -16, |
| 2783 | SCR_INT0x98080000, |
| 2784 | SIR_BAD_PHASE(23), |
| 2785 | SCR_JUMP0x80080000, |
| 2786 | PADDR (dispatch)(0x50000000 | ((size_t) (&((struct script *)0)->dispatch ))), |
| 2787 | }/*---------------------< SEL_NO_CMD >----------------------*/,{ |
| 2788 | /* |
| 2789 | ** The target does not switch to command |
| 2790 | ** phase after IDENTIFY has been sent. |
| 2791 | ** |
| 2792 | ** If it stays in MSG OUT phase send it |
| 2793 | ** the IDENTIFY again. |
| 2794 | */ |
| 2795 | SCR_JUMP0x80080000 ^ IFTRUE (WHEN (SCR_MSG_OUT))(0x00000000 | ((0x00030000 | (0x06000000)))), |
| 2796 | PADDRH (resend_ident)(0x80000000 | ((size_t) (&((struct scripth *)0)->resend_ident ))), |
| 2797 | /* |
| 2798 | ** If target does not switch to MSG IN phase |
| 2799 | ** and we sent a negotiation, assert the |
| 2800 | ** failure immediately. |
| 2801 | */ |
| 2802 | SCR_JUMP0x80080000 ^ IFTRUE (WHEN (SCR_MSG_IN))(0x00000000 | ((0x00030000 | (0x07000000)))), |
| 2803 | PADDR (dispatch)(0x50000000 | ((size_t) (&((struct script *)0)->dispatch ))), |
| 2804 | SCR_FROM_REG (HS_REG)(0x70000000 | ((((((((size_t) (&((struct ncr_reg *)0)-> nc_scr1)))) & 0x7f) << 16ul) + (((((size_t) (&( (struct ncr_reg *)0)->nc_scr1)))) & 0x80))) | (0x02000000 ) | (((0)&0xff)<<8ul)), |
| 2805 | 0, |
| 2806 | SCR_INT0x98080000 ^ IFTRUE (DATA (HS_NEGOTIATE))(0x00000000 | ((0x00040000 | (((2)) & 0xff)))), |
| 2807 | SIR_NEGO_FAILED(5), |
| 2808 | /* |
| 2809 | ** Jump to dispatcher. |
| 2810 | */ |
| 2811 | SCR_JUMP0x80080000, |
| 2812 | PADDR (dispatch)(0x50000000 | ((size_t) (&((struct script *)0)->dispatch ))), |
| 2813 | |
| 2814 | }/*-------------------------< INIT >------------------------*/,{ |
| 2815 | /* |
| 2816 | ** Wait for the SCSI RESET signal to be |
| 2817 | ** inactive before restarting operations, |
| 2818 | ** since the chip may hang on SEL_ATN |
| 2819 | ** if SCSI RESET is active. |
| 2820 | */ |
| 2821 | SCR_FROM_REG (sstat0)(0x70000000 | ((((((((size_t) (&((struct ncr_reg *)0)-> nc_sstat0)))) & 0x7f) << 16ul) + (((((size_t) (& ((struct ncr_reg *)0)->nc_sstat0)))) & 0x80))) | (0x02000000 ) | (((0)&0xff)<<8ul)), |
| 2822 | 0, |
| 2823 | SCR_JUMPR0x80880000 ^ IFTRUE (MASK (IRST, IRST))(0x00000000 | ((0x00040000 | (((0x02 ^ 0xff) & 0xff) << 8ul)|((0x02) & 0xff)))), |
| 2824 | -16, |
| 2825 | SCR_JUMP0x80080000, |
| 2826 | PADDR (start)(0x50000000 | ((size_t) (&((struct script *)0)->start) )), |
| 2827 | }/*-------------------------< CLRACK >----------------------*/,{ |
| 2828 | /* |
| 2829 | ** Terminate possible pending message phase. |
| 2830 | */ |
| 2831 | SCR_CLR (SCR_ACK)(0x60000000 | (0x00000040)), |
| 2832 | 0, |
| 2833 | SCR_JUMP0x80080000, |
| 2834 | PADDR (dispatch)(0x50000000 | ((size_t) (&((struct script *)0)->dispatch ))), |
| 2835 | |
| 2836 | }/*-------------------------< DISP_STATUS >----------------------*/,{ |
| 2837 | /* |
| 2838 | ** Anticipate STATUS phase. |
| 2839 | ** |
| 2840 | ** Does spare 3 SCRIPTS instructions when we have |
| 2841 | ** completed the INPUT of the data. |
| 2842 | */ |
| 2843 | SCR_JUMP0x80080000 ^ IFTRUE (WHEN (SCR_STATUS))(0x00000000 | ((0x00030000 | (0x03000000)))), |
| 2844 | PADDR (status)(0x50000000 | ((size_t) (&((struct script *)0)->status ))), |
| 2845 | SCR_JUMP0x80080000, |
| 2846 | PADDR (dispatch)(0x50000000 | ((size_t) (&((struct script *)0)->dispatch ))), |
| 2847 | |
| 2848 | }/*-------------------------< DATAI_DONE >-------------------*/,{ |
| 2849 | /* |
| 2850 | * If the device wants us to send more data, |
| 2851 | * we must count the extra bytes. |
| 2852 | */ |
| 2853 | SCR_JUMP0x80080000 ^ IFTRUE (WHEN (SCR_DATA_IN))(0x00000000 | ((0x00030000 | (0x01000000)))), |
| 2854 | PADDRH (data_ovrun)(0x80000000 | ((size_t) (&((struct scripth *)0)->data_ovrun ))), |
| 2855 | /* |
| 2856 | ** If the SWIDE is not full, jump to dispatcher. |
| 2857 | ** We anticipate a STATUS phase. |
| 2858 | ** If we get later an IGNORE WIDE RESIDUE, we |
| 2859 | ** will alias it as a MODIFY DP (-1). |
| 2860 | */ |
| 2861 | SCR_FROM_REG (scntl2)(0x70000000 | ((((((((size_t) (&((struct ncr_reg *)0)-> nc_scntl2)))) & 0x7f) << 16ul) + (((((size_t) (& ((struct ncr_reg *)0)->nc_scntl2)))) & 0x80))) | (0x02000000 ) | (((0)&0xff)<<8ul)), |
| 2862 | 0, |
| 2863 | SCR_JUMP0x80080000 ^ IFFALSE (MASK (WSR, WSR))(0x00080000 | ((0x00040000 | (((0x01 ^ 0xff) & 0xff) << 8ul)|((0x01) & 0xff)))), |
| 2864 | PADDR (disp_status)(0x50000000 | ((size_t) (&((struct script *)0)->disp_status ))), |
| 2865 | /* |
| 2866 | ** The SWIDE is full. |
| 2867 | ** Clear this condition. |
| 2868 | */ |
| 2869 | SCR_REG_REG (scntl2, SCR_OR, WSR)(0x78000000 | ((((((((size_t) (&((struct ncr_reg *)0)-> nc_scntl2)))) & 0x7f) << 16ul) + (((((size_t) (& ((struct ncr_reg *)0)->nc_scntl2)))) & 0x80))) | (0x02000000 ) | (((0x01)&0xff)<<8ul)), |
| 2870 | 0, |
| 2871 | /* |
| 2872 | * We are expecting an IGNORE RESIDUE message |
| 2873 | * from the device, otherwise we are in data |
| 2874 | * overrun condition. Check against MSG_IN phase. |
| 2875 | */ |
| 2876 | SCR_INT0x98080000 ^ IFFALSE (WHEN (SCR_MSG_IN))(0x00080000 | ((0x00030000 | (0x07000000)))), |
| 2877 | SIR_SWIDE_OVERRUN(9), |
| 2878 | SCR_JUMP0x80080000 ^ IFFALSE (WHEN (SCR_MSG_IN))(0x00080000 | ((0x00030000 | (0x07000000)))), |
| 2879 | PADDR (disp_status)(0x50000000 | ((size_t) (&((struct script *)0)->disp_status ))), |
| 2880 | /* |
| 2881 | * We are in MSG_IN phase, |
| 2882 | * Read the first byte of the message. |
| 2883 | * If it is not an IGNORE RESIDUE message, |
| 2884 | * signal overrun and jump to message |
| 2885 | * processing. |
| 2886 | */ |
| 2887 | SCR_MOVE_ABS (1)((0x00000000 | 0x08000000) | (1)) ^ SCR_MSG_IN0x07000000, |
| 2888 | NADDR (msgin[0])(0x40000000 | ((size_t) (&((struct ncb *)0)->msgin[0]) )), |
| 2889 | SCR_INT0x98080000 ^ IFFALSE (DATA (M_IGN_RESIDUE))(0x00080000 | ((0x00040000 | (((0x23)) & 0xff)))), |
| 2890 | SIR_SWIDE_OVERRUN(9), |
| 2891 | SCR_JUMP0x80080000 ^ IFFALSE (DATA (M_IGN_RESIDUE))(0x00080000 | ((0x00040000 | (((0x23)) & 0xff)))), |
| 2892 | PADDR (msg_in2)(0x50000000 | ((size_t) (&((struct script *)0)->msg_in2 ))), |
| 2893 | |
| 2894 | /* |
| 2895 | * We got the message we expected. |
| 2896 | * Read the 2nd byte, and jump to dispatcher. |
| 2897 | */ |
| 2898 | SCR_CLR (SCR_ACK)(0x60000000 | (0x00000040)), |
| 2899 | 0, |
| 2900 | SCR_MOVE_ABS (1)((0x00000000 | 0x08000000) | (1)) ^ SCR_MSG_IN0x07000000, |
| 2901 | NADDR (msgin[1])(0x40000000 | ((size_t) (&((struct ncb *)0)->msgin[1]) )), |
| 2902 | SCR_CLR (SCR_ACK)(0x60000000 | (0x00000040)), |
| 2903 | 0, |
| 2904 | SCR_JUMP0x80080000, |
| 2905 | PADDR (disp_status)(0x50000000 | ((size_t) (&((struct script *)0)->disp_status ))), |
| 2906 | |
| 2907 | }/*-------------------------< DATAO_DONE >-------------------*/,{ |
| 2908 | /* |
| 2909 | * If the device wants us to send more data, |
| 2910 | * we must count the extra bytes. |
| 2911 | */ |
| 2912 | SCR_JUMP0x80080000 ^ IFTRUE (WHEN (SCR_DATA_OUT))(0x00000000 | ((0x00030000 | (0x00000000)))), |
| 2913 | PADDRH (data_ovrun)(0x80000000 | ((size_t) (&((struct scripth *)0)->data_ovrun ))), |
| 2914 | /* |
| 2915 | ** If the SODL is not full jump to dispatcher. |
| 2916 | ** We anticipate a MSG IN phase or a STATUS phase. |
| 2917 | */ |
| 2918 | SCR_FROM_REG (scntl2)(0x70000000 | ((((((((size_t) (&((struct ncr_reg *)0)-> nc_scntl2)))) & 0x7f) << 16ul) + (((((size_t) (& ((struct ncr_reg *)0)->nc_scntl2)))) & 0x80))) | (0x02000000 ) | (((0)&0xff)<<8ul)), |
| 2919 | 0, |
| 2920 | SCR_JUMP0x80080000 ^ IFFALSE (MASK (WSS, WSS))(0x00080000 | ((0x00040000 | (((0x08 ^ 0xff) & 0xff) << 8ul)|((0x08) & 0xff)))), |
| 2921 | PADDR (disp_status)(0x50000000 | ((size_t) (&((struct script *)0)->disp_status ))), |
| 2922 | /* |
| 2923 | ** The SODL is full, clear this condition. |
| 2924 | */ |
| 2925 | SCR_REG_REG (scntl2, SCR_OR, WSS)(0x78000000 | ((((((((size_t) (&((struct ncr_reg *)0)-> nc_scntl2)))) & 0x7f) << 16ul) + (((((size_t) (& ((struct ncr_reg *)0)->nc_scntl2)))) & 0x80))) | (0x02000000 ) | (((0x08)&0xff)<<8ul)), |
| 2926 | 0, |
| 2927 | /* |
| 2928 | ** And signal a DATA UNDERRUN condition |
| 2929 | ** to the C code. |
| 2930 | */ |
| 2931 | SCR_INT0x98080000, |
| 2932 | SIR_SODL_UNDERRUN(10), |
| 2933 | SCR_JUMP0x80080000, |
| 2934 | PADDR (dispatch)(0x50000000 | ((size_t) (&((struct script *)0)->dispatch ))), |
| 2935 | |
| 2936 | }/*-------------------------< IGN_I_W_R_MSG >--------------*/,{ |
| 2937 | /* |
| 2938 | ** We jump here from the phase mismatch interrupt, |
| 2939 | ** When we have a SWIDE and the device has presented |
| 2940 | ** a IGNORE WIDE RESIDUE message on the BUS. |
| 2941 | ** We just have to throw away this message and then |
| 2942 | ** to jump to dispatcher. |
| 2943 | */ |
| 2944 | SCR_MOVE_ABS (2)((0x00000000 | 0x08000000) | (2)) ^ SCR_MSG_IN0x07000000, |
| 2945 | NADDR (scratch)(0x40000000 | ((size_t) (&((struct ncb *)0)->scratch)) ), |
| 2946 | /* |
| 2947 | ** Clear ACK and jump to dispatcher. |
| 2948 | */ |
| 2949 | SCR_JUMP0x80080000, |
| 2950 | PADDR (clrack)(0x50000000 | ((size_t) (&((struct script *)0)->clrack ))), |
| 2951 | |
| 2952 | }/*-------------------------< DATAI_PHASE >------------------*/,{ |
| 2953 | SCR_RETURN0x90080000, |
| 2954 | 0, |
| 2955 | }/*-------------------------< DATAO_PHASE >------------------*/,{ |
| 2956 | /* |
| 2957 | ** Patch for 53c1010_66 only - to allow A0 part |
| 2958 | ** to operate properly in a 33MHz PCI bus. |
| 2959 | ** |
| 2960 | ** SCR_REG_REG(scntl4, SCR_OR, 0x0c), |
| 2961 | ** 0, |
| 2962 | */ |
| 2963 | SCR_NO_OP0x80000000, |
| 2964 | 0, |
| 2965 | SCR_RETURN0x90080000, |
| 2966 | 0, |
| 2967 | }/*-------------------------< MSG_IN >--------------------*/,{ |
| 2968 | /* |
| 2969 | ** Get the first byte of the message. |
| 2970 | ** |
| 2971 | ** The script processor doesn't negate the |
| 2972 | ** ACK signal after this transfer. |
| 2973 | */ |
| 2974 | SCR_MOVE_ABS (1)((0x00000000 | 0x08000000) | (1)) ^ SCR_MSG_IN0x07000000, |
| 2975 | NADDR (msgin[0])(0x40000000 | ((size_t) (&((struct ncb *)0)->msgin[0]) )), |
| 2976 | }/*-------------------------< MSG_IN2 >--------------------*/,{ |
| 2977 | /* |
| 2978 | ** Check first against 1 byte messages |
| 2979 | ** that we handle from SCRIPTS. |
| 2980 | */ |
| 2981 | SCR_JUMP0x80080000 ^ IFTRUE (DATA (M_COMPLETE))(0x00000000 | ((0x00040000 | (((0x00)) & 0xff)))), |
| 2982 | PADDR (complete)(0x50000000 | ((size_t) (&((struct script *)0)->complete ))), |
| 2983 | SCR_JUMP0x80080000 ^ IFTRUE (DATA (M_DISCONNECT))(0x00000000 | ((0x00040000 | (((0x04)) & 0xff)))), |
| 2984 | PADDR (disconnect)(0x50000000 | ((size_t) (&((struct script *)0)->disconnect ))), |
| 2985 | SCR_JUMP0x80080000 ^ IFTRUE (DATA (M_SAVE_DP))(0x00000000 | ((0x00040000 | (((0x02)) & 0xff)))), |
| 2986 | PADDR (save_dp)(0x50000000 | ((size_t) (&((struct script *)0)->save_dp ))), |
| 2987 | SCR_JUMP0x80080000 ^ IFTRUE (DATA (M_RESTORE_DP))(0x00000000 | ((0x00040000 | (((0x03)) & 0xff)))), |
| 2988 | PADDR (restore_dp)(0x50000000 | ((size_t) (&((struct script *)0)->restore_dp ))), |
| 2989 | /* |
| 2990 | ** We handle all other messages from the |
| 2991 | ** C code, so no need to waste on-chip RAM |
| 2992 | ** for those ones. |
| 2993 | */ |
| 2994 | SCR_JUMP0x80080000, |
| 2995 | PADDRH (msg_in_etc)(0x80000000 | ((size_t) (&((struct scripth *)0)->msg_in_etc ))), |
| 2996 | |
| 2997 | }/*-------------------------< STATUS >--------------------*/,{ |
| 2998 | /* |
| 2999 | ** get the status |
| 3000 | */ |
| 3001 | SCR_MOVE_ABS (1)((0x00000000 | 0x08000000) | (1)) ^ SCR_STATUS0x03000000, |
| 3002 | NADDR (scratch)(0x40000000 | ((size_t) (&((struct ncb *)0)->scratch)) ), |
| 3003 | #ifdef SCSI_NCR_IARB_SUPPORT |
| 3004 | /* |
| 3005 | ** If STATUS is not GOOD, clear IMMEDIATE ARBITRATION, |
| 3006 | ** since we may have to tamper the start queue from |
| 3007 | ** the C code. |
| 3008 | */ |
| 3009 | SCR_JUMPR0x80880000 ^ IFTRUE (DATA (S_GOOD))(0x00000000 | ((0x00040000 | (((0x00)) & 0xff)))), |
| 3010 | 8, |
| 3011 | SCR_REG_REG (scntl1, SCR_AND, ~IARB)(0x78000000 | ((((((((size_t) (&((struct ncr_reg *)0)-> nc_scntl1)))) & 0x7f) << 16ul) + (((((size_t) (& ((struct ncr_reg *)0)->nc_scntl1)))) & 0x80))) | (0x04000000 ) | (((~0x02)&0xff)<<8ul)), |
| 3012 | 0, |
| 3013 | #endif |
| 3014 | /* |
| 3015 | ** save status to scsi_status. |
| 3016 | ** mark as complete. |
| 3017 | */ |
| 3018 | SCR_TO_REG (SS_REG)(0x68000000 | ((((((((size_t) (&((struct ncr_reg *)0)-> nc_scr2)))) & 0x7f) << 16ul) + (((((size_t) (&( (struct ncr_reg *)0)->nc_scr2)))) & 0x80))) | (0x02000000 ) | (((0)&0xff)<<8ul)), |
| 3019 | 0, |
| 3020 | SCR_LOAD_REG (HS_REG, HS_COMPLETE)(0x78000000 | ((((((((size_t) (&((struct ncr_reg *)0)-> nc_scr1)))) & 0x7f) << 16ul) + (((((size_t) (&( (struct ncr_reg *)0)->nc_scr1)))) & 0x80))) | (0x00000000 ) | ((((4|(0x80)))&0xff)<<8ul)), |
| 3021 | 0, |
| 3022 | /* |
| 3023 | ** Anticipate the MESSAGE PHASE for |
| 3024 | ** the TASK COMPLETE message. |
| 3025 | */ |
| 3026 | SCR_JUMP0x80080000 ^ IFTRUE (WHEN (SCR_MSG_IN))(0x00000000 | ((0x00030000 | (0x07000000)))), |
| 3027 | PADDR (msg_in)(0x50000000 | ((size_t) (&((struct script *)0)->msg_in ))), |
| 3028 | SCR_JUMP0x80080000, |
| 3029 | PADDR (dispatch)(0x50000000 | ((size_t) (&((struct script *)0)->dispatch ))), |
| 3030 | |
| 3031 | }/*-------------------------< COMPLETE >-----------------*/,{ |
| 3032 | /* |
| 3033 | ** Complete message. |
| 3034 | ** |
| 3035 | ** Copy the data pointer to LASTP in header. |
| 3036 | */ |
| 3037 | SCR_STORE_REL (temp, 4)(0xe0000000 | 0x02000000|0x10000000 | (((((((size_t) (&(( struct ncr_reg *)0)->nc_temp)))) & 0xff) << 16ul )) | (4)), |
| 3038 | offsetof (struct ccb, phys.header.lastp)((size_t) (&((struct ccb *)0)->phys.header.lastp)), |
| 3039 | /* |
| 3040 | ** When we terminate the cycle by clearing ACK, |
| 3041 | ** the target may disconnect immediately. |
| 3042 | ** |
| 3043 | ** We don't want to be told of an |
| 3044 | ** "unexpected disconnect", |
| 3045 | ** so we disable this feature. |
| 3046 | */ |
| 3047 | SCR_REG_REG (scntl2, SCR_AND, 0x7f)(0x78000000 | ((((((((size_t) (&((struct ncr_reg *)0)-> nc_scntl2)))) & 0x7f) << 16ul) + (((((size_t) (& ((struct ncr_reg *)0)->nc_scntl2)))) & 0x80))) | (0x04000000 ) | (((0x7f)&0xff)<<8ul)), |
| 3048 | 0, |
| 3049 | /* |
| 3050 | ** Terminate cycle ... |
| 3051 | */ |
| 3052 | SCR_CLR (SCR_ACK|SCR_ATN)(0x60000000 | (0x00000040|0x00000008)), |
| 3053 | 0, |
| 3054 | /* |
| 3055 | ** ... and wait for the disconnect. |
| 3056 | */ |
| 3057 | SCR_WAIT_DISC0x48000000, |
| 3058 | 0, |
| 3059 | }/*-------------------------< COMPLETE2 >-----------------*/,{ |
| 3060 | /* |
| 3061 | ** Save host status to header. |
| 3062 | */ |
| 3063 | SCR_STORE_REL (scr0, 4)(0xe0000000 | 0x02000000|0x10000000 | (((((((size_t) (&(( struct ncr_reg *)0)->nc_scr0)))) & 0xff) << 16ul )) | (4)), |
| 3064 | offsetof (struct ccb, phys.header.status)((size_t) (&((struct ccb *)0)->phys.header.status)), |
| 3065 | |
| 3066 | #ifdef SCSI_NCR_PCIQ_MAY_REORDER_WRITES |
| 3067 | /* |
| 3068 | ** Some bridges may reorder DMA writes to memory. |
| 3069 | ** We donnot want the CPU to deal with completions |
| 3070 | ** without all the posted write having been flushed |
| 3071 | ** to memory. This DUMMY READ should flush posted |
| 3072 | ** buffers prior to the CPU having to deal with |
| 3073 | ** completions. |
| 3074 | */ |
| 3075 | SCR_LOAD_REL (scr0, 4)(0xe1000000 | 0x02000000|0x10000000 | (((((((size_t) (&(( struct ncr_reg *)0)->nc_scr0)))) & 0xff) << 16ul )) | (4)), /* DUMMY READ */ |
| 3076 | offsetof (struct ccb, phys.header.status)((size_t) (&((struct ccb *)0)->phys.header.status)), |
| 3077 | #endif |
| 3078 | /* |
| 3079 | ** If command resulted in not GOOD status, |
| 3080 | ** call the C code if needed. |
| 3081 | */ |
| 3082 | SCR_FROM_REG (SS_REG)(0x70000000 | ((((((((size_t) (&((struct ncr_reg *)0)-> nc_scr2)))) & 0x7f) << 16ul) + (((((size_t) (&( (struct ncr_reg *)0)->nc_scr2)))) & 0x80))) | (0x02000000 ) | (((0)&0xff)<<8ul)), |
| 3083 | 0, |
| 3084 | SCR_CALL0x88080000 ^ IFFALSE (DATA (S_GOOD))(0x00080000 | ((0x00040000 | (((0x00)) & 0xff)))), |
| 3085 | PADDRH (bad_status)(0x80000000 | ((size_t) (&((struct scripth *)0)->bad_status ))), |
| 3086 | |
| 3087 | /* |
| 3088 | ** If we performed an auto-sense, call |
| 3089 | ** the C code to synchronyze task aborts |
| 3090 | ** with UNIT ATTENTION conditions. |
| 3091 | */ |
| 3092 | SCR_FROM_REG (HF_REG)(0x70000000 | ((((((((size_t) (&((struct ncr_reg *)0)-> nc_scr3)))) & 0x7f) << 16ul) + (((((size_t) (&( (struct ncr_reg *)0)->nc_scr3)))) & 0x80))) | (0x02000000 ) | (((0)&0xff)<<8ul)), |
| 3093 | 0, |
| 3094 | SCR_INT0x98080000 ^ IFTRUE (MASK (HF_AUTO_SENSE, HF_AUTO_SENSE))(0x00000000 | ((0x00040000 | ((((1u<<4) ^ 0xff) & 0xff ) << 8ul)|(((1u<<4)) & 0xff)))), |
| 3095 | SIR_AUTO_SENSE_DONE(20), |
| 3096 | |
| 3097 | }/*------------------------< DONE >-----------------*/,{ |
| 3098 | #ifdef SCSI_NCR_PCIQ_SYNC_ON_INTR |
| 3099 | /* |
| 3100 | ** It seems that some bridges flush everything |
| 3101 | ** when the INTR line is raised. For these ones, |
| 3102 | ** we can just ensure that the INTR line will be |
| 3103 | ** raised before each completion. So, if it happens |
| 3104 | ** that we have been faster that the CPU, we just |
| 3105 | ** have to synchronize with it. A dummy programmed |
| 3106 | ** interrupt will do the trick. |
| 3107 | ** Note that we overlap at most 1 IO with the CPU |
| 3108 | ** in this situation and that the IRQ line must not |
| 3109 | ** be shared. |
| 3110 | */ |
| 3111 | SCR_FROM_REG (istat)(0x70000000 | ((((((((size_t) (&((struct ncr_reg *)0)-> nc_istat)))) & 0x7f) << 16ul) + (((((size_t) (& ((struct ncr_reg *)0)->nc_istat)))) & 0x80))) | (0x02000000 ) | (((0)&0xff)<<8ul)), |
| 3112 | 0, |
| 3113 | SCR_INT0x98080000 ^ IFTRUE (MASK (INTF, INTF))(0x00000000 | ((0x00040000 | (((0x04 ^ 0xff) & 0xff) << 8ul)|((0x04) & 0xff)))), |
| 3114 | SIR_DUMMY_INTERRUPT(21), |
| 3115 | #endif |
| 3116 | /* |
| 3117 | ** Copy the DSA to the DONE QUEUE and |
| 3118 | ** signal completion to the host. |
| 3119 | ** If we are interrupted between DONE |
| 3120 | ** and DONE_END, we must reset, otherwise |
| 3121 | ** the completed CCB will be lost. |
| 3122 | */ |
| 3123 | SCR_STORE_ABS (dsa, 4)(0xe0000000 | 0x02000000 | (((((((size_t) (&((struct ncr_reg *)0)->nc_dsa)))) & 0xff) << 16ul)) | (4)), |
| 3124 | PADDRH (saved_dsa)(0x80000000 | ((size_t) (&((struct scripth *)0)->saved_dsa ))), |
| 3125 | SCR_LOAD_ABS (dsa, 4)(0xe1000000 | 0x02000000 | (((((((size_t) (&((struct ncr_reg *)0)->nc_dsa)))) & 0xff) << 16ul)) | (4)), |
| 3126 | PADDRH (done_pos)(0x80000000 | ((size_t) (&((struct scripth *)0)->done_pos ))), |
| 3127 | SCR_LOAD_ABS (scratcha, 4)(0xe1000000 | 0x02000000 | (((((((size_t) (&((struct ncr_reg *)0)->nc_scratcha)))) & 0xff) << 16ul)) | (4)), |
| 3128 | PADDRH (saved_dsa)(0x80000000 | ((size_t) (&((struct scripth *)0)->saved_dsa ))), |
| 3129 | SCR_STORE_REL (scratcha, 4)(0xe0000000 | 0x02000000|0x10000000 | (((((((size_t) (&(( struct ncr_reg *)0)->nc_scratcha)))) & 0xff) << 16ul )) | (4)), |
| 3130 | 0, |
| 3131 | /* |
| 3132 | ** The instruction below reads the DONE QUEUE next |
| 3133 | ** free position from memory. |
| 3134 | ** In addition it ensures that all PCI posted writes |
| 3135 | ** are flushed and so the DSA value of the done |
| 3136 | ** CCB is visible by the CPU before INTFLY is raised. |
| 3137 | */ |
| 3138 | SCR_LOAD_REL (temp, 4)(0xe1000000 | 0x02000000|0x10000000 | (((((((size_t) (&(( struct ncr_reg *)0)->nc_temp)))) & 0xff) << 16ul )) | (4)), |
| 3139 | 4, |
| 3140 | SCR_INT_FLY0x98180000, |
| 3141 | 0, |
| 3142 | SCR_STORE_ABS (temp, 4)(0xe0000000 | 0x02000000 | (((((((size_t) (&((struct ncr_reg *)0)->nc_temp)))) & 0xff) << 16ul)) | (4)), |
| 3143 | PADDRH (done_pos)(0x80000000 | ((size_t) (&((struct scripth *)0)->done_pos ))), |
| 3144 | }/*------------------------< DONE_END >-----------------*/,{ |
| 3145 | SCR_JUMP0x80080000, |
| 3146 | PADDR (start)(0x50000000 | ((size_t) (&((struct script *)0)->start) )), |
| 3147 | |
| 3148 | }/*-------------------------< SAVE_DP >------------------*/,{ |
| 3149 | /* |
| 3150 | ** Clear ACK immediately. |
| 3151 | ** No need to delay it. |
| 3152 | */ |
| 3153 | SCR_CLR (SCR_ACK)(0x60000000 | (0x00000040)), |
| 3154 | 0, |
| 3155 | /* |
| 3156 | ** Keep track we received a SAVE DP, so |
| 3157 | ** we will switch to the other PM context |
| 3158 | ** on the next PM since the DP may point |
| 3159 | ** to the current PM context. |
| 3160 | */ |
| 3161 | SCR_REG_REG (HF_REG, SCR_OR, HF_DP_SAVED)(0x78000000 | ((((((((size_t) (&((struct ncr_reg *)0)-> nc_scr3)))) & 0x7f) << 16ul) + (((((size_t) (&( (struct ncr_reg *)0)->nc_scr3)))) & 0x80))) | (0x02000000 ) | ((((1u<<3))&0xff)<<8ul)), |
| 3162 | 0, |
| 3163 | /* |
| 3164 | ** SAVE_DP message: |
| 3165 | ** Copy the data pointer to SAVEP in header. |
| 3166 | */ |
| 3167 | SCR_STORE_REL (temp, 4)(0xe0000000 | 0x02000000|0x10000000 | (((((((size_t) (&(( struct ncr_reg *)0)->nc_temp)))) & 0xff) << 16ul )) | (4)), |
| 3168 | offsetof (struct ccb, phys.header.savep)((size_t) (&((struct ccb *)0)->phys.header.savep)), |
| 3169 | SCR_JUMP0x80080000, |
| 3170 | PADDR (dispatch)(0x50000000 | ((size_t) (&((struct script *)0)->dispatch ))), |
| 3171 | }/*-------------------------< RESTORE_DP >---------------*/,{ |
| 3172 | /* |
| 3173 | ** RESTORE_DP message: |
| 3174 | ** Copy SAVEP in header to actual data pointer. |
| 3175 | */ |
| 3176 | SCR_LOAD_REL (temp, 4)(0xe1000000 | 0x02000000|0x10000000 | (((((((size_t) (&(( struct ncr_reg *)0)->nc_temp)))) & 0xff) << 16ul )) | (4)), |
| 3177 | offsetof (struct ccb, phys.header.savep)((size_t) (&((struct ccb *)0)->phys.header.savep)), |
| 3178 | SCR_JUMP0x80080000, |
| 3179 | PADDR (clrack)(0x50000000 | ((size_t) (&((struct script *)0)->clrack ))), |
| 3180 | |
| 3181 | }/*-------------------------< DISCONNECT >---------------*/,{ |
| 3182 | /* |
| 3183 | ** DISCONNECTing ... |
| 3184 | ** |
| 3185 | ** disable the "unexpected disconnect" feature, |
| 3186 | ** and remove the ACK signal. |
| 3187 | */ |
| 3188 | SCR_REG_REG (scntl2, SCR_AND, 0x7f)(0x78000000 | ((((((((size_t) (&((struct ncr_reg *)0)-> nc_scntl2)))) & 0x7f) << 16ul) + (((((size_t) (& ((struct ncr_reg *)0)->nc_scntl2)))) & 0x80))) | (0x04000000 ) | (((0x7f)&0xff)<<8ul)), |
| 3189 | 0, |
| 3190 | SCR_CLR (SCR_ACK|SCR_ATN)(0x60000000 | (0x00000040|0x00000008)), |
| 3191 | 0, |
| 3192 | /* |
| 3193 | ** Wait for the disconnect. |
| 3194 | */ |
| 3195 | SCR_WAIT_DISC0x48000000, |
| 3196 | 0, |
| 3197 | /* |
| 3198 | ** Status is: DISCONNECTED. |
| 3199 | */ |
| 3200 | SCR_LOAD_REG (HS_REG, HS_DISCONNECT)(0x78000000 | ((((((((size_t) (&((struct ncr_reg *)0)-> nc_scr1)))) & 0x7f) << 16ul) + (((((size_t) (&( (struct ncr_reg *)0)->nc_scr1)))) & 0x80))) | (0x00000000 ) | ((((3))&0xff)<<8ul)), |
| 3201 | 0, |
| 3202 | /* |
| 3203 | ** Save host status to header. |
| 3204 | */ |
| 3205 | SCR_STORE_REL (scr0, 4)(0xe0000000 | 0x02000000|0x10000000 | (((((((size_t) (&(( struct ncr_reg *)0)->nc_scr0)))) & 0xff) << 16ul )) | (4)), |
| 3206 | offsetof (struct ccb, phys.header.status)((size_t) (&((struct ccb *)0)->phys.header.status)), |
| 3207 | /* |
| 3208 | ** If QUIRK_AUTOSAVE is set, |
| 3209 | ** do an "save pointer" operation. |
| 3210 | */ |
| 3211 | SCR_FROM_REG (QU_REG)(0x70000000 | ((((((((size_t) (&((struct ncr_reg *)0)-> nc_scr0)))) & 0x7f) << 16ul) + (((((size_t) (&( (struct ncr_reg *)0)->nc_scr0)))) & 0x80))) | (0x02000000 ) | (((0)&0xff)<<8ul)), |
| 3212 | 0, |
| 3213 | SCR_JUMP0x80080000 ^ IFFALSE (MASK (QUIRK_AUTOSAVE, QUIRK_AUTOSAVE))(0x00080000 | ((0x00040000 | ((((0x01) ^ 0xff) & 0xff) << 8ul)|(((0x01)) & 0xff)))), |
| 3214 | PADDR (start)(0x50000000 | ((size_t) (&((struct script *)0)->start) )), |
| 3215 | /* |
| 3216 | ** like SAVE_DP message: |
| 3217 | ** Remember we saved the data pointer. |
| 3218 | ** Copy data pointer to SAVEP in header. |
| 3219 | */ |
| 3220 | SCR_REG_REG (HF_REG, SCR_OR, HF_DP_SAVED)(0x78000000 | ((((((((size_t) (&((struct ncr_reg *)0)-> nc_scr3)))) & 0x7f) << 16ul) + (((((size_t) (&( (struct ncr_reg *)0)->nc_scr3)))) & 0x80))) | (0x02000000 ) | ((((1u<<3))&0xff)<<8ul)), |
| 3221 | 0, |
| 3222 | SCR_STORE_REL (temp, 4)(0xe0000000 | 0x02000000|0x10000000 | (((((((size_t) (&(( struct ncr_reg *)0)->nc_temp)))) & 0xff) << 16ul )) | (4)), |
| 3223 | offsetof (struct ccb, phys.header.savep)((size_t) (&((struct ccb *)0)->phys.header.savep)), |
| 3224 | SCR_JUMP0x80080000, |
| 3225 | PADDR (start)(0x50000000 | ((size_t) (&((struct script *)0)->start) )), |
| 3226 | |
| 3227 | }/*-------------------------< IDLE >------------------------*/,{ |
| 3228 | /* |
| 3229 | ** Nothing to do? |
| 3230 | ** Wait for reselect. |
| 3231 | ** This NOP will be patched with LED OFF |
| 3232 | ** SCR_REG_REG (gpreg, SCR_OR, 0x01) |
| 3233 | */ |
| 3234 | SCR_NO_OP0x80000000, |
| 3235 | 0, |
| 3236 | #ifdef SCSI_NCR_IARB_SUPPORT |
| 3237 | SCR_JUMPR0x80880000, |
| 3238 | 8, |
| 3239 | #endif |
| 3240 | }/*-------------------------< UNGETJOB >-----------------*/,{ |
| 3241 | #ifdef SCSI_NCR_IARB_SUPPORT |
| 3242 | /* |
| 3243 | ** Set IMMEDIATE ARBITRATION, for the next time. |
| 3244 | ** This will give us better chance to win arbitration |
| 3245 | ** for the job we just wanted to do. |
| 3246 | */ |
| 3247 | SCR_REG_REG (scntl1, SCR_OR, IARB)(0x78000000 | ((((((((size_t) (&((struct ncr_reg *)0)-> nc_scntl1)))) & 0x7f) << 16ul) + (((((size_t) (& ((struct ncr_reg *)0)->nc_scntl1)))) & 0x80))) | (0x02000000 ) | (((0x02)&0xff)<<8ul)), |
| 3248 | 0, |
| 3249 | #endif |
| 3250 | /* |
| 3251 | ** We are not able to restart the SCRIPTS if we are |
| 3252 | ** interrupted and these instruction haven't been |
| 3253 | ** all executed. BTW, this is very unlikely to |
| 3254 | ** happen, but we check that from the C code. |
| 3255 | */ |
| 3256 | SCR_LOAD_REG (dsa, 0xff)(0x78000000 | ((((((((size_t) (&((struct ncr_reg *)0)-> nc_dsa)))) & 0x7f) << 16ul) + (((((size_t) (&(( struct ncr_reg *)0)->nc_dsa)))) & 0x80))) | (0x00000000 ) | (((0xff)&0xff)<<8ul)), |
| 3257 | 0, |
| 3258 | SCR_STORE_ABS (scratcha, 4)(0xe0000000 | 0x02000000 | (((((((size_t) (&((struct ncr_reg *)0)->nc_scratcha)))) & 0xff) << 16ul)) | (4)), |
| 3259 | PADDRH (startpos)(0x80000000 | ((size_t) (&((struct scripth *)0)->startpos ))), |
| 3260 | }/*-------------------------< RESELECT >--------------------*/,{ |
| 3261 | /* |
| 3262 | ** make the host status invalid. |
| 3263 | */ |
| 3264 | SCR_CLR (SCR_TRG)(0x60000000 | (0x00000200)), |
| 3265 | 0, |
| 3266 | /* |
| 3267 | ** Sleep waiting for a reselection. |
| 3268 | ** If SIGP is set, special treatment. |
| 3269 | ** |
| 3270 | ** Zu allem bereit .. |
| 3271 | */ |
| 3272 | SCR_WAIT_RESEL0x50000000, |
| 3273 | PADDR(start)(0x50000000 | ((size_t) (&((struct script *)0)->start) )), |
| 3274 | }/*-------------------------< RESELECTED >------------------*/,{ |
| 3275 | /* |
| 3276 | ** This NOP will be patched with LED ON |
| 3277 | ** SCR_REG_REG (gpreg, SCR_AND, 0xfe) |
| 3278 | */ |
| 3279 | SCR_NO_OP0x80000000, |
| 3280 | 0, |
| 3281 | /* |
| 3282 | ** load the target id into the sdid |
| 3283 | */ |
| 3284 | SCR_REG_SFBR (ssid, SCR_AND, 0x8F)(0x70000000 | ((((((((size_t) (&((struct ncr_reg *)0)-> nc_ssid)))) & 0x7f) << 16ul) + (((((size_t) (&( (struct ncr_reg *)0)->nc_ssid)))) & 0x80))) | (0x04000000 ) | (((0x8F)&0xff)<<8ul)), |
| 3285 | 0, |
| 3286 | SCR_TO_REG (sdid)(0x68000000 | ((((((((size_t) (&((struct ncr_reg *)0)-> nc_sdid)))) & 0x7f) << 16ul) + (((((size_t) (&( (struct ncr_reg *)0)->nc_sdid)))) & 0x80))) | (0x02000000 ) | (((0)&0xff)<<8ul)), |
| 3287 | 0, |
| 3288 | /* |
| 3289 | ** load the target control block address |
| 3290 | */ |
| 3291 | SCR_LOAD_ABS (dsa, 4)(0xe1000000 | 0x02000000 | (((((((size_t) (&((struct ncr_reg *)0)->nc_dsa)))) & 0xff) << 16ul)) | (4)), |
| 3292 | PADDRH (targtbl)(0x80000000 | ((size_t) (&((struct scripth *)0)->targtbl ))), |
| 3293 | SCR_SFBR_REG (dsa, SCR_SHL, 0)(0x68000000 | ((((((((size_t) (&((struct ncr_reg *)0)-> nc_dsa)))) & 0x7f) << 16ul) + (((((size_t) (&(( struct ncr_reg *)0)->nc_dsa)))) & 0x80))) | (0x01000000 ) | (((0)&0xff)<<8ul)), |
| 3294 | 0, |
| 3295 | SCR_REG_REG (dsa, SCR_SHL, 0)(0x78000000 | ((((((((size_t) (&((struct ncr_reg *)0)-> nc_dsa)))) & 0x7f) << 16ul) + (((((size_t) (&(( struct ncr_reg *)0)->nc_dsa)))) & 0x80))) | (0x01000000 ) | (((0)&0xff)<<8ul)), |
| 3296 | 0, |
| 3297 | SCR_REG_REG (dsa, SCR_AND, 0x3c)(0x78000000 | ((((((((size_t) (&((struct ncr_reg *)0)-> nc_dsa)))) & 0x7f) << 16ul) + (((((size_t) (&(( struct ncr_reg *)0)->nc_dsa)))) & 0x80))) | (0x04000000 ) | (((0x3c)&0xff)<<8ul)), |
| 3298 | 0, |
| 3299 | SCR_LOAD_REL (dsa, 4)(0xe1000000 | 0x02000000|0x10000000 | (((((((size_t) (&(( struct ncr_reg *)0)->nc_dsa)))) & 0xff) << 16ul) ) | (4)), |
| 3300 | 0, |
| 3301 | /* |
| 3302 | ** Load the synchronous transfer registers. |
| 3303 | */ |
| 3304 | SCR_LOAD_REL (scntl3, 1)(0xe1000000 | 0x02000000|0x10000000 | (((((((size_t) (&(( struct ncr_reg *)0)->nc_scntl3)))) & 0xff) << 16ul )) | (1)), |
| 3305 | offsetof(struct tcb, wval)((size_t) (&((struct tcb *)0)->wval)), |
| 3306 | SCR_LOAD_REL (sxfer, 1)(0xe1000000 | 0x02000000|0x10000000 | (((((((size_t) (&(( struct ncr_reg *)0)->nc_sxfer)))) & 0xff) << 16ul )) | (1)), |
| 3307 | offsetof(struct tcb, sval)((size_t) (&((struct tcb *)0)->sval)), |
| 3308 | }/*-------------------------< RESEL_SCNTL4 >------------------*/,{ |
| 3309 | /* |
| 3310 | ** Write with uval value. Patch if device |
| 3311 | ** does not support Ultra3. |
| 3312 | ** |
| 3313 | ** SCR_LOAD_REL (scntl4, 1), |
| 3314 | ** offsetof(struct tcb, uval), |
| 3315 | */ |
| 3316 | |
| 3317 | SCR_NO_OP0x80000000, |
| 3318 | 0, |
| 3319 | /* |
| 3320 | * We expect MESSAGE IN phase. |
| 3321 | * If not, get help from the C code. |
| 3322 | */ |
| 3323 | SCR_INT0x98080000 ^ IFFALSE (WHEN (SCR_MSG_IN))(0x00080000 | ((0x00030000 | (0x07000000)))), |
| 3324 | SIR_RESEL_NO_MSG_IN(11), |
| 3325 | SCR_MOVE_ABS (1)((0x00000000 | 0x08000000) | (1)) ^ SCR_MSG_IN0x07000000, |
| 3326 | NADDR (msgin)(0x40000000 | ((size_t) (&((struct ncb *)0)->msgin))), |
| 3327 | |
| 3328 | /* |
| 3329 | * If IDENTIFY LUN #0, use a faster path |
| 3330 | * to find the LCB structure. |
| 3331 | */ |
| 3332 | SCR_JUMPR0x80880000 ^ IFTRUE (MASK (0x80, 0xbf))(0x00000000 | ((0x00040000 | (((0xbf ^ 0xff) & 0xff) << 8ul)|((0x80) & 0xff)))), |
| 3333 | 56, |
| 3334 | /* |
| 3335 | * If message isn't an IDENTIFY, |
| 3336 | * tell the C code about. |
| 3337 | */ |
| 3338 | SCR_INT0x98080000 ^ IFFALSE (MASK (0x80, 0x80))(0x00080000 | ((0x00040000 | (((0x80 ^ 0xff) & 0xff) << 8ul)|((0x80) & 0xff)))), |
| 3339 | SIR_RESEL_NO_IDENTIFY(12), |
| 3340 | /* |
| 3341 | * It is an IDENTIFY message, |
| 3342 | * Load the LUN control block address. |
| 3343 | */ |
| 3344 | SCR_LOAD_REL (dsa, 4)(0xe1000000 | 0x02000000|0x10000000 | (((((((size_t) (&(( struct ncr_reg *)0)->nc_dsa)))) & 0xff) << 16ul) ) | (4)), |
| 3345 | offsetof(struct tcb, b_luntbl)((size_t) (&((struct tcb *)0)->b_luntbl)), |
| 3346 | SCR_SFBR_REG (dsa, SCR_SHL, 0)(0x68000000 | ((((((((size_t) (&((struct ncr_reg *)0)-> nc_dsa)))) & 0x7f) << 16ul) + (((((size_t) (&(( struct ncr_reg *)0)->nc_dsa)))) & 0x80))) | (0x01000000 ) | (((0)&0xff)<<8ul)), |
| 3347 | 0, |
| 3348 | SCR_REG_REG (dsa, SCR_SHL, 0)(0x78000000 | ((((((((size_t) (&((struct ncr_reg *)0)-> nc_dsa)))) & 0x7f) << 16ul) + (((((size_t) (&(( struct ncr_reg *)0)->nc_dsa)))) & 0x80))) | (0x01000000 ) | (((0)&0xff)<<8ul)), |
| 3349 | 0, |
| 3350 | SCR_REG_REG (dsa, SCR_AND, 0xfc)(0x78000000 | ((((((((size_t) (&((struct ncr_reg *)0)-> nc_dsa)))) & 0x7f) << 16ul) + (((((size_t) (&(( struct ncr_reg *)0)->nc_dsa)))) & 0x80))) | (0x04000000 ) | (((0xfc)&0xff)<<8ul)), |
| 3351 | 0, |
| 3352 | SCR_LOAD_REL (dsa, 4)(0xe1000000 | 0x02000000|0x10000000 | (((((((size_t) (&(( struct ncr_reg *)0)->nc_dsa)))) & 0xff) << 16ul) ) | (4)), |
| 3353 | 0, |
| 3354 | SCR_JUMPR0x80880000, |
| 3355 | 8, |
| 3356 | /* |
| 3357 | ** LUN 0 special case (but usual one :)) |
| 3358 | */ |
| 3359 | SCR_LOAD_REL (dsa, 4)(0xe1000000 | 0x02000000|0x10000000 | (((((((size_t) (&(( struct ncr_reg *)0)->nc_dsa)))) & 0xff) << 16ul) ) | (4)), |
| 3360 | offsetof(struct tcb, b_lun0)((size_t) (&((struct tcb *)0)->b_lun0)), |
| 3361 | |
| 3362 | /* |
| 3363 | ** Load the reselect task action for this LUN. |
| 3364 | ** Load the tasks DSA array for this LUN. |
| 3365 | ** Call the action. |
| 3366 | */ |
| 3367 | SCR_LOAD_REL (temp, 4)(0xe1000000 | 0x02000000|0x10000000 | (((((((size_t) (&(( struct ncr_reg *)0)->nc_temp)))) & 0xff) << 16ul )) | (4)), |
| 3368 | offsetof(struct lcb, resel_task)((size_t) (&((struct lcb *)0)->resel_task)), |
| 3369 | SCR_LOAD_REL (dsa, 4)(0xe1000000 | 0x02000000|0x10000000 | (((((((size_t) (&(( struct ncr_reg *)0)->nc_dsa)))) & 0xff) << 16ul) ) | (4)), |
| 3370 | offsetof(struct lcb, b_tasktbl)((size_t) (&((struct lcb *)0)->b_tasktbl)), |
| 3371 | SCR_RETURN0x90080000, |
| 3372 | 0, |
| 3373 | }/*-------------------------< RESEL_TAG >-------------------*/,{ |
| 3374 | /* |
| 3375 | ** ACK the IDENTIFY or TAG previously received |
| 3376 | */ |
| 3377 | |
| 3378 | SCR_CLR (SCR_ACK)(0x60000000 | (0x00000040)), |
| 3379 | 0, |
| 3380 | /* |
| 3381 | ** Read IDENTIFY + SIMPLE + TAG using a single MOVE. |
| 3382 | ** Agressive optimization, is'nt it? |
| 3383 | ** No need to test the SIMPLE TAG message, since the |
| 3384 | ** driver only supports conformant devices for tags. ;-) |
| 3385 | */ |
| 3386 | SCR_MOVE_ABS (2)((0x00000000 | 0x08000000) | (2)) ^ SCR_MSG_IN0x07000000, |
| 3387 | NADDR (msgin)(0x40000000 | ((size_t) (&((struct ncb *)0)->msgin))), |
| 3388 | /* |
| 3389 | ** Read the TAG from the SIDL. |
| 3390 | ** Still an aggressive optimization. ;-) |
| 3391 | ** Compute the CCB indirect jump address which |
| 3392 | ** is (#TAG*2 & 0xfc) due to tag numbering using |
| 3393 | ** 1,3,5..MAXTAGS*2+1 actual values. |
| 3394 | */ |
| 3395 | SCR_REG_SFBR (sidl, SCR_SHL, 0)(0x70000000 | ((((((((size_t) (&((struct ncr_reg *)0)-> nc_sidl)))) & 0x7f) << 16ul) + (((((size_t) (&( (struct ncr_reg *)0)->nc_sidl)))) & 0x80))) | (0x01000000 ) | (((0)&0xff)<<8ul)), |
| 3396 | 0, |
| 3397 | #if MAX_TASKS(256/4)*4 > 512 |
| 3398 | SCR_JUMPR0x80880000 ^ IFFALSE (CARRYSET)(0x00080000 | ((0x00200000))), |
| 3399 | 8, |
| 3400 | SCR_REG_REG (dsa1, SCR_OR, 2)(0x78000000 | ((((((((size_t) (&((struct ncr_reg *)0)-> nc_dsa1)))) & 0x7f) << 16ul) + (((((size_t) (&( (struct ncr_reg *)0)->nc_dsa1)))) & 0x80))) | (0x02000000 ) | (((2)&0xff)<<8ul)), |
| 3401 | 0, |
| 3402 | SCR_REG_REG (sfbr, SCR_SHL, 0)(0x78000000 | ((((((((size_t) (&((struct ncr_reg *)0)-> nc_sfbr)))) & 0x7f) << 16ul) + (((((size_t) (&( (struct ncr_reg *)0)->nc_sfbr)))) & 0x80))) | (0x01000000 ) | (((0)&0xff)<<8ul)), |
| 3403 | 0, |
| 3404 | SCR_JUMPR0x80880000 ^ IFFALSE (CARRYSET)(0x00080000 | ((0x00200000))), |
| 3405 | 8, |
| 3406 | SCR_REG_REG (dsa1, SCR_OR, 1)(0x78000000 | ((((((((size_t) (&((struct ncr_reg *)0)-> nc_dsa1)))) & 0x7f) << 16ul) + (((((size_t) (&( (struct ncr_reg *)0)->nc_dsa1)))) & 0x80))) | (0x02000000 ) | (((1)&0xff)<<8ul)), |
| 3407 | 0, |
| 3408 | #elif MAX_TASKS(256/4)*4 > 256 |
| 3409 | SCR_JUMPR0x80880000 ^ IFFALSE (CARRYSET)(0x00080000 | ((0x00200000))), |
| 3410 | 8, |
| 3411 | SCR_REG_REG (dsa1, SCR_OR, 1)(0x78000000 | ((((((((size_t) (&((struct ncr_reg *)0)-> nc_dsa1)))) & 0x7f) << 16ul) + (((((size_t) (&( (struct ncr_reg *)0)->nc_dsa1)))) & 0x80))) | (0x02000000 ) | (((1)&0xff)<<8ul)), |
| 3412 | 0, |
| 3413 | #endif |
| 3414 | /* |
| 3415 | ** Retrieve the DSA of this task. |
| 3416 | ** JUMP indirectly to the restart point of the CCB. |
| 3417 | */ |
| 3418 | SCR_SFBR_REG (dsa, SCR_AND, 0xfc)(0x68000000 | ((((((((size_t) (&((struct ncr_reg *)0)-> nc_dsa)))) & 0x7f) << 16ul) + (((((size_t) (&(( struct ncr_reg *)0)->nc_dsa)))) & 0x80))) | (0x04000000 ) | (((0xfc)&0xff)<<8ul)), |
| 3419 | 0, |
| 3420 | }/*-------------------------< RESEL_GO >-------------------*/,{ |
| 3421 | SCR_LOAD_REL (dsa, 4)(0xe1000000 | 0x02000000|0x10000000 | (((((((size_t) (&(( struct ncr_reg *)0)->nc_dsa)))) & 0xff) << 16ul) ) | (4)), |
| 3422 | 0, |
| 3423 | SCR_LOAD_REL (temp, 4)(0xe1000000 | 0x02000000|0x10000000 | (((((((size_t) (&(( struct ncr_reg *)0)->nc_temp)))) & 0xff) << 16ul )) | (4)), |
| 3424 | offsetof(struct ccb, phys.header.go.restart)((size_t) (&((struct ccb *)0)->phys.header.go.restart) ), |
| 3425 | SCR_RETURN0x90080000, |
| 3426 | 0, |
| 3427 | /* In normal situations we branch to RESEL_DSA */ |
| 3428 | }/*-------------------------< RESEL_NOTAG >-------------------*/,{ |
| 3429 | /* |
| 3430 | ** JUMP indirectly to the restart point of the CCB. |
| 3431 | */ |
| 3432 | SCR_JUMP0x80080000, |
| 3433 | PADDR (resel_go)(0x50000000 | ((size_t) (&((struct script *)0)->resel_go ))), |
| 3434 | |
| 3435 | }/*-------------------------< RESEL_DSA >-------------------*/,{ |
| 3436 | /* |
| 3437 | ** Ack the IDENTIFY or TAG previously received. |
| 3438 | */ |
| 3439 | SCR_CLR (SCR_ACK)(0x60000000 | (0x00000040)), |
| 3440 | 0, |
| 3441 | /* |
| 3442 | ** load the savep (saved pointer) into |
| 3443 | ** the actual data pointer. |
| 3444 | */ |
| 3445 | SCR_LOAD_REL (temp, 4)(0xe1000000 | 0x02000000|0x10000000 | (((((((size_t) (&(( struct ncr_reg *)0)->nc_temp)))) & 0xff) << 16ul )) | (4)), |
| 3446 | offsetof (struct ccb, phys.header.savep)((size_t) (&((struct ccb *)0)->phys.header.savep)), |
| 3447 | /* |
| 3448 | ** Initialize the status registers |
| 3449 | */ |
| 3450 | SCR_LOAD_REL (scr0, 4)(0xe1000000 | 0x02000000|0x10000000 | (((((((size_t) (&(( struct ncr_reg *)0)->nc_scr0)))) & 0xff) << 16ul )) | (4)), |
| 3451 | offsetof (struct ccb, phys.header.status)((size_t) (&((struct ccb *)0)->phys.header.status)), |
| 3452 | /* |
| 3453 | ** Jump to dispatcher. |
| 3454 | */ |
| 3455 | SCR_JUMP0x80080000, |
| 3456 | PADDR (dispatch)(0x50000000 | ((size_t) (&((struct script *)0)->dispatch ))), |
| 3457 | |
| 3458 | }/*-------------------------< DATA_IN >--------------------*/,{ |
| 3459 | /* |
| 3460 | ** Because the size depends on the |
| 3461 | ** #define MAX_SCATTER parameter, |
| 3462 | ** it is filled in at runtime. |
| 3463 | ** |
| 3464 | ** ##===========< i=0; i<MAX_SCATTER >========= |
| 3465 | ** || SCR_CHMOV_TBL ^ SCR_DATA_IN, |
| 3466 | ** || offsetof (struct dsb, data[ i]), |
| 3467 | ** ##========================================== |
| 3468 | ** |
| 3469 | **--------------------------------------------------------- |
| 3470 | */ |
| 3471 | 0 |
| 3472 | }/*-------------------------< DATA_IN2 >-------------------*/,{ |
| 3473 | SCR_CALL0x88080000, |
| 3474 | PADDR (datai_done)(0x50000000 | ((size_t) (&((struct script *)0)->datai_done ))), |
| 3475 | SCR_JUMP0x80080000, |
| 3476 | PADDRH (data_ovrun)(0x80000000 | ((size_t) (&((struct scripth *)0)->data_ovrun ))), |
| 3477 | }/*-------------------------< DATA_OUT >--------------------*/,{ |
| 3478 | /* |
| 3479 | ** Because the size depends on the |
| 3480 | ** #define MAX_SCATTER parameter, |
| 3481 | ** it is filled in at runtime. |
| 3482 | ** |
| 3483 | ** ##===========< i=0; i<MAX_SCATTER >========= |
| 3484 | ** || SCR_CHMOV_TBL ^ SCR_DATA_OUT, |
| 3485 | ** || offsetof (struct dsb, data[ i]), |
| 3486 | ** ##========================================== |
| 3487 | ** |
| 3488 | **--------------------------------------------------------- |
| 3489 | */ |
| 3490 | 0 |
| 3491 | }/*-------------------------< DATA_OUT2 >-------------------*/,{ |
| 3492 | SCR_CALL0x88080000, |
| 3493 | PADDR (datao_done)(0x50000000 | ((size_t) (&((struct script *)0)->datao_done ))), |
| 3494 | SCR_JUMP0x80080000, |
| 3495 | PADDRH (data_ovrun)(0x80000000 | ((size_t) (&((struct scripth *)0)->data_ovrun ))), |
| 3496 | |
| 3497 | }/*-------------------------< PM0_DATA >--------------------*/,{ |
| 3498 | /* |
| 3499 | ** Read our host flags to SFBR, so we will be able |
| 3500 | ** to check against the data direction we expect. |
| 3501 | */ |
| 3502 | SCR_FROM_REG (HF_REG)(0x70000000 | ((((((((size_t) (&((struct ncr_reg *)0)-> nc_scr3)))) & 0x7f) << 16ul) + (((((size_t) (&( (struct ncr_reg *)0)->nc_scr3)))) & 0x80))) | (0x02000000 ) | (((0)&0xff)<<8ul)), |
| 3503 | 0, |
| 3504 | /* |
| 3505 | ** Check against actual DATA PHASE. |
| 3506 | */ |
| 3507 | SCR_JUMP0x80080000 ^ IFFALSE (WHEN (SCR_DATA_IN))(0x00080000 | ((0x00030000 | (0x01000000)))), |
| 3508 | PADDR (pm0_data_out)(0x50000000 | ((size_t) (&((struct script *)0)->pm0_data_out ))), |
| 3509 | /* |
| 3510 | ** Actual phase is DATA IN. |
| 3511 | ** Check against expected direction. |
| 3512 | */ |
| 3513 | SCR_JUMP0x80080000 ^ IFFALSE (MASK (HF_DATA_IN, HF_DATA_IN))(0x00080000 | ((0x00040000 | ((((1u<<5) ^ 0xff) & 0xff ) << 8ul)|(((1u<<5)) & 0xff)))), |
| 3514 | PADDRH (data_ovrun)(0x80000000 | ((size_t) (&((struct scripth *)0)->data_ovrun ))), |
| 3515 | /* |
| 3516 | ** Keep track we are moving data from the |
| 3517 | ** PM0 DATA mini-script. |
| 3518 | */ |
| 3519 | SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM0)(0x78000000 | ((((((((size_t) (&((struct ncr_reg *)0)-> nc_scr3)))) & 0x7f) << 16ul) + (((((size_t) (&( (struct ncr_reg *)0)->nc_scr3)))) & 0x80))) | (0x02000000 ) | (((1u)&0xff)<<8ul)), |
| 3520 | 0, |
| 3521 | /* |
| 3522 | ** Move the data to memory. |
| 3523 | */ |
| 3524 | SCR_CHMOV_TBL(0x10000000) ^ SCR_DATA_IN0x01000000, |
| 3525 | offsetof (struct ccb, phys.pm0.sg)((size_t) (&((struct ccb *)0)->phys.pm0.sg)), |
| 3526 | SCR_JUMP0x80080000, |
| 3527 | PADDR (pm0_data_end)(0x50000000 | ((size_t) (&((struct script *)0)->pm0_data_end ))), |
| 3528 | }/*-------------------------< PM0_DATA_OUT >----------------*/,{ |
| 3529 | /* |
| 3530 | ** Actual phase is DATA OUT. |
| 3531 | ** Check against expected direction. |
| 3532 | */ |
| 3533 | SCR_JUMP0x80080000 ^ IFTRUE (MASK (HF_DATA_IN, HF_DATA_IN))(0x00000000 | ((0x00040000 | ((((1u<<5) ^ 0xff) & 0xff ) << 8ul)|(((1u<<5)) & 0xff)))), |
| 3534 | PADDRH (data_ovrun)(0x80000000 | ((size_t) (&((struct scripth *)0)->data_ovrun ))), |
| 3535 | /* |
| 3536 | ** Keep track we are moving data from the |
| 3537 | ** PM0 DATA mini-script. |
| 3538 | */ |
| 3539 | SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM0)(0x78000000 | ((((((((size_t) (&((struct ncr_reg *)0)-> nc_scr3)))) & 0x7f) << 16ul) + (((((size_t) (&( (struct ncr_reg *)0)->nc_scr3)))) & 0x80))) | (0x02000000 ) | (((1u)&0xff)<<8ul)), |
| 3540 | 0, |
| 3541 | /* |
| 3542 | ** Move the data from memory. |
| 3543 | */ |
| 3544 | SCR_CHMOV_TBL(0x10000000) ^ SCR_DATA_OUT0x00000000, |
| 3545 | offsetof (struct ccb, phys.pm0.sg)((size_t) (&((struct ccb *)0)->phys.pm0.sg)), |
| 3546 | }/*-------------------------< PM0_DATA_END >----------------*/,{ |
| 3547 | /* |
| 3548 | ** Clear the flag that told we were moving |
| 3549 | ** data from the PM0 DATA mini-script. |
| 3550 | */ |
| 3551 | SCR_REG_REG (HF_REG, SCR_AND, (~HF_IN_PM0))(0x78000000 | ((((((((size_t) (&((struct ncr_reg *)0)-> nc_scr3)))) & 0x7f) << 16ul) + (((((size_t) (&( (struct ncr_reg *)0)->nc_scr3)))) & 0x80))) | (0x04000000 ) | ((((~1u))&0xff)<<8ul)), |
| 3552 | 0, |
| 3553 | /* |
| 3554 | ** Return to the previous DATA script which |
| 3555 | ** is guaranteed by design (if no bug) to be |
| 3556 | ** the main DATA script for this transfer. |
| 3557 | */ |
| 3558 | SCR_LOAD_REL (temp, 4)(0xe1000000 | 0x02000000|0x10000000 | (((((((size_t) (&(( struct ncr_reg *)0)->nc_temp)))) & 0xff) << 16ul )) | (4)), |
| 3559 | offsetof (struct ccb, phys.pm0.ret)((size_t) (&((struct ccb *)0)->phys.pm0.ret)), |
| 3560 | SCR_RETURN0x90080000, |
| 3561 | 0, |
| 3562 | }/*-------------------------< PM1_DATA >--------------------*/,{ |
| 3563 | /* |
| 3564 | ** Read our host flags to SFBR, so we will be able |
| 3565 | ** to check against the data direction we expect. |
| 3566 | */ |
| 3567 | SCR_FROM_REG (HF_REG)(0x70000000 | ((((((((size_t) (&((struct ncr_reg *)0)-> nc_scr3)))) & 0x7f) << 16ul) + (((((size_t) (&( (struct ncr_reg *)0)->nc_scr3)))) & 0x80))) | (0x02000000 ) | (((0)&0xff)<<8ul)), |
| 3568 | 0, |
| 3569 | /* |
| 3570 | ** Check against actual DATA PHASE. |
| 3571 | */ |
| 3572 | SCR_JUMP0x80080000 ^ IFFALSE (WHEN (SCR_DATA_IN))(0x00080000 | ((0x00030000 | (0x01000000)))), |
| 3573 | PADDR (pm1_data_out)(0x50000000 | ((size_t) (&((struct script *)0)->pm1_data_out ))), |
| 3574 | /* |
| 3575 | ** Actual phase is DATA IN. |
| 3576 | ** Check against expected direction. |
| 3577 | */ |
| 3578 | SCR_JUMP0x80080000 ^ IFFALSE (MASK (HF_DATA_IN, HF_DATA_IN))(0x00080000 | ((0x00040000 | ((((1u<<5) ^ 0xff) & 0xff ) << 8ul)|(((1u<<5)) & 0xff)))), |
| 3579 | PADDRH (data_ovrun)(0x80000000 | ((size_t) (&((struct scripth *)0)->data_ovrun ))), |
| 3580 | /* |
| 3581 | ** Keep track we are moving data from the |
| 3582 | ** PM1 DATA mini-script. |
| 3583 | */ |
| 3584 | SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM1)(0x78000000 | ((((((((size_t) (&((struct ncr_reg *)0)-> nc_scr3)))) & 0x7f) << 16ul) + (((((size_t) (&( (struct ncr_reg *)0)->nc_scr3)))) & 0x80))) | (0x02000000 ) | ((((1u<<1))&0xff)<<8ul)), |
| 3585 | 0, |
| 3586 | /* |
| 3587 | ** Move the data to memory. |
| 3588 | */ |
| 3589 | SCR_CHMOV_TBL(0x10000000) ^ SCR_DATA_IN0x01000000, |
| 3590 | offsetof (struct ccb, phys.pm1.sg)((size_t) (&((struct ccb *)0)->phys.pm1.sg)), |
| 3591 | SCR_JUMP0x80080000, |
| 3592 | PADDR (pm1_data_end)(0x50000000 | ((size_t) (&((struct script *)0)->pm1_data_end ))), |
| 3593 | }/*-------------------------< PM1_DATA_OUT >----------------*/,{ |
| 3594 | /* |
| 3595 | ** Actual phase is DATA OUT. |
| 3596 | ** Check against expected direction. |
| 3597 | */ |
| 3598 | SCR_JUMP0x80080000 ^ IFTRUE (MASK (HF_DATA_IN, HF_DATA_IN))(0x00000000 | ((0x00040000 | ((((1u<<5) ^ 0xff) & 0xff ) << 8ul)|(((1u<<5)) & 0xff)))), |
| 3599 | PADDRH (data_ovrun)(0x80000000 | ((size_t) (&((struct scripth *)0)->data_ovrun ))), |
| 3600 | /* |
| 3601 | ** Keep track we are moving data from the |
| 3602 | ** PM1 DATA mini-script. |
| 3603 | */ |
| 3604 | SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM1)(0x78000000 | ((((((((size_t) (&((struct ncr_reg *)0)-> nc_scr3)))) & 0x7f) << 16ul) + (((((size_t) (&( (struct ncr_reg *)0)->nc_scr3)))) & 0x80))) | (0x02000000 ) | ((((1u<<1))&0xff)<<8ul)), |
| 3605 | 0, |
| 3606 | /* |
| 3607 | ** Move the data from memory. |
| 3608 | */ |
| 3609 | SCR_CHMOV_TBL(0x10000000) ^ SCR_DATA_OUT0x00000000, |
| 3610 | offsetof (struct ccb, phys.pm1.sg)((size_t) (&((struct ccb *)0)->phys.pm1.sg)), |
| 3611 | }/*-------------------------< PM1_DATA_END >----------------*/,{ |
| 3612 | /* |
| 3613 | ** Clear the flag that told we were moving |
| 3614 | ** data from the PM1 DATA mini-script. |
| 3615 | */ |
| 3616 | SCR_REG_REG (HF_REG, SCR_AND, (~HF_IN_PM1))(0x78000000 | ((((((((size_t) (&((struct ncr_reg *)0)-> nc_scr3)))) & 0x7f) << 16ul) + (((((size_t) (&( (struct ncr_reg *)0)->nc_scr3)))) & 0x80))) | (0x04000000 ) | ((((~(1u<<1)))&0xff)<<8ul)), |
| 3617 | 0, |
| 3618 | /* |
| 3619 | ** Return to the previous DATA script which |
| 3620 | ** is guaranteed by design (if no bug) to be |
| 3621 | ** the main DATA script for this transfer. |
| 3622 | */ |
| 3623 | SCR_LOAD_REL (temp, 4)(0xe1000000 | 0x02000000|0x10000000 | (((((((size_t) (&(( struct ncr_reg *)0)->nc_temp)))) & 0xff) << 16ul )) | (4)), |
| 3624 | offsetof (struct ccb, phys.pm1.ret)((size_t) (&((struct ccb *)0)->phys.pm1.ret)), |
| 3625 | SCR_RETURN0x90080000, |
| 3626 | 0, |
| 3627 | }/*---------------------------------------------------------*/ |
| 3628 | }; |
| 3629 | |
| 3630 | |
| 3631 | static struct scripth scripth0 __initdata = { |
| 3632 | /*------------------------< START64 >-----------------------*/{ |
| 3633 | /* |
| 3634 | ** SCRIPT entry point for the 895A and the 896. |
| 3635 | ** For now, there is no specific stuff for that |
| 3636 | ** chip at this point, but this may come. |
| 3637 | */ |
| 3638 | SCR_JUMP0x80080000, |
| 3639 | PADDR (init)(0x50000000 | ((size_t) (&((struct script *)0)->init)) ), |
| 3640 | }/*-------------------------< NO_DATA >-------------------*/,{ |
| 3641 | SCR_JUMP0x80080000, |
| 3642 | PADDRH (data_ovrun)(0x80000000 | ((size_t) (&((struct scripth *)0)->data_ovrun ))), |
| 3643 | }/*-----------------------< SEL_FOR_ABORT >------------------*/,{ |
| 3644 | /* |
| 3645 | ** We are jumped here by the C code, if we have |
| 3646 | ** some target to reset or some disconnected |
| 3647 | ** job to abort. Since error recovery is a serious |
| 3648 | ** busyness, we will really reset the SCSI BUS, if |
| 3649 | ** case of a SCSI interrupt occurring in this path. |
| 3650 | */ |
| 3651 | |
| 3652 | /* |
| 3653 | ** Set initiator mode. |
| 3654 | */ |
| 3655 | SCR_CLR (SCR_TRG)(0x60000000 | (0x00000200)), |
| 3656 | 0, |
| 3657 | /* |
| 3658 | ** And try to select this target. |
| 3659 | */ |
| 3660 | SCR_SEL_TBL_ATN0x43000000 ^ offsetof (struct ncb, abrt_sel)((size_t) (&((struct ncb *)0)->abrt_sel)), |
| 3661 | PADDR (reselect)(0x50000000 | ((size_t) (&((struct script *)0)->reselect ))), |
| 3662 | |
| 3663 | /* |
| 3664 | ** Wait for the selection to complete or |
| 3665 | ** the selection to time out. |
| 3666 | */ |
| 3667 | SCR_JUMPR0x80880000 ^ IFFALSE (WHEN (SCR_MSG_OUT))(0x00080000 | ((0x00030000 | (0x06000000)))), |
| 3668 | -8, |
| 3669 | /* |
| 3670 | ** Call the C code. |
| 3671 | */ |
| 3672 | SCR_INT0x98080000, |
| 3673 | SIR_TARGET_SELECTED(14), |
| 3674 | /* |
| 3675 | ** The C code should let us continue here. |
| 3676 | ** Send the 'kiss of death' message. |
| 3677 | ** We expect an immediate disconnect once |
| 3678 | ** the target has eaten the message. |
| 3679 | */ |
| 3680 | SCR_REG_REG (scntl2, SCR_AND, 0x7f)(0x78000000 | ((((((((size_t) (&((struct ncr_reg *)0)-> nc_scntl2)))) & 0x7f) << 16ul) + (((((size_t) (& ((struct ncr_reg *)0)->nc_scntl2)))) & 0x80))) | (0x04000000 ) | (((0x7f)&0xff)<<8ul)), |
| 3681 | 0, |
| 3682 | SCR_MOVE_TBL(0x10000000 | 0x08000000) ^ SCR_MSG_OUT0x06000000, |
| 3683 | offsetof (struct ncb, abrt_tbl)((size_t) (&((struct ncb *)0)->abrt_tbl)), |
| 3684 | SCR_CLR (SCR_ACK|SCR_ATN)(0x60000000 | (0x00000040|0x00000008)), |
| 3685 | 0, |
| 3686 | SCR_WAIT_DISC0x48000000, |
| 3687 | 0, |
| 3688 | /* |
| 3689 | ** Tell the C code that we are done. |
| 3690 | */ |
| 3691 | SCR_INT0x98080000, |
| 3692 | SIR_ABORT_SENT(17), |
| 3693 | }/*-----------------------< SEL_FOR_ABORT_1 >--------------*/,{ |
| 3694 | /* |
| 3695 | ** Jump at scheduler. |
| 3696 | */ |
| 3697 | SCR_JUMP0x80080000, |
| 3698 | PADDR (start)(0x50000000 | ((size_t) (&((struct script *)0)->start) )), |
| 3699 | |
| 3700 | }/*------------------------< SELECT_NO_ATN >-----------------*/,{ |
| 3701 | /* |
| 3702 | ** Set Initiator mode. |
| 3703 | ** And try to select this target without ATN. |
| 3704 | */ |
| 3705 | |
| 3706 | SCR_CLR (SCR_TRG)(0x60000000 | (0x00000200)), |
| 3707 | 0, |
| 3708 | SCR_SEL_TBL0x42000000 ^ offsetof (struct dsb, select)((size_t) (&((struct dsb *)0)->select)), |
| 3709 | PADDR (ungetjob)(0x50000000 | ((size_t) (&((struct script *)0)->ungetjob ))), |
| 3710 | /* |
| 3711 | ** load the savep (saved pointer) into |
| 3712 | ** the actual data pointer. |
| 3713 | */ |
| 3714 | SCR_LOAD_REL (temp, 4)(0xe1000000 | 0x02000000|0x10000000 | (((((((size_t) (&(( struct ncr_reg *)0)->nc_temp)))) & 0xff) << 16ul )) | (4)), |
| 3715 | offsetof (struct ccb, phys.header.savep)((size_t) (&((struct ccb *)0)->phys.header.savep)), |
| 3716 | /* |
| 3717 | ** Initialize the status registers |
| 3718 | */ |
| 3719 | SCR_LOAD_REL (scr0, 4)(0xe1000000 | 0x02000000|0x10000000 | (((((((size_t) (&(( struct ncr_reg *)0)->nc_scr0)))) & 0xff) << 16ul )) | (4)), |
| 3720 | offsetof (struct ccb, phys.header.status)((size_t) (&((struct ccb *)0)->phys.header.status)), |
| 3721 | |
| 3722 | }/*------------------------< WF_SEL_DONE_NO_ATN >-----------------*/,{ |
| 3723 | /* |
| 3724 | ** Wait immediately for the next phase or |
| 3725 | ** the selection to complete or time-out. |
| 3726 | */ |
| 3727 | SCR_JUMPR0x80880000 ^ IFFALSE (WHEN (SCR_MSG_OUT))(0x00080000 | ((0x00030000 | (0x06000000)))), |
| 3728 | 0, |
| 3729 | SCR_JUMP0x80080000, |
| 3730 | PADDR (select2)(0x50000000 | ((size_t) (&((struct script *)0)->select2 ))), |
| 3731 | |
| 3732 | }/*-------------------------< MSG_IN_ETC >--------------------*/,{ |
| 3733 | /* |
| 3734 | ** If it is an EXTENDED (variable size message) |
| 3735 | ** Handle it. |
| 3736 | */ |
| 3737 | SCR_JUMP0x80080000 ^ IFTRUE (DATA (M_EXTENDED))(0x00000000 | ((0x00040000 | (((0x01)) & 0xff)))), |
| 3738 | PADDRH (msg_extended)(0x80000000 | ((size_t) (&((struct scripth *)0)->msg_extended ))), |
| 3739 | /* |
| 3740 | ** Let the C code handle any other |
| 3741 | ** 1 byte message. |
| 3742 | */ |
| 3743 | SCR_JUMP0x80080000 ^ IFTRUE (MASK (0x00, 0xf0))(0x00000000 | ((0x00040000 | (((0xf0 ^ 0xff) & 0xff) << 8ul)|((0x00) & 0xff)))), |
| 3744 | PADDRH (msg_received)(0x80000000 | ((size_t) (&((struct scripth *)0)->msg_received ))), |
| 3745 | SCR_JUMP0x80080000 ^ IFTRUE (MASK (0x10, 0xf0))(0x00000000 | ((0x00040000 | (((0xf0 ^ 0xff) & 0xff) << 8ul)|((0x10) & 0xff)))), |
| 3746 | PADDRH (msg_received)(0x80000000 | ((size_t) (&((struct scripth *)0)->msg_received ))), |
| 3747 | /* |
| 3748 | ** We donnot handle 2 bytes messages from SCRIPTS. |
| 3749 | ** So, let the C code deal with these ones too. |
| 3750 | */ |
| 3751 | SCR_JUMP0x80080000 ^ IFFALSE (MASK (0x20, 0xf0))(0x00080000 | ((0x00040000 | (((0xf0 ^ 0xff) & 0xff) << 8ul)|((0x20) & 0xff)))), |
| 3752 | PADDRH (msg_weird_seen)(0x80000000 | ((size_t) (&((struct scripth *)0)->msg_weird_seen ))), |
| 3753 | SCR_CLR (SCR_ACK)(0x60000000 | (0x00000040)), |
| 3754 | 0, |
| 3755 | SCR_MOVE_ABS (1)((0x00000000 | 0x08000000) | (1)) ^ SCR_MSG_IN0x07000000, |
| 3756 | NADDR (msgin[1])(0x40000000 | ((size_t) (&((struct ncb *)0)->msgin[1]) )), |
| 3757 | SCR_JUMP0x80080000, |
| 3758 | PADDRH (msg_received)(0x80000000 | ((size_t) (&((struct scripth *)0)->msg_received ))), |
| 3759 | |
| 3760 | }/*-------------------------< MSG_RECEIVED >--------------------*/,{ |
| 3761 | SCR_LOAD_REL (scratcha, 4)(0xe1000000 | 0x02000000|0x10000000 | (((((((size_t) (&(( struct ncr_reg *)0)->nc_scratcha)))) & 0xff) << 16ul )) | (4)), /* DUMMY READ */ |
| 3762 | 0, |
| 3763 | SCR_INT0x98080000, |
| 3764 | SIR_MSG_RECEIVED(3), |
| 3765 | |
| 3766 | }/*-------------------------< MSG_WEIRD_SEEN >------------------*/,{ |
| 3767 | SCR_LOAD_REL (scratcha1, 4)(0xe1000000 | 0x02000000|0x10000000 | (((((((size_t) (&(( struct ncr_reg *)0)->nc_scratcha1)))) & 0xff) << 16ul)) | (4)), /* DUMMY READ */ |
| 3768 | 0, |
| 3769 | SCR_INT0x98080000, |
| 3770 | SIR_MSG_WEIRD(4), |
| 3771 | |
| 3772 | }/*-------------------------< MSG_EXTENDED >--------------------*/,{ |
| 3773 | /* |
| 3774 | ** Clear ACK and get the next byte |
| 3775 | ** assumed to be the message length. |
| 3776 | */ |
| 3777 | SCR_CLR (SCR_ACK)(0x60000000 | (0x00000040)), |
| 3778 | 0, |
| 3779 | SCR_MOVE_ABS (1)((0x00000000 | 0x08000000) | (1)) ^ SCR_MSG_IN0x07000000, |
| 3780 | NADDR (msgin[1])(0x40000000 | ((size_t) (&((struct ncb *)0)->msgin[1]) )), |
| 3781 | /* |
| 3782 | ** Try to catch some unlikely situations as 0 length |
| 3783 | ** or too large the length. |
| 3784 | */ |
| 3785 | SCR_JUMP0x80080000 ^ IFTRUE (DATA (0))(0x00000000 | ((0x00040000 | ((0) & 0xff)))), |
| 3786 | PADDRH (msg_weird_seen)(0x80000000 | ((size_t) (&((struct scripth *)0)->msg_weird_seen ))), |
| 3787 | SCR_TO_REG (scratcha)(0x68000000 | ((((((((size_t) (&((struct ncr_reg *)0)-> nc_scratcha)))) & 0x7f) << 16ul) + (((((size_t) (& ((struct ncr_reg *)0)->nc_scratcha)))) & 0x80))) | (0x02000000 ) | (((0)&0xff)<<8ul)), |
| 3788 | 0, |
| 3789 | SCR_REG_REG (sfbr, SCR_ADD, (256-8))(0x78000000 | ((((((((size_t) (&((struct ncr_reg *)0)-> nc_sfbr)))) & 0x7f) << 16ul) + (((((size_t) (&( (struct ncr_reg *)0)->nc_sfbr)))) & 0x80))) | (0x06000000 ) | ((((256 -8))&0xff)<<8ul)), |
| 3790 | 0, |
| 3791 | SCR_JUMP0x80080000 ^ IFTRUE (CARRYSET)(0x00000000 | ((0x00200000))), |
| 3792 | PADDRH (msg_weird_seen)(0x80000000 | ((size_t) (&((struct scripth *)0)->msg_weird_seen ))), |
| 3793 | /* |
| 3794 | ** We donnot handle extended messages from SCRIPTS. |
| 3795 | ** Read the amount of data correponding to the |
| 3796 | ** message length and call the C code. |
| 3797 | */ |
| 3798 | SCR_STORE_REL (scratcha, 1)(0xe0000000 | 0x02000000|0x10000000 | (((((((size_t) (&(( struct ncr_reg *)0)->nc_scratcha)))) & 0xff) << 16ul )) | (1)), |
| 3799 | offsetof (struct dsb, smsg_ext.size)((size_t) (&((struct dsb *)0)->smsg_ext.size)), |
| 3800 | SCR_CLR (SCR_ACK)(0x60000000 | (0x00000040)), |
| 3801 | 0, |
| 3802 | SCR_MOVE_TBL(0x10000000 | 0x08000000) ^ SCR_MSG_IN0x07000000, |
| 3803 | offsetof (struct dsb, smsg_ext)((size_t) (&((struct dsb *)0)->smsg_ext)), |
| 3804 | SCR_JUMP0x80080000, |
| 3805 | PADDRH (msg_received)(0x80000000 | ((size_t) (&((struct scripth *)0)->msg_received ))), |
| 3806 | |
| 3807 | }/*-------------------------< MSG_BAD >------------------*/,{ |
| 3808 | /* |
| 3809 | ** unimplemented message - reject it. |
| 3810 | */ |
| 3811 | SCR_INT0x98080000, |
| 3812 | SIR_REJECT_TO_SEND(8), |
| 3813 | SCR_SET (SCR_ATN)(0x58000000 | (0x00000008)), |
| 3814 | 0, |
| 3815 | SCR_JUMP0x80080000, |
| 3816 | PADDR (clrack)(0x50000000 | ((size_t) (&((struct script *)0)->clrack ))), |
| 3817 | |
| 3818 | }/*-------------------------< MSG_WEIRD >--------------------*/,{ |
| 3819 | /* |
| 3820 | ** weird message received |
| 3821 | ** ignore all MSG IN phases and reject it. |
| 3822 | */ |
| 3823 | SCR_INT0x98080000, |
| 3824 | SIR_REJECT_TO_SEND(8), |
| 3825 | SCR_SET (SCR_ATN)(0x58000000 | (0x00000008)), |
| 3826 | 0, |
| 3827 | }/*-------------------------< MSG_WEIRD1 >--------------------*/,{ |
| 3828 | SCR_CLR (SCR_ACK)(0x60000000 | (0x00000040)), |
| 3829 | 0, |
| 3830 | SCR_JUMP0x80080000 ^ IFFALSE (WHEN (SCR_MSG_IN))(0x00080000 | ((0x00030000 | (0x07000000)))), |
| 3831 | PADDR (dispatch)(0x50000000 | ((size_t) (&((struct script *)0)->dispatch ))), |
| 3832 | SCR_MOVE_ABS (1)((0x00000000 | 0x08000000) | (1)) ^ SCR_MSG_IN0x07000000, |
| 3833 | NADDR (scratch)(0x40000000 | ((size_t) (&((struct ncb *)0)->scratch)) ), |
| 3834 | SCR_JUMP0x80080000, |
| 3835 | PADDRH (msg_weird1)(0x80000000 | ((size_t) (&((struct scripth *)0)->msg_weird1 ))), |
| 3836 | }/*-------------------------< WDTR_RESP >----------------*/,{ |
| 3837 | /* |
| 3838 | ** let the target fetch our answer. |
| 3839 | */ |
| 3840 | SCR_SET (SCR_ATN)(0x58000000 | (0x00000008)), |
| 3841 | 0, |
| 3842 | SCR_CLR (SCR_ACK)(0x60000000 | (0x00000040)), |
| 3843 | 0, |
| 3844 | SCR_JUMP0x80080000 ^ IFFALSE (WHEN (SCR_MSG_OUT))(0x00080000 | ((0x00030000 | (0x06000000)))), |
| 3845 | PADDRH (nego_bad_phase)(0x80000000 | ((size_t) (&((struct scripth *)0)->nego_bad_phase ))), |
| 3846 | |
| 3847 | }/*-------------------------< SEND_WDTR >----------------*/,{ |
| 3848 | /* |
| 3849 | ** Send the M_X_WIDE_REQ |
| 3850 | */ |
| 3851 | SCR_MOVE_ABS (4)((0x00000000 | 0x08000000) | (4)) ^ SCR_MSG_OUT0x06000000, |
| 3852 | NADDR (msgout)(0x40000000 | ((size_t) (&((struct ncb *)0)->msgout))), |
| 3853 | SCR_JUMP0x80080000, |
| 3854 | PADDRH (msg_out_done)(0x80000000 | ((size_t) (&((struct scripth *)0)->msg_out_done ))), |
| 3855 | |
| 3856 | }/*-------------------------< SDTR_RESP >-------------*/,{ |
| 3857 | /* |
| 3858 | ** let the target fetch our answer. |
| 3859 | */ |
| 3860 | SCR_SET (SCR_ATN)(0x58000000 | (0x00000008)), |
| 3861 | 0, |
| 3862 | SCR_CLR (SCR_ACK)(0x60000000 | (0x00000040)), |
| 3863 | 0, |
| 3864 | SCR_JUMP0x80080000 ^ IFFALSE (WHEN (SCR_MSG_OUT))(0x00080000 | ((0x00030000 | (0x06000000)))), |
| 3865 | PADDRH (nego_bad_phase)(0x80000000 | ((size_t) (&((struct scripth *)0)->nego_bad_phase ))), |
| 3866 | |
| 3867 | }/*-------------------------< SEND_SDTR >-------------*/,{ |
| 3868 | /* |
| 3869 | ** Send the M_X_SYNC_REQ |
| 3870 | */ |
| 3871 | SCR_MOVE_ABS (5)((0x00000000 | 0x08000000) | (5)) ^ SCR_MSG_OUT0x06000000, |
| 3872 | NADDR (msgout)(0x40000000 | ((size_t) (&((struct ncb *)0)->msgout))), |
| 3873 | SCR_JUMP0x80080000, |
| 3874 | PADDRH (msg_out_done)(0x80000000 | ((size_t) (&((struct scripth *)0)->msg_out_done ))), |
| 3875 | |
| 3876 | }/*-------------------------< PPR_RESP >-------------*/,{ |
| 3877 | /* |
| 3878 | ** let the target fetch our answer. |
| 3879 | */ |
| 3880 | SCR_SET (SCR_ATN)(0x58000000 | (0x00000008)), |
| 3881 | 0, |
| 3882 | SCR_CLR (SCR_ACK)(0x60000000 | (0x00000040)), |
| 3883 | 0, |
| 3884 | SCR_JUMP0x80080000 ^ IFFALSE (WHEN (SCR_MSG_OUT))(0x00080000 | ((0x00030000 | (0x06000000)))), |
| 3885 | PADDRH (nego_bad_phase)(0x80000000 | ((size_t) (&((struct scripth *)0)->nego_bad_phase ))), |
| 3886 | |
| 3887 | }/*-------------------------< SEND_PPR >-------------*/,{ |
| 3888 | /* |
| 3889 | ** Send the M_X_PPR_REQ |
| 3890 | */ |
| 3891 | SCR_MOVE_ABS (8)((0x00000000 | 0x08000000) | (8)) ^ SCR_MSG_OUT0x06000000, |
| 3892 | NADDR (msgout)(0x40000000 | ((size_t) (&((struct ncb *)0)->msgout))), |
| 3893 | SCR_JUMP0x80080000, |
| 3894 | PADDRH (msg_out_done)(0x80000000 | ((size_t) (&((struct scripth *)0)->msg_out_done ))), |
| 3895 | |
| 3896 | }/*-------------------------< NEGO_BAD_PHASE >------------*/,{ |
| 3897 | SCR_INT0x98080000, |
| 3898 | SIR_NEGO_PROTO(6), |
| 3899 | SCR_JUMP0x80080000, |
| 3900 | PADDR (dispatch)(0x50000000 | ((size_t) (&((struct script *)0)->dispatch ))), |
| 3901 | |
| 3902 | }/*-------------------------< MSG_OUT >-------------------*/,{ |
| 3903 | /* |
| 3904 | ** The target requests a message. |
| 3905 | */ |
| 3906 | SCR_MOVE_ABS (1)((0x00000000 | 0x08000000) | (1)) ^ SCR_MSG_OUT0x06000000, |
| 3907 | NADDR (msgout)(0x40000000 | ((size_t) (&((struct ncb *)0)->msgout))), |
| 3908 | /* |
| 3909 | ** ... wait for the next phase |
| 3910 | ** if it's a message out, send it again, ... |
| 3911 | */ |
| 3912 | SCR_JUMP0x80080000 ^ IFTRUE (WHEN (SCR_MSG_OUT))(0x00000000 | ((0x00030000 | (0x06000000)))), |
| 3913 | PADDRH (msg_out)(0x80000000 | ((size_t) (&((struct scripth *)0)->msg_out ))), |
| 3914 | }/*-------------------------< MSG_OUT_DONE >--------------*/,{ |
| 3915 | /* |
| 3916 | ** ... else clear the message ... |
| 3917 | */ |
| 3918 | SCR_INT0x98080000, |
| 3919 | SIR_MSG_OUT_DONE(19), |
| 3920 | /* |
| 3921 | ** ... and process the next phase |
| 3922 | */ |
| 3923 | SCR_JUMP0x80080000, |
| 3924 | PADDR (dispatch)(0x50000000 | ((size_t) (&((struct script *)0)->dispatch ))), |
| 3925 | |
| 3926 | }/*-------------------------< DATA_OVRUN >-----------------------*/,{ |
| 3927 | /* |
| 3928 | * Use scratcha to count the extra bytes. |
| 3929 | */ |
| 3930 | SCR_LOAD_ABS (scratcha, 4)(0xe1000000 | 0x02000000 | (((((((size_t) (&((struct ncr_reg *)0)->nc_scratcha)))) & 0xff) << 16ul)) | (4)), |
| 3931 | PADDRH (zero)(0x80000000 | ((size_t) (&((struct scripth *)0)->zero) )), |
| 3932 | }/*-------------------------< DATA_OVRUN1 >----------------------*/,{ |
| 3933 | /* |
| 3934 | * The target may want to transfer too much data. |
| 3935 | * |
| 3936 | * If phase is DATA OUT write 1 byte and count it. |
| 3937 | */ |
| 3938 | SCR_JUMPR0x80880000 ^ IFFALSE (WHEN (SCR_DATA_OUT))(0x00080000 | ((0x00030000 | (0x00000000)))), |
| 3939 | 16, |
| 3940 | SCR_CHMOV_ABS (1)((0x00000000) | (1)) ^ SCR_DATA_OUT0x00000000, |
| 3941 | NADDR (scratch)(0x40000000 | ((size_t) (&((struct ncb *)0)->scratch)) ), |
| 3942 | SCR_JUMP0x80080000, |
| 3943 | PADDRH (data_ovrun2)(0x80000000 | ((size_t) (&((struct scripth *)0)->data_ovrun2 ))), |
| 3944 | /* |
| 3945 | * If WSR is set, clear this condition, and |
| 3946 | * count this byte. |
| 3947 | */ |
| 3948 | SCR_FROM_REG (scntl2)(0x70000000 | ((((((((size_t) (&((struct ncr_reg *)0)-> nc_scntl2)))) & 0x7f) << 16ul) + (((((size_t) (& ((struct ncr_reg *)0)->nc_scntl2)))) & 0x80))) | (0x02000000 ) | (((0)&0xff)<<8ul)), |
| 3949 | 0, |
| 3950 | SCR_JUMPR0x80880000 ^ IFFALSE (MASK (WSR, WSR))(0x00080000 | ((0x00040000 | (((0x01 ^ 0xff) & 0xff) << 8ul)|((0x01) & 0xff)))), |
| 3951 | 16, |
| 3952 | SCR_REG_REG (scntl2, SCR_OR, WSR)(0x78000000 | ((((((((size_t) (&((struct ncr_reg *)0)-> nc_scntl2)))) & 0x7f) << 16ul) + (((((size_t) (& ((struct ncr_reg *)0)->nc_scntl2)))) & 0x80))) | (0x02000000 ) | (((0x01)&0xff)<<8ul)), |
| 3953 | 0, |
| 3954 | SCR_JUMP0x80080000, |
| 3955 | PADDRH (data_ovrun2)(0x80000000 | ((size_t) (&((struct scripth *)0)->data_ovrun2 ))), |
| 3956 | /* |
| 3957 | * Finally check against DATA IN phase. |
| 3958 | * Signal data overrun to the C code |
| 3959 | * and jump to dispatcher if not so. |
| 3960 | * Read 1 byte otherwise and count it. |
| 3961 | */ |
| 3962 | SCR_JUMPR0x80880000 ^ IFTRUE (WHEN (SCR_DATA_IN))(0x00000000 | ((0x00030000 | (0x01000000)))), |
| 3963 | 16, |
| 3964 | SCR_INT0x98080000, |
| 3965 | SIR_DATA_OVERRUN(22), |
| 3966 | SCR_JUMP0x80080000, |
| 3967 | PADDR (dispatch)(0x50000000 | ((size_t) (&((struct script *)0)->dispatch ))), |
| 3968 | SCR_CHMOV_ABS (1)((0x00000000) | (1)) ^ SCR_DATA_IN0x01000000, |
| 3969 | NADDR (scratch)(0x40000000 | ((size_t) (&((struct ncb *)0)->scratch)) ), |
| 3970 | }/*-------------------------< DATA_OVRUN2 >----------------------*/,{ |
| 3971 | /* |
| 3972 | * Count this byte. |
| 3973 | * This will allow to return a negative |
| 3974 | * residual to user. |
| 3975 | */ |
| 3976 | SCR_REG_REG (scratcha, SCR_ADD, 0x01)(0x78000000 | ((((((((size_t) (&((struct ncr_reg *)0)-> nc_scratcha)))) & 0x7f) << 16ul) + (((((size_t) (& ((struct ncr_reg *)0)->nc_scratcha)))) & 0x80))) | (0x06000000 ) | (((0x01)&0xff)<<8ul)), |
| 3977 | 0, |
| 3978 | SCR_REG_REG (scratcha1, SCR_ADDC, 0)(0x78000000 | ((((((((size_t) (&((struct ncr_reg *)0)-> nc_scratcha1)))) & 0x7f) << 16ul) + (((((size_t) (& ((struct ncr_reg *)0)->nc_scratcha1)))) & 0x80))) | (0x07000000 ) | (((0)&0xff)<<8ul)), |
| 3979 | 0, |
| 3980 | SCR_REG_REG (scratcha2, SCR_ADDC, 0)(0x78000000 | ((((((((size_t) (&((struct ncr_reg *)0)-> nc_scratcha2)))) & 0x7f) << 16ul) + (((((size_t) (& ((struct ncr_reg *)0)->nc_scratcha2)))) & 0x80))) | (0x07000000 ) | (((0)&0xff)<<8ul)), |
| 3981 | 0, |
| 3982 | /* |
| 3983 | * .. and repeat as required. |
| 3984 | */ |
| 3985 | SCR_JUMP0x80080000, |
| 3986 | PADDRH (data_ovrun1)(0x80000000 | ((size_t) (&((struct scripth *)0)->data_ovrun1 ))), |
| 3987 | |
| 3988 | }/*-------------------------< ABORT_RESEL >----------------*/,{ |
| 3989 | SCR_SET (SCR_ATN)(0x58000000 | (0x00000008)), |
| 3990 | 0, |
| 3991 | SCR_CLR (SCR_ACK)(0x60000000 | (0x00000040)), |
| 3992 | 0, |
| 3993 | /* |
| 3994 | ** send the abort/abortag/reset message |
| 3995 | ** we expect an immediate disconnect |
| 3996 | */ |
| 3997 | SCR_REG_REG (scntl2, SCR_AND, 0x7f)(0x78000000 | ((((((((size_t) (&((struct ncr_reg *)0)-> nc_scntl2)))) & 0x7f) << 16ul) + (((((size_t) (& ((struct ncr_reg *)0)->nc_scntl2)))) & 0x80))) | (0x04000000 ) | (((0x7f)&0xff)<<8ul)), |
| 3998 | 0, |
| 3999 | SCR_MOVE_ABS (1)((0x00000000 | 0x08000000) | (1)) ^ SCR_MSG_OUT0x06000000, |
| 4000 | NADDR (msgout)(0x40000000 | ((size_t) (&((struct ncb *)0)->msgout))), |
| 4001 | SCR_CLR (SCR_ACK|SCR_ATN)(0x60000000 | (0x00000040|0x00000008)), |
| 4002 | 0, |
| 4003 | SCR_WAIT_DISC0x48000000, |
| 4004 | 0, |
| 4005 | SCR_INT0x98080000, |
| 4006 | SIR_RESEL_ABORTED(18), |
| 4007 | SCR_JUMP0x80080000, |
| 4008 | PADDR (start)(0x50000000 | ((size_t) (&((struct script *)0)->start) )), |
| 4009 | }/*-------------------------< RESEND_IDENT >-------------------*/,{ |
| 4010 | /* |
| 4011 | ** The target stays in MSG OUT phase after having acked |
| 4012 | ** Identify [+ Tag [+ Extended message ]]. Targets shall |
| 4013 | ** behave this way on parity error. |
| 4014 | ** We must send it again all the messages. |
| 4015 | */ |
| 4016 | SCR_SET (SCR_ATN)(0x58000000 | (0x00000008)), /* Shall be asserted 2 deskew delays before the */ |
| 4017 | 0, /* 1rst ACK = 90 ns. Hope the NCR is'nt too fast */ |
| 4018 | SCR_JUMP0x80080000, |
| 4019 | PADDR (send_ident)(0x50000000 | ((size_t) (&((struct script *)0)->send_ident ))), |
| 4020 | }/*-------------------------< IDENT_BREAK >-------------------*/,{ |
| 4021 | SCR_CLR (SCR_ATN)(0x60000000 | (0x00000008)), |
| 4022 | 0, |
| 4023 | SCR_JUMP0x80080000, |
| 4024 | PADDR (select2)(0x50000000 | ((size_t) (&((struct script *)0)->select2 ))), |
| 4025 | }/*-------------------------< IDENT_BREAK_ATN >----------------*/,{ |
| 4026 | SCR_SET (SCR_ATN)(0x58000000 | (0x00000008)), |
| 4027 | 0, |
| 4028 | SCR_JUMP0x80080000, |
| 4029 | PADDR (select2)(0x50000000 | ((size_t) (&((struct script *)0)->select2 ))), |
| 4030 | }/*-------------------------< SDATA_IN >-------------------*/,{ |
| 4031 | SCR_CHMOV_TBL(0x10000000) ^ SCR_DATA_IN0x01000000, |
| 4032 | offsetof (struct dsb, sense)((size_t) (&((struct dsb *)0)->sense)), |
| 4033 | SCR_CALL0x88080000, |
| 4034 | PADDR (datai_done)(0x50000000 | ((size_t) (&((struct script *)0)->datai_done ))), |
| 4035 | SCR_JUMP0x80080000, |
| 4036 | PADDRH (data_ovrun)(0x80000000 | ((size_t) (&((struct scripth *)0)->data_ovrun ))), |
| 4037 | }/*-------------------------< DATA_IO >--------------------*/,{ |
| 4038 | /* |
| 4039 | ** We jump here if the data direction was unknown at the |
| 4040 | ** time we had to queue the command to the scripts processor. |
| 4041 | ** Pointers had been set as follow in this situation: |
| 4042 | ** savep --> DATA_IO |
| 4043 | ** lastp --> start pointer when DATA_IN |
| 4044 | ** goalp --> goal pointer when DATA_IN |
| 4045 | ** wlastp --> start pointer when DATA_OUT |
| 4046 | ** wgoalp --> goal pointer when DATA_OUT |
| 4047 | ** This script sets savep/lastp/goalp according to the |
| 4048 | ** direction chosen by the target. |
| 4049 | */ |
| 4050 | SCR_JUMP0x80080000 ^ IFTRUE (WHEN (SCR_DATA_OUT))(0x00000000 | ((0x00030000 | (0x00000000)))), |
| 4051 | PADDRH(data_io_out)(0x80000000 | ((size_t) (&((struct scripth *)0)->data_io_out ))), |
| 4052 | }/*-------------------------< DATA_IO_COM >-----------------*/,{ |
| 4053 | /* |
| 4054 | ** Direction is DATA IN. |
| 4055 | ** Warning: we jump here, even when phase is DATA OUT. |
| 4056 | */ |
| 4057 | SCR_LOAD_REL (scratcha, 4)(0xe1000000 | 0x02000000|0x10000000 | (((((((size_t) (&(( struct ncr_reg *)0)->nc_scratcha)))) & 0xff) << 16ul )) | (4)), |
| 4058 | offsetof (struct ccb, phys.header.lastp)((size_t) (&((struct ccb *)0)->phys.header.lastp)), |
| 4059 | SCR_STORE_REL (scratcha, 4)(0xe0000000 | 0x02000000|0x10000000 | (((((((size_t) (&(( struct ncr_reg *)0)->nc_scratcha)))) & 0xff) << 16ul )) | (4)), |
| 4060 | offsetof (struct ccb, phys.header.savep)((size_t) (&((struct ccb *)0)->phys.header.savep)), |
| 4061 | |
| 4062 | /* |
| 4063 | ** Jump to the SCRIPTS according to actual direction. |
| 4064 | */ |
| 4065 | SCR_LOAD_REL (temp, 4)(0xe1000000 | 0x02000000|0x10000000 | (((((((size_t) (&(( struct ncr_reg *)0)->nc_temp)))) & 0xff) << 16ul )) | (4)), |
| 4066 | offsetof (struct ccb, phys.header.savep)((size_t) (&((struct ccb *)0)->phys.header.savep)), |
| 4067 | SCR_RETURN0x90080000, |
| 4068 | 0, |
| 4069 | }/*-------------------------< DATA_IO_OUT >-----------------*/,{ |
| 4070 | /* |
| 4071 | ** Direction is DATA OUT. |
| 4072 | */ |
| 4073 | SCR_REG_REG (HF_REG, SCR_AND, (~HF_DATA_IN))(0x78000000 | ((((((((size_t) (&((struct ncr_reg *)0)-> nc_scr3)))) & 0x7f) << 16ul) + (((((size_t) (&( (struct ncr_reg *)0)->nc_scr3)))) & 0x80))) | (0x04000000 ) | ((((~(1u<<5)))&0xff)<<8ul)), |
| 4074 | 0, |
| 4075 | SCR_LOAD_REL (scratcha, 4)(0xe1000000 | 0x02000000|0x10000000 | (((((((size_t) (&(( struct ncr_reg *)0)->nc_scratcha)))) & 0xff) << 16ul )) | (4)), |
| 4076 | offsetof (struct ccb, phys.header.wlastp)((size_t) (&((struct ccb *)0)->phys.header.wlastp)), |
| 4077 | SCR_STORE_REL (scratcha, 4)(0xe0000000 | 0x02000000|0x10000000 | (((((((size_t) (&(( struct ncr_reg *)0)->nc_scratcha)))) & 0xff) << 16ul )) | (4)), |
| 4078 | offsetof (struct ccb, phys.header.lastp)((size_t) (&((struct ccb *)0)->phys.header.lastp)), |
| 4079 | SCR_LOAD_REL (scratcha, 4)(0xe1000000 | 0x02000000|0x10000000 | (((((((size_t) (&(( struct ncr_reg *)0)->nc_scratcha)))) & 0xff) << 16ul )) | (4)), |
| 4080 | offsetof (struct ccb, phys.header.wgoalp)((size_t) (&((struct ccb *)0)->phys.header.wgoalp)), |
| 4081 | SCR_STORE_REL (scratcha, 4)(0xe0000000 | 0x02000000|0x10000000 | (((((((size_t) (&(( struct ncr_reg *)0)->nc_scratcha)))) & 0xff) << 16ul )) | (4)), |
| 4082 | offsetof (struct ccb, phys.header.goalp)((size_t) (&((struct ccb *)0)->phys.header.goalp)), |
| 4083 | SCR_JUMP0x80080000, |
| 4084 | PADDRH(data_io_com)(0x80000000 | ((size_t) (&((struct scripth *)0)->data_io_com ))), |
| 4085 | |
| 4086 | }/*-------------------------< RESEL_BAD_LUN >---------------*/,{ |
| 4087 | /* |
| 4088 | ** Message is an IDENTIFY, but lun is unknown. |
| 4089 | ** Signal problem to C code for logging the event. |
| 4090 | ** Send a M_ABORT to clear all pending tasks. |
| 4091 | */ |
| 4092 | SCR_INT0x98080000, |
| 4093 | SIR_RESEL_BAD_LUN(13), |
| 4094 | SCR_JUMP0x80080000, |
| 4095 | PADDRH (abort_resel)(0x80000000 | ((size_t) (&((struct scripth *)0)->abort_resel ))), |
| 4096 | }/*-------------------------< BAD_I_T_L >------------------*/,{ |
| 4097 | /* |
| 4098 | ** We donnot have a task for that I_T_L. |
| 4099 | ** Signal problem to C code for logging the event. |
| 4100 | ** Send a M_ABORT message. |
| 4101 | */ |
| 4102 | SCR_INT0x98080000, |
| 4103 | SIR_RESEL_BAD_I_T_L(15), |
| 4104 | SCR_JUMP0x80080000, |
| 4105 | PADDRH (abort_resel)(0x80000000 | ((size_t) (&((struct scripth *)0)->abort_resel ))), |
| 4106 | }/*-------------------------< BAD_I_T_L_Q >----------------*/,{ |
| 4107 | /* |
| 4108 | ** We donnot have a task that matches the tag. |
| 4109 | ** Signal problem to C code for logging the event. |
| 4110 | ** Send a M_ABORTTAG message. |
| 4111 | */ |
| 4112 | SCR_INT0x98080000, |
| 4113 | SIR_RESEL_BAD_I_T_L_Q(16), |
| 4114 | SCR_JUMP0x80080000, |
| 4115 | PADDRH (abort_resel)(0x80000000 | ((size_t) (&((struct scripth *)0)->abort_resel ))), |
| 4116 | }/*-------------------------< BAD_STATUS >-----------------*/,{ |
| 4117 | /* |
| 4118 | ** Anything different from INTERMEDIATE |
| 4119 | ** CONDITION MET should be a bad SCSI status, |
| 4120 | ** given that GOOD status has already been tested. |
| 4121 | ** Call the C code. |
| 4122 | */ |
| 4123 | SCR_LOAD_ABS (scratcha, 4)(0xe1000000 | 0x02000000 | (((((((size_t) (&((struct ncr_reg *)0)->nc_scratcha)))) & 0xff) << 16ul)) | (4)), |
| 4124 | PADDRH (startpos)(0x80000000 | ((size_t) (&((struct scripth *)0)->startpos ))), |
| 4125 | SCR_INT0x98080000 ^ IFFALSE (DATA (S_COND_MET))(0x00080000 | ((0x00040000 | (((0x04)) & 0xff)))), |
| 4126 | SIR_BAD_STATUS(1), |
| 4127 | SCR_RETURN0x90080000, |
| 4128 | 0, |
| 4129 | |
| 4130 | }/*-------------------------< TWEAK_PMJ >------------------*/,{ |
| 4131 | /* |
| 4132 | ** Disable PM handling from SCRIPTS for the data phase |
| 4133 | ** and so force PM to be handled from C code if HF_PM_TO_C |
| 4134 | ** flag is set. |
| 4135 | */ |
| 4136 | SCR_FROM_REG(HF_REG)(0x70000000 | ((((((((size_t) (&((struct ncr_reg *)0)-> nc_scr3)))) & 0x7f) << 16ul) + (((((size_t) (&( (struct ncr_reg *)0)->nc_scr3)))) & 0x80))) | (0x02000000 ) | (((0)&0xff)<<8ul)), |
| 4137 | 0, |
| 4138 | SCR_JUMPR0x80880000 ^ IFTRUE (MASK (HF_PM_TO_C, HF_PM_TO_C))(0x00000000 | ((0x00040000 | ((((1u<<6) ^ 0xff) & 0xff ) << 8ul)|(((1u<<6)) & 0xff)))), |
| 4139 | 16, |
| 4140 | SCR_REG_REG (ccntl0, SCR_OR, ENPMJ)(0x78000000 | ((((((((size_t) (&((struct ncr_reg *)0)-> nc_ccntl0)))) & 0x7f) << 16ul) + (((((size_t) (& ((struct ncr_reg *)0)->nc_ccntl0)))) & 0x80))) | (0x02000000 ) | (((0x80)&0xff)<<8ul)), |
| 4141 | 0, |
| 4142 | SCR_RETURN0x90080000, |
| 4143 | 0, |
| 4144 | SCR_REG_REG (ccntl0, SCR_AND, (~ENPMJ))(0x78000000 | ((((((((size_t) (&((struct ncr_reg *)0)-> nc_ccntl0)))) & 0x7f) << 16ul) + (((((size_t) (& ((struct ncr_reg *)0)->nc_ccntl0)))) & 0x80))) | (0x04000000 ) | ((((~0x80))&0xff)<<8ul)), |
| 4145 | 0, |
| 4146 | SCR_RETURN0x90080000, |
| 4147 | 0, |
| 4148 | |
| 4149 | }/*-------------------------< PM_HANDLE >------------------*/,{ |
| 4150 | /* |
| 4151 | ** Phase mismatch handling. |
| 4152 | ** |
| 4153 | ** Since we have to deal with 2 SCSI data pointers |
| 4154 | ** (current and saved), we need at least 2 contexts. |
| 4155 | ** Each context (pm0 and pm1) has a saved area, a |
| 4156 | ** SAVE mini-script and a DATA phase mini-script. |
| 4157 | */ |
| 4158 | /* |
| 4159 | ** Get the PM handling flags. |
| 4160 | */ |
| 4161 | SCR_FROM_REG (HF_REG)(0x70000000 | ((((((((size_t) (&((struct ncr_reg *)0)-> nc_scr3)))) & 0x7f) << 16ul) + (((((size_t) (&( (struct ncr_reg *)0)->nc_scr3)))) & 0x80))) | (0x02000000 ) | (((0)&0xff)<<8ul)), |
| 4162 | 0, |
| 4163 | /* |
| 4164 | ** If no flags (1rst PM for example), avoid |
| 4165 | ** all the below heavy flags testing. |
| 4166 | ** This makes the normal case a bit faster. |
| 4167 | */ |
| 4168 | SCR_JUMP0x80080000 ^ IFTRUE (MASK (0, (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED)))(0x00000000 | ((0x00040000 | ((((1u | (1u<<1) | (1u<< 3)) ^ 0xff) & 0xff) << 8ul)|((0) & 0xff)))), |
| 4169 | PADDRH (pm_handle1)(0x80000000 | ((size_t) (&((struct scripth *)0)->pm_handle1 ))), |
| 4170 | /* |
| 4171 | ** If we received a SAVE DP, switch to the |
| 4172 | ** other PM context since the savep may point |
| 4173 | ** to the current PM context. |
| 4174 | */ |
| 4175 | SCR_JUMPR0x80880000 ^ IFFALSE (MASK (HF_DP_SAVED, HF_DP_SAVED))(0x00080000 | ((0x00040000 | ((((1u<<3) ^ 0xff) & 0xff ) << 8ul)|(((1u<<3)) & 0xff)))), |
| 4176 | 8, |
| 4177 | SCR_REG_REG (sfbr, SCR_XOR, HF_ACT_PM)(0x78000000 | ((((((((size_t) (&((struct ncr_reg *)0)-> nc_sfbr)))) & 0x7f) << 16ul) + (((((size_t) (&( (struct ncr_reg *)0)->nc_sfbr)))) & 0x80))) | (0x03000000 ) | ((((1u<<2))&0xff)<<8ul)), |
| 4178 | 0, |
| 4179 | /* |
| 4180 | ** If we have been interrupt in a PM DATA mini-script, |
| 4181 | ** we take the return address from the corresponding |
| 4182 | ** saved area. |
| 4183 | ** This ensure the return address always points to the |
| 4184 | ** main DATA script for this transfer. |
| 4185 | */ |
| 4186 | SCR_JUMP0x80080000 ^ IFTRUE (MASK (0, (HF_IN_PM0 | HF_IN_PM1)))(0x00000000 | ((0x00040000 | ((((1u | (1u<<1)) ^ 0xff) & 0xff) << 8ul)|((0) & 0xff)))), |
| 4187 | PADDRH (pm_handle1)(0x80000000 | ((size_t) (&((struct scripth *)0)->pm_handle1 ))), |
| 4188 | SCR_JUMPR0x80880000 ^ IFFALSE (MASK (HF_IN_PM0, HF_IN_PM0))(0x00080000 | ((0x00040000 | (((1u ^ 0xff) & 0xff) << 8ul)|((1u) & 0xff)))), |
| 4189 | 16, |
| 4190 | SCR_LOAD_REL (ia, 4)(0xe1000000 | 0x02000000|0x10000000 | (((((((size_t) (&(( struct ncr_reg *)0)->nc_ia)))) & 0xff) << 16ul)) | (4)), |
| 4191 | offsetof(struct ccb, phys.pm0.ret)((size_t) (&((struct ccb *)0)->phys.pm0.ret)), |
| 4192 | SCR_JUMP0x80080000, |
| 4193 | PADDRH (pm_save)(0x80000000 | ((size_t) (&((struct scripth *)0)->pm_save ))), |
| 4194 | SCR_LOAD_REL (ia, 4)(0xe1000000 | 0x02000000|0x10000000 | (((((((size_t) (&(( struct ncr_reg *)0)->nc_ia)))) & 0xff) << 16ul)) | (4)), |
| 4195 | offsetof(struct ccb, phys.pm1.ret)((size_t) (&((struct ccb *)0)->phys.pm1.ret)), |
| 4196 | SCR_JUMP0x80080000, |
| 4197 | PADDRH (pm_save)(0x80000000 | ((size_t) (&((struct scripth *)0)->pm_save ))), |
| 4198 | }/*-------------------------< PM_HANDLE1 >-----------------*/,{ |
| 4199 | /* |
| 4200 | ** Normal case. |
| 4201 | ** Update the return address so that it |
| 4202 | ** will point after the interrupted MOVE. |
| 4203 | */ |
| 4204 | SCR_REG_REG (ia, SCR_ADD, 8)(0x78000000 | ((((((((size_t) (&((struct ncr_reg *)0)-> nc_ia)))) & 0x7f) << 16ul) + (((((size_t) (&((struct ncr_reg *)0)->nc_ia)))) & 0x80))) | (0x06000000) | (( (8)&0xff)<<8ul)), |
| 4205 | 0, |
| 4206 | SCR_REG_REG (ia1, SCR_ADDC, 0)(0x78000000 | ((((((((size_t) (&((struct ncr_reg *)0)-> nc_ia1)))) & 0x7f) << 16ul) + (((((size_t) (&(( struct ncr_reg *)0)->nc_ia1)))) & 0x80))) | (0x07000000 ) | (((0)&0xff)<<8ul)), |
| 4207 | 0, |
| 4208 | }/*-------------------------< PM_SAVE >--------------------*/,{ |
| 4209 | /* |
| 4210 | ** Clear all the flags that told us if we were |
| 4211 | ** interrupted in a PM DATA mini-script and/or |
| 4212 | ** we received a SAVE DP. |
| 4213 | */ |
| 4214 | SCR_SFBR_REG (HF_REG, SCR_AND, (~(HF_IN_PM0|HF_IN_PM1|HF_DP_SAVED)))(0x68000000 | ((((((((size_t) (&((struct ncr_reg *)0)-> nc_scr3)))) & 0x7f) << 16ul) + (((((size_t) (&( (struct ncr_reg *)0)->nc_scr3)))) & 0x80))) | (0x04000000 ) | ((((~(1u|(1u<<1)|(1u<<3))))&0xff)<< 8ul)), |
| 4215 | 0, |
| 4216 | /* |
| 4217 | ** Choose the current PM context. |
| 4218 | */ |
| 4219 | SCR_JUMP0x80080000 ^ IFTRUE (MASK (HF_ACT_PM, HF_ACT_PM))(0x00000000 | ((0x00040000 | ((((1u<<2) ^ 0xff) & 0xff ) << 8ul)|(((1u<<2)) & 0xff)))), |
| 4220 | PADDRH (pm1_save)(0x80000000 | ((size_t) (&((struct scripth *)0)->pm1_save ))), |
| 4221 | }/*-------------------------< PM0_SAVE >-------------------*/,{ |
| 4222 | SCR_STORE_REL (ia, 4)(0xe0000000 | 0x02000000|0x10000000 | (((((((size_t) (&(( struct ncr_reg *)0)->nc_ia)))) & 0xff) << 16ul)) | (4)), |
| 4223 | offsetof(struct ccb, phys.pm0.ret)((size_t) (&((struct ccb *)0)->phys.pm0.ret)), |
| 4224 | /* |
| 4225 | ** If WSR bit is set, either UA and RBC may |
| 4226 | ** have to be changed whatever the device wants |
| 4227 | ** to ignore this residue ot not. |
| 4228 | */ |
| 4229 | SCR_FROM_REG (scntl2)(0x70000000 | ((((((((size_t) (&((struct ncr_reg *)0)-> nc_scntl2)))) & 0x7f) << 16ul) + (((((size_t) (& ((struct ncr_reg *)0)->nc_scntl2)))) & 0x80))) | (0x02000000 ) | (((0)&0xff)<<8ul)), |
| 4230 | 0, |
| 4231 | SCR_CALL0x88080000 ^ IFTRUE (MASK (WSR, WSR))(0x00000000 | ((0x00040000 | (((0x01 ^ 0xff) & 0xff) << 8ul)|((0x01) & 0xff)))), |
| 4232 | PADDRH (pm_wsr_handle)(0x80000000 | ((size_t) (&((struct scripth *)0)->pm_wsr_handle ))), |
| 4233 | /* |
| 4234 | ** Save the remaining byte count, the updated |
| 4235 | ** address and the return address. |
| 4236 | */ |
| 4237 | SCR_STORE_REL (rbc, 4)(0xe0000000 | 0x02000000|0x10000000 | (((((((size_t) (&(( struct ncr_reg *)0)->nc_rbc)))) & 0xff) << 16ul) ) | (4)), |
| 4238 | offsetof(struct ccb, phys.pm0.sg.size)((size_t) (&((struct ccb *)0)->phys.pm0.sg.size)), |
| 4239 | SCR_STORE_REL (ua, 4)(0xe0000000 | 0x02000000|0x10000000 | (((((((size_t) (&(( struct ncr_reg *)0)->nc_ua)))) & 0xff) << 16ul)) | (4)), |
| 4240 | offsetof(struct ccb, phys.pm0.sg.addr)((size_t) (&((struct ccb *)0)->phys.pm0.sg.addr)), |
| 4241 | /* |
| 4242 | ** Set the current pointer at the PM0 DATA mini-script. |
| 4243 | */ |
| 4244 | SCR_LOAD_ABS (temp, 4)(0xe1000000 | 0x02000000 | (((((((size_t) (&((struct ncr_reg *)0)->nc_temp)))) & 0xff) << 16ul)) | (4)), |
| 4245 | PADDRH (pm0_data_addr)(0x80000000 | ((size_t) (&((struct scripth *)0)->pm0_data_addr ))), |
| 4246 | SCR_JUMP0x80080000, |
| 4247 | PADDR (dispatch)(0x50000000 | ((size_t) (&((struct script *)0)->dispatch ))), |
| 4248 | }/*-------------------------< PM1_SAVE >-------------------*/,{ |
| 4249 | SCR_STORE_REL (ia, 4)(0xe0000000 | 0x02000000|0x10000000 | (((((((size_t) (&(( struct ncr_reg *)0)->nc_ia)))) & 0xff) << 16ul)) | (4)), |
| 4250 | offsetof(struct ccb, phys.pm1.ret)((size_t) (&((struct ccb *)0)->phys.pm1.ret)), |
| 4251 | /* |
| 4252 | ** If WSR bit is set, either UA and RBC may |
| 4253 | ** have been changed whatever the device wants |
| 4254 | ** to ignore this residue or not. |
| 4255 | */ |
| 4256 | SCR_FROM_REG (scntl2)(0x70000000 | ((((((((size_t) (&((struct ncr_reg *)0)-> nc_scntl2)))) & 0x7f) << 16ul) + (((((size_t) (& ((struct ncr_reg *)0)->nc_scntl2)))) & 0x80))) | (0x02000000 ) | (((0)&0xff)<<8ul)), |
| 4257 | 0, |
| 4258 | SCR_CALL0x88080000 ^ IFTRUE (MASK (WSR, WSR))(0x00000000 | ((0x00040000 | (((0x01 ^ 0xff) & 0xff) << 8ul)|((0x01) & 0xff)))), |
| 4259 | PADDRH (pm_wsr_handle)(0x80000000 | ((size_t) (&((struct scripth *)0)->pm_wsr_handle ))), |
| 4260 | /* |
| 4261 | ** Save the remaining byte count, the updated |
| 4262 | ** address and the return address. |
| 4263 | */ |
| 4264 | SCR_STORE_REL (rbc, 4)(0xe0000000 | 0x02000000|0x10000000 | (((((((size_t) (&(( struct ncr_reg *)0)->nc_rbc)))) & 0xff) << 16ul) ) | (4)), |
| 4265 | offsetof(struct ccb, phys.pm1.sg.size)((size_t) (&((struct ccb *)0)->phys.pm1.sg.size)), |
| 4266 | SCR_STORE_REL (ua, 4)(0xe0000000 | 0x02000000|0x10000000 | (((((((size_t) (&(( struct ncr_reg *)0)->nc_ua)))) & 0xff) << 16ul)) | (4)), |
| 4267 | offsetof(struct ccb, phys.pm1.sg.addr)((size_t) (&((struct ccb *)0)->phys.pm1.sg.addr)), |
| 4268 | /* |
| 4269 | ** Set the current pointer at the PM1 DATA mini-script. |
| 4270 | */ |
| 4271 | SCR_LOAD_ABS (temp, 4)(0xe1000000 | 0x02000000 | (((((((size_t) (&((struct ncr_reg *)0)->nc_temp)))) & 0xff) << 16ul)) | (4)), |
| 4272 | PADDRH (pm1_data_addr)(0x80000000 | ((size_t) (&((struct scripth *)0)->pm1_data_addr ))), |
| 4273 | SCR_JUMP0x80080000, |
| 4274 | PADDR (dispatch)(0x50000000 | ((size_t) (&((struct script *)0)->dispatch ))), |
| 4275 | }/*--------------------------< PM_WSR_HANDLE >-----------------------*/,{ |
| 4276 | /* |
| 4277 | * Phase mismatch handling from SCRIPT with WSR set. |
| 4278 | * Such a condition can occur if the chip wants to |
| 4279 | * execute a CHMOV(size > 1) when the WSR bit is |
| 4280 | * set and the target changes PHASE. |
| 4281 | */ |
| 4282 | #ifdef SYM_DEBUG_PM_WITH_WSR |
| 4283 | /* |
| 4284 | * Some debugging may still be needed.:) |
| 4285 | */ |
| 4286 | SCR_INT0x98080000, |
| 4287 | SIR_PM_WITH_WSR, |
| 4288 | #endif |
| 4289 | /* |
| 4290 | * We must move the residual byte to memory. |
| 4291 | * |
| 4292 | * UA contains bit 0..31 of the address to |
| 4293 | * move the residual byte. |
| 4294 | * Move it to the table indirect. |
| 4295 | */ |
| 4296 | SCR_STORE_REL (ua, 4)(0xe0000000 | 0x02000000|0x10000000 | (((((((size_t) (&(( struct ncr_reg *)0)->nc_ua)))) & 0xff) << 16ul)) | (4)), |
| 4297 | offsetof (struct ccb, phys.wresid.addr)((size_t) (&((struct ccb *)0)->phys.wresid.addr)), |
| 4298 | /* |
| 4299 | * Increment UA (move address to next position). |
| 4300 | */ |
| 4301 | SCR_REG_REG (ua, SCR_ADD, 1)(0x78000000 | ((((((((size_t) (&((struct ncr_reg *)0)-> nc_ua)))) & 0x7f) << 16ul) + (((((size_t) (&((struct ncr_reg *)0)->nc_ua)))) & 0x80))) | (0x06000000) | (( (1)&0xff)<<8ul)), |
| 4302 | 0, |
| 4303 | SCR_REG_REG (ua1, SCR_ADDC, 0)(0x78000000 | ((((((((size_t) (&((struct ncr_reg *)0)-> nc_ua1)))) & 0x7f) << 16ul) + (((((size_t) (&(( struct ncr_reg *)0)->nc_ua1)))) & 0x80))) | (0x07000000 ) | (((0)&0xff)<<8ul)), |
| 4304 | 0, |
| 4305 | SCR_REG_REG (ua2, SCR_ADDC, 0)(0x78000000 | ((((((((size_t) (&((struct ncr_reg *)0)-> nc_ua2)))) & 0x7f) << 16ul) + (((((size_t) (&(( struct ncr_reg *)0)->nc_ua2)))) & 0x80))) | (0x07000000 ) | (((0)&0xff)<<8ul)), |
| 4306 | 0, |
| 4307 | SCR_REG_REG (ua3, SCR_ADDC, 0)(0x78000000 | ((((((((size_t) (&((struct ncr_reg *)0)-> nc_ua3)))) & 0x7f) << 16ul) + (((((size_t) (&(( struct ncr_reg *)0)->nc_ua3)))) & 0x80))) | (0x07000000 ) | (((0)&0xff)<<8ul)), |
| 4308 | 0, |
| 4309 | /* |
| 4310 | * Compute SCRATCHA as: |
| 4311 | * - size to transfer = 1 byte. |
| 4312 | * - bit 24..31 = high address bit [32...39]. |
| 4313 | */ |
| 4314 | SCR_LOAD_ABS (scratcha, 4)(0xe1000000 | 0x02000000 | (((((((size_t) (&((struct ncr_reg *)0)->nc_scratcha)))) & 0xff) << 16ul)) | (4)), |
| 4315 | PADDRH (zero)(0x80000000 | ((size_t) (&((struct scripth *)0)->zero) )), |
| 4316 | SCR_REG_REG (scratcha, SCR_OR, 1)(0x78000000 | ((((((((size_t) (&((struct ncr_reg *)0)-> nc_scratcha)))) & 0x7f) << 16ul) + (((((size_t) (& ((struct ncr_reg *)0)->nc_scratcha)))) & 0x80))) | (0x02000000 ) | (((1)&0xff)<<8ul)), |
| 4317 | 0, |
| 4318 | SCR_FROM_REG (rbc3)(0x70000000 | ((((((((size_t) (&((struct ncr_reg *)0)-> nc_rbc3)))) & 0x7f) << 16ul) + (((((size_t) (&( (struct ncr_reg *)0)->nc_rbc3)))) & 0x80))) | (0x02000000 ) | (((0)&0xff)<<8ul)), |
| 4319 | 0, |
| 4320 | SCR_TO_REG (scratcha3)(0x68000000 | ((((((((size_t) (&((struct ncr_reg *)0)-> nc_scratcha3)))) & 0x7f) << 16ul) + (((((size_t) (& ((struct ncr_reg *)0)->nc_scratcha3)))) & 0x80))) | (0x02000000 ) | (((0)&0xff)<<8ul)), |
| 4321 | 0, |
| 4322 | /* |
| 4323 | * Move this value to the table indirect. |
| 4324 | */ |
| 4325 | SCR_STORE_REL (scratcha, 4)(0xe0000000 | 0x02000000|0x10000000 | (((((((size_t) (&(( struct ncr_reg *)0)->nc_scratcha)))) & 0xff) << 16ul )) | (4)), |
| 4326 | offsetof (struct ccb, phys.wresid.size)((size_t) (&((struct ccb *)0)->phys.wresid.size)), |
| 4327 | /* |
| 4328 | * Wait for a valid phase. |
| 4329 | * While testing with bogus QUANTUM drives, the C1010 |
| 4330 | * sometimes raised a spurious phase mismatch with |
| 4331 | * WSR and the CHMOV(1) triggered another PM. |
| 4332 | * Waiting explicitely for the PHASE seemed to avoid |
| 4333 | * the nested phase mismatch. Btw, this didn't happen |
| 4334 | * using my IBM drives. |
| 4335 | */ |
| 4336 | SCR_JUMPR0x80880000 ^ IFFALSE (WHEN (SCR_DATA_IN))(0x00080000 | ((0x00030000 | (0x01000000)))), |
| 4337 | 0, |
| 4338 | /* |
| 4339 | * Perform the move of the residual byte. |
| 4340 | */ |
| 4341 | SCR_CHMOV_TBL(0x10000000) ^ SCR_DATA_IN0x01000000, |
| 4342 | offsetof (struct ccb, phys.wresid)((size_t) (&((struct ccb *)0)->phys.wresid)), |
| 4343 | /* |
| 4344 | * We can now handle the phase mismatch with UA fixed. |
| 4345 | * RBC[0..23]=0 is a special case that does not require |
| 4346 | * a PM context. The C code also checks against this. |
| 4347 | */ |
| 4348 | SCR_FROM_REG (rbc)(0x70000000 | ((((((((size_t) (&((struct ncr_reg *)0)-> nc_rbc)))) & 0x7f) << 16ul) + (((((size_t) (&(( struct ncr_reg *)0)->nc_rbc)))) & 0x80))) | (0x02000000 ) | (((0)&0xff)<<8ul)), |
| 4349 | 0, |
| 4350 | SCR_RETURN0x90080000 ^ IFFALSE (DATA (0))(0x00080000 | ((0x00040000 | ((0) & 0xff)))), |
| 4351 | 0, |
| 4352 | SCR_FROM_REG (rbc1)(0x70000000 | ((((((((size_t) (&((struct ncr_reg *)0)-> nc_rbc1)))) & 0x7f) << 16ul) + (((((size_t) (&( (struct ncr_reg *)0)->nc_rbc1)))) & 0x80))) | (0x02000000 ) | (((0)&0xff)<<8ul)), |
| 4353 | 0, |
| 4354 | SCR_RETURN0x90080000 ^ IFFALSE (DATA (0))(0x00080000 | ((0x00040000 | ((0) & 0xff)))), |
| 4355 | 0, |
| 4356 | SCR_FROM_REG (rbc2)(0x70000000 | ((((((((size_t) (&((struct ncr_reg *)0)-> nc_rbc2)))) & 0x7f) << 16ul) + (((((size_t) (&( (struct ncr_reg *)0)->nc_rbc2)))) & 0x80))) | (0x02000000 ) | (((0)&0xff)<<8ul)), |
| 4357 | 0, |
| 4358 | SCR_RETURN0x90080000 ^ IFFALSE (DATA (0))(0x00080000 | ((0x00040000 | ((0) & 0xff)))), |
| 4359 | 0, |
| 4360 | /* |
| 4361 | * RBC[0..23]=0. |
| 4362 | * Not only we donnot need a PM context, but this would |
| 4363 | * lead to a bogus CHMOV(0). This condition means that |
| 4364 | * the residual was the last byte to move from this CHMOV. |
| 4365 | * So, we just have to move the current data script pointer |
| 4366 | * (i.e. TEMP) to the SCRIPTS address following the |
| 4367 | * interrupted CHMOV and jump to dispatcher. |
| 4368 | */ |
| 4369 | SCR_STORE_ABS (ia, 4)(0xe0000000 | 0x02000000 | (((((((size_t) (&((struct ncr_reg *)0)->nc_ia)))) & 0xff) << 16ul)) | (4)), |
| 4370 | PADDRH (scratch)(0x80000000 | ((size_t) (&((struct scripth *)0)->scratch ))), |
| 4371 | SCR_LOAD_ABS (temp, 4)(0xe1000000 | 0x02000000 | (((((((size_t) (&((struct ncr_reg *)0)->nc_temp)))) & 0xff) << 16ul)) | (4)), |
| 4372 | PADDRH (scratch)(0x80000000 | ((size_t) (&((struct scripth *)0)->scratch ))), |
| 4373 | SCR_JUMP0x80080000, |
| 4374 | PADDR (dispatch)(0x50000000 | ((size_t) (&((struct script *)0)->dispatch ))), |
| 4375 | }/*--------------------------< WSR_MA_HELPER >-----------------------*/,{ |
| 4376 | /* |
| 4377 | * Helper for the C code when WSR bit is set. |
| 4378 | * Perform the move of the residual byte. |
| 4379 | */ |
| 4380 | SCR_CHMOV_TBL(0x10000000) ^ SCR_DATA_IN0x01000000, |
| 4381 | offsetof (struct ccb, phys.wresid)((size_t) (&((struct ccb *)0)->phys.wresid)), |
| 4382 | SCR_JUMP0x80080000, |
| 4383 | PADDR (dispatch)(0x50000000 | ((size_t) (&((struct script *)0)->dispatch ))), |
| 4384 | }/*-------------------------< ZERO >------------------------*/,{ |
| 4385 | SCR_DATA_ZERO0xf00ff00f, |
| 4386 | }/*-------------------------< SCRATCH >---------------------*/,{ |
| 4387 | SCR_DATA_ZERO0xf00ff00f, |
| 4388 | }/*-------------------------< SCRATCH1 >--------------------*/,{ |
| 4389 | SCR_DATA_ZERO0xf00ff00f, |
| 4390 | }/*-------------------------< PM0_DATA_ADDR >---------------*/,{ |
| 4391 | SCR_DATA_ZERO0xf00ff00f, |
| 4392 | }/*-------------------------< PM1_DATA_ADDR >---------------*/,{ |
| 4393 | SCR_DATA_ZERO0xf00ff00f, |
| 4394 | }/*-------------------------< SAVED_DSA >-------------------*/,{ |
| 4395 | SCR_DATA_ZERO0xf00ff00f, |
| 4396 | }/*-------------------------< SAVED_DRS >-------------------*/,{ |
| 4397 | SCR_DATA_ZERO0xf00ff00f, |
| 4398 | }/*-------------------------< DONE_POS >--------------------*/,{ |
| 4399 | SCR_DATA_ZERO0xf00ff00f, |
| 4400 | }/*-------------------------< STARTPOS >--------------------*/,{ |
| 4401 | SCR_DATA_ZERO0xf00ff00f, |
| 4402 | }/*-------------------------< TARGTBL >---------------------*/,{ |
| 4403 | SCR_DATA_ZERO0xf00ff00f, |
| 4404 | |
| 4405 | |
| 4406 | /* |
| 4407 | ** We may use MEMORY MOVE instructions to load the on chip-RAM, |
| 4408 | ** if it happens that mapping PCI memory is not possible. |
| 4409 | ** But writing the RAM from the CPU is the preferred method, |
| 4410 | ** since PCI 2.2 seems to disallow PCI self-mastering. |
| 4411 | */ |
| 4412 | |
| 4413 | #ifdef SCSI_NCR_PCI_MEM_NOT_SUPPORTED |
| 4414 | |
| 4415 | }/*-------------------------< START_RAM >-------------------*/,{ |
| 4416 | /* |
| 4417 | ** Load the script into on-chip RAM, |
| 4418 | ** and jump to start point. |
| 4419 | */ |
| 4420 | SCR_COPY (sizeof (struct script))(0xc0000000 | 0x01000000 | (sizeof (struct script))), |
| 4421 | }/*-------------------------< SCRIPT0_BA >--------------------*/,{ |
| 4422 | 0, |
| 4423 | PADDR (start)(0x50000000 | ((size_t) (&((struct script *)0)->start) )), |
| 4424 | SCR_JUMP0x80080000, |
| 4425 | PADDR (init)(0x50000000 | ((size_t) (&((struct script *)0)->init)) ), |
| 4426 | |
| 4427 | }/*-------------------------< START_RAM64 >--------------------*/,{ |
| 4428 | /* |
| 4429 | ** Load the RAM and start for 64 bit PCI (895A,896). |
| 4430 | ** Both scripts (script and scripth) are loaded into |
| 4431 | ** the RAM which is 8K (4K for 825A/875/895). |
| 4432 | ** We also need to load some 32-63 bit segments |
| 4433 | ** address of the SCRIPTS processor. |
| 4434 | ** LOAD/STORE ABSOLUTE always refers to on-chip RAM |
| 4435 | ** in our implementation. The main memory is |
| 4436 | ** accessed using LOAD/STORE DSA RELATIVE. |
| 4437 | */ |
| 4438 | SCR_LOAD_REL (mmws, 4)(0xe1000000 | 0x02000000|0x10000000 | (((((((size_t) (&(( struct ncr_reg *)0)->nc_mmws)))) & 0xff) << 16ul )) | (4)), |
| 4439 | offsetof (struct ncb, scr_ram_seg)((size_t) (&((struct ncb *)0)->scr_ram_seg)), |
| 4440 | SCR_COPY (sizeof(struct script))(0xc0000000 | 0x01000000 | (sizeof(struct script))), |
| 4441 | }/*-------------------------< SCRIPT0_BA64 >--------------------*/,{ |
| 4442 | 0, |
| 4443 | PADDR (start)(0x50000000 | ((size_t) (&((struct script *)0)->start) )), |
| 4444 | SCR_COPY (sizeof(struct scripth))(0xc0000000 | 0x01000000 | (sizeof(struct scripth))), |
| 4445 | }/*-------------------------< SCRIPTH0_BA64 >--------------------*/,{ |
| 4446 | 0, |
| 4447 | PADDRH (start64)(0x80000000 | ((size_t) (&((struct scripth *)0)->start64 ))), |
| 4448 | SCR_LOAD_REL (mmrs, 4)(0xe1000000 | 0x02000000|0x10000000 | (((((((size_t) (&(( struct ncr_reg *)0)->nc_mmrs)))) & 0xff) << 16ul )) | (4)), |
| 4449 | offsetof (struct ncb, scr_ram_seg)((size_t) (&((struct ncb *)0)->scr_ram_seg)), |
| 4450 | SCR_JUMP640x80480000, |
| 4451 | PADDRH (start64)(0x80000000 | ((size_t) (&((struct scripth *)0)->start64 ))), |
| 4452 | }/*-------------------------< RAM_SEG64 >--------------------*/,{ |
| 4453 | 0, |
| 4454 | |
| 4455 | #endif /* SCSI_NCR_PCI_MEM_NOT_SUPPORTED */ |
| 4456 | |
| 4457 | }/*-------------------------< SNOOPTEST >-------------------*/,{ |
| 4458 | /* |
| 4459 | ** Read the variable. |
| 4460 | */ |
| 4461 | SCR_LOAD_REL (scratcha, 4)(0xe1000000 | 0x02000000|0x10000000 | (((((((size_t) (&(( struct ncr_reg *)0)->nc_scratcha)))) & 0xff) << 16ul )) | (4)), |
| 4462 | offsetof(struct ncb, ncr_cache)((size_t) (&((struct ncb *)0)->ncr_cache)), |
| 4463 | SCR_STORE_REL (temp, 4)(0xe0000000 | 0x02000000|0x10000000 | (((((((size_t) (&(( struct ncr_reg *)0)->nc_temp)))) & 0xff) << 16ul )) | (4)), |
| 4464 | offsetof(struct ncb, ncr_cache)((size_t) (&((struct ncb *)0)->ncr_cache)), |
| 4465 | SCR_LOAD_REL (temp, 4)(0xe1000000 | 0x02000000|0x10000000 | (((((((size_t) (&(( struct ncr_reg *)0)->nc_temp)))) & 0xff) << 16ul )) | (4)), |
| 4466 | offsetof(struct ncb, ncr_cache)((size_t) (&((struct ncb *)0)->ncr_cache)), |
| 4467 | }/*-------------------------< SNOOPEND >-------------------*/,{ |
| 4468 | /* |
| 4469 | ** And stop. |
| 4470 | */ |
| 4471 | SCR_INT0x98080000, |
| 4472 | 99, |
| 4473 | }/*--------------------------------------------------------*/ |
| 4474 | }; |
| 4475 | |
| 4476 | /*========================================================== |
| 4477 | ** |
| 4478 | ** |
| 4479 | ** Fill in #define dependent parts of the script |
| 4480 | ** |
| 4481 | ** |
| 4482 | **========================================================== |
| 4483 | */ |
| 4484 | |
| 4485 | void __init ncr_script_fill (struct script * scr, struct scripth * scrh) |
| 4486 | { |
| 4487 | int i; |
| 4488 | ncrcmd *p; |
| 4489 | |
| 4490 | p = scr->data_in; |
| 4491 | for (i=0; i<MAX_SCATTER((127)); i++) { |
| 4492 | *p++ =SCR_CHMOV_TBL(0x10000000) ^ SCR_DATA_IN0x01000000; |
| 4493 | *p++ =offsetof (struct dsb, data[i])((size_t) (&((struct dsb *)0)->data[i])); |
| 4494 | }; |
| 4495 | |
| 4496 | assert ((u_long)p == (u_long)&scr->data_in + sizeof (scr->data_in)){ if (!((unsigned long)p == (unsigned long)&scr->data_in + sizeof (scr->data_in))) { (void)panic( "assertion \"%s\" failed: file \"%s\", line %d\n" , "(u_long)p == (u_long)&scr->data_in + sizeof (scr->data_in)" , "../linux/src/drivers/scsi/sym53c8xx.c", 4496); } }; |
| 4497 | |
| 4498 | p = scr->data_out; |
| 4499 | |
| 4500 | for (i=0; i<MAX_SCATTER((127)); i++) { |
| 4501 | *p++ =SCR_CHMOV_TBL(0x10000000) ^ SCR_DATA_OUT0x00000000; |
| 4502 | *p++ =offsetof (struct dsb, data[i])((size_t) (&((struct dsb *)0)->data[i])); |
| 4503 | }; |
| 4504 | |
| 4505 | assert ((u_long)p == (u_long)&scr->data_out + sizeof (scr->data_out)){ if (!((unsigned long)p == (unsigned long)&scr->data_out + sizeof (scr->data_out))) { (void)panic( "assertion \"%s\" failed: file \"%s\", line %d\n" , "(u_long)p == (u_long)&scr->data_out + sizeof (scr->data_out)" , "../linux/src/drivers/scsi/sym53c8xx.c", 4505); } }; |
| 4506 | } |
| 4507 | |
| 4508 | /*========================================================== |
| 4509 | ** |
| 4510 | ** |
| 4511 | ** Copy and rebind a script. |
| 4512 | ** |
| 4513 | ** |
| 4514 | **========================================================== |
| 4515 | */ |
| 4516 | |
| 4517 | static void __init |
| 4518 | ncr_script_copy_and_bind (ncb_p np,ncrcmd *src,ncrcmd *dst,int len) |
| 4519 | { |
| 4520 | ncrcmd opcode, new, old, tmp1, tmp2; |
| 4521 | ncrcmd *start, *end; |
| 4522 | int relocs; |
| 4523 | int opchanged = 0; |
| 4524 | |
| 4525 | start = src; |
| 4526 | end = src + len/4; |
| 4527 | |
| 4528 | while (src < end) { |
| 4529 | |
| 4530 | opcode = *src++; |
| 4531 | *dst++ = cpu_to_scr(opcode)(opcode); |
| 4532 | |
| 4533 | /* |
| 4534 | ** If we forget to change the length |
| 4535 | ** in struct script, a field will be |
| 4536 | ** padded with 0. This is an illegal |
| 4537 | ** command. |
| 4538 | */ |
| 4539 | |
| 4540 | if (opcode == 0) { |
| 4541 | printk (KERN_INFO"<6>" "%s: ERROR0 IN SCRIPT at %d.\n", |
| 4542 | ncr_name(np), (int) (src-start-1)); |
| 4543 | MDELAY (10000); |
| 4544 | continue; |
| 4545 | }; |
| 4546 | |
| 4547 | /* |
| 4548 | ** We use the bogus value 0xf00ff00f ;-) |
| 4549 | ** to reserve data area in SCRIPTS. |
| 4550 | */ |
| 4551 | if (opcode == SCR_DATA_ZERO0xf00ff00f) { |
| 4552 | dst[-1] = 0; |
| 4553 | continue; |
| 4554 | } |
| 4555 | |
| 4556 | if (DEBUG_FLAGSncr_debug & DEBUG_SCRIPT(0x0040)) |
| 4557 | printk (KERN_INFO"<6>" "%p: <%x>\n", |
| 4558 | (src-1), (unsigned)opcode); |
| 4559 | |
| 4560 | /* |
| 4561 | ** We don't have to decode ALL commands |
| 4562 | */ |
| 4563 | switch (opcode >> 28) { |
| 4564 | |
| 4565 | case 0xf: |
| 4566 | /* |
| 4567 | ** LOAD / STORE DSA relative, don't relocate. |
| 4568 | */ |
| 4569 | relocs = 0; |
| 4570 | break; |
| 4571 | case 0xe: |
| 4572 | /* |
| 4573 | ** LOAD / STORE absolute. |
| 4574 | */ |
| 4575 | relocs = 1; |
| 4576 | break; |
| 4577 | case 0xc: |
| 4578 | /* |
| 4579 | ** COPY has TWO arguments. |
| 4580 | */ |
| 4581 | relocs = 2; |
| 4582 | tmp1 = src[0]; |
| 4583 | tmp2 = src[1]; |
| 4584 | #ifdef RELOC_KVAR |
| 4585 | if ((tmp1 & RELOC_MASK0xf0000000) == RELOC_KVAR) |
| 4586 | tmp1 = 0; |
| 4587 | if ((tmp2 & RELOC_MASK0xf0000000) == RELOC_KVAR) |
| 4588 | tmp2 = 0; |
| 4589 | #endif |
| 4590 | if ((tmp1 ^ tmp2) & 3) { |
| 4591 | printk (KERN_ERR"<3>""%s: ERROR1 IN SCRIPT at %d.\n", |
| 4592 | ncr_name(np), (int) (src-start-1)); |
| 4593 | MDELAY (1000); |
| 4594 | } |
| 4595 | /* |
| 4596 | ** If PREFETCH feature not enabled, remove |
| 4597 | ** the NO FLUSH bit if present. |
| 4598 | */ |
| 4599 | if ((opcode & SCR_NO_FLUSH0x01000000) && |
| 4600 | !(np->features & FE_PFEN(1<<12))) { |
| 4601 | dst[-1] = cpu_to_scr(opcode & ~SCR_NO_FLUSH)(opcode & ~0x01000000); |
| 4602 | ++opchanged; |
| 4603 | } |
| 4604 | break; |
| 4605 | |
| 4606 | case 0x0: |
| 4607 | /* |
| 4608 | ** MOVE/CHMOV (absolute address) |
| 4609 | */ |
| 4610 | if (!(np->features & FE_WIDE(1<<1))) |
| 4611 | dst[-1] = cpu_to_scr(opcode | OPC_MOVE)(opcode | 0x08000000); |
| 4612 | relocs = 1; |
| 4613 | break; |
| 4614 | |
| 4615 | case 0x1: |
| 4616 | /* |
| 4617 | ** MOVE/CHMOV (table indirect) |
| 4618 | */ |
| 4619 | if (!(np->features & FE_WIDE(1<<1))) |
| 4620 | dst[-1] = cpu_to_scr(opcode | OPC_MOVE)(opcode | 0x08000000); |
| 4621 | relocs = 0; |
| 4622 | break; |
| 4623 | |
| 4624 | case 0x8: |
| 4625 | /* |
| 4626 | ** JUMP / CALL |
| 4627 | ** dont't relocate if relative :-) |
| 4628 | */ |
| 4629 | if (opcode & 0x00800000) |
| 4630 | relocs = 0; |
| 4631 | else if ((opcode & 0xf8400000) == 0x80400000)/*JUMP64*/ |
| 4632 | relocs = 2; |
| 4633 | else |
| 4634 | relocs = 1; |
| 4635 | break; |
| 4636 | |
| 4637 | case 0x4: |
| 4638 | case 0x5: |
| 4639 | case 0x6: |
| 4640 | case 0x7: |
| 4641 | relocs = 1; |
| 4642 | break; |
| 4643 | |
| 4644 | default: |
| 4645 | relocs = 0; |
| 4646 | break; |
| 4647 | }; |
| 4648 | |
| 4649 | if (!relocs) { |
| 4650 | *dst++ = cpu_to_scr(*src++)(*src++); |
| 4651 | continue; |
| 4652 | } |
| 4653 | while (relocs--) { |
| 4654 | old = *src++; |
| 4655 | |
| 4656 | switch (old & RELOC_MASK0xf0000000) { |
| 4657 | case RELOC_REGISTER0x60000000: |
| 4658 | new = (old & ~RELOC_MASK0xf0000000) + pcivtobus(np->base_ba)(np->base_ba); |
| 4659 | break; |
| 4660 | case RELOC_LABEL0x50000000: |
| 4661 | new = (old & ~RELOC_MASK0xf0000000) + np->p_script; |
| 4662 | break; |
| 4663 | case RELOC_LABELH0x80000000: |
| 4664 | new = (old & ~RELOC_MASK0xf0000000) + np->p_scripth; |
| 4665 | break; |
| 4666 | case RELOC_SOFTC0x40000000: |
| 4667 | new = (old & ~RELOC_MASK0xf0000000) + np->p_ncb; |
| 4668 | break; |
| 4669 | #ifdef RELOC_KVAR |
| 4670 | case RELOC_KVAR: |
| 4671 | new=0; |
| 4672 | if (((old & ~RELOC_MASK0xf0000000) < SCRIPT_KVAR_FIRST) || |
| 4673 | ((old & ~RELOC_MASK0xf0000000) > SCRIPT_KVAR_LAST)) |
| 4674 | panic("ncr KVAR out of range"); |
| 4675 | new = vtobus(script_kvars[old & ~RELOC_MASK])virt_to_phys(script_kvars[old & ~0xf0000000]); |
| 4676 | #endif |
| 4677 | break; |
| 4678 | case 0: |
| 4679 | /* Don't relocate a 0 address. */ |
| 4680 | if (old == 0) { |
| 4681 | new = old; |
| 4682 | break; |
| 4683 | } |
| 4684 | /* fall through */ |
| 4685 | default: |
| 4686 | new = 0; /* For 'cc' not to complain */ |
| 4687 | panic("ncr_script_copy_and_bind: " |
| 4688 | "weird relocation %x\n", old); |
| 4689 | break; |
| 4690 | } |
| 4691 | |
| 4692 | *dst++ = cpu_to_scr(new)(new); |
| 4693 | } |
| 4694 | }; |
| 4695 | } |
| 4696 | |
| 4697 | /*========================================================== |
| 4698 | ** |
| 4699 | ** |
| 4700 | ** Auto configuration: attach and init a host adapter. |
| 4701 | ** |
| 4702 | ** |
| 4703 | **========================================================== |
| 4704 | */ |
| 4705 | |
| 4706 | /* |
| 4707 | ** Linux host data structure. |
| 4708 | */ |
| 4709 | |
| 4710 | struct host_data { |
| 4711 | struct ncb *ncb; |
| 4712 | }; |
| 4713 | |
| 4714 | /* |
| 4715 | ** Print something which allows to retrieve the controler type, unit, |
| 4716 | ** target, lun concerned by a kernel message. |
| 4717 | */ |
| 4718 | |
| 4719 | static void PRINT_TARGET(ncb_p np, int target) |
| 4720 | { |
| 4721 | printk(KERN_INFO"<6>" "%s-<%d,*>: ", ncr_name(np), target); |
| 4722 | } |
| 4723 | |
| 4724 | static void PRINT_LUN(ncb_p np, int target, int lun) |
| 4725 | { |
| 4726 | printk(KERN_INFO"<6>" "%s-<%d,%d>: ", ncr_name(np), target, lun); |
| 4727 | } |
| 4728 | |
| 4729 | static void PRINT_ADDR(Scsi_Cmnd *cmd) |
| 4730 | { |
| 4731 | struct host_data *host_data = (struct host_data *) cmd->host->hostdata; |
| 4732 | PRINT_LUN(host_data->ncb, cmd->target, cmd->lun); |
| 4733 | } |
| 4734 | |
| 4735 | /*========================================================== |
| 4736 | ** |
| 4737 | ** NCR chip clock divisor table. |
| 4738 | ** Divisors are multiplied by 10,000,000 in order to make |
| 4739 | ** calculations more simple. |
| 4740 | ** |
| 4741 | **========================================================== |
| 4742 | */ |
| 4743 | |
| 4744 | #define _5M5000000 5000000 |
| 4745 | static u_longunsigned long div_10M[] = |
| 4746 | {2*_5M5000000, 3*_5M5000000, 4*_5M5000000, 6*_5M5000000, 8*_5M5000000, 12*_5M5000000, 16*_5M5000000}; |
| 4747 | |
| 4748 | |
| 4749 | /*=============================================================== |
| 4750 | ** |
| 4751 | ** Prepare io register values used by ncr_init() according |
| 4752 | ** to selected and supported features. |
| 4753 | ** |
| 4754 | ** NCR/SYMBIOS chips allow burst lengths of 2, 4, 8, 16, 32, 64, |
| 4755 | ** 128 transfers. All chips support at least 16 transfers bursts. |
| 4756 | ** The 825A, 875 and 895 chips support bursts of up to 128 |
| 4757 | ** transfers and the 895A and 896 support bursts of up to 64 |
| 4758 | ** transfers. All other chips support up to 16 transfers bursts. |
| 4759 | ** |
| 4760 | ** For PCI 32 bit data transfers each transfer is a DWORD (4 bytes). |
| 4761 | ** It is a QUADWORD (8 bytes) for PCI 64 bit data transfers. |
| 4762 | ** Only the 896 is able to perform 64 bit data transfers. |
| 4763 | ** |
| 4764 | ** We use log base 2 (burst length) as internal code, with |
| 4765 | ** value 0 meaning "burst disabled". |
| 4766 | ** |
| 4767 | **=============================================================== |
| 4768 | */ |
| 4769 | |
| 4770 | /* |
| 4771 | * Burst length from burst code. |
| 4772 | */ |
| 4773 | #define burst_length(bc)(!(bc))? 0 : 1 << (bc) (!(bc))? 0 : 1 << (bc) |
| 4774 | |
| 4775 | /* |
| 4776 | * Burst code from io register bits. |
| 4777 | */ |
| 4778 | #define burst_code(dmode, ctest4, ctest5)(ctest4) & 0x80? 0 : (((dmode) & 0xc0) >> 6) + ( (ctest5) & 0x04) + 1 \ |
| 4779 | (ctest4) & 0x80? 0 : (((dmode) & 0xc0) >> 6) + ((ctest5) & 0x04) + 1 |
| 4780 | |
| 4781 | /* |
| 4782 | * Set initial io register bits from burst code. |
| 4783 | */ |
| 4784 | static inlineinline __attribute__((always_inline)) void ncr_init_burst(ncb_p np, u_charunsigned char bc) |
| 4785 | { |
| 4786 | np->rv_ctest4 &= ~0x80; |
| 4787 | np->rv_dmode &= ~(0x3 << 6); |
| 4788 | np->rv_ctest5 &= ~0x4; |
| 4789 | |
| 4790 | if (!bc) { |
| 4791 | np->rv_ctest4 |= 0x80; |
| 4792 | } |
| 4793 | else { |
| 4794 | --bc; |
| 4795 | np->rv_dmode |= ((bc & 0x3) << 6); |
| 4796 | np->rv_ctest5 |= (bc & 0x4); |
| 4797 | } |
| 4798 | } |
| 4799 | |
| 4800 | #ifdef SCSI_NCR_NVRAM_SUPPORT |
| 4801 | |
| 4802 | /* |
| 4803 | ** Get target set-up from Symbios format NVRAM. |
| 4804 | */ |
| 4805 | |
| 4806 | static void __init |
| 4807 | ncr_Symbios_setup_target(ncb_p np, int target, Symbios_nvram *nvram) |
| 4808 | { |
| 4809 | tcb_p tp = &np->target[target]; |
| 4810 | Symbios_target *tn = &nvram->target[target]; |
| 4811 | |
| 4812 | tp->usrsync = tn->sync_period ? (tn->sync_period + 3) / 4 : 255; |
| 4813 | tp->usrwide = tn->bus_width == 0x10 ? 1 : 0; |
| 4814 | tp->usrtags = |
| 4815 | (tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED(1<<3))? MAX_TAGS(8) : 0; |
| 4816 | |
| 4817 | if (!(tn->flags & SYMBIOS_DISCONNECT_ENABLE(1))) |
| 4818 | tp->usrflag |= UF_NODISC(0x02); |
| 4819 | if (!(tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME(1<<1))) |
| 4820 | tp->usrflag |= UF_NOSCAN(0x04); |
| 4821 | } |
| 4822 | |
| 4823 | /* |
| 4824 | ** Get target set-up from Tekram format NVRAM. |
| 4825 | */ |
| 4826 | |
| 4827 | static void __init |
| 4828 | ncr_Tekram_setup_target(ncb_p np, int target, Tekram_nvram *nvram) |
| 4829 | { |
| 4830 | tcb_p tp = &np->target[target]; |
| 4831 | struct Tekram_target *tn = &nvram->target[target]; |
| 4832 | int i; |
| 4833 | |
| 4834 | if (tn->flags & TEKRAM_SYNC_NEGO(1<<1)) { |
| 4835 | i = tn->sync_index & 0xf; |
| 4836 | tp->usrsync = Tekram_sync[i]; |
| 4837 | } |
| 4838 | |
| 4839 | tp->usrwide = (tn->flags & TEKRAM_WIDE_NEGO(1<<5)) ? 1 : 0; |
| 4840 | |
| 4841 | if (tn->flags & TEKRAM_TAGGED_COMMANDS(1<<4)) { |
| 4842 | tp->usrtags = 2 << nvram->max_tags_index; |
| 4843 | } |
| 4844 | |
| 4845 | if (!(tn->flags & TEKRAM_DISCONNECT_ENABLE(1<<2))) |
| 4846 | tp->usrflag = UF_NODISC(0x02); |
| 4847 | |
| 4848 | /* If any device does not support parity, we will not use this option */ |
| 4849 | if (!(tn->flags & TEKRAM_PARITY_CHECK(1))) |
| 4850 | np->rv_scntl0 &= ~0x0a; /* SCSI parity checking disabled */ |
| 4851 | } |
| 4852 | #endif /* SCSI_NCR_NVRAM_SUPPORT */ |
| 4853 | |
| 4854 | /* |
| 4855 | ** Save initial settings of some IO registers. |
| 4856 | ** Assumed to have been set by BIOS. |
| 4857 | */ |
| 4858 | static void __init ncr_save_initial_setting(ncb_p np) |
| 4859 | { |
| 4860 | np->sv_scntl0 = INB(nc_scntl0)(*(volatile unsigned char *) ((char *)np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_scntl0))))) & 0x0a; |
| 4861 | np->sv_dmode = INB(nc_dmode)(*(volatile unsigned char *) ((char *)np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_dmode))))) & 0xce; |
| 4862 | np->sv_dcntl = INB(nc_dcntl)(*(volatile unsigned char *) ((char *)np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_dcntl))))) & 0xa8; |
| 4863 | np->sv_ctest3 = INB(nc_ctest3)(*(volatile unsigned char *) ((char *)np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_ctest3))))) & 0x01; |
| 4864 | np->sv_ctest4 = INB(nc_ctest4)(*(volatile unsigned char *) ((char *)np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_ctest4))))) & 0x80; |
| 4865 | np->sv_gpcntl = INB(nc_gpcntl)(*(volatile unsigned char *) ((char *)np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_gpcntl))))); |
| 4866 | np->sv_stest2 = INB(nc_stest2)(*(volatile unsigned char *) ((char *)np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_stest2))))) & 0x20; |
| 4867 | np->sv_stest4 = INB(nc_stest4)(*(volatile unsigned char *) ((char *)np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_stest4))))); |
| 4868 | np->sv_stest1 = INB(nc_stest1)(*(volatile unsigned char *) ((char *)np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_stest1))))); |
| 4869 | |
| 4870 | np->sv_scntl3 = INB(nc_scntl3)(*(volatile unsigned char *) ((char *)np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_scntl3))))) & 0x07; |
| 4871 | |
| 4872 | if ((np->device_id == PCI_DEVICE_ID_LSI_53C10100x20) || |
| 4873 | (np->device_id == PCI_DEVICE_ID_LSI_53C1010_660x21) ){ |
| 4874 | /* |
| 4875 | ** C1010 always uses large fifo, bit 5 rsvd |
| 4876 | ** scntl4 used ONLY with C1010 |
| 4877 | */ |
| 4878 | np->sv_ctest5 = INB(nc_ctest5)(*(volatile unsigned char *) ((char *)np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_ctest5))))) & 0x04 ; |
| 4879 | np->sv_scntl4 = INB(nc_scntl4)(*(volatile unsigned char *) ((char *)np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_scntl4))))); |
| 4880 | } |
| 4881 | else { |
| 4882 | np->sv_ctest5 = INB(nc_ctest5)(*(volatile unsigned char *) ((char *)np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_ctest5))))) & 0x24 ; |
| 4883 | np->sv_scntl4 = 0; |
| 4884 | } |
| 4885 | } |
| 4886 | |
| 4887 | /* |
| 4888 | ** Prepare io register values used by ncr_init() |
| 4889 | ** according to selected and supported features. |
| 4890 | */ |
| 4891 | static int __init ncr_prepare_setting(ncb_p np, ncr_nvram *nvram) |
| 4892 | { |
| 4893 | u_charunsigned char burst_max; |
| 4894 | u_longunsigned long period; |
| 4895 | int i; |
| 4896 | |
| 4897 | /* |
| 4898 | ** Wide ? |
| 4899 | */ |
| 4900 | |
| 4901 | np->maxwide = (np->features & FE_WIDE(1<<1))? 1 : 0; |
| 4902 | |
| 4903 | /* |
| 4904 | ** Get the frequency of the chip's clock. |
| 4905 | ** Find the right value for scntl3. |
| 4906 | */ |
| 4907 | |
| 4908 | if (np->features & FE_QUAD(1<<5)) |
| 4909 | np->multiplier = 4; |
| 4910 | else if (np->features & FE_DBLR(1<<4)) |
| 4911 | np->multiplier = 2; |
| 4912 | else |
| 4913 | np->multiplier = 1; |
| 4914 | |
| 4915 | np->clock_khz = (np->features & FE_CLK80(1<<15))? 80000 : 40000; |
| 4916 | np->clock_khz *= np->multiplier; |
| 4917 | |
| 4918 | if (np->clock_khz != 40000) |
| 4919 | ncr_getclock(np, np->multiplier); |
| 4920 | |
| 4921 | /* |
| 4922 | * Divisor to be used for async (timer pre-scaler). |
| 4923 | * |
| 4924 | * Note: For C1010 the async divisor is 2(8) if he |
| 4925 | * quadrupler is disabled (enabled). |
| 4926 | */ |
| 4927 | |
| 4928 | if ( (np->device_id == PCI_DEVICE_ID_LSI_53C10100x20) || |
| 4929 | (np->device_id == PCI_DEVICE_ID_LSI_53C1010_660x21)) { |
| 4930 | |
| 4931 | np->rv_scntl3 = 0; |
| 4932 | } |
| 4933 | else |
| 4934 | { |
| 4935 | i = np->clock_divn - 1; |
| 4936 | while (--i >= 0) { |
| 4937 | if (10ul * SCSI_NCR_MIN_ASYNC(40) * np->clock_khz |
| 4938 | > div_10M[i]) { |
| 4939 | ++i; |
| 4940 | break; |
| 4941 | } |
| 4942 | } |
| 4943 | np->rv_scntl3 = i+1; |
| 4944 | } |
| 4945 | |
| 4946 | |
| 4947 | /* |
| 4948 | * Save the ultra3 register for the C1010/C1010_66 |
| 4949 | */ |
| 4950 | |
| 4951 | np->rv_scntl4 = np->sv_scntl4; |
| 4952 | |
| 4953 | /* |
| 4954 | * Minimum synchronous period factor supported by the chip. |
| 4955 | * Btw, 'period' is in tenths of nanoseconds. |
| 4956 | */ |
| 4957 | |
| 4958 | period = (4 * div_10M[0] + np->clock_khz - 1) / np->clock_khz; |
| 4959 | if (period <= 250) np->minsync = 10; |
| 4960 | else if (period <= 303) np->minsync = 11; |
| 4961 | else if (period <= 500) np->minsync = 12; |
| 4962 | else np->minsync = (period + 40 - 1) / 40; |
| 4963 | |
| 4964 | /* |
| 4965 | * Fix up. If sync. factor is 10 (160000Khz clock) and chip |
| 4966 | * supports ultra3, then min. sync. period 12.5ns and the factor is 9 |
| 4967 | */ |
| 4968 | |
| 4969 | if ((np->minsync == 10) && (np->features & FE_ULTRA3(1<<22))) |
| 4970 | np->minsync = 9; |
| 4971 | |
| 4972 | /* |
| 4973 | * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2). |
| 4974 | * |
| 4975 | * Transfer period minimums: SCSI-1 200 (50); Fast 100 (25) |
| 4976 | * Ultra 50 (12); Ultra2 (6); Ultra3 (3) |
| 4977 | */ |
| 4978 | |
| 4979 | if (np->minsync < 25 && !(np->features & (FE_ULTRA(1<<2)|FE_ULTRA2(1<<3)|FE_ULTRA3(1<<22)))) |
| 4980 | np->minsync = 25; |
| 4981 | else if (np->minsync < 12 && (np->features & FE_ULTRA(1<<2))) |
| 4982 | np->minsync = 12; |
| 4983 | else if (np->minsync < 10 && (np->features & FE_ULTRA2(1<<3))) |
| 4984 | np->minsync = 10; |
| 4985 | else if (np->minsync < 9 && (np->features & FE_ULTRA3(1<<22))) |
| 4986 | np->minsync = 9; |
| 4987 | |
| 4988 | /* |
| 4989 | * Maximum synchronous period factor supported by the chip. |
| 4990 | */ |
| 4991 | |
| 4992 | period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz); |
| 4993 | np->maxsync = period > 2540 ? 254 : period / 10; |
| 4994 | |
| 4995 | /* |
| 4996 | ** 64 bit (53C895A or 53C896) ? |
| 4997 | */ |
| 4998 | if (np->features & FE_64BIT(1<<17)) |
| 4999 | #ifdef SCSI_NCR_USE_64BIT_DAC |
| 5000 | np->rv_ccntl1 |= (XTIMOD0x04 | EXTIBMV0x02); |
| 5001 | #else |
| 5002 | np->rv_ccntl1 |= (DDAC0x08); |
| 5003 | #endif |
| 5004 | |
| 5005 | /* |
| 5006 | ** Phase mismatch handled by SCRIPTS (53C895A, 53C896 or C1010) ? |
| 5007 | */ |
| 5008 | if (np->features & FE_NOPM(1<<19)) |
| 5009 | np->rv_ccntl0 |= (ENPMJ0x80); |
| 5010 | |
| 5011 | /* |
| 5012 | ** Prepare initial value of other IO registers |
| 5013 | */ |
| 5014 | #if defined SCSI_NCR_TRUST_BIOS_SETTING |
| 5015 | np->rv_scntl0 = np->sv_scntl0; |
| 5016 | np->rv_dmode = np->sv_dmode; |
| 5017 | np->rv_dcntl = np->sv_dcntl; |
| 5018 | np->rv_ctest3 = np->sv_ctest3; |
| 5019 | np->rv_ctest4 = np->sv_ctest4; |
| 5020 | np->rv_ctest5 = np->sv_ctest5; |
| 5021 | burst_max = burst_code(np->sv_dmode, np->sv_ctest4, np->sv_ctest5)(np->sv_ctest4) & 0x80? 0 : (((np->sv_dmode) & 0xc0 ) >> 6) + ((np->sv_ctest5) & 0x04) + 1; |
| 5022 | #else |
| 5023 | |
| 5024 | /* |
| 5025 | ** Select burst length (dwords) |
| 5026 | */ |
| 5027 | burst_max = driver_setup.burst_max; |
| 5028 | if (burst_max == 255) |
| 5029 | burst_max = burst_code(np->sv_dmode, np->sv_ctest4, np->sv_ctest5)(np->sv_ctest4) & 0x80? 0 : (((np->sv_dmode) & 0xc0 ) >> 6) + ((np->sv_ctest5) & 0x04) + 1; |
| 5030 | if (burst_max > 7) |
| 5031 | burst_max = 7; |
| 5032 | if (burst_max > np->maxburst) |
| 5033 | burst_max = np->maxburst; |
| 5034 | |
| 5035 | /* |
| 5036 | ** DEL 352 - 53C810 Rev x11 - Part Number 609-0392140 - ITEM 2. |
| 5037 | ** This chip and the 860 Rev 1 may wrongly use PCI cache line |
| 5038 | ** based transactions on LOAD/STORE instructions. So we have |
| 5039 | ** to prevent these chips from using such PCI transactions in |
| 5040 | ** this driver. The generic sym53c8xx driver that does not use |
| 5041 | ** LOAD/STORE instructions does not need this work-around. |
| 5042 | */ |
| 5043 | if ((np->device_id == PCI_DEVICE_ID_NCR_53C8100x0001 && |
| 5044 | np->revision_id >= 0x10 && np->revision_id <= 0x11) || |
| 5045 | (np->device_id == PCI_DEVICE_ID_NCR_53C8600x0006 && |
| 5046 | np->revision_id <= 0x1)) |
| 5047 | np->features &= ~(FE_WRIE(1<<8)|FE_ERL(1<<6)|FE_ERMP(1<<9)); |
| 5048 | |
| 5049 | /* |
| 5050 | ** DEL ? - 53C1010 Rev 1 - Part Number 609-0393638 |
| 5051 | ** 64-bit Slave Cycles must be disabled. |
| 5052 | */ |
| 5053 | if ( ((np->device_id == PCI_DEVICE_ID_LSI_53C10100x20) && (np->revision_id < 0x02) ) |
| 5054 | || (np->device_id == PCI_DEVICE_ID_LSI_53C1010_660x21 ) ) |
| 5055 | np->rv_ccntl1 |= 0x10; |
| 5056 | |
| 5057 | /* |
| 5058 | ** Select all supported special features. |
| 5059 | ** If we are using on-board RAM for scripts, prefetch (PFEN) |
| 5060 | ** does not help, but burst op fetch (BOF) does. |
| 5061 | ** Disabling PFEN makes sure BOF will be used. |
| 5062 | */ |
| 5063 | if (np->features & FE_ERL(1<<6)) |
| 5064 | np->rv_dmode |= ERL0x08; /* Enable Read Line */ |
| 5065 | if (np->features & FE_BOF(1<<10)) |
| 5066 | np->rv_dmode |= BOF0x02; /* Burst Opcode Fetch */ |
| 5067 | if (np->features & FE_ERMP(1<<9)) |
| 5068 | np->rv_dmode |= ERMP0x04; /* Enable Read Multiple */ |
| 5069 | #if 1 |
| 5070 | if ((np->features & FE_PFEN(1<<12)) && !np->base2_ba) |
| 5071 | #else |
| 5072 | if (np->features & FE_PFEN(1<<12)) |
| 5073 | #endif |
| 5074 | np->rv_dcntl |= PFEN0x20; /* Prefetch Enable */ |
| 5075 | if (np->features & FE_CLSE(1<<7)) |
| 5076 | np->rv_dcntl |= CLSE0x80; /* Cache Line Size Enable */ |
| 5077 | if (np->features & FE_WRIE(1<<8)) |
| 5078 | np->rv_ctest3 |= WRIE0x01; /* Write and Invalidate */ |
| 5079 | |
| 5080 | |
| 5081 | if ( (np->device_id != PCI_DEVICE_ID_LSI_53C10100x20) && |
| 5082 | (np->device_id != PCI_DEVICE_ID_LSI_53C1010_660x21) && |
| 5083 | (np->features & FE_DFS(1<<11))) |
| 5084 | np->rv_ctest5 |= DFS0x20; /* Dma Fifo Size */ |
| 5085 | /* C1010/C1010_66 always large fifo */ |
| 5086 | |
| 5087 | /* |
| 5088 | ** Select some other |
| 5089 | */ |
| 5090 | if (driver_setup.master_parity) |
| 5091 | np->rv_ctest4 |= MPEE0x08; /* Master parity checking */ |
| 5092 | if (driver_setup.scsi_parity) |
| 5093 | np->rv_scntl0 |= 0x0a; /* full arb., ena parity, par->ATN */ |
| 5094 | |
| 5095 | #ifdef SCSI_NCR_NVRAM_SUPPORT |
| 5096 | /* |
| 5097 | ** Get parity checking, host ID and verbose mode from NVRAM |
| 5098 | **/ |
| 5099 | if (nvram) { |
| 5100 | switch(nvram->type) { |
| 5101 | case SCSI_NCR_TEKRAM_NVRAM(2): |
| 5102 | np->myaddr = nvram->data.Tekram.host_id & 0x0f; |
| 5103 | break; |
| 5104 | case SCSI_NCR_SYMBIOS_NVRAM(1): |
| 5105 | if (!(nvram->data.Symbios.flags & SYMBIOS_PARITY_ENABLE(1<<1))) |
| 5106 | np->rv_scntl0 &= ~0x0a; |
| 5107 | np->myaddr = nvram->data.Symbios.host_id & 0x0f; |
| 5108 | if (nvram->data.Symbios.flags & SYMBIOS_VERBOSE_MSGS(1<<2)) |
| 5109 | np->verbose += 1; |
| 5110 | break; |
| 5111 | } |
| 5112 | } |
| 5113 | #endif |
| 5114 | /* |
| 5115 | ** Get SCSI addr of host adapter (set by bios?). |
| 5116 | */ |
| 5117 | if (np->myaddr == 255) { |
| 5118 | np->myaddr = INB(nc_scid)(*(volatile unsigned char *) ((char *)np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_scid))))) & 0x07; |
| 5119 | if (!np->myaddr) |
| 5120 | np->myaddr = SCSI_NCR_MYADDR(7); |
| 5121 | } |
| 5122 | |
| 5123 | #endif /* SCSI_NCR_TRUST_BIOS_SETTING */ |
| 5124 | |
| 5125 | /* |
| 5126 | * Prepare initial io register bits for burst length |
| 5127 | */ |
| 5128 | ncr_init_burst(np, burst_max); |
| 5129 | |
| 5130 | /* |
| 5131 | ** Set SCSI BUS mode. |
| 5132 | ** |
| 5133 | ** - ULTRA2 chips (895/895A/896) |
| 5134 | ** and ULTRA 3 chips (1010) report the current |
| 5135 | ** BUS mode through the STEST4 IO register. |
| 5136 | ** - For previous generation chips (825/825A/875), |
| 5137 | ** user has to tell us how to check against HVD, |
| 5138 | ** since a 100% safe algorithm is not possible. |
| 5139 | */ |
| 5140 | np->scsi_mode = SMODE_SE0x80; |
| 5141 | if (np->features & (FE_ULTRA2(1<<3) | FE_ULTRA3(1<<22))) |
| 5142 | np->scsi_mode = (np->sv_stest4 & SMODE0xc0); |
| 5143 | else if (np->features & FE_DIFF(1<<21)) { |
| 5144 | switch(driver_setup.diff_support) { |
| 5145 | case 4: /* Trust previous settings if present, then GPIO3 */ |
| 5146 | if (np->sv_scntl3) { |
| 5147 | if (np->sv_stest2 & 0x20) |
| 5148 | np->scsi_mode = SMODE_HVD0x40; |
| 5149 | break; |
| 5150 | } |
| 5151 | case 3: /* SYMBIOS controllers report HVD through GPIO3 */ |
| 5152 | if (nvram && nvram->type != SCSI_NCR_SYMBIOS_NVRAM(1)) |
| 5153 | break; |
| 5154 | if (INB(nc_gpreg)(*(volatile unsigned char *) ((char *)np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_gpreg))))) & 0x08) |
| 5155 | break; |
| 5156 | case 2: /* Set HVD unconditionally */ |
| 5157 | np->scsi_mode = SMODE_HVD0x40; |
| 5158 | case 1: /* Trust previous settings for HVD */ |
| 5159 | if (np->sv_stest2 & 0x20) |
| 5160 | np->scsi_mode = SMODE_HVD0x40; |
| 5161 | break; |
| 5162 | default:/* Don't care about HVD */ |
| 5163 | break; |
| 5164 | } |
| 5165 | } |
| 5166 | if (np->scsi_mode == SMODE_HVD0x40) |
| 5167 | np->rv_stest2 |= 0x20; |
| 5168 | |
| 5169 | /* |
| 5170 | ** Set LED support from SCRIPTS. |
| 5171 | ** Ignore this feature for boards known to use a |
| 5172 | ** specific GPIO wiring and for the 895A or 896 |
| 5173 | ** that drive the LED directly. |
| 5174 | ** Also probe initial setting of GPIO0 as output. |
| 5175 | */ |
| 5176 | if ((driver_setup.led_pin || |
| 5177 | (nvram && nvram->type == SCSI_NCR_SYMBIOS_NVRAM(1))) && |
| 5178 | !(np->features & FE_LEDC(1<<20)) && !(np->sv_gpcntl & 0x01)) |
| 5179 | np->features |= FE_LED0(1<<0); |
| 5180 | |
| 5181 | /* |
| 5182 | ** Set irq mode. |
| 5183 | */ |
| 5184 | switch(driver_setup.irqm & 3) { |
| 5185 | case 2: |
| 5186 | np->rv_dcntl |= IRQM0x08; |
| 5187 | break; |
| 5188 | case 1: |
| 5189 | np->rv_dcntl |= (np->sv_dcntl & IRQM0x08); |
| 5190 | break; |
| 5191 | default: |
| 5192 | break; |
| 5193 | } |
| 5194 | |
| 5195 | /* |
| 5196 | ** Configure targets according to driver setup. |
| 5197 | ** If NVRAM present get targets setup from NVRAM. |
| 5198 | ** Allow to override sync, wide and NOSCAN from |
| 5199 | ** boot command line. |
| 5200 | */ |
| 5201 | for (i = 0 ; i < MAX_TARGET((16)) ; i++) { |
| 5202 | tcb_p tp = &np->target[i]; |
| 5203 | |
| 5204 | tp->usrsync = 255; |
| 5205 | #ifdef SCSI_NCR_NVRAM_SUPPORT |
| 5206 | if (nvram) { |
| 5207 | switch(nvram->type) { |
| 5208 | case SCSI_NCR_TEKRAM_NVRAM(2): |
| 5209 | ncr_Tekram_setup_target(np, i, &nvram->data.Tekram); |
| 5210 | break; |
| 5211 | case SCSI_NCR_SYMBIOS_NVRAM(1): |
| 5212 | ncr_Symbios_setup_target(np, i, &nvram->data.Symbios); |
| 5213 | break; |
| 5214 | } |
| 5215 | if (driver_setup.use_nvram & 0x2) |
| 5216 | tp->usrsync = driver_setup.default_sync; |
| 5217 | if (driver_setup.use_nvram & 0x4) |
| 5218 | tp->usrwide = driver_setup.max_wide; |
| 5219 | if (driver_setup.use_nvram & 0x8) |
| 5220 | tp->usrflag &= ~UF_NOSCAN(0x04); |
| 5221 | } |
| 5222 | else { |
| 5223 | #else |
| 5224 | if (1) { |
| 5225 | #endif |
| 5226 | tp->usrsync = driver_setup.default_sync; |
| 5227 | tp->usrwide = driver_setup.max_wide; |
| 5228 | tp->usrtags = MAX_TAGS(8); |
| 5229 | if (!driver_setup.disconnection) |
| 5230 | np->target[i].usrflag = UF_NODISC(0x02); |
| 5231 | } |
| 5232 | } |
| 5233 | |
| 5234 | /* |
| 5235 | ** Announce all that stuff to user. |
| 5236 | */ |
| 5237 | |
| 5238 | i = nvram ? nvram->type : 0; |
| 5239 | printk(KERN_INFO"<6>" "%s: %sID %d, Fast-%d%s%s\n", ncr_name(np), |
| 5240 | i == SCSI_NCR_SYMBIOS_NVRAM(1) ? "Symbios format NVRAM, " : |
| 5241 | (i == SCSI_NCR_TEKRAM_NVRAM(2) ? "Tekram format NVRAM, " : ""), |
| 5242 | np->myaddr, |
| 5243 | np->minsync < 10 ? 80 : |
| 5244 | (np->minsync < 12 ? 40 : (np->minsync < 25 ? 20 : 10) ), |
| 5245 | (np->rv_scntl0 & 0xa) ? ", Parity Checking" : ", NO Parity", |
| 5246 | (np->rv_stest2 & 0x20) ? ", Differential" : ""); |
| 5247 | |
| 5248 | if (bootverbose(np->verbose) > 1) { |
| 5249 | printk (KERN_INFO"<6>" "%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = " |
| 5250 | "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n", |
| 5251 | ncr_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl, |
| 5252 | np->sv_ctest3, np->sv_ctest4, np->sv_ctest5); |
| 5253 | |
| 5254 | printk (KERN_INFO"<6>" "%s: final SCNTL3/DMODE/DCNTL/CTEST3/4/5 = " |
| 5255 | "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n", |
| 5256 | ncr_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl, |
| 5257 | np->rv_ctest3, np->rv_ctest4, np->rv_ctest5); |
| 5258 | } |
| 5259 | |
| 5260 | if (bootverbose(np->verbose) && np->base2_ba) |
| 5261 | printk (KERN_INFO"<6>" "%s: on-chip RAM at 0x%lx\n", |
| 5262 | ncr_name(np), np->base2_ba); |
| 5263 | |
| 5264 | return 0; |
| 5265 | } |
| 5266 | |
| 5267 | |
| 5268 | #ifdef SCSI_NCR_DEBUG_NVRAM |
| 5269 | |
| 5270 | void __init ncr_display_Symbios_nvram(ncb_p np, Symbios_nvram *nvram) |
| 5271 | { |
| 5272 | int i; |
| 5273 | |
| 5274 | /* display Symbios nvram host data */ |
| 5275 | printk(KERN_DEBUG"<7>" "%s: HOST ID=%d%s%s%s%s%s\n", |
| 5276 | ncr_name(np), nvram->host_id & 0x0f, |
| 5277 | (nvram->flags & SYMBIOS_SCAM_ENABLE(1)) ? " SCAM" :"", |
| 5278 | (nvram->flags & SYMBIOS_PARITY_ENABLE(1<<1)) ? " PARITY" :"", |
| 5279 | (nvram->flags & SYMBIOS_VERBOSE_MSGS(1<<2)) ? " VERBOSE" :"", |
| 5280 | (nvram->flags & SYMBIOS_CHS_MAPPING(1<<3)) ? " CHS_ALT" :"", |
| 5281 | (nvram->flags1 & SYMBIOS_SCAN_HI_LO(1)) ? " HI_LO" :""); |
| 5282 | |
| 5283 | /* display Symbios nvram drive data */ |
| 5284 | for (i = 0 ; i < 15 ; i++) { |
| 5285 | struct Symbios_target *tn = &nvram->target[i]; |
| 5286 | printk(KERN_DEBUG"<7>" "%s-%d:%s%s%s%s WIDTH=%d SYNC=%d TMO=%d\n", |
| 5287 | ncr_name(np), i, |
| 5288 | (tn->flags & SYMBIOS_DISCONNECT_ENABLE(1)) ? " DISC" : "", |
| 5289 | (tn->flags & SYMBIOS_SCAN_AT_BOOT_TIME(1<<1)) ? " SCAN_BOOT" : "", |
| 5290 | (tn->flags & SYMBIOS_SCAN_LUNS(1<<2)) ? " SCAN_LUNS" : "", |
| 5291 | (tn->flags & SYMBIOS_QUEUE_TAGS_ENABLED(1<<3))? " TCQ" : "", |
| 5292 | tn->bus_width, |
| 5293 | tn->sync_period / 4, |
| 5294 | tn->timeout); |
| 5295 | } |
| 5296 | } |
| 5297 | |
| 5298 | static u_charunsigned char Tekram_boot_delay[7] __initdata = {3, 5, 10, 20, 30, 60, 120}; |
| 5299 | |
| 5300 | void __init ncr_display_Tekram_nvram(ncb_p np, Tekram_nvram *nvram) |
| 5301 | { |
| 5302 | int i, tags, boot_delay; |
| 5303 | char *rem; |
| 5304 | |
| 5305 | /* display Tekram nvram host data */ |
| 5306 | tags = 2 << nvram->max_tags_index; |
| 5307 | boot_delay = 0; |
| 5308 | if (nvram->boot_delay_index < 6) |
| 5309 | boot_delay = Tekram_boot_delay[nvram->boot_delay_index]; |
| 5310 | switch((nvram->flags & TEKRAM_REMOVABLE_FLAGS(3<<6)) >> 6) { |
| 5311 | default: |
| 5312 | case 0: rem = ""; break; |
| 5313 | case 1: rem = " REMOVABLE=boot device"; break; |
| 5314 | case 2: rem = " REMOVABLE=all"; break; |
| 5315 | } |
| 5316 | |
| 5317 | printk(KERN_DEBUG"<7>" |
| 5318 | "%s: HOST ID=%d%s%s%s%s%s%s%s%s%s BOOT DELAY=%d tags=%d\n", |
| 5319 | ncr_name(np), nvram->host_id & 0x0f, |
| 5320 | (nvram->flags1 & SYMBIOS_SCAM_ENABLE(1)) ? " SCAM" :"", |
| 5321 | (nvram->flags & TEKRAM_MORE_THAN_2_DRIVES(1)) ? " >2DRIVES" :"", |
| 5322 | (nvram->flags & TEKRAM_DRIVES_SUP_1GB(1<<1)) ? " >1GB" :"", |
| 5323 | (nvram->flags & TEKRAM_RESET_ON_POWER_ON(1<<2)) ? " RESET" :"", |
| 5324 | (nvram->flags & TEKRAM_ACTIVE_NEGATION(1<<3)) ? " ACT_NEG" :"", |
| 5325 | (nvram->flags & TEKRAM_IMMEDIATE_SEEK(1<<4)) ? " IMM_SEEK" :"", |
| 5326 | (nvram->flags & TEKRAM_SCAN_LUNS(1<<5)) ? " SCAN_LUNS" :"", |
| 5327 | (nvram->flags1 & TEKRAM_F2_F6_ENABLED(1)) ? " F2_F6" :"", |
| 5328 | rem, boot_delay, tags); |
| 5329 | |
| 5330 | /* display Tekram nvram drive data */ |
| 5331 | for (i = 0; i <= 15; i++) { |
| 5332 | int sync, j; |
| 5333 | struct Tekram_target *tn = &nvram->target[i]; |
| 5334 | j = tn->sync_index & 0xf; |
| 5335 | sync = Tekram_sync[j]; |
| 5336 | printk(KERN_DEBUG"<7>" "%s-%d:%s%s%s%s%s%s PERIOD=%d\n", |
| 5337 | ncr_name(np), i, |
| 5338 | (tn->flags & TEKRAM_PARITY_CHECK(1)) ? " PARITY" : "", |
| 5339 | (tn->flags & TEKRAM_SYNC_NEGO(1<<1)) ? " SYNC" : "", |
| 5340 | (tn->flags & TEKRAM_DISCONNECT_ENABLE(1<<2)) ? " DISC" : "", |
| 5341 | (tn->flags & TEKRAM_START_CMD(1<<3)) ? " START" : "", |
| 5342 | (tn->flags & TEKRAM_TAGGED_COMMANDS(1<<4)) ? " TCQ" : "", |
| 5343 | (tn->flags & TEKRAM_WIDE_NEGO(1<<5)) ? " WIDE" : "", |
| 5344 | sync); |
| 5345 | } |
| 5346 | } |
| 5347 | #endif /* SCSI_NCR_DEBUG_NVRAM */ |
| 5348 | |
| 5349 | /* |
| 5350 | ** Host attach and initialisations. |
| 5351 | ** |
| 5352 | ** Allocate host data and ncb structure. |
| 5353 | ** Request IO region and remap MMIO region. |
| 5354 | ** Do chip initialization. |
| 5355 | ** If all is OK, install interrupt handling and |
| 5356 | ** start the timer daemon. |
| 5357 | */ |
| 5358 | |
| 5359 | static int __init |
| 5360 | ncr_attach (Scsi_Host_Template *tpnt, int unit, ncr_device *device) |
| 5361 | { |
| 5362 | struct host_data *host_data; |
| 5363 | ncb_p np = 0; |
| 5364 | struct Scsi_Host *instance = 0; |
| 5365 | u_longunsigned long flags = 0; |
| 5366 | ncr_nvram *nvram = device->nvram; |
| 5367 | int i; |
| 5368 | |
| 5369 | printk(KERN_INFO"<6>" NAME53C"sym53c" "%s-%d: rev 0x%x on pci bus %d device %d function %d " |
| 5370 | #ifdef __sparc__ |
| 5371 | "irq %s\n", |
| 5372 | #else |
| 5373 | "irq %d\n", |
| 5374 | #endif |
| 5375 | device->chip.name, unit, device->chip.revision_id, |
| 5376 | device->slot.bus, (device->slot.device_fn & 0xf8) >> 3, |
| 5377 | device->slot.device_fn & 7, |
| 5378 | #ifdef __sparc__ |
| 5379 | __irq_itoa(device->slot.irq)); |
| 5380 | #else |
| 5381 | device->slot.irq); |
| 5382 | #endif |
| 5383 | |
| 5384 | /* |
| 5385 | ** Allocate host_data structure |
| 5386 | */ |
| 5387 | if (!(instance = scsi_register(tpnt, sizeof(*host_data)))) |
| 5388 | goto attach_error; |
| 5389 | host_data = (struct host_data *) instance->hostdata; |
| 5390 | |
| 5391 | /* |
| 5392 | ** Allocate the host control block. |
| 5393 | */ |
| 5394 | np = __m_calloc_dma(device->pdev, sizeof(struct ncb), "NCB")m_calloc(sizeof(struct ncb), "NCB"); |
| 5395 | if (!np) |
| 5396 | goto attach_error; |
| 5397 | NCR_INIT_LOCK_NCB(np)do { } while (0); |
| 5398 | np->pdev = device->pdev; |
| 5399 | np->p_ncb = vtobus(np)virt_to_phys(np); |
| 5400 | host_data->ncb = np; |
| 5401 | |
| 5402 | /* |
| 5403 | ** Store input informations in the host data structure. |
| 5404 | */ |
| 5405 | strncpy(np->chip_name, device->chip.name, sizeof(np->chip_name) - 1); |
| 5406 | np->unit = unit; |
| 5407 | np->verbose = driver_setup.verbose; |
| 5408 | sprintflinux_sprintf(np->inst_name, NAME53C"sym53c" "%s-%d", np->chip_name, np->unit); |
| 5409 | np->device_id = device->chip.device_id; |
| 5410 | np->revision_id = device->chip.revision_id; |
| 5411 | np->bus = device->slot.bus; |
| 5412 | np->device_fn = device->slot.device_fn; |
| 5413 | np->features = device->chip.features; |
| 5414 | np->clock_divn = device->chip.nr_divisor; |
| 5415 | np->maxoffs = device->chip.offset_max; |
| 5416 | np->maxburst = device->chip.burst_max; |
| 5417 | np->myaddr = device->host_id; |
| 5418 | |
| 5419 | /* |
| 5420 | ** Allocate the start queue. |
| 5421 | */ |
| 5422 | np->squeue = (ncrcmd *) |
| 5423 | m_calloc_dma(sizeof(ncrcmd)*(MAX_START*2), "SQUEUE")m_calloc(sizeof(ncrcmd)*(((8*(8) + 2*(16)) + 4)*2), "SQUEUE"); |
| 5424 | if (!np->squeue) |
| 5425 | goto attach_error; |
| 5426 | np->p_squeue = vtobus(np->squeue)virt_to_phys(np->squeue); |
| 5427 | |
| 5428 | /* |
| 5429 | ** Allocate the done queue. |
| 5430 | */ |
| 5431 | np->dqueue = (ncrcmd *) |
| 5432 | m_calloc_dma(sizeof(ncrcmd)*(MAX_START*2), "DQUEUE")m_calloc(sizeof(ncrcmd)*(((8*(8) + 2*(16)) + 4)*2), "DQUEUE"); |
| 5433 | if (!np->dqueue) |
| 5434 | goto attach_error; |
| 5435 | |
| 5436 | /* |
| 5437 | ** Allocate the target bus address array. |
| 5438 | */ |
| 5439 | np->targtbl = (u_int32 *) m_calloc_dma(256, "TARGTBL")m_calloc(256, "TARGTBL"); |
| 5440 | if (!np->targtbl) |
| 5441 | goto attach_error; |
| 5442 | |
| 5443 | /* |
| 5444 | ** Allocate SCRIPTS areas |
| 5445 | */ |
| 5446 | np->script0 = (struct script *) |
| 5447 | m_calloc_dma(sizeof(struct script), "SCRIPT")m_calloc(sizeof(struct script), "SCRIPT"); |
| 5448 | if (!np->script0) |
| 5449 | goto attach_error; |
| 5450 | np->scripth0 = (struct scripth *) |
| 5451 | m_calloc_dma(sizeof(struct scripth), "SCRIPTH")m_calloc(sizeof(struct scripth), "SCRIPTH"); |
| 5452 | if (!np->scripth0) |
| 5453 | goto attach_error; |
| 5454 | |
| 5455 | /* |
| 5456 | ** Initialyze the CCB free queue and, |
| 5457 | ** allocate some CCB. We need at least ONE. |
| 5458 | */ |
| 5459 | xpt_que_init(&np->free_ccbq)do { (&np->free_ccbq)->flink = (&np->free_ccbq ); (&np->free_ccbq)->blink = (&np->free_ccbq ); } while (0); |
| 5460 | xpt_que_init(&np->b0_ccbq)do { (&np->b0_ccbq)->flink = (&np->b0_ccbq); (&np->b0_ccbq)->blink = (&np->b0_ccbq); } while (0); |
| 5461 | if (!ncr_alloc_ccb(np)) |
| 5462 | goto attach_error; |
| 5463 | |
| 5464 | /* |
| 5465 | ** Initialize timer structure |
| 5466 | ** |
| 5467 | */ |
| 5468 | init_timer(&np->timer); |
| 5469 | np->timer.data = (unsigned long) np; |
| 5470 | np->timer.function = sym53c8xx_timeout; |
| 5471 | |
| 5472 | /* |
| 5473 | ** Try to map the controller chip to |
| 5474 | ** virtual and physical memory. |
| 5475 | */ |
| 5476 | |
| 5477 | np->base_ba = device->slot.base; |
| 5478 | np->base_ws = (np->features & FE_IO256(1<<18))? 256 : 128; |
| 5479 | np->base2_ba = (np->features & FE_RAM(1<<14))? device->slot.base_2 : 0; |
| 5480 | |
| 5481 | #ifndef SCSI_NCR_IOMAPPED |
| 5482 | np->base_va = remap_pci_mem(np->base_ba, np->base_ws); |
| 5483 | if (!np->base_va) { |
| 5484 | printk(KERN_ERR"<3>" "%s: can't map PCI MMIO region\n",ncr_name(np)); |
| 5485 | goto attach_error; |
| 5486 | } |
| 5487 | else if (bootverbose(np->verbose) > 1) |
| 5488 | printk(KERN_INFO"<6>" "%s: using memory mapped IO\n", ncr_name(np)); |
| 5489 | |
| 5490 | /* |
| 5491 | ** Make the controller's registers available. |
| 5492 | ** Now the INB INW INL OUTB OUTW OUTL macros |
| 5493 | ** can be used safely. |
| 5494 | */ |
| 5495 | |
| 5496 | np->reg = (struct ncr_reg *) np->base_va; |
| 5497 | |
| 5498 | #endif /* !defined SCSI_NCR_IOMAPPED */ |
| 5499 | |
| 5500 | /* |
| 5501 | ** If on-chip RAM is used, make sure SCRIPTS isn't too large. |
| 5502 | */ |
| 5503 | if (np->base2_ba && sizeof(struct script) > 4096) { |
| 5504 | printk(KERN_ERR"<3>" "%s: script too large.\n", ncr_name(np)); |
| 5505 | goto attach_error; |
| 5506 | } |
| 5507 | |
| 5508 | /* |
| 5509 | ** Try to map the controller chip into iospace. |
| 5510 | */ |
| 5511 | |
| 5512 | if (device->slot.io_port) { |
| 5513 | request_region(device->slot.io_port, np->base_ws, NAME53C8XX"sym53c8xx"); |
| 5514 | np->base_io = device->slot.io_port; |
| 5515 | } |
| 5516 | |
| 5517 | #ifdef SCSI_NCR_NVRAM_SUPPORT |
| 5518 | if (nvram) { |
| 5519 | switch(nvram->type) { |
| 5520 | case SCSI_NCR_SYMBIOS_NVRAM(1): |
| 5521 | #ifdef SCSI_NCR_DEBUG_NVRAM |
| 5522 | ncr_display_Symbios_nvram(np, &nvram->data.Symbios); |
| 5523 | #endif |
| 5524 | break; |
| 5525 | case SCSI_NCR_TEKRAM_NVRAM(2): |
| 5526 | #ifdef SCSI_NCR_DEBUG_NVRAM |
| 5527 | ncr_display_Tekram_nvram(np, &nvram->data.Tekram); |
| 5528 | #endif |
| 5529 | break; |
| 5530 | default: |
| 5531 | nvram = 0; |
| 5532 | #ifdef SCSI_NCR_DEBUG_NVRAM |
| 5533 | printk(KERN_DEBUG"<7>" "%s: NVRAM: None or invalid data.\n", ncr_name(np)); |
| 5534 | #endif |
| 5535 | } |
| 5536 | } |
| 5537 | #endif |
| 5538 | |
| 5539 | /* |
| 5540 | ** Save setting of some IO registers, so we will |
| 5541 | ** be able to probe specific implementations. |
| 5542 | */ |
| 5543 | ncr_save_initial_setting (np); |
| 5544 | |
| 5545 | /* |
| 5546 | ** Reset the chip now, since it has been reported |
| 5547 | ** that SCSI clock calibration may not work properly |
| 5548 | ** if the chip is currently active. |
| 5549 | */ |
| 5550 | ncr_chip_reset (np); |
| 5551 | |
| 5552 | /* |
| 5553 | ** Do chip dependent initialization. |
| 5554 | */ |
| 5555 | (void) ncr_prepare_setting(np, nvram); |
| 5556 | |
| 5557 | /* |
| 5558 | ** Check the PCI clock frequency if needed. |
| 5559 | ** |
| 5560 | ** Must be done after ncr_prepare_setting since it destroys |
| 5561 | ** STEST1 that is used to probe for the clock multiplier. |
| 5562 | ** |
| 5563 | ** The range is currently [22688 - 45375 Khz], given |
| 5564 | ** the values used by ncr_getclock(). |
| 5565 | ** This calibration of the frequecy measurement |
| 5566 | ** algorithm against the PCI clock frequency is only |
| 5567 | ** performed if the driver has had to measure the SCSI |
| 5568 | ** clock due to other heuristics not having been enough |
| 5569 | ** to deduce the SCSI clock frequency. |
| 5570 | ** |
| 5571 | ** When the chip has been initialized correctly by the |
| 5572 | ** SCSI BIOS, the driver deduces the presence of the |
| 5573 | ** clock multiplier and the value of the SCSI clock from |
| 5574 | ** initial values of IO registers, and therefore no |
| 5575 | ** clock measurement is performed. |
| 5576 | ** Normally the driver should never have to measure any |
| 5577 | ** clock, unless the controller may use a 80 MHz clock |
| 5578 | ** or has a clock multiplier and any of the following |
| 5579 | ** condition is met: |
| 5580 | ** |
| 5581 | ** - No SCSI BIOS is present. |
| 5582 | ** - SCSI BIOS did'nt enable the multiplier for some reason. |
| 5583 | ** - User has disabled the controller from the SCSI BIOS. |
| 5584 | ** - User booted the O/S from another O/S that did'nt enable |
| 5585 | ** the multiplier for some reason. |
| 5586 | ** |
| 5587 | ** As a result, the driver may only have to measure some |
| 5588 | ** frequency in very unusual situations. |
| 5589 | ** |
| 5590 | ** For this reality test against the PCI clock to really |
| 5591 | ** protect against flaws in the udelay() calibration or |
| 5592 | ** driver problem that affect the clock measurement |
| 5593 | ** algorithm, the actual PCI clock frequency must be 33 MHz. |
| 5594 | */ |
| 5595 | i = np->pciclock_max ? ncr_getpciclock(np) : 0; |
| 5596 | if (i && (i < np->pciclock_min || i > np->pciclock_max)) { |
| 5597 | printk(KERN_ERR"<3>" "%s: PCI clock (%u KHz) is out of range " |
| 5598 | "[%u KHz - %u KHz].\n", |
| 5599 | ncr_name(np), i, np->pciclock_min, np->pciclock_max); |
| 5600 | goto attach_error; |
| 5601 | } |
| 5602 | |
| 5603 | /* |
| 5604 | ** Patch script to physical addresses |
| 5605 | */ |
| 5606 | ncr_script_fill (&script0, &scripth0); |
| 5607 | |
| 5608 | np->p_script = vtobus(np->script0)virt_to_phys(np->script0); |
| 5609 | np->p_scripth = vtobus(np->scripth0)virt_to_phys(np->scripth0); |
| 5610 | np->p_scripth0 = np->p_scripth; |
| 5611 | |
| 5612 | if (np->base2_ba) { |
| 5613 | np->p_script = pcivtobus(np->base2_ba)(np->base2_ba); |
| 5614 | if (np->features & FE_RAM8K(1<<16)) { |
| 5615 | np->base2_ws = 8192; |
| 5616 | np->p_scripth = np->p_script + 4096; |
| 5617 | #if BITS_PER_LONG32 > 32 |
| 5618 | np->scr_ram_seg = cpu_to_scr(np->base2_ba >> 32)(np->base2_ba >> 32); |
| 5619 | #endif |
| 5620 | } |
| 5621 | else |
| 5622 | np->base2_ws = 4096; |
| 5623 | #ifndef SCSI_NCR_PCI_MEM_NOT_SUPPORTED |
| 5624 | np->base2_va = remap_pci_mem(np->base2_ba, np->base2_ws); |
| 5625 | if (!np->base2_va) { |
| 5626 | printk(KERN_ERR"<3>" "%s: can't map PCI MEMORY region\n", |
| 5627 | ncr_name(np)); |
| 5628 | goto attach_error; |
| 5629 | } |
| 5630 | #endif |
| 5631 | } |
| 5632 | |
| 5633 | ncr_script_copy_and_bind (np, (ncrcmd *) &script0, (ncrcmd *) np->script0, sizeof(struct script)); |
| 5634 | ncr_script_copy_and_bind (np, (ncrcmd *) &scripth0, (ncrcmd *) np->scripth0, sizeof(struct scripth)); |
| 5635 | |
| 5636 | /* |
| 5637 | ** Patch some variables in SCRIPTS |
| 5638 | */ |
| 5639 | np->scripth0->pm0_data_addr[0] = |
| 5640 | cpu_to_scr(NCB_SCRIPT_PHYS(np, pm0_data))((np->p_script + ((size_t) (&((struct script *)0)-> pm0_data)))); |
| 5641 | np->scripth0->pm1_data_addr[0] = |
| 5642 | cpu_to_scr(NCB_SCRIPT_PHYS(np, pm1_data))((np->p_script + ((size_t) (&((struct script *)0)-> pm1_data)))); |
| 5643 | |
| 5644 | /* |
| 5645 | ** Patch if not Ultra 3 - Do not write to scntl4 |
| 5646 | */ |
| 5647 | if (np->features & FE_ULTRA3(1<<22)) { |
| 5648 | np->script0->resel_scntl4[0] = cpu_to_scr(SCR_LOAD_REL (scntl4, 1))((0xe1000000 | 0x02000000|0x10000000 | (((((((size_t) (&( (struct ncr_reg *)0)->nc_scntl4)))) & 0xff) << 16ul )) | (1))); |
| 5649 | np->script0->resel_scntl4[1] = cpu_to_scr(offsetof(struct tcb, uval))(((size_t) (&((struct tcb *)0)->uval))); |
| 5650 | } |
| 5651 | |
| 5652 | |
| 5653 | #ifdef SCSI_NCR_PCI_MEM_NOT_SUPPORTED |
| 5654 | np->scripth0->script0_ba[0] = cpu_to_scr(vtobus(np->script0))(virt_to_phys(np->script0)); |
| 5655 | np->scripth0->script0_ba64[0] = cpu_to_scr(vtobus(np->script0))(virt_to_phys(np->script0)); |
| 5656 | np->scripth0->scripth0_ba64[0] = cpu_to_scr(vtobus(np->scripth0))(virt_to_phys(np->scripth0)); |
| 5657 | np->scripth0->ram_seg64[0] = np->scr_ram_seg; |
| 5658 | #endif |
| 5659 | /* |
| 5660 | ** Prepare the idle and invalid task actions. |
| 5661 | */ |
| 5662 | np->idletask.start = cpu_to_scr(NCB_SCRIPT_PHYS (np, idle))((np->p_script + ((size_t) (&((struct script *)0)-> idle)))); |
| 5663 | np->idletask.restart = cpu_to_scr(NCB_SCRIPTH_PHYS (np, bad_i_t_l))((np->p_scripth + ((size_t) (&((struct scripth *)0)-> bad_i_t_l)))); |
| 5664 | np->p_idletask = NCB_PHYS(np, idletask)(np->p_ncb + ((size_t) (&((struct ncb *)0)->idletask ))); |
| 5665 | |
| 5666 | np->notask.start = cpu_to_scr(NCB_SCRIPT_PHYS (np, idle))((np->p_script + ((size_t) (&((struct script *)0)-> idle)))); |
| 5667 | np->notask.restart = cpu_to_scr(NCB_SCRIPTH_PHYS (np, bad_i_t_l))((np->p_scripth + ((size_t) (&((struct scripth *)0)-> bad_i_t_l)))); |
| 5668 | np->p_notask = NCB_PHYS(np, notask)(np->p_ncb + ((size_t) (&((struct ncb *)0)->notask) )); |
| 5669 | |
| 5670 | np->bad_i_t_l.start = cpu_to_scr(NCB_SCRIPT_PHYS (np, idle))((np->p_script + ((size_t) (&((struct script *)0)-> idle)))); |
| 5671 | np->bad_i_t_l.restart = cpu_to_scr(NCB_SCRIPTH_PHYS (np, bad_i_t_l))((np->p_scripth + ((size_t) (&((struct scripth *)0)-> bad_i_t_l)))); |
| 5672 | np->p_bad_i_t_l = NCB_PHYS(np, bad_i_t_l)(np->p_ncb + ((size_t) (&((struct ncb *)0)->bad_i_t_l ))); |
| 5673 | |
| 5674 | np->bad_i_t_l_q.start = cpu_to_scr(NCB_SCRIPT_PHYS (np, idle))((np->p_script + ((size_t) (&((struct script *)0)-> idle)))); |
| 5675 | np->bad_i_t_l_q.restart = cpu_to_scr(NCB_SCRIPTH_PHYS (np,bad_i_t_l_q))((np->p_scripth + ((size_t) (&((struct scripth *)0)-> bad_i_t_l_q)))); |
| 5676 | np->p_bad_i_t_l_q = NCB_PHYS(np, bad_i_t_l_q)(np->p_ncb + ((size_t) (&((struct ncb *)0)->bad_i_t_l_q ))); |
| 5677 | |
| 5678 | /* |
| 5679 | ** Allocate and prepare the bad lun table. |
| 5680 | */ |
| 5681 | np->badluntbl = m_calloc_dma(256, "BADLUNTBL")m_calloc(256, "BADLUNTBL"); |
| 5682 | if (!np->badluntbl) |
| 5683 | goto attach_error; |
| 5684 | |
| 5685 | assert (offsetof(struct lcb, resel_task) == 0){ if (!(((size_t) (&((struct lcb *)0)->resel_task)) == 0)) { (void)panic( "assertion \"%s\" failed: file \"%s\", line %d\n" , "offsetof(struct lcb, resel_task) == 0", "../linux/src/drivers/scsi/sym53c8xx.c" , 5685); } }; |
| 5686 | np->resel_badlun = cpu_to_scr(NCB_SCRIPTH_PHYS(np, resel_bad_lun))((np->p_scripth + ((size_t) (&((struct scripth *)0)-> resel_bad_lun)))); |
| 5687 | |
| 5688 | for (i = 0 ; i < 64 ; i++) |
| 5689 | np->badluntbl[i] = cpu_to_scr(NCB_PHYS(np, resel_badlun))((np->p_ncb + ((size_t) (&((struct ncb *)0)->resel_badlun )))); |
| 5690 | |
| 5691 | /* |
| 5692 | ** Prepare the target bus address array. |
| 5693 | */ |
| 5694 | np->scripth0->targtbl[0] = cpu_to_scr(vtobus(np->targtbl))(virt_to_phys(np->targtbl)); |
| 5695 | for (i = 0 ; i < MAX_TARGET((16)) ; i++) { |
| 5696 | np->targtbl[i] = cpu_to_scr(NCB_PHYS(np, target[i]))((np->p_ncb + ((size_t) (&((struct ncb *)0)->target [i])))); |
| 5697 | np->target[i].b_luntbl = cpu_to_scr(vtobus(np->badluntbl))(virt_to_phys(np->badluntbl)); |
| 5698 | np->target[i].b_lun0 = cpu_to_scr(NCB_PHYS(np, resel_badlun))((np->p_ncb + ((size_t) (&((struct ncb *)0)->resel_badlun )))); |
| 5699 | } |
| 5700 | |
| 5701 | /* |
| 5702 | ** Patch the script for LED support. |
| 5703 | */ |
| 5704 | |
| 5705 | if (np->features & FE_LED0(1<<0)) { |
| 5706 | np->script0->idle[0] = |
| 5707 | cpu_to_scr(SCR_REG_REG(gpreg, SCR_OR, 0x01))((0x78000000 | ((((((((size_t) (&((struct ncr_reg *)0)-> nc_gpreg)))) & 0x7f) << 16ul) + (((((size_t) (& ((struct ncr_reg *)0)->nc_gpreg)))) & 0x80))) | (0x02000000 ) | (((0x01)&0xff)<<8ul))); |
| 5708 | np->script0->reselected[0] = |
| 5709 | cpu_to_scr(SCR_REG_REG(gpreg, SCR_AND, 0xfe))((0x78000000 | ((((((((size_t) (&((struct ncr_reg *)0)-> nc_gpreg)))) & 0x7f) << 16ul) + (((((size_t) (& ((struct ncr_reg *)0)->nc_gpreg)))) & 0x80))) | (0x04000000 ) | (((0xfe)&0xff)<<8ul))); |
| 5710 | np->script0->start[0] = |
| 5711 | cpu_to_scr(SCR_REG_REG(gpreg, SCR_AND, 0xfe))((0x78000000 | ((((((((size_t) (&((struct ncr_reg *)0)-> nc_gpreg)))) & 0x7f) << 16ul) + (((((size_t) (& ((struct ncr_reg *)0)->nc_gpreg)))) & 0x80))) | (0x04000000 ) | (((0xfe)&0xff)<<8ul))); |
| 5712 | } |
| 5713 | |
| 5714 | /* |
| 5715 | ** Patch the script to provide an extra clock cycle on |
| 5716 | ** data out phase - 53C1010_66MHz part only. |
| 5717 | */ |
| 5718 | if (np->device_id == PCI_DEVICE_ID_LSI_53C1010_660x21){ |
| 5719 | np->script0->datao_phase[0] = |
| 5720 | cpu_to_scr(SCR_REG_REG(scntl4, SCR_OR, 0x0c))((0x78000000 | ((((((((size_t) (&((struct ncr_reg *)0)-> nc_scntl4)))) & 0x7f) << 16ul) + (((((size_t) (& ((struct ncr_reg *)0)->nc_scntl4)))) & 0x80))) | (0x02000000 ) | (((0x0c)&0xff)<<8ul))); |
| 5721 | } |
| 5722 | |
| 5723 | #ifdef SCSI_NCR_IARB_SUPPORT |
| 5724 | /* |
| 5725 | ** If user does not want to use IMMEDIATE ARBITRATION |
| 5726 | ** when we are reselected while attempting to arbitrate, |
| 5727 | ** patch the SCRIPTS accordingly with a SCRIPT NO_OP. |
| 5728 | */ |
| 5729 | if (!(driver_setup.iarb & 1)) |
| 5730 | np->script0->ungetjob[0] = cpu_to_scr(SCR_NO_OP)(0x80000000); |
| 5731 | /* |
| 5732 | ** If user wants IARB to be set when we win arbitration |
| 5733 | ** and have other jobs, compute the max number of consecutive |
| 5734 | ** settings of IARB hint before we leave devices a chance to |
| 5735 | ** arbitrate for reselection. |
| 5736 | */ |
| 5737 | np->iarb_max = (driver_setup.iarb >> 4); |
| 5738 | #endif |
| 5739 | |
| 5740 | /* |
| 5741 | ** DEL 472 - 53C896 Rev 1 - Part Number 609-0393055 - ITEM 5. |
| 5742 | */ |
| 5743 | if (np->device_id == PCI_DEVICE_ID_NCR_53C8960x000b && |
| 5744 | np->revision_id <= 0x1 && (np->features & FE_NOPM(1<<19))) { |
| 5745 | np->scatter = ncr_scatter_896R1; |
| 5746 | np->script0->datai_phase[0] = cpu_to_scr(SCR_JUMP)(0x80080000); |
| 5747 | np->script0->datai_phase[1] = |
| 5748 | cpu_to_scr(NCB_SCRIPTH_PHYS (np, tweak_pmj))((np->p_scripth + ((size_t) (&((struct scripth *)0)-> tweak_pmj)))); |
| 5749 | np->script0->datao_phase[0] = cpu_to_scr(SCR_JUMP)(0x80080000); |
| 5750 | np->script0->datao_phase[1] = |
| 5751 | cpu_to_scr(NCB_SCRIPTH_PHYS (np, tweak_pmj))((np->p_scripth + ((size_t) (&((struct scripth *)0)-> tweak_pmj)))); |
| 5752 | } |
| 5753 | else |
| 5754 | #ifdef DEBUG_896R1 |
| 5755 | np->scatter = ncr_scatter_896R1; |
| 5756 | #else |
| 5757 | np->scatter = ncr_scatter; |
| 5758 | #endif |
| 5759 | |
| 5760 | /* |
| 5761 | ** Reset chip. |
| 5762 | ** We should use ncr_soft_reset(), but we donnot want to do |
| 5763 | ** so, since we may not be safe if ABRT interrupt occurs due |
| 5764 | ** to the BIOS or previous O/S having enable this interrupt. |
| 5765 | ** |
| 5766 | ** For C1010 need to set ABRT bit prior to SRST if SCRIPTs |
| 5767 | ** are running. Not true in this case. |
| 5768 | */ |
| 5769 | ncr_chip_reset(np); |
| 5770 | |
| 5771 | /* |
| 5772 | ** Now check the cache handling of the pci chipset. |
| 5773 | */ |
| 5774 | |
| 5775 | if (ncr_snooptest (np)) { |
| 5776 | printk (KERN_ERR"<3>" "CACHE INCORRECTLY CONFIGURED.\n"); |
| 5777 | goto attach_error; |
| 5778 | }; |
| 5779 | |
| 5780 | /* |
| 5781 | ** Install the interrupt handler. |
| 5782 | ** If we synchonize the C code with SCRIPTS on interrupt, |
| 5783 | ** we donnot want to share the INTR line at all. |
| 5784 | */ |
| 5785 | if (request_irq(device->slot.irq, sym53c8xx_intr, |
| 5786 | #ifdef SCSI_NCR_PCIQ_SYNC_ON_INTR |
| 5787 | ((driver_setup.irqm & 0x20) ? 0 : SA_INTERRUPT0x20000000), |
| 5788 | #else |
| 5789 | ((driver_setup.irqm & 0x10) ? 0 : SA_SHIRQ0x04000000) | |
| 5790 | |
| 5791 | #if 0 && LINUX_VERSION_CODE131108 < LinuxVersionCode(2,2,0)(((2)<<16)+((2)<<8)+(0)) |
| 5792 | ((driver_setup.irqm & 0x20) ? 0 : SA_INTERRUPT0x20000000), |
| 5793 | #else |
| 5794 | 0, |
| 5795 | #endif |
| 5796 | #endif |
| 5797 | NAME53C8XX"sym53c8xx", np)) { |
| 5798 | printk(KERN_ERR"<3>" "%s: request irq %d failure\n", |
| 5799 | ncr_name(np), device->slot.irq); |
| 5800 | goto attach_error; |
| 5801 | } |
| 5802 | np->irq = device->slot.irq; |
| 5803 | |
| 5804 | /* |
| 5805 | ** After SCSI devices have been opened, we cannot |
| 5806 | ** reset the bus safely, so we do it here. |
| 5807 | ** Interrupt handler does the real work. |
| 5808 | ** Process the reset exception, |
| 5809 | ** if interrupts are not enabled yet. |
| 5810 | ** Then enable disconnects. |
| 5811 | */ |
| 5812 | NCR_LOCK_NCB(np, flags)do { __asm__ __volatile__("pushf ; pop %0" : "=r" (flags): :"memory" ); __asm__ __volatile__ ("cli": : :"memory"); } while (0); |
| 5813 | if (ncr_reset_scsi_bus(np, 0, driver_setup.settle_delay) != 0) { |
| 5814 | printk(KERN_ERR"<3>" "%s: FATAL ERROR: CHECK SCSI BUS - CABLES, TERMINATION, DEVICE POWER etc.!\n", ncr_name(np)); |
| 5815 | |
| 5816 | NCR_UNLOCK_NCB(np, flags)do { __asm__ __volatile__("push %0 ; popf": :"g" (flags):"memory" ); } while (0); |
| 5817 | goto attach_error; |
| 5818 | } |
| 5819 | ncr_exception (np); |
| 5820 | |
| 5821 | /* |
| 5822 | ** The middle-level SCSI driver does not |
| 5823 | ** wait for devices to settle. |
| 5824 | ** Wait synchronously if more than 2 seconds. |
| 5825 | */ |
| 5826 | if (driver_setup.settle_delay > 2) { |
| 5827 | printk(KERN_INFO"<6>" "%s: waiting %d seconds for scsi devices to settle...\n", |
| 5828 | ncr_name(np), driver_setup.settle_delay); |
| 5829 | MDELAY (1000 * driver_setup.settle_delay); |
| 5830 | } |
| 5831 | |
| 5832 | /* |
| 5833 | ** start the timeout daemon |
| 5834 | */ |
| 5835 | np->lasttime=0; |
| 5836 | ncr_timeout (np); |
| 5837 | |
| 5838 | /* |
| 5839 | ** use SIMPLE TAG messages by default |
| 5840 | */ |
| 5841 | #ifdef SCSI_NCR_ALWAYS_SIMPLE_TAG |
| 5842 | np->order = M_SIMPLE_TAG(0x20); |
| 5843 | #endif |
| 5844 | |
| 5845 | /* |
| 5846 | ** Done. |
| 5847 | */ |
| 5848 | if (!first_host) |
| 5849 | first_host = instance; |
| 5850 | |
| 5851 | /* |
| 5852 | ** Fill Linux host instance structure |
| 5853 | ** and return success. |
| 5854 | */ |
| 5855 | instance->max_channel = 0; |
| 5856 | instance->this_id = np->myaddr; |
| 5857 | instance->max_id = np->maxwide ? 16 : 8; |
| 5858 | instance->max_lun = MAX_LUN64; |
| 5859 | #ifndef SCSI_NCR_IOMAPPED |
| 5860 | #if LINUX_VERSION_CODE131108 >= LinuxVersionCode(2,3,29)(((2)<<16)+((3)<<8)+(29)) |
| 5861 | instance->base = (unsigned long) np->reg; |
| 5862 | #else |
| 5863 | instance->base = (char *) np->reg; |
| 5864 | #endif |
| 5865 | #endif |
| 5866 | instance->irq = np->irq; |
| 5867 | instance->unique_id = np->base_io; |
| 5868 | instance->io_port = np->base_io; |
| 5869 | instance->n_io_port = np->base_ws; |
| 5870 | instance->dma_channel = 0; |
| 5871 | instance->cmd_per_lun = MAX_TAGS(8); |
| 5872 | instance->can_queue = (MAX_START((8*(8) + 2*(16)) + 4)-4); |
| 5873 | |
| 5874 | np->check_integrity = 0; |
| 5875 | |
| 5876 | #ifdef SCSI_NCR_INTEGRITY_CHECKING |
| 5877 | instance->check_integrity = 0; |
| 5878 | |
| 5879 | #ifdef SCSI_NCR_ENABLE_INTEGRITY_CHECK |
| 5880 | if ( !(driver_setup.bus_check & 0x04) ) { |
| 5881 | np->check_integrity = 1; |
| 5882 | instance->check_integrity = 1; |
| 5883 | } |
| 5884 | #endif |
| 5885 | #endif |
| 5886 | |
| 5887 | instance->select_queue_depths = sym53c8xx_select_queue_depths; |
| 5888 | |
| 5889 | NCR_UNLOCK_NCB(np, flags)do { __asm__ __volatile__("push %0 ; popf": :"g" (flags):"memory" ); } while (0); |
| 5890 | |
| 5891 | /* |
| 5892 | ** Now let the generic SCSI driver |
| 5893 | ** look for the SCSI devices on the bus .. |
| 5894 | */ |
| 5895 | return 0; |
| 5896 | |
| 5897 | attach_error: |
| 5898 | if (!instance) return -1; |
| 5899 | printk(KERN_INFO"<6>" "%s: giving up ...\n", ncr_name(np)); |
| 5900 | if (np) |
| 5901 | ncr_free_resources(np); |
| 5902 | scsi_unregister(instance); |
| 5903 | |
| 5904 | return -1; |
| 5905 | } |
| 5906 | |
| 5907 | |
| 5908 | /* |
| 5909 | ** Free controller resources. |
| 5910 | */ |
| 5911 | static void ncr_free_resources(ncb_p np) |
| 5912 | { |
| 5913 | ccb_p cp; |
| 5914 | tcb_p tp; |
| 5915 | lcb_p lp; |
| 5916 | int target, lun; |
| 5917 | |
| 5918 | if (np->irq) |
| 5919 | free_irq(np->irq, np); |
| 5920 | if (np->base_io) |
| 5921 | release_region(np->base_io, np->base_ws); |
| 5922 | #ifndef SCSI_NCR_PCI_MEM_NOT_SUPPORTED |
| 5923 | if (np->base_va) |
| 5924 | unmap_pci_mem(np->base_va, np->base_ws); |
| 5925 | if (np->base2_va) |
| 5926 | unmap_pci_mem(np->base2_va, np->base2_ws); |
| 5927 | #endif |
| 5928 | if (np->scripth0) |
| 5929 | m_free_dma(np->scripth0, sizeof(struct scripth), "SCRIPTH")m_free(np->scripth0, sizeof(struct scripth), "SCRIPTH"); |
| 5930 | if (np->script0) |
| 5931 | m_free_dma(np->script0, sizeof(struct script), "SCRIPT")m_free(np->script0, sizeof(struct script), "SCRIPT"); |
| 5932 | if (np->squeue) |
| 5933 | m_free_dma(np->squeue, sizeof(ncrcmd)*(MAX_START*2), "SQUEUE")m_free(np->squeue, sizeof(ncrcmd)*(((8*(8) + 2*(16)) + 4)* 2), "SQUEUE"); |
| 5934 | if (np->dqueue) |
| 5935 | m_free_dma(np->dqueue, sizeof(ncrcmd)*(MAX_START*2),"DQUEUE")m_free(np->dqueue, sizeof(ncrcmd)*(((8*(8) + 2*(16)) + 4)* 2), "DQUEUE"); |
| 5936 | |
| 5937 | while ((cp = np->ccbc) != NULL((void *) 0)) { |
| 5938 | np->ccbc = cp->link_ccb; |
| 5939 | m_free_dma(cp, sizeof(*cp), "CCB")m_free(cp, sizeof(*cp), "CCB"); |
| 5940 | } |
| 5941 | |
| 5942 | if (np->badluntbl) |
| 5943 | m_free_dma(np->badluntbl, 256,"BADLUNTBL")m_free(np->badluntbl, 256, "BADLUNTBL"); |
| 5944 | |
| 5945 | for (target = 0; target < MAX_TARGET((16)) ; target++) { |
| 5946 | tp = &np->target[target]; |
| 5947 | for (lun = 0 ; lun < MAX_LUN64 ; lun++) { |
| 5948 | lp = ncr_lp(np, tp, lun)(!lun) ? (tp)->l0p : (tp)->lmp ? (tp)->lmp[(lun)] : 0; |
| 5949 | if (!lp) |
| 5950 | continue; |
| 5951 | if (lp->tasktbl != &lp->tasktbl_0) |
| 5952 | m_free_dma(lp->tasktbl, MAX_TASKS*4, "TASKTBL")m_free(lp->tasktbl, (256/4)*4, "TASKTBL"); |
| 5953 | if (lp->cb_tags) |
| 5954 | m_free(lp->cb_tags, MAX_TAGS(8), "CB_TAGS"); |
| 5955 | m_free_dma(lp, sizeof(*lp), "LCB")m_free(lp, sizeof(*lp), "LCB"); |
| 5956 | } |
| 5957 | #if MAX_LUN64 > 1 |
| 5958 | if (tp->lmp) |
| 5959 | m_free(tp->lmp, MAX_LUN64 * sizeof(lcb_p), "LMP"); |
| 5960 | if (tp->luntbl) |
| 5961 | m_free_dma(tp->luntbl, 256, "LUNTBL")m_free(tp->luntbl, 256, "LUNTBL"); |
| 5962 | #endif |
| 5963 | } |
| 5964 | |
| 5965 | if (np->targtbl) |
| 5966 | m_free_dma(np->targtbl, 256, "TARGTBL")m_free(np->targtbl, 256, "TARGTBL"); |
| 5967 | |
| 5968 | m_free_dma(np, sizeof(*np), "NCB")m_free(np, sizeof(*np), "NCB"); |
| 5969 | } |
| 5970 | |
| 5971 | |
| 5972 | /*========================================================== |
| 5973 | ** |
| 5974 | ** |
| 5975 | ** Done SCSI commands list management. |
| 5976 | ** |
| 5977 | ** We donnot enter the scsi_done() callback immediately |
| 5978 | ** after a command has been seen as completed but we |
| 5979 | ** insert it into a list which is flushed outside any kind |
| 5980 | ** of driver critical section. |
| 5981 | ** This allows to do minimal stuff under interrupt and |
| 5982 | ** inside critical sections and to also avoid locking up |
| 5983 | ** on recursive calls to driver entry points under SMP. |
| 5984 | ** In fact, the only kernel point which is entered by the |
| 5985 | ** driver with a driver lock set is get_free_pages(GFP_ATOMIC...) |
| 5986 | ** that shall not reenter the driver under any circumstance. |
| 5987 | ** |
| 5988 | **========================================================== |
| 5989 | */ |
| 5990 | static inlineinline __attribute__((always_inline)) void ncr_queue_done_cmd(ncb_p np, Scsi_Cmnd *cmd) |
| 5991 | { |
| 5992 | unmap_scsi_data(np, cmd)do {; } while (0); |
| 5993 | cmd->host_scribble = (char *) np->done_list; |
| 5994 | np->done_list = cmd; |
| 5995 | } |
| 5996 | |
| 5997 | static inlineinline __attribute__((always_inline)) void ncr_flush_done_cmds(Scsi_Cmnd *lcmd) |
| 5998 | { |
| 5999 | Scsi_Cmnd *cmd; |
| 6000 | |
| 6001 | while (lcmd) { |
| 6002 | cmd = lcmd; |
| 6003 | lcmd = (Scsi_Cmnd *) cmd->host_scribble; |
| 6004 | cmd->scsi_done(cmd); |
| 6005 | } |
| 6006 | } |
| 6007 | |
| 6008 | /*========================================================== |
| 6009 | ** |
| 6010 | ** |
| 6011 | ** Prepare the next negotiation message for integrity check, |
| 6012 | ** if needed. |
| 6013 | ** |
| 6014 | ** Fill in the part of message buffer that contains the |
| 6015 | ** negotiation and the nego_status field of the CCB. |
| 6016 | ** Returns the size of the message in bytes. |
| 6017 | ** |
| 6018 | ** If tp->ppr_negotiation is 1 and a M_REJECT occurs, then |
| 6019 | ** we disable ppr_negotiation. If the first ppr_negotiation is |
| 6020 | ** successful, set this flag to 2. |
| 6021 | ** |
| 6022 | **========================================================== |
| 6023 | */ |
| 6024 | #ifdef SCSI_NCR_INTEGRITY_CHECKING |
| 6025 | static int ncr_ic_nego(ncb_p np, ccb_p cp, Scsi_Cmnd *cmd, u_charunsigned char *msgptr) |
| 6026 | { |
| 6027 | tcb_p tp = &np->target[cp->target]; |
| 6028 | int msglen = 0; |
| 6029 | int nego = 0; |
| 6030 | u_charunsigned char new_width, new_offset, new_period; |
| 6031 | u_charunsigned char no_increase; |
| 6032 | |
| 6033 | if (tp->ppr_negotiation == 1) /* PPR message successful */ |
| 6034 | tp->ppr_negotiation = 2; |
| 6035 | |
| 6036 | if (tp->inq_done) { |
| 6037 | |
| 6038 | if (!tp->ic_maximums_set) { |
| 6039 | tp->ic_maximums_set = 1; |
| 6040 | |
| 6041 | /* |
| 6042 | * Check against target, host and user limits |
| 6043 | */ |
| 6044 | if ( (tp->inq_byte7 & INQ7_WIDE16(0x20)) && |
| 6045 | np->maxwide && tp->usrwide) |
| 6046 | tp->ic_max_width = 1; |
| 6047 | else |
| 6048 | tp->ic_max_width = 0; |
| 6049 | |
| 6050 | |
| 6051 | if ((tp->inq_byte7 & INQ7_SYNC(0x10)) && tp->maxoffs) |
| 6052 | tp->ic_min_sync = (tp->minsync < np->minsync) ? |
| 6053 | np->minsync : tp->minsync; |
| 6054 | else |
| 6055 | tp->ic_min_sync = 255; |
| 6056 | |
| 6057 | tp->period = 1; |
| 6058 | tp->widedone = 1; |
| 6059 | |
| 6060 | /* |
| 6061 | * Enable PPR negotiation - only if Ultra3 support |
| 6062 | * is accessible. |
| 6063 | */ |
| 6064 | |
| 6065 | #if 0 |
| 6066 | if (tp->ic_max_width && (tp->ic_min_sync != 255 )) |
| 6067 | tp->ppr_negotiation = 1; |
| 6068 | #endif |
| 6069 | tp->ppr_negotiation = 0; |
| 6070 | if (np->features & FE_ULTRA3(1<<22)) { |
| 6071 | if (tp->ic_max_width && (tp->ic_min_sync == 0x09)) |
| 6072 | tp->ppr_negotiation = 1; |
| 6073 | } |
| 6074 | |
| 6075 | if (!tp->ppr_negotiation) |
| 6076 | cmd->ic_nego &= ~NS_PPR(4); |
| 6077 | } |
| 6078 | |
| 6079 | if (DEBUG_FLAGSncr_debug & DEBUG_IC(0x0800)) { |
| 6080 | printk("%s: cmd->ic_nego %d, 1st byte 0x%2X\n", |
| 6081 | ncr_name(np), cmd->ic_nego, cmd->cmnd[0]); |
| 6082 | } |
| 6083 | |
| 6084 | /* Previous command recorded a parity or an initiator |
| 6085 | * detected error condition. Force bus to narrow for this |
| 6086 | * target. Clear flag. Negotation on request sense. |
| 6087 | * Note: kernel forces 2 bus resets :o( but clears itself out. |
| 6088 | * Minor bug? in scsi_obsolete.c (ugly) |
| 6089 | */ |
| 6090 | if (np->check_integ_par) { |
| 6091 | printk("%s: Parity Error. Target set to narrow.\n", |
| 6092 | ncr_name(np)); |
| 6093 | tp->ic_max_width = 0; |
| 6094 | tp->widedone = tp->period = 0; |
| 6095 | } |
| 6096 | |
| 6097 | /* Initializing: |
| 6098 | * If ic_nego == NS_PPR, we are in the initial test for |
| 6099 | * PPR messaging support. If driver flag is clear, then |
| 6100 | * either we don't support PPR nego (narrow or async device) |
| 6101 | * or this is the second TUR and we have had a M. REJECT |
| 6102 | * or unexpected disconnect on the first PPR negotiation. |
| 6103 | * Do not negotiate, reset nego flags (in case a reset has |
| 6104 | * occurred), clear ic_nego and return. |
| 6105 | * General case: Kernel will clear flag on a fallback. |
| 6106 | * Do only SDTR or WDTR in the future. |
| 6107 | */ |
| 6108 | if (!tp->ppr_negotiation && (cmd->ic_nego == NS_PPR(4) )) { |
| 6109 | tp->ppr_negotiation = 0; |
| 6110 | cmd->ic_nego &= ~NS_PPR(4); |
| 6111 | tp->widedone = tp->period = 1; |
| 6112 | return msglen; |
| 6113 | } |
| 6114 | else if (( tp->ppr_negotiation && !(cmd->ic_nego & NS_PPR(4) )) || |
| 6115 | (!tp->ppr_negotiation && (cmd->ic_nego & NS_PPR(4) )) ) { |
| 6116 | tp->ppr_negotiation = 0; |
| 6117 | cmd->ic_nego &= ~NS_PPR(4); |
| 6118 | } |
| 6119 | |
| 6120 | /* |
| 6121 | * Always check the PPR nego. flag bit if ppr_negotiation |
| 6122 | * is set. If the ic_nego PPR bit is clear, |
| 6123 | * there must have been a fallback. Do only |
| 6124 | * WDTR / SDTR in the future. |
| 6125 | */ |
| 6126 | if ((tp->ppr_negotiation) && (!(cmd->ic_nego & NS_PPR(4)))) |
| 6127 | tp->ppr_negotiation = 0; |
| 6128 | |
| 6129 | /* In case of a bus reset, ncr_negotiate will reset |
| 6130 | * the flags tp->widedone and tp->period to 0, forcing |
| 6131 | * a new negotiation. Do WDTR then SDTR. If PPR, do both. |
| 6132 | * Do NOT increase the period. It is possible for the Scsi_Cmnd |
| 6133 | * flags to be set to increase the period when a bus reset |
| 6134 | * occurs - we don't want to change anything. |
| 6135 | */ |
| 6136 | |
| 6137 | no_increase = 0; |
| 6138 | |
| 6139 | if (tp->ppr_negotiation && (!tp->widedone) && (!tp->period) ) { |
| 6140 | cmd->ic_nego = NS_PPR(4); |
| 6141 | tp->widedone = tp->period = 1; |
| 6142 | no_increase = 1; |
| 6143 | } |
| 6144 | else if (!tp->widedone) { |
| 6145 | cmd->ic_nego = NS_WIDE(2); |
| 6146 | tp->widedone = 1; |
| 6147 | no_increase = 1; |
| 6148 | } |
| 6149 | else if (!tp->period) { |
| 6150 | cmd->ic_nego = NS_SYNC(1); |
| 6151 | tp->period = 1; |
| 6152 | no_increase = 1; |
| 6153 | } |
| 6154 | |
| 6155 | new_width = cmd->ic_nego_width & tp->ic_max_width; |
| 6156 | |
| 6157 | switch (cmd->ic_nego_sync) { |
| 6158 | case 2: /* increase the period */ |
| 6159 | if (!no_increase) { |
| 6160 | if (tp->ic_min_sync <= 0x09) |
| 6161 | tp->ic_min_sync = 0x0A; |
| 6162 | else if (tp->ic_min_sync <= 0x0A) |
| 6163 | tp->ic_min_sync = 0x0C; |
| 6164 | else if (tp->ic_min_sync <= 0x0C) |
| 6165 | tp->ic_min_sync = 0x19; |
| 6166 | else if (tp->ic_min_sync <= 0x19) |
| 6167 | tp->ic_min_sync *= 2; |
| 6168 | else { |
| 6169 | tp->ic_min_sync = 255; |
| 6170 | cmd->ic_nego_sync = 0; |
| 6171 | tp->maxoffs = 0; |
| 6172 | } |
| 6173 | } |
| 6174 | new_period = tp->maxoffs?tp->ic_min_sync:0; |
| 6175 | new_offset = tp->maxoffs; |
| 6176 | break; |
| 6177 | |
| 6178 | case 1: /* nego. to maximum */ |
| 6179 | new_period = tp->maxoffs?tp->ic_min_sync:0; |
| 6180 | new_offset = tp->maxoffs; |
| 6181 | break; |
| 6182 | |
| 6183 | case 0: /* nego to async */ |
| 6184 | default: |
| 6185 | new_period = 0; |
| 6186 | new_offset = 0; |
| 6187 | break; |
| 6188 | }; |
| 6189 | |
| 6190 | |
| 6191 | nego = NS_NOCHANGE(0); |
| 6192 | if (tp->ppr_negotiation) { |
| 6193 | u_charunsigned char options_byte = 0; |
| 6194 | |
| 6195 | /* |
| 6196 | ** Must make sure data is consistent. |
| 6197 | ** If period is 9 and sync, must be wide and DT bit set. |
| 6198 | ** else period must be larger. If the width is 0, |
| 6199 | ** reset bus to wide but increase the period to 0x0A. |
| 6200 | ** Note: The strange else clause is due to the integrity check. |
| 6201 | ** If fails at 0x09, wide, the I.C. code will redo at the same |
| 6202 | ** speed but a narrow bus. The driver must take care of slowing |
| 6203 | ** the bus speed down. |
| 6204 | ** |
| 6205 | ** The maximum offset in ST mode is 31, in DT mode 62 (1010/1010_66 only) |
| 6206 | */ |
| 6207 | if ( (new_period==0x09) && new_offset) { |
| 6208 | if (new_width) |
| 6209 | options_byte = 0x02; |
| 6210 | else { |
| 6211 | tp->ic_min_sync = 0x0A; |
| 6212 | new_period = 0x0A; |
| 6213 | cmd->ic_nego_width = 1; |
| 6214 | new_width = 1; |
| 6215 | new_offset &= 0x1f; |
| 6216 | } |
| 6217 | } |
| 6218 | else if (new_period > 0x09) |
| 6219 | new_offset &= 0x1f; |
| 6220 | |
| 6221 | nego = NS_PPR(4); |
| 6222 | |
| 6223 | msgptr[msglen++] = M_EXTENDED(0x01); |
| 6224 | msgptr[msglen++] = 6; |
| 6225 | msgptr[msglen++] = M_X_PPR_REQ(0x04); |
| 6226 | msgptr[msglen++] = new_period; |
| 6227 | msgptr[msglen++] = 0; |
| 6228 | msgptr[msglen++] = new_offset; |
| 6229 | msgptr[msglen++] = new_width; |
| 6230 | msgptr[msglen++] = options_byte; |
| 6231 | |
| 6232 | } |
| 6233 | else { |
| 6234 | switch (cmd->ic_nego & ~NS_PPR(4)) { |
| 6235 | case NS_WIDE(2): |
| 6236 | /* |
| 6237 | ** WDTR negotiation on if device supports |
| 6238 | ** wide or if wide device forced narrow |
| 6239 | ** due to a parity error. |
| 6240 | */ |
| 6241 | |
| 6242 | cmd->ic_nego_width &= tp->ic_max_width; |
| 6243 | |
| 6244 | if (tp->ic_max_width | np->check_integ_par) { |
| 6245 | nego = NS_WIDE(2); |
| 6246 | msgptr[msglen++] = M_EXTENDED(0x01); |
| 6247 | msgptr[msglen++] = 2; |
| 6248 | msgptr[msglen++] = M_X_WIDE_REQ(0x03); |
| 6249 | msgptr[msglen++] = new_width; |
| 6250 | } |
| 6251 | break; |
| 6252 | |
| 6253 | case NS_SYNC(1): |
| 6254 | /* |
| 6255 | ** negotiate synchronous transfers |
| 6256 | ** Target must support sync transfers. |
| 6257 | ** Min. period = 0x0A, maximum offset of 31=0x1f. |
| 6258 | */ |
| 6259 | |
| 6260 | if (tp->inq_byte7 & INQ7_SYNC(0x10)) { |
| 6261 | |
| 6262 | if (new_offset && (new_period < 0x0A)) { |
| 6263 | tp->ic_min_sync = 0x0A; |
| 6264 | new_period = 0x0A; |
| 6265 | } |
| 6266 | nego = NS_SYNC(1); |
| 6267 | msgptr[msglen++] = M_EXTENDED(0x01); |
| 6268 | msgptr[msglen++] = 3; |
| 6269 | msgptr[msglen++] = M_X_SYNC_REQ(0x01); |
| 6270 | msgptr[msglen++] = new_period; |
| 6271 | msgptr[msglen++] = new_offset & 0x1f; |
| 6272 | } |
| 6273 | else |
| 6274 | cmd->ic_nego_sync = 0; |
| 6275 | break; |
| 6276 | |
| 6277 | case NS_NOCHANGE(0): |
| 6278 | break; |
| 6279 | } |
| 6280 | } |
| 6281 | |
| 6282 | }; |
| 6283 | |
| 6284 | cp->nego_status = nego; |
| 6285 | np->check_integ_par = 0; |
| 6286 | |
| 6287 | if (nego) { |
| 6288 | tp->nego_cp = cp; |
| 6289 | if (DEBUG_FLAGSncr_debug & DEBUG_NEGO(0x0200)) { |
| 6290 | ncr_print_msg(cp, nego == NS_WIDE(2) ? |
| 6291 | "wide/narrow msgout": |
| 6292 | (nego == NS_SYNC(1) ? "sync/async msgout" : "ppr msgout"), |
| 6293 | msgptr); |
| 6294 | }; |
| 6295 | }; |
| 6296 | |
| 6297 | return msglen; |
| 6298 | } |
| 6299 | #endif /* SCSI_NCR_INTEGRITY_CHECKING */ |
| 6300 | |
| 6301 | /*========================================================== |
| 6302 | ** |
| 6303 | ** |
| 6304 | ** Prepare the next negotiation message if needed. |
| 6305 | ** |
| 6306 | ** Fill in the part of message buffer that contains the |
| 6307 | ** negotiation and the nego_status field of the CCB. |
| 6308 | ** Returns the size of the message in bytes. |
| 6309 | ** |
| 6310 | ** |
| 6311 | **========================================================== |
| 6312 | */ |
| 6313 | |
| 6314 | |
| 6315 | static int ncr_prepare_nego(ncb_p np, ccb_p cp, u_charunsigned char *msgptr) |
| 6316 | { |
| 6317 | tcb_p tp = &np->target[cp->target]; |
| 6318 | int msglen = 0; |
| 6319 | int nego = 0; |
| 6320 | u_charunsigned char width, offset, factor, last_byte; |
| 6321 | |
| 6322 | if (!np->check_integrity) { |
| 6323 | /* If integrity checking disabled, enable PPR messaging |
| 6324 | * if device supports wide, sync and ultra 3 |
| 6325 | */ |
| 6326 | if (tp->ppr_negotiation == 1) /* PPR message successful */ |
| 6327 | tp->ppr_negotiation = 2; |
| 6328 | |
| 6329 | if ((tp->inq_done) && (!tp->ic_maximums_set)) { |
| 6330 | tp->ic_maximums_set = 1; |
| 6331 | |
| 6332 | /* |
| 6333 | * Issue PPR only if board is capable |
| 6334 | * and set-up for Ultra3 transfers. |
| 6335 | */ |
| 6336 | tp->ppr_negotiation = 0; |
| 6337 | if ( (np->features & FE_ULTRA3(1<<22)) && |
| 6338 | (tp->usrwide) && (tp->maxoffs) && |
| 6339 | (tp->minsync == 0x09) ) |
| 6340 | tp->ppr_negotiation = 1; |
| 6341 | } |
| 6342 | } |
| 6343 | |
| 6344 | if (tp->inq_done) { |
| 6345 | /* |
| 6346 | * Get the current width, offset and period |
| 6347 | */ |
| 6348 | ncr_get_xfer_info( np, tp, &factor, |
| 6349 | &offset, &width); |
| 6350 | |
| 6351 | /* |
| 6352 | ** negotiate wide transfers ? |
| 6353 | */ |
| 6354 | |
| 6355 | if (!tp->widedone) { |
| 6356 | if (tp->inq_byte7 & INQ7_WIDE16(0x20)) { |
| 6357 | if (tp->ppr_negotiation) |
| 6358 | nego = NS_PPR(4); |
| 6359 | else |
| 6360 | nego = NS_WIDE(2); |
| 6361 | |
| 6362 | width = tp->usrwide; |
| 6363 | #ifdef SCSI_NCR_INTEGRITY_CHECKING |
| 6364 | if (tp->ic_done) |
| 6365 | width &= tp->ic_max_width; |
| 6366 | #endif |
| 6367 | } else |
| 6368 | tp->widedone=1; |
| 6369 | |
| 6370 | }; |
| 6371 | |
| 6372 | /* |
| 6373 | ** negotiate synchronous transfers? |
| 6374 | */ |
| 6375 | |
| 6376 | if ((nego != NS_WIDE(2)) && !tp->period) { |
| 6377 | if (tp->inq_byte7 & INQ7_SYNC(0x10)) { |
| 6378 | if (tp->ppr_negotiation) |
| 6379 | nego = NS_PPR(4); |
| 6380 | else |
| 6381 | nego = NS_SYNC(1); |
| 6382 | |
| 6383 | /* Check for async flag */ |
| 6384 | if (tp->maxoffs == 0) { |
| 6385 | offset = 0; |
| 6386 | factor = 0; |
| 6387 | } |
| 6388 | else { |
| 6389 | offset = tp->maxoffs; |
| 6390 | factor = tp->minsync; |
| 6391 | #ifdef SCSI_NCR_INTEGRITY_CHECKING |
| 6392 | if ((tp->ic_done) && |
| 6393 | (factor < tp->ic_min_sync)) |
| 6394 | factor = tp->ic_min_sync; |
| 6395 | #endif |
| 6396 | } |
| 6397 | |
| 6398 | } else { |
| 6399 | offset = 0; |
| 6400 | factor = 0; |
| 6401 | tp->period =0xffff; |
| 6402 | PRINT_TARGET(np, cp->target); |
| 6403 | printk ("target did not report SYNC.\n"); |
| 6404 | }; |
| 6405 | }; |
| 6406 | }; |
| 6407 | |
| 6408 | switch (nego) { |
| 6409 | case NS_PPR(4): |
| 6410 | /* |
| 6411 | ** Must make sure data is consistent. |
| 6412 | ** If period is 9 and sync, must be wide and DT bit set |
| 6413 | ** else period must be larger. |
| 6414 | ** Maximum offset is 31=0x1f is ST mode, 62 if DT mode |
| 6415 | */ |
| 6416 | last_byte = 0; |
| 6417 | if ( (factor==9) && offset) { |
| 6418 | if (!width) { |
| 6419 | factor = 0x0A; |
| 6420 | offset &= 0x1f; |
| 6421 | } |
| 6422 | else |
| 6423 | last_byte = 0x02; |
| 6424 | } |
| 6425 | else if (factor > 0x09) |
| 6426 | offset &= 0x1f; |
| 6427 | |
| 6428 | msgptr[msglen++] = M_EXTENDED(0x01); |
| 6429 | msgptr[msglen++] = 6; |
| 6430 | msgptr[msglen++] = M_X_PPR_REQ(0x04); |
| 6431 | msgptr[msglen++] = factor; |
| 6432 | msgptr[msglen++] = 0; |
| 6433 | msgptr[msglen++] = offset; |
| 6434 | msgptr[msglen++] = width; |
| 6435 | msgptr[msglen++] = last_byte; |
| 6436 | break; |
| 6437 | case NS_SYNC(1): |
| 6438 | /* |
| 6439 | ** Never negotiate faster than Ultra 2 (25ns periods) |
| 6440 | */ |
| 6441 | if (offset && (factor < 0x0A)) { |
| 6442 | factor = 0x0A; |
| 6443 | tp->minsync = 0x0A; |
| 6444 | } |
| 6445 | |
| 6446 | msgptr[msglen++] = M_EXTENDED(0x01); |
| 6447 | msgptr[msglen++] = 3; |
| 6448 | msgptr[msglen++] = M_X_SYNC_REQ(0x01); |
| 6449 | msgptr[msglen++] = factor; |
| 6450 | msgptr[msglen++] = offset & 0x1f; |
| 6451 | break; |
| 6452 | case NS_WIDE(2): |
| 6453 | msgptr[msglen++] = M_EXTENDED(0x01); |
| 6454 | msgptr[msglen++] = 2; |
| 6455 | msgptr[msglen++] = M_X_WIDE_REQ(0x03); |
| 6456 | msgptr[msglen++] = width; |
| 6457 | break; |
| 6458 | }; |
| 6459 | |
| 6460 | cp->nego_status = nego; |
| 6461 | |
| 6462 | if (nego) { |
| 6463 | tp->nego_cp = cp; |
| 6464 | if (DEBUG_FLAGSncr_debug & DEBUG_NEGO(0x0200)) { |
| 6465 | ncr_print_msg(cp, nego == NS_WIDE(2) ? |
| 6466 | "wide msgout": |
| 6467 | (nego == NS_SYNC(1) ? "sync msgout" : "ppr msgout"), |
| 6468 | msgptr); |
| 6469 | }; |
| 6470 | }; |
| 6471 | |
| 6472 | return msglen; |
| 6473 | } |
| 6474 | |
| 6475 | /*========================================================== |
| 6476 | ** |
| 6477 | ** |
| 6478 | ** Start execution of a SCSI command. |
| 6479 | ** This is called from the generic SCSI driver. |
| 6480 | ** |
| 6481 | ** |
| 6482 | **========================================================== |
| 6483 | */ |
| 6484 | static int ncr_queue_command (ncb_p np, Scsi_Cmnd *cmd) |
| 6485 | { |
| 6486 | /* Scsi_Device *device = cmd->device; */ |
| 6487 | tcb_p tp = &np->target[cmd->target]; |
| 6488 | lcb_p lp = ncr_lp(np, tp, cmd->lun)(!cmd->lun) ? (tp)->l0p : (tp)->lmp ? (tp)->lmp[( cmd->lun)] : 0; |
| 6489 | ccb_p cp; |
| 6490 | |
| 6491 | u_charunsigned char idmsg, *msgptr; |
| 6492 | u_intunsigned int msglen; |
| 6493 | int direction; |
| 6494 | u_int32 lastp, goalp; |
| 6495 | |
| 6496 | /*--------------------------------------------- |
| 6497 | ** |
| 6498 | ** Some shortcuts ... |
| 6499 | ** |
| 6500 | **--------------------------------------------- |
| 6501 | */ |
| 6502 | if ((cmd->target == np->myaddr ) || |
| 6503 | (cmd->target >= MAX_TARGET((16))) || |
| 6504 | (cmd->lun >= MAX_LUN64 )) { |
| 6505 | return(DID_BAD_TARGET0x04); |
| 6506 | } |
| 6507 | |
| 6508 | /*--------------------------------------------- |
| 6509 | ** |
| 6510 | ** Complete the 1st TEST UNIT READY command |
| 6511 | ** with error condition if the device is |
| 6512 | ** flagged NOSCAN, in order to speed up |
| 6513 | ** the boot. |
| 6514 | ** |
| 6515 | **--------------------------------------------- |
| 6516 | */ |
| 6517 | if (cmd->cmnd[0] == 0 && (tp->usrflag & UF_NOSCAN(0x04))) { |
| 6518 | tp->usrflag &= ~UF_NOSCAN(0x04); |
| 6519 | return DID_BAD_TARGET0x04; |
| 6520 | } |
| 6521 | |
| 6522 | if (DEBUG_FLAGSncr_debug & DEBUG_TINY(0x0080)) { |
| 6523 | PRINT_ADDR(cmd); |
| 6524 | printk ("CMD=%x ", cmd->cmnd[0]); |
| 6525 | } |
| 6526 | |
| 6527 | /*--------------------------------------------------- |
| 6528 | ** |
| 6529 | ** Assign a ccb / bind cmd. |
| 6530 | ** If resetting, shorten settle_time if necessary |
| 6531 | ** in order to avoid spurious timeouts. |
| 6532 | ** If resetting or no free ccb, |
| 6533 | ** insert cmd into the waiting list. |
| 6534 | ** |
| 6535 | **---------------------------------------------------- |
| 6536 | */ |
| 6537 | if (np->settle_time && cmd->timeout_per_command >= HZ100) { |
| 6538 | u_longunsigned long tlimit = ktime_get(cmd->timeout_per_command - HZ)(jiffies + (unsigned long) cmd->timeout_per_command - 100); |
| 6539 | if (ktime_dif(np->settle_time, tlimit)((long)(np->settle_time) - (long)(tlimit)) > 0) |
| 6540 | np->settle_time = tlimit; |
| 6541 | } |
| 6542 | |
| 6543 | if (np->settle_time || !(cp=ncr_get_ccb (np, cmd->target, cmd->lun))) { |
| 6544 | insert_into_waiting_list(np, cmd); |
| 6545 | return(DID_OK0x00); |
| 6546 | } |
| 6547 | cp->cmd = cmd; |
| 6548 | |
| 6549 | /*--------------------------------------------------- |
| 6550 | ** |
| 6551 | ** Enable tagged queue if asked by scsi ioctl |
| 6552 | ** |
| 6553 | **---------------------------------------------------- |
| 6554 | */ |
| 6555 | #if 0 /* This stuff was only usefull for linux-1.2.13 */ |
| 6556 | if (lp && !lp->numtags && cmd->device && cmd->device->tagged_queue) { |
| 6557 | lp->numtags = tp->usrtags; |
| 6558 | ncr_setup_tags (np, cp->target, cp->lun); |
| 6559 | } |
| 6560 | #endif |
| 6561 | |
| 6562 | /*---------------------------------------------------- |
| 6563 | ** |
| 6564 | ** Build the identify / tag / sdtr message |
| 6565 | ** |
| 6566 | **---------------------------------------------------- |
| 6567 | */ |
| 6568 | |
| 6569 | idmsg = M_IDENTIFY(0x80) | cp->lun; |
| 6570 | |
| 6571 | if (cp ->tag != NO_TAG(256) || (lp && !(tp->usrflag & UF_NODISC(0x02)))) |
| 6572 | idmsg |= 0x40; |
| 6573 | |
| 6574 | msgptr = cp->scsi_smsg; |
| 6575 | msglen = 0; |
| 6576 | msgptr[msglen++] = idmsg; |
| 6577 | |
| 6578 | if (cp->tag != NO_TAG(256)) { |
| 6579 | char order = np->order; |
| 6580 | |
| 6581 | /* |
| 6582 | ** Force ordered tag if necessary to avoid timeouts |
| 6583 | ** and to preserve interactivity. |
| 6584 | */ |
| 6585 | if (lp && ktime_exp(lp->tags_stime)((long)(jiffies) - (long)(lp->tags_stime) >= 0)) { |
| 6586 | lp->tags_si = !(lp->tags_si); |
| 6587 | if (lp->tags_sum[lp->tags_si]) { |
| 6588 | order = M_ORDERED_TAG(0x22); |
| 6589 | if ((DEBUG_FLAGSncr_debug & DEBUG_TAGS(0x0400))||bootverbose(np->verbose)>0){ |
| 6590 | PRINT_ADDR(cmd); |
| 6591 | printk("ordered tag forced.\n"); |
| 6592 | } |
| 6593 | } |
| 6594 | lp->tags_stime = ktime_get(3*HZ)(jiffies + (unsigned long) 3*100); |
| 6595 | } |
| 6596 | |
| 6597 | if (order == 0) { |
| 6598 | /* |
| 6599 | ** Ordered write ops, unordered read ops. |
| 6600 | */ |
| 6601 | switch (cmd->cmnd[0]) { |
| 6602 | case 0x08: /* READ_SMALL (6) */ |
| 6603 | case 0x28: /* READ_BIG (10) */ |
| 6604 | case 0xa8: /* READ_HUGE (12) */ |
| 6605 | order = M_SIMPLE_TAG(0x20); |
| 6606 | break; |
| 6607 | default: |
| 6608 | order = M_ORDERED_TAG(0x22); |
| 6609 | } |
| 6610 | } |
| 6611 | msgptr[msglen++] = order; |
| 6612 | /* |
| 6613 | ** For less than 128 tags, actual tags are numbered |
| 6614 | ** 1,3,5,..2*MAXTAGS+1,since we may have to deal |
| 6615 | ** with devices that have problems with #TAG 0 or too |
| 6616 | ** great #TAG numbers. For more tags (up to 256), |
| 6617 | ** we use directly our tag number. |
| 6618 | */ |
| 6619 | #if MAX_TASKS(256/4) > (512/4) |
| 6620 | msgptr[msglen++] = cp->tag; |
| 6621 | #else |
| 6622 | msgptr[msglen++] = (cp->tag << 1) + 1; |
| 6623 | #endif |
| 6624 | } |
| 6625 | |
| 6626 | cp->host_flagsphys.header.status[3] = 0; |
| 6627 | |
| 6628 | /*---------------------------------------------------- |
| 6629 | ** |
| 6630 | ** Build the data descriptors |
| 6631 | ** |
| 6632 | **---------------------------------------------------- |
| 6633 | */ |
| 6634 | |
| 6635 | direction = scsi_data_direction(cmd); |
| 6636 | if (direction != SCSI_DATA_NONE3) { |
| 6637 | cp->segments = np->scatter (np, cp, cp->cmd); |
| 6638 | if (cp->segments < 0) { |
| 6639 | ncr_free_ccb(np, cp); |
| 6640 | return(DID_ERROR0x07); |
| 6641 | } |
| 6642 | } |
| 6643 | else { |
| 6644 | cp->data_len = 0; |
| 6645 | cp->segments = 0; |
| 6646 | } |
| 6647 | |
| 6648 | /*--------------------------------------------------- |
| 6649 | ** |
| 6650 | ** negotiation required? |
| 6651 | ** |
| 6652 | ** (nego_status is filled by ncr_prepare_nego()) |
| 6653 | ** |
| 6654 | **--------------------------------------------------- |
| 6655 | */ |
| 6656 | |
| 6657 | cp->nego_status = 0; |
| 6658 | |
| 6659 | #ifdef SCSI_NCR_INTEGRITY_CHECKING |
| 6660 | if ((np->check_integrity && tp->ic_done) || !np->check_integrity) { |
| 6661 | if ((!tp->widedone || !tp->period) && !tp->nego_cp && lp) { |
| 6662 | msglen += ncr_prepare_nego (np, cp, msgptr + msglen); |
| 6663 | } |
| 6664 | } |
| 6665 | else if (np->check_integrity && (cmd->ic_in_progress)) { |
| 6666 | msglen += ncr_ic_nego (np, cp, cmd, msgptr + msglen); |
| 6667 | } |
| 6668 | else if (np->check_integrity && cmd->ic_complete) { |
| 6669 | u_longunsigned long current_period; |
| 6670 | u_charunsigned char current_offset, current_width, current_factor; |
| 6671 | |
| 6672 | ncr_get_xfer_info (np, tp, ¤t_factor, |
| 6673 | ¤t_offset, ¤t_width); |
| 6674 | |
| 6675 | tp->ic_max_width = current_width; |
| 6676 | tp->ic_min_sync = current_factor; |
| 6677 | |
| 6678 | if (current_factor == 9) current_period = 125; |
| 6679 | else if (current_factor == 10) current_period = 250; |
| 6680 | else if (current_factor == 11) current_period = 303; |
| 6681 | else if (current_factor == 12) current_period = 500; |
| 6682 | else current_period = current_factor * 40; |
| 6683 | |
| 6684 | /* |
| 6685 | * Negotiation for this target is complete. Update flags. |
| 6686 | */ |
| 6687 | tp->period = current_period; |
| 6688 | tp->widedone = 1; |
| 6689 | tp->ic_done = 1; |
| 6690 | |
| 6691 | printk("%s: Integrity Check Complete: \n", ncr_name(np)); |
| 6692 | |
| 6693 | printk("%s: %s %s SCSI", ncr_name(np), |
| 6694 | current_offset?"SYNC":"ASYNC", |
| 6695 | tp->ic_max_width?"WIDE":"NARROW"); |
| 6696 | if (current_offset) { |
| 6697 | u_longunsigned long mbs = 10000 * (tp->ic_max_width + 1); |
| 6698 | |
| 6699 | printk(" %d.%d MB/s", |
| 6700 | (int) (mbs / current_period), (int) (mbs % current_period)); |
| 6701 | |
| 6702 | printk(" (%d ns, %d offset)\n", |
| 6703 | (int) current_period/10, current_offset); |
| 6704 | } |
| 6705 | else |
| 6706 | printk(" %d MB/s. \n ", (tp->ic_max_width+1)*5); |
| 6707 | } |
| 6708 | #else |
| 6709 | if ((!tp->widedone || !tp->period) && !tp->nego_cp && lp) { |
| 6710 | msglen += ncr_prepare_nego (np, cp, msgptr + msglen); |
| 6711 | } |
| 6712 | #endif /* SCSI_NCR_INTEGRITY_CHECKING */ |
| 6713 | |
| 6714 | |
| 6715 | /*---------------------------------------------------- |
| 6716 | ** |
| 6717 | ** Determine xfer direction. |
| 6718 | ** |
| 6719 | **---------------------------------------------------- |
| 6720 | */ |
| 6721 | if (!cp->data_len) |
| 6722 | direction = SCSI_DATA_NONE3; |
| 6723 | |
| 6724 | /* |
| 6725 | ** If data direction is UNKNOWN, speculate DATA_READ |
| 6726 | ** but prepare alternate pointers for WRITE in case |
| 6727 | ** of our speculation will be just wrong. |
| 6728 | ** SCRIPTS will swap values if needed. |
| 6729 | */ |
| 6730 | switch(direction) { |
| 6731 | case SCSI_DATA_UNKNOWN0: |
| 6732 | case SCSI_DATA_WRITE1: |
| 6733 | goalp = NCB_SCRIPT_PHYS (np, data_out2)(np->p_script + ((size_t) (&((struct script *)0)->data_out2 ))) + 8; |
| 6734 | lastp = goalp - 8 - (cp->segments * (SCR_SG_SIZE(2)*4)); |
| 6735 | if (direction != SCSI_DATA_UNKNOWN0) |
| 6736 | break; |
| 6737 | cp->phys.header.wgoalp = cpu_to_scr(goalp)(goalp); |
| 6738 | cp->phys.header.wlastp = cpu_to_scr(lastp)(lastp); |
| 6739 | /* fall through */ |
| 6740 | case SCSI_DATA_READ2: |
| 6741 | cp->host_flagsphys.header.status[3] |= HF_DATA_IN(1u<<5); |
| 6742 | goalp = NCB_SCRIPT_PHYS (np, data_in2)(np->p_script + ((size_t) (&((struct script *)0)->data_in2 ))) + 8; |
| 6743 | lastp = goalp - 8 - (cp->segments * (SCR_SG_SIZE(2)*4)); |
| 6744 | break; |
| 6745 | default: |
| 6746 | case SCSI_DATA_NONE3: |
| 6747 | lastp = goalp = NCB_SCRIPTH_PHYS (np, no_data)(np->p_scripth + ((size_t) (&((struct scripth *)0)-> no_data))); |
| 6748 | break; |
| 6749 | } |
| 6750 | |
| 6751 | /* |
| 6752 | ** Set all pointers values needed by SCRIPTS. |
| 6753 | ** If direction is unknown, start at data_io. |
| 6754 | */ |
| 6755 | cp->phys.header.lastp = cpu_to_scr(lastp)(lastp); |
| 6756 | cp->phys.header.goalp = cpu_to_scr(goalp)(goalp); |
| 6757 | |
| 6758 | if (direction == SCSI_DATA_UNKNOWN0) |
| 6759 | cp->phys.header.savep = |
| 6760 | cpu_to_scr(NCB_SCRIPTH_PHYS (np, data_io))((np->p_scripth + ((size_t) (&((struct scripth *)0)-> data_io)))); |
| 6761 | else |
| 6762 | cp->phys.header.savep= cpu_to_scr(lastp)(lastp); |
| 6763 | |
| 6764 | /* |
| 6765 | ** Save the initial data pointer in order to be able |
| 6766 | ** to redo the command. |
| 6767 | ** We also have to save the initial lastp, since it |
| 6768 | ** will be changed to DATA_IO if we don't know the data |
| 6769 | ** direction and the device completes the command with |
| 6770 | ** QUEUE FULL status (without entering the data phase). |
| 6771 | */ |
| 6772 | cp->startp = cp->phys.header.savep; |
| 6773 | cp->lastp0 = cp->phys.header.lastp; |
| 6774 | |
| 6775 | /*---------------------------------------------------- |
| 6776 | ** |
| 6777 | ** fill in ccb |
| 6778 | ** |
| 6779 | **---------------------------------------------------- |
| 6780 | ** |
| 6781 | ** |
| 6782 | ** physical -> virtual backlink |
| 6783 | ** Generic SCSI command |
| 6784 | */ |
| 6785 | |
| 6786 | /* |
| 6787 | ** Startqueue |
| 6788 | */ |
| 6789 | cp->phys.header.go.start = cpu_to_scr(NCB_SCRIPT_PHYS (np,select))((np->p_script + ((size_t) (&((struct script *)0)-> select)))); |
| 6790 | cp->phys.header.go.restart = cpu_to_scr(NCB_SCRIPT_PHYS (np,resel_dsa))((np->p_script + ((size_t) (&((struct script *)0)-> resel_dsa)))); |
| 6791 | /* |
| 6792 | ** select |
| 6793 | */ |
| 6794 | cp->phys.select.sel_id = cp->target; |
| 6795 | cp->phys.select.sel_scntl3 = tp->wval; |
| 6796 | cp->phys.select.sel_sxfer = tp->sval; |
| 6797 | cp->phys.select.sel_scntl4 = tp->uval; |
| 6798 | /* |
| 6799 | ** message |
| 6800 | */ |
| 6801 | cp->phys.smsg.addr = cpu_to_scr(CCB_PHYS (cp, scsi_smsg))((cp->p_ccb + ((size_t) (&((struct ccb *)0)->scsi_smsg )))); |
| 6802 | cp->phys.smsg.size = cpu_to_scr(msglen)(msglen); |
| 6803 | |
| 6804 | /* |
| 6805 | ** command |
| 6806 | */ |
| 6807 | memcpy(cp->cdb_buf, cmd->cmnd, MIN(cmd->cmd_len, sizeof(cp->cdb_buf)))(__builtin_constant_p((((cmd->cmd_len) < (sizeof(cp-> cdb_buf))) ? (cmd->cmd_len) : (sizeof(cp->cdb_buf)))) ? __constant_memcpy((cp->cdb_buf),(cmd->cmnd),((((cmd-> cmd_len) < (sizeof(cp->cdb_buf))) ? (cmd->cmd_len) : (sizeof(cp->cdb_buf))))) : __memcpy((cp->cdb_buf),(cmd ->cmnd),((((cmd->cmd_len) < (sizeof(cp->cdb_buf)) ) ? (cmd->cmd_len) : (sizeof(cp->cdb_buf)))))); |
| 6808 | cp->phys.cmd.addr = cpu_to_scr(CCB_PHYS (cp, cdb_buf[0]))((cp->p_ccb + ((size_t) (&((struct ccb *)0)->cdb_buf [0])))); |
| 6809 | cp->phys.cmd.size = cpu_to_scr(cmd->cmd_len)(cmd->cmd_len); |
| 6810 | |
| 6811 | /* |
| 6812 | ** status |
| 6813 | */ |
| 6814 | cp->actualquirksphys.header.status[0] = tp->quirks; |
| 6815 | cp->host_statusphys.header.status[1] = cp->nego_status ? HS_NEGOTIATE(2) : HS_BUSY(1); |
| 6816 | cp->scsi_statusphys.header.status[2] = S_ILLEGAL(0xff); |
| 6817 | cp->xerr_status = 0; |
| 6818 | cp->extra_bytes = 0; |
| 6819 | |
| 6820 | /* |
| 6821 | ** extreme data pointer. |
| 6822 | ** shall be positive, so -1 is lower than lowest.:) |
| 6823 | */ |
| 6824 | cp->ext_sg = -1; |
| 6825 | cp->ext_ofs = 0; |
| 6826 | |
| 6827 | /*---------------------------------------------------- |
| 6828 | ** |
| 6829 | ** Critical region: start this job. |
| 6830 | ** |
| 6831 | **---------------------------------------------------- |
| 6832 | */ |
| 6833 | |
| 6834 | /* |
| 6835 | ** activate this job. |
| 6836 | */ |
| 6837 | |
| 6838 | /* |
| 6839 | ** insert next CCBs into start queue. |
| 6840 | ** 2 max at a time is enough to flush the CCB wait queue. |
| 6841 | */ |
| 6842 | if (lp) |
| 6843 | ncr_start_next_ccb(np, lp, 2); |
| 6844 | else |
| 6845 | ncr_put_start_queue(np, cp); |
| 6846 | |
| 6847 | /* |
| 6848 | ** Command is successfully queued. |
| 6849 | */ |
| 6850 | |
| 6851 | return(DID_OK0x00); |
| 6852 | } |
| 6853 | |
| 6854 | |
| 6855 | /*========================================================== |
| 6856 | ** |
| 6857 | ** |
| 6858 | ** Insert a CCB into the start queue and wake up the |
| 6859 | ** SCRIPTS processor. |
| 6860 | ** |
| 6861 | ** |
| 6862 | **========================================================== |
| 6863 | */ |
| 6864 | |
| 6865 | static void ncr_start_next_ccb(ncb_p np, lcb_p lp, int maxn) |
| 6866 | { |
| 6867 | XPT_QUEHEAD *qp; |
| 6868 | ccb_p cp; |
| 6869 | |
| 6870 | while (maxn-- && lp->queuedccbs < lp->queuedepth) { |
| 6871 | qp = xpt_remque_head(&lp->wait_ccbq); |
| 6872 | if (!qp) |
| 6873 | break; |
| 6874 | ++lp->queuedccbs; |
| 6875 | cp = xpt_que_entry(qp, struct ccb, link_ccbq)((struct ccb *)((char *)(qp)-(unsigned long)(&((struct ccb *)0)->link_ccbq))); |
| 6876 | xpt_insque_tail(qp, &lp->busy_ccbq)__xpt_que_add(qp, (&lp->busy_ccbq)->blink, &lp-> busy_ccbq); |
| 6877 | lp->tasktbl[cp->tag == NO_TAG(256) ? 0 : cp->tag] = |
| 6878 | cpu_to_scr(cp->p_ccb)(cp->p_ccb); |
| 6879 | ncr_put_start_queue(np, cp); |
| 6880 | } |
| 6881 | } |
| 6882 | |
| 6883 | static void ncr_put_start_queue(ncb_p np, ccb_p cp) |
| 6884 | { |
| 6885 | u_shortunsigned short qidx; |
| 6886 | |
| 6887 | #ifdef SCSI_NCR_IARB_SUPPORT |
| 6888 | /* |
| 6889 | ** If the previously queued CCB is not yet done, |
| 6890 | ** set the IARB hint. The SCRIPTS will go with IARB |
| 6891 | ** for this job when starting the previous one. |
| 6892 | ** We leave devices a chance to win arbitration by |
| 6893 | ** not using more than 'iarb_max' consecutive |
| 6894 | ** immediate arbitrations. |
| 6895 | */ |
| 6896 | if (np->last_cp && np->iarb_count < np->iarb_max) { |
| 6897 | np->last_cp->host_flagsphys.header.status[3] |= HF_HINT_IARB; |
| 6898 | ++np->iarb_count; |
| 6899 | } |
| 6900 | else |
| 6901 | np->iarb_count = 0; |
| 6902 | np->last_cp = cp; |
| 6903 | #endif |
| 6904 | |
| 6905 | /* |
| 6906 | ** insert into start queue. |
| 6907 | */ |
| 6908 | qidx = np->squeueput + 2; |
| 6909 | if (qidx >= MAX_START((8*(8) + 2*(16)) + 4)*2) qidx = 0; |
| 6910 | |
| 6911 | np->squeue [qidx] = cpu_to_scr(np->p_idletask)(np->p_idletask); |
| 6912 | MEMORY_BARRIER()do { ; } while(0); |
| 6913 | np->squeue [np->squeueput] = cpu_to_scr(cp->p_ccb)(cp->p_ccb); |
| 6914 | |
| 6915 | np->squeueput = qidx; |
| 6916 | cp->queued = 1; |
| 6917 | |
| 6918 | if (DEBUG_FLAGSncr_debug & DEBUG_QUEUE(0x0008)) |
| 6919 | printk ("%s: queuepos=%d.\n", ncr_name (np), np->squeueput); |
| 6920 | |
| 6921 | /* |
| 6922 | ** Script processor may be waiting for reselect. |
| 6923 | ** Wake it up. |
| 6924 | */ |
| 6925 | MEMORY_BARRIER()do { ; } while(0); |
| 6926 | OUTB (nc_istat, SIGP|np->istat_sem)((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_istat))))) = (((0x20|np-> istat_sem)))); |
| 6927 | } |
| 6928 | |
| 6929 | |
| 6930 | /*========================================================== |
| 6931 | ** |
| 6932 | ** Soft reset the chip. |
| 6933 | ** |
| 6934 | ** Some 896 and 876 chip revisions may hang-up if we set |
| 6935 | ** the SRST (soft reset) bit at the wrong time when SCRIPTS |
| 6936 | ** are running. |
| 6937 | ** So, we need to abort the current operation prior to |
| 6938 | ** soft resetting the chip. |
| 6939 | ** |
| 6940 | **========================================================== |
| 6941 | */ |
| 6942 | |
| 6943 | static void ncr_chip_reset (ncb_p np) |
| 6944 | { |
| 6945 | OUTB (nc_istat, SRST)((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_istat))))) = (((0x40)))); |
| 6946 | UDELAY (10); |
| 6947 | OUTB (nc_istat, 0)((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_istat))))) = (((0)))); |
| 6948 | } |
| 6949 | |
| 6950 | static void ncr_soft_reset(ncb_p np) |
| 6951 | { |
| 6952 | u_charunsigned char istat; |
| 6953 | int i; |
| 6954 | |
| 6955 | OUTB (nc_istat, CABRT)((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_istat))))) = (((0x80)))); |
| 6956 | for (i = 1000000 ; i ; --i) { |
| 6957 | istat = INB (nc_istat)(*(volatile unsigned char *) ((char *)np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_istat))))); |
| 6958 | if (istat & SIP0x02) { |
| 6959 | INW (nc_sist)(*(volatile unsigned short *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_sist))))); |
| 6960 | continue; |
| 6961 | } |
| 6962 | if (istat & DIP0x01) { |
| 6963 | OUTB (nc_istat, 0)((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_istat))))) = (((0)))); |
| 6964 | INB (nc_dstat)(*(volatile unsigned char *) ((char *)np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_dstat))))); |
| 6965 | break; |
| 6966 | } |
| 6967 | } |
| 6968 | if (!i) |
| 6969 | printk("%s: unable to abort current chip operation.\n", |
| 6970 | ncr_name(np)); |
| 6971 | ncr_chip_reset(np); |
| 6972 | } |
| 6973 | |
| 6974 | /*========================================================== |
| 6975 | ** |
| 6976 | ** |
| 6977 | ** Start reset process. |
| 6978 | ** The interrupt handler will reinitialize the chip. |
| 6979 | ** The timeout handler will wait for settle_time before |
| 6980 | ** clearing it and so resuming command processing. |
| 6981 | ** |
| 6982 | ** |
| 6983 | **========================================================== |
| 6984 | */ |
| 6985 | static void ncr_start_reset(ncb_p np) |
| 6986 | { |
| 6987 | (void) ncr_reset_scsi_bus(np, 1, driver_setup.settle_delay); |
| 6988 | } |
| 6989 | |
| 6990 | static int ncr_reset_scsi_bus(ncb_p np, int enab_int, int settle_delay) |
| 6991 | { |
| 6992 | u_int32 term; |
| 6993 | int retv = 0; |
| 6994 | |
| 6995 | np->settle_time = ktime_get(settle_delay * HZ)(jiffies + (unsigned long) settle_delay * 100); |
| 6996 | |
| 6997 | if (bootverbose(np->verbose) > 1) |
| 6998 | printk("%s: resetting, " |
| 6999 | "command processing suspended for %d seconds\n", |
| 7000 | ncr_name(np), settle_delay); |
| 7001 | |
| 7002 | ncr_soft_reset(np); /* Soft reset the chip */ |
| 7003 | UDELAY (2000); /* The 895/6 need time for the bus mode to settle */ |
| 7004 | if (enab_int) |
| 7005 | OUTW (nc_sien, RST)((*(volatile unsigned short *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_sien))))) = (((0x02)))); |
| 7006 | /* |
| 7007 | ** Enable Tolerant, reset IRQD if present and |
| 7008 | ** properly set IRQ mode, prior to resetting the bus. |
| 7009 | */ |
| 7010 | OUTB (nc_stest3, TE)((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_stest3))))) = (((0x80))) ); |
| 7011 | OUTB (nc_dcntl, (np->rv_dcntl & IRQM))((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_dcntl))))) = ((((np-> rv_dcntl & 0x08))))); |
| 7012 | OUTB (nc_scntl1, CRST)((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_scntl1))))) = (((0x08))) ); |
| 7013 | UDELAY (200); |
| 7014 | |
| 7015 | if (!driver_setup.bus_check) |
| 7016 | goto out; |
| 7017 | /* |
| 7018 | ** Check for no terminators or SCSI bus shorts to ground. |
| 7019 | ** Read SCSI data bus, data parity bits and control signals. |
| 7020 | ** We are expecting RESET to be TRUE and other signals to be |
| 7021 | ** FALSE. |
| 7022 | */ |
| 7023 | term = INB(nc_sstat0)(*(volatile unsigned char *) ((char *)np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_sstat0))))); |
| 7024 | term = ((term & 2) << 7) + ((term & 1) << 17); /* rst sdp0 */ |
| 7025 | term |= ((INB(nc_sstat2)(*(volatile unsigned char *) ((char *)np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_sstat2))))) & 0x01) << 26) | /* sdp1 */ |
| 7026 | ((INW(nc_sbdl)(*(volatile unsigned short *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_sbdl))))) & 0xff) << 9) | /* d7-0 */ |
| 7027 | ((INW(nc_sbdl)(*(volatile unsigned short *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_sbdl))))) & 0xff00) << 10) | /* d15-8 */ |
| 7028 | INB(nc_sbcl)(*(volatile unsigned char *) ((char *)np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_sbcl))))); /* req ack bsy sel atn msg cd io */ |
| 7029 | |
| 7030 | if (!(np->features & FE_WIDE(1<<1))) |
| 7031 | term &= 0x3ffff; |
| 7032 | |
| 7033 | if (term != (2<<7)) { |
| 7034 | printk("%s: suspicious SCSI data while resetting the BUS.\n", |
| 7035 | ncr_name(np)); |
| 7036 | printk("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = " |
| 7037 | "0x%lx, expecting 0x%lx\n", |
| 7038 | ncr_name(np), |
| 7039 | (np->features & FE_WIDE(1<<1)) ? "dp1,d15-8," : "", |
| 7040 | (u_longunsigned long)term, (u_longunsigned long)(2<<7)); |
| 7041 | if (driver_setup.bus_check == 1) |
| 7042 | retv = 1; |
| 7043 | } |
| 7044 | out: |
| 7045 | OUTB (nc_scntl1, 0)((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_scntl1))))) = (((0)))); |
| 7046 | return retv; |
| 7047 | } |
| 7048 | |
| 7049 | /*========================================================== |
| 7050 | ** |
| 7051 | ** |
| 7052 | ** Reset the SCSI BUS. |
| 7053 | ** This is called from the generic SCSI driver. |
| 7054 | ** |
| 7055 | ** |
| 7056 | **========================================================== |
| 7057 | */ |
| 7058 | static int ncr_reset_bus (ncb_p np, Scsi_Cmnd *cmd, int sync_reset) |
| 7059 | { |
| 7060 | /* Scsi_Device *device = cmd->device; */ |
| 7061 | ccb_p cp; |
| 7062 | int found; |
| 7063 | |
| 7064 | /* |
| 7065 | * Return immediately if reset is in progress. |
| 7066 | */ |
| 7067 | if (np->settle_time) { |
| 7068 | return SCSI_RESET_PUNT1; |
| 7069 | } |
| 7070 | /* |
| 7071 | * Start the reset process. |
| 7072 | * The script processor is then assumed to be stopped. |
| 7073 | * Commands will now be queued in the waiting list until a settle |
| 7074 | * delay of 2 seconds will be completed. |
| 7075 | */ |
| 7076 | ncr_start_reset(np); |
| 7077 | /* |
| 7078 | * First, look in the wakeup list |
| 7079 | */ |
| 7080 | for (found=0, cp=np->ccbc; cp; cp=cp->link_ccb) { |
| 7081 | /* |
| 7082 | ** look for the ccb of this command. |
| 7083 | */ |
| 7084 | if (cp->host_statusphys.header.status[1] == HS_IDLE(0)) continue; |
| 7085 | if (cp->cmd == cmd) { |
| 7086 | found = 1; |
| 7087 | break; |
| 7088 | } |
| 7089 | } |
| 7090 | /* |
| 7091 | * Then, look in the waiting list |
| 7092 | */ |
| 7093 | if (!found && retrieve_from_waiting_list(0, np, cmd)) |
| 7094 | found = 1; |
| 7095 | /* |
| 7096 | * Wake-up all awaiting commands with DID_RESET. |
| 7097 | */ |
| 7098 | reset_waiting_list(np)process_waiting_list((np), 0x08); |
| 7099 | /* |
| 7100 | * Wake-up all pending commands with HS_RESET -> DID_RESET. |
| 7101 | */ |
| 7102 | ncr_wakeup(np, HS_RESET(6|(0x80))); |
| 7103 | /* |
| 7104 | * If the involved command was not in a driver queue, and the |
| 7105 | * scsi driver told us reset is synchronous, and the command is not |
| 7106 | * currently in the waiting list, complete it with DID_RESET status, |
| 7107 | * in order to keep it alive. |
| 7108 | */ |
| 7109 | if (!found && sync_reset && !retrieve_from_waiting_list(0, np, cmd)) { |
| 7110 | SetScsiResult(cmd, DID_RESET, 0)cmd->result = (((0x08) << 16) + ((0) & 0x7f)); |
| 7111 | ncr_queue_done_cmd(np, cmd); |
| 7112 | } |
| 7113 | |
| 7114 | return SCSI_RESET_SUCCESS2; |
| 7115 | } |
| 7116 | |
| 7117 | /*========================================================== |
| 7118 | ** |
| 7119 | ** |
| 7120 | ** Abort an SCSI command. |
| 7121 | ** This is called from the generic SCSI driver. |
| 7122 | ** |
| 7123 | ** |
| 7124 | **========================================================== |
| 7125 | */ |
| 7126 | static int ncr_abort_command (ncb_p np, Scsi_Cmnd *cmd) |
| 7127 | { |
| 7128 | /* Scsi_Device *device = cmd->device; */ |
| 7129 | ccb_p cp; |
| 7130 | |
| 7131 | /* |
| 7132 | * First, look for the scsi command in the waiting list |
| 7133 | */ |
| 7134 | if (remove_from_waiting_list(np, cmd)retrieve_from_waiting_list(1, (np), (cmd))) { |
| 7135 | SetScsiAbortResult(cmd)cmd->result = (((0x05) << 16) + ((0xff) & 0x7f)); |
| 7136 | ncr_queue_done_cmd(np, cmd); |
| 7137 | return SCSI_ABORT_SUCCESS1; |
| 7138 | } |
| 7139 | |
| 7140 | /* |
| 7141 | * Then, look in the wakeup list |
| 7142 | */ |
| 7143 | for (cp=np->ccbc; cp; cp=cp->link_ccb) { |
| 7144 | /* |
| 7145 | ** look for the ccb of this command. |
| 7146 | */ |
| 7147 | if (cp->host_statusphys.header.status[1] == HS_IDLE(0)) continue; |
| 7148 | if (cp->cmd == cmd) |
| 7149 | break; |
| 7150 | } |
| 7151 | |
| 7152 | if (!cp) { |
| 7153 | return SCSI_ABORT_NOT_RUNNING4; |
| 7154 | } |
| 7155 | |
| 7156 | /* |
| 7157 | ** Keep track we have to abort this job. |
| 7158 | */ |
| 7159 | cp->to_abort = 1; |
| 7160 | |
| 7161 | /* |
| 7162 | ** Tell the SCRIPTS processor to stop |
| 7163 | ** and synchronize with us. |
| 7164 | */ |
| 7165 | np->istat_sem = SEM0x10; |
| 7166 | |
| 7167 | /* |
| 7168 | ** If there are no requests, the script |
| 7169 | ** processor will sleep on SEL_WAIT_RESEL. |
| 7170 | ** Let's wake it up, since it may have to work. |
| 7171 | */ |
| 7172 | OUTB (nc_istat, SIGP|SEM)((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_istat))))) = (((0x20|0x10 )))); |
| 7173 | |
| 7174 | /* |
| 7175 | ** Tell user we are working for him. |
| 7176 | */ |
| 7177 | return SCSI_ABORT_PENDING2; |
| 7178 | } |
| 7179 | |
| 7180 | /*========================================================== |
| 7181 | ** |
| 7182 | ** Linux release module stuff. |
| 7183 | ** |
| 7184 | ** Called before unloading the module |
| 7185 | ** Detach the host. |
| 7186 | ** We have to free resources and halt the NCR chip |
| 7187 | ** |
| 7188 | **========================================================== |
| 7189 | */ |
| 7190 | |
| 7191 | #ifdef MODULE |
| 7192 | static int ncr_detach(ncb_p np) |
| 7193 | { |
| 7194 | int i; |
| 7195 | |
| 7196 | printk("%s: detaching ...\n", ncr_name(np)); |
| 7197 | |
| 7198 | /* |
| 7199 | ** Stop the ncr_timeout process |
| 7200 | ** Set release_stage to 1 and wait that ncr_timeout() set it to 2. |
| 7201 | */ |
| 7202 | np->release_stage = 1; |
| 7203 | for (i = 50 ; i && np->release_stage != 2 ; i--) MDELAY (100); |
| 7204 | if (np->release_stage != 2) |
| 7205 | printk("%s: the timer seems to be already stopped\n", |
| 7206 | ncr_name(np)); |
| 7207 | else np->release_stage = 2; |
| 7208 | |
| 7209 | /* |
| 7210 | ** Reset NCR chip. |
| 7211 | ** We should use ncr_soft_reset(), but we donnot want to do |
| 7212 | ** so, since we may not be safe if interrupts occur. |
| 7213 | */ |
| 7214 | |
| 7215 | printk("%s: resetting chip\n", ncr_name(np)); |
| 7216 | ncr_chip_reset(np); |
| 7217 | |
| 7218 | /* |
| 7219 | ** Restore bios setting for automatic clock detection. |
| 7220 | */ |
| 7221 | OUTB(nc_dmode, np->sv_dmode)((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_dmode))))) = (((np->sv_dmode )))); |
| 7222 | OUTB(nc_dcntl, np->sv_dcntl)((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_dcntl))))) = (((np->sv_dcntl )))); |
| 7223 | OUTB(nc_ctest3, np->sv_ctest3)((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_ctest3))))) = (((np-> sv_ctest3)))); |
| 7224 | OUTB(nc_ctest4, np->sv_ctest4)((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_ctest4))))) = (((np-> sv_ctest4)))); |
| 7225 | OUTB(nc_ctest5, np->sv_ctest5)((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_ctest5))))) = (((np-> sv_ctest5)))); |
| 7226 | OUTB(nc_gpcntl, np->sv_gpcntl)((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_gpcntl))))) = (((np-> sv_gpcntl)))); |
| 7227 | OUTB(nc_stest2, np->sv_stest2)((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_stest2))))) = (((np-> sv_stest2)))); |
| 7228 | |
| 7229 | ncr_selectclock(np, np->sv_scntl3); |
| 7230 | /* |
| 7231 | ** Free host resources |
| 7232 | */ |
| 7233 | ncr_free_resources(np); |
| 7234 | |
| 7235 | return 1; |
| 7236 | } |
| 7237 | #endif |
| 7238 | |
| 7239 | /*========================================================== |
| 7240 | ** |
| 7241 | ** |
| 7242 | ** Complete execution of a SCSI command. |
| 7243 | ** Signal completion to the generic SCSI driver. |
| 7244 | ** |
| 7245 | ** |
| 7246 | **========================================================== |
| 7247 | */ |
| 7248 | |
| 7249 | void ncr_complete (ncb_p np, ccb_p cp) |
| 7250 | { |
| 7251 | Scsi_Cmnd *cmd; |
| 7252 | tcb_p tp; |
| 7253 | lcb_p lp; |
| 7254 | |
| 7255 | /* |
| 7256 | ** Sanity check |
| 7257 | */ |
| 7258 | if (!cp || !cp->cmd) |
| 7259 | return; |
| 7260 | |
| 7261 | /* |
| 7262 | ** Print some debugging info. |
| 7263 | */ |
| 7264 | |
| 7265 | if (DEBUG_FLAGSncr_debug & DEBUG_TINY(0x0080)) |
| 7266 | printk ("CCB=%lx STAT=%x/%x\n", (unsigned long)cp, |
| 7267 | cp->host_statusphys.header.status[1],cp->scsi_statusphys.header.status[2]); |
| 7268 | |
| 7269 | /* |
| 7270 | ** Get command, target and lun pointers. |
| 7271 | */ |
| 7272 | |
| 7273 | cmd = cp->cmd; |
| 7274 | cp->cmd = NULL((void *) 0); |
| 7275 | tp = &np->target[cp->target]; |
| 7276 | lp = ncr_lp(np, tp, cp->lun)(!cp->lun) ? (tp)->l0p : (tp)->lmp ? (tp)->lmp[(cp ->lun)] : 0; |
| 7277 | |
| 7278 | /* |
| 7279 | ** We donnot queue more than 1 ccb per target |
| 7280 | ** with negotiation at any time. If this ccb was |
| 7281 | ** used for negotiation, clear this info in the tcb. |
| 7282 | */ |
| 7283 | |
| 7284 | if (cp == tp->nego_cp) |
| 7285 | tp->nego_cp = 0; |
| 7286 | |
| 7287 | #ifdef SCSI_NCR_IARB_SUPPORT |
| 7288 | /* |
| 7289 | ** We just complete the last queued CCB. |
| 7290 | ** Clear this info that is no more relevant. |
| 7291 | */ |
| 7292 | if (cp == np->last_cp) |
| 7293 | np->last_cp = 0; |
| 7294 | #endif |
| 7295 | |
| 7296 | /* |
| 7297 | ** If auto-sense performed, change scsi status, |
| 7298 | ** Otherwise, compute the residual. |
| 7299 | */ |
| 7300 | if (cp->host_flagsphys.header.status[3] & HF_AUTO_SENSE(1u<<4)) { |
| 7301 | cp->scsi_statusphys.header.status[2] = cp->sv_scsi_status; |
| 7302 | cp->xerr_status = cp->sv_xerr_status; |
| 7303 | } |
| 7304 | else { |
| 7305 | cp->resid = 0; |
| 7306 | if (cp->xerr_status || |
| 7307 | cp->phys.header.lastp != cp->phys.header.goalp) |
| 7308 | cp->resid = ncr_compute_residual(np, cp); |
| 7309 | } |
| 7310 | |
| 7311 | /* |
| 7312 | ** Check for extended errors. |
| 7313 | */ |
| 7314 | |
| 7315 | if (cp->xerr_status) { |
| 7316 | if (cp->xerr_status & XE_PARITY_ERR(4)) { |
| 7317 | PRINT_ADDR(cmd); |
| 7318 | printk ("unrecovered SCSI parity error.\n"); |
| 7319 | } |
| 7320 | if (cp->xerr_status & XE_EXTRA_DATA(1)) { |
| 7321 | PRINT_ADDR(cmd); |
| 7322 | printk ("extraneous data discarded.\n"); |
| 7323 | } |
| 7324 | if (cp->xerr_status & XE_BAD_PHASE(2)) { |
| 7325 | PRINT_ADDR(cmd); |
| 7326 | printk ("illegal scsi phase (4/5).\n"); |
| 7327 | } |
| 7328 | if (cp->xerr_status & XE_SODL_UNRUN(1<<3)) { |
| 7329 | PRINT_ADDR(cmd); |
| 7330 | printk ("ODD transfer in DATA OUT phase.\n"); |
| 7331 | } |
| 7332 | if (cp->xerr_status & XE_SWIDE_OVRUN(1<<4)){ |
| 7333 | PRINT_ADDR(cmd); |
| 7334 | printk ("ODD transfer in DATA IN phase.\n"); |
| 7335 | } |
| 7336 | |
| 7337 | if (cp->host_statusphys.header.status[1]==HS_COMPLETE(4|(0x80))) |
| 7338 | cp->host_statusphys.header.status[1] = HS_FAIL(9|(0x80)); |
| 7339 | } |
| 7340 | |
| 7341 | /* |
| 7342 | ** Print out any error for debugging purpose. |
| 7343 | */ |
| 7344 | if (DEBUG_FLAGSncr_debug & (DEBUG_RESULT(0x0010)|DEBUG_TINY(0x0080))) { |
| 7345 | if (cp->host_statusphys.header.status[1]!=HS_COMPLETE(4|(0x80)) || cp->scsi_statusphys.header.status[2]!=S_GOOD(0x00) || |
| 7346 | cp->resid) { |
| 7347 | PRINT_ADDR(cmd); |
| 7348 | printk ("ERROR: cmd=%x host_status=%x scsi_status=%x " |
| 7349 | "data_len=%d residual=%d\n", |
| 7350 | cmd->cmnd[0], cp->host_statusphys.header.status[1], cp->scsi_statusphys.header.status[2], |
| 7351 | cp->data_len, cp->resid); |
| 7352 | } |
| 7353 | } |
| 7354 | |
| 7355 | #if LINUX_VERSION_CODE131108 >= LinuxVersionCode(2,3,99)(((2)<<16)+((3)<<8)+(99)) |
| 7356 | /* |
| 7357 | ** Move residual byte count to user structure. |
| 7358 | */ |
| 7359 | cmd->resid = cp->resid; |
| 7360 | #endif |
| 7361 | /* |
| 7362 | ** Check the status. |
| 7363 | */ |
| 7364 | if ( (cp->host_statusphys.header.status[1] == HS_COMPLETE(4|(0x80))) |
| 7365 | && (cp->scsi_statusphys.header.status[2] == S_GOOD(0x00) || |
| 7366 | cp->scsi_statusphys.header.status[2] == S_COND_MET(0x04))) { |
| 7367 | /* |
| 7368 | ** All went well (GOOD status). |
| 7369 | ** CONDITION MET status is returned on |
| 7370 | ** `Pre-Fetch' or `Search data' success. |
| 7371 | */ |
| 7372 | SetScsiResult(cmd, DID_OK, cp->scsi_status)cmd->result = (((0x00) << 16) + ((cp->phys.header .status[2]) & 0x7f)); |
| 7373 | |
| 7374 | /* |
| 7375 | ** Allocate the lcb if not yet. |
| 7376 | */ |
| 7377 | if (!lp) |
| 7378 | ncr_alloc_lcb (np, cp->target, cp->lun); |
| 7379 | |
| 7380 | /* |
| 7381 | ** On standard INQUIRY response (EVPD and CmDt |
| 7382 | ** not set), setup logical unit according to |
| 7383 | ** announced capabilities (we need the 1rst 7 bytes). |
| 7384 | */ |
| 7385 | if (cmd->cmnd[0] == 0x12 && !(cmd->cmnd[1] & 0x3) && |
| 7386 | cmd->cmnd[4] >= 7 && !cmd->use_sg) { |
| 7387 | sync_scsi_data(np, cmd)do {; } while (0); /* SYNC the data */ |
| 7388 | ncr_setup_lcb (np, cp->target, cp->lun, |
| 7389 | (char *) cmd->request_buffer); |
| 7390 | } |
| 7391 | |
| 7392 | /* |
| 7393 | ** If tags was reduced due to queue full, |
| 7394 | ** increase tags if 1000 good status received. |
| 7395 | */ |
| 7396 | if (lp && lp->usetags && lp->numtags < lp->maxtags) { |
| 7397 | ++lp->num_good; |
| 7398 | if (lp->num_good >= 1000) { |
| 7399 | lp->num_good = 0; |
| 7400 | ++lp->numtags; |
| 7401 | ncr_setup_tags (np, cp->target, cp->lun); |
| 7402 | } |
| 7403 | } |
| 7404 | } else if ((cp->host_statusphys.header.status[1] == HS_COMPLETE(4|(0x80))) |
| 7405 | && (cp->scsi_statusphys.header.status[2] == S_CHECK_COND(0x02))) { |
| 7406 | /* |
| 7407 | ** Check condition code |
| 7408 | */ |
| 7409 | SetScsiResult(cmd, DID_OK, S_CHECK_COND)cmd->result = (((0x00) << 16) + (((0x02)) & 0x7f )); |
| 7410 | |
| 7411 | if (DEBUG_FLAGSncr_debug & (DEBUG_RESULT(0x0010)|DEBUG_TINY(0x0080))) { |
| 7412 | PRINT_ADDR(cmd); |
| 7413 | ncr_printl_hex("sense data:", cmd->sense_buffer, 14); |
| 7414 | } |
| 7415 | } else if ((cp->host_statusphys.header.status[1] == HS_COMPLETE(4|(0x80))) |
| 7416 | && (cp->scsi_statusphys.header.status[2] == S_CONFLICT(0x18))) { |
| 7417 | /* |
| 7418 | ** Reservation Conflict condition code |
| 7419 | */ |
| 7420 | SetScsiResult(cmd, DID_OK, S_CONFLICT)cmd->result = (((0x00) << 16) + (((0x18)) & 0x7f )); |
| 7421 | |
| 7422 | } else if ((cp->host_statusphys.header.status[1] == HS_COMPLETE(4|(0x80))) |
| 7423 | && (cp->scsi_statusphys.header.status[2] == S_BUSY(0x08) || |
| 7424 | cp->scsi_statusphys.header.status[2] == S_QUEUE_FULL(0x28))) { |
| 7425 | |
| 7426 | /* |
| 7427 | ** Target is busy. |
| 7428 | */ |
| 7429 | SetScsiResult(cmd, DID_OK, cp->scsi_status)cmd->result = (((0x00) << 16) + ((cp->phys.header .status[2]) & 0x7f)); |
| 7430 | |
| 7431 | } else if ((cp->host_statusphys.header.status[1] == HS_SEL_TIMEOUT(5|(0x80))) |
| 7432 | || (cp->host_statusphys.header.status[1] == HS_TIMEOUT(8|(0x80)))) { |
| 7433 | |
| 7434 | /* |
| 7435 | ** No response |
| 7436 | */ |
| 7437 | SetScsiResult(cmd, DID_TIME_OUT, cp->scsi_status)cmd->result = (((0x03) << 16) + ((cp->phys.header .status[2]) & 0x7f)); |
| 7438 | |
| 7439 | } else if (cp->host_statusphys.header.status[1] == HS_RESET(6|(0x80))) { |
| 7440 | |
| 7441 | /* |
| 7442 | ** SCSI bus reset |
| 7443 | */ |
| 7444 | SetScsiResult(cmd, DID_RESET, cp->scsi_status)cmd->result = (((0x08) << 16) + ((cp->phys.header .status[2]) & 0x7f)); |
| 7445 | |
| 7446 | } else if (cp->host_statusphys.header.status[1] == HS_ABORTED(7|(0x80))) { |
| 7447 | |
| 7448 | /* |
| 7449 | ** Transfer aborted |
| 7450 | */ |
| 7451 | SetScsiAbortResult(cmd)cmd->result = (((0x05) << 16) + ((0xff) & 0x7f)); |
| 7452 | |
| 7453 | } else { |
| 7454 | int did_status; |
| 7455 | |
| 7456 | /* |
| 7457 | ** Other protocol messes |
| 7458 | */ |
| 7459 | PRINT_ADDR(cmd); |
| 7460 | printk ("COMMAND FAILED (%x %x) @%p.\n", |
| 7461 | cp->host_statusphys.header.status[1], cp->scsi_statusphys.header.status[2], cp); |
| 7462 | |
| 7463 | did_status = DID_ERROR0x07; |
| 7464 | if (cp->xerr_status & XE_PARITY_ERR(4)) |
| 7465 | did_status = DID_PARITY0x06; |
| 7466 | |
| 7467 | SetScsiResult(cmd, did_status, cp->scsi_status)cmd->result = (((did_status) << 16) + ((cp->phys. header.status[2]) & 0x7f)); |
| 7468 | } |
| 7469 | |
| 7470 | /* |
| 7471 | ** trace output |
| 7472 | */ |
| 7473 | |
| 7474 | if (tp->usrflag & UF_TRACE(0x01)) { |
| 7475 | PRINT_ADDR(cmd); |
| 7476 | printk (" CMD:"); |
| 7477 | ncr_print_hex(cmd->cmnd, cmd->cmd_len); |
| 7478 | |
| 7479 | if (cp->host_statusphys.header.status[1]==HS_COMPLETE(4|(0x80))) { |
| 7480 | switch (cp->scsi_statusphys.header.status[2]) { |
| 7481 | case S_GOOD(0x00): |
| 7482 | printk (" GOOD"); |
| 7483 | break; |
| 7484 | case S_CHECK_COND(0x02): |
| 7485 | printk (" SENSE:"); |
| 7486 | ncr_print_hex(cmd->sense_buffer, 14); |
| 7487 | break; |
| 7488 | default: |
| 7489 | printk (" STAT: %x\n", cp->scsi_statusphys.header.status[2]); |
| 7490 | break; |
| 7491 | } |
| 7492 | } else printk (" HOSTERROR: %x", cp->host_statusphys.header.status[1]); |
| 7493 | printk ("\n"); |
| 7494 | } |
| 7495 | |
| 7496 | /* |
| 7497 | ** Free this ccb |
| 7498 | */ |
| 7499 | ncr_free_ccb (np, cp); |
| 7500 | |
| 7501 | /* |
| 7502 | ** requeue awaiting scsi commands for this lun. |
| 7503 | */ |
| 7504 | if (lp && lp->queuedccbs < lp->queuedepth && |
| 7505 | !xpt_que_empty(&lp->wait_ccbq)) |
| 7506 | ncr_start_next_ccb(np, lp, 2); |
| 7507 | |
| 7508 | /* |
| 7509 | ** requeue awaiting scsi commands for this controller. |
| 7510 | */ |
| 7511 | if (np->waiting_list) |
| 7512 | requeue_waiting_list(np)process_waiting_list((np), 0x00); |
| 7513 | |
| 7514 | /* |
| 7515 | ** signal completion to generic driver. |
| 7516 | */ |
| 7517 | ncr_queue_done_cmd(np, cmd); |
| 7518 | } |
| 7519 | |
| 7520 | /*========================================================== |
| 7521 | ** |
| 7522 | ** |
| 7523 | ** Signal all (or one) control block done. |
| 7524 | ** |
| 7525 | ** |
| 7526 | **========================================================== |
| 7527 | */ |
| 7528 | |
| 7529 | /* |
| 7530 | ** The NCR has completed CCBs. |
| 7531 | ** Look at the DONE QUEUE. |
| 7532 | ** |
| 7533 | ** On architectures that may reorder LOAD/STORE operations, |
| 7534 | ** a memory barrier may be needed after the reading of the |
| 7535 | ** so-called `flag' and prior to dealing with the data. |
| 7536 | */ |
| 7537 | int ncr_wakeup_done (ncb_p np) |
| 7538 | { |
| 7539 | ccb_p cp; |
| 7540 | int i, n; |
| 7541 | u_longunsigned long dsa; |
| 7542 | |
| 7543 | n = 0; |
| 7544 | i = np->dqueueget; |
| 7545 | while (1) { |
| 7546 | dsa = scr_to_cpu(np->dqueue[i])(np->dqueue[i]); |
| 7547 | if (!dsa) |
| 7548 | break; |
| 7549 | np->dqueue[i] = 0; |
| 7550 | if ((i = i+2) >= MAX_START((8*(8) + 2*(16)) + 4)*2) |
| 7551 | i = 0; |
| 7552 | |
| 7553 | cp = ncr_ccb_from_dsa(np, dsa); |
| 7554 | if (cp) { |
| 7555 | MEMORY_BARRIER()do { ; } while(0); |
| 7556 | ncr_complete (np, cp); |
| 7557 | ++n; |
| 7558 | } |
| 7559 | else |
| 7560 | printk (KERN_ERR"<3>" "%s: bad DSA (%lx) in done queue.\n", |
| 7561 | ncr_name(np), dsa); |
| 7562 | } |
| 7563 | np->dqueueget = i; |
| 7564 | |
| 7565 | return n; |
| 7566 | } |
| 7567 | |
| 7568 | /* |
| 7569 | ** Complete all active CCBs. |
| 7570 | */ |
| 7571 | void ncr_wakeup (ncb_p np, u_longunsigned long code) |
| 7572 | { |
| 7573 | ccb_p cp = np->ccbc; |
| 7574 | |
| 7575 | while (cp) { |
| 7576 | if (cp->host_statusphys.header.status[1] != HS_IDLE(0)) { |
| 7577 | cp->host_statusphys.header.status[1] = code; |
| 7578 | ncr_complete (np, cp); |
| 7579 | } |
| 7580 | cp = cp->link_ccb; |
| 7581 | } |
| 7582 | } |
| 7583 | |
| 7584 | /*========================================================== |
| 7585 | ** |
| 7586 | ** |
| 7587 | ** Start NCR chip. |
| 7588 | ** |
| 7589 | ** |
| 7590 | **========================================================== |
| 7591 | */ |
| 7592 | |
| 7593 | void ncr_init (ncb_p np, int reset, char * msg, u_longunsigned long code) |
| 7594 | { |
| 7595 | int i; |
| 7596 | u_longunsigned long phys; |
| 7597 | |
| 7598 | /* |
| 7599 | ** Reset chip if asked, otherwise just clear fifos. |
| 7600 | */ |
| 7601 | |
| 7602 | if (reset) |
| 7603 | ncr_soft_reset(np); |
| 7604 | else { |
| 7605 | OUTB (nc_stest3, TE|CSF)((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_stest3))))) = (((0x80|0x02 )))); |
| 7606 | OUTONB (nc_ctest3, CLF)((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_ctest3))))) = ((((*(volatile unsigned char *) ((char *)np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_ctest3))))) | (0x04))))); |
| 7607 | } |
| 7608 | |
| 7609 | /* |
| 7610 | ** Message. |
| 7611 | */ |
| 7612 | |
| 7613 | if (msg) printk (KERN_INFO"<6>" "%s: restart (%s).\n", ncr_name (np), msg); |
| 7614 | |
| 7615 | /* |
| 7616 | ** Clear Start Queue |
| 7617 | */ |
| 7618 | phys = np->p_squeue; |
| 7619 | np->queuedepth = MAX_START((8*(8) + 2*(16)) + 4) - 1; /* 1 entry needed as end marker */ |
| 7620 | for (i = 0; i < MAX_START((8*(8) + 2*(16)) + 4)*2; i += 2) { |
| 7621 | np->squeue[i] = cpu_to_scr(np->p_idletask)(np->p_idletask); |
| 7622 | np->squeue[i+1] = cpu_to_scr(phys + (i+2)*4)(phys + (i+2)*4); |
| 7623 | } |
| 7624 | np->squeue[MAX_START((8*(8) + 2*(16)) + 4)*2-1] = cpu_to_scr(phys)(phys); |
| 7625 | |
| 7626 | |
| 7627 | /* |
| 7628 | ** Start at first entry. |
| 7629 | */ |
| 7630 | np->squeueput = 0; |
| 7631 | np->scripth0->startpos[0] = cpu_to_scr(phys)(phys); |
| 7632 | |
| 7633 | /* |
| 7634 | ** Clear Done Queue |
| 7635 | */ |
| 7636 | phys = vtobus(np->dqueue)virt_to_phys(np->dqueue); |
| 7637 | for (i = 0; i < MAX_START((8*(8) + 2*(16)) + 4)*2; i += 2) { |
| 7638 | np->dqueue[i] = 0; |
| 7639 | np->dqueue[i+1] = cpu_to_scr(phys + (i+2)*4)(phys + (i+2)*4); |
| 7640 | } |
| 7641 | np->dqueue[MAX_START((8*(8) + 2*(16)) + 4)*2-1] = cpu_to_scr(phys)(phys); |
| 7642 | |
| 7643 | /* |
| 7644 | ** Start at first entry. |
| 7645 | */ |
| 7646 | np->scripth0->done_pos[0] = cpu_to_scr(phys)(phys); |
| 7647 | np->dqueueget = 0; |
| 7648 | |
| 7649 | /* |
| 7650 | ** Wakeup all pending jobs. |
| 7651 | */ |
| 7652 | ncr_wakeup (np, code); |
| 7653 | |
| 7654 | /* |
| 7655 | ** Init chip. |
| 7656 | */ |
| 7657 | |
| 7658 | OUTB (nc_istat, 0x00 )((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_istat))))) = (((0x00)))); /* Remove Reset, abort */ |
| 7659 | UDELAY (2000); /* The 895 needs time for the bus mode to settle */ |
| 7660 | |
| 7661 | OUTB (nc_scntl0, np->rv_scntl0 | 0xc0)((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_scntl0))))) = (((np-> rv_scntl0 | 0xc0)))); |
| 7662 | /* full arb., ena parity, par->ATN */ |
| 7663 | OUTB (nc_scntl1, 0x00)((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_scntl1))))) = (((0x00))) ); /* odd parity, and remove CRST!! */ |
| 7664 | |
| 7665 | ncr_selectclock(np, np->rv_scntl3); /* Select SCSI clock */ |
| 7666 | |
| 7667 | OUTB (nc_scid , RRE|np->myaddr)((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_scid))))) = (((0x40|np-> myaddr)))); /* Adapter SCSI address */ |
| 7668 | OUTW (nc_respid, 1ul<<np->myaddr)((*(volatile unsigned short *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_respid))))) = (((1ul<< np->myaddr)))); /* Id to respond to */ |
| 7669 | OUTB (nc_istat , SIGP )((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_istat))))) = (((0x20)))); /* Signal Process */ |
| 7670 | OUTB (nc_dmode , np->rv_dmode)((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_dmode))))) = (((np->rv_dmode )))); /* Burst length, dma mode */ |
| 7671 | OUTB (nc_ctest5, np->rv_ctest5)((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_ctest5))))) = (((np-> rv_ctest5)))); /* Large fifo + large burst */ |
| 7672 | |
| 7673 | OUTB (nc_dcntl , NOCOM|np->rv_dcntl)((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_dcntl))))) = (((0x01|np-> rv_dcntl)))); /* Protect SFBR */ |
| 7674 | OUTB (nc_ctest3, np->rv_ctest3)((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_ctest3))))) = (((np-> rv_ctest3)))); /* Write and invalidate */ |
| 7675 | OUTB (nc_ctest4, np->rv_ctest4)((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_ctest4))))) = (((np-> rv_ctest4)))); /* Master parity checking */ |
| 7676 | |
| 7677 | if ((np->device_id != PCI_DEVICE_ID_LSI_53C10100x20) && |
| 7678 | (np->device_id != PCI_DEVICE_ID_LSI_53C1010_660x21)){ |
| 7679 | OUTB (nc_stest2, EXT|np->rv_stest2)((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_stest2))))) = (((0x02|np ->rv_stest2)))); |
| 7680 | /* Extended Sreq/Sack filtering, not supported in C1010/C1010_66 */ |
| 7681 | } |
| 7682 | OUTB (nc_stest3, TE)((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_stest3))))) = (((0x80))) ); /* TolerANT enable */ |
| 7683 | OUTB (nc_stime0, 0x0c)((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_stime0))))) = (((0x0c))) ); /* HTH disabled STO 0.25 sec */ |
| 7684 | |
| 7685 | /* |
| 7686 | ** DEL 441 - 53C876 Rev 5 - Part Number 609-0392787/2788 - ITEM 2. |
| 7687 | ** Disable overlapped arbitration for all dual-function |
| 7688 | ** devices, regardless revision id. |
| 7689 | ** We may consider it is a post-chip-design feature. ;-) |
| 7690 | ** |
| 7691 | ** Errata applies to all 896 and 1010 parts. |
| 7692 | */ |
| 7693 | if (np->device_id == PCI_DEVICE_ID_NCR_53C8750x000f) |
| 7694 | OUTB (nc_ctest0, (1<<5))((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_ctest0))))) = ((((1<< 5))))); |
| 7695 | else if (np->device_id == PCI_DEVICE_ID_NCR_53C8960x000b || |
| 7696 | np->device_id == PCI_DEVICE_ID_LSI_53C10100x20 || |
| 7697 | np->device_id == PCI_DEVICE_ID_LSI_53C1010_660x21 ) |
| 7698 | np->rv_ccntl0 |= DPR0x01; |
| 7699 | |
| 7700 | /* |
| 7701 | ** C1010_66MHz rev 0 part requies AIPCNTL1 bit 3 to be set. |
| 7702 | */ |
| 7703 | if (np->device_id == PCI_DEVICE_ID_LSI_53C1010_660x21) |
| 7704 | OUTB(nc_aipcntl1, (1<<3))((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_aipcntl1))))) = ((((1<< 3))))); |
| 7705 | |
| 7706 | /* |
| 7707 | ** If 64 bit (895A/896/1010/1010_66) write the CCNTL1 register to |
| 7708 | ** enable 40 bit address table indirect addressing for MOVE. |
| 7709 | ** Also write CCNTL0 if 64 bit chip, since this register seems |
| 7710 | ** to only be used by 64 bit cores. |
| 7711 | */ |
| 7712 | if (np->features & FE_64BIT(1<<17)) { |
| 7713 | OUTB (nc_ccntl0, np->rv_ccntl0)((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_ccntl0))))) = (((np-> rv_ccntl0)))); |
| 7714 | OUTB (nc_ccntl1, np->rv_ccntl1)((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_ccntl1))))) = (((np-> rv_ccntl1)))); |
| 7715 | } |
| 7716 | |
| 7717 | /* |
| 7718 | ** If phase mismatch handled by scripts (53C895A or 53C896 |
| 7719 | ** or 53C1010 or 53C1010_66), set PM jump addresses. |
| 7720 | */ |
| 7721 | |
| 7722 | if (np->features & FE_NOPM(1<<19)) { |
| 7723 | printk(KERN_INFO"<6>" "%s: handling phase mismatch from SCRIPTS.\n", |
| 7724 | ncr_name(np)); |
| 7725 | OUTL (nc_pmjad1, NCB_SCRIPTH_PHYS (np, pm_handle))((*(volatile unsigned int *) ((char *)np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_pmjad1))))) = ((((np-> p_scripth + ((size_t) (&((struct scripth *)0)->pm_handle ))))))); |
| 7726 | OUTL (nc_pmjad2, NCB_SCRIPTH_PHYS (np, pm_handle))((*(volatile unsigned int *) ((char *)np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_pmjad2))))) = ((((np-> p_scripth + ((size_t) (&((struct scripth *)0)->pm_handle ))))))); |
| 7727 | } |
| 7728 | |
| 7729 | /* |
| 7730 | ** Enable GPIO0 pin for writing if LED support from SCRIPTS. |
| 7731 | ** Also set GPIO5 and clear GPIO6 if hardware LED control. |
| 7732 | */ |
| 7733 | |
| 7734 | if (np->features & FE_LED0(1<<0)) |
| 7735 | OUTB(nc_gpcntl, INB(nc_gpcntl) & ~0x01)((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_gpcntl))))) = ((((*(volatile unsigned char *) ((char *)np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_gpcntl))))) & ~0x01)))); |
| 7736 | else if (np->features & FE_LEDC(1<<20)) |
| 7737 | OUTB(nc_gpcntl, (INB(nc_gpcntl) & ~0x41) | 0x20)((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_gpcntl))))) = (((((*(volatile unsigned char *) ((char *)np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_gpcntl))))) & ~0x41) | 0x20)))); |
| 7738 | |
| 7739 | |
| 7740 | /* |
| 7741 | ** enable ints |
| 7742 | */ |
| 7743 | |
| 7744 | OUTW (nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR)((*(volatile unsigned short *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_sien))))) = (((0x0400|0x0100 |0x80|0x08|0x04|0x02|0x01)))); |
| 7745 | OUTB (nc_dien , MDPE|BF|SSI|SIR|IID)((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_dien))))) = (((0x40|0x20 |0x08|0x04|0x01)))); |
| 7746 | |
| 7747 | /* |
| 7748 | ** For 895/895A/896/c1010 |
| 7749 | ** Enable SBMC interrupt and save current SCSI bus mode. |
| 7750 | */ |
| 7751 | if ( (np->features & FE_ULTRA2(1<<3)) || (np->features & FE_ULTRA3(1<<22)) ) { |
| 7752 | OUTONW (nc_sien, SBMC)((*(volatile unsigned short *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_sien))))) = ((((*(volatile unsigned short *) ((char *)np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_sien))))) | (0x1000))))); |
| 7753 | np->scsi_mode = INB (nc_stest4)(*(volatile unsigned char *) ((char *)np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_stest4))))) & SMODE0xc0; |
| 7754 | } |
| 7755 | |
| 7756 | /* |
| 7757 | ** Fill in target structure. |
| 7758 | ** Reinitialize usrsync. |
| 7759 | ** Reinitialize usrwide. |
| 7760 | ** Prepare sync negotiation according to actual SCSI bus mode. |
| 7761 | */ |
| 7762 | |
| 7763 | for (i=0;i<MAX_TARGET((16));i++) { |
| 7764 | tcb_p tp = &np->target[i]; |
| 7765 | |
| 7766 | tp->to_reset = 0; |
| 7767 | |
| 7768 | tp->sval = 0; |
| 7769 | tp->wval = np->rv_scntl3; |
| 7770 | tp->uval = np->rv_scntl4; |
| 7771 | |
| 7772 | if (tp->usrsync != 255) { |
| 7773 | if (tp->usrsync <= np->maxsync) { |
| 7774 | if (tp->usrsync < np->minsync) { |
| 7775 | tp->usrsync = np->minsync; |
| 7776 | } |
| 7777 | } |
| 7778 | else |
| 7779 | tp->usrsync = 255; |
| 7780 | }; |
| 7781 | |
| 7782 | if (tp->usrwide > np->maxwide) |
| 7783 | tp->usrwide = np->maxwide; |
| 7784 | |
| 7785 | ncr_negotiate (np, tp); |
| 7786 | } |
| 7787 | |
| 7788 | /* |
| 7789 | ** Download SCSI SCRIPTS to on-chip RAM if present, |
| 7790 | ** and start script processor. |
| 7791 | ** We do the download preferently from the CPU. |
| 7792 | ** For platforms that may not support PCI memory mapping, |
| 7793 | ** we use a simple SCRIPTS that performs MEMORY MOVEs. |
| 7794 | */ |
| 7795 | if (np->base2_ba) { |
| 7796 | if (bootverbose(np->verbose)) |
| 7797 | printk ("%s: Downloading SCSI SCRIPTS.\n", |
| 7798 | ncr_name(np)); |
| 7799 | #ifdef SCSI_NCR_PCI_MEM_NOT_SUPPORTED |
| 7800 | if (np->base2_ws == 8192) |
| 7801 | phys = NCB_SCRIPTH0_PHYS (np, start_ram64)(np->p_scripth0+((size_t) (&((struct scripth *)0)-> start_ram64))); |
| 7802 | else |
| 7803 | phys = NCB_SCRIPTH_PHYS (np, start_ram)(np->p_scripth + ((size_t) (&((struct scripth *)0)-> start_ram))); |
| 7804 | #else |
| 7805 | if (np->base2_ws == 8192) { |
| 7806 | memcpy_to_pci(np->base2_va + 4096,(__builtin_constant_p(((sizeof(struct scripth)))) ? __constant_memcpy (((void *)((np->base2_va + 4096))),(((np->scripth0))),( ((sizeof(struct scripth))))) : __memcpy(((void *)((np->base2_va + 4096))),(((np->scripth0))),(((sizeof(struct scripth)))) )) |
| 7807 | np->scripth0, sizeof(struct scripth))(__builtin_constant_p(((sizeof(struct scripth)))) ? __constant_memcpy (((void *)((np->base2_va + 4096))),(((np->scripth0))),( ((sizeof(struct scripth))))) : __memcpy(((void *)((np->base2_va + 4096))),(((np->scripth0))),(((sizeof(struct scripth)))) )); |
| 7808 | OUTL (nc_mmws, np->scr_ram_seg)((*(volatile unsigned int *) ((char *)np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_mmws))))) = (((np->scr_ram_seg )))); |
| 7809 | OUTL (nc_mmrs, np->scr_ram_seg)((*(volatile unsigned int *) ((char *)np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_mmrs))))) = (((np->scr_ram_seg )))); |
| 7810 | OUTL (nc_sfs, np->scr_ram_seg)((*(volatile unsigned int *) ((char *)np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_sfs))))) = (((np->scr_ram_seg )))); |
| 7811 | phys = NCB_SCRIPTH_PHYS (np, start64)(np->p_scripth + ((size_t) (&((struct scripth *)0)-> start64))); |
| 7812 | } |
| 7813 | else |
| 7814 | phys = NCB_SCRIPT_PHYS (np, init)(np->p_script + ((size_t) (&((struct script *)0)->init ))); |
| 7815 | memcpy_to_pci(np->base2_va, np->script0, sizeof(struct script))(__builtin_constant_p(((sizeof(struct script)))) ? __constant_memcpy (((void *)((np->base2_va))),(((np->script0))),(((sizeof (struct script))))) : __memcpy(((void *)((np->base2_va))), (((np->script0))),(((sizeof(struct script)))))); |
| 7816 | #endif /* SCSI_NCR_PCI_MEM_NOT_SUPPORTED */ |
| 7817 | } |
| 7818 | else |
| 7819 | phys = NCB_SCRIPT_PHYS (np, init)(np->p_script + ((size_t) (&((struct script *)0)->init ))); |
| 7820 | |
| 7821 | np->istat_sem = 0; |
| 7822 | |
| 7823 | OUTL (nc_dsa, np->p_ncb)((*(volatile unsigned int *) ((char *)np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_dsa))))) = (((np->p_ncb )))); |
| 7824 | OUTL_DSP (phys)do { do { ; } while(0); ((*(volatile unsigned int *) ((char * )np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_dsp ))))) = ((((phys))))); } while (0); |
| 7825 | } |
| 7826 | |
| 7827 | /*========================================================== |
| 7828 | ** |
| 7829 | ** Prepare the negotiation values for wide and |
| 7830 | ** synchronous transfers. |
| 7831 | ** |
| 7832 | **========================================================== |
| 7833 | */ |
| 7834 | |
| 7835 | static void ncr_negotiate (struct ncb* np, struct tcb* tp) |
| 7836 | { |
| 7837 | /* |
| 7838 | ** minsync unit is 4ns ! |
| 7839 | */ |
| 7840 | |
| 7841 | u_longunsigned long minsync = tp->usrsync; |
| 7842 | |
| 7843 | /* |
| 7844 | ** SCSI bus mode limit |
| 7845 | */ |
| 7846 | |
| 7847 | if (np->scsi_mode && np->scsi_mode == SMODE_SE0x80) { |
| 7848 | if (minsync < 12) minsync = 12; |
| 7849 | } |
| 7850 | |
| 7851 | /* |
| 7852 | ** our limit .. |
| 7853 | */ |
| 7854 | |
| 7855 | if (minsync < np->minsync) |
| 7856 | minsync = np->minsync; |
| 7857 | |
| 7858 | /* |
| 7859 | ** divider limit |
| 7860 | */ |
| 7861 | |
| 7862 | if (minsync > np->maxsync) |
| 7863 | minsync = 255; |
| 7864 | |
| 7865 | tp->minsync = minsync; |
| 7866 | tp->maxoffs = (minsync<255 ? np->maxoffs : 0); |
| 7867 | |
| 7868 | /* |
| 7869 | ** period=0: has to negotiate sync transfer |
| 7870 | */ |
| 7871 | |
| 7872 | tp->period=0; |
| 7873 | |
| 7874 | /* |
| 7875 | ** widedone=0: has to negotiate wide transfer |
| 7876 | */ |
| 7877 | tp->widedone=0; |
| 7878 | } |
| 7879 | |
| 7880 | /*========================================================== |
| 7881 | ** |
| 7882 | ** Get clock factor and sync divisor for a given |
| 7883 | ** synchronous factor period. |
| 7884 | ** Returns the clock factor (in sxfer) and scntl3 |
| 7885 | ** synchronous divisor field. |
| 7886 | ** |
| 7887 | **========================================================== |
| 7888 | */ |
| 7889 | |
| 7890 | static void ncr_getsync(ncb_p np, u_charunsigned char sfac, u_charunsigned char *fakp, u_charunsigned char *scntl3p) |
| 7891 | { |
| 7892 | u_longunsigned long clk = np->clock_khz; /* SCSI clock frequency in kHz */ |
| 7893 | int div = np->clock_divn; /* Number of divisors supported */ |
| 7894 | u_longunsigned long fak; /* Sync factor in sxfer */ |
| 7895 | u_longunsigned long per; /* Period in tenths of ns */ |
| 7896 | u_longunsigned long kpc; /* (per * clk) */ |
| 7897 | |
| 7898 | /* |
| 7899 | ** Compute the synchronous period in tenths of nano-seconds |
| 7900 | ** from sfac. |
| 7901 | ** |
| 7902 | ** Note, if sfac == 9, DT is being used. Double the period of 125 |
| 7903 | ** to 250. |
| 7904 | */ |
| 7905 | if (sfac <= 10) per = 250; |
| 7906 | else if (sfac == 11) per = 303; |
| 7907 | else if (sfac == 12) per = 500; |
| 7908 | else per = 40 * sfac; |
| 7909 | |
| 7910 | /* |
| 7911 | ** Look for the greatest clock divisor that allows an |
| 7912 | ** input speed faster than the period. |
| 7913 | */ |
| 7914 | kpc = per * clk; |
| 7915 | while (--div >= 0) |
| 7916 | if (kpc >= (div_10M[div] << 2)) break; |
| 7917 | |
| 7918 | /* |
| 7919 | ** Calculate the lowest clock factor that allows an output |
| 7920 | ** speed not faster than the period. |
| 7921 | */ |
| 7922 | fak = (kpc - 1) / div_10M[div] + 1; |
| 7923 | |
| 7924 | #if 0 /* This optimization does not seem very usefull */ |
| 7925 | |
| 7926 | per = (fak * div_10M[div]) / clk; |
| 7927 | |
| 7928 | /* |
| 7929 | ** Why not to try the immediate lower divisor and to choose |
| 7930 | ** the one that allows the fastest output speed ? |
| 7931 | ** We dont want input speed too much greater than output speed. |
| 7932 | */ |
| 7933 | if (div >= 1 && fak < 8) { |
| 7934 | u_longunsigned long fak2, per2; |
| 7935 | fak2 = (kpc - 1) / div_10M[div-1] + 1; |
| 7936 | per2 = (fak2 * div_10M[div-1]) / clk; |
| 7937 | if (per2 < per && fak2 <= 8) { |
| 7938 | fak = fak2; |
| 7939 | per = per2; |
| 7940 | --div; |
| 7941 | } |
| 7942 | } |
| 7943 | #endif |
| 7944 | |
| 7945 | if (fak < 4) fak = 4; /* Should never happen, too bad ... */ |
| 7946 | |
| 7947 | /* |
| 7948 | ** Compute and return sync parameters for the ncr |
| 7949 | */ |
| 7950 | *fakp = fak - 4; |
| 7951 | |
| 7952 | /* |
| 7953 | ** If sfac < 25, and 8xx parts, desire that the chip operate at |
| 7954 | ** least at Ultra speeds. Must set bit 7 of scntl3. |
| 7955 | ** For C1010, do not set this bit. If operating at Ultra3 speeds, |
| 7956 | ** set the U3EN bit instead. |
| 7957 | */ |
| 7958 | if ((np->device_id == PCI_DEVICE_ID_LSI_53C10100x20) || |
| 7959 | (np->device_id == PCI_DEVICE_ID_LSI_53C1010_660x21)) { |
| 7960 | *scntl3p = (div+1) << 4; |
| 7961 | *fakp = 0; |
| 7962 | } |
| 7963 | else { |
| 7964 | *scntl3p = ((div+1) << 4) + (sfac < 25 ? 0x80 : 0); |
| 7965 | *fakp = fak - 4; |
| 7966 | } |
| 7967 | } |
| 7968 | |
| 7969 | /*========================================================== |
| 7970 | ** |
| 7971 | ** Utility routine to return the current bus width |
| 7972 | ** synchronous period and offset. |
| 7973 | ** Utilizes target sval, wval and uval |
| 7974 | ** |
| 7975 | **========================================================== |
| 7976 | */ |
| 7977 | static void ncr_get_xfer_info(ncb_p np, tcb_p tp, u_charunsigned char *factor, |
| 7978 | u_charunsigned char *offset, u_charunsigned char *width) |
| 7979 | { |
| 7980 | |
| 7981 | u_charunsigned char idiv; |
| 7982 | u_longunsigned long period; |
| 7983 | |
| 7984 | *width = (tp->wval & EWS0x08) ? 1 : 0; |
| 7985 | |
| 7986 | if ((np->device_id == PCI_DEVICE_ID_LSI_53C10100x20) || |
| 7987 | (np->device_id == PCI_DEVICE_ID_LSI_53C1010_660x21)) |
| 7988 | *offset = (tp->sval & 0x3f); |
| 7989 | else |
| 7990 | *offset = (tp->sval & 0x1f); |
| 7991 | |
| 7992 | /* |
| 7993 | * Midlayer signal to the driver that all of the scsi commands |
| 7994 | * for the integrity check have completed. Save the negotiated |
| 7995 | * parameters (extracted from sval, wval and uval). |
| 7996 | * See ncr_setsync for alg. details. |
| 7997 | */ |
| 7998 | |
| 7999 | idiv = (tp->wval>>4) & 0x07; |
| 8000 | |
| 8001 | if ( *offset && idiv ) { |
| 8002 | if ((np->device_id == PCI_DEVICE_ID_LSI_53C10100x20) || |
| 8003 | (np->device_id == PCI_DEVICE_ID_LSI_53C1010_660x21)){ |
| 8004 | if (tp->uval & 0x80) |
| 8005 | period = (2*div_10M[idiv-1])/np->clock_khz; |
| 8006 | else |
| 8007 | period = (4*div_10M[idiv-1])/np->clock_khz; |
| 8008 | } |
| 8009 | else |
| 8010 | period = (((tp->sval>>5)+4)*div_10M[idiv-1])/np->clock_khz; |
| 8011 | } |
| 8012 | else |
| 8013 | period = 0xffff; |
| 8014 | |
| 8015 | if (period <= 125) *factor = 9; |
| 8016 | else if (period <= 250) *factor = 10; |
| 8017 | else if (period <= 303) *factor = 11; |
| 8018 | else if (period <= 500) *factor = 12; |
| 8019 | else *factor = (period + 40 - 1) / 40; |
| 8020 | |
| 8021 | } |
| 8022 | |
| 8023 | |
| 8024 | /*========================================================== |
| 8025 | ** |
| 8026 | ** Set actual values, sync status and patch all ccbs of |
| 8027 | ** a target according to new sync/wide agreement. |
| 8028 | ** |
| 8029 | **========================================================== |
| 8030 | */ |
| 8031 | |
| 8032 | static void ncr_set_sync_wide_status (ncb_p np, u_charunsigned char target) |
| 8033 | { |
| 8034 | ccb_p cp = np->ccbc; |
| 8035 | tcb_p tp = &np->target[target]; |
| 8036 | |
| 8037 | /* |
| 8038 | ** set actual value and sync_status |
| 8039 | ** |
| 8040 | ** TEMP register contains current scripts address |
| 8041 | ** which is data type/direction/dependent. |
| 8042 | */ |
| 8043 | OUTB (nc_sxfer, tp->sval)((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_sxfer))))) = (((tp->sval )))); |
| 8044 | OUTB (nc_scntl3, tp->wval)((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_scntl3))))) = (((tp-> wval)))); |
| 8045 | if ((np->device_id == PCI_DEVICE_ID_LSI_53C10100x20) || |
| 8046 | (np->device_id == PCI_DEVICE_ID_LSI_53C1010_660x21)) |
| 8047 | OUTB (nc_scntl4, tp->uval)((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_scntl4))))) = (((tp-> uval)))); |
| 8048 | |
| 8049 | /* |
| 8050 | ** patch ALL ccbs of this target. |
| 8051 | */ |
| 8052 | for (cp = np->ccbc; cp; cp = cp->link_ccb) { |
| 8053 | if (cp->host_statusphys.header.status[1] == HS_IDLE(0)) |
| 8054 | continue; |
| 8055 | if (cp->target != target) |
| 8056 | continue; |
| 8057 | cp->phys.select.sel_scntl3 = tp->wval; |
| 8058 | cp->phys.select.sel_sxfer = tp->sval; |
| 8059 | if ((np->device_id == PCI_DEVICE_ID_LSI_53C10100x20) || |
| 8060 | (np->device_id == PCI_DEVICE_ID_LSI_53C1010_660x21)) |
| 8061 | cp->phys.select.sel_scntl4 = tp->uval; |
| 8062 | }; |
| 8063 | } |
| 8064 | |
| 8065 | /*========================================================== |
| 8066 | ** |
| 8067 | ** Switch sync mode for current job and it's target |
| 8068 | ** |
| 8069 | **========================================================== |
| 8070 | */ |
| 8071 | |
| 8072 | static void ncr_setsync (ncb_p np, ccb_p cp, u_charunsigned char scntl3, u_charunsigned char sxfer, |
| 8073 | u_charunsigned char scntl4) |
| 8074 | { |
| 8075 | tcb_p tp; |
| 8076 | u_charunsigned char target = INB (nc_sdid)(*(volatile unsigned char *) ((char *)np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_sdid))))) & 0x0f; |
| 8077 | u_charunsigned char idiv; |
| 8078 | u_charunsigned char offset; |
| 8079 | |
| 8080 | assert (cp){ if (!(cp)) { (void)panic( "assertion \"%s\" failed: file \"%s\", line %d\n" , "cp", "../linux/src/drivers/scsi/sym53c8xx.c", 8080); } }; |
| 8081 | if (!cp) return; |
| 8082 | |
| 8083 | assert (target == (cp->target & 0xf)){ if (!(target == (cp->target & 0xf))) { (void)panic( "assertion \"%s\" failed: file \"%s\", line %d\n" , "target == (cp->target & 0xf)", "../linux/src/drivers/scsi/sym53c8xx.c" , 8083); } }; |
| 8084 | |
| 8085 | tp = &np->target[target]; |
| 8086 | |
| 8087 | if ((np->device_id == PCI_DEVICE_ID_LSI_53C10100x20) || |
| 8088 | (np->device_id == PCI_DEVICE_ID_LSI_53C1010_660x21)) { |
| 8089 | offset = sxfer & 0x3f; /* bits 5-0 */ |
| 8090 | scntl3 = (scntl3 & 0xf0) | (tp->wval & EWS0x08); |
| 8091 | scntl4 = (scntl4 & 0x80); |
| 8092 | } |
| 8093 | else { |
| 8094 | offset = sxfer & 0x1f; /* bits 4-0 */ |
| 8095 | if (!scntl3 || !offset) |
| 8096 | scntl3 = np->rv_scntl3; |
| 8097 | |
| 8098 | scntl3 = (scntl3 & 0xf0) | (tp->wval & EWS0x08) | |
| 8099 | (np->rv_scntl3 & 0x07); |
| 8100 | } |
| 8101 | |
| 8102 | |
| 8103 | /* |
| 8104 | ** Deduce the value of controller sync period from scntl3. |
| 8105 | ** period is in tenths of nano-seconds. |
| 8106 | */ |
| 8107 | |
| 8108 | idiv = ((scntl3 >> 4) & 0x7); |
| 8109 | if ( offset && idiv) { |
| 8110 | if ((np->device_id == PCI_DEVICE_ID_LSI_53C10100x20) || |
| 8111 | (np->device_id == PCI_DEVICE_ID_LSI_53C1010_660x21)) { |
| 8112 | /* Note: If extra data hold clocks are used, |
| 8113 | * the formulas below must be modified. |
| 8114 | * When scntl4 == 0, ST mode. |
| 8115 | */ |
| 8116 | if (scntl4 & 0x80) |
| 8117 | tp->period = (2*div_10M[idiv-1])/np->clock_khz; |
| 8118 | else |
| 8119 | tp->period = (4*div_10M[idiv-1])/np->clock_khz; |
| 8120 | } |
| 8121 | else |
| 8122 | tp->period = (((sxfer>>5)+4)*div_10M[idiv-1])/np->clock_khz; |
| 8123 | } |
| 8124 | else |
| 8125 | tp->period = 0xffff; |
| 8126 | |
| 8127 | |
| 8128 | /* |
| 8129 | ** Stop there if sync parameters are unchanged |
| 8130 | */ |
| 8131 | if (tp->sval == sxfer && tp->wval == scntl3 && tp->uval == scntl4) return; |
| 8132 | tp->sval = sxfer; |
| 8133 | tp->wval = scntl3; |
| 8134 | tp->uval = scntl4; |
| 8135 | |
| 8136 | /* |
| 8137 | ** Bells and whistles ;-) |
| 8138 | ** Donnot announce negotiations due to auto-sense, |
| 8139 | ** unless user really want us to be verbose. :) |
| 8140 | */ |
| 8141 | if ( bootverbose(np->verbose) < 2 && (cp->host_flagsphys.header.status[3] & HF_AUTO_SENSE(1u<<4))) |
| 8142 | goto next; |
| 8143 | PRINT_TARGET(np, target); |
| 8144 | if (offset) { |
| 8145 | unsigned f10 = 100000 << (tp->widedone ? tp->widedone -1 : 0); |
| 8146 | unsigned mb10 = (f10 + tp->period/2) / tp->period; |
| 8147 | char *scsi; |
| 8148 | |
| 8149 | /* |
| 8150 | ** Disable extended Sreq/Sack filtering |
| 8151 | */ |
| 8152 | if ((tp->period <= 2000) && |
| 8153 | (np->device_id != PCI_DEVICE_ID_LSI_53C10100x20) && |
| 8154 | (np->device_id != PCI_DEVICE_ID_LSI_53C1010_660x21)) |
| 8155 | OUTOFFB (nc_stest2, EXT)((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_stest2))))) = ((((*(volatile unsigned char *) ((char *)np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_stest2))))) & ~(0x02))))); |
| 8156 | |
| 8157 | /* |
| 8158 | ** Bells and whistles ;-) |
| 8159 | */ |
| 8160 | if (tp->period < 250) scsi = "FAST-80"; |
| 8161 | else if (tp->period < 500) scsi = "FAST-40"; |
| 8162 | else if (tp->period < 1000) scsi = "FAST-20"; |
| 8163 | else if (tp->period < 2000) scsi = "FAST-10"; |
| 8164 | else scsi = "FAST-5"; |
| 8165 | |
| 8166 | printk ("%s %sSCSI %d.%d MB/s (%d ns, offset %d)\n", scsi, |
| 8167 | tp->widedone > 1 ? "WIDE " : "", |
| 8168 | mb10 / 10, mb10 % 10, tp->period / 10, offset); |
| 8169 | } else |
| 8170 | printk ("%sasynchronous.\n", tp->widedone > 1 ? "wide " : ""); |
| 8171 | next: |
| 8172 | /* |
| 8173 | ** set actual value and sync_status |
| 8174 | ** patch ALL ccbs of this target. |
| 8175 | */ |
| 8176 | ncr_set_sync_wide_status(np, target); |
| 8177 | } |
| 8178 | |
| 8179 | |
| 8180 | /*========================================================== |
| 8181 | ** |
| 8182 | ** Switch wide mode for current job and it's target |
| 8183 | ** SCSI specs say: a SCSI device that accepts a WDTR |
| 8184 | ** message shall reset the synchronous agreement to |
| 8185 | ** asynchronous mode. |
| 8186 | ** |
| 8187 | **========================================================== |
| 8188 | */ |
| 8189 | |
| 8190 | static void ncr_setwide (ncb_p np, ccb_p cp, u_charunsigned char wide, u_charunsigned char ack) |
| 8191 | { |
| 8192 | u_shortunsigned short target = INB (nc_sdid)(*(volatile unsigned char *) ((char *)np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_sdid))))) & 0x0f; |
| 8193 | tcb_p tp; |
| 8194 | u_charunsigned char scntl3; |
| 8195 | u_charunsigned char sxfer; |
| 8196 | |
| 8197 | assert (cp){ if (!(cp)) { (void)panic( "assertion \"%s\" failed: file \"%s\", line %d\n" , "cp", "../linux/src/drivers/scsi/sym53c8xx.c", 8197); } }; |
| 8198 | if (!cp) return; |
| 8199 | |
| 8200 | assert (target == (cp->target & 0xf)){ if (!(target == (cp->target & 0xf))) { (void)panic( "assertion \"%s\" failed: file \"%s\", line %d\n" , "target == (cp->target & 0xf)", "../linux/src/drivers/scsi/sym53c8xx.c" , 8200); } }; |
| 8201 | |
| 8202 | tp = &np->target[target]; |
| 8203 | tp->widedone = wide+1; |
| 8204 | scntl3 = (tp->wval & (~EWS0x08)) | (wide ? EWS0x08 : 0); |
| 8205 | |
| 8206 | sxfer = ack ? 0 : tp->sval; |
| 8207 | |
| 8208 | /* |
| 8209 | ** Stop there if sync/wide parameters are unchanged |
| 8210 | */ |
| 8211 | if (tp->sval == sxfer && tp->wval == scntl3) return; |
| 8212 | tp->sval = sxfer; |
| 8213 | tp->wval = scntl3; |
| 8214 | |
| 8215 | /* |
| 8216 | ** Bells and whistles ;-) |
| 8217 | */ |
| 8218 | if (bootverbose(np->verbose) >= 2) { |
| 8219 | PRINT_TARGET(np, target); |
| 8220 | if (scntl3 & EWS0x08) |
| 8221 | printk ("WIDE SCSI (16 bit) enabled.\n"); |
| 8222 | else |
| 8223 | printk ("WIDE SCSI disabled.\n"); |
| 8224 | } |
| 8225 | |
| 8226 | /* |
| 8227 | ** set actual value and sync_status |
| 8228 | ** patch ALL ccbs of this target. |
| 8229 | */ |
| 8230 | ncr_set_sync_wide_status(np, target); |
| 8231 | } |
| 8232 | |
| 8233 | |
| 8234 | /*========================================================== |
| 8235 | ** |
| 8236 | ** Switch sync/wide mode for current job and it's target |
| 8237 | ** PPR negotiations only |
| 8238 | ** |
| 8239 | **========================================================== |
| 8240 | */ |
| 8241 | |
| 8242 | static void ncr_setsyncwide (ncb_p np, ccb_p cp, u_charunsigned char scntl3, u_charunsigned char sxfer, |
| 8243 | u_charunsigned char scntl4, u_charunsigned char wide) |
| 8244 | { |
| 8245 | tcb_p tp; |
| 8246 | u_charunsigned char target = INB (nc_sdid)(*(volatile unsigned char *) ((char *)np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_sdid))))) & 0x0f; |
| 8247 | u_charunsigned char idiv; |
| 8248 | u_charunsigned char offset; |
| 8249 | |
| 8250 | assert (cp){ if (!(cp)) { (void)panic( "assertion \"%s\" failed: file \"%s\", line %d\n" , "cp", "../linux/src/drivers/scsi/sym53c8xx.c", 8250); } }; |
| 8251 | if (!cp) return; |
| 8252 | |
| 8253 | assert (target == (cp->target & 0xf)){ if (!(target == (cp->target & 0xf))) { (void)panic( "assertion \"%s\" failed: file \"%s\", line %d\n" , "target == (cp->target & 0xf)", "../linux/src/drivers/scsi/sym53c8xx.c" , 8253); } }; |
| 8254 | |
| 8255 | tp = &np->target[target]; |
| 8256 | tp->widedone = wide+1; |
| 8257 | |
| 8258 | if ((np->device_id == PCI_DEVICE_ID_LSI_53C10100x20) || |
| 8259 | (np->device_id == PCI_DEVICE_ID_LSI_53C1010_660x21)) { |
| 8260 | offset = sxfer & 0x3f; /* bits 5-0 */ |
| 8261 | scntl3 = (scntl3 & 0xf0) | (wide ? EWS0x08 : 0); |
| 8262 | scntl4 = (scntl4 & 0x80); |
| 8263 | } |
| 8264 | else { |
| 8265 | offset = sxfer & 0x1f; /* bits 4-0 */ |
| 8266 | if (!scntl3 || !offset) |
| 8267 | scntl3 = np->rv_scntl3; |
| 8268 | |
| 8269 | scntl3 = (scntl3 & 0xf0) | (wide ? EWS0x08 : 0) | |
| 8270 | (np->rv_scntl3 & 0x07); |
| 8271 | } |
| 8272 | |
| 8273 | |
| 8274 | /* |
| 8275 | ** Deduce the value of controller sync period from scntl3. |
| 8276 | ** period is in tenths of nano-seconds. |
| 8277 | */ |
| 8278 | |
| 8279 | idiv = ((scntl3 >> 4) & 0x7); |
| 8280 | if ( offset && idiv) { |
| 8281 | if ((np->device_id == PCI_DEVICE_ID_LSI_53C10100x20) || |
| 8282 | (np->device_id == PCI_DEVICE_ID_LSI_53C1010_660x21)) { |
| 8283 | /* Note: If extra data hold clocks are used, |
| 8284 | * the formulas below must be modified. |
| 8285 | * When scntl4 == 0, ST mode. |
| 8286 | */ |
| 8287 | if (scntl4 & 0x80) |
| 8288 | tp->period = (2*div_10M[idiv-1])/np->clock_khz; |
| 8289 | else |
| 8290 | tp->period = (4*div_10M[idiv-1])/np->clock_khz; |
| 8291 | } |
| 8292 | else |
| 8293 | tp->period = (((sxfer>>5)+4)*div_10M[idiv-1])/np->clock_khz; |
| 8294 | } |
| 8295 | else |
| 8296 | tp->period = 0xffff; |
| 8297 | |
| 8298 | |
| 8299 | /* |
| 8300 | ** Stop there if sync parameters are unchanged |
| 8301 | */ |
| 8302 | if (tp->sval == sxfer && tp->wval == scntl3 && tp->uval == scntl4) return; |
| 8303 | tp->sval = sxfer; |
| 8304 | tp->wval = scntl3; |
| 8305 | tp->uval = scntl4; |
| 8306 | |
| 8307 | /* |
| 8308 | ** Bells and whistles ;-) |
| 8309 | ** Donnot announce negotiations due to auto-sense, |
| 8310 | ** unless user really want us to be verbose. :) |
| 8311 | */ |
| 8312 | if ( bootverbose(np->verbose) < 2 && (cp->host_flagsphys.header.status[3] & HF_AUTO_SENSE(1u<<4))) |
| 8313 | goto next; |
| 8314 | PRINT_TARGET(np, target); |
| 8315 | if (offset) { |
| 8316 | unsigned f10 = 100000 << (tp->widedone ? tp->widedone -1 : 0); |
| 8317 | unsigned mb10 = (f10 + tp->period/2) / tp->period; |
| 8318 | char *scsi; |
| 8319 | |
| 8320 | /* |
| 8321 | ** Disable extended Sreq/Sack filtering |
| 8322 | */ |
| 8323 | if ((tp->period <= 2000) && |
| 8324 | (np->device_id != PCI_DEVICE_ID_LSI_53C10100x20) && |
| 8325 | (np->device_id != PCI_DEVICE_ID_LSI_53C1010_660x21)) |
| 8326 | OUTOFFB (nc_stest2, EXT)((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_stest2))))) = ((((*(volatile unsigned char *) ((char *)np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_stest2))))) & ~(0x02))))); |
| 8327 | |
| 8328 | /* |
| 8329 | ** Bells and whistles ;-) |
| 8330 | */ |
| 8331 | if (tp->period < 250) scsi = "FAST-80"; |
| 8332 | else if (tp->period < 500) scsi = "FAST-40"; |
| 8333 | else if (tp->period < 1000) scsi = "FAST-20"; |
| 8334 | else if (tp->period < 2000) scsi = "FAST-10"; |
| 8335 | else scsi = "FAST-5"; |
| 8336 | |
| 8337 | printk ("%s %sSCSI %d.%d MB/s (%d ns, offset %d)\n", scsi, |
| 8338 | tp->widedone > 1 ? "WIDE " : "", |
| 8339 | mb10 / 10, mb10 % 10, tp->period / 10, offset); |
| 8340 | } else |
| 8341 | printk ("%sasynchronous.\n", tp->widedone > 1 ? "wide " : ""); |
| 8342 | next: |
| 8343 | /* |
| 8344 | ** set actual value and sync_status |
| 8345 | ** patch ALL ccbs of this target. |
| 8346 | */ |
| 8347 | ncr_set_sync_wide_status(np, target); |
| 8348 | } |
| 8349 | |
| 8350 | |
| 8351 | |
| 8352 | |
| 8353 | /*========================================================== |
| 8354 | ** |
| 8355 | ** Switch tagged mode for a target. |
| 8356 | ** |
| 8357 | **========================================================== |
| 8358 | */ |
| 8359 | |
| 8360 | static void ncr_setup_tags (ncb_p np, u_charunsigned char tn, u_charunsigned char ln) |
| 8361 | { |
| 8362 | tcb_p tp = &np->target[tn]; |
| 8363 | lcb_p lp = ncr_lp(np, tp, ln)(!ln) ? (tp)->l0p : (tp)->lmp ? (tp)->lmp[(ln)] : 0; |
| 8364 | u_shortunsigned short reqtags, maxdepth; |
| 8365 | |
| 8366 | /* |
| 8367 | ** Just in case ... |
| 8368 | */ |
| 8369 | if ((!tp) || (!lp)) |
| 8370 | return; |
| 8371 | |
| 8372 | /* |
| 8373 | ** If SCSI device queue depth is not yet set, leave here. |
| 8374 | */ |
| 8375 | if (!lp->scdev_depth) |
| 8376 | return; |
| 8377 | |
| 8378 | /* |
| 8379 | ** Donnot allow more tags than the SCSI driver can queue |
| 8380 | ** for this device. |
| 8381 | ** Donnot allow more tags than we can handle. |
| 8382 | */ |
| 8383 | maxdepth = lp->scdev_depth; |
| 8384 | if (maxdepth > lp->maxnxs) maxdepth = lp->maxnxs; |
| 8385 | if (lp->maxtags > maxdepth) lp->maxtags = maxdepth; |
| 8386 | if (lp->numtags > maxdepth) lp->numtags = maxdepth; |
| 8387 | |
| 8388 | /* |
| 8389 | ** only devices conformant to ANSI Version >= 2 |
| 8390 | ** only devices capable of tagged commands |
| 8391 | ** only if enabled by user .. |
| 8392 | */ |
| 8393 | if ((lp->inq_byte7 & INQ7_QUEUE(0x02)) && lp->numtags > 1) { |
| 8394 | reqtags = lp->numtags; |
| 8395 | } else { |
| 8396 | reqtags = 1; |
| 8397 | }; |
| 8398 | |
| 8399 | /* |
| 8400 | ** Update max number of tags |
| 8401 | */ |
| 8402 | lp->numtags = reqtags; |
| 8403 | if (lp->numtags > lp->maxtags) |
| 8404 | lp->maxtags = lp->numtags; |
| 8405 | |
| 8406 | /* |
| 8407 | ** If we want to switch tag mode, we must wait |
| 8408 | ** for no CCB to be active. |
| 8409 | */ |
| 8410 | if (reqtags > 1 && lp->usetags) { /* Stay in tagged mode */ |
| 8411 | if (lp->queuedepth == reqtags) /* Already announced */ |
| 8412 | return; |
| 8413 | lp->queuedepth = reqtags; |
| 8414 | } |
| 8415 | else if (reqtags <= 1 && !lp->usetags) { /* Stay in untagged mode */ |
| 8416 | lp->queuedepth = reqtags; |
| 8417 | return; |
| 8418 | } |
| 8419 | else { /* Want to switch tag mode */ |
| 8420 | if (lp->busyccbs) /* If not yet safe, return */ |
| 8421 | return; |
| 8422 | lp->queuedepth = reqtags; |
| 8423 | lp->usetags = reqtags > 1 ? 1 : 0; |
| 8424 | } |
| 8425 | |
| 8426 | /* |
| 8427 | ** Patch the lun mini-script, according to tag mode. |
| 8428 | */ |
| 8429 | lp->resel_task = lp->usetags? |
| 8430 | cpu_to_scr(NCB_SCRIPT_PHYS(np, resel_tag))((np->p_script + ((size_t) (&((struct script *)0)-> resel_tag)))) : |
| 8431 | cpu_to_scr(NCB_SCRIPT_PHYS(np, resel_notag))((np->p_script + ((size_t) (&((struct script *)0)-> resel_notag)))); |
| 8432 | |
| 8433 | /* |
| 8434 | ** Announce change to user. |
| 8435 | */ |
| 8436 | if (bootverbose(np->verbose)) { |
| 8437 | PRINT_LUN(np, tn, ln); |
| 8438 | if (lp->usetags) |
| 8439 | printk("tagged command queue depth set to %d\n", reqtags); |
| 8440 | else |
| 8441 | printk("tagged command queueing disabled\n"); |
| 8442 | } |
| 8443 | } |
| 8444 | |
| 8445 | /*---------------------------------------------------- |
| 8446 | ** |
| 8447 | ** handle user commands |
| 8448 | ** |
| 8449 | **---------------------------------------------------- |
| 8450 | */ |
| 8451 | |
| 8452 | #ifdef SCSI_NCR_USER_COMMAND_SUPPORT |
| 8453 | |
| 8454 | static void ncr_usercmd (ncb_p np) |
| 8455 | { |
| 8456 | u_charunsigned char t; |
| 8457 | tcb_p tp; |
| 8458 | int ln; |
| 8459 | u_longunsigned long size; |
| 8460 | |
| 8461 | switch (np->user.cmd) { |
| 8462 | case 0: return; |
| 8463 | |
| 8464 | case UC_SETDEBUG12: |
| 8465 | #ifdef SCSI_NCR_DEBUG_INFO_SUPPORT |
| 8466 | ncr_debug = np->user.data; |
| 8467 | #endif |
| 8468 | break; |
| 8469 | |
| 8470 | case UC_SETORDER13: |
| 8471 | np->order = np->user.data; |
| 8472 | break; |
| 8473 | |
| 8474 | case UC_SETVERBOSE17: |
| 8475 | np->verbose = np->user.data; |
| 8476 | break; |
| 8477 | |
| 8478 | default: |
| 8479 | /* |
| 8480 | ** We assume that other commands apply to targets. |
| 8481 | ** This should always be the case and avoid the below |
| 8482 | ** 4 lines to be repeated 5 times. |
| 8483 | */ |
| 8484 | for (t = 0; t < MAX_TARGET((16)); t++) { |
| 8485 | if (!((np->user.target >> t) & 1)) |
| 8486 | continue; |
| 8487 | tp = &np->target[t]; |
| 8488 | |
| 8489 | switch (np->user.cmd) { |
| 8490 | |
| 8491 | case UC_SETSYNC10: |
| 8492 | tp->usrsync = np->user.data; |
| 8493 | ncr_negotiate (np, tp); |
| 8494 | break; |
| 8495 | |
| 8496 | case UC_SETWIDE14: |
| 8497 | size = np->user.data; |
| 8498 | if (size > np->maxwide) |
| 8499 | size=np->maxwide; |
| 8500 | tp->usrwide = size; |
| 8501 | ncr_negotiate (np, tp); |
| 8502 | break; |
| 8503 | |
| 8504 | case UC_SETTAGS11: |
| 8505 | tp->usrtags = np->user.data; |
| 8506 | for (ln = 0; ln < MAX_LUN64; ln++) { |
| 8507 | lcb_p lp; |
| 8508 | lp = ncr_lp(np, tp, ln)(!ln) ? (tp)->l0p : (tp)->lmp ? (tp)->lmp[(ln)] : 0; |
| 8509 | if (!lp) |
| 8510 | continue; |
| 8511 | lp->numtags = np->user.data; |
| 8512 | lp->maxtags = lp->numtags; |
| 8513 | ncr_setup_tags (np, t, ln); |
| 8514 | } |
| 8515 | break; |
| 8516 | |
| 8517 | case UC_RESETDEV18: |
| 8518 | tp->to_reset = 1; |
| 8519 | np->istat_sem = SEM0x10; |
| 8520 | OUTB (nc_istat, SIGP|SEM)((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_istat))))) = (((0x20|0x10 )))); |
| 8521 | break; |
| 8522 | |
| 8523 | case UC_CLEARDEV19: |
| 8524 | for (ln = 0; ln < MAX_LUN64; ln++) { |
| 8525 | lcb_p lp; |
| 8526 | lp = ncr_lp(np, tp, ln)(!ln) ? (tp)->l0p : (tp)->lmp ? (tp)->lmp[(ln)] : 0; |
| 8527 | if (lp) |
| 8528 | lp->to_clear = 1; |
| 8529 | } |
| 8530 | np->istat_sem = SEM0x10; |
| 8531 | OUTB (nc_istat, SIGP|SEM)((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_istat))))) = (((0x20|0x10 )))); |
| 8532 | break; |
| 8533 | |
| 8534 | case UC_SETFLAG15: |
| 8535 | tp->usrflag = np->user.data; |
| 8536 | break; |
| 8537 | } |
| 8538 | } |
| 8539 | break; |
| 8540 | } |
| 8541 | np->user.cmd=0; |
| 8542 | } |
| 8543 | #endif |
| 8544 | |
| 8545 | /*========================================================== |
| 8546 | ** |
| 8547 | ** |
| 8548 | ** ncr timeout handler. |
| 8549 | ** |
| 8550 | ** |
| 8551 | **========================================================== |
| 8552 | ** |
| 8553 | ** Misused to keep the driver running when |
| 8554 | ** interrupts are not configured correctly. |
| 8555 | ** |
| 8556 | **---------------------------------------------------------- |
| 8557 | */ |
| 8558 | |
| 8559 | static void ncr_timeout (ncb_p np) |
| 8560 | { |
| 8561 | u_longunsigned long thistime = ktime_get(0)(jiffies + (unsigned long) 0); |
| 8562 | |
| 8563 | /* |
| 8564 | ** If release process in progress, let's go |
| 8565 | ** Set the release stage from 1 to 2 to synchronize |
| 8566 | ** with the release process. |
| 8567 | */ |
| 8568 | |
| 8569 | if (np->release_stage) { |
| 8570 | if (np->release_stage == 1) np->release_stage = 2; |
| 8571 | return; |
| 8572 | } |
| 8573 | |
| 8574 | #ifdef SCSI_NCR_PCIQ_BROKEN_INTR |
| 8575 | np->timer.expires = ktime_get((HZ+9)/10)(jiffies + (unsigned long) (100 +9)/10); |
| 8576 | #else |
| 8577 | np->timer.expires = ktime_get(SCSI_NCR_TIMER_INTERVAL)(jiffies + (unsigned long) (100)); |
| 8578 | #endif |
| 8579 | add_timer(&np->timer); |
| 8580 | |
| 8581 | /* |
| 8582 | ** If we are resetting the ncr, wait for settle_time before |
| 8583 | ** clearing it. Then command processing will be resumed. |
| 8584 | */ |
| 8585 | if (np->settle_time) { |
| 8586 | if (np->settle_time <= thistime) { |
| 8587 | if (bootverbose(np->verbose) > 1) |
| 8588 | printk("%s: command processing resumed\n", ncr_name(np)); |
| 8589 | np->settle_time = 0; |
| 8590 | requeue_waiting_list(np)process_waiting_list((np), 0x00); |
| 8591 | } |
| 8592 | return; |
| 8593 | } |
| 8594 | |
| 8595 | /* |
| 8596 | ** Nothing to do for now, but that may come. |
| 8597 | */ |
| 8598 | if (np->lasttime + 4*HZ100 < thistime) { |
| 8599 | np->lasttime = thistime; |
| 8600 | } |
| 8601 | |
| 8602 | #ifdef SCSI_NCR_PCIQ_MAY_MISS_COMPLETIONS |
| 8603 | /* |
| 8604 | ** Some way-broken PCI bridges may lead to |
| 8605 | ** completions being lost when the clearing |
| 8606 | ** of the INTFLY flag by the CPU occurs |
| 8607 | ** concurrently with the chip raising this flag. |
| 8608 | ** If this ever happen, lost completions will |
| 8609 | ** be reaped here. |
| 8610 | */ |
| 8611 | ncr_wakeup_done(np); |
| 8612 | #endif |
| 8613 | |
| 8614 | #ifdef SCSI_NCR_PCIQ_BROKEN_INTR |
| 8615 | if (INB(nc_istat)(*(volatile unsigned char *) ((char *)np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_istat))))) & (INTF0x04|SIP0x02|DIP0x01)) { |
| 8616 | |
| 8617 | /* |
| 8618 | ** Process pending interrupts. |
| 8619 | */ |
| 8620 | if (DEBUG_FLAGSncr_debug & DEBUG_TINY(0x0080)) printk ("{"); |
| 8621 | ncr_exception (np); |
| 8622 | if (DEBUG_FLAGSncr_debug & DEBUG_TINY(0x0080)) printk ("}"); |
| 8623 | } |
| 8624 | #endif /* SCSI_NCR_PCIQ_BROKEN_INTR */ |
| 8625 | } |
| 8626 | |
| 8627 | /*========================================================== |
| 8628 | ** |
| 8629 | ** log message for real hard errors |
| 8630 | ** |
| 8631 | ** "ncr0 targ 0?: ERROR (ds:si) (so-si-sd) (sxfer/scntl3) @ name (dsp:dbc)." |
| 8632 | ** " reg: r0 r1 r2 r3 r4 r5 r6 ..... rf." |
| 8633 | ** |
| 8634 | ** exception register: |
| 8635 | ** ds: dstat |
| 8636 | ** si: sist |
| 8637 | ** |
| 8638 | ** SCSI bus lines: |
| 8639 | ** so: control lines as driven by NCR. |
| 8640 | ** si: control lines as seen by NCR. |
| 8641 | ** sd: scsi data lines as seen by NCR. |
| 8642 | ** |
| 8643 | ** wide/fastmode: |
| 8644 | ** sxfer: (see the manual) |
| 8645 | ** scntl3: (see the manual) |
| 8646 | ** |
| 8647 | ** current script command: |
| 8648 | ** dsp: script address (relative to start of script). |
| 8649 | ** dbc: first word of script command. |
| 8650 | ** |
| 8651 | ** First 24 register of the chip: |
| 8652 | ** r0..rf |
| 8653 | ** |
| 8654 | **========================================================== |
| 8655 | */ |
| 8656 | |
| 8657 | static void ncr_log_hard_error(ncb_p np, u_shortunsigned short sist, u_charunsigned char dstat) |
| 8658 | { |
| 8659 | u_int32 dsp; |
| 8660 | int script_ofs; |
| 8661 | int script_size; |
| 8662 | char *script_name; |
| 8663 | u_charunsigned char *script_base; |
| 8664 | int i; |
| 8665 | |
| 8666 | dsp = INL (nc_dsp)(*(volatile unsigned int *) ((char *)np->reg + (((size_t) ( &((struct ncr_reg *)0)->nc_dsp))))); |
| 8667 | |
| 8668 | if (dsp > np->p_script && dsp <= np->p_script + sizeof(struct script)) { |
| 8669 | script_ofs = dsp - np->p_script; |
| 8670 | script_size = sizeof(struct script); |
| 8671 | script_base = (u_charunsigned char *) np->script0; |
| 8672 | script_name = "script"; |
| 8673 | } |
| 8674 | else if (np->p_scripth < dsp && |
| 8675 | dsp <= np->p_scripth + sizeof(struct scripth)) { |
| 8676 | script_ofs = dsp - np->p_scripth; |
| 8677 | script_size = sizeof(struct scripth); |
| 8678 | script_base = (u_charunsigned char *) np->scripth0; |
| 8679 | script_name = "scripth"; |
| 8680 | } else { |
| 8681 | script_ofs = dsp; |
| 8682 | script_size = 0; |
| 8683 | script_base = 0; |
| 8684 | script_name = "mem"; |
| 8685 | } |
| 8686 | |
| 8687 | printk ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x) @ (%s %x:%08x).\n", |
| 8688 | ncr_name (np), (unsigned)INB (nc_sdid)(*(volatile unsigned char *) ((char *)np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_sdid)))))&0x0f, dstat, sist, |
| 8689 | (unsigned)INB (nc_socl)(*(volatile unsigned char *) ((char *)np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_socl))))), (unsigned)INB (nc_sbcl)(*(volatile unsigned char *) ((char *)np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_sbcl))))), (unsigned)INB (nc_sbdl)(*(volatile unsigned char *) ((char *)np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_sbdl))))), |
| 8690 | (unsigned)INB (nc_sxfer)(*(volatile unsigned char *) ((char *)np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_sxfer))))),(unsigned)INB (nc_scntl3)(*(volatile unsigned char *) ((char *)np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_scntl3))))), script_name, script_ofs, |
| 8691 | (unsigned)INL (nc_dbc)(*(volatile unsigned int *) ((char *)np->reg + (((size_t) ( &((struct ncr_reg *)0)->nc_dbc)))))); |
| 8692 | |
| 8693 | if (((script_ofs & 3) == 0) && |
| 8694 | (unsigned)script_ofs < script_size) { |
| 8695 | printk ("%s: script cmd = %08x\n", ncr_name(np), |
| 8696 | scr_to_cpu((int) *(ncrcmd *)(script_base + script_ofs))((int) *(ncrcmd *)(script_base + script_ofs))); |
| 8697 | } |
| 8698 | |
| 8699 | printk ("%s: regdump:", ncr_name(np)); |
| 8700 | for (i=0; i<24;i++) |
| 8701 | printk (" %02x", (unsigned)INB_OFF(i)(*(volatile unsigned char *) ((char *)np->reg + (i)))); |
| 8702 | printk (".\n"); |
| 8703 | } |
| 8704 | |
| 8705 | /*============================================================ |
| 8706 | ** |
| 8707 | ** ncr chip exception handler. |
| 8708 | ** |
| 8709 | **============================================================ |
| 8710 | ** |
| 8711 | ** In normal situations, interrupt conditions occur one at |
| 8712 | ** a time. But when something bad happens on the SCSI BUS, |
| 8713 | ** the chip may raise several interrupt flags before |
| 8714 | ** stopping and interrupting the CPU. The additionnal |
| 8715 | ** interrupt flags are stacked in some extra registers |
| 8716 | ** after the SIP and/or DIP flag has been raised in the |
| 8717 | ** ISTAT. After the CPU has read the interrupt condition |
| 8718 | ** flag from SIST or DSTAT, the chip unstacks the other |
| 8719 | ** interrupt flags and sets the corresponding bits in |
| 8720 | ** SIST or DSTAT. Since the chip starts stacking once the |
| 8721 | ** SIP or DIP flag is set, there is a small window of time |
| 8722 | ** where the stacking does not occur. |
| 8723 | ** |
| 8724 | ** Typically, multiple interrupt conditions may happen in |
| 8725 | ** the following situations: |
| 8726 | ** |
| 8727 | ** - SCSI parity error + Phase mismatch (PAR|MA) |
| 8728 | ** When an parity error is detected in input phase |
| 8729 | ** and the device switches to msg-in phase inside a |
| 8730 | ** block MOV. |
| 8731 | ** - SCSI parity error + Unexpected disconnect (PAR|UDC) |
| 8732 | ** When a stupid device does not want to handle the |
| 8733 | ** recovery of an SCSI parity error. |
| 8734 | ** - Some combinations of STO, PAR, UDC, ... |
| 8735 | ** When using non compliant SCSI stuff, when user is |
| 8736 | ** doing non compliant hot tampering on the BUS, when |
| 8737 | ** something really bad happens to a device, etc ... |
| 8738 | ** |
| 8739 | ** The heuristic suggested by SYMBIOS to handle |
| 8740 | ** multiple interrupts is to try unstacking all |
| 8741 | ** interrupts conditions and to handle them on some |
| 8742 | ** priority based on error severity. |
| 8743 | ** This will work when the unstacking has been |
| 8744 | ** successful, but we cannot be 100 % sure of that, |
| 8745 | ** since the CPU may have been faster to unstack than |
| 8746 | ** the chip is able to stack. Hmmm ... But it seems that |
| 8747 | ** such a situation is very unlikely to happen. |
| 8748 | ** |
| 8749 | ** If this happen, for example STO catched by the CPU |
| 8750 | ** then UDC happenning before the CPU have restarted |
| 8751 | ** the SCRIPTS, the driver may wrongly complete the |
| 8752 | ** same command on UDC, since the SCRIPTS didn't restart |
| 8753 | ** and the DSA still points to the same command. |
| 8754 | ** We avoid this situation by setting the DSA to an |
| 8755 | ** invalid value when the CCB is completed and before |
| 8756 | ** restarting the SCRIPTS. |
| 8757 | ** |
| 8758 | ** Another issue is that we need some section of our |
| 8759 | ** recovery procedures to be somehow uninterruptible and |
| 8760 | ** that the SCRIPTS processor does not provides such a |
| 8761 | ** feature. For this reason, we handle recovery preferently |
| 8762 | ** from the C code and check against some SCRIPTS |
| 8763 | ** critical sections from the C code. |
| 8764 | ** |
| 8765 | ** Hopefully, the interrupt handling of the driver is now |
| 8766 | ** able to resist to weird BUS error conditions, but donnot |
| 8767 | ** ask me for any guarantee that it will never fail. :-) |
| 8768 | ** Use at your own decision and risk. |
| 8769 | ** |
| 8770 | **============================================================ |
| 8771 | */ |
| 8772 | |
| 8773 | void ncr_exception (ncb_p np) |
| 8774 | { |
| 8775 | u_charunsigned char istat, istatc; |
| 8776 | u_charunsigned char dstat; |
| 8777 | u_shortunsigned short sist; |
| 8778 | int i; |
| 8779 | |
| 8780 | /* |
| 8781 | ** interrupt on the fly ? |
| 8782 | ** |
| 8783 | ** A `dummy read' is needed to ensure that the |
| 8784 | ** clear of the INTF flag reaches the device |
| 8785 | ** before the scanning of the DONE queue. |
| 8786 | */ |
| 8787 | istat = INB (nc_istat)(*(volatile unsigned char *) ((char *)np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_istat))))); |
| 8788 | if (istat & INTF0x04) { |
| 8789 | OUTB (nc_istat, (istat & SIGP) | INTF | np->istat_sem)((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_istat))))) = ((((istat & 0x20) | 0x04 | np->istat_sem)))); |
| 8790 | istat = INB (nc_istat)(*(volatile unsigned char *) ((char *)np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_istat))))); /* DUMMY READ */ |
| 8791 | if (DEBUG_FLAGSncr_debug & DEBUG_TINY(0x0080)) printk ("F "); |
| 8792 | (void)ncr_wakeup_done (np); |
| 8793 | }; |
| 8794 | |
| 8795 | if (!(istat & (SIP0x02|DIP0x01))) |
| 8796 | return; |
| 8797 | |
| 8798 | #if 0 /* We should never get this one */ |
| 8799 | if (istat & CABRT0x80) |
| 8800 | OUTB (nc_istat, CABRT)((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_istat))))) = (((0x80)))); |
| 8801 | #endif |
| 8802 | |
| 8803 | /* |
| 8804 | ** Steinbach's Guideline for Systems Programming: |
| 8805 | ** Never test for an error condition you don't know how to handle. |
| 8806 | */ |
| 8807 | |
| 8808 | /*======================================================== |
| 8809 | ** PAR and MA interrupts may occur at the same time, |
| 8810 | ** and we need to know of both in order to handle |
| 8811 | ** this situation properly. We try to unstack SCSI |
| 8812 | ** interrupts for that reason. BTW, I dislike a LOT |
| 8813 | ** such a loop inside the interrupt routine. |
| 8814 | ** Even if DMA interrupt stacking is very unlikely to |
| 8815 | ** happen, we also try unstacking these ones, since |
| 8816 | ** this has no performance impact. |
| 8817 | **========================================================= |
| 8818 | */ |
| 8819 | sist = 0; |
| 8820 | dstat = 0; |
| 8821 | istatc = istat; |
| 8822 | do { |
| 8823 | if (istatc & SIP0x02) |
| 8824 | sist |= INW (nc_sist)(*(volatile unsigned short *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_sist))))); |
| 8825 | if (istatc & DIP0x01) |
| 8826 | dstat |= INB (nc_dstat)(*(volatile unsigned char *) ((char *)np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_dstat))))); |
| 8827 | istatc = INB (nc_istat)(*(volatile unsigned char *) ((char *)np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_istat))))); |
| 8828 | istat |= istatc; |
| 8829 | } while (istatc & (SIP0x02|DIP0x01)); |
| 8830 | |
| 8831 | if (DEBUG_FLAGSncr_debug & DEBUG_TINY(0x0080)) |
| 8832 | printk ("<%d|%x:%x|%x:%x>", |
| 8833 | (int)INB(nc_scr0)(*(volatile unsigned char *) ((char *)np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_scr0))))), |
| 8834 | dstat,sist, |
| 8835 | (unsigned)INL(nc_dsp)(*(volatile unsigned int *) ((char *)np->reg + (((size_t) ( &((struct ncr_reg *)0)->nc_dsp))))), |
| 8836 | (unsigned)INL(nc_dbc)(*(volatile unsigned int *) ((char *)np->reg + (((size_t) ( &((struct ncr_reg *)0)->nc_dbc)))))); |
| 8837 | |
| 8838 | /* |
| 8839 | ** On paper, a memory barrier may be needed here. |
| 8840 | ** And since we are paranoid ... :) |
| 8841 | */ |
| 8842 | MEMORY_BARRIER()do { ; } while(0); |
| 8843 | |
| 8844 | /*======================================================== |
| 8845 | ** First, interrupts we want to service cleanly. |
| 8846 | ** |
| 8847 | ** Phase mismatch (MA) is the most frequent interrupt |
| 8848 | ** for chip earlier than the 896 and so we have to service |
| 8849 | ** it as quickly as possible. |
| 8850 | ** A SCSI parity error (PAR) may be combined with a phase |
| 8851 | ** mismatch condition (MA). |
| 8852 | ** Programmed interrupts (SIR) are used to call the C code |
| 8853 | ** from SCRIPTS. |
| 8854 | ** The single step interrupt (SSI) is not used in this |
| 8855 | ** driver. |
| 8856 | **========================================================= |
| 8857 | */ |
| 8858 | |
| 8859 | if (!(sist & (STO0x0400|GEN0x0200|HTH0x0100|SGE0x08|UDC0x04|SBMC0x1000|RST0x02)) && |
| 8860 | !(dstat & (MDPE0x40|BF0x20|ABRT0x10|IID0x01))) { |
| 8861 | if (sist & PAR0x01) ncr_int_par (np, sist); |
| 8862 | else if (sist & MA0x80) ncr_int_ma (np); |
| 8863 | else if (dstat & SIR0x04) ncr_int_sir (np); |
| 8864 | else if (dstat & SSI0x08) OUTONB_STD ()do { do { ; } while(0); ((*(volatile unsigned char *) ((char * )np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_dcntl ))))) = ((((*(volatile unsigned char *) ((char *)np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_dcntl))))) | ( (0x04|0x01)))))); } while (0); |
| 8865 | else goto unknown_int; |
| 8866 | return; |
| 8867 | }; |
| 8868 | |
| 8869 | /*======================================================== |
| 8870 | ** Now, interrupts that donnot happen in normal |
| 8871 | ** situations and that we may need to recover from. |
| 8872 | ** |
| 8873 | ** On SCSI RESET (RST), we reset everything. |
| 8874 | ** On SCSI BUS MODE CHANGE (SBMC), we complete all |
| 8875 | ** active CCBs with RESET status, prepare all devices |
| 8876 | ** for negotiating again and restart the SCRIPTS. |
| 8877 | ** On STO and UDC, we complete the CCB with the corres- |
| 8878 | ** ponding status and restart the SCRIPTS. |
| 8879 | **========================================================= |
| 8880 | */ |
| 8881 | |
| 8882 | if (sist & RST0x02) { |
| 8883 | ncr_init (np, 1, bootverbose(np->verbose) ? "scsi reset" : NULL((void *) 0), HS_RESET(6|(0x80))); |
| 8884 | return; |
| 8885 | }; |
| 8886 | |
| 8887 | OUTB (nc_ctest3, np->rv_ctest3 | CLF)((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_ctest3))))) = (((np-> rv_ctest3 | 0x04)))); /* clear dma fifo */ |
| 8888 | OUTB (nc_stest3, TE|CSF)((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_stest3))))) = (((0x80|0x02 )))); /* clear scsi fifo */ |
| 8889 | |
| 8890 | if (!(sist & (GEN0x0200|HTH0x0100|SGE0x08)) && |
| 8891 | !(dstat & (MDPE0x40|BF0x20|ABRT0x10|IID0x01))) { |
| 8892 | if (sist & SBMC0x1000) ncr_int_sbmc (np); |
| 8893 | else if (sist & STO0x0400) ncr_int_sto (np); |
| 8894 | else if (sist & UDC0x04) ncr_int_udc (np); |
| 8895 | else goto unknown_int; |
| 8896 | return; |
| 8897 | }; |
| 8898 | |
| 8899 | /*========================================================= |
| 8900 | ** Now, interrupts we are not able to recover cleanly. |
| 8901 | ** |
| 8902 | ** Do the register dump. |
| 8903 | ** Log message for hard errors. |
| 8904 | ** Reset everything. |
| 8905 | **========================================================= |
| 8906 | */ |
| 8907 | if (ktime_exp(np->regtime)((long)(jiffies) - (long)(np->regtime) >= 0)) { |
| 8908 | np->regtime = ktime_get(10*HZ)(jiffies + (unsigned long) 10*100); |
| 8909 | for (i = 0; i<sizeof(np->regdump); i++) |
| 8910 | ((char*)&np->regdump)[i] = INB_OFF(i)(*(volatile unsigned char *) ((char *)np->reg + (i))); |
| 8911 | np->regdump.nc_dstat = dstat; |
| 8912 | np->regdump.nc_sist = sist; |
| 8913 | }; |
| 8914 | |
| 8915 | ncr_log_hard_error(np, sist, dstat); |
| 8916 | |
| 8917 | if ((np->device_id == PCI_DEVICE_ID_LSI_53C10100x20) || |
| 8918 | (np->device_id == PCI_DEVICE_ID_LSI_53C1010_660x21)) { |
| 8919 | u_charunsigned char ctest4_o, ctest4_m; |
| 8920 | u_charunsigned char shadow; |
| 8921 | |
| 8922 | /* |
| 8923 | * Get shadow register data |
| 8924 | * Write 1 to ctest4 |
| 8925 | */ |
| 8926 | ctest4_o = INB(nc_ctest4)(*(volatile unsigned char *) ((char *)np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_ctest4))))); |
| 8927 | |
| 8928 | OUTB(nc_ctest4, ctest4_o | 0x10)((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_ctest4))))) = (((ctest4_o | 0x10)))); |
| 8929 | |
| 8930 | ctest4_m = INB(nc_ctest4)(*(volatile unsigned char *) ((char *)np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_ctest4))))); |
| 8931 | shadow = INW_OFF(0x42)(*(volatile unsigned short *) ((char *)np->reg + (0x42))); |
| 8932 | |
| 8933 | OUTB(nc_ctest4, ctest4_o)((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_ctest4))))) = (((ctest4_o )))); |
| 8934 | |
| 8935 | printk("%s: ctest4/sist original 0x%x/0x%X mod: 0x%X/0x%x\n", |
| 8936 | ncr_name(np), ctest4_o, sist, ctest4_m, shadow); |
| 8937 | } |
| 8938 | |
| 8939 | if ((sist & (GEN0x0200|HTH0x0100|SGE0x08)) || |
| 8940 | (dstat & (MDPE0x40|BF0x20|ABRT0x10|IID0x01))) { |
| 8941 | ncr_start_reset(np); |
| 8942 | return; |
| 8943 | }; |
| 8944 | |
| 8945 | unknown_int: |
| 8946 | /*========================================================= |
| 8947 | ** We just miss the cause of the interrupt. :( |
| 8948 | ** Print a message. The timeout will do the real work. |
| 8949 | **========================================================= |
| 8950 | */ |
| 8951 | printk( "%s: unknown interrupt(s) ignored, " |
| 8952 | "ISTAT=0x%x DSTAT=0x%x SIST=0x%x\n", |
| 8953 | ncr_name(np), istat, dstat, sist); |
| 8954 | } |
| 8955 | |
| 8956 | |
| 8957 | /*========================================================== |
| 8958 | ** |
| 8959 | ** generic recovery from scsi interrupt |
| 8960 | ** |
| 8961 | **========================================================== |
| 8962 | ** |
| 8963 | ** The doc says that when the chip gets an SCSI interrupt, |
| 8964 | ** it tries to stop in an orderly fashion, by completing |
| 8965 | ** an instruction fetch that had started or by flushing |
| 8966 | ** the DMA fifo for a write to memory that was executing. |
| 8967 | ** Such a fashion is not enough to know if the instruction |
| 8968 | ** that was just before the current DSP value has been |
| 8969 | ** executed or not. |
| 8970 | ** |
| 8971 | ** There are 3 small SCRIPTS sections that deal with the |
| 8972 | ** start queue and the done queue that may break any |
| 8973 | ** assomption from the C code if we are interrupted |
| 8974 | ** inside, so we reset if it happens. Btw, since these |
| 8975 | ** SCRIPTS sections are executed while the SCRIPTS hasn't |
| 8976 | ** started SCSI operations, it is very unlikely to happen. |
| 8977 | ** |
| 8978 | ** All the driver data structures are supposed to be |
| 8979 | ** allocated from the same 4 GB memory window, so there |
| 8980 | ** is a 1 to 1 relationship between DSA and driver data |
| 8981 | ** structures. Since we are careful :) to invalidate the |
| 8982 | ** DSA when we complete a command or when the SCRIPTS |
| 8983 | ** pushes a DSA into a queue, we can trust it when it |
| 8984 | ** points to a CCB. |
| 8985 | ** |
| 8986 | **---------------------------------------------------------- |
| 8987 | */ |
| 8988 | static void ncr_recover_scsi_int (ncb_p np, u_charunsigned char hsts) |
| 8989 | { |
| 8990 | u_int32 dsp = INL (nc_dsp)(*(volatile unsigned int *) ((char *)np->reg + (((size_t) ( &((struct ncr_reg *)0)->nc_dsp))))); |
| 8991 | u_int32 dsa = INL (nc_dsa)(*(volatile unsigned int *) ((char *)np->reg + (((size_t) ( &((struct ncr_reg *)0)->nc_dsa))))); |
| 8992 | ccb_p cp = ncr_ccb_from_dsa(np, dsa); |
| 8993 | |
| 8994 | /* |
| 8995 | ** If we haven't been interrupted inside the SCRIPTS |
| 8996 | ** critical pathes, we can safely restart the SCRIPTS |
| 8997 | ** and trust the DSA value if it matches a CCB. |
| 8998 | */ |
| 8999 | if ((!(dsp > NCB_SCRIPT_PHYS (np, getjob_begin)(np->p_script + ((size_t) (&((struct script *)0)->getjob_begin ))) && |
| 9000 | dsp < NCB_SCRIPT_PHYS (np, getjob_end)(np->p_script + ((size_t) (&((struct script *)0)->getjob_end ))) + 1)) && |
| 9001 | (!(dsp > NCB_SCRIPT_PHYS (np, ungetjob)(np->p_script + ((size_t) (&((struct script *)0)->ungetjob ))) && |
| 9002 | dsp < NCB_SCRIPT_PHYS (np, reselect)(np->p_script + ((size_t) (&((struct script *)0)->reselect ))) + 1)) && |
| 9003 | (!(dsp > NCB_SCRIPTH_PHYS (np, sel_for_abort)(np->p_scripth + ((size_t) (&((struct scripth *)0)-> sel_for_abort))) && |
| 9004 | dsp < NCB_SCRIPTH_PHYS (np, sel_for_abort_1)(np->p_scripth + ((size_t) (&((struct scripth *)0)-> sel_for_abort_1))) + 1)) && |
| 9005 | (!(dsp > NCB_SCRIPT_PHYS (np, done)(np->p_script + ((size_t) (&((struct script *)0)->done ))) && |
| 9006 | dsp < NCB_SCRIPT_PHYS (np, done_end)(np->p_script + ((size_t) (&((struct script *)0)->done_end ))) + 1))) { |
| 9007 | if (cp) { |
| 9008 | cp->host_statusphys.header.status[1] = hsts; |
| 9009 | ncr_complete (np, cp); |
| 9010 | } |
| 9011 | OUTL (nc_dsa, DSA_INVALID)((*(volatile unsigned int *) ((char *)np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_dsa))))) = (((0xffffffff) ))); |
| 9012 | OUTB (nc_ctest3, np->rv_ctest3 | CLF)((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_ctest3))))) = (((np-> rv_ctest3 | 0x04)))); /* clear dma fifo */ |
| 9013 | OUTB (nc_stest3, TE|CSF)((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_stest3))))) = (((0x80|0x02 )))); /* clear scsi fifo */ |
| 9014 | OUTL_DSP (NCB_SCRIPT_PHYS (np, start))do { do { ; } while(0); ((*(volatile unsigned int *) ((char * )np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_dsp ))))) = (((((np->p_script + ((size_t) (&((struct script *)0)->start)))))))); } while (0); |
| 9015 | } |
| 9016 | else |
| 9017 | goto reset_all; |
| 9018 | |
| 9019 | return; |
| 9020 | |
| 9021 | reset_all: |
| 9022 | ncr_start_reset(np); |
| 9023 | } |
| 9024 | |
| 9025 | /*========================================================== |
| 9026 | ** |
| 9027 | ** ncr chip exception handler for selection timeout |
| 9028 | ** |
| 9029 | **========================================================== |
| 9030 | ** |
| 9031 | ** There seems to be a bug in the 53c810. |
| 9032 | ** Although a STO-Interrupt is pending, |
| 9033 | ** it continues executing script commands. |
| 9034 | ** But it will fail and interrupt (IID) on |
| 9035 | ** the next instruction where it's looking |
| 9036 | ** for a valid phase. |
| 9037 | ** |
| 9038 | **---------------------------------------------------------- |
| 9039 | */ |
| 9040 | |
| 9041 | void ncr_int_sto (ncb_p np) |
| 9042 | { |
| 9043 | u_int32 dsp = INL (nc_dsp)(*(volatile unsigned int *) ((char *)np->reg + (((size_t) ( &((struct ncr_reg *)0)->nc_dsp))))); |
| 9044 | |
| 9045 | if (DEBUG_FLAGSncr_debug & DEBUG_TINY(0x0080)) printk ("T"); |
| 9046 | |
| 9047 | if (dsp == NCB_SCRIPT_PHYS (np, wf_sel_done)(np->p_script + ((size_t) (&((struct script *)0)->wf_sel_done ))) + 8 || |
| 9048 | !(driver_setup.recovery & 1)) |
| 9049 | ncr_recover_scsi_int(np, HS_SEL_TIMEOUT(5|(0x80))); |
| 9050 | else |
| 9051 | ncr_start_reset(np); |
| 9052 | } |
| 9053 | |
| 9054 | /*========================================================== |
| 9055 | ** |
| 9056 | ** ncr chip exception handler for unexpected disconnect |
| 9057 | ** |
| 9058 | **========================================================== |
| 9059 | ** |
| 9060 | **---------------------------------------------------------- |
| 9061 | */ |
| 9062 | void ncr_int_udc (ncb_p np) |
| 9063 | { |
| 9064 | u_int32 dsa = INL (nc_dsa)(*(volatile unsigned int *) ((char *)np->reg + (((size_t) ( &((struct ncr_reg *)0)->nc_dsa))))); |
| 9065 | ccb_p cp = ncr_ccb_from_dsa(np, dsa); |
| 9066 | tcb_p tp = &np->target[cp->target]; |
| 9067 | |
| 9068 | /* |
| 9069 | * Fix Up. Some disks respond to a PPR negotation with |
| 9070 | * a bus free instead of a message reject. |
| 9071 | * Disable ppr negotiation if this is first time |
| 9072 | * tried ppr negotiation. |
| 9073 | */ |
| 9074 | |
| 9075 | if (tp->ppr_negotiation == 1) |
| 9076 | tp->ppr_negotiation = 0; |
| 9077 | |
| 9078 | printk ("%s: unexpected disconnect\n", ncr_name(np)); |
| 9079 | ncr_recover_scsi_int(np, HS_UNEXPECTED(10|(0x80))); |
| 9080 | } |
| 9081 | |
| 9082 | /*========================================================== |
| 9083 | ** |
| 9084 | ** ncr chip exception handler for SCSI bus mode change |
| 9085 | ** |
| 9086 | **========================================================== |
| 9087 | ** |
| 9088 | ** spi2-r12 11.2.3 says a transceiver mode change must |
| 9089 | ** generate a reset event and a device that detects a reset |
| 9090 | ** event shall initiate a hard reset. It says also that a |
| 9091 | ** device that detects a mode change shall set data transfer |
| 9092 | ** mode to eight bit asynchronous, etc... |
| 9093 | ** So, just resetting should be enough. |
| 9094 | ** |
| 9095 | ** |
| 9096 | **---------------------------------------------------------- |
| 9097 | */ |
| 9098 | |
| 9099 | static void ncr_int_sbmc (ncb_p np) |
| 9100 | { |
| 9101 | u_charunsigned char scsi_mode = INB (nc_stest4)(*(volatile unsigned char *) ((char *)np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_stest4))))) & SMODE0xc0; |
| 9102 | |
| 9103 | printk("%s: SCSI bus mode change from %x to %x.\n", |
| 9104 | ncr_name(np), np->scsi_mode, scsi_mode); |
| 9105 | |
| 9106 | np->scsi_mode = scsi_mode; |
| 9107 | |
| 9108 | |
| 9109 | /* |
| 9110 | ** Suspend command processing for 1 second and |
| 9111 | ** reinitialize all except the chip. |
| 9112 | */ |
| 9113 | np->settle_time = ktime_get(1*HZ)(jiffies + (unsigned long) 1*100); |
| 9114 | ncr_init (np, 0, bootverbose(np->verbose) ? "scsi mode change" : NULL((void *) 0), HS_RESET(6|(0x80))); |
| 9115 | } |
| 9116 | |
| 9117 | /*========================================================== |
| 9118 | ** |
| 9119 | ** ncr chip exception handler for SCSI parity error. |
| 9120 | ** |
| 9121 | **========================================================== |
| 9122 | ** |
| 9123 | ** When the chip detects a SCSI parity error and is |
| 9124 | ** currently executing a (CH)MOV instruction, it does |
| 9125 | ** not interrupt immediately, but tries to finish the |
| 9126 | ** transfer of the current scatter entry before |
| 9127 | ** interrupting. The following situations may occur: |
| 9128 | ** |
| 9129 | ** - The complete scatter entry has been transferred |
| 9130 | ** without the device having changed phase. |
| 9131 | ** The chip will then interrupt with the DSP pointing |
| 9132 | ** to the instruction that follows the MOV. |
| 9133 | ** |
| 9134 | ** - A phase mismatch occurs before the MOV finished |
| 9135 | ** and phase errors are to be handled by the C code. |
| 9136 | ** The chip will then interrupt with both PAR and MA |
| 9137 | ** conditions set. |
| 9138 | ** |
| 9139 | ** - A phase mismatch occurs before the MOV finished and |
| 9140 | ** phase errors are to be handled by SCRIPTS (895A or 896). |
| 9141 | ** The chip will load the DSP with the phase mismatch |
| 9142 | ** JUMP address and interrupt the host processor. |
| 9143 | ** |
| 9144 | **---------------------------------------------------------- |
| 9145 | */ |
| 9146 | |
| 9147 | static void ncr_int_par (ncb_p np, u_shortunsigned short sist) |
| 9148 | { |
| 9149 | u_charunsigned char hsts = INB (HS_PRT)(*(volatile unsigned char *) ((char *)np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_scr1))))); |
| 9150 | u_int32 dsp = INL (nc_dsp)(*(volatile unsigned int *) ((char *)np->reg + (((size_t) ( &((struct ncr_reg *)0)->nc_dsp))))); |
| 9151 | u_int32 dbc = INL (nc_dbc)(*(volatile unsigned int *) ((char *)np->reg + (((size_t) ( &((struct ncr_reg *)0)->nc_dbc))))); |
| 9152 | u_int32 dsa = INL (nc_dsa)(*(volatile unsigned int *) ((char *)np->reg + (((size_t) ( &((struct ncr_reg *)0)->nc_dsa))))); |
| 9153 | u_charunsigned char sbcl = INB (nc_sbcl)(*(volatile unsigned char *) ((char *)np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_sbcl))))); |
| 9154 | u_charunsigned char cmd = dbc >> 24; |
| 9155 | int phase = cmd & 7; |
| 9156 | ccb_p cp = ncr_ccb_from_dsa(np, dsa); |
| 9157 | |
| 9158 | printk("%s: SCSI parity error detected: SCR1=%d DBC=%x SBCL=%x\n", |
| 9159 | ncr_name(np), hsts, dbc, sbcl); |
| 9160 | |
| 9161 | /* |
| 9162 | ** Check that the chip is connected to the SCSI BUS. |
| 9163 | */ |
| 9164 | if (!(INB (nc_scntl1)(*(volatile unsigned char *) ((char *)np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_scntl1))))) & ISCON0x10)) { |
| 9165 | if (!(driver_setup.recovery & 1)) { |
| 9166 | ncr_recover_scsi_int(np, HS_FAIL(9|(0x80))); |
| 9167 | return; |
| 9168 | } |
| 9169 | goto reset_all; |
| 9170 | } |
| 9171 | |
| 9172 | /* |
| 9173 | ** If the nexus is not clearly identified, reset the bus. |
| 9174 | ** We will try to do better later. |
| 9175 | */ |
| 9176 | if (!cp) |
| 9177 | goto reset_all; |
| 9178 | |
| 9179 | /* |
| 9180 | ** Check instruction was a MOV, direction was INPUT and |
| 9181 | ** ATN is asserted. |
| 9182 | */ |
| 9183 | if ((cmd & 0xc0) || !(phase & 1) || !(sbcl & 0x8)) |
| 9184 | goto reset_all; |
| 9185 | |
| 9186 | /* |
| 9187 | ** Keep track of the parity error. |
| 9188 | */ |
| 9189 | OUTONB (HF_PRT, HF_EXT_ERR)((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_scr3))))) = ((((*(volatile unsigned char *) ((char *)np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_scr3))))) | ((1u<<7)))))); |
| 9190 | cp->xerr_status |= XE_PARITY_ERR(4); |
| 9191 | |
| 9192 | /* |
| 9193 | ** Prepare the message to send to the device. |
| 9194 | */ |
| 9195 | np->msgout[0] = (phase == 7) ? M_PARITY(0x09) : M_ID_ERROR(0x05); |
| 9196 | |
| 9197 | #ifdef SCSI_NCR_INTEGRITY_CHECKING |
| 9198 | /* |
| 9199 | ** Save error message. For integrity check use only. |
| 9200 | */ |
| 9201 | if (np->check_integrity) |
| 9202 | np->check_integ_par = np->msgout[0]; |
| 9203 | #endif |
| 9204 | |
| 9205 | /* |
| 9206 | ** If the old phase was DATA IN or DT DATA IN phase, |
| 9207 | ** we have to deal with the 3 situations described above. |
| 9208 | ** For other input phases (MSG IN and STATUS), the device |
| 9209 | ** must resend the whole thing that failed parity checking |
| 9210 | ** or signal error. So, jumping to dispatcher should be OK. |
| 9211 | */ |
| 9212 | if ((phase == 1) || (phase == 5)) { |
| 9213 | /* Phase mismatch handled by SCRIPTS */ |
| 9214 | if (dsp == NCB_SCRIPTH_PHYS (np, pm_handle)(np->p_scripth + ((size_t) (&((struct scripth *)0)-> pm_handle)))) |
| 9215 | OUTL_DSP (dsp)do { do { ; } while(0); ((*(volatile unsigned int *) ((char * )np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_dsp ))))) = ((((dsp))))); } while (0); |
| 9216 | /* Phase mismatch handled by the C code */ |
| 9217 | else if (sist & MA0x80) |
| 9218 | ncr_int_ma (np); |
| 9219 | /* No phase mismatch occurred */ |
| 9220 | else { |
| 9221 | OUTL (nc_temp, dsp)((*(volatile unsigned int *) ((char *)np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_temp))))) = (((dsp)))); |
| 9222 | OUTL_DSP (NCB_SCRIPT_PHYS (np, dispatch))do { do { ; } while(0); ((*(volatile unsigned int *) ((char * )np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_dsp ))))) = (((((np->p_script + ((size_t) (&((struct script *)0)->dispatch)))))))); } while (0); |
| 9223 | } |
| 9224 | } |
| 9225 | else |
| 9226 | OUTL_DSP (NCB_SCRIPT_PHYS (np, clrack))do { do { ; } while(0); ((*(volatile unsigned int *) ((char * )np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_dsp ))))) = (((((np->p_script + ((size_t) (&((struct script *)0)->clrack)))))))); } while (0); |
| 9227 | return; |
| 9228 | |
| 9229 | reset_all: |
| 9230 | ncr_start_reset(np); |
| 9231 | return; |
| 9232 | } |
| 9233 | |
| 9234 | /*========================================================== |
| 9235 | ** |
| 9236 | ** |
| 9237 | ** ncr chip exception handler for phase errors. |
| 9238 | ** |
| 9239 | ** |
| 9240 | **========================================================== |
| 9241 | ** |
| 9242 | ** We have to construct a new transfer descriptor, |
| 9243 | ** to transfer the rest of the current block. |
| 9244 | ** |
| 9245 | **---------------------------------------------------------- |
| 9246 | */ |
| 9247 | |
| 9248 | static void ncr_int_ma (ncb_p np) |
| 9249 | { |
| 9250 | u_int32 dbc; |
| 9251 | u_int32 rest; |
| 9252 | u_int32 dsp; |
| 9253 | u_int32 dsa; |
| 9254 | u_int32 nxtdsp; |
| 9255 | u_int32 *vdsp; |
| 9256 | u_int32 oadr, olen; |
| 9257 | u_int32 *tblp; |
| 9258 | u_int32 newcmd; |
| 9259 | u_intunsigned int delta; |
| 9260 | u_charunsigned char cmd; |
| 9261 | u_charunsigned char hflags, hflags0; |
| 9262 | struct pm_ctx *pm; |
| 9263 | ccb_p cp; |
| 9264 | |
| 9265 | dsp = INL (nc_dsp)(*(volatile unsigned int *) ((char *)np->reg + (((size_t) ( &((struct ncr_reg *)0)->nc_dsp))))); |
| 9266 | dbc = INL (nc_dbc)(*(volatile unsigned int *) ((char *)np->reg + (((size_t) ( &((struct ncr_reg *)0)->nc_dbc))))); |
| 9267 | dsa = INL (nc_dsa)(*(volatile unsigned int *) ((char *)np->reg + (((size_t) ( &((struct ncr_reg *)0)->nc_dsa))))); |
| 9268 | |
| 9269 | cmd = dbc >> 24; |
| 9270 | rest = dbc & 0xffffff; |
| 9271 | delta = 0; |
| 9272 | |
| 9273 | /* |
| 9274 | ** locate matching cp. |
| 9275 | */ |
| 9276 | cp = ncr_ccb_from_dsa(np, dsa); |
| 9277 | |
| 9278 | if (DEBUG_FLAGSncr_debug & DEBUG_PHASE(0x0002)) |
| 9279 | printk("CCB = %2x %2x %2x %2x %2x %2x\n", |
| 9280 | cp->cmd->cmnd[0], cp->cmd->cmnd[1], cp->cmd->cmnd[2], |
| 9281 | cp->cmd->cmnd[3], cp->cmd->cmnd[4], cp->cmd->cmnd[5]); |
| 9282 | |
| 9283 | /* |
| 9284 | ** Donnot take into account dma fifo and various buffers in |
| 9285 | ** INPUT phase since the chip flushes everything before |
| 9286 | ** raising the MA interrupt for interrupted INPUT phases. |
| 9287 | ** For DATA IN phase, we will check for the SWIDE later. |
| 9288 | */ |
| 9289 | if ((cmd & 7) != 1 && (cmd & 7) != 5) { |
| 9290 | u_int32 dfifo; |
| 9291 | u_charunsigned char ss0, ss2; |
| 9292 | |
| 9293 | /* |
| 9294 | ** If C1010, DFBC contains number of bytes in DMA fifo. |
| 9295 | ** else read DFIFO, CTEST[4-6] using 1 PCI bus ownership. |
| 9296 | */ |
| 9297 | if ((np->device_id == PCI_DEVICE_ID_LSI_53C10100x20) || |
| 9298 | (np->device_id == PCI_DEVICE_ID_LSI_53C1010_660x21)) |
| 9299 | delta = INL(nc_dfbc)(*(volatile unsigned int *) ((char *)np->reg + (((size_t) ( &((struct ncr_reg *)0)->nc_dfbc))))) & 0xffff; |
| 9300 | else { |
| 9301 | dfifo = INL(nc_dfifo)(*(volatile unsigned int *) ((char *)np->reg + (((size_t) ( &((struct ncr_reg *)0)->nc_dfifo))))); |
| 9302 | |
| 9303 | /* |
| 9304 | ** Calculate remaining bytes in DMA fifo. |
| 9305 | ** C1010 - always large fifo, value in dfbc |
| 9306 | ** Otherwise, (CTEST5 = dfifo >> 16) |
| 9307 | */ |
| 9308 | if (dfifo & (DFS0x20 << 16)) |
| 9309 | delta = ((((dfifo >> 8) & 0x300) | |
| 9310 | (dfifo & 0xff)) - rest) & 0x3ff; |
| 9311 | else |
| 9312 | delta = ((dfifo & 0xff) - rest) & 0x7f; |
| 9313 | |
| 9314 | /* |
| 9315 | ** The data in the dma fifo has not been |
| 9316 | ** transferred to the target -> add the amount |
| 9317 | ** to the rest and clear the data. |
| 9318 | ** Check the sstat2 register in case of wide |
| 9319 | ** transfer. |
| 9320 | */ |
| 9321 | |
| 9322 | } |
| 9323 | |
| 9324 | rest += delta; |
| 9325 | ss0 = INB (nc_sstat0)(*(volatile unsigned char *) ((char *)np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_sstat0))))); |
| 9326 | if (ss0 & OLF0x20) rest++; |
| 9327 | if ((np->device_id != PCI_DEVICE_ID_LSI_53C10100x20) && |
| 9328 | (np->device_id != PCI_DEVICE_ID_LSI_53C1010_660x21) && (ss0 & ORF0x40)) |
| 9329 | rest++; |
| 9330 | if (cp && (cp->phys.select.sel_scntl3 & EWS0x08)) { |
| 9331 | ss2 = INB (nc_sstat2)(*(volatile unsigned char *) ((char *)np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_sstat2))))); |
| 9332 | if (ss2 & OLF10x20) rest++; |
| 9333 | if ((np->device_id != PCI_DEVICE_ID_LSI_53C10100x20) && |
| 9334 | (np->device_id != PCI_DEVICE_ID_LSI_53C1010_660x21) && (ss2 & ORF0x40)) |
| 9335 | rest++; |
| 9336 | }; |
| 9337 | |
| 9338 | /* |
| 9339 | ** Clear fifos. |
| 9340 | */ |
| 9341 | OUTB (nc_ctest3, np->rv_ctest3 | CLF)((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_ctest3))))) = (((np-> rv_ctest3 | 0x04)))); /* dma fifo */ |
| 9342 | OUTB (nc_stest3, TE|CSF)((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_stest3))))) = (((0x80|0x02 )))); /* scsi fifo */ |
| 9343 | } |
| 9344 | |
| 9345 | /* |
| 9346 | ** log the information |
| 9347 | */ |
| 9348 | |
| 9349 | if (DEBUG_FLAGSncr_debug & (DEBUG_TINY(0x0080)|DEBUG_PHASE(0x0002))) |
| 9350 | printk ("P%x%x RL=%d D=%d ", cmd&7, INB(nc_sbcl)(*(volatile unsigned char *) ((char *)np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_sbcl)))))&7, |
| 9351 | (unsigned) rest, (unsigned) delta); |
| 9352 | |
| 9353 | /* |
| 9354 | ** try to find the interrupted script command, |
| 9355 | ** and the address at which to continue. |
| 9356 | */ |
| 9357 | vdsp = 0; |
| 9358 | nxtdsp = 0; |
| 9359 | if (dsp > np->p_script && |
| 9360 | dsp <= np->p_script + sizeof(struct script)) { |
| 9361 | vdsp = (u_int32 *)((char*)np->script0 + (dsp-np->p_script-8)); |
| 9362 | nxtdsp = dsp; |
| 9363 | } |
| 9364 | else if (dsp > np->p_scripth && |
| 9365 | dsp <= np->p_scripth + sizeof(struct scripth)) { |
| 9366 | vdsp = (u_int32 *)((char*)np->scripth0 + (dsp-np->p_scripth-8)); |
| 9367 | nxtdsp = dsp; |
| 9368 | } |
| 9369 | |
| 9370 | /* |
| 9371 | ** log the information |
| 9372 | */ |
| 9373 | if (DEBUG_FLAGSncr_debug & DEBUG_PHASE(0x0002)) { |
| 9374 | printk ("\nCP=%p DSP=%x NXT=%x VDSP=%p CMD=%x ", |
| 9375 | cp, (unsigned)dsp, (unsigned)nxtdsp, vdsp, cmd); |
| 9376 | }; |
| 9377 | |
| 9378 | if (!vdsp) { |
| 9379 | printk ("%s: interrupted SCRIPT address not found.\n", |
| 9380 | ncr_name (np)); |
| 9381 | goto reset_all; |
| 9382 | } |
| 9383 | |
| 9384 | if (!cp) { |
| 9385 | printk ("%s: SCSI phase error fixup: CCB already dequeued.\n", |
| 9386 | ncr_name (np)); |
| 9387 | goto reset_all; |
| 9388 | } |
| 9389 | |
| 9390 | /* |
| 9391 | ** get old startaddress and old length. |
| 9392 | */ |
| 9393 | |
| 9394 | oadr = scr_to_cpu(vdsp[1])(vdsp[1]); |
| 9395 | |
| 9396 | if (cmd & 0x10) { /* Table indirect */ |
| 9397 | tblp = (u_int32 *) ((char*) &cp->phys + oadr); |
| 9398 | olen = scr_to_cpu(tblp[0])(tblp[0]); |
| 9399 | oadr = scr_to_cpu(tblp[1])(tblp[1]); |
| 9400 | } else { |
| 9401 | tblp = (u_int32 *) 0; |
| 9402 | olen = scr_to_cpu(vdsp[0])(vdsp[0]) & 0xffffff; |
| 9403 | }; |
| 9404 | |
| 9405 | if (DEBUG_FLAGSncr_debug & DEBUG_PHASE(0x0002)) { |
| 9406 | printk ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n", |
| 9407 | (unsigned) (scr_to_cpu(vdsp[0])(vdsp[0]) >> 24), |
| 9408 | tblp, |
| 9409 | (unsigned) olen, |
| 9410 | (unsigned) oadr); |
| 9411 | }; |
| 9412 | |
| 9413 | /* |
| 9414 | ** check cmd against assumed interrupted script command. |
| 9415 | ** If dt data phase, the MOVE instruction hasn't bit 4 of |
| 9416 | ** the phase. |
| 9417 | */ |
| 9418 | |
| 9419 | if (((cmd & 2) ? cmd : (cmd & ~4)) != (scr_to_cpu(vdsp[0])(vdsp[0]) >> 24)) { |
| 9420 | PRINT_ADDR(cp->cmd); |
| 9421 | printk ("internal error: cmd=%02x != %02x=(vdsp[0] >> 24)\n", |
| 9422 | (unsigned)cmd, (unsigned)scr_to_cpu(vdsp[0])(vdsp[0]) >> 24); |
| 9423 | |
| 9424 | goto reset_all; |
| 9425 | }; |
| 9426 | |
| 9427 | /* |
| 9428 | ** if old phase not dataphase, leave here. |
| 9429 | ** C/D line is low if data. |
| 9430 | */ |
| 9431 | |
| 9432 | if (cmd & 0x02) { |
| 9433 | PRINT_ADDR(cp->cmd); |
| 9434 | printk ("phase change %x-%x %d@%08x resid=%d.\n", |
| 9435 | cmd&7, INB(nc_sbcl)(*(volatile unsigned char *) ((char *)np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_sbcl)))))&7, (unsigned)olen, |
| 9436 | (unsigned)oadr, (unsigned)rest); |
| 9437 | goto unexpected_phase; |
| 9438 | }; |
| 9439 | |
| 9440 | /* |
| 9441 | ** Choose the correct PM save area. |
| 9442 | ** |
| 9443 | ** Look at the PM_SAVE SCRIPT if you want to understand |
| 9444 | ** this stuff. The equivalent code is implemented in |
| 9445 | ** SCRIPTS for the 895A and 896 that are able to handle |
| 9446 | ** PM from the SCRIPTS processor. |
| 9447 | */ |
| 9448 | |
| 9449 | hflags0 = INB (HF_PRT)(*(volatile unsigned char *) ((char *)np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_scr3))))); |
| 9450 | hflags = hflags0; |
| 9451 | |
| 9452 | if (hflags & (HF_IN_PM01u | HF_IN_PM1(1u<<1) | HF_DP_SAVED(1u<<3))) { |
| 9453 | if (hflags & HF_IN_PM01u) |
| 9454 | nxtdsp = scr_to_cpu(cp->phys.pm0.ret)(cp->phys.pm0.ret); |
| 9455 | else if (hflags & HF_IN_PM1(1u<<1)) |
| 9456 | nxtdsp = scr_to_cpu(cp->phys.pm1.ret)(cp->phys.pm1.ret); |
| 9457 | |
| 9458 | if (hflags & HF_DP_SAVED(1u<<3)) |
| 9459 | hflags ^= HF_ACT_PM(1u<<2); |
| 9460 | } |
| 9461 | |
| 9462 | if (!(hflags & HF_ACT_PM(1u<<2))) { |
| 9463 | pm = &cp->phys.pm0; |
| 9464 | newcmd = NCB_SCRIPT_PHYS(np, pm0_data)(np->p_script + ((size_t) (&((struct script *)0)->pm0_data ))); |
| 9465 | } |
| 9466 | else { |
| 9467 | pm = &cp->phys.pm1; |
| 9468 | newcmd = NCB_SCRIPT_PHYS(np, pm1_data)(np->p_script + ((size_t) (&((struct script *)0)->pm1_data ))); |
| 9469 | } |
| 9470 | |
| 9471 | hflags &= ~(HF_IN_PM01u | HF_IN_PM1(1u<<1) | HF_DP_SAVED(1u<<3)); |
| 9472 | if (hflags != hflags0) |
| 9473 | OUTB (HF_PRT, hflags)((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_scr3))))) = (((hflags))) ); |
| 9474 | |
| 9475 | /* |
| 9476 | ** fillin the phase mismatch context |
| 9477 | */ |
| 9478 | |
| 9479 | pm->sg.addr = cpu_to_scr(oadr + olen - rest)(oadr + olen - rest); |
| 9480 | pm->sg.size = cpu_to_scr(rest)(rest); |
| 9481 | pm->ret = cpu_to_scr(nxtdsp)(nxtdsp); |
| 9482 | |
| 9483 | /* |
| 9484 | ** If we have a SWIDE, |
| 9485 | ** - prepare the address to write the SWIDE from SCRIPTS, |
| 9486 | ** - compute the SCRIPTS address to restart from, |
| 9487 | ** - move current data pointer context by one byte. |
| 9488 | */ |
| 9489 | nxtdsp = NCB_SCRIPT_PHYS (np, dispatch)(np->p_script + ((size_t) (&((struct script *)0)->dispatch ))); |
| 9490 | if ( ((cmd & 7) == 1 || (cmd & 7) == 5) |
| 9491 | && cp && (cp->phys.select.sel_scntl3 & EWS0x08) && |
| 9492 | (INB (nc_scntl2)(*(volatile unsigned char *) ((char *)np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_scntl2))))) & WSR0x01)) { |
| 9493 | u32 tmp; |
| 9494 | |
| 9495 | #ifdef SYM_DEBUG_PM_WITH_WSR |
| 9496 | PRINT_ADDR(cp); |
| 9497 | printf ("MA interrupt with WSR set - " |
| 9498 | "pm->sg.addr=%x - pm->sg.size=%d\n", |
| 9499 | pm->sg.addr, pm->sg.size); |
| 9500 | #endif |
| 9501 | /* |
| 9502 | * Set up the table indirect for the MOVE |
| 9503 | * of the residual byte and adjust the data |
| 9504 | * pointer context. |
| 9505 | */ |
| 9506 | tmp = scr_to_cpu(pm->sg.addr)(pm->sg.addr); |
| 9507 | cp->phys.wresid.addr = cpu_to_scr(tmp)(tmp); |
| 9508 | pm->sg.addr = cpu_to_scr(tmp + 1)(tmp + 1); |
| 9509 | tmp = scr_to_cpu(pm->sg.size)(pm->sg.size); |
| 9510 | cp->phys.wresid.size = cpu_to_scr((tmp&0xff000000) | 1)((tmp&0xff000000) | 1); |
| 9511 | pm->sg.size = cpu_to_scr(tmp - 1)(tmp - 1); |
| 9512 | |
| 9513 | /* |
| 9514 | * If only the residual byte is to be moved, |
| 9515 | * no PM context is needed. |
| 9516 | */ |
| 9517 | if ((tmp&0xffffff) == 1) |
| 9518 | newcmd = pm->ret; |
| 9519 | |
| 9520 | /* |
| 9521 | * Prepare the address of SCRIPTS that will |
| 9522 | * move the residual byte to memory. |
| 9523 | */ |
| 9524 | nxtdsp = NCB_SCRIPTH_PHYS (np, wsr_ma_helper)(np->p_scripth + ((size_t) (&((struct scripth *)0)-> wsr_ma_helper))); |
| 9525 | } |
| 9526 | |
| 9527 | if (DEBUG_FLAGSncr_debug & DEBUG_PHASE(0x0002)) { |
| 9528 | PRINT_ADDR(cp->cmd); |
| 9529 | printk ("PM %x %x %x / %x %x %x.\n", |
| 9530 | hflags0, hflags, newcmd, |
| 9531 | (unsigned)scr_to_cpu(pm->sg.addr)(pm->sg.addr), |
| 9532 | (unsigned)scr_to_cpu(pm->sg.size)(pm->sg.size), |
| 9533 | (unsigned)scr_to_cpu(pm->ret)(pm->ret)); |
| 9534 | } |
| 9535 | |
| 9536 | /* |
| 9537 | ** Restart the SCRIPTS processor. |
| 9538 | */ |
| 9539 | |
| 9540 | OUTL (nc_temp, newcmd)((*(volatile unsigned int *) ((char *)np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_temp))))) = (((newcmd)))); |
| 9541 | OUTL_DSP (nxtdsp)do { do { ; } while(0); ((*(volatile unsigned int *) ((char * )np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_dsp ))))) = ((((nxtdsp))))); } while (0); |
| 9542 | return; |
| 9543 | |
| 9544 | /* |
| 9545 | ** Unexpected phase changes that occurs when the current phase |
| 9546 | ** is not a DATA IN or DATA OUT phase are due to error conditions. |
| 9547 | ** Such event may only happen when the SCRIPTS is using a |
| 9548 | ** multibyte SCSI MOVE. |
| 9549 | ** |
| 9550 | ** Phase change Some possible cause |
| 9551 | ** |
| 9552 | ** COMMAND --> MSG IN SCSI parity error detected by target. |
| 9553 | ** COMMAND --> STATUS Bad command or refused by target. |
| 9554 | ** MSG OUT --> MSG IN Message rejected by target. |
| 9555 | ** MSG OUT --> COMMAND Bogus target that discards extended |
| 9556 | ** negotiation messages. |
| 9557 | ** |
| 9558 | ** The code below does not care of the new phase and so |
| 9559 | ** trusts the target. Why to annoy it ? |
| 9560 | ** If the interrupted phase is COMMAND phase, we restart at |
| 9561 | ** dispatcher. |
| 9562 | ** If a target does not get all the messages after selection, |
| 9563 | ** the code assumes blindly that the target discards extended |
| 9564 | ** messages and clears the negotiation status. |
| 9565 | ** If the target does not want all our response to negotiation, |
| 9566 | ** we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids |
| 9567 | ** bloat for such a should_not_happen situation). |
| 9568 | ** In all other situation, we reset the BUS. |
| 9569 | ** Are these assumptions reasonnable ? (Wait and see ...) |
| 9570 | */ |
| 9571 | unexpected_phase: |
| 9572 | dsp -= 8; |
| 9573 | nxtdsp = 0; |
| 9574 | |
| 9575 | switch (cmd & 7) { |
| 9576 | case 2: /* COMMAND phase */ |
| 9577 | nxtdsp = NCB_SCRIPT_PHYS (np, dispatch)(np->p_script + ((size_t) (&((struct script *)0)->dispatch ))); |
| 9578 | break; |
| 9579 | #if 0 |
| 9580 | case 3: /* STATUS phase */ |
| 9581 | nxtdsp = NCB_SCRIPT_PHYS (np, dispatch)(np->p_script + ((size_t) (&((struct script *)0)->dispatch ))); |
| 9582 | break; |
| 9583 | #endif |
| 9584 | case 6: /* MSG OUT phase */ |
| 9585 | /* |
| 9586 | ** If the device may want to use untagged when we want |
| 9587 | ** tagged, we prepare an IDENTIFY without disc. granted, |
| 9588 | ** since we will not be able to handle reselect. |
| 9589 | ** Otherwise, we just don't care. |
| 9590 | */ |
| 9591 | if (dsp == NCB_SCRIPT_PHYS (np, send_ident)(np->p_script + ((size_t) (&((struct script *)0)->send_ident )))) { |
| 9592 | if (cp->tag != NO_TAG(256) && olen - rest <= 3) { |
| 9593 | cp->host_statusphys.header.status[1] = HS_BUSY(1); |
| 9594 | np->msgout[0] = M_IDENTIFY(0x80) | cp->lun; |
| 9595 | nxtdsp = NCB_SCRIPTH_PHYS (np, ident_break_atn)(np->p_scripth + ((size_t) (&((struct scripth *)0)-> ident_break_atn))); |
| 9596 | } |
| 9597 | else |
| 9598 | nxtdsp = NCB_SCRIPTH_PHYS (np, ident_break)(np->p_scripth + ((size_t) (&((struct scripth *)0)-> ident_break))); |
| 9599 | } |
| 9600 | else if (dsp == NCB_SCRIPTH_PHYS (np, send_wdtr)(np->p_scripth + ((size_t) (&((struct scripth *)0)-> send_wdtr))) || |
| 9601 | dsp == NCB_SCRIPTH_PHYS (np, send_sdtr)(np->p_scripth + ((size_t) (&((struct scripth *)0)-> send_sdtr))) || |
| 9602 | dsp == NCB_SCRIPTH_PHYS (np, send_ppr)(np->p_scripth + ((size_t) (&((struct scripth *)0)-> send_ppr)))) { |
| 9603 | nxtdsp = NCB_SCRIPTH_PHYS (np, nego_bad_phase)(np->p_scripth + ((size_t) (&((struct scripth *)0)-> nego_bad_phase))); |
| 9604 | } |
| 9605 | break; |
| 9606 | #if 0 |
| 9607 | case 7: /* MSG IN phase */ |
| 9608 | nxtdsp = NCB_SCRIPT_PHYS (np, clrack)(np->p_script + ((size_t) (&((struct script *)0)->clrack ))); |
| 9609 | break; |
| 9610 | #endif |
| 9611 | } |
| 9612 | |
| 9613 | if (nxtdsp) { |
| 9614 | OUTL_DSP (nxtdsp)do { do { ; } while(0); ((*(volatile unsigned int *) ((char * )np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_dsp ))))) = ((((nxtdsp))))); } while (0); |
| 9615 | return; |
| 9616 | } |
| 9617 | |
| 9618 | reset_all: |
| 9619 | ncr_start_reset(np); |
| 9620 | } |
| 9621 | |
| 9622 | /*========================================================== |
| 9623 | ** |
| 9624 | ** ncr chip handler for QUEUE FULL and CHECK CONDITION |
| 9625 | ** |
| 9626 | **========================================================== |
| 9627 | ** |
| 9628 | ** On QUEUE FULL status, we set the actual tagged command |
| 9629 | ** queue depth to the number of disconnected CCBs that is |
| 9630 | ** hopefully a good value to avoid further QUEUE FULL. |
| 9631 | ** |
| 9632 | ** On CHECK CONDITION or COMMAND TERMINATED, we use the |
| 9633 | ** CCB of the failed command for performing a REQUEST |
| 9634 | ** SENSE SCSI command. |
| 9635 | ** |
| 9636 | ** We do not want to change the order commands will be |
| 9637 | ** actually queued to the device after we received a |
| 9638 | ** QUEUE FULL status. We also want to properly deal with |
| 9639 | ** contingent allegiance condition. For these reasons, |
| 9640 | ** we remove from the start queue all commands for this |
| 9641 | ** LUN that haven't been yet queued to the device and |
| 9642 | ** put them back in the correponding LUN queue, then |
| 9643 | ** requeue the CCB that failed in front of the LUN queue. |
| 9644 | ** I just hope this not to be performed too often. :) |
| 9645 | ** |
| 9646 | ** If we are using IMMEDIATE ARBITRATION, we clear the |
| 9647 | ** IARB hint for every commands we encounter in order not |
| 9648 | ** to be stuck with a won arbitration and no job to queue |
| 9649 | ** to a device. |
| 9650 | **---------------------------------------------------------- |
| 9651 | */ |
| 9652 | |
| 9653 | static void ncr_sir_to_redo(ncb_p np, int num, ccb_p cp) |
| 9654 | { |
| 9655 | Scsi_Cmnd *cmd = cp->cmd; |
| 9656 | tcb_p tp = &np->target[cp->target]; |
| 9657 | lcb_p lp = ncr_lp(np, tp, cp->lun)(!cp->lun) ? (tp)->l0p : (tp)->lmp ? (tp)->lmp[(cp ->lun)] : 0; |
| 9658 | ccb_p cp2; |
| 9659 | int busyccbs = 1; |
| 9660 | u_int32 startp; |
| 9661 | u_charunsigned char s_status = INB (SS_PRT)(*(volatile unsigned char *) ((char *)np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_scr2))))); |
| 9662 | int msglen; |
| 9663 | int i, j; |
| 9664 | |
| 9665 | |
| 9666 | /* |
| 9667 | ** If the LCB is not yet available, then only |
| 9668 | ** 1 IO is accepted, so we should have it. |
| 9669 | */ |
| 9670 | if (!lp) |
| 9671 | goto next; |
| 9672 | /* |
| 9673 | ** Remove all CCBs queued to the chip for that LUN and put |
| 9674 | ** them back in the LUN CCB wait queue. |
| 9675 | */ |
| 9676 | busyccbs = lp->queuedccbs; |
| 9677 | i = (INL (nc_scratcha)(*(volatile unsigned int *) ((char *)np->reg + (((size_t) ( &((struct ncr_reg *)0)->nc_scratcha))))) - np->p_squeue) / 4; |
| 9678 | j = i; |
| 9679 | while (i != np->squeueput) { |
| 9680 | cp2 = ncr_ccb_from_dsa(np, scr_to_cpu(np->squeue[i])(np->squeue[i])); |
| 9681 | assert(cp2){ if (!(cp2)) { (void)panic( "assertion \"%s\" failed: file \"%s\", line %d\n" , "cp2", "../linux/src/drivers/scsi/sym53c8xx.c", 9681); } }; |
| 9682 | #ifdef SCSI_NCR_IARB_SUPPORT |
| 9683 | /* IARB hints may not be relevant any more. Forget them. */ |
| 9684 | cp2->host_flagsphys.header.status[3] &= ~HF_HINT_IARB; |
| 9685 | #endif |
| 9686 | if (cp2 && cp2->target == cp->target && cp2->lun == cp->lun) { |
| 9687 | xpt_remque(&cp2->link_ccbq)__xpt_que_del((&cp2->link_ccbq)->blink, (&cp2-> link_ccbq)->flink); |
| 9688 | xpt_insque_head(&cp2->link_ccbq, &lp->wait_ccbq)__xpt_que_add(&cp2->link_ccbq, &lp->wait_ccbq, ( &lp->wait_ccbq)->flink); |
| 9689 | --lp->queuedccbs; |
| 9690 | cp2->queued = 0; |
| 9691 | } |
| 9692 | else { |
| 9693 | if (i != j) |
| 9694 | np->squeue[j] = np->squeue[i]; |
| 9695 | if ((j += 2) >= MAX_START((8*(8) + 2*(16)) + 4)*2) j = 0; |
| 9696 | } |
| 9697 | if ((i += 2) >= MAX_START((8*(8) + 2*(16)) + 4)*2) i = 0; |
| 9698 | } |
| 9699 | if (i != j) /* Copy back the idle task if needed */ |
| 9700 | np->squeue[j] = np->squeue[i]; |
| 9701 | np->squeueput = j; /* Update our current start queue pointer */ |
| 9702 | |
| 9703 | /* |
| 9704 | ** Requeue the interrupted CCB in front of the |
| 9705 | ** LUN CCB wait queue to preserve ordering. |
| 9706 | */ |
| 9707 | xpt_remque(&cp->link_ccbq)__xpt_que_del((&cp->link_ccbq)->blink, (&cp-> link_ccbq)->flink); |
| 9708 | xpt_insque_head(&cp->link_ccbq, &lp->wait_ccbq)__xpt_que_add(&cp->link_ccbq, &lp->wait_ccbq, ( &lp->wait_ccbq)->flink); |
| 9709 | --lp->queuedccbs; |
| 9710 | cp->queued = 0; |
| 9711 | |
| 9712 | next: |
| 9713 | |
| 9714 | #ifdef SCSI_NCR_IARB_SUPPORT |
| 9715 | /* IARB hint may not be relevant any more. Forget it. */ |
| 9716 | cp->host_flagsphys.header.status[3] &= ~HF_HINT_IARB; |
| 9717 | if (np->last_cp) |
| 9718 | np->last_cp = 0; |
| 9719 | #endif |
| 9720 | |
| 9721 | /* |
| 9722 | ** Now we can restart the SCRIPTS processor safely. |
| 9723 | */ |
| 9724 | OUTL_DSP (NCB_SCRIPT_PHYS (np, start))do { do { ; } while(0); ((*(volatile unsigned int *) ((char * )np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_dsp ))))) = (((((np->p_script + ((size_t) (&((struct script *)0)->start)))))))); } while (0); |
| 9725 | |
| 9726 | switch(s_status) { |
| 9727 | default: |
| 9728 | case S_BUSY(0x08): |
| 9729 | ncr_complete(np, cp); |
| 9730 | break; |
| 9731 | case S_QUEUE_FULL(0x28): |
| 9732 | if (!lp || !lp->queuedccbs) { |
| 9733 | ncr_complete(np, cp); |
| 9734 | break; |
| 9735 | } |
| 9736 | if (bootverbose(np->verbose) >= 1) { |
| 9737 | PRINT_ADDR(cmd); |
| 9738 | printk ("QUEUE FULL! %d busy, %d disconnected CCBs\n", |
| 9739 | busyccbs, lp->queuedccbs); |
| 9740 | } |
| 9741 | /* |
| 9742 | ** Decrease number of tags to the number of |
| 9743 | ** disconnected commands. |
| 9744 | */ |
| 9745 | if (lp->queuedccbs < lp->numtags) { |
| 9746 | lp->numtags = lp->queuedccbs; |
| 9747 | lp->num_good = 0; |
| 9748 | ncr_setup_tags (np, cp->target, cp->lun); |
| 9749 | } |
| 9750 | /* |
| 9751 | ** Repair the offending CCB. |
| 9752 | */ |
| 9753 | cp->phys.header.savep = cp->startp; |
| 9754 | cp->phys.header.lastp = cp->lastp0; |
| 9755 | cp->host_statusphys.header.status[1] = HS_BUSY(1); |
| 9756 | cp->scsi_statusphys.header.status[2] = S_ILLEGAL(0xff); |
| 9757 | cp->xerr_status = 0; |
| 9758 | cp->extra_bytes = 0; |
| 9759 | cp->host_flagsphys.header.status[3] &= (HF_PM_TO_C(1u<<6)|HF_DATA_IN(1u<<5)); |
| 9760 | |
| 9761 | break; |
| 9762 | |
| 9763 | case S_TERMINATED(0x20): |
| 9764 | case S_CHECK_COND(0x02): |
| 9765 | /* |
| 9766 | ** If we were requesting sense, give up. |
| 9767 | */ |
| 9768 | if (cp->host_flagsphys.header.status[3] & HF_AUTO_SENSE(1u<<4)) { |
| 9769 | ncr_complete(np, cp); |
| 9770 | break; |
| 9771 | } |
| 9772 | |
| 9773 | /* |
| 9774 | ** Save SCSI status and extended error. |
| 9775 | ** Compute the data residual now. |
| 9776 | */ |
| 9777 | cp->sv_scsi_status = cp->scsi_statusphys.header.status[2]; |
| 9778 | cp->sv_xerr_status = cp->xerr_status; |
| 9779 | cp->resid = ncr_compute_residual(np, cp); |
| 9780 | |
| 9781 | /* |
| 9782 | ** Device returned CHECK CONDITION status. |
| 9783 | ** Prepare all needed data strutures for getting |
| 9784 | ** sense data. |
| 9785 | */ |
| 9786 | |
| 9787 | /* |
| 9788 | ** identify message |
| 9789 | */ |
| 9790 | cp->scsi_smsg2[0] = M_IDENTIFY(0x80) | cp->lun; |
| 9791 | msglen = 1; |
| 9792 | |
| 9793 | /* |
| 9794 | ** If we are currently using anything different from |
| 9795 | ** async. 8 bit data transfers with that target, |
| 9796 | ** start a negotiation, since the device may want |
| 9797 | ** to report us a UNIT ATTENTION condition due to |
| 9798 | ** a cause we currently ignore, and we donnot want |
| 9799 | ** to be stuck with WIDE and/or SYNC data transfer. |
| 9800 | ** |
| 9801 | ** cp->nego_status is filled by ncr_prepare_nego(). |
| 9802 | ** |
| 9803 | ** Do NOT negotiate if performing integrity check |
| 9804 | ** or if integrity check has completed, all check |
| 9805 | ** conditions will have been cleared. |
| 9806 | */ |
| 9807 | |
| 9808 | #ifdef SCSI_NCR_INTEGRITY_CHECKING |
| 9809 | if (DEBUG_FLAGSncr_debug & DEBUG_IC(0x0800)) { |
| 9810 | printk("%s: ncr_sir_to_redo: ic_done %2X, in_progress %2X\n", |
| 9811 | ncr_name(np), tp->ic_done, cp->cmd->ic_in_progress); |
| 9812 | } |
| 9813 | |
| 9814 | /* |
| 9815 | ** If parity error during integrity check, |
| 9816 | ** set the target width to narrow. Otherwise, |
| 9817 | ** do not negotiate on a request sense. |
| 9818 | */ |
| 9819 | if ( np->check_integ_par && np->check_integrity |
| 9820 | && cp->cmd->ic_in_progress ) { |
| 9821 | cp->nego_status = 0; |
| 9822 | msglen += |
| 9823 | ncr_ic_nego (np, cp, cmd ,&cp->scsi_smsg2[msglen]); |
| 9824 | } |
| 9825 | |
| 9826 | if (!np->check_integrity || |
| 9827 | (np->check_integrity && |
| 9828 | (!cp->cmd->ic_in_progress && !tp->ic_done)) ) { |
| 9829 | ncr_negotiate(np, tp); |
| 9830 | cp->nego_status = 0; |
| 9831 | { |
| 9832 | u_charunsigned char sync_offset; |
| 9833 | if ((np->device_id == PCI_DEVICE_ID_LSI_53C10100x20) || |
| 9834 | (np->device_id == PCI_DEVICE_ID_LSI_53C1010_660x21)) |
| 9835 | sync_offset = tp->sval & 0x3f; |
| 9836 | else |
| 9837 | sync_offset = tp->sval & 0x1f; |
| 9838 | |
| 9839 | if ((tp->wval & EWS0x08) || sync_offset) |
| 9840 | msglen += |
| 9841 | ncr_prepare_nego (np, cp, &cp->scsi_smsg2[msglen]); |
| 9842 | } |
| 9843 | |
| 9844 | } |
| 9845 | #else |
| 9846 | ncr_negotiate(np, tp); |
| 9847 | cp->nego_status = 0; |
| 9848 | if ((tp->wval & EWS0x08) || (tp->sval & 0x1f)) |
| 9849 | msglen += |
| 9850 | ncr_prepare_nego (np, cp, &cp->scsi_smsg2[msglen]); |
| 9851 | #endif /* SCSI_NCR_INTEGRITY_CHECKING */ |
| 9852 | |
| 9853 | /* |
| 9854 | ** Message table indirect structure. |
| 9855 | */ |
| 9856 | cp->phys.smsg.addr = cpu_to_scr(CCB_PHYS (cp, scsi_smsg2))((cp->p_ccb + ((size_t) (&((struct ccb *)0)->scsi_smsg2 )))); |
| 9857 | cp->phys.smsg.size = cpu_to_scr(msglen)(msglen); |
| 9858 | |
| 9859 | /* |
| 9860 | ** sense command |
| 9861 | */ |
| 9862 | cp->phys.cmd.addr = cpu_to_scr(CCB_PHYS (cp, sensecmd))((cp->p_ccb + ((size_t) (&((struct ccb *)0)->sensecmd )))); |
| 9863 | cp->phys.cmd.size = cpu_to_scr(6)(6); |
| 9864 | |
| 9865 | /* |
| 9866 | ** patch requested size into sense command |
| 9867 | */ |
| 9868 | cp->sensecmd[0] = 0x03; |
| 9869 | cp->sensecmd[1] = cp->lun << 5; |
| 9870 | cp->sensecmd[4] = sizeof(cp->sense_buf); |
| 9871 | |
| 9872 | /* |
| 9873 | ** sense data |
| 9874 | */ |
| 9875 | bzero(cp->sense_buf, sizeof(cp->sense_buf))(__builtin_constant_p(0) ? (__builtin_constant_p(((sizeof(cp-> sense_buf)))) ? __constant_c_and_count_memset((((cp->sense_buf ))),((0x01010101UL*(unsigned char)(0))),(((sizeof(cp->sense_buf ))))) : __constant_c_memset((((cp->sense_buf))),((0x01010101UL *(unsigned char)(0))),(((sizeof(cp->sense_buf)))))) : (__builtin_constant_p (((sizeof(cp->sense_buf)))) ? __memset_generic(((((cp-> sense_buf)))),(((0))),((((sizeof(cp->sense_buf)))))) : __memset_generic ((((cp->sense_buf))),((0)),(((sizeof(cp->sense_buf))))) )); |
| 9876 | cp->phys.sense.addr = cpu_to_scr(CCB_PHYS(cp,sense_buf[0]))((cp->p_ccb + ((size_t) (&((struct ccb *)0)->sense_buf [0])))); |
| 9877 | cp->phys.sense.size = cpu_to_scr(sizeof(cp->sense_buf))(sizeof(cp->sense_buf)); |
| 9878 | |
| 9879 | /* |
| 9880 | ** requeue the command. |
| 9881 | */ |
| 9882 | startp = NCB_SCRIPTH_PHYS (np, sdata_in)(np->p_scripth + ((size_t) (&((struct scripth *)0)-> sdata_in))); |
| 9883 | |
| 9884 | cp->phys.header.savep = cpu_to_scr(startp)(startp); |
| 9885 | cp->phys.header.goalp = cpu_to_scr(startp + 16)(startp + 16); |
| 9886 | cp->phys.header.lastp = cpu_to_scr(startp)(startp); |
| 9887 | cp->phys.header.wgoalp = cpu_to_scr(startp + 16)(startp + 16); |
| 9888 | cp->phys.header.wlastp = cpu_to_scr(startp)(startp); |
| 9889 | |
| 9890 | cp->host_statusphys.header.status[1] = cp->nego_status ? HS_NEGOTIATE(2) : HS_BUSY(1); |
| 9891 | cp->scsi_statusphys.header.status[2] = S_ILLEGAL(0xff); |
| 9892 | cp->host_flagsphys.header.status[3] = (HF_AUTO_SENSE(1u<<4)|HF_DATA_IN(1u<<5)); |
| 9893 | |
| 9894 | cp->phys.header.go.start = |
| 9895 | cpu_to_scr(NCB_SCRIPT_PHYS (np, select))((np->p_script + ((size_t) (&((struct script *)0)-> select)))); |
| 9896 | |
| 9897 | /* |
| 9898 | ** If lp not yet allocated, requeue the command. |
| 9899 | */ |
| 9900 | if (!lp) |
| 9901 | ncr_put_start_queue(np, cp); |
| 9902 | break; |
| 9903 | } |
| 9904 | |
| 9905 | /* |
| 9906 | ** requeue awaiting scsi commands for this lun. |
| 9907 | */ |
| 9908 | if (lp) |
| 9909 | ncr_start_next_ccb(np, lp, 1); |
| 9910 | |
| 9911 | return; |
| 9912 | } |
| 9913 | |
| 9914 | /*---------------------------------------------------------- |
| 9915 | ** |
| 9916 | ** After a device has accepted some management message |
| 9917 | ** as BUS DEVICE RESET, ABORT TASK, etc ..., or when |
| 9918 | ** a device signals a UNIT ATTENTION condition, some |
| 9919 | ** tasks are thrown away by the device. We are required |
| 9920 | ** to reflect that on our tasks list since the device |
| 9921 | ** will never complete these tasks. |
| 9922 | ** |
| 9923 | ** This function completes all disconnected CCBs for a |
| 9924 | ** given target that matches the following criteria: |
| 9925 | ** - lun=-1 means any logical UNIT otherwise a given one. |
| 9926 | ** - task=-1 means any task, otherwise a given one. |
| 9927 | **---------------------------------------------------------- |
| 9928 | */ |
| 9929 | static int ncr_clear_tasks(ncb_p np, u_charunsigned char hsts, |
| 9930 | int target, int lun, int task) |
| 9931 | { |
| 9932 | int i = 0; |
| 9933 | ccb_p cp; |
| 9934 | |
| 9935 | for (cp = np->ccbc; cp; cp = cp->link_ccb) { |
| 9936 | if (cp->host_statusphys.header.status[1] != HS_DISCONNECT(3)) |
| 9937 | continue; |
| 9938 | if (cp->target != target) |
| 9939 | continue; |
| 9940 | if (lun != -1 && cp->lun != lun) |
| 9941 | continue; |
| 9942 | if (task != -1 && cp->tag != NO_TAG(256) && cp->scsi_smsg[2] != task) |
| 9943 | continue; |
| 9944 | cp->host_statusphys.header.status[1] = hsts; |
| 9945 | cp->scsi_statusphys.header.status[2] = S_ILLEGAL(0xff); |
| 9946 | ncr_complete(np, cp); |
| 9947 | ++i; |
| 9948 | } |
| 9949 | return i; |
| 9950 | } |
| 9951 | |
| 9952 | /*========================================================== |
| 9953 | ** |
| 9954 | ** ncr chip handler for TASKS recovery. |
| 9955 | ** |
| 9956 | **========================================================== |
| 9957 | ** |
| 9958 | ** We cannot safely abort a command, while the SCRIPTS |
| 9959 | ** processor is running, since we just would be in race |
| 9960 | ** with it. |
| 9961 | ** |
| 9962 | ** As long as we have tasks to abort, we keep the SEM |
| 9963 | ** bit set in the ISTAT. When this bit is set, the |
| 9964 | ** SCRIPTS processor interrupts (SIR_SCRIPT_STOPPED) |
| 9965 | ** each time it enters the scheduler. |
| 9966 | ** |
| 9967 | ** If we have to reset a target, clear tasks of a unit, |
| 9968 | ** or to perform the abort of a disconnected job, we |
| 9969 | ** restart the SCRIPTS for selecting the target. Once |
| 9970 | ** selected, the SCRIPTS interrupts (SIR_TARGET_SELECTED). |
| 9971 | ** If it loses arbitration, the SCRIPTS will interrupt again |
| 9972 | ** the next time it will enter its scheduler, and so on ... |
| 9973 | ** |
| 9974 | ** On SIR_TARGET_SELECTED, we scan for the more |
| 9975 | ** appropriate thing to do: |
| 9976 | ** |
| 9977 | ** - If nothing, we just sent a M_ABORT message to the |
| 9978 | ** target to get rid of the useless SCSI bus ownership. |
| 9979 | ** According to the specs, no tasks shall be affected. |
| 9980 | ** - If the target is to be reset, we send it a M_RESET |
| 9981 | ** message. |
| 9982 | ** - If a logical UNIT is to be cleared , we send the |
| 9983 | ** IDENTIFY(lun) + M_ABORT. |
| 9984 | ** - If an untagged task is to be aborted, we send the |
| 9985 | ** IDENTIFY(lun) + M_ABORT. |
| 9986 | ** - If a tagged task is to be aborted, we send the |
| 9987 | ** IDENTIFY(lun) + task attributes + M_ABORT_TAG. |
| 9988 | ** |
| 9989 | ** Once our 'kiss of death' :) message has been accepted |
| 9990 | ** by the target, the SCRIPTS interrupts again |
| 9991 | ** (SIR_ABORT_SENT). On this interrupt, we complete |
| 9992 | ** all the CCBs that should have been aborted by the |
| 9993 | ** target according to our message. |
| 9994 | ** |
| 9995 | **---------------------------------------------------------- |
| 9996 | */ |
| 9997 | static void ncr_sir_task_recovery(ncb_p np, int num) |
| 9998 | { |
| 9999 | ccb_p cp; |
| 10000 | tcb_p tp; |
| 10001 | int target=-1, lun=-1, task; |
| 10002 | int i, k; |
| 10003 | u_charunsigned char *p; |
| 10004 | |
| 10005 | switch(num) { |
| 10006 | /* |
| 10007 | ** The SCRIPTS processor stopped before starting |
| 10008 | ** the next command in order to allow us to perform |
| 10009 | ** some task recovery. |
| 10010 | */ |
| 10011 | case SIR_SCRIPT_STOPPED(7): |
| 10012 | |
| 10013 | /* |
| 10014 | ** Do we have any target to reset or unit to clear ? |
| 10015 | */ |
| 10016 | for (i = 0 ; i < MAX_TARGET((16)) ; i++) { |
| 10017 | tp = &np->target[i]; |
| 10018 | if (tp->to_reset || (tp->l0p && tp->l0p->to_clear)) { |
| 10019 | target = i; |
| 10020 | break; |
| 10021 | } |
| 10022 | if (!tp->lmp) |
| 10023 | continue; |
| 10024 | for (k = 1 ; k < MAX_LUN64 ; k++) { |
| 10025 | if (tp->lmp[k] && tp->lmp[k]->to_clear) { |
| 10026 | target = i; |
| 10027 | break; |
| 10028 | } |
| 10029 | } |
| 10030 | if (target != -1) |
| 10031 | break; |
| 10032 | } |
| 10033 | |
| 10034 | /* |
| 10035 | ** If not, look at the CCB list for any |
| 10036 | ** disconnected CCB to be aborted. |
| 10037 | */ |
| 10038 | if (target == -1) { |
| 10039 | for (cp = np->ccbc; cp; cp = cp->link_ccb) { |
| 10040 | if (cp->host_statusphys.header.status[1] != HS_DISCONNECT(3)) |
| 10041 | continue; |
| 10042 | if (cp->to_abort) { |
| 10043 | target = cp->target; |
| 10044 | break; |
| 10045 | } |
| 10046 | } |
| 10047 | } |
| 10048 | |
| 10049 | /* |
| 10050 | ** If some target is to be selected, |
| 10051 | ** prepare and start the selection. |
| 10052 | */ |
| 10053 | if (target != -1) { |
| 10054 | tp = &np->target[target]; |
| 10055 | np->abrt_sel.sel_id = target; |
| 10056 | np->abrt_sel.sel_scntl3 = tp->wval; |
| 10057 | np->abrt_sel.sel_sxfer = tp->sval; |
| 10058 | np->abrt_sel.sel_scntl4 = tp->uval; |
| 10059 | OUTL(nc_dsa, np->p_ncb)((*(volatile unsigned int *) ((char *)np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_dsa))))) = (((np->p_ncb )))); |
| 10060 | OUTL_DSP (NCB_SCRIPTH_PHYS (np, sel_for_abort))do { do { ; } while(0); ((*(volatile unsigned int *) ((char * )np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_dsp ))))) = (((((np->p_scripth + ((size_t) (&((struct scripth *)0)->sel_for_abort)))))))); } while (0); |
| 10061 | return; |
| 10062 | } |
| 10063 | |
| 10064 | /* |
| 10065 | ** Nothing is to be selected, so we donnot need |
| 10066 | ** to synchronize with the SCRIPTS anymore. |
| 10067 | ** Remove the SEM flag from the ISTAT. |
| 10068 | */ |
| 10069 | np->istat_sem = 0; |
| 10070 | OUTB (nc_istat, SIGP)((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_istat))))) = (((0x20)))); |
| 10071 | |
| 10072 | /* |
| 10073 | ** Now look at CCBs to abort that haven't started yet. |
| 10074 | ** Remove all those CCBs from the start queue and |
| 10075 | ** complete them with appropriate status. |
| 10076 | ** Btw, the SCRIPTS processor is still stopped, so |
| 10077 | ** we are not in race. |
| 10078 | */ |
| 10079 | for (cp = np->ccbc; cp; cp = cp->link_ccb) { |
| 10080 | if (cp->host_statusphys.header.status[1] != HS_BUSY(1) && |
| 10081 | cp->host_statusphys.header.status[1] != HS_NEGOTIATE(2)) |
| 10082 | continue; |
| 10083 | if (!cp->to_abort) |
| 10084 | continue; |
| 10085 | #ifdef SCSI_NCR_IARB_SUPPORT |
| 10086 | /* |
| 10087 | ** If we are using IMMEDIATE ARBITRATION, we donnot |
| 10088 | ** want to cancel the last queued CCB, since the |
| 10089 | ** SCRIPTS may have anticipated the selection. |
| 10090 | */ |
| 10091 | if (cp == np->last_cp) { |
| 10092 | cp->to_abort = 0; |
| 10093 | continue; |
| 10094 | } |
| 10095 | #endif |
| 10096 | /* |
| 10097 | ** Compute index of next position in the start |
| 10098 | ** queue the SCRIPTS will schedule. |
| 10099 | */ |
| 10100 | i = (INL (nc_scratcha)(*(volatile unsigned int *) ((char *)np->reg + (((size_t) ( &((struct ncr_reg *)0)->nc_scratcha))))) - np->p_squeue) / 4; |
| 10101 | |
| 10102 | /* |
| 10103 | ** Remove the job from the start queue. |
| 10104 | */ |
| 10105 | k = -1; |
| 10106 | while (1) { |
| 10107 | if (i == np->squeueput) |
| 10108 | break; |
| 10109 | if (k == -1) { /* Not found yet */ |
| 10110 | if (cp == ncr_ccb_from_dsa(np, |
| 10111 | scr_to_cpu(np->squeue[i])(np->squeue[i]))) |
| 10112 | k = i; /* Found */ |
| 10113 | } |
| 10114 | else { |
| 10115 | /* |
| 10116 | ** Once found, we have to move |
| 10117 | ** back all jobs by 1 position. |
| 10118 | */ |
| 10119 | np->squeue[k] = np->squeue[i]; |
| 10120 | k += 2; |
| 10121 | if (k >= MAX_START((8*(8) + 2*(16)) + 4)*2) |
| 10122 | k = 0; |
| 10123 | } |
| 10124 | |
| 10125 | i += 2; |
| 10126 | if (i >= MAX_START((8*(8) + 2*(16)) + 4)*2) |
| 10127 | i = 0; |
| 10128 | } |
| 10129 | if (k != -1) { |
| 10130 | np->squeue[k] = np->squeue[i]; /* Idle task */ |
| 10131 | np->squeueput = k; /* Start queue pointer */ |
| 10132 | } |
| 10133 | cp->host_statusphys.header.status[1] = HS_ABORTED(7|(0x80)); |
| 10134 | cp->scsi_statusphys.header.status[2] = S_ILLEGAL(0xff); |
| 10135 | ncr_complete(np, cp); |
| 10136 | } |
| 10137 | break; |
| 10138 | /* |
| 10139 | ** The SCRIPTS processor has selected a target |
| 10140 | ** we may have some manual recovery to perform for. |
| 10141 | */ |
| 10142 | case SIR_TARGET_SELECTED(14): |
| 10143 | target = (INB (nc_sdid)(*(volatile unsigned char *) ((char *)np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_sdid))))) & 0xf); |
| 10144 | tp = &np->target[target]; |
| 10145 | |
| 10146 | np->abrt_tbl.addr = vtobus(np->abrt_msg)virt_to_phys(np->abrt_msg); |
| 10147 | |
| 10148 | /* |
| 10149 | ** If the target is to be reset, prepare a |
| 10150 | ** M_RESET message and clear the to_reset flag |
| 10151 | ** since we donnot expect this operation to fail. |
| 10152 | */ |
| 10153 | if (tp->to_reset) { |
| 10154 | np->abrt_msg[0] = M_RESET(0x0c); |
| 10155 | np->abrt_tbl.size = 1; |
| 10156 | tp->to_reset = 0; |
| 10157 | break; |
| 10158 | } |
| 10159 | |
| 10160 | /* |
| 10161 | ** Otherwise, look for some logical unit to be cleared. |
| 10162 | */ |
| 10163 | if (tp->l0p && tp->l0p->to_clear) |
| 10164 | lun = 0; |
| 10165 | else if (tp->lmp) { |
| 10166 | for (k = 1 ; k < MAX_LUN64 ; k++) { |
| 10167 | if (tp->lmp[k] && tp->lmp[k]->to_clear) { |
| 10168 | lun = k; |
| 10169 | break; |
| 10170 | } |
| 10171 | } |
| 10172 | } |
| 10173 | |
| 10174 | /* |
| 10175 | ** If a logical unit is to be cleared, prepare |
| 10176 | ** an IDENTIFY(lun) + ABORT MESSAGE. |
| 10177 | */ |
| 10178 | if (lun != -1) { |
| 10179 | lcb_p lp = ncr_lp(np, tp, lun)(!lun) ? (tp)->l0p : (tp)->lmp ? (tp)->lmp[(lun)] : 0; |
| 10180 | lp->to_clear = 0; /* We donnot expect to fail here */ |
| 10181 | np->abrt_msg[0] = M_IDENTIFY(0x80) | lun; |
| 10182 | np->abrt_msg[1] = M_ABORT(0x06); |
| 10183 | np->abrt_tbl.size = 2; |
| 10184 | break; |
| 10185 | } |
| 10186 | |
| 10187 | /* |
| 10188 | ** Otherwise, look for some disconnected job to |
| 10189 | ** abort for this target. |
| 10190 | */ |
| 10191 | for (cp = np->ccbc; cp; cp = cp->link_ccb) { |
| 10192 | if (cp->host_statusphys.header.status[1] != HS_DISCONNECT(3)) |
| 10193 | continue; |
| 10194 | if (cp->target != target) |
| 10195 | continue; |
| 10196 | if (cp->to_abort) |
| 10197 | break; |
| 10198 | } |
| 10199 | |
| 10200 | /* |
| 10201 | ** If we have none, probably since the device has |
| 10202 | ** completed the command before we won abitration, |
| 10203 | ** send a M_ABORT message without IDENTIFY. |
| 10204 | ** According to the specs, the device must just |
| 10205 | ** disconnect the BUS and not abort any task. |
| 10206 | */ |
| 10207 | if (!cp) { |
| 10208 | np->abrt_msg[0] = M_ABORT(0x06); |
| 10209 | np->abrt_tbl.size = 1; |
| 10210 | break; |
| 10211 | } |
| 10212 | |
| 10213 | /* |
| 10214 | ** We have some task to abort. |
| 10215 | ** Set the IDENTIFY(lun) |
| 10216 | */ |
| 10217 | np->abrt_msg[0] = M_IDENTIFY(0x80) | cp->lun; |
| 10218 | |
| 10219 | /* |
| 10220 | ** If we want to abort an untagged command, we |
| 10221 | ** will send a IDENTIFY + M_ABORT. |
| 10222 | ** Otherwise (tagged command), we will send |
| 10223 | ** a IDENTITFY + task attributes + ABORT TAG. |
| 10224 | */ |
| 10225 | if (cp->tag == NO_TAG(256)) { |
| 10226 | np->abrt_msg[1] = M_ABORT(0x06); |
| 10227 | np->abrt_tbl.size = 2; |
| 10228 | } |
| 10229 | else { |
| 10230 | np->abrt_msg[1] = cp->scsi_smsg[1]; |
| 10231 | np->abrt_msg[2] = cp->scsi_smsg[2]; |
| 10232 | np->abrt_msg[3] = M_ABORT_TAG(0x0d); |
| 10233 | np->abrt_tbl.size = 4; |
| 10234 | } |
| 10235 | cp->to_abort = 0; /* We donnot expect to fail here */ |
| 10236 | break; |
| 10237 | |
| 10238 | /* |
| 10239 | ** The target has accepted our message and switched |
| 10240 | ** to BUS FREE phase as we expected. |
| 10241 | */ |
| 10242 | case SIR_ABORT_SENT(17): |
| 10243 | target = (INB (nc_sdid)(*(volatile unsigned char *) ((char *)np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_sdid))))) & 0xf); |
| 10244 | tp = &np->target[target]; |
| 10245 | |
| 10246 | /* |
| 10247 | ** If we didn't abort anything, leave here. |
| 10248 | */ |
| 10249 | if (np->abrt_msg[0] == M_ABORT(0x06)) |
| 10250 | break; |
| 10251 | |
| 10252 | /* |
| 10253 | ** If we sent a M_RESET, then a hardware reset has |
| 10254 | ** been performed by the target. |
| 10255 | ** - Reset everything to async 8 bit |
| 10256 | ** - Tell ourself to negotiate next time :-) |
| 10257 | ** - Prepare to clear all disconnected CCBs for |
| 10258 | ** this target from our task list (lun=task=-1) |
| 10259 | */ |
| 10260 | lun = -1; |
| 10261 | task = -1; |
| 10262 | if (np->abrt_msg[0] == M_RESET(0x0c)) { |
| 10263 | tp->sval = 0; |
| 10264 | tp->wval = np->rv_scntl3; |
| 10265 | tp->uval = np->rv_scntl4; |
| 10266 | ncr_set_sync_wide_status(np, target); |
| 10267 | ncr_negotiate(np, tp); |
| 10268 | } |
| 10269 | |
| 10270 | /* |
| 10271 | ** Otherwise, check for the LUN and TASK(s) |
| 10272 | ** concerned by the cancelation. |
| 10273 | ** If it is not ABORT_TAG then it is CLEAR_QUEUE |
| 10274 | ** or an ABORT message :-) |
| 10275 | */ |
| 10276 | else { |
| 10277 | lun = np->abrt_msg[0] & 0x3f; |
| 10278 | if (np->abrt_msg[1] == M_ABORT_TAG(0x0d)) |
| 10279 | task = np->abrt_msg[2]; |
| 10280 | } |
| 10281 | |
| 10282 | /* |
| 10283 | ** Complete all the CCBs the device should have |
| 10284 | ** aborted due to our 'kiss of death' message. |
| 10285 | */ |
| 10286 | (void) ncr_clear_tasks(np, HS_ABORTED(7|(0x80)), target, lun, task); |
| 10287 | break; |
| 10288 | |
| 10289 | /* |
| 10290 | ** We have performed a auto-sense that succeeded. |
| 10291 | ** If the device reports a UNIT ATTENTION condition |
| 10292 | ** due to a RESET condition, we must complete all |
| 10293 | ** disconnect CCBs for this unit since the device |
| 10294 | ** shall have thrown them away. |
| 10295 | ** Since I haven't time to guess what the specs are |
| 10296 | ** expecting for other UNIT ATTENTION conditions, I |
| 10297 | ** decided to only care about RESET conditions. :) |
| 10298 | */ |
| 10299 | case SIR_AUTO_SENSE_DONE(20): |
| 10300 | cp = ncr_ccb_from_dsa(np, INL (nc_dsa)(*(volatile unsigned int *) ((char *)np->reg + (((size_t) ( &((struct ncr_reg *)0)->nc_dsa)))))); |
| 10301 | if (!cp) |
| 10302 | break; |
| 10303 | memcpy(cp->cmd->sense_buffer, cp->sense_buf,(__builtin_constant_p(sizeof(cp->cmd->sense_buffer)) ? __constant_memcpy ((cp->cmd->sense_buffer),(cp->sense_buf),(sizeof(cp-> cmd->sense_buffer))) : __memcpy((cp->cmd->sense_buffer ),(cp->sense_buf),(sizeof(cp->cmd->sense_buffer)))) |
| 10304 | sizeof(cp->cmd->sense_buffer))(__builtin_constant_p(sizeof(cp->cmd->sense_buffer)) ? __constant_memcpy ((cp->cmd->sense_buffer),(cp->sense_buf),(sizeof(cp-> cmd->sense_buffer))) : __memcpy((cp->cmd->sense_buffer ),(cp->sense_buf),(sizeof(cp->cmd->sense_buffer)))); |
| 10305 | p = &cp->cmd->sense_buffer[0]; |
| 10306 | |
| 10307 | if (p[0] != 0x70 || p[2] != 0x6 || p[12] != 0x29) |
| 10308 | break; |
| 10309 | #if 0 |
| 10310 | (void) ncr_clear_tasks(np, HS_RESET(6|(0x80)), cp->target, cp->lun, -1); |
| 10311 | #endif |
| 10312 | break; |
| 10313 | } |
| 10314 | |
| 10315 | /* |
| 10316 | ** Print to the log the message we intend to send. |
| 10317 | */ |
| 10318 | if (num == SIR_TARGET_SELECTED(14)) { |
| 10319 | PRINT_TARGET(np, target); |
| 10320 | ncr_printl_hex("control msgout:", np->abrt_msg, |
| 10321 | np->abrt_tbl.size); |
| 10322 | np->abrt_tbl.size = cpu_to_scr(np->abrt_tbl.size)(np->abrt_tbl.size); |
| 10323 | } |
| 10324 | |
| 10325 | /* |
| 10326 | ** Let the SCRIPTS processor continue. |
| 10327 | */ |
| 10328 | OUTONB_STD ()do { do { ; } while(0); ((*(volatile unsigned char *) ((char * )np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_dcntl ))))) = ((((*(volatile unsigned char *) ((char *)np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_dcntl))))) | ( (0x04|0x01)))))); } while (0); |
| 10329 | } |
| 10330 | |
| 10331 | |
| 10332 | /*========================================================== |
| 10333 | ** |
| 10334 | ** Gérard's alchemy:) that deals with with the data |
| 10335 | ** pointer for both MDP and the residual calculation. |
| 10336 | ** |
| 10337 | **========================================================== |
| 10338 | ** |
| 10339 | ** I didn't want to bloat the code by more than 200 |
| 10340 | ** lignes for the handling of both MDP and the residual. |
| 10341 | ** This has been achieved by using a data pointer |
| 10342 | ** representation consisting in an index in the data |
| 10343 | ** array (dp_sg) and a negative offset (dp_ofs) that |
| 10344 | ** have the following meaning: |
| 10345 | ** |
| 10346 | ** - dp_sg = MAX_SCATTER |
| 10347 | ** we are at the end of the data script. |
| 10348 | ** - dp_sg < MAX_SCATTER |
| 10349 | ** dp_sg points to the next entry of the scatter array |
| 10350 | ** we want to transfer. |
| 10351 | ** - dp_ofs < 0 |
| 10352 | ** dp_ofs represents the residual of bytes of the |
| 10353 | ** previous entry scatter entry we will send first. |
| 10354 | ** - dp_ofs = 0 |
| 10355 | ** no residual to send first. |
| 10356 | ** |
| 10357 | ** The function ncr_evaluate_dp() accepts an arbitray |
| 10358 | ** offset (basically from the MDP message) and returns |
| 10359 | ** the corresponding values of dp_sg and dp_ofs. |
| 10360 | ** |
| 10361 | **---------------------------------------------------------- |
| 10362 | */ |
| 10363 | |
| 10364 | static int ncr_evaluate_dp(ncb_p np, ccb_p cp, u_int32 scr, int *ofs) |
| 10365 | { |
| 10366 | u_int32 dp_scr; |
| 10367 | int dp_ofs, dp_sg, dp_sgmin; |
| 10368 | int tmp; |
| 10369 | struct pm_ctx *pm; |
| 10370 | |
| 10371 | /* |
| 10372 | ** Compute the resulted data pointer in term of a script |
| 10373 | ** address within some DATA script and a signed byte offset. |
| 10374 | */ |
| 10375 | dp_scr = scr; |
| 10376 | dp_ofs = *ofs; |
| 10377 | if (dp_scr == NCB_SCRIPT_PHYS (np, pm0_data)(np->p_script + ((size_t) (&((struct script *)0)->pm0_data )))) |
| 10378 | pm = &cp->phys.pm0; |
| 10379 | else if (dp_scr == NCB_SCRIPT_PHYS (np, pm1_data)(np->p_script + ((size_t) (&((struct script *)0)->pm1_data )))) |
| 10380 | pm = &cp->phys.pm1; |
| 10381 | else |
| 10382 | pm = 0; |
| 10383 | |
| 10384 | if (pm) { |
| 10385 | dp_scr = scr_to_cpu(pm->ret)(pm->ret); |
| 10386 | dp_ofs -= scr_to_cpu(pm->sg.size)(pm->sg.size); |
| 10387 | } |
| 10388 | |
| 10389 | /* |
| 10390 | ** Deduce the index of the sg entry. |
| 10391 | ** Keep track of the index of the first valid entry. |
| 10392 | ** If result is dp_sg = MAX_SCATTER, then we are at the |
| 10393 | ** end of the data and vice-versa. |
| 10394 | */ |
| 10395 | tmp = scr_to_cpu(cp->phys.header.goalp)(cp->phys.header.goalp); |
| 10396 | dp_sg = MAX_SCATTER((127)); |
| 10397 | if (dp_scr != tmp) |
| 10398 | dp_sg -= (tmp - 8 - (int)dp_scr) / (SCR_SG_SIZE(2)*4); |
| 10399 | dp_sgmin = MAX_SCATTER((127)) - cp->segments; |
| 10400 | |
| 10401 | /* |
| 10402 | ** Move to the sg entry the data pointer belongs to. |
| 10403 | ** |
| 10404 | ** If we are inside the data area, we expect result to be: |
| 10405 | ** |
| 10406 | ** Either, |
| 10407 | ** dp_ofs = 0 and dp_sg is the index of the sg entry |
| 10408 | ** the data pointer belongs to (or the end of the data) |
| 10409 | ** Or, |
| 10410 | ** dp_ofs < 0 and dp_sg is the index of the sg entry |
| 10411 | ** the data pointer belongs to + 1. |
| 10412 | */ |
| 10413 | if (dp_ofs < 0) { |
| 10414 | int n; |
| 10415 | while (dp_sg > dp_sgmin) { |
| 10416 | --dp_sg; |
| 10417 | tmp = scr_to_cpu(cp->phys.data[dp_sg].size)(cp->phys.data[dp_sg].size); |
| 10418 | n = dp_ofs + (tmp & 0xffffff); |
| 10419 | if (n > 0) { |
| 10420 | ++dp_sg; |
| 10421 | break; |
| 10422 | } |
| 10423 | dp_ofs = n; |
| 10424 | } |
| 10425 | } |
| 10426 | else if (dp_ofs > 0) { |
| 10427 | while (dp_sg < MAX_SCATTER((127))) { |
| 10428 | tmp = scr_to_cpu(cp->phys.data[dp_sg].size)(cp->phys.data[dp_sg].size); |
| 10429 | dp_ofs -= (tmp & 0xffffff); |
| 10430 | ++dp_sg; |
| 10431 | if (dp_ofs <= 0) |
| 10432 | break; |
| 10433 | } |
| 10434 | } |
| 10435 | |
| 10436 | /* |
| 10437 | ** Make sure the data pointer is inside the data area. |
| 10438 | ** If not, return some error. |
| 10439 | */ |
| 10440 | if (dp_sg < dp_sgmin || (dp_sg == dp_sgmin && dp_ofs < 0)) |
| 10441 | goto out_err; |
| 10442 | else if (dp_sg > MAX_SCATTER((127)) || (dp_sg == MAX_SCATTER((127)) && dp_ofs > 0)) |
| 10443 | goto out_err; |
| 10444 | |
| 10445 | /* |
| 10446 | ** Save the extreme pointer if needed. |
| 10447 | */ |
| 10448 | if (dp_sg > cp->ext_sg || |
| 10449 | (dp_sg == cp->ext_sg && dp_ofs > cp->ext_ofs)) { |
| 10450 | cp->ext_sg = dp_sg; |
| 10451 | cp->ext_ofs = dp_ofs; |
| 10452 | } |
| 10453 | |
| 10454 | /* |
| 10455 | ** Return data. |
| 10456 | */ |
| 10457 | *ofs = dp_ofs; |
| 10458 | return dp_sg; |
| 10459 | |
| 10460 | out_err: |
| 10461 | return -1; |
| 10462 | } |
| 10463 | |
| 10464 | /*========================================================== |
| 10465 | ** |
| 10466 | ** ncr chip handler for MODIFY DATA POINTER MESSAGE |
| 10467 | ** |
| 10468 | **========================================================== |
| 10469 | ** |
| 10470 | ** We also call this function on IGNORE WIDE RESIDUE |
| 10471 | ** messages that do not match a SWIDE full condition. |
| 10472 | ** Btw, we assume in that situation that such a message |
| 10473 | ** is equivalent to a MODIFY DATA POINTER (offset=-1). |
| 10474 | ** |
| 10475 | **---------------------------------------------------------- |
| 10476 | */ |
| 10477 | |
| 10478 | static void ncr_modify_dp(ncb_p np, tcb_p tp, ccb_p cp, int ofs) |
| 10479 | { |
| 10480 | int dp_ofs = ofs; |
| 10481 | u_int32 dp_scr = INL (nc_temp)(*(volatile unsigned int *) ((char *)np->reg + (((size_t) ( &((struct ncr_reg *)0)->nc_temp))))); |
| 10482 | u_int32 dp_ret; |
| 10483 | u_int32 tmp; |
| 10484 | u_charunsigned char hflags; |
| 10485 | int dp_sg; |
| 10486 | struct pm_ctx *pm; |
| 10487 | |
| 10488 | /* |
| 10489 | ** Not supported for auto_sense; |
| 10490 | */ |
| 10491 | if (cp->host_flagsphys.header.status[3] & HF_AUTO_SENSE(1u<<4)) |
| 10492 | goto out_reject; |
| 10493 | |
| 10494 | /* |
| 10495 | ** Apply our alchemy:) (see comments in ncr_evaluate_dp()), |
| 10496 | ** to the resulted data pointer. |
| 10497 | */ |
| 10498 | dp_sg = ncr_evaluate_dp(np, cp, dp_scr, &dp_ofs); |
| 10499 | if (dp_sg < 0) |
| 10500 | goto out_reject; |
| 10501 | |
| 10502 | /* |
| 10503 | ** And our alchemy:) allows to easily calculate the data |
| 10504 | ** script address we want to return for the next data phase. |
| 10505 | */ |
| 10506 | dp_ret = cpu_to_scr(cp->phys.header.goalp)(cp->phys.header.goalp); |
| 10507 | dp_ret = dp_ret - 8 - (MAX_SCATTER((127)) - dp_sg) * (SCR_SG_SIZE(2)*4); |
| 10508 | |
| 10509 | /* |
| 10510 | ** If offset / scatter entry is zero we donnot need |
| 10511 | ** a context for the new current data pointer. |
| 10512 | */ |
| 10513 | if (dp_ofs == 0) { |
| 10514 | dp_scr = dp_ret; |
| 10515 | goto out_ok; |
| 10516 | } |
| 10517 | |
| 10518 | /* |
| 10519 | ** Get a context for the new current data pointer. |
| 10520 | */ |
| 10521 | hflags = INB (HF_PRT)(*(volatile unsigned char *) ((char *)np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_scr3))))); |
| 10522 | |
| 10523 | if (hflags & HF_DP_SAVED(1u<<3)) |
| 10524 | hflags ^= HF_ACT_PM(1u<<2); |
| 10525 | |
| 10526 | if (!(hflags & HF_ACT_PM(1u<<2))) { |
| 10527 | pm = &cp->phys.pm0; |
| 10528 | dp_scr = NCB_SCRIPT_PHYS (np, pm0_data)(np->p_script + ((size_t) (&((struct script *)0)->pm0_data ))); |
| 10529 | } |
| 10530 | else { |
| 10531 | pm = &cp->phys.pm1; |
| 10532 | dp_scr = NCB_SCRIPT_PHYS (np, pm1_data)(np->p_script + ((size_t) (&((struct script *)0)->pm1_data ))); |
| 10533 | } |
| 10534 | |
| 10535 | hflags &= ~(HF_DP_SAVED(1u<<3)); |
| 10536 | |
| 10537 | OUTB (HF_PRT, hflags)((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_scr3))))) = (((hflags))) ); |
| 10538 | |
| 10539 | /* |
| 10540 | ** Set up the new current data pointer. |
| 10541 | ** ofs < 0 there, and for the next data phase, we |
| 10542 | ** want to transfer part of the data of the sg entry |
| 10543 | ** corresponding to index dp_sg-1 prior to returning |
| 10544 | ** to the main data script. |
| 10545 | */ |
| 10546 | pm->ret = cpu_to_scr(dp_ret)(dp_ret); |
| 10547 | tmp = scr_to_cpu(cp->phys.data[dp_sg-1].addr)(cp->phys.data[dp_sg-1].addr); |
| 10548 | tmp += scr_to_cpu(cp->phys.data[dp_sg-1].size)(cp->phys.data[dp_sg-1].size) + dp_ofs; |
| 10549 | pm->sg.addr = cpu_to_scr(tmp)(tmp); |
| 10550 | pm->sg.size = cpu_to_scr(-dp_ofs)(-dp_ofs); |
| 10551 | |
| 10552 | out_ok: |
| 10553 | OUTL (nc_temp, dp_scr)((*(volatile unsigned int *) ((char *)np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_temp))))) = (((dp_scr)))); |
| 10554 | OUTL_DSP (NCB_SCRIPT_PHYS (np, clrack))do { do { ; } while(0); ((*(volatile unsigned int *) ((char * )np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_dsp ))))) = (((((np->p_script + ((size_t) (&((struct script *)0)->clrack)))))))); } while (0); |
| 10555 | return; |
| 10556 | |
| 10557 | out_reject: |
| 10558 | OUTL_DSP (NCB_SCRIPTH_PHYS (np, msg_bad))do { do { ; } while(0); ((*(volatile unsigned int *) ((char * )np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_dsp ))))) = (((((np->p_scripth + ((size_t) (&((struct scripth *)0)->msg_bad)))))))); } while (0); |
| 10559 | } |
| 10560 | |
| 10561 | |
| 10562 | /*========================================================== |
| 10563 | ** |
| 10564 | ** ncr chip calculation of the data residual. |
| 10565 | ** |
| 10566 | **========================================================== |
| 10567 | ** |
| 10568 | ** As I used to say, the requirement of data residual |
| 10569 | ** in SCSI is broken, useless and cannot be achieved |
| 10570 | ** without huge complexity. |
| 10571 | ** But most OSes and even the official CAM require it. |
| 10572 | ** When stupidity happens to be so widely spread inside |
| 10573 | ** a community, it gets hard to convince. |
| 10574 | ** |
| 10575 | ** Anyway, I don't care, since I am not going to use |
| 10576 | ** any software that considers this data residual as |
| 10577 | ** a relevant information. :) |
| 10578 | ** |
| 10579 | **---------------------------------------------------------- |
| 10580 | */ |
| 10581 | |
| 10582 | static int ncr_compute_residual(ncb_p np, ccb_p cp) |
| 10583 | { |
| 10584 | int dp_sg, dp_sgmin, tmp; |
| 10585 | int resid=0; |
| 10586 | int dp_ofs = 0; |
| 10587 | |
| 10588 | /* |
| 10589 | * Check for some data lost or just thrown away. |
| 10590 | * We are not required to be quite accurate in this |
| 10591 | * situation. Btw, if we are odd for output and the |
| 10592 | * device claims some more data, it may well happen |
| 10593 | * than our residual be zero. :-) |
| 10594 | */ |
| 10595 | if (cp->xerr_status & (XE_EXTRA_DATA(1)|XE_SODL_UNRUN(1<<3)|XE_SWIDE_OVRUN(1<<4))) { |
| 10596 | if (cp->xerr_status & XE_EXTRA_DATA(1)) |
| 10597 | resid -= cp->extra_bytes; |
| 10598 | if (cp->xerr_status & XE_SODL_UNRUN(1<<3)) |
| 10599 | ++resid; |
| 10600 | if (cp->xerr_status & XE_SWIDE_OVRUN(1<<4)) |
| 10601 | --resid; |
| 10602 | } |
| 10603 | |
| 10604 | |
| 10605 | /* |
| 10606 | ** If SCRIPTS reaches its goal point, then |
| 10607 | ** there is no additionnal residual. |
| 10608 | */ |
| 10609 | if (cp->phys.header.lastp == cp->phys.header.goalp) |
| 10610 | return resid; |
| 10611 | |
| 10612 | /* |
| 10613 | ** If the last data pointer is data_io (direction |
| 10614 | ** unknown), then no data transfer should have |
| 10615 | ** taken place. |
| 10616 | */ |
| 10617 | if (cp->phys.header.lastp == NCB_SCRIPTH_PHYS (np, data_io)(np->p_scripth + ((size_t) (&((struct scripth *)0)-> data_io)))) |
| 10618 | return cp->data_len; |
| 10619 | |
| 10620 | /* |
| 10621 | ** If no data transfer occurs, or if the data |
| 10622 | ** pointer is weird, return full residual. |
| 10623 | */ |
| 10624 | if (cp->startp == cp->phys.header.lastp || |
| 10625 | ncr_evaluate_dp(np, cp, scr_to_cpu(cp->phys.header.lastp)(cp->phys.header.lastp), |
| 10626 | &dp_ofs) < 0) { |
| 10627 | return cp->data_len; |
| 10628 | } |
| 10629 | |
| 10630 | /* |
| 10631 | ** We are now full comfortable in the computation |
| 10632 | ** of the data residual (2's complement). |
| 10633 | */ |
| 10634 | dp_sgmin = MAX_SCATTER((127)) - cp->segments; |
| 10635 | resid = -cp->ext_ofs; |
| 10636 | for (dp_sg = cp->ext_sg; dp_sg < MAX_SCATTER((127)); ++dp_sg) { |
| 10637 | tmp = scr_to_cpu(cp->phys.data[dp_sg].size)(cp->phys.data[dp_sg].size); |
| 10638 | resid += (tmp & 0xffffff); |
| 10639 | } |
| 10640 | |
| 10641 | /* |
| 10642 | ** Hopefully, the result is not too wrong. |
| 10643 | */ |
| 10644 | return resid; |
| 10645 | } |
| 10646 | |
| 10647 | /*========================================================== |
| 10648 | ** |
| 10649 | ** Print out the containt of a SCSI message. |
| 10650 | ** |
| 10651 | **========================================================== |
| 10652 | */ |
| 10653 | |
| 10654 | static int ncr_show_msg (u_charunsigned char * msg) |
| 10655 | { |
| 10656 | u_charunsigned char i; |
| 10657 | printk ("%x",*msg); |
| 10658 | if (*msg==M_EXTENDED(0x01)) { |
| 10659 | for (i=1;i<8;i++) { |
| 10660 | if (i-1>msg[1]) break; |
| 10661 | printk ("-%x",msg[i]); |
| 10662 | }; |
| 10663 | return (i+1); |
| 10664 | } else if ((*msg & 0xf0) == 0x20) { |
| 10665 | printk ("-%x",msg[1]); |
| 10666 | return (2); |
| 10667 | }; |
| 10668 | return (1); |
| 10669 | } |
| 10670 | |
| 10671 | static void ncr_print_msg (ccb_p cp, char *label, u_charunsigned char *msg) |
| 10672 | { |
| 10673 | if (cp) |
| 10674 | PRINT_ADDR(cp->cmd); |
| 10675 | if (label) |
| 10676 | printk ("%s: ", label); |
| 10677 | |
| 10678 | (void) ncr_show_msg (msg); |
| 10679 | printk (".\n"); |
| 10680 | } |
| 10681 | |
| 10682 | /*=================================================================== |
| 10683 | ** |
| 10684 | ** Negotiation for WIDE and SYNCHRONOUS DATA TRANSFER. |
| 10685 | ** |
| 10686 | **=================================================================== |
| 10687 | ** |
| 10688 | ** Was Sie schon immer ueber transfermode negotiation wissen wollten ... |
| 10689 | ** |
| 10690 | ** We try to negotiate sync and wide transfer only after |
| 10691 | ** a successfull inquire command. We look at byte 7 of the |
| 10692 | ** inquire data to determine the capabilities of the target. |
| 10693 | ** |
| 10694 | ** When we try to negotiate, we append the negotiation message |
| 10695 | ** to the identify and (maybe) simple tag message. |
| 10696 | ** The host status field is set to HS_NEGOTIATE to mark this |
| 10697 | ** situation. |
| 10698 | ** |
| 10699 | ** If the target doesn't answer this message immediately |
| 10700 | ** (as required by the standard), the SIR_NEGO_FAILED interrupt |
| 10701 | ** will be raised eventually. |
| 10702 | ** The handler removes the HS_NEGOTIATE status, and sets the |
| 10703 | ** negotiated value to the default (async / nowide). |
| 10704 | ** |
| 10705 | ** If we receive a matching answer immediately, we check it |
| 10706 | ** for validity, and set the values. |
| 10707 | ** |
| 10708 | ** If we receive a Reject message immediately, we assume the |
| 10709 | ** negotiation has failed, and fall back to standard values. |
| 10710 | ** |
| 10711 | ** If we receive a negotiation message while not in HS_NEGOTIATE |
| 10712 | ** state, it's a target initiated negotiation. We prepare a |
| 10713 | ** (hopefully) valid answer, set our parameters, and send back |
| 10714 | ** this answer to the target. |
| 10715 | ** |
| 10716 | ** If the target doesn't fetch the answer (no message out phase), |
| 10717 | ** we assume the negotiation has failed, and fall back to default |
| 10718 | ** settings (SIR_NEGO_PROTO interrupt). |
| 10719 | ** |
| 10720 | ** When we set the values, we adjust them in all ccbs belonging |
| 10721 | ** to this target, in the controller's register, and in the "phys" |
| 10722 | ** field of the controller's struct ncb. |
| 10723 | ** |
| 10724 | **--------------------------------------------------------------------- |
| 10725 | */ |
| 10726 | |
| 10727 | /*========================================================== |
| 10728 | ** |
| 10729 | ** ncr chip handler for SYNCHRONOUS DATA TRANSFER |
| 10730 | ** REQUEST (SDTR) message. |
| 10731 | ** |
| 10732 | **========================================================== |
| 10733 | ** |
| 10734 | ** Read comments above. |
| 10735 | ** |
| 10736 | **---------------------------------------------------------- |
| 10737 | */ |
| 10738 | static void ncr_sync_nego(ncb_p np, tcb_p tp, ccb_p cp) |
| 10739 | { |
| 10740 | u_charunsigned char scntl3, scntl4; |
| 10741 | u_charunsigned char chg, ofs, per, fak; |
| 10742 | |
| 10743 | /* |
| 10744 | ** Synchronous request message received. |
| 10745 | */ |
| 10746 | |
| 10747 | if (DEBUG_FLAGSncr_debug & DEBUG_NEGO(0x0200)) { |
| 10748 | ncr_print_msg(cp, "sync msg in", np->msgin); |
| 10749 | }; |
| 10750 | |
| 10751 | /* |
| 10752 | ** get requested values. |
| 10753 | */ |
| 10754 | |
| 10755 | chg = 0; |
| 10756 | per = np->msgin[3]; |
| 10757 | ofs = np->msgin[4]; |
| 10758 | if (ofs==0) per=255; |
| 10759 | |
| 10760 | /* |
| 10761 | ** if target sends SDTR message, |
| 10762 | ** it CAN transfer synch. |
| 10763 | */ |
| 10764 | |
| 10765 | if (ofs) |
| 10766 | tp->inq_byte7 |= INQ7_SYNC(0x10); |
| 10767 | |
| 10768 | /* |
| 10769 | ** check values against driver limits. |
| 10770 | */ |
| 10771 | |
| 10772 | if (per < np->minsync) |
| 10773 | {chg = 1; per = np->minsync;} |
| 10774 | if (per < tp->minsync) |
| 10775 | {chg = 1; per = tp->minsync;} |
| 10776 | if (ofs > tp->maxoffs) |
| 10777 | {chg = 1; ofs = tp->maxoffs;} |
| 10778 | |
| 10779 | /* |
| 10780 | ** Check against controller limits. |
| 10781 | */ |
| 10782 | fak = 7; |
| 10783 | scntl3 = 0; |
| 10784 | scntl4 = 0; |
| 10785 | if (ofs != 0) { |
| 10786 | ncr_getsync(np, per, &fak, &scntl3); |
| 10787 | if (fak > 7) { |
| 10788 | chg = 1; |
| 10789 | ofs = 0; |
| 10790 | } |
| 10791 | } |
| 10792 | if (ofs == 0) { |
| 10793 | fak = 7; |
| 10794 | per = 0; |
| 10795 | scntl3 = 0; |
| 10796 | scntl4 = 0; |
| 10797 | tp->minsync = 0; |
| 10798 | } |
| 10799 | |
| 10800 | if (DEBUG_FLAGSncr_debug & DEBUG_NEGO(0x0200)) { |
| 10801 | PRINT_ADDR(cp->cmd); |
| 10802 | printk ("sync: per=%d scntl3=0x%x scntl4=0x%x ofs=%d fak=%d chg=%d.\n", |
| 10803 | per, scntl3, scntl4, ofs, fak, chg); |
| 10804 | } |
| 10805 | |
| 10806 | if (INB (HS_PRT)(*(volatile unsigned char *) ((char *)np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_scr1))))) == HS_NEGOTIATE(2)) { |
| 10807 | OUTB (HS_PRT, HS_BUSY)((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_scr1))))) = ((((1))))); |
| 10808 | switch (cp->nego_status) { |
| 10809 | case NS_SYNC(1): |
| 10810 | /* |
| 10811 | ** This was an answer message |
| 10812 | */ |
| 10813 | if (chg) { |
| 10814 | /* |
| 10815 | ** Answer wasn't acceptable. |
| 10816 | */ |
| 10817 | ncr_setsync (np, cp, 0, 0xe0, 0); |
| 10818 | OUTL_DSP (NCB_SCRIPTH_PHYS (np, msg_bad))do { do { ; } while(0); ((*(volatile unsigned int *) ((char * )np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_dsp ))))) = (((((np->p_scripth + ((size_t) (&((struct scripth *)0)->msg_bad)))))))); } while (0); |
| 10819 | } else { |
| 10820 | /* |
| 10821 | ** Answer is ok. |
| 10822 | */ |
| 10823 | if ((np->device_id != PCI_DEVICE_ID_LSI_53C10100x20) && |
| 10824 | (np->device_id != PCI_DEVICE_ID_LSI_53C1010_660x21)) |
| 10825 | ncr_setsync (np, cp, scntl3, (fak<<5)|ofs,0); |
| 10826 | else |
| 10827 | ncr_setsync (np, cp, scntl3, ofs, scntl4); |
| 10828 | |
| 10829 | OUTL_DSP (NCB_SCRIPT_PHYS (np, clrack))do { do { ; } while(0); ((*(volatile unsigned int *) ((char * )np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_dsp ))))) = (((((np->p_script + ((size_t) (&((struct script *)0)->clrack)))))))); } while (0); |
| 10830 | }; |
| 10831 | return; |
| 10832 | |
| 10833 | case NS_WIDE(2): |
| 10834 | ncr_setwide (np, cp, 0, 0); |
| 10835 | break; |
| 10836 | }; |
| 10837 | }; |
| 10838 | |
| 10839 | /* |
| 10840 | ** It was a request. Set value and |
| 10841 | ** prepare an answer message |
| 10842 | */ |
| 10843 | |
| 10844 | if ((np->device_id != PCI_DEVICE_ID_LSI_53C10100x20) && |
| 10845 | (np->device_id != PCI_DEVICE_ID_LSI_53C1010_660x21)) |
| 10846 | ncr_setsync (np, cp, scntl3, (fak<<5)|ofs,0); |
| 10847 | else |
| 10848 | ncr_setsync (np, cp, scntl3, ofs, scntl4); |
| 10849 | |
| 10850 | np->msgout[0] = M_EXTENDED(0x01); |
| 10851 | np->msgout[1] = 3; |
| 10852 | np->msgout[2] = M_X_SYNC_REQ(0x01); |
| 10853 | np->msgout[3] = per; |
| 10854 | np->msgout[4] = ofs; |
| 10855 | |
| 10856 | cp->nego_status = NS_SYNC(1); |
| 10857 | |
| 10858 | if (DEBUG_FLAGSncr_debug & DEBUG_NEGO(0x0200)) { |
| 10859 | ncr_print_msg(cp, "sync msgout", np->msgout); |
| 10860 | } |
| 10861 | |
| 10862 | np->msgin [0] = M_NOOP(0x08); |
| 10863 | |
| 10864 | if (!ofs) |
| 10865 | OUTL_DSP (NCB_SCRIPTH_PHYS (np, msg_bad))do { do { ; } while(0); ((*(volatile unsigned int *) ((char * )np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_dsp ))))) = (((((np->p_scripth + ((size_t) (&((struct scripth *)0)->msg_bad)))))))); } while (0); |
| 10866 | else |
| 10867 | OUTL_DSP (NCB_SCRIPTH_PHYS (np, sdtr_resp))do { do { ; } while(0); ((*(volatile unsigned int *) ((char * )np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_dsp ))))) = (((((np->p_scripth + ((size_t) (&((struct scripth *)0)->sdtr_resp)))))))); } while (0); |
| 10868 | } |
| 10869 | |
| 10870 | /*========================================================== |
| 10871 | ** |
| 10872 | ** ncr chip handler for WIDE DATA TRANSFER REQUEST |
| 10873 | ** (WDTR) message. |
| 10874 | ** |
| 10875 | **========================================================== |
| 10876 | ** |
| 10877 | ** Read comments above. |
| 10878 | ** |
| 10879 | **---------------------------------------------------------- |
| 10880 | */ |
| 10881 | static void ncr_wide_nego(ncb_p np, tcb_p tp, ccb_p cp) |
| 10882 | { |
| 10883 | u_charunsigned char chg, wide; |
| 10884 | |
| 10885 | /* |
| 10886 | ** Wide request message received. |
| 10887 | */ |
| 10888 | if (DEBUG_FLAGSncr_debug & DEBUG_NEGO(0x0200)) { |
| 10889 | ncr_print_msg(cp, "wide msgin", np->msgin); |
| 10890 | }; |
| 10891 | |
| 10892 | /* |
| 10893 | ** get requested values. |
| 10894 | */ |
| 10895 | |
| 10896 | chg = 0; |
| 10897 | wide = np->msgin[3]; |
| 10898 | |
| 10899 | /* |
| 10900 | ** if target sends WDTR message, |
| 10901 | ** it CAN transfer wide. |
| 10902 | */ |
| 10903 | |
| 10904 | if (wide) |
| 10905 | tp->inq_byte7 |= INQ7_WIDE16(0x20); |
| 10906 | |
| 10907 | /* |
| 10908 | ** check values against driver limits. |
| 10909 | */ |
| 10910 | |
| 10911 | if (wide > tp->usrwide) |
| 10912 | {chg = 1; wide = tp->usrwide;} |
| 10913 | |
| 10914 | if (DEBUG_FLAGSncr_debug & DEBUG_NEGO(0x0200)) { |
| 10915 | PRINT_ADDR(cp->cmd); |
| 10916 | printk ("wide: wide=%d chg=%d.\n", wide, chg); |
| 10917 | } |
| 10918 | |
| 10919 | if (INB (HS_PRT)(*(volatile unsigned char *) ((char *)np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_scr1))))) == HS_NEGOTIATE(2)) { |
| 10920 | OUTB (HS_PRT, HS_BUSY)((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_scr1))))) = ((((1))))); |
| 10921 | switch (cp->nego_status) { |
| 10922 | case NS_WIDE(2): |
| 10923 | /* |
| 10924 | ** This was an answer message |
| 10925 | */ |
| 10926 | if (chg) { |
| 10927 | /* |
| 10928 | ** Answer wasn't acceptable. |
| 10929 | */ |
| 10930 | ncr_setwide (np, cp, 0, 1); |
| 10931 | OUTL_DSP (NCB_SCRIPTH_PHYS (np, msg_bad))do { do { ; } while(0); ((*(volatile unsigned int *) ((char * )np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_dsp ))))) = (((((np->p_scripth + ((size_t) (&((struct scripth *)0)->msg_bad)))))))); } while (0); |
| 10932 | } else { |
| 10933 | /* |
| 10934 | ** Answer is ok. |
| 10935 | */ |
| 10936 | ncr_setwide (np, cp, wide, 1); |
| 10937 | OUTL_DSP (NCB_SCRIPT_PHYS (np, clrack))do { do { ; } while(0); ((*(volatile unsigned int *) ((char * )np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_dsp ))))) = (((((np->p_script + ((size_t) (&((struct script *)0)->clrack)))))))); } while (0); |
| 10938 | }; |
| 10939 | return; |
| 10940 | |
| 10941 | case NS_SYNC(1): |
| 10942 | ncr_setsync (np, cp, 0, 0xe0, 0); |
| 10943 | break; |
| 10944 | }; |
| 10945 | }; |
| 10946 | |
| 10947 | /* |
| 10948 | ** It was a request, set value and |
| 10949 | ** prepare an answer message |
| 10950 | */ |
| 10951 | |
| 10952 | ncr_setwide (np, cp, wide, 1); |
| 10953 | |
| 10954 | np->msgout[0] = M_EXTENDED(0x01); |
| 10955 | np->msgout[1] = 2; |
| 10956 | np->msgout[2] = M_X_WIDE_REQ(0x03); |
| 10957 | np->msgout[3] = wide; |
| 10958 | |
| 10959 | np->msgin [0] = M_NOOP(0x08); |
| 10960 | |
| 10961 | cp->nego_status = NS_WIDE(2); |
| 10962 | |
| 10963 | if (DEBUG_FLAGSncr_debug & DEBUG_NEGO(0x0200)) { |
| 10964 | ncr_print_msg(cp, "wide msgout", np->msgout); |
| 10965 | } |
| 10966 | |
| 10967 | OUTL_DSP (NCB_SCRIPTH_PHYS (np, wdtr_resp))do { do { ; } while(0); ((*(volatile unsigned int *) ((char * )np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_dsp ))))) = (((((np->p_scripth + ((size_t) (&((struct scripth *)0)->wdtr_resp)))))))); } while (0); |
| 10968 | } |
| 10969 | /*========================================================== |
| 10970 | ** |
| 10971 | ** ncr chip handler for PARALLEL PROTOCOL REQUEST |
| 10972 | ** (PPR) message. |
| 10973 | ** |
| 10974 | **========================================================== |
| 10975 | ** |
| 10976 | ** Read comments above. |
| 10977 | ** |
| 10978 | **---------------------------------------------------------- |
| 10979 | */ |
| 10980 | static void ncr_ppr_nego(ncb_p np, tcb_p tp, ccb_p cp) |
| 10981 | { |
| 10982 | u_charunsigned char scntl3, scntl4; |
| 10983 | u_charunsigned char chg, ofs, per, fak, wth, dt; |
| 10984 | |
| 10985 | /* |
| 10986 | ** PPR message received. |
| 10987 | */ |
| 10988 | |
| 10989 | if (DEBUG_FLAGSncr_debug & DEBUG_NEGO(0x0200)) { |
| 10990 | ncr_print_msg(cp, "ppr msg in", np->msgin); |
| 10991 | }; |
| 10992 | |
| 10993 | /* |
| 10994 | ** get requested values. |
| 10995 | */ |
| 10996 | |
| 10997 | chg = 0; |
| 10998 | per = np->msgin[3]; |
| 10999 | ofs = np->msgin[5]; |
| 11000 | wth = np->msgin[6]; |
| 11001 | dt = np->msgin[7]; |
| 11002 | if (ofs==0) per=255; |
| 11003 | |
| 11004 | /* |
| 11005 | ** if target sends sync (wide), |
| 11006 | ** it CAN transfer synch (wide). |
| 11007 | */ |
| 11008 | |
| 11009 | if (ofs) |
| 11010 | tp->inq_byte7 |= INQ7_SYNC(0x10); |
| 11011 | |
| 11012 | if (wth) |
| 11013 | tp->inq_byte7 |= INQ7_WIDE16(0x20); |
| 11014 | |
| 11015 | /* |
| 11016 | ** check values against driver limits. |
| 11017 | */ |
| 11018 | |
| 11019 | if (wth > tp->usrwide) |
| 11020 | {chg = 1; wth = tp->usrwide;} |
| 11021 | if (per < np->minsync) |
| 11022 | {chg = 1; per = np->minsync;} |
| 11023 | if (per < tp->minsync) |
| 11024 | {chg = 1; per = tp->minsync;} |
| 11025 | if (ofs > tp->maxoffs) |
| 11026 | {chg = 1; ofs = tp->maxoffs;} |
| 11027 | |
| 11028 | /* |
| 11029 | ** Check against controller limits. |
| 11030 | */ |
| 11031 | fak = 7; |
| 11032 | scntl3 = 0; |
| 11033 | scntl4 = 0; |
| 11034 | if (ofs != 0) { |
| 11035 | scntl4 = dt ? 0x80 : 0; |
| 11036 | ncr_getsync(np, per, &fak, &scntl3); |
| 11037 | if (fak > 7) { |
| 11038 | chg = 1; |
| 11039 | ofs = 0; |
| 11040 | } |
| 11041 | } |
| 11042 | if (ofs == 0) { |
| 11043 | fak = 7; |
| 11044 | per = 0; |
| 11045 | scntl3 = 0; |
| 11046 | scntl4 = 0; |
| 11047 | tp->minsync = 0; |
| 11048 | } |
| 11049 | |
| 11050 | /* |
| 11051 | ** If target responds with Ultra 3 speed |
| 11052 | ** but narrow or not DT, reject. |
| 11053 | ** If target responds with DT request |
| 11054 | ** but not Ultra3 speeds, reject message, |
| 11055 | ** reset min sync for target to 0x0A and |
| 11056 | ** set flags to re-negotiate. |
| 11057 | */ |
| 11058 | |
| 11059 | if ((per == 0x09) && ofs && (!wth || !dt)) |
| 11060 | chg = 1; |
| 11061 | else if (( (per > 0x09) && dt) ) |
| 11062 | chg = 2; |
| 11063 | |
| 11064 | |
| 11065 | if (DEBUG_FLAGSncr_debug & DEBUG_NEGO(0x0200)) { |
| 11066 | PRINT_ADDR(cp->cmd); |
| 11067 | printk ("ppr: wth=%d per=%d scntl3=0x%x scntl4=0x%x ofs=%d fak=%d chg=%d.\n", |
| 11068 | wth, per, scntl3, scntl4, ofs, fak, chg); |
| 11069 | } |
| 11070 | |
| 11071 | if (INB (HS_PRT)(*(volatile unsigned char *) ((char *)np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_scr1))))) == HS_NEGOTIATE(2)) { |
| 11072 | OUTB (HS_PRT, HS_BUSY)((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_scr1))))) = ((((1))))); |
| 11073 | switch (cp->nego_status) { |
| 11074 | case NS_PPR(4): |
| 11075 | /* |
| 11076 | ** This was an answer message |
| 11077 | */ |
| 11078 | if (chg) { |
| 11079 | /* |
| 11080 | ** Answer wasn't acceptable. |
| 11081 | */ |
| 11082 | if (chg == 2) { |
| 11083 | /* Send message reject and reset flags for |
| 11084 | ** host to re-negotiate with min period 0x0A. |
| 11085 | */ |
| 11086 | tp->minsync = 0x0A; |
| 11087 | tp->period = 0; |
| 11088 | tp->widedone = 0; |
| 11089 | } |
| 11090 | ncr_setsyncwide (np, cp, 0, 0xe0, 0, 0); |
| 11091 | OUTL_DSP (NCB_SCRIPTH_PHYS (np, msg_bad))do { do { ; } while(0); ((*(volatile unsigned int *) ((char * )np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_dsp ))))) = (((((np->p_scripth + ((size_t) (&((struct scripth *)0)->msg_bad)))))))); } while (0); |
| 11092 | } else { |
| 11093 | /* |
| 11094 | ** Answer is ok. |
| 11095 | */ |
| 11096 | |
| 11097 | if ((np->device_id != PCI_DEVICE_ID_LSI_53C10100x20) && |
| 11098 | (np->device_id != PCI_DEVICE_ID_LSI_53C1010_660x21)) |
| 11099 | ncr_setsyncwide (np, cp, scntl3, (fak<<5)|ofs,0, wth); |
| 11100 | else |
| 11101 | ncr_setsyncwide (np, cp, scntl3, ofs, scntl4, wth); |
| 11102 | |
| 11103 | OUTL_DSP (NCB_SCRIPT_PHYS (np, clrack))do { do { ; } while(0); ((*(volatile unsigned int *) ((char * )np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_dsp ))))) = (((((np->p_script + ((size_t) (&((struct script *)0)->clrack)))))))); } while (0); |
| 11104 | |
| 11105 | }; |
| 11106 | return; |
| 11107 | |
| 11108 | case NS_SYNC(1): |
| 11109 | ncr_setsync (np, cp, 0, 0xe0, 0); |
| 11110 | break; |
| 11111 | |
| 11112 | case NS_WIDE(2): |
| 11113 | ncr_setwide (np, cp, 0, 0); |
| 11114 | break; |
| 11115 | }; |
| 11116 | }; |
| 11117 | |
| 11118 | /* |
| 11119 | ** It was a request. Set value and |
| 11120 | ** prepare an answer message |
| 11121 | ** |
| 11122 | ** If narrow or not DT and requesting Ultra3 |
| 11123 | ** slow the bus down and force ST. If not |
| 11124 | ** requesting Ultra3, force ST. |
| 11125 | ** Max offset is 31=0x1f if ST mode. |
| 11126 | */ |
| 11127 | |
| 11128 | if ((per == 0x09) && ofs && (!wth || !dt)) { |
| 11129 | per = 0x0A; |
| 11130 | dt = 0; |
| 11131 | ofs &= 0x1f; |
| 11132 | } |
| 11133 | else if ( (per > 0x09) && dt) { |
| 11134 | dt = 0; |
| 11135 | ofs &= 0x1f; |
| 11136 | } |
| 11137 | |
| 11138 | if ((np->device_id != PCI_DEVICE_ID_LSI_53C10100x20) && |
| 11139 | (np->device_id != PCI_DEVICE_ID_LSI_53C1010_660x21)) |
| 11140 | ncr_setsyncwide (np, cp, scntl3, (fak<<5)|ofs,0, wth); |
| 11141 | else |
| 11142 | ncr_setsyncwide (np, cp, scntl3, ofs, scntl4, wth); |
| 11143 | |
| 11144 | np->msgout[0] = M_EXTENDED(0x01); |
| 11145 | np->msgout[1] = 6; |
| 11146 | np->msgout[2] = M_X_PPR_REQ(0x04); |
| 11147 | np->msgout[3] = per; |
| 11148 | np->msgout[4] = 0; |
| 11149 | np->msgout[5] = ofs; |
| 11150 | np->msgout[6] = wth; |
| 11151 | np->msgout[7] = dt; |
| 11152 | |
| 11153 | cp->nego_status = NS_PPR(4); |
| 11154 | |
| 11155 | if (DEBUG_FLAGSncr_debug & DEBUG_NEGO(0x0200)) { |
| 11156 | ncr_print_msg(cp, "ppr msgout", np->msgout); |
| 11157 | } |
| 11158 | |
| 11159 | np->msgin [0] = M_NOOP(0x08); |
| 11160 | |
| 11161 | if (!ofs) |
| 11162 | OUTL_DSP (NCB_SCRIPTH_PHYS (np, msg_bad))do { do { ; } while(0); ((*(volatile unsigned int *) ((char * )np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_dsp ))))) = (((((np->p_scripth + ((size_t) (&((struct scripth *)0)->msg_bad)))))))); } while (0); |
| 11163 | else |
| 11164 | OUTL_DSP (NCB_SCRIPTH_PHYS (np, ppr_resp))do { do { ; } while(0); ((*(volatile unsigned int *) ((char * )np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_dsp ))))) = (((((np->p_scripth + ((size_t) (&((struct scripth *)0)->ppr_resp)))))))); } while (0); |
| 11165 | } |
| 11166 | |
| 11167 | |
| 11168 | |
| 11169 | /* |
| 11170 | ** Reset SYNC or WIDE to default settings. |
| 11171 | ** Called when a negotiation does not succeed either |
| 11172 | ** on rejection or on protocol error. |
| 11173 | */ |
| 11174 | static void ncr_nego_default(ncb_p np, tcb_p tp, ccb_p cp) |
| 11175 | { |
| 11176 | /* |
| 11177 | ** any error in negotiation: |
| 11178 | ** fall back to default mode. |
| 11179 | */ |
| 11180 | switch (cp->nego_status) { |
| 11181 | |
| 11182 | case NS_SYNC(1): |
| 11183 | ncr_setsync (np, cp, 0, 0xe0, 0); |
| 11184 | break; |
| 11185 | |
| 11186 | case NS_WIDE(2): |
| 11187 | ncr_setwide (np, cp, 0, 0); |
| 11188 | break; |
| 11189 | |
| 11190 | case NS_PPR(4): |
| 11191 | /* |
| 11192 | * ppr_negotiation is set to 1 on the first ppr nego command. |
| 11193 | * If ppr is successful, it is reset to 2. |
| 11194 | * If unsuccessful it is reset to 0. |
| 11195 | */ |
| 11196 | if (DEBUG_FLAGSncr_debug & DEBUG_NEGO(0x0200)) { |
| 11197 | tcb_p tp=&np->target[cp->target]; |
| 11198 | u_charunsigned char factor, offset, width; |
| 11199 | |
| 11200 | ncr_get_xfer_info ( np, tp, &factor, &offset, &width); |
| 11201 | |
| 11202 | printk("Current factor %d offset %d width %d\n", |
| 11203 | factor, offset, width); |
| 11204 | } |
| 11205 | if (tp->ppr_negotiation == 2) |
| 11206 | ncr_setsyncwide (np, cp, 0, 0xe0, 0, 0); |
| 11207 | else if (tp->ppr_negotiation == 1) { |
| 11208 | |
| 11209 | /* First ppr command has received a M REJECT. |
| 11210 | * Do not change the existing wide/sync parameter |
| 11211 | * values (asyn/narrow if this as the first nego; |
| 11212 | * may be different if target initiates nego.). |
| 11213 | */ |
| 11214 | tp->ppr_negotiation = 0; |
| 11215 | } |
| 11216 | else |
| 11217 | { |
| 11218 | tp->ppr_negotiation = 0; |
| 11219 | ncr_setwide (np, cp, 0, 0); |
| 11220 | } |
| 11221 | break; |
| 11222 | }; |
| 11223 | np->msgin [0] = M_NOOP(0x08); |
| 11224 | np->msgout[0] = M_NOOP(0x08); |
| 11225 | cp->nego_status = 0; |
| 11226 | } |
| 11227 | |
| 11228 | /*========================================================== |
| 11229 | ** |
| 11230 | ** ncr chip handler for MESSAGE REJECT received for |
| 11231 | ** a WIDE or SYNCHRONOUS negotiation. |
| 11232 | ** |
| 11233 | ** clear the PPR negotiation flag, all future nego. |
| 11234 | ** will be SDTR and WDTR |
| 11235 | ** |
| 11236 | **========================================================== |
| 11237 | ** |
| 11238 | ** Read comments above. |
| 11239 | ** |
| 11240 | **---------------------------------------------------------- |
| 11241 | */ |
| 11242 | static void ncr_nego_rejected(ncb_p np, tcb_p tp, ccb_p cp) |
| 11243 | { |
| 11244 | ncr_nego_default(np, tp, cp); |
| 11245 | OUTB (HS_PRT, HS_BUSY)((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_scr1))))) = ((((1))))); |
| 11246 | } |
| 11247 | |
| 11248 | |
| 11249 | /*========================================================== |
| 11250 | ** |
| 11251 | ** |
| 11252 | ** ncr chip exception handler for programmed interrupts. |
| 11253 | ** |
| 11254 | ** |
| 11255 | **========================================================== |
| 11256 | */ |
| 11257 | |
| 11258 | void ncr_int_sir (ncb_p np) |
| 11259 | { |
| 11260 | u_charunsigned char num = INB (nc_dsps)(*(volatile unsigned char *) ((char *)np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_dsps))))); |
| 11261 | u_longunsigned long dsa = INL (nc_dsa)(*(volatile unsigned int *) ((char *)np->reg + (((size_t) ( &((struct ncr_reg *)0)->nc_dsa))))); |
| 11262 | ccb_p cp = ncr_ccb_from_dsa(np, dsa); |
| 11263 | u_charunsigned char target = INB (nc_sdid)(*(volatile unsigned char *) ((char *)np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_sdid))))) & 0x0f; |
| 11264 | tcb_p tp = &np->target[target]; |
| 11265 | int tmp; |
| 11266 | |
| 11267 | if (DEBUG_FLAGSncr_debug & DEBUG_TINY(0x0080)) printk ("I#%d", num); |
| 11268 | |
| 11269 | switch (num) { |
| 11270 | /* |
| 11271 | ** See comments in the SCRIPTS code. |
| 11272 | */ |
| 11273 | #ifdef SCSI_NCR_PCIQ_SYNC_ON_INTR |
| 11274 | case SIR_DUMMY_INTERRUPT(21): |
| 11275 | goto out; |
| 11276 | #endif |
| 11277 | |
| 11278 | /* |
| 11279 | ** The C code is currently trying to recover from something. |
| 11280 | ** Typically, user want to abort some command. |
| 11281 | */ |
| 11282 | case SIR_SCRIPT_STOPPED(7): |
| 11283 | case SIR_TARGET_SELECTED(14): |
| 11284 | case SIR_ABORT_SENT(17): |
| 11285 | case SIR_AUTO_SENSE_DONE(20): |
| 11286 | ncr_sir_task_recovery(np, num); |
| 11287 | return; |
| 11288 | /* |
| 11289 | ** The device didn't go to MSG OUT phase after having |
| 11290 | ** been selected with ATN. We donnot want to handle |
| 11291 | ** that. |
| 11292 | */ |
| 11293 | case SIR_SEL_ATN_NO_MSG_OUT(2): |
| 11294 | printk ("%s:%d: No MSG OUT phase after selection with ATN.\n", |
| 11295 | ncr_name (np), target); |
| 11296 | goto out_stuck; |
| 11297 | /* |
| 11298 | ** The device didn't switch to MSG IN phase after |
| 11299 | ** having reseleted the initiator. |
| 11300 | */ |
| 11301 | case SIR_RESEL_NO_MSG_IN(11): |
| 11302 | /* |
| 11303 | ** After reselection, the device sent a message that wasn't |
| 11304 | ** an IDENTIFY. |
| 11305 | */ |
| 11306 | case SIR_RESEL_NO_IDENTIFY(12): |
| 11307 | /* |
| 11308 | ** If devices reselecting without sending an IDENTIFY |
| 11309 | ** message still exist, this should help. |
| 11310 | ** We just assume lun=0, 1 CCB, no tag. |
| 11311 | */ |
| 11312 | if (tp->l0p) { |
| 11313 | OUTL (nc_dsa, scr_to_cpu(tp->l0p->tasktbl[0]))((*(volatile unsigned int *) ((char *)np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_dsa))))) = ((((tp->l0p ->tasktbl[0]))))); |
| 11314 | OUTL_DSP (NCB_SCRIPT_PHYS (np, resel_go))do { do { ; } while(0); ((*(volatile unsigned int *) ((char * )np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_dsp ))))) = (((((np->p_script + ((size_t) (&((struct script *)0)->resel_go)))))))); } while (0); |
| 11315 | return; |
| 11316 | } |
| 11317 | /* |
| 11318 | ** The device reselected a LUN we donnot know of. |
| 11319 | */ |
| 11320 | case SIR_RESEL_BAD_LUN(13): |
| 11321 | np->msgout[0] = M_RESET(0x0c); |
| 11322 | goto out; |
| 11323 | /* |
| 11324 | ** The device reselected for an untagged nexus and we |
| 11325 | ** haven't any. |
| 11326 | */ |
| 11327 | case SIR_RESEL_BAD_I_T_L(15): |
| 11328 | np->msgout[0] = M_ABORT(0x06); |
| 11329 | goto out; |
| 11330 | /* |
| 11331 | ** The device reselected for a tagged nexus that we donnot |
| 11332 | ** have. |
| 11333 | */ |
| 11334 | case SIR_RESEL_BAD_I_T_L_Q(16): |
| 11335 | np->msgout[0] = M_ABORT_TAG(0x0d); |
| 11336 | goto out; |
| 11337 | /* |
| 11338 | ** The SCRIPTS let us know that the device has grabbed |
| 11339 | ** our message and will abort the job. |
| 11340 | */ |
| 11341 | case SIR_RESEL_ABORTED(18): |
| 11342 | np->lastmsg = np->msgout[0]; |
| 11343 | np->msgout[0] = M_NOOP(0x08); |
| 11344 | printk ("%s:%d: message %x sent on bad reselection.\n", |
| 11345 | ncr_name (np), target, np->lastmsg); |
| 11346 | goto out; |
| 11347 | /* |
| 11348 | ** The SCRIPTS let us know that a message has been |
| 11349 | ** successfully sent to the device. |
| 11350 | */ |
| 11351 | case SIR_MSG_OUT_DONE(19): |
| 11352 | np->lastmsg = np->msgout[0]; |
| 11353 | np->msgout[0] = M_NOOP(0x08); |
| 11354 | /* Should we really care of that */ |
| 11355 | if (np->lastmsg == M_PARITY(0x09) || np->lastmsg == M_ID_ERROR(0x05)) { |
| 11356 | if (cp) { |
| 11357 | cp->xerr_status &= ~XE_PARITY_ERR(4); |
| 11358 | if (!cp->xerr_status) |
| 11359 | OUTOFFB (HF_PRT, HF_EXT_ERR)((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_scr3))))) = ((((*(volatile unsigned char *) ((char *)np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_scr3))))) & ~((1u<<7)))))); |
| 11360 | } |
| 11361 | } |
| 11362 | goto out; |
| 11363 | /* |
| 11364 | ** The device didn't send a GOOD SCSI status. |
| 11365 | ** We may have some work to do prior to allow |
| 11366 | ** the SCRIPTS processor to continue. |
| 11367 | */ |
| 11368 | case SIR_BAD_STATUS(1): |
| 11369 | if (!cp) |
| 11370 | goto out; |
| 11371 | ncr_sir_to_redo(np, num, cp); |
| 11372 | return; |
| 11373 | /* |
| 11374 | ** We are asked by the SCRIPTS to prepare a |
| 11375 | ** REJECT message. |
| 11376 | */ |
| 11377 | case SIR_REJECT_TO_SEND(8): |
| 11378 | ncr_print_msg(cp, "M_REJECT to send for ", np->msgin); |
| 11379 | np->msgout[0] = M_REJECT(0x07); |
| 11380 | goto out; |
| 11381 | /* |
| 11382 | ** We have been ODD at the end of a DATA IN |
| 11383 | ** transfer and the device didn't send a |
| 11384 | ** IGNORE WIDE RESIDUE message. |
| 11385 | ** It is a data overrun condition. |
| 11386 | */ |
| 11387 | case SIR_SWIDE_OVERRUN(9): |
| 11388 | if (cp) { |
| 11389 | OUTONB (HF_PRT, HF_EXT_ERR)((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_scr3))))) = ((((*(volatile unsigned char *) ((char *)np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_scr3))))) | ((1u<<7)))))); |
| 11390 | cp->xerr_status |= XE_SWIDE_OVRUN(1<<4); |
| 11391 | } |
| 11392 | goto out; |
| 11393 | /* |
| 11394 | ** We have been ODD at the end of a DATA OUT |
| 11395 | ** transfer. |
| 11396 | ** It is a data underrun condition. |
| 11397 | */ |
| 11398 | case SIR_SODL_UNDERRUN(10): |
| 11399 | if (cp) { |
| 11400 | OUTONB (HF_PRT, HF_EXT_ERR)((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_scr3))))) = ((((*(volatile unsigned char *) ((char *)np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_scr3))))) | ((1u<<7)))))); |
| 11401 | cp->xerr_status |= XE_SODL_UNRUN(1<<3); |
| 11402 | } |
| 11403 | goto out; |
| 11404 | /* |
| 11405 | ** The device wants us to tranfer more data than |
| 11406 | ** expected or in the wrong direction. |
| 11407 | ** The number of extra bytes is in scratcha. |
| 11408 | ** It is a data overrun condition. |
| 11409 | */ |
| 11410 | case SIR_DATA_OVERRUN(22): |
| 11411 | if (cp) { |
| 11412 | OUTONB (HF_PRT, HF_EXT_ERR)((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_scr3))))) = ((((*(volatile unsigned char *) ((char *)np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_scr3))))) | ((1u<<7)))))); |
| 11413 | cp->xerr_status |= XE_EXTRA_DATA(1); |
| 11414 | cp->extra_bytes += INL (nc_scratcha)(*(volatile unsigned int *) ((char *)np->reg + (((size_t) ( &((struct ncr_reg *)0)->nc_scratcha))))); |
| 11415 | } |
| 11416 | goto out; |
| 11417 | /* |
| 11418 | ** The device switched to an illegal phase (4/5). |
| 11419 | */ |
| 11420 | case SIR_BAD_PHASE(23): |
| 11421 | if (cp) { |
| 11422 | OUTONB (HF_PRT, HF_EXT_ERR)((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_scr3))))) = ((((*(volatile unsigned char *) ((char *)np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_scr3))))) | ((1u<<7)))))); |
| 11423 | cp->xerr_status |= XE_BAD_PHASE(2); |
| 11424 | } |
| 11425 | goto out; |
| 11426 | /* |
| 11427 | ** We received a message. |
| 11428 | */ |
| 11429 | case SIR_MSG_RECEIVED(3): |
| 11430 | if (!cp) |
| 11431 | goto out_stuck; |
| 11432 | switch (np->msgin [0]) { |
| 11433 | /* |
| 11434 | ** We received an extended message. |
| 11435 | ** We handle MODIFY DATA POINTER, SDTR, WDTR |
| 11436 | ** and reject all other extended messages. |
| 11437 | */ |
| 11438 | case M_EXTENDED(0x01): |
| 11439 | switch (np->msgin [2]) { |
| 11440 | case M_X_MODIFY_DP(0x00): |
| 11441 | if (DEBUG_FLAGSncr_debug & DEBUG_POINTER(0x0020)) |
| 11442 | ncr_print_msg(cp,"modify DP",np->msgin); |
| 11443 | tmp = (np->msgin[3]<<24) + (np->msgin[4]<<16) + |
| 11444 | (np->msgin[5]<<8) + (np->msgin[6]); |
| 11445 | ncr_modify_dp(np, tp, cp, tmp); |
| 11446 | return; |
| 11447 | case M_X_SYNC_REQ(0x01): |
| 11448 | ncr_sync_nego(np, tp, cp); |
| 11449 | return; |
| 11450 | case M_X_WIDE_REQ(0x03): |
| 11451 | ncr_wide_nego(np, tp, cp); |
| 11452 | return; |
| 11453 | case M_X_PPR_REQ(0x04): |
| 11454 | ncr_ppr_nego(np, tp, cp); |
| 11455 | return; |
| 11456 | default: |
| 11457 | goto out_reject; |
| 11458 | } |
| 11459 | break; |
| 11460 | /* |
| 11461 | ** We received a 1/2 byte message not handled from SCRIPTS. |
| 11462 | ** We are only expecting MESSAGE REJECT and IGNORE WIDE |
| 11463 | ** RESIDUE messages that haven't been anticipated by |
| 11464 | ** SCRIPTS on SWIDE full condition. Unanticipated IGNORE |
| 11465 | ** WIDE RESIDUE messages are aliased as MODIFY DP (-1). |
| 11466 | */ |
| 11467 | case M_IGN_RESIDUE(0x23): |
| 11468 | if (DEBUG_FLAGSncr_debug & DEBUG_POINTER(0x0020)) |
| 11469 | ncr_print_msg(cp,"ign wide residue", np->msgin); |
| 11470 | ncr_modify_dp(np, tp, cp, -1); |
| 11471 | return; |
| 11472 | case M_REJECT(0x07): |
| 11473 | if (INB (HS_PRT)(*(volatile unsigned char *) ((char *)np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_scr1))))) == HS_NEGOTIATE(2)) |
| 11474 | ncr_nego_rejected(np, tp, cp); |
| 11475 | else { |
| 11476 | PRINT_ADDR(cp->cmd); |
| 11477 | printk ("M_REJECT received (%x:%x).\n", |
| 11478 | scr_to_cpu(np->lastmsg)(np->lastmsg), np->msgout[0]); |
| 11479 | } |
| 11480 | goto out_clrack; |
| 11481 | break; |
| 11482 | default: |
| 11483 | goto out_reject; |
| 11484 | } |
| 11485 | break; |
| 11486 | /* |
| 11487 | ** We received an unknown message. |
| 11488 | ** Ignore all MSG IN phases and reject it. |
| 11489 | */ |
| 11490 | case SIR_MSG_WEIRD(4): |
| 11491 | ncr_print_msg(cp, "WEIRD message received", np->msgin); |
| 11492 | OUTL_DSP (NCB_SCRIPTH_PHYS (np, msg_weird))do { do { ; } while(0); ((*(volatile unsigned int *) ((char * )np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_dsp ))))) = (((((np->p_scripth + ((size_t) (&((struct scripth *)0)->msg_weird)))))))); } while (0); |
| 11493 | return; |
| 11494 | /* |
| 11495 | ** Negotiation failed. |
| 11496 | ** Target does not send us the reply. |
| 11497 | ** Remove the HS_NEGOTIATE status. |
| 11498 | */ |
| 11499 | case SIR_NEGO_FAILED(5): |
| 11500 | OUTB (HS_PRT, HS_BUSY)((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_scr1))))) = ((((1))))); |
| 11501 | /* |
| 11502 | ** Negotiation failed. |
| 11503 | ** Target does not want answer message. |
| 11504 | */ |
| 11505 | case SIR_NEGO_PROTO(6): |
| 11506 | ncr_nego_default(np, tp, cp); |
| 11507 | goto out; |
| 11508 | }; |
| 11509 | |
| 11510 | out: |
| 11511 | OUTONB_STD ()do { do { ; } while(0); ((*(volatile unsigned char *) ((char * )np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_dcntl ))))) = ((((*(volatile unsigned char *) ((char *)np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_dcntl))))) | ( (0x04|0x01)))))); } while (0); |
| 11512 | return; |
| 11513 | out_reject: |
| 11514 | OUTL_DSP (NCB_SCRIPTH_PHYS (np, msg_bad))do { do { ; } while(0); ((*(volatile unsigned int *) ((char * )np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_dsp ))))) = (((((np->p_scripth + ((size_t) (&((struct scripth *)0)->msg_bad)))))))); } while (0); |
| 11515 | return; |
| 11516 | out_clrack: |
| 11517 | OUTL_DSP (NCB_SCRIPT_PHYS (np, clrack))do { do { ; } while(0); ((*(volatile unsigned int *) ((char * )np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_dsp ))))) = (((((np->p_script + ((size_t) (&((struct script *)0)->clrack)))))))); } while (0); |
| 11518 | return; |
| 11519 | out_stuck: |
| 11520 | return; |
| 11521 | } |
| 11522 | |
| 11523 | |
| 11524 | /*========================================================== |
| 11525 | ** |
| 11526 | ** |
| 11527 | ** Aquire a control block |
| 11528 | ** |
| 11529 | ** |
| 11530 | **========================================================== |
| 11531 | */ |
| 11532 | |
| 11533 | static ccb_p ncr_get_ccb (ncb_p np, u_charunsigned char tn, u_charunsigned char ln) |
| 11534 | { |
| 11535 | tcb_p tp = &np->target[tn]; |
| 11536 | lcb_p lp = ncr_lp(np, tp, ln)(!ln) ? (tp)->l0p : (tp)->lmp ? (tp)->lmp[(ln)] : 0; |
| 11537 | u_shortunsigned short tag = NO_TAG(256); |
| 11538 | XPT_QUEHEAD *qp; |
| 11539 | ccb_p cp = (ccb_p) 0; |
| 11540 | |
| 11541 | /* |
| 11542 | ** Allocate a new CCB if needed. |
| 11543 | */ |
| 11544 | if (xpt_que_empty(&np->free_ccbq)) |
| 11545 | (void) ncr_alloc_ccb(np); |
| 11546 | |
| 11547 | /* |
| 11548 | ** Look for a free CCB |
| 11549 | */ |
| 11550 | qp = xpt_remque_head(&np->free_ccbq); |
| 11551 | if (!qp) |
| 11552 | goto out; |
| 11553 | cp = xpt_que_entry(qp, struct ccb, link_ccbq)((struct ccb *)((char *)(qp)-(unsigned long)(&((struct ccb *)0)->link_ccbq))); |
| 11554 | |
| 11555 | /* |
| 11556 | ** If the LCB is not yet available and we already |
| 11557 | ** have queued a CCB for a LUN without LCB, |
| 11558 | ** give up. Otherwise all is fine. :-) |
| 11559 | */ |
| 11560 | if (!lp) { |
| 11561 | if (xpt_que_empty(&np->b0_ccbq)) |
| 11562 | xpt_insque_head(&cp->link_ccbq, &np->b0_ccbq)__xpt_que_add(&cp->link_ccbq, &np->b0_ccbq, (& np->b0_ccbq)->flink); |
| 11563 | else |
| 11564 | goto out_free; |
| 11565 | } else { |
| 11566 | /* |
| 11567 | ** Tune tag mode if asked by user. |
| 11568 | */ |
| 11569 | if (lp->queuedepth != lp->numtags) { |
| 11570 | ncr_setup_tags(np, tn, ln); |
| 11571 | } |
| 11572 | |
| 11573 | /* |
| 11574 | ** Get a tag for this nexus if required. |
| 11575 | ** Keep from using more tags than we can handle. |
| 11576 | */ |
| 11577 | if (lp->usetags) { |
| 11578 | if (lp->busyccbs < lp->maxnxs) { |
| 11579 | tag = lp->cb_tags[lp->ia_tag]; |
| 11580 | ++lp->ia_tag; |
| 11581 | if (lp->ia_tag == MAX_TAGS(8)) |
| 11582 | lp->ia_tag = 0; |
| 11583 | cp->tags_si = lp->tags_si; |
| 11584 | ++lp->tags_sum[cp->tags_si]; |
| 11585 | } |
| 11586 | else |
| 11587 | goto out_free; |
| 11588 | } |
| 11589 | |
| 11590 | /* |
| 11591 | ** Put the CCB in the LUN wait queue and |
| 11592 | ** count it as busy. |
| 11593 | */ |
| 11594 | xpt_insque_tail(&cp->link_ccbq, &lp->wait_ccbq)__xpt_que_add(&cp->link_ccbq, (&lp->wait_ccbq)-> blink, &lp->wait_ccbq); |
| 11595 | ++lp->busyccbs; |
| 11596 | } |
| 11597 | |
| 11598 | /* |
| 11599 | ** Remember all informations needed to free this CCB. |
| 11600 | */ |
| 11601 | cp->to_abort = 0; |
| 11602 | cp->tag = tag; |
| 11603 | cp->target = tn; |
| 11604 | cp->lun = ln; |
| 11605 | |
| 11606 | if (DEBUG_FLAGSncr_debug & DEBUG_TAGS(0x0400)) { |
| 11607 | PRINT_LUN(np, tn, ln); |
| 11608 | printk ("ccb @%p using tag %d.\n", cp, tag); |
| 11609 | } |
| 11610 | |
| 11611 | out: |
| 11612 | return cp; |
| 11613 | out_free: |
| 11614 | xpt_insque_head(&cp->link_ccbq, &np->free_ccbq)__xpt_que_add(&cp->link_ccbq, &np->free_ccbq, ( &np->free_ccbq)->flink); |
| 11615 | return (ccb_p) 0; |
| 11616 | } |
| 11617 | |
| 11618 | /*========================================================== |
| 11619 | ** |
| 11620 | ** |
| 11621 | ** Release one control block |
| 11622 | ** |
| 11623 | ** |
| 11624 | **========================================================== |
| 11625 | */ |
| 11626 | |
| 11627 | static void ncr_free_ccb (ncb_p np, ccb_p cp) |
| 11628 | { |
| 11629 | tcb_p tp = &np->target[cp->target]; |
| 11630 | lcb_p lp = ncr_lp(np, tp, cp->lun)(!cp->lun) ? (tp)->l0p : (tp)->lmp ? (tp)->lmp[(cp ->lun)] : 0; |
| 11631 | |
| 11632 | if (DEBUG_FLAGSncr_debug & DEBUG_TAGS(0x0400)) { |
| 11633 | PRINT_LUN(np, cp->target, cp->lun); |
| 11634 | printk ("ccb @%p freeing tag %d.\n", cp, cp->tag); |
| 11635 | } |
| 11636 | |
| 11637 | /* |
| 11638 | ** If lun control block available, make available |
| 11639 | ** the task slot and the tag if any. |
| 11640 | ** Decrement counters. |
| 11641 | */ |
| 11642 | if (lp) { |
| 11643 | if (cp->tag != NO_TAG(256)) { |
| 11644 | lp->cb_tags[lp->if_tag++] = cp->tag; |
| 11645 | if (lp->if_tag == MAX_TAGS(8)) |
| 11646 | lp->if_tag = 0; |
| 11647 | --lp->tags_sum[cp->tags_si]; |
| 11648 | lp->tasktbl[cp->tag] = cpu_to_scr(np->p_bad_i_t_l_q)(np->p_bad_i_t_l_q); |
| 11649 | } else { |
| 11650 | lp->tasktbl[0] = cpu_to_scr(np->p_bad_i_t_l)(np->p_bad_i_t_l); |
| 11651 | } |
| 11652 | --lp->busyccbs; |
| 11653 | if (cp->queued) { |
| 11654 | --lp->queuedccbs; |
| 11655 | } |
| 11656 | } |
| 11657 | |
| 11658 | /* |
| 11659 | ** Make this CCB available. |
| 11660 | */ |
| 11661 | xpt_remque(&cp->link_ccbq)__xpt_que_del((&cp->link_ccbq)->blink, (&cp-> link_ccbq)->flink); |
| 11662 | xpt_insque_head(&cp->link_ccbq, &np->free_ccbq)__xpt_que_add(&cp->link_ccbq, &np->free_ccbq, ( &np->free_ccbq)->flink); |
| 11663 | cp -> host_statusphys.header.status[1] = HS_IDLE(0); |
| 11664 | cp -> queued = 0; |
| 11665 | } |
| 11666 | |
| 11667 | /*------------------------------------------------------------------------ |
| 11668 | ** Allocate a CCB and initialize its fixed part. |
| 11669 | **------------------------------------------------------------------------ |
| 11670 | **------------------------------------------------------------------------ |
| 11671 | */ |
| 11672 | static ccb_p ncr_alloc_ccb(ncb_p np) |
| 11673 | { |
| 11674 | ccb_p cp = 0; |
| 11675 | int hcode; |
| 11676 | |
| 11677 | /* |
| 11678 | ** Allocate memory for this CCB. |
| 11679 | */ |
| 11680 | cp = m_calloc_dma(sizeof(struct ccb), "CCB")m_calloc(sizeof(struct ccb), "CCB"); |
| 11681 | if (!cp) |
| 11682 | return 0; |
| 11683 | |
| 11684 | /* |
| 11685 | ** Count it and initialyze it. |
| 11686 | */ |
| 11687 | np->actccbs++; |
| 11688 | |
| 11689 | /* |
| 11690 | ** Remember virtual and bus address of this ccb. |
| 11691 | */ |
| 11692 | cp->p_ccb = vtobus(cp)virt_to_phys(cp); |
| 11693 | |
| 11694 | /* |
| 11695 | ** Insert this ccb into the hashed list. |
| 11696 | */ |
| 11697 | hcode = CCB_HASH_CODE(cp->p_ccb)(((cp->p_ccb) >> 11) & ((1UL << 8)-1)); |
| 11698 | cp->link_ccbh = np->ccbh[hcode]; |
| 11699 | np->ccbh[hcode] = cp; |
| 11700 | |
| 11701 | /* |
| 11702 | ** Initialyze the start and restart actions. |
| 11703 | */ |
| 11704 | cp->phys.header.go.start = cpu_to_scr(NCB_SCRIPT_PHYS (np, idle))((np->p_script + ((size_t) (&((struct script *)0)-> idle)))); |
| 11705 | cp->phys.header.go.restart = cpu_to_scr(NCB_SCRIPTH_PHYS(np,bad_i_t_l))((np->p_scripth + ((size_t) (&((struct scripth *)0)-> bad_i_t_l)))); |
| 11706 | |
| 11707 | /* |
| 11708 | ** Initilialyze some other fields. |
| 11709 | */ |
| 11710 | cp->phys.smsg_ext.addr = cpu_to_scr(NCB_PHYS(np, msgin[2]))((np->p_ncb + ((size_t) (&((struct ncb *)0)->msgin[ 2])))); |
| 11711 | |
| 11712 | /* |
| 11713 | ** Chain into wakeup list and free ccb queue. |
| 11714 | */ |
| 11715 | cp->link_ccb = np->ccbc; |
| 11716 | np->ccbc = cp; |
| 11717 | |
| 11718 | xpt_insque_head(&cp->link_ccbq, &np->free_ccbq)__xpt_que_add(&cp->link_ccbq, &np->free_ccbq, ( &np->free_ccbq)->flink); |
| 11719 | |
| 11720 | return cp; |
| 11721 | } |
| 11722 | |
| 11723 | /*------------------------------------------------------------------------ |
| 11724 | ** Look up a CCB from a DSA value. |
| 11725 | **------------------------------------------------------------------------ |
| 11726 | **------------------------------------------------------------------------ |
| 11727 | */ |
| 11728 | static ccb_p ncr_ccb_from_dsa(ncb_p np, u_longunsigned long dsa) |
| 11729 | { |
| 11730 | int hcode; |
| 11731 | ccb_p cp; |
| 11732 | |
| 11733 | hcode = CCB_HASH_CODE(dsa)(((dsa) >> 11) & ((1UL << 8)-1)); |
| 11734 | cp = np->ccbh[hcode]; |
| 11735 | while (cp) { |
| 11736 | if (cp->p_ccb == dsa) |
| 11737 | break; |
| 11738 | cp = cp->link_ccbh; |
| 11739 | } |
| 11740 | |
| 11741 | return cp; |
| 11742 | } |
| 11743 | |
| 11744 | /*========================================================== |
| 11745 | ** |
| 11746 | ** |
| 11747 | ** Allocation of resources for Targets/Luns/Tags. |
| 11748 | ** |
| 11749 | ** |
| 11750 | **========================================================== |
| 11751 | */ |
| 11752 | |
| 11753 | |
| 11754 | /*------------------------------------------------------------------------ |
| 11755 | ** Target control block initialisation. |
| 11756 | **------------------------------------------------------------------------ |
| 11757 | ** This data structure is fully initialized after a SCSI command |
| 11758 | ** has been successfully completed for this target. |
| 11759 | **------------------------------------------------------------------------ |
| 11760 | */ |
| 11761 | static void ncr_init_tcb (ncb_p np, u_charunsigned char tn) |
| 11762 | { |
| 11763 | /* |
| 11764 | ** Check some alignments required by the chip. |
| 11765 | */ |
| 11766 | assert (( (offsetof(struct ncr_reg, nc_sxfer) ^{ if (!(( (((size_t) (&((struct ncr_reg *)0)->nc_sxfer )) ^ ((size_t) (&((struct tcb *)0)->sval))) &3) == 0)) { (void)panic( "assertion \"%s\" failed: file \"%s\", line %d\n" , "( (offsetof(struct ncr_reg, nc_sxfer) ^ offsetof(struct tcb , sval )) &3) == 0" , "../linux/src/drivers/scsi/sym53c8xx.c", 11767); } } |
| 11767 | offsetof(struct tcb , sval )) &3) == 0){ if (!(( (((size_t) (&((struct ncr_reg *)0)->nc_sxfer )) ^ ((size_t) (&((struct tcb *)0)->sval))) &3) == 0)) { (void)panic( "assertion \"%s\" failed: file \"%s\", line %d\n" , "( (offsetof(struct ncr_reg, nc_sxfer) ^ offsetof(struct tcb , sval )) &3) == 0" , "../linux/src/drivers/scsi/sym53c8xx.c", 11767); } }; |
| 11768 | assert (( (offsetof(struct ncr_reg, nc_scntl3) ^{ if (!(( (((size_t) (&((struct ncr_reg *)0)->nc_scntl3 )) ^ ((size_t) (&((struct tcb *)0)->wval))) &3) == 0)) { (void)panic( "assertion \"%s\" failed: file \"%s\", line %d\n" , "( (offsetof(struct ncr_reg, nc_scntl3) ^ offsetof(struct tcb , wval )) &3) == 0" , "../linux/src/drivers/scsi/sym53c8xx.c", 11769); } } |
| 11769 | offsetof(struct tcb , wval )) &3) == 0){ if (!(( (((size_t) (&((struct ncr_reg *)0)->nc_scntl3 )) ^ ((size_t) (&((struct tcb *)0)->wval))) &3) == 0)) { (void)panic( "assertion \"%s\" failed: file \"%s\", line %d\n" , "( (offsetof(struct ncr_reg, nc_scntl3) ^ offsetof(struct tcb , wval )) &3) == 0" , "../linux/src/drivers/scsi/sym53c8xx.c", 11769); } }; |
| 11770 | if ((np->device_id == PCI_DEVICE_ID_LSI_53C10100x20) || |
| 11771 | (np->device_id == PCI_DEVICE_ID_LSI_53C1010_660x21)){ |
| 11772 | assert (( (offsetof(struct ncr_reg, nc_scntl4) ^{ if (!(( (((size_t) (&((struct ncr_reg *)0)->nc_scntl4 )) ^ ((size_t) (&((struct tcb *)0)->uval))) &3) == 0)) { (void)panic( "assertion \"%s\" failed: file \"%s\", line %d\n" , "( (offsetof(struct ncr_reg, nc_scntl4) ^ offsetof(struct tcb , uval )) &3) == 0" , "../linux/src/drivers/scsi/sym53c8xx.c", 11773); } } |
| 11773 | offsetof(struct tcb , uval )) &3) == 0){ if (!(( (((size_t) (&((struct ncr_reg *)0)->nc_scntl4 )) ^ ((size_t) (&((struct tcb *)0)->uval))) &3) == 0)) { (void)panic( "assertion \"%s\" failed: file \"%s\", line %d\n" , "( (offsetof(struct ncr_reg, nc_scntl4) ^ offsetof(struct tcb , uval )) &3) == 0" , "../linux/src/drivers/scsi/sym53c8xx.c", 11773); } }; |
| 11774 | } |
| 11775 | } |
| 11776 | |
| 11777 | /*------------------------------------------------------------------------ |
| 11778 | ** Lun control block allocation and initialization. |
| 11779 | **------------------------------------------------------------------------ |
| 11780 | ** This data structure is allocated and initialized after a SCSI |
| 11781 | ** command has been successfully completed for this target/lun. |
| 11782 | **------------------------------------------------------------------------ |
| 11783 | */ |
| 11784 | static lcb_p ncr_alloc_lcb (ncb_p np, u_charunsigned char tn, u_charunsigned char ln) |
| 11785 | { |
| 11786 | tcb_p tp = &np->target[tn]; |
| 11787 | lcb_p lp = ncr_lp(np, tp, ln)(!ln) ? (tp)->l0p : (tp)->lmp ? (tp)->lmp[(ln)] : 0; |
| 11788 | |
| 11789 | /* |
| 11790 | ** Already done, return. |
| 11791 | */ |
| 11792 | if (lp) |
| 11793 | return lp; |
| 11794 | |
| 11795 | /* |
| 11796 | ** Initialize the target control block if not yet. |
| 11797 | */ |
| 11798 | ncr_init_tcb(np, tn); |
| 11799 | |
| 11800 | /* |
| 11801 | ** Allocate the lcb bus address array. |
| 11802 | ** Compute the bus address of this table. |
| 11803 | */ |
| 11804 | if (ln && !tp->luntbl) { |
| 11805 | int i; |
| 11806 | |
| 11807 | tp->luntbl = m_calloc_dma(256, "LUNTBL")m_calloc(256, "LUNTBL"); |
| 11808 | if (!tp->luntbl) |
| 11809 | goto fail; |
| 11810 | for (i = 0 ; i < 64 ; i++) |
| 11811 | tp->luntbl[i] = cpu_to_scr(NCB_PHYS(np, resel_badlun))((np->p_ncb + ((size_t) (&((struct ncb *)0)->resel_badlun )))); |
| 11812 | tp->b_luntbl = cpu_to_scr(vtobus(tp->luntbl))(virt_to_phys(tp->luntbl)); |
| 11813 | } |
| 11814 | |
| 11815 | /* |
| 11816 | ** Allocate the table of pointers for LUN(s) > 0, if needed. |
| 11817 | */ |
| 11818 | if (ln && !tp->lmp) { |
| 11819 | tp->lmp = m_calloc(MAX_LUN64 * sizeof(lcb_p), "LMP"); |
| 11820 | if (!tp->lmp) |
| 11821 | goto fail; |
| 11822 | } |
| 11823 | |
| 11824 | /* |
| 11825 | ** Allocate the lcb. |
| 11826 | ** Make it available to the chip. |
| 11827 | */ |
| 11828 | lp = m_calloc_dma(sizeof(struct lcb), "LCB")m_calloc(sizeof(struct lcb), "LCB"); |
| 11829 | if (!lp) |
| 11830 | goto fail; |
| 11831 | if (ln) { |
| 11832 | tp->lmp[ln] = lp; |
| 11833 | tp->luntbl[ln] = cpu_to_scr(vtobus(lp))(virt_to_phys(lp)); |
| 11834 | } |
| 11835 | else { |
| 11836 | tp->l0p = lp; |
| 11837 | tp->b_lun0 = cpu_to_scr(vtobus(lp))(virt_to_phys(lp)); |
| 11838 | } |
| 11839 | |
| 11840 | /* |
| 11841 | ** Initialize the CCB queue headers. |
| 11842 | */ |
| 11843 | xpt_que_init(&lp->busy_ccbq)do { (&lp->busy_ccbq)->flink = (&lp->busy_ccbq ); (&lp->busy_ccbq)->blink = (&lp->busy_ccbq ); } while (0); |
| 11844 | xpt_que_init(&lp->wait_ccbq)do { (&lp->wait_ccbq)->flink = (&lp->wait_ccbq ); (&lp->wait_ccbq)->blink = (&lp->wait_ccbq ); } while (0); |
| 11845 | |
| 11846 | /* |
| 11847 | ** Set max CCBs to 1 and use the default task array |
| 11848 | ** by default. |
| 11849 | */ |
| 11850 | lp->maxnxs = 1; |
| 11851 | lp->tasktbl = &lp->tasktbl_0; |
| 11852 | lp->b_tasktbl = cpu_to_scr(vtobus(lp->tasktbl))(virt_to_phys(lp->tasktbl)); |
| 11853 | lp->tasktbl[0] = cpu_to_scr(np->p_notask)(np->p_notask); |
| 11854 | lp->resel_task = cpu_to_scr(NCB_SCRIPT_PHYS(np, resel_notag))((np->p_script + ((size_t) (&((struct script *)0)-> resel_notag)))); |
| 11855 | |
| 11856 | /* |
| 11857 | ** Initialize command queuing control. |
| 11858 | */ |
| 11859 | lp->busyccbs = 1; |
| 11860 | lp->queuedccbs = 1; |
| 11861 | lp->queuedepth = 1; |
| 11862 | fail: |
| 11863 | return lp; |
| 11864 | } |
| 11865 | |
| 11866 | |
| 11867 | /*------------------------------------------------------------------------ |
| 11868 | ** Lun control block setup on INQUIRY data received. |
| 11869 | **------------------------------------------------------------------------ |
| 11870 | ** We only support WIDE, SYNC for targets and CMDQ for logical units. |
| 11871 | ** This setup is done on each INQUIRY since we are expecting user |
| 11872 | ** will play with CHANGE DEFINITION commands. :-) |
| 11873 | **------------------------------------------------------------------------ |
| 11874 | */ |
| 11875 | static lcb_p ncr_setup_lcb (ncb_p np, u_charunsigned char tn, u_charunsigned char ln, u_charunsigned char *inq_data) |
| 11876 | { |
| 11877 | tcb_p tp = &np->target[tn]; |
| 11878 | lcb_p lp = ncr_lp(np, tp, ln)(!ln) ? (tp)->l0p : (tp)->lmp ? (tp)->lmp[(ln)] : 0; |
| 11879 | u_charunsigned char inq_byte7; |
| 11880 | int i; |
| 11881 | |
| 11882 | /* |
| 11883 | ** If no lcb, try to allocate it. |
| 11884 | */ |
| 11885 | if (!lp && !(lp = ncr_alloc_lcb(np, tn, ln))) |
| 11886 | goto fail; |
| 11887 | |
| 11888 | #if 0 /* No more used. Left here as provision */ |
| 11889 | /* |
| 11890 | ** Get device quirks. |
| 11891 | */ |
| 11892 | tp->quirks = 0; |
| 11893 | if (tp->quirks && bootverbose(np->verbose)) { |
| 11894 | PRINT_LUN(np, tn, ln); |
| 11895 | printk ("quirks=%x.\n", tp->quirks); |
| 11896 | } |
| 11897 | #endif |
| 11898 | |
| 11899 | /* |
| 11900 | ** Evaluate trustable target/unit capabilities. |
| 11901 | ** We only believe device version >= SCSI-2 that |
| 11902 | ** use appropriate response data format (2). |
| 11903 | ** But it seems that some CCS devices also |
| 11904 | ** support SYNC and I donnot want to frustrate |
| 11905 | ** anybody. ;-) |
| 11906 | */ |
| 11907 | inq_byte7 = 0; |
| 11908 | if ((inq_data[2] & 0x7) >= 2 && (inq_data[3] & 0xf) == 2) |
| 11909 | inq_byte7 = inq_data[7]; |
| 11910 | else if ((inq_data[2] & 0x7) == 1 && (inq_data[3] & 0xf) == 1) |
| 11911 | inq_byte7 = INQ7_SYNC(0x10); |
| 11912 | |
| 11913 | /* |
| 11914 | ** Throw away announced LUN capabilities if we are told |
| 11915 | ** that there is no real device supported by the logical unit. |
| 11916 | */ |
| 11917 | if ((inq_data[0] & 0xe0) > 0x20 || (inq_data[0] & 0x1f) == 0x1f) |
| 11918 | inq_byte7 &= (INQ7_SYNC(0x10) | INQ7_WIDE16(0x20)); |
| 11919 | |
| 11920 | /* |
| 11921 | ** If user is wanting SYNC, force this feature. |
| 11922 | */ |
| 11923 | if (driver_setup.force_sync_nego) |
| 11924 | inq_byte7 |= INQ7_SYNC(0x10); |
| 11925 | |
| 11926 | /* |
| 11927 | ** Prepare negotiation if SIP capabilities have changed. |
| 11928 | */ |
| 11929 | tp->inq_done = 1; |
| 11930 | if ((inq_byte7 ^ tp->inq_byte7) & (INQ7_SYNC(0x10) | INQ7_WIDE16(0x20))) { |
| 11931 | tp->inq_byte7 = inq_byte7; |
| 11932 | ncr_negotiate(np, tp); |
| 11933 | } |
| 11934 | |
| 11935 | /* |
| 11936 | ** If unit supports tagged commands, allocate and |
| 11937 | ** initialyze the task table if not yet. |
| 11938 | */ |
| 11939 | if ((inq_byte7 & INQ7_QUEUE(0x02)) && lp->tasktbl == &lp->tasktbl_0) { |
| 11940 | lp->tasktbl = m_calloc_dma(MAX_TASKS*4, "TASKTBL")m_calloc((256/4)*4, "TASKTBL"); |
| 11941 | if (!lp->tasktbl) { |
| 11942 | lp->tasktbl = &lp->tasktbl_0; |
| 11943 | goto fail; |
| 11944 | } |
| 11945 | lp->b_tasktbl = cpu_to_scr(vtobus(lp->tasktbl))(virt_to_phys(lp->tasktbl)); |
| 11946 | for (i = 0 ; i < MAX_TASKS(256/4) ; i++) |
| 11947 | lp->tasktbl[i] = cpu_to_scr(np->p_notask)(np->p_notask); |
| 11948 | |
| 11949 | lp->cb_tags = m_calloc(MAX_TAGS(8), "CB_TAGS"); |
| 11950 | if (!lp->cb_tags) |
| 11951 | goto fail; |
| 11952 | for (i = 0 ; i < MAX_TAGS(8) ; i++) |
| 11953 | lp->cb_tags[i] = i; |
| 11954 | |
| 11955 | lp->maxnxs = MAX_TAGS(8); |
| 11956 | lp->tags_stime = ktime_get(3*HZ)(jiffies + (unsigned long) 3*100); |
| 11957 | } |
| 11958 | |
| 11959 | /* |
| 11960 | ** Adjust tagged queueing status if needed. |
| 11961 | */ |
| 11962 | if ((inq_byte7 ^ lp->inq_byte7) & INQ7_QUEUE(0x02)) { |
| 11963 | lp->inq_byte7 = inq_byte7; |
| 11964 | lp->numtags = lp->maxtags; |
| 11965 | ncr_setup_tags (np, tn, ln); |
| 11966 | } |
| 11967 | |
| 11968 | fail: |
| 11969 | return lp; |
| 11970 | } |
| 11971 | |
| 11972 | /*========================================================== |
| 11973 | ** |
| 11974 | ** |
| 11975 | ** Build Scatter Gather Block |
| 11976 | ** |
| 11977 | ** |
| 11978 | **========================================================== |
| 11979 | ** |
| 11980 | ** The transfer area may be scattered among |
| 11981 | ** several non adjacent physical pages. |
| 11982 | ** |
| 11983 | ** We may use MAX_SCATTER blocks. |
| 11984 | ** |
| 11985 | **---------------------------------------------------------- |
| 11986 | */ |
| 11987 | |
| 11988 | /* |
| 11989 | ** We try to reduce the number of interrupts caused |
| 11990 | ** by unexpected phase changes due to disconnects. |
| 11991 | ** A typical harddisk may disconnect before ANY block. |
| 11992 | ** If we wanted to avoid unexpected phase changes at all |
| 11993 | ** we had to use a break point every 512 bytes. |
| 11994 | ** Of course the number of scatter/gather blocks is |
| 11995 | ** limited. |
| 11996 | ** Under Linux, the scatter/gatter blocks are provided by |
| 11997 | ** the generic driver. We just have to copy addresses and |
| 11998 | ** sizes to the data segment array. |
| 11999 | */ |
| 12000 | |
| 12001 | /* |
| 12002 | ** For 64 bit systems, we use the 8 upper bits of the size field |
| 12003 | ** to provide bus address bits 32-39 to the SCRIPTS processor. |
| 12004 | ** This allows the 895A and 896 to address up to 1 TB of memory. |
| 12005 | ** For 32 bit chips on 64 bit systems, we must be provided with |
| 12006 | ** memory addresses that fit into the first 32 bit bus address |
| 12007 | ** range and so, this does not matter and we expect an error from |
| 12008 | ** the chip if this ever happen. |
| 12009 | ** |
| 12010 | ** We use a separate function for the case Linux does not provide |
| 12011 | ** a scatter list in order to allow better code optimization |
| 12012 | ** for the case we have a scatter list (BTW, for now this just wastes |
| 12013 | ** about 40 bytes of code for x86, but my guess is that the scatter |
| 12014 | ** code will get more complex later). |
| 12015 | */ |
| 12016 | |
| 12017 | #ifdef SCSI_NCR_USE_64BIT_DAC |
| 12018 | #define SCATTER_ONE(data, badd, len)(data)->addr = (badd); (data)->size = (len); \ |
| 12019 | (data)->addr = cpu_to_scr(badd)(badd); \ |
| 12020 | (data)->size = cpu_to_scr((((badd) >> 8) & 0xff000000) + len)((((badd) >> 8) & 0xff000000) + len); |
| 12021 | #else |
| 12022 | #define SCATTER_ONE(data, badd, len)(data)->addr = (badd); (data)->size = (len); \ |
| 12023 | (data)->addr = cpu_to_scr(badd)(badd); \ |
| 12024 | (data)->size = cpu_to_scr(len)(len); |
| 12025 | #endif |
| 12026 | |
| 12027 | #define CROSS_16MB(p, n)(((((unsigned long) p) + n - 1) ^ ((unsigned long) p)) & ~ 0xffffff) (((((u_longunsigned long) p) + n - 1) ^ ((u_longunsigned long) p)) & ~0xffffff) |
| 12028 | |
| 12029 | static int ncr_scatter_no_sglist(ncb_p np, ccb_p cp, Scsi_Cmnd *cmd) |
| 12030 | { |
| 12031 | struct scr_tblmove *data = &cp->phys.data[MAX_SCATTER((127))-1]; |
| 12032 | int segment; |
| 12033 | |
| 12034 | cp->data_len = cmd->request_bufflen; |
| 12035 | |
| 12036 | if (cmd->request_bufflen) { |
| 12037 | u_longunsigned long baddr = map_scsi_single_data(np, cmd)(virt_to_phys((cmd)->request_buffer)); |
| 12038 | |
| 12039 | SCATTER_ONE(data, baddr, cmd->request_bufflen)(data)->addr = (baddr); (data)->size = (cmd->request_bufflen );; |
| 12040 | if (CROSS_16MB(baddr, cmd->request_bufflen)(((((unsigned long) baddr) + cmd->request_bufflen - 1) ^ ( (unsigned long) baddr)) & ~0xffffff)) { |
| 12041 | cp->host_flagsphys.header.status[3] |= HF_PM_TO_C(1u<<6); |
| 12042 | #ifdef DEBUG_896R1 |
| 12043 | printk("He! we are crossing a 16 MB boundary (0x%lx, 0x%x)\n", |
| 12044 | baddr, cmd->request_bufflen); |
| 12045 | #endif |
| 12046 | } |
| 12047 | segment = 1; |
| 12048 | } |
| 12049 | else |
| 12050 | segment = 0; |
| 12051 | |
| 12052 | return segment; |
| 12053 | } |
| 12054 | |
| 12055 | /* |
| 12056 | ** DEL 472 - 53C896 Rev 1 - Part Number 609-0393055 - ITEM 5. |
| 12057 | ** |
| 12058 | ** We disable data phase mismatch handling from SCRIPTS for data |
| 12059 | ** transfers that contains scatter/gather entries that cross |
| 12060 | ** a 16 MB boundary. |
| 12061 | ** We use a different scatter function for 896 rev. 1 that needs |
| 12062 | ** such a work-around. Doing so, we do not affect performance for |
| 12063 | ** other chips. |
| 12064 | ** This problem should not be triggered for disk IOs under Linux, |
| 12065 | ** since such IOs are performed using pages and buffers that are |
| 12066 | ** nicely power-of-two sized and aligned. But, since this may change |
| 12067 | ** at any time, a work-around was required. |
| 12068 | */ |
| 12069 | static int ncr_scatter_896R1(ncb_p np, ccb_p cp, Scsi_Cmnd *cmd) |
| 12070 | { |
| 12071 | int segn; |
| 12072 | int use_sg = (int) cmd->use_sg; |
| 12073 | |
| 12074 | cp->data_len = 0; |
| 12075 | |
| 12076 | if (!use_sg) |
| 12077 | segn = ncr_scatter_no_sglist(np, cp, cmd); |
| 12078 | else if (use_sg > MAX_SCATTER((127))) |
| 12079 | segn = -1; |
| 12080 | else { |
| 12081 | struct scatterlist *scatter = (struct scatterlist *)cmd->buffer; |
| 12082 | struct scr_tblmove *data; |
| 12083 | |
| 12084 | use_sg = map_scsi_sg_data(np, cmd)((cmd)->use_sg); |
| 12085 | data = &cp->phys.data[MAX_SCATTER((127)) - use_sg]; |
| 12086 | |
| 12087 | for (segn = 0; segn < use_sg; segn++) { |
| 12088 | u_longunsigned long baddr = scsi_sg_dma_address(&scatter[segn])virt_to_phys((&scatter[segn])->address); |
| 12089 | unsigned int len = scsi_sg_dma_len(&scatter[segn])((&scatter[segn])->length); |
| 12090 | |
| 12091 | SCATTER_ONE(&data[segn],(&data[segn])->addr = (baddr); (&data[segn])->size = (len); |
| 12092 | baddr,(&data[segn])->addr = (baddr); (&data[segn])->size = (len); |
| 12093 | len)(&data[segn])->addr = (baddr); (&data[segn])->size = (len);; |
| 12094 | if (CROSS_16MB(baddr, scatter[segn].length)(((((unsigned long) baddr) + scatter[segn].length - 1) ^ ((unsigned long) baddr)) & ~0xffffff)) { |
| 12095 | cp->host_flagsphys.header.status[3] |= HF_PM_TO_C(1u<<6); |
| 12096 | #ifdef DEBUG_896R1 |
| 12097 | printk("He! we are crossing a 16 MB boundary (0x%lx, 0x%x)\n", |
| 12098 | baddr, scatter[segn].length); |
| 12099 | #endif |
| 12100 | } |
| 12101 | cp->data_len += len; |
| 12102 | } |
| 12103 | } |
| 12104 | |
| 12105 | return segn; |
| 12106 | } |
| 12107 | |
| 12108 | static int ncr_scatter(ncb_p np, ccb_p cp, Scsi_Cmnd *cmd) |
| 12109 | { |
| 12110 | int segment; |
| 12111 | int use_sg = (int) cmd->use_sg; |
| 12112 | |
| 12113 | cp->data_len = 0; |
| 12114 | |
| 12115 | if (!use_sg) |
| 12116 | segment = ncr_scatter_no_sglist(np, cp, cmd); |
| 12117 | else if (use_sg > MAX_SCATTER((127))) |
| 12118 | segment = -1; |
| 12119 | else { |
| 12120 | struct scatterlist *scatter = (struct scatterlist *)cmd->buffer; |
| 12121 | struct scr_tblmove *data; |
| 12122 | |
| 12123 | use_sg = map_scsi_sg_data(np, cmd)((cmd)->use_sg); |
| 12124 | data = &cp->phys.data[MAX_SCATTER((127)) - use_sg]; |
| 12125 | |
| 12126 | for (segment = 0; segment < use_sg; segment++) { |
| 12127 | u_longunsigned long baddr = scsi_sg_dma_address(&scatter[segment])virt_to_phys((&scatter[segment])->address); |
| 12128 | unsigned int len = scsi_sg_dma_len(&scatter[segment])((&scatter[segment])->length); |
| 12129 | |
| 12130 | SCATTER_ONE(&data[segment],(&data[segment])->addr = (baddr); (&data[segment]) ->size = (len); |
| 12131 | baddr,(&data[segment])->addr = (baddr); (&data[segment]) ->size = (len); |
| 12132 | len)(&data[segment])->addr = (baddr); (&data[segment]) ->size = (len);; |
| 12133 | cp->data_len += len; |
| 12134 | } |
| 12135 | } |
| 12136 | |
| 12137 | return segment; |
| 12138 | } |
| 12139 | |
| 12140 | /*========================================================== |
| 12141 | ** |
| 12142 | ** |
| 12143 | ** Test the pci bus snoop logic :-( |
| 12144 | ** |
| 12145 | ** Has to be called with interrupts disabled. |
| 12146 | ** |
| 12147 | ** |
| 12148 | **========================================================== |
| 12149 | */ |
| 12150 | |
| 12151 | #ifndef SCSI_NCR_IOMAPPED |
| 12152 | static int __init ncr_regtest (struct ncb* np) |
| 12153 | { |
| 12154 | register volatile u_int32 data; |
| 12155 | /* |
| 12156 | ** ncr registers may NOT be cached. |
| 12157 | ** write 0xffffffff to a read only register area, |
| 12158 | ** and try to read it back. |
| 12159 | */ |
| 12160 | data = 0xffffffff; |
| 12161 | OUTL_OFF(offsetof(struct ncr_reg, nc_dstat), data)((*(volatile unsigned int *) ((char *)np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_dstat))))) = ((data))); |
| 12162 | data = INL_OFF(offsetof(struct ncr_reg, nc_dstat))(*(volatile unsigned int *) ((char *)np->reg + (((size_t) ( &((struct ncr_reg *)0)->nc_dstat))))); |
| 12163 | #if 1 |
| 12164 | if (data == 0xffffffff) { |
| 12165 | #else |
| 12166 | if ((data & 0xe2f0fffd) != 0x02000080) { |
| 12167 | #endif |
| 12168 | printk ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n", |
| 12169 | (unsigned) data); |
| 12170 | return (0x10); |
| 12171 | }; |
| 12172 | return (0); |
| 12173 | } |
| 12174 | #endif |
| 12175 | |
| 12176 | static int __init ncr_snooptest (struct ncb* np) |
| 12177 | { |
| 12178 | u_int32 ncr_rd, ncr_wr, ncr_bk, host_rd, host_wr, pc; |
| 12179 | int i, err=0; |
| 12180 | #ifndef SCSI_NCR_IOMAPPED |
| 12181 | if (np->reg) { |
| 12182 | err |= ncr_regtest (np); |
| 12183 | if (err) return (err); |
| 12184 | } |
| 12185 | #endif |
| 12186 | /* |
| 12187 | ** init |
| 12188 | */ |
| 12189 | pc = NCB_SCRIPTH0_PHYS (np, snooptest)(np->p_scripth0+((size_t) (&((struct scripth *)0)-> snooptest))); |
| 12190 | host_wr = 1; |
| 12191 | ncr_wr = 2; |
| 12192 | /* |
| 12193 | ** Set memory and register. |
| 12194 | */ |
| 12195 | np->ncr_cache = cpu_to_scr(host_wr)(host_wr); |
| 12196 | OUTL (nc_temp, ncr_wr)((*(volatile unsigned int *) ((char *)np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_temp))))) = (((ncr_wr)))); |
| 12197 | /* |
| 12198 | ** Start script (exchange values) |
| 12199 | */ |
| 12200 | OUTL (nc_dsa, np->p_ncb)((*(volatile unsigned int *) ((char *)np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_dsa))))) = (((np->p_ncb )))); |
| 12201 | OUTL_DSP (pc)do { do { ; } while(0); ((*(volatile unsigned int *) ((char * )np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_dsp ))))) = ((((pc))))); } while (0); |
| 12202 | /* |
| 12203 | ** Wait 'til done (with timeout) |
| 12204 | */ |
| 12205 | for (i=0; i<NCR_SNOOP_TIMEOUT(1000000); i++) |
| 12206 | if (INB(nc_istat)(*(volatile unsigned char *) ((char *)np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_istat))))) & (INTF0x04|SIP0x02|DIP0x01)) |
| 12207 | break; |
| 12208 | /* |
| 12209 | ** Save termination position. |
| 12210 | */ |
| 12211 | pc = INL (nc_dsp)(*(volatile unsigned int *) ((char *)np->reg + (((size_t) ( &((struct ncr_reg *)0)->nc_dsp))))); |
| 12212 | /* |
| 12213 | ** Read memory and register. |
| 12214 | */ |
| 12215 | host_rd = scr_to_cpu(np->ncr_cache)(np->ncr_cache); |
| 12216 | ncr_rd = INL (nc_scratcha)(*(volatile unsigned int *) ((char *)np->reg + (((size_t) ( &((struct ncr_reg *)0)->nc_scratcha))))); |
| 12217 | ncr_bk = INL (nc_temp)(*(volatile unsigned int *) ((char *)np->reg + (((size_t) ( &((struct ncr_reg *)0)->nc_temp))))); |
| 12218 | |
| 12219 | /* |
| 12220 | ** check for timeout |
| 12221 | */ |
| 12222 | if (i>=NCR_SNOOP_TIMEOUT(1000000)) { |
| 12223 | printk ("CACHE TEST FAILED: timeout.\n"); |
| 12224 | return (0x20); |
| 12225 | }; |
| 12226 | /* |
| 12227 | ** Check termination position. |
| 12228 | */ |
| 12229 | if (pc != NCB_SCRIPTH0_PHYS (np, snoopend)(np->p_scripth0+((size_t) (&((struct scripth *)0)-> snoopend)))+8) { |
| 12230 | printk ("CACHE TEST FAILED: script execution failed.\n"); |
| 12231 | printk ("start=%08lx, pc=%08lx, end=%08lx\n", |
| 12232 | (u_longunsigned long) NCB_SCRIPTH0_PHYS (np, snooptest)(np->p_scripth0+((size_t) (&((struct scripth *)0)-> snooptest))), (u_longunsigned long) pc, |
| 12233 | (u_longunsigned long) NCB_SCRIPTH0_PHYS (np, snoopend)(np->p_scripth0+((size_t) (&((struct scripth *)0)-> snoopend))) +8); |
| 12234 | return (0x40); |
| 12235 | }; |
| 12236 | /* |
| 12237 | ** Show results. |
| 12238 | */ |
| 12239 | if (host_wr != ncr_rd) { |
| 12240 | printk ("CACHE TEST FAILED: host wrote %d, ncr read %d.\n", |
| 12241 | (int) host_wr, (int) ncr_rd); |
| 12242 | err |= 1; |
| 12243 | }; |
| 12244 | if (host_rd != ncr_wr) { |
| 12245 | printk ("CACHE TEST FAILED: ncr wrote %d, host read %d.\n", |
| 12246 | (int) ncr_wr, (int) host_rd); |
| 12247 | err |= 2; |
| 12248 | }; |
| 12249 | if (ncr_bk != ncr_wr) { |
| 12250 | printk ("CACHE TEST FAILED: ncr wrote %d, read back %d.\n", |
| 12251 | (int) ncr_wr, (int) ncr_bk); |
| 12252 | err |= 4; |
| 12253 | }; |
| 12254 | return (err); |
| 12255 | } |
| 12256 | |
| 12257 | /*========================================================== |
| 12258 | ** |
| 12259 | ** Determine the ncr's clock frequency. |
| 12260 | ** This is essential for the negotiation |
| 12261 | ** of the synchronous transfer rate. |
| 12262 | ** |
| 12263 | **========================================================== |
| 12264 | ** |
| 12265 | ** Note: we have to return the correct value. |
| 12266 | ** THERE IS NO SAFE DEFAULT VALUE. |
| 12267 | ** |
| 12268 | ** Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock. |
| 12269 | ** 53C860 and 53C875 rev. 1 support fast20 transfers but |
| 12270 | ** do not have a clock doubler and so are provided with a |
| 12271 | ** 80 MHz clock. All other fast20 boards incorporate a doubler |
| 12272 | ** and so should be delivered with a 40 MHz clock. |
| 12273 | ** The recent fast40 chips (895/896/895A) and the |
| 12274 | ** fast80 chip (C1010) use a 40 Mhz base clock |
| 12275 | ** and provide a clock quadrupler (160 Mhz). The code below |
| 12276 | ** tries to deal as cleverly as possible with all this stuff. |
| 12277 | ** |
| 12278 | **---------------------------------------------------------- |
| 12279 | */ |
| 12280 | |
| 12281 | /* |
| 12282 | * Select NCR SCSI clock frequency |
| 12283 | */ |
| 12284 | static void ncr_selectclock(ncb_p np, u_charunsigned char scntl3) |
| 12285 | { |
| 12286 | if (np->multiplier < 2) { |
| 12287 | OUTB(nc_scntl3, scntl3)((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_scntl3))))) = (((scntl3) ))); |
| 12288 | return; |
| 12289 | } |
| 12290 | |
| 12291 | if (bootverbose(np->verbose) >= 2) |
| 12292 | printk ("%s: enabling clock multiplier\n", ncr_name(np)); |
| 12293 | |
| 12294 | OUTB(nc_stest1, DBLEN)((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_stest1))))) = (((0x08))) ); /* Enable clock multiplier */ |
| 12295 | |
| 12296 | if ( (np->device_id != PCI_DEVICE_ID_LSI_53C10100x20) && |
| 12297 | (np->device_id != PCI_DEVICE_ID_LSI_53C1010_660x21) && |
| 12298 | (np->multiplier > 2)) { |
| 12299 | int i = 20; /* Poll bit 5 of stest4 for quadrupler */ |
| 12300 | while (!(INB(nc_stest4)(*(volatile unsigned char *) ((char *)np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_stest4))))) & LCKFRQ0x20) && --i > 0) |
| 12301 | UDELAY (20); |
| 12302 | if (!i) |
| 12303 | printk("%s: the chip cannot lock the frequency\n", |
| 12304 | ncr_name(np)); |
| 12305 | |
| 12306 | } else /* Wait 120 micro-seconds for multiplier*/ |
| 12307 | UDELAY (120); |
| 12308 | |
| 12309 | OUTB(nc_stest3, HSC)((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_stest3))))) = (((0x20))) ); /* Halt the scsi clock */ |
| 12310 | OUTB(nc_scntl3, scntl3)((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_scntl3))))) = (((scntl3) ))); |
| 12311 | OUTB(nc_stest1, (DBLEN|DBLSEL))((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_stest1))))) = ((((0x08|0x04 )))));/* Select clock multiplier */ |
| 12312 | OUTB(nc_stest3, 0x00)((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_stest3))))) = (((0x00))) ); /* Restart scsi clock */ |
| 12313 | } |
| 12314 | |
| 12315 | |
| 12316 | /* |
| 12317 | * calculate NCR SCSI clock frequency (in KHz) |
| 12318 | */ |
| 12319 | static unsigned __init ncrgetfreq (ncb_p np, int gen) |
| 12320 | { |
| 12321 | unsigned int ms = 0; |
| 12322 | unsigned int f; |
| 12323 | int count; |
| 12324 | |
| 12325 | /* |
| 12326 | * Measure GEN timer delay in order |
| 12327 | * to calculate SCSI clock frequency |
| 12328 | * |
| 12329 | * This code will never execute too |
| 12330 | * many loop iterations (if DELAY is |
| 12331 | * reasonably correct). It could get |
| 12332 | * too low a delay (too high a freq.) |
| 12333 | * if the CPU is slow executing the |
| 12334 | * loop for some reason (an NMI, for |
| 12335 | * example). For this reason we will |
| 12336 | * if multiple measurements are to be |
| 12337 | * performed trust the higher delay |
| 12338 | * (lower frequency returned). |
| 12339 | */ |
| 12340 | OUTW (nc_sien , 0x0)((*(volatile unsigned short *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_sien))))) = (((0x0))));/* mask all scsi interrupts */ |
| 12341 | /* enable general purpose timer */ |
| 12342 | (void) INW (nc_sist)(*(volatile unsigned short *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_sist))))); /* clear pending scsi interrupt */ |
| 12343 | OUTB (nc_dien , 0)((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_dien))))) = (((0)))); /* mask all dma interrupts */ |
| 12344 | (void) INW (nc_sist)(*(volatile unsigned short *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_sist))))); /* another one, just to be sure :) */ |
| 12345 | OUTB (nc_scntl3, 4)((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_scntl3))))) = (((4)))); /* set pre-scaler to divide by 3 */ |
| 12346 | OUTB (nc_stime1, 0)((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_stime1))))) = (((0)))); /* disable general purpose timer */ |
| 12347 | OUTB (nc_stime1, gen)((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_stime1))))) = (((gen)))); /* set to nominal delay of 1<<gen * 125us */ |
| 12348 | /* Temporary fix for udelay issue with Alpha |
| 12349 | platform */ |
| 12350 | while (!(INW(nc_sist)(*(volatile unsigned short *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_sist))))) & GEN0x0200) && ms++ < 100000) { |
| 12351 | /* count 1ms */ |
| 12352 | for (count = 0; count < 10; count++) |
| 12353 | UDELAY (100); |
| 12354 | } |
| 12355 | OUTB (nc_stime1, 0)((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_stime1))))) = (((0)))); /* disable general purpose timer */ |
| 12356 | /* |
| 12357 | * set prescaler to divide by whatever 0 means |
| 12358 | * 0 ought to choose divide by 2, but appears |
| 12359 | * to set divide by 3.5 mode in my 53c810 ... |
| 12360 | */ |
| 12361 | OUTB (nc_scntl3, 0)((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_scntl3))))) = (((0)))); |
| 12362 | |
| 12363 | /* |
| 12364 | * adjust for prescaler, and convert into KHz |
| 12365 | * scale values derived empirically. C1010 uses |
| 12366 | * different dividers |
| 12367 | */ |
| 12368 | #if 0 |
| 12369 | if (np->device_id == PCI_DEVICE_ID_LSI_53C10100x20) |
| 12370 | f = ms ? ((1 << gen) * 2866 ) / ms : 0; |
| 12371 | else |
| 12372 | #endif |
| 12373 | f = ms ? ((1 << gen) * 4340) / ms : 0; |
| 12374 | |
| 12375 | if (bootverbose(np->verbose) >= 2) |
| 12376 | printk ("%s: Delay (GEN=%d): %u msec, %u KHz\n", |
| 12377 | ncr_name(np), gen, ms, f); |
| 12378 | |
| 12379 | return f; |
| 12380 | } |
| 12381 | |
| 12382 | static unsigned __init ncr_getfreq (ncb_p np) |
| 12383 | { |
| 12384 | u_intunsigned int f1, f2; |
| 12385 | int gen = 11; |
| 12386 | |
| 12387 | (void) ncrgetfreq (np, gen); /* throw away first result */ |
| 12388 | f1 = ncrgetfreq (np, gen); |
| 12389 | f2 = ncrgetfreq (np, gen); |
| 12390 | if (f1 > f2) f1 = f2; /* trust lower result */ |
| 12391 | return f1; |
| 12392 | } |
| 12393 | |
| 12394 | /* |
| 12395 | * Get/probe NCR SCSI clock frequency |
| 12396 | */ |
| 12397 | static void __init ncr_getclock (ncb_p np, int mult) |
| 12398 | { |
| 12399 | unsigned char scntl3 = np->sv_scntl3; |
| 12400 | unsigned char stest1 = np->sv_stest1; |
| 12401 | unsigned f1; |
| 12402 | |
| 12403 | np->multiplier = 1; |
| 12404 | f1 = 40000; |
| 12405 | |
| 12406 | /* |
| 12407 | ** True with 875/895/896/895A with clock multiplier selected |
| 12408 | */ |
| 12409 | if (mult > 1 && (stest1 & (DBLEN0x08+DBLSEL0x04)) == DBLEN0x08+DBLSEL0x04) { |
| 12410 | if (bootverbose(np->verbose) >= 2) |
| 12411 | printk ("%s: clock multiplier found\n", ncr_name(np)); |
| 12412 | np->multiplier = mult; |
| 12413 | } |
| 12414 | |
| 12415 | /* |
| 12416 | ** If multiplier not found but a C1010, assume a mult of 4. |
| 12417 | ** If multiplier not found or scntl3 not 7,5,3, |
| 12418 | ** reset chip and get frequency from general purpose timer. |
| 12419 | ** Otherwise trust scntl3 BIOS setting. |
| 12420 | */ |
| 12421 | if ((np->device_id == PCI_DEVICE_ID_LSI_53C10100x20) || |
| 12422 | (np->device_id == PCI_DEVICE_ID_LSI_53C1010_660x21)) { |
| 12423 | f1=40000; |
| 12424 | np->multiplier = mult; |
| 12425 | if (bootverbose(np->verbose) >= 2) |
| 12426 | printk ("%s: clock multiplier assumed\n", ncr_name(np)); |
| 12427 | } |
| 12428 | else if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) { |
| 12429 | OUTB (nc_stest1, 0)((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_stest1))))) = (((0)))); /* make sure doubler is OFF */ |
| 12430 | f1 = ncr_getfreq (np); |
| 12431 | |
| 12432 | if (bootverbose(np->verbose)) |
| 12433 | printk ("%s: NCR clock is %uKHz\n", ncr_name(np), f1); |
| 12434 | |
| 12435 | if (f1 < 55000) f1 = 40000; |
| 12436 | else f1 = 80000; |
| 12437 | |
| 12438 | /* |
| 12439 | ** Suggest to also check the PCI clock frequency |
| 12440 | ** to make sure our frequency calculation algorithm |
| 12441 | ** is not too biased. |
| 12442 | */ |
| 12443 | if (np->features & FE_66MHZ(1<<23)) { |
| 12444 | np->pciclock_min = (66000*55+80-1)/80; |
| 12445 | np->pciclock_max = (66000*55)/40; |
| 12446 | } |
| 12447 | else { |
| 12448 | np->pciclock_min = (33000*55+80-1)/80; |
| 12449 | np->pciclock_max = (33000*55)/40; |
| 12450 | } |
| 12451 | |
| 12452 | if (f1 == 40000 && mult > 1) { |
| 12453 | if (bootverbose(np->verbose) >= 2) |
| 12454 | printk ("%s: clock multiplier assumed\n", ncr_name(np)); |
| 12455 | np->multiplier = mult; |
| 12456 | } |
| 12457 | } else { |
| 12458 | if ((scntl3 & 7) == 3) f1 = 40000; |
| 12459 | else if ((scntl3 & 7) == 5) f1 = 80000; |
| 12460 | else f1 = 160000; |
| 12461 | |
| 12462 | f1 /= np->multiplier; |
| 12463 | } |
| 12464 | |
| 12465 | /* |
| 12466 | ** Compute controller synchronous parameters. |
| 12467 | */ |
| 12468 | f1 *= np->multiplier; |
| 12469 | np->clock_khz = f1; |
| 12470 | } |
| 12471 | |
| 12472 | /* |
| 12473 | * Get/probe PCI clock frequency |
| 12474 | */ |
| 12475 | static u_intunsigned int __init ncr_getpciclock (ncb_p np) |
| 12476 | { |
| 12477 | static u_intunsigned int f; |
| 12478 | |
| 12479 | OUTB (nc_stest1, SCLK)((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_stest1))))) = (((0x80))) ); /* Use the PCI clock as SCSI clock */ |
| 12480 | f = ncr_getfreq (np); |
| 12481 | OUTB (nc_stest1, 0)((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_stest1))))) = (((0)))); |
| 12482 | |
| 12483 | return f; |
| 12484 | } |
| 12485 | |
| 12486 | /*===================== LINUX ENTRY POINTS SECTION ==========================*/ |
| 12487 | |
| 12488 | #ifndef ucharunsigned char |
| 12489 | #define ucharunsigned char unsigned char |
| 12490 | #endif |
| 12491 | |
| 12492 | #ifndef ushortunsigned short |
| 12493 | #define ushortunsigned short unsigned short |
| 12494 | #endif |
| 12495 | |
| 12496 | #ifndef ulongunsigned long |
| 12497 | #define ulongunsigned long unsigned long |
| 12498 | #endif |
| 12499 | |
| 12500 | /* --------------------------------------------------------------------- |
| 12501 | ** |
| 12502 | ** Driver setup from the boot command line |
| 12503 | ** |
| 12504 | ** --------------------------------------------------------------------- |
| 12505 | */ |
| 12506 | |
| 12507 | #ifdef MODULE |
| 12508 | #define ARG_SEP',' ' ' |
| 12509 | #else |
| 12510 | #define ARG_SEP',' ',' |
| 12511 | #endif |
| 12512 | |
| 12513 | #define OPT_TAGS1 1 |
| 12514 | #define OPT_MASTER_PARITY2 2 |
| 12515 | #define OPT_SCSI_PARITY3 3 |
| 12516 | #define OPT_DISCONNECTION4 4 |
| 12517 | #define OPT_SPECIAL_FEATURES5 5 |
| 12518 | #define OPT_ULTRA_SCSI6 6 |
| 12519 | #define OPT_FORCE_SYNC_NEGO7 7 |
| 12520 | #define OPT_REVERSE_PROBE8 8 |
| 12521 | #define OPT_DEFAULT_SYNC9 9 |
| 12522 | #define OPT_VERBOSE10 10 |
| 12523 | #define OPT_DEBUG11 11 |
| 12524 | #define OPT_BURST_MAX12 12 |
| 12525 | #define OPT_LED_PIN13 13 |
| 12526 | #define OPT_MAX_WIDE14 14 |
| 12527 | #define OPT_SETTLE_DELAY15 15 |
| 12528 | #define OPT_DIFF_SUPPORT16 16 |
| 12529 | #define OPT_IRQM17 17 |
| 12530 | #define OPT_PCI_FIX_UP18 18 |
| 12531 | #define OPT_BUS_CHECK19 19 |
| 12532 | #define OPT_OPTIMIZE20 20 |
| 12533 | #define OPT_RECOVERY21 21 |
| 12534 | #define OPT_SAFE_SETUP22 22 |
| 12535 | #define OPT_USE_NVRAM23 23 |
| 12536 | #define OPT_EXCLUDE24 24 |
| 12537 | #define OPT_HOST_ID25 25 |
| 12538 | |
| 12539 | #ifdef SCSI_NCR_IARB_SUPPORT |
| 12540 | #define OPT_IARB 26 |
| 12541 | #endif |
| 12542 | |
| 12543 | static char setup_token[] __initdata = |
| 12544 | "tags:" "mpar:" |
| 12545 | "spar:" "disc:" |
| 12546 | "specf:" "ultra:" |
| 12547 | "fsn:" "revprob:" |
| 12548 | "sync:" "verb:" |
| 12549 | "debug:" "burst:" |
| 12550 | "led:" "wide:" |
| 12551 | "settle:" "diff:" |
| 12552 | "irqm:" "pcifix:" |
| 12553 | "buschk:" "optim:" |
| 12554 | "recovery:" |
| 12555 | "safe:" "nvram:" |
| 12556 | "excl:" "hostid:" |
| 12557 | #ifdef SCSI_NCR_IARB_SUPPORT |
| 12558 | "iarb:" |
| 12559 | #endif |
| 12560 | ; /* DONNOT REMOVE THIS ';' */ |
| 12561 | |
| 12562 | #ifdef MODULE |
| 12563 | #define ARG_SEP',' ' ' |
| 12564 | #else |
| 12565 | #define ARG_SEP',' ',' |
| 12566 | #endif |
| 12567 | |
| 12568 | static int __init get_setup_token(char *p) |
| 12569 | { |
| 12570 | char *cur = setup_token; |
| 12571 | char *pc; |
| 12572 | int i = 0; |
| 12573 | |
| 12574 | while (cur != NULL((void *) 0) && (pc = strchr(cur, ':')) != NULL((void *) 0)) { |
| 12575 | ++pc; |
| 12576 | ++i; |
| 12577 | if (!strncmp(p, cur, pc - cur)) |
| 12578 | return i; |
| 12579 | cur = pc; |
| 12580 | } |
| 12581 | return 0; |
| 12582 | } |
| 12583 | |
| 12584 | |
| 12585 | int __init sym53c8xx_setup(char *str) |
| 12586 | { |
| 12587 | #ifdef SCSI_NCR_BOOT_COMMAND_LINE_SUPPORT |
| 12588 | char *cur = str; |
| 12589 | char *pc, *pv; |
| 12590 | unsigned long val; |
| 12591 | int i, c; |
| 12592 | int xi = 0; |
| 12593 | |
| 12594 | while (cur != NULL((void *) 0) && (pc = strchr(cur, ':')) != NULL((void *) 0)) { |
| 12595 | char *pe; |
| 12596 | |
| 12597 | val = 0; |
| 12598 | pv = pc; |
| 12599 | c = *++pv; |
| 12600 | |
| 12601 | if (c == 'n') |
| 12602 | val = 0; |
| 12603 | else if (c == 'y') |
| 12604 | val = 1; |
| 12605 | else |
| 12606 | val = (int) simple_strtoul(pv, &pe, 0); |
| 12607 | |
| 12608 | switch (get_setup_token(cur)) { |
| 12609 | case OPT_TAGS1: |
| 12610 | driver_setup.default_tags = val; |
| 12611 | if (pe && *pe == '/') { |
| 12612 | i = 0; |
| 12613 | while (*pe && *pe != ARG_SEP',' && |
| 12614 | i < sizeof(driver_setup.tag_ctrl)-1) { |
| 12615 | driver_setup.tag_ctrl[i++] = *pe++; |
| 12616 | } |
| 12617 | driver_setup.tag_ctrl[i] = '\0'; |
| 12618 | } |
| 12619 | break; |
| 12620 | case OPT_MASTER_PARITY2: |
| 12621 | driver_setup.master_parity = val; |
| 12622 | break; |
| 12623 | case OPT_SCSI_PARITY3: |
| 12624 | driver_setup.scsi_parity = val; |
| 12625 | break; |
| 12626 | case OPT_DISCONNECTION4: |
| 12627 | driver_setup.disconnection = val; |
| 12628 | break; |
| 12629 | case OPT_SPECIAL_FEATURES5: |
| 12630 | driver_setup.special_features = val; |
| 12631 | break; |
| 12632 | case OPT_ULTRA_SCSI6: |
| 12633 | driver_setup.ultra_scsi = val; |
| 12634 | break; |
| 12635 | case OPT_FORCE_SYNC_NEGO7: |
| 12636 | driver_setup.force_sync_nego = val; |
| 12637 | break; |
| 12638 | case OPT_REVERSE_PROBE8: |
| 12639 | driver_setup.reverse_probe = val; |
| 12640 | break; |
| 12641 | case OPT_DEFAULT_SYNC9: |
| 12642 | driver_setup.default_sync = val; |
| 12643 | break; |
| 12644 | case OPT_VERBOSE10: |
| 12645 | driver_setup.verbose = val; |
| 12646 | break; |
| 12647 | case OPT_DEBUG11: |
| 12648 | driver_setup.debug = val; |
| 12649 | break; |
| 12650 | case OPT_BURST_MAX12: |
| 12651 | driver_setup.burst_max = val; |
| 12652 | break; |
| 12653 | case OPT_LED_PIN13: |
| 12654 | driver_setup.led_pin = val; |
| 12655 | break; |
| 12656 | case OPT_MAX_WIDE14: |
| 12657 | driver_setup.max_wide = val? 1:0; |
| 12658 | break; |
| 12659 | case OPT_SETTLE_DELAY15: |
| 12660 | driver_setup.settle_delay = val; |
| 12661 | break; |
| 12662 | case OPT_DIFF_SUPPORT16: |
| 12663 | driver_setup.diff_support = val; |
| 12664 | break; |
| 12665 | case OPT_IRQM17: |
| 12666 | driver_setup.irqm = val; |
| 12667 | break; |
| 12668 | case OPT_PCI_FIX_UP18: |
| 12669 | driver_setup.pci_fix_up = val; |
| 12670 | break; |
| 12671 | case OPT_BUS_CHECK19: |
| 12672 | driver_setup.bus_check = val; |
| 12673 | break; |
| 12674 | case OPT_OPTIMIZE20: |
| 12675 | driver_setup.optimize = val; |
| 12676 | break; |
| 12677 | case OPT_RECOVERY21: |
| 12678 | driver_setup.recovery = val; |
| 12679 | break; |
| 12680 | case OPT_USE_NVRAM23: |
| 12681 | driver_setup.use_nvram = val; |
| 12682 | break; |
| 12683 | case OPT_SAFE_SETUP22: |
| 12684 | memcpy(&driver_setup, &driver_safe_setup,(__builtin_constant_p(sizeof(driver_setup)) ? __constant_memcpy ((&driver_setup),(&driver_safe_setup),(sizeof(driver_setup ))) : __memcpy((&driver_setup),(&driver_safe_setup),( sizeof(driver_setup)))) |
| 12685 | sizeof(driver_setup))(__builtin_constant_p(sizeof(driver_setup)) ? __constant_memcpy ((&driver_setup),(&driver_safe_setup),(sizeof(driver_setup ))) : __memcpy((&driver_setup),(&driver_safe_setup),( sizeof(driver_setup)))); |
| 12686 | break; |
| 12687 | case OPT_EXCLUDE24: |
| 12688 | if (xi < SCSI_NCR_MAX_EXCLUDES8) |
| 12689 | driver_setup.excludes[xi++] = val; |
| 12690 | break; |
| 12691 | case OPT_HOST_ID25: |
| 12692 | driver_setup.host_id = val; |
| 12693 | break; |
| 12694 | #ifdef SCSI_NCR_IARB_SUPPORT |
| 12695 | case OPT_IARB: |
| 12696 | driver_setup.iarb = val; |
| 12697 | break; |
| 12698 | #endif |
| 12699 | default: |
| 12700 | printk("sym53c8xx_setup: unexpected boot option '%.*s' ignored\n", (int)(pc-cur+1), cur); |
| 12701 | break; |
| 12702 | } |
| 12703 | |
| 12704 | if ((cur = strchr(cur, ARG_SEP',')) != NULL((void *) 0)) |
| 12705 | ++cur; |
| 12706 | } |
| 12707 | #endif /* SCSI_NCR_BOOT_COMMAND_LINE_SUPPORT */ |
| 12708 | return 1; |
| 12709 | } |
| 12710 | |
| 12711 | #if LINUX_VERSION_CODE131108 >= LinuxVersionCode(2,3,13)(((2)<<16)+((3)<<8)+(13)) |
| 12712 | #ifndef MODULE |
| 12713 | __setup("sym53c8xx=", sym53c8xx_setup); |
| 12714 | #endif |
| 12715 | #endif |
| 12716 | |
| 12717 | static int |
| 12718 | sym53c8xx_pci_init(Scsi_Host_Template *tpnt, pcidev_t pdev, ncr_device *device); |
| 12719 | |
| 12720 | /* |
| 12721 | ** Linux entry point for SYM53C8XX devices detection routine. |
| 12722 | ** |
| 12723 | ** Called by the middle-level scsi drivers at initialization time, |
| 12724 | ** or at module installation. |
| 12725 | ** |
| 12726 | ** Read the PCI configuration and try to attach each |
| 12727 | ** detected NCR board. |
| 12728 | ** |
| 12729 | ** If NVRAM is present, try to attach boards according to |
| 12730 | ** the used defined boot order. |
| 12731 | ** |
| 12732 | ** Returns the number of boards successfully attached. |
| 12733 | */ |
| 12734 | |
| 12735 | static void __init ncr_print_driver_setup(void) |
| 12736 | { |
| 12737 | #define YesNo(y) y ? 'y' : 'n' |
| 12738 | printk (NAME53C8XX"sym53c8xx" ": setup=disc:%c,specf:%d,ultra:%d,tags:%d,sync:%d," |
| 12739 | "burst:%d,wide:%c,diff:%d,revprob:%c,buschk:0x%x\n", |
| 12740 | YesNo(driver_setup.disconnection), |
| 12741 | driver_setup.special_features, |
| 12742 | driver_setup.ultra_scsi, |
| 12743 | driver_setup.default_tags, |
| 12744 | driver_setup.default_sync, |
| 12745 | driver_setup.burst_max, |
| 12746 | YesNo(driver_setup.max_wide), |
| 12747 | driver_setup.diff_support, |
| 12748 | YesNo(driver_setup.reverse_probe), |
| 12749 | driver_setup.bus_check); |
| 12750 | |
| 12751 | printk (NAME53C8XX"sym53c8xx" ": setup=mpar:%c,spar:%c,fsn=%c,verb:%d,debug:0x%x," |
| 12752 | "led:%c,settle:%d,irqm:0x%x,nvram:0x%x,pcifix:0x%x\n", |
| 12753 | YesNo(driver_setup.master_parity), |
| 12754 | YesNo(driver_setup.scsi_parity), |
| 12755 | YesNo(driver_setup.force_sync_nego), |
| 12756 | driver_setup.verbose, |
| 12757 | driver_setup.debug, |
| 12758 | YesNo(driver_setup.led_pin), |
| 12759 | driver_setup.settle_delay, |
| 12760 | driver_setup.irqm, |
| 12761 | driver_setup.use_nvram, |
| 12762 | driver_setup.pci_fix_up); |
| 12763 | #undef YesNo |
| 12764 | } |
| 12765 | |
| 12766 | /*=================================================================== |
| 12767 | ** SYM53C8XX devices description table and chip ids list. |
| 12768 | **=================================================================== |
| 12769 | */ |
| 12770 | |
| 12771 | static ncr_chip ncr_chip_table[] __initdata = SCSI_NCR_CHIP_TABLE{ {0x0001, 0x0f, "810", 4, 8, 4, (1<<6)} , {0x0001, 0xff , "810a", 4, 8, 4, ((1<<6)|(1<<7)|(1<<8)|(1 <<9))|(1<<13)|(1<<12)|(1<<10)} , {0x0004 , 0xff, "815", 4, 8, 4, (1<<6)|(1<<10)} , {0x0002 , 0xff, "820", 4, 8, 4, (1<<1)|(1<<6)} , {0x0003, 0x0f, "825", 4, 8, 4, (1<<1)|(1<<6)|(1<<10 )|(1<<21)} , {0x0003, 0xff, "825a", 6, 8, 4, (1<< 1)|(((1<<6)|(1<<7)|(1<<8)|(1<<9)) & ~(1<<6))|(1<<10)|(1<<11)|(1<<13)|(1<< 12)|(1<<14)|(1<<21)} , {0x0006, 0xff, "860", 4, 8 , 5, (1<<2)|(1<<15)|((1<<6)|(1<<7)|(1 <<8)|(1<<9))|(1<<10)|(1<<13)|(1<< 12)} , {0x000f, 0x01, "875", 6, 16, 5, (1<<1)|(1<< 2)|(1<<15)|(((1<<6)|(1<<7)|(1<<8)|(1<< 9)) & ~(1<<6))|(1<<10)|(1<<11)|(1<< 13)|(1<<12)| (1<<14)|(1<<21)} , {0x000f, 0x0f , "875", 6, 16, 5, (1<<1)|(1<<2)|(1<<4)|((( 1<<6)|(1<<7)|(1<<8)|(1<<9)) & ~(1 <<6))|(1<<10)|(1<<11)|(1<<13)|(1<< 12)| (1<<14)|(1<<21)} , {0x000f, 0x1f, "876", 6, 16 , 5, (1<<1)|(1<<2)|(1<<4)|(((1<<6)|(1 <<7)|(1<<8)|(1<<9)) & ~(1<<6))|(1 <<10)|(1<<11)|(1<<13)|(1<<12)| (1<< 14)|(1<<21)} , {0x000f, 0x2f, "875E", 6, 16, 5, (1<< 1)|(1<<2)|(1<<4)|(((1<<6)|(1<<7)|(1<< 8)|(1<<9)) & ~(1<<6))|(1<<10)|(1<< 11)|(1<<13)|(1<<12)| (1<<14)|(1<<21)} , {0x000f, 0xff, "876", 6, 16, 5, (1<<1)|(1<<2)| (1<<4)|(((1<<6)|(1<<7)|(1<<8)|(1<< 9)) & ~(1<<6))|(1<<10)|(1<<11)|(1<< 13)|(1<<12)| (1<<14)|(1<<21)} , {0x008f,0xff , "875J", 6, 16, 5, (1<<1)|(1<<2)|(1<<4)|(( (1<<6)|(1<<7)|(1<<8)|(1<<9)) & ~( 1<<6))|(1<<10)|(1<<11)|(1<<13)|(1<< 12)| (1<<14)} , {0x000d, 0xff, "885", 6, 16, 5, (1<< 1)|(1<<2)|(1<<4)|(((1<<6)|(1<<7)|(1<< 8)|(1<<9)) & ~(1<<6))|(1<<10)|(1<< 11)|(1<<13)|(1<<12)| (1<<14)|(1<<21)} , {0x000c, 0xff, "895", 6, 31, 7, (1<<1)|(1<<3)| (1<<5)|((1<<6)|(1<<7)|(1<<8)|(1<< 9))|(1<<10)|(1<<11)|(1<<13)|(1<<12)| ( 1<<14)} , {0x000b, 0xff, "896", 6, 31, 7, (1<<1)| (1<<3)|(1<<5)|((1<<6)|(1<<7)|(1<< 8)|(1<<9))|(1<<10)|(1<<11)|(1<<13)|(1 <<12)| (1<<14)|(1<<16)|(1<<17)|(1<< 18)|(1<<19)|(1<<20)} , {0x12, 0xff, "895a", 6, 31 , 7, (1<<1)|(1<<3)|(1<<5)|((1<<6)|(1<< 7)|(1<<8)|(1<<9))|(1<<10)|(1<<11)|(1<< 13)|(1<<12)| (1<<14)|(1<<16)|(1<<17)| (1<<18)|(1<<19)|(1<<20)} , {0xa, 0xff, "1510D" , 7, 31, 7, (1<<1)|(1<<3)|(1<<5)|((1<< 6)|(1<<7)|(1<<8)|(1<<9))|(1<<10)|(1<< 11)|(1<<13)|(1<<12)| (1<<14)|(1<<18)} , {0x20, 0xff, "1010", 6, 31, 7, (1<<1)|(1<<5)|( (1<<6)|(1<<7)|(1<<8)|(1<<9))|(1<< 10)|(1<<11)|(1<<13)|(1<<12)| (1<<14)| (1<<16)|(1<<17)|(1<<18)|(1<<19)|(1<< 20)|(1<<22)} , {0x21, 0xff, "1010_66", 6, 31, 7, (1<< 1)|(1<<5)|((1<<6)|(1<<7)|(1<<8)|(1<< 9))|(1<<10)|(1<<11)|(1<<13)|(1<<12)| ( 1<<14)|(1<<16)|(1<<17)|(1<<18)|(1<< 19)|(1<<20)|(1<<22)|(1<<23)} }; |
| 12772 | static ushortunsigned short ncr_chip_ids[] __initdata = SCSI_NCR_CHIP_IDS{ 0x0001, 0x0004, 0x0002, 0x0003, 0x0006, 0x000f, 0x008f, 0x000d , 0x000c, 0x000b, 0x12, 0xa, 0x20, 0x21 }; |
| 12773 | |
| 12774 | #ifdef SCSI_NCR_PQS_PDS_SUPPORT |
| 12775 | /*=================================================================== |
| 12776 | ** Detect all NCR PQS/PDS boards and keep track of their bus nr. |
| 12777 | ** |
| 12778 | ** The NCR PQS or PDS card is constructed as a DEC bridge |
| 12779 | ** behind which sit a proprietary NCR memory controller and |
| 12780 | ** four or two 53c875s as separate devices. In its usual mode |
| 12781 | ** of operation, the 875s are slaved to the memory controller |
| 12782 | ** for all transfers. We can tell if an 875 is part of a |
| 12783 | ** PQS/PDS or not since if it is, it will be on the same bus |
| 12784 | ** as the memory controller. To operate with the Linux |
| 12785 | ** driver, the memory controller is disabled and the 875s |
| 12786 | ** freed to function independently. The only wrinkle is that |
| 12787 | ** the preset SCSI ID (which may be zero) must be read in from |
| 12788 | ** a special configuration space register of the 875 |
| 12789 | **=================================================================== |
| 12790 | */ |
| 12791 | #define SCSI_NCR_MAX_PQS_BUS 16 |
| 12792 | static int pqs_bus[SCSI_NCR_MAX_PQS_BUS] __initdata = { 0 }; |
| 12793 | |
| 12794 | static void __init ncr_detect_pqs_pds(void) |
| 12795 | { |
| 12796 | short index; |
| 12797 | pcidev_t dev = PCIDEV_NULL(~0u); |
| 12798 | |
| 12799 | for(index=0; index < SCSI_NCR_MAX_PQS_BUS; index++) { |
| 12800 | u_charunsigned char tmp; |
| 12801 | |
| 12802 | dev = pci_find_device(0x101a, 0x0009, dev); |
| 12803 | if (dev == PCIDEV_NULL(~0u)) { |
| 12804 | pqs_bus[index] = -1; |
| 12805 | break; |
| 12806 | } |
| 12807 | printk(KERN_INFO"<6>" NAME53C8XX"sym53c8xx" ": NCR PQS/PDS memory controller detected on bus %d\n", PciBusNumber(dev)((dev)>>8)); |
| 12808 | pci_read_config_byte(dev, 0x44, &tmp)pcibios_read_config_byte(((dev)>>8), ((dev)&0xff), 0x44 , &tmp); |
| 12809 | /* bit 1: allow individual 875 configuration */ |
| 12810 | tmp |= 0x2; |
| 12811 | pci_write_config_byte(dev, 0x44, tmp)pcibios_write_config_byte(((dev)>>8), ((dev)&0xff), 0x44, tmp); |
| 12812 | pci_read_config_byte(dev, 0x45, &tmp)pcibios_read_config_byte(((dev)>>8), ((dev)&0xff), 0x45 , &tmp); |
| 12813 | /* bit 2: drive individual 875 interrupts to the bus */ |
| 12814 | tmp |= 0x4; |
| 12815 | pci_write_config_byte(dev, 0x45, tmp)pcibios_write_config_byte(((dev)>>8), ((dev)&0xff), 0x45, tmp); |
| 12816 | |
| 12817 | pqs_bus[index] = PciBusNumber(dev)((dev)>>8); |
| 12818 | } |
| 12819 | } |
| 12820 | #endif /* SCSI_NCR_PQS_PDS_SUPPORT */ |
| 12821 | |
| 12822 | /*=================================================================== |
| 12823 | ** Detect all 53c8xx hosts and then attach them. |
| 12824 | ** |
| 12825 | ** If we are using NVRAM, once all hosts are detected, we need to |
| 12826 | ** check any NVRAM for boot order in case detect and boot order |
| 12827 | ** differ and attach them using the order in the NVRAM. |
| 12828 | ** |
| 12829 | ** If no NVRAM is found or data appears invalid attach boards in |
| 12830 | ** the the order they are detected. |
| 12831 | **=================================================================== |
| 12832 | */ |
| 12833 | int __init sym53c8xx_detect(Scsi_Host_Template *tpnt) |
| 12834 | { |
| 12835 | pcidev_t pcidev; |
| 12836 | int i, j, chips, hosts, count; |
| 12837 | int attach_count = 0; |
| 12838 | ncr_device *devtbl, *devp; |
| 12839 | #ifdef SCSI_NCR_NVRAM_SUPPORT |
| 12840 | ncr_nvram nvram0, nvram, *nvp; |
| 12841 | #endif |
| 12842 | |
| 12843 | /* |
| 12844 | ** PCI is required. |
| 12845 | */ |
| 12846 | if (!pci_presentpcibios_present()) |
| 12847 | return 0; |
| 12848 | |
| 12849 | /* |
| 12850 | ** Initialize driver general stuff. |
| 12851 | */ |
| 12852 | #ifdef SCSI_NCR_PROC_INFO_SUPPORT |
| 12853 | #if LINUX_VERSION_CODE131108 < LinuxVersionCode(2,3,27)(((2)<<16)+((3)<<8)+(27)) |
| 12854 | tpnt->proc_dir = &proc_scsi_sym53c8xx; |
| 12855 | #else |
| 12856 | tpnt->proc_name = NAME53C8XX"sym53c8xx"; |
| 12857 | #endif |
| 12858 | tpnt->proc_info = sym53c8xx_proc_info; |
| 12859 | #endif |
| 12860 | |
| 12861 | #if defined(SCSI_NCR_BOOT_COMMAND_LINE_SUPPORT) && defined(MODULE) |
| 12862 | if (sym53c8xx) |
| 12863 | sym53c8xx_setup(sym53c8xx); |
| 12864 | #endif |
| 12865 | #ifdef SCSI_NCR_DEBUG_INFO_SUPPORT |
| 12866 | ncr_debug = driver_setup.debug; |
| 12867 | #endif |
| 12868 | |
| 12869 | if (initverbose(driver_setup.verbose) >= 2) |
| 12870 | ncr_print_driver_setup(); |
| 12871 | |
| 12872 | /* |
| 12873 | ** Allocate the device table since we donnot want to |
| 12874 | ** overflow the kernel stack. |
| 12875 | ** 1 x 4K PAGE is enough for more than 40 devices for i386. |
| 12876 | */ |
| 12877 | devtbl = m_calloc(PAGE_SIZE(1 << 12), "devtbl"); |
| 12878 | if (!devtbl) |
| 12879 | return 0; |
| 12880 | |
| 12881 | /* |
| 12882 | ** Detect all NCR PQS/PDS memory controllers. |
| 12883 | */ |
| 12884 | #ifdef SCSI_NCR_PQS_PDS_SUPPORT |
| 12885 | ncr_detect_pqs_pds(); |
| 12886 | #endif |
| 12887 | |
| 12888 | /* |
| 12889 | ** Detect all 53c8xx hosts. |
| 12890 | ** Save the first Symbios NVRAM content if any |
| 12891 | ** for the boot order. |
| 12892 | */ |
| 12893 | chips = sizeof(ncr_chip_ids) / sizeof(ncr_chip_ids[0]); |
| 12894 | hosts = PAGE_SIZE(1 << 12) / sizeof(*devtbl); |
| 12895 | #ifdef SCSI_NCR_NVRAM_SUPPORT |
| 12896 | nvp = (driver_setup.use_nvram & 0x1) ? &nvram0 : 0; |
| 12897 | #endif |
| 12898 | j = 0; |
| 12899 | count = 0; |
| 12900 | pcidev = PCIDEV_NULL(~0u); |
| 12901 | while (1) { |
| 12902 | char *msg = ""; |
| 12903 | if (count >= hosts) |
| 12904 | break; |
| 12905 | if (j >= chips) |
| 12906 | break; |
| 12907 | i = driver_setup.reverse_probe ? chips - 1 - j : j; |
| 12908 | pcidev = pci_find_device(PCI_VENDOR_ID_NCR0x1000, ncr_chip_ids[i], |
| 12909 | pcidev); |
| 12910 | if (pcidev == PCIDEV_NULL(~0u)) { |
| 12911 | ++j; |
| 12912 | continue; |
| 12913 | } |
| 12914 | /* Some HW as the HP LH4 may report twice PCI devices */ |
| 12915 | for (i = 0; i < count ; i++) { |
| 12916 | if (devtbl[i].slot.bus == PciBusNumber(pcidev)((pcidev)>>8) && |
| 12917 | devtbl[i].slot.device_fn == PciDeviceFn(pcidev)((pcidev)&0xff)) |
| 12918 | break; |
| 12919 | } |
| 12920 | if (i != count) /* Ignore this device if we already have it */ |
| 12921 | continue; |
| 12922 | devp = &devtbl[count]; |
| 12923 | devp->host_id = driver_setup.host_id; |
| 12924 | devp->attach_done = 0; |
| 12925 | if (sym53c8xx_pci_init(tpnt, pcidev, devp)) { |
| 12926 | continue; |
| 12927 | } |
| 12928 | ++count; |
| 12929 | #ifdef SCSI_NCR_NVRAM_SUPPORT |
| 12930 | if (nvp) { |
| 12931 | ncr_get_nvram(devp, nvp); |
| 12932 | switch(nvp->type) { |
| 12933 | case SCSI_NCR_SYMBIOS_NVRAM(1): |
| 12934 | /* |
| 12935 | * Switch to the other nvram buffer, so that |
| 12936 | * nvram0 will contain the first Symbios |
| 12937 | * format NVRAM content with boot order. |
| 12938 | */ |
| 12939 | nvp = &nvram; |
| 12940 | msg = "with Symbios NVRAM"; |
| 12941 | break; |
| 12942 | case SCSI_NCR_TEKRAM_NVRAM(2): |
| 12943 | msg = "with Tekram NVRAM"; |
| 12944 | break; |
| 12945 | } |
| 12946 | } |
| 12947 | #endif |
| 12948 | #ifdef SCSI_NCR_PQS_PDS_SUPPORT |
| 12949 | if (devp->pqs_pds) |
| 12950 | msg = "(NCR PQS/PDS)"; |
| 12951 | #endif |
| 12952 | printk(KERN_INFO"<6>" NAME53C8XX"sym53c8xx" ": 53c%s detected %s\n", |
| 12953 | devp->chip.name, msg); |
| 12954 | } |
| 12955 | |
| 12956 | /* |
| 12957 | ** If we have found a SYMBIOS NVRAM, use first the NVRAM boot |
| 12958 | ** sequence as device boot order. |
| 12959 | ** check devices in the boot record against devices detected. |
| 12960 | ** attach devices if we find a match. boot table records that |
| 12961 | ** do not match any detected devices will be ignored. |
| 12962 | ** devices that do not match any boot table will not be attached |
| 12963 | ** here but will attempt to be attached during the device table |
| 12964 | ** rescan. |
| 12965 | */ |
| 12966 | #ifdef SCSI_NCR_NVRAM_SUPPORT |
| 12967 | if (!nvp || nvram0.type != SCSI_NCR_SYMBIOS_NVRAM(1)) |
| 12968 | goto next; |
| 12969 | for (i = 0; i < 4; i++) { |
| 12970 | Symbios_host *h = &nvram0.data.Symbios.host[i]; |
| 12971 | for (j = 0 ; j < count ; j++) { |
| 12972 | devp = &devtbl[j]; |
| 12973 | if (h->device_fn != devp->slot.device_fn || |
| 12974 | h->bus_nr != devp->slot.bus || |
| 12975 | h->device_id != devp->chip.device_id) |
| 12976 | continue; |
| 12977 | if (devp->attach_done) |
| 12978 | continue; |
| 12979 | if (h->flags & SYMBIOS_INIT_SCAN_AT_BOOT(1)) { |
| 12980 | ncr_get_nvram(devp, nvp); |
| 12981 | if (!ncr_attach (tpnt, attach_count, devp)) |
| 12982 | attach_count++; |
| 12983 | } |
| 12984 | else if (!(driver_setup.use_nvram & 0x80)) |
| 12985 | printk(KERN_INFO"<6>" NAME53C8XX"sym53c8xx" |
| 12986 | ": 53c%s state OFF thus not attached\n", |
| 12987 | devp->chip.name); |
| 12988 | else |
| 12989 | continue; |
| 12990 | |
| 12991 | devp->attach_done = 1; |
| 12992 | break; |
| 12993 | } |
| 12994 | } |
| 12995 | next: |
| 12996 | #endif |
| 12997 | |
| 12998 | /* |
| 12999 | ** Rescan device list to make sure all boards attached. |
| 13000 | ** Devices without boot records will not be attached yet |
| 13001 | ** so try to attach them here. |
| 13002 | */ |
| 13003 | for (i= 0; i < count; i++) { |
| 13004 | devp = &devtbl[i]; |
| 13005 | if (!devp->attach_done) { |
| 13006 | #ifdef SCSI_NCR_NVRAM_SUPPORT |
| 13007 | ncr_get_nvram(devp, nvp); |
| 13008 | #endif |
| 13009 | if (!ncr_attach (tpnt, attach_count, devp)) |
| 13010 | attach_count++; |
| 13011 | } |
| 13012 | } |
| 13013 | |
| 13014 | m_free(devtbl, PAGE_SIZE(1 << 12), "devtbl"); |
| 13015 | |
| 13016 | return attach_count; |
| 13017 | } |
| 13018 | |
| 13019 | /*=================================================================== |
| 13020 | ** Read and check the PCI configuration for any detected NCR |
| 13021 | ** boards and save data for attaching after all boards have |
| 13022 | ** been detected. |
| 13023 | **=================================================================== |
| 13024 | */ |
| 13025 | static int __init |
| 13026 | sym53c8xx_pci_init(Scsi_Host_Template *tpnt, pcidev_t pdev, ncr_device *device) |
| 13027 | { |
| 13028 | u_shortunsigned short vendor_id, device_id, command, status_reg; |
| 13029 | u_charunsigned char cache_line_size, latency_timer; |
| 13030 | u_charunsigned char suggested_cache_line_size = 0; |
| 13031 | u_charunsigned char pci_fix_up = driver_setup.pci_fix_up; |
| 13032 | u_charunsigned char revision; |
| 13033 | u_intunsigned int irq; |
| 13034 | u_longunsigned long base, base_2, io_port; |
| 13035 | int i; |
| 13036 | ncr_chip *chip; |
| 13037 | |
| 13038 | printk(KERN_INFO"<6>" NAME53C8XX"sym53c8xx" ": at PCI bus %d, device %d, function %d\n", |
| 13039 | PciBusNumber(pdev)((pdev)>>8), |
| 13040 | (int) (PciDeviceFn(pdev)((pdev)&0xff) & 0xf8) >> 3, |
| 13041 | (int) (PciDeviceFn(pdev)((pdev)&0xff) & 7)); |
| 13042 | |
| 13043 | #ifdef SCSI_NCR_DYNAMIC_DMA_MAPPING |
| 13044 | if (!pci_dma_supported(pdev, (dma_addr_t) (0xffffffffUL))) { |
| 13045 | printk(KERN_WARNING"<4>" NAME53C8XX"sym53c8xx" |
| 13046 | "32 BIT PCI BUS DMA ADDRESSING NOT SUPPORTED\n"); |
| 13047 | return -1; |
| 13048 | } |
| 13049 | #endif |
| 13050 | |
| 13051 | /* |
| 13052 | ** Read info from the PCI config space. |
| 13053 | ** pci_read_config_xxx() functions are assumed to be used for |
| 13054 | ** successfully detected PCI devices. |
| 13055 | */ |
| 13056 | vendor_id = PciVendorId(pdev); |
Value stored to 'vendor_id' is never read | |
| 13057 | device_id = PciDeviceId(pdev); |
| 13058 | irq = PciIrqLine(pdev); |
| 13059 | i = 0; |
| 13060 | i = pci_get_base_address(pdev, i, &io_port); |
| 13061 | i = pci_get_base_address(pdev, i, &base); |
| 13062 | (void) pci_get_base_address(pdev, i, &base_2); |
| 13063 | |
| 13064 | pci_read_config_word(pdev, PCI_COMMAND, &command)pcibios_read_config_word(((pdev)>>8), ((pdev)&0xff) , 0x04, &command); |
| 13065 | pci_read_config_byte(pdev, PCI_CLASS_REVISION, &revision)pcibios_read_config_byte(((pdev)>>8), ((pdev)&0xff) , 0x08, &revision); |
| 13066 | pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &cache_line_size)pcibios_read_config_byte(((pdev)>>8), ((pdev)&0xff) , 0x0c, &cache_line_size); |
| 13067 | pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &latency_timer)pcibios_read_config_byte(((pdev)>>8), ((pdev)&0xff) , 0x0d, &latency_timer); |
| 13068 | pci_read_config_word(pdev, PCI_STATUS, &status_reg)pcibios_read_config_word(((pdev)>>8), ((pdev)&0xff) , 0x06, &status_reg); |
| 13069 | |
| 13070 | #ifdef SCSI_NCR_PQS_PDS_SUPPORT |
| 13071 | /* |
| 13072 | ** Match the BUS number for PQS/PDS devices. |
| 13073 | ** Read the SCSI ID from a special register mapped |
| 13074 | ** into the configuration space of the individual |
| 13075 | ** 875s. This register is set up by the PQS bios |
| 13076 | */ |
| 13077 | for(i = 0; i < SCSI_NCR_MAX_PQS_BUS && pqs_bus[i] != -1; i++) { |
| 13078 | u_charunsigned char tmp; |
| 13079 | if (pqs_bus[i] == PciBusNumber(pdev)((pdev)>>8)) { |
| 13080 | pci_read_config_byte(pdev, 0x84, &tmp)pcibios_read_config_byte(((pdev)>>8), ((pdev)&0xff) , 0x84, &tmp); |
| 13081 | device->pqs_pds = 1; |
| 13082 | device->host_id = tmp; |
| 13083 | break; |
| 13084 | } |
| 13085 | } |
| 13086 | #endif /* SCSI_NCR_PQS_PDS_SUPPORT */ |
| 13087 | |
| 13088 | /* |
| 13089 | ** If user excludes this chip, donnot initialize it. |
| 13090 | */ |
| 13091 | for (i = 0 ; i < SCSI_NCR_MAX_EXCLUDES8 ; i++) { |
| 13092 | if (driver_setup.excludes[i] == |
| 13093 | (io_port & PCI_BASE_ADDRESS_IO_MASK(~0x03))) |
| 13094 | return -1; |
| 13095 | } |
| 13096 | /* |
| 13097 | ** Check if the chip is supported |
| 13098 | */ |
| 13099 | chip = 0; |
| 13100 | for (i = 0; i < sizeof(ncr_chip_table)/sizeof(ncr_chip_table[0]); i++) { |
| 13101 | if (device_id != ncr_chip_table[i].device_id) |
| 13102 | continue; |
| 13103 | if (revision > ncr_chip_table[i].revision_id) |
| 13104 | continue; |
| 13105 | if (!(ncr_chip_table[i].features & FE_LDSTR(1<<13))) |
| 13106 | break; |
| 13107 | chip = &device->chip; |
| 13108 | memcpy(chip, &ncr_chip_table[i], sizeof(*chip))(__builtin_constant_p(sizeof(*chip)) ? __constant_memcpy((chip ),(&ncr_chip_table[i]),(sizeof(*chip))) : __memcpy((chip) ,(&ncr_chip_table[i]),(sizeof(*chip)))); |
| 13109 | chip->revision_id = revision; |
| 13110 | break; |
| 13111 | } |
| 13112 | |
| 13113 | /* |
| 13114 | ** Ignore Symbios chips controlled by SISL RAID controller. |
| 13115 | ** This controller sets value 0x52414944 at RAM end - 16. |
| 13116 | */ |
| 13117 | #if defined(__i386__1) && !defined(SCSI_NCR_PCI_MEM_NOT_SUPPORTED) |
| 13118 | if (chip && (base_2 & PCI_BASE_ADDRESS_MEM_MASK(~0x0f))) { |
| 13119 | unsigned int ram_size, ram_val; |
| 13120 | u_longunsigned long ram_ptr; |
| 13121 | |
| 13122 | if (chip->features & FE_RAM8K(1<<16)) |
| 13123 | ram_size = 8192; |
| 13124 | else |
| 13125 | ram_size = 4096; |
| 13126 | |
| 13127 | ram_ptr = remap_pci_mem(base_2 & PCI_BASE_ADDRESS_MEM_MASK(~0x0f), |
| 13128 | ram_size); |
| 13129 | if (ram_ptr) { |
| 13130 | ram_val = readl_raw(ram_ptr + ram_size - 16)(*(volatile unsigned int *) (ram_ptr + ram_size - 16)); |
| 13131 | unmap_pci_mem(ram_ptr, ram_size); |
| 13132 | if (ram_val == 0x52414944) { |
| 13133 | printk(NAME53C8XX"sym53c8xx"": not initializing, " |
| 13134 | "driven by SISL RAID controller.\n"); |
| 13135 | return -1; |
| 13136 | } |
| 13137 | } |
| 13138 | } |
| 13139 | #endif /* i386 and PCI MEMORY accessible */ |
| 13140 | |
| 13141 | if (!chip) { |
| 13142 | printk(NAME53C8XX"sym53c8xx" ": not initializing, device not supported\n"); |
| 13143 | return -1; |
| 13144 | } |
| 13145 | |
| 13146 | #ifdef __powerpc__ |
| 13147 | /* |
| 13148 | ** Fix-up for power/pc. |
| 13149 | ** Should not be performed by the driver. |
| 13150 | */ |
| 13151 | if ((command & (PCI_COMMAND_IO0x1 | PCI_COMMAND_MEMORY0x2)) |
| 13152 | != (PCI_COMMAND_IO0x1 | PCI_COMMAND_MEMORY0x2)) { |
| 13153 | printk(NAME53C8XX"sym53c8xx" ": setting%s%s...\n", |
| 13154 | (command & PCI_COMMAND_IO0x1) ? "" : " PCI_COMMAND_IO", |
| 13155 | (command & PCI_COMMAND_MEMORY0x2) ? "" : " PCI_COMMAND_MEMORY"); |
| 13156 | command |= (PCI_COMMAND_IO0x1 | PCI_COMMAND_MEMORY0x2); |
| 13157 | pci_write_config_word(pdev, PCI_COMMAND, command)pcibios_write_config_word(((pdev)>>8), ((pdev)&0xff ), 0x04, command); |
| 13158 | } |
| 13159 | |
| 13160 | #if LINUX_VERSION_CODE131108 < LinuxVersionCode(2,2,0)(((2)<<16)+((2)<<8)+(0)) |
| 13161 | if ( is_prep ) { |
| 13162 | if (io_port >= 0x10000000) { |
| 13163 | printk(NAME53C8XX"sym53c8xx" ": reallocating io_port (Wacky IBM)"); |
| 13164 | io_port = (io_port & 0x00FFFFFF) | 0x01000000; |
| 13165 | pci_write_config_dword(pdev,pcibios_write_config_dword(((pdev)>>8), ((pdev)&0xff ), 0x10, io_port) |
| 13166 | PCI_BASE_ADDRESS_0, io_port)pcibios_write_config_dword(((pdev)>>8), ((pdev)&0xff ), 0x10, io_port); |
| 13167 | } |
| 13168 | if (base >= 0x10000000) { |
| 13169 | printk(NAME53C8XX"sym53c8xx" ": reallocating base (Wacky IBM)"); |
| 13170 | base = (base & 0x00FFFFFF) | 0x01000000; |
| 13171 | pci_write_config_dword(pdev,pcibios_write_config_dword(((pdev)>>8), ((pdev)&0xff ), 0x14, base) |
| 13172 | PCI_BASE_ADDRESS_1, base)pcibios_write_config_dword(((pdev)>>8), ((pdev)&0xff ), 0x14, base); |
| 13173 | } |
| 13174 | if (base_2 >= 0x10000000) { |
| 13175 | printk(NAME53C8XX"sym53c8xx" ": reallocating base2 (Wacky IBM)"); |
| 13176 | base_2 = (base_2 & 0x00FFFFFF) | 0x01000000; |
| 13177 | pci_write_config_dword(pdev,pcibios_write_config_dword(((pdev)>>8), ((pdev)&0xff ), 0x18, base_2) |
| 13178 | PCI_BASE_ADDRESS_2, base_2)pcibios_write_config_dword(((pdev)>>8), ((pdev)&0xff ), 0x18, base_2); |
| 13179 | } |
| 13180 | } |
| 13181 | #endif |
| 13182 | #endif /* __powerpc__ */ |
| 13183 | |
| 13184 | #if defined(__sparc__) && (LINUX_VERSION_CODE131108 < LinuxVersionCode(2,3,0)(((2)<<16)+((3)<<8)+(0))) |
| 13185 | /* |
| 13186 | ** Fix-ups for sparc. |
| 13187 | ** |
| 13188 | ** I wrote: Should not be performed by the driver, |
| 13189 | ** Guy wrote: but how can OBP know each and every PCI card, |
| 13190 | ** if they don't use Fcode? |
| 13191 | ** I replied: no need to know each and every PCI card, just |
| 13192 | ** be skilled enough to understand the PCI specs. |
| 13193 | */ |
| 13194 | |
| 13195 | /* |
| 13196 | ** PCI configuration is based on configuration registers being |
| 13197 | ** coherent with hardware and software resource identifications. |
| 13198 | ** This is fairly simple, but seems still too complex for Sparc. |
| 13199 | */ |
| 13200 | base = __pa(base); |
| 13201 | base_2 = __pa(base_2); |
| 13202 | |
| 13203 | if (!cache_line_size) |
| 13204 | suggested_cache_line_size = 16; |
| 13205 | |
| 13206 | driver_setup.pci_fix_up |= 0x7; |
| 13207 | |
| 13208 | #endif /* __sparc__ */ |
| 13209 | |
| 13210 | #if defined(__i386__1) && !defined(MODULE) |
| 13211 | if (!cache_line_size) { |
| 13212 | #if LINUX_VERSION_CODE131108 < LinuxVersionCode(2,1,75)(((2)<<16)+((1)<<8)+(75)) |
| 13213 | extern char x86; |
| 13214 | switch(x86) { |
| 13215 | #else |
| 13216 | switch(boot_cpu_data.x86) { |
| 13217 | #endif |
| 13218 | case 4: suggested_cache_line_size = 4; break; |
| 13219 | case 6: |
| 13220 | case 5: suggested_cache_line_size = 8; break; |
| 13221 | } |
| 13222 | } |
| 13223 | #endif /* __i386__ */ |
| 13224 | |
| 13225 | /* |
| 13226 | ** Check availability of IO space, memory space. |
| 13227 | ** Enable master capability if not yet. |
| 13228 | ** |
| 13229 | ** We shouldn't have to care about the IO region when |
| 13230 | ** we are using MMIO. But calling check_region() from |
| 13231 | ** both the ncr53c8xx and the sym53c8xx drivers prevents |
| 13232 | ** from attaching devices from the both drivers. |
| 13233 | ** If you have a better idea, let me know. |
| 13234 | */ |
| 13235 | /* #ifdef SCSI_NCR_IOMAPPED */ |
| 13236 | #if 1 |
| 13237 | if (!(command & PCI_COMMAND_IO0x1)) { |
| 13238 | printk(NAME53C8XX"sym53c8xx" ": I/O base address (0x%lx) disabled.\n", |
| 13239 | (long) io_port); |
| 13240 | io_port = 0; |
| 13241 | } |
| 13242 | #endif |
| 13243 | if (!(command & PCI_COMMAND_MEMORY0x2)) { |
| 13244 | printk(NAME53C8XX"sym53c8xx" ": PCI_COMMAND_MEMORY not set.\n"); |
| 13245 | base = 0; |
| 13246 | base_2 = 0; |
| 13247 | } |
| 13248 | io_port &= PCI_BASE_ADDRESS_IO_MASK(~0x03); |
| 13249 | base &= PCI_BASE_ADDRESS_MEM_MASK(~0x0f); |
| 13250 | base_2 &= PCI_BASE_ADDRESS_MEM_MASK(~0x0f); |
| 13251 | |
| 13252 | /* #ifdef SCSI_NCR_IOMAPPED */ |
| 13253 | #if 1 |
| 13254 | if (io_port && check_region (io_port, 128)) { |
| 13255 | printk(NAME53C8XX"sym53c8xx" ": IO region 0x%lx[0..127] is in use\n", |
| 13256 | (long) io_port); |
| 13257 | io_port = 0; |
| 13258 | } |
| 13259 | if (!io_port) |
| 13260 | return -1; |
| 13261 | #endif |
| 13262 | #ifndef SCSI_NCR_IOMAPPED |
| 13263 | if (!base) { |
| 13264 | printk(NAME53C8XX"sym53c8xx" ": MMIO base address disabled.\n"); |
| 13265 | return -1; |
| 13266 | } |
| 13267 | #endif |
| 13268 | |
| 13269 | /* |
| 13270 | ** Set MASTER capable and PARITY bit, if not yet. |
| 13271 | */ |
| 13272 | if ((command & (PCI_COMMAND_MASTER0x4 | PCI_COMMAND_PARITY0x40)) |
| 13273 | != (PCI_COMMAND_MASTER0x4 | PCI_COMMAND_PARITY0x40)) { |
| 13274 | printk(NAME53C8XX"sym53c8xx" ": setting%s%s...(fix-up)\n", |
| 13275 | (command & PCI_COMMAND_MASTER0x4) ? "" : " PCI_COMMAND_MASTER", |
| 13276 | (command & PCI_COMMAND_PARITY0x40) ? "" : " PCI_COMMAND_PARITY"); |
| 13277 | command |= (PCI_COMMAND_MASTER0x4 | PCI_COMMAND_PARITY0x40); |
| 13278 | pci_write_config_word(pdev, PCI_COMMAND, command)pcibios_write_config_word(((pdev)>>8), ((pdev)&0xff ), 0x04, command); |
| 13279 | } |
| 13280 | |
| 13281 | /* |
| 13282 | ** Fix some features according to driver setup. |
| 13283 | */ |
| 13284 | if (!(driver_setup.special_features & 1)) |
| 13285 | chip->features &= ~FE_SPECIAL_SET(((1<<6)|(1<<7)|(1<<8)|(1<<9))|(1<< 10)|(1<<11)|(1<<13)|(1<<12)|(1<<14)); |
| 13286 | else { |
| 13287 | if (driver_setup.special_features & 2) |
| 13288 | chip->features &= ~FE_WRIE(1<<8); |
| 13289 | if (driver_setup.special_features & 4) |
| 13290 | chip->features &= ~FE_NOPM(1<<19); |
| 13291 | } |
| 13292 | |
| 13293 | /* |
| 13294 | ** Work around for errant bit in 895A. The 66Mhz |
| 13295 | ** capable bit is set erroneously. Clear this bit. |
| 13296 | ** (Item 1 DEL 533) |
| 13297 | ** |
| 13298 | ** Make sure Config space and Features agree. |
| 13299 | ** |
| 13300 | ** Recall: writes are not normal to status register - |
| 13301 | ** write a 1 to clear and a 0 to leave unchanged. |
| 13302 | ** Can only reset bits. |
| 13303 | */ |
| 13304 | if (chip->features & FE_66MHZ(1<<23)) { |
| 13305 | if (!(status_reg & PCI_STATUS_66MHZ0x20)) |
| 13306 | chip->features &= ~FE_66MHZ(1<<23); |
| 13307 | } |
| 13308 | else { |
| 13309 | if (status_reg & PCI_STATUS_66MHZ0x20) { |
| 13310 | status_reg = PCI_STATUS_66MHZ0x20; |
| 13311 | pci_write_config_word(pdev, PCI_STATUS, status_reg)pcibios_write_config_word(((pdev)>>8), ((pdev)&0xff ), 0x06, status_reg); |
| 13312 | pci_read_config_word(pdev, PCI_STATUS, &status_reg)pcibios_read_config_word(((pdev)>>8), ((pdev)&0xff) , 0x06, &status_reg); |
| 13313 | } |
| 13314 | } |
| 13315 | |
| 13316 | if (driver_setup.ultra_scsi < 3 && (chip->features & FE_ULTRA3(1<<22))) { |
| 13317 | chip->features |= FE_ULTRA2(1<<3); |
| 13318 | chip->features &= ~FE_ULTRA3(1<<22); |
| 13319 | } |
| 13320 | if (driver_setup.ultra_scsi < 2 && (chip->features & FE_ULTRA2(1<<3))) { |
| 13321 | chip->features |= FE_ULTRA(1<<2); |
| 13322 | chip->features &= ~FE_ULTRA2(1<<3); |
| 13323 | } |
| 13324 | if (driver_setup.ultra_scsi < 1) |
| 13325 | chip->features &= ~FE_ULTRA(1<<2); |
| 13326 | |
| 13327 | if (!driver_setup.max_wide) |
| 13328 | chip->features &= ~FE_WIDE(1<<1); |
| 13329 | |
| 13330 | /* |
| 13331 | * C1010 Ultra3 support requires 16 bit data transfers. |
| 13332 | */ |
| 13333 | if (!driver_setup.max_wide && (chip->features & FE_ULTRA3(1<<22))) { |
| 13334 | chip->features |= FE_ULTRA2(1<<3); |
| 13335 | chip->features |= ~FE_ULTRA3(1<<22); |
| 13336 | } |
| 13337 | |
| 13338 | /* |
| 13339 | ** Some features are required to be enabled in order to |
| 13340 | ** work around some chip problems. :) ;) |
| 13341 | ** (ITEM 12 of a DEL about the 896 I haven't yet). |
| 13342 | ** We must ensure the chip will use WRITE AND INVALIDATE. |
| 13343 | ** The revision number limit is for now arbitrary. |
| 13344 | */ |
| 13345 | if (device_id == PCI_DEVICE_ID_NCR_53C8960x000b && revision <= 0x10) { |
| 13346 | chip->features |= (FE_WRIE(1<<8) | FE_CLSE(1<<7)); |
| 13347 | pci_fix_up |= 3; /* Force appropriate PCI fix-up */ |
| 13348 | } |
| 13349 | |
| 13350 | #ifdef SCSI_NCR_PCI_FIX_UP_SUPPORT |
| 13351 | /* |
| 13352 | ** Try to fix up PCI config according to wished features. |
| 13353 | */ |
| 13354 | if ((pci_fix_up & 1) && (chip->features & FE_CLSE(1<<7)) && |
| 13355 | !cache_line_size && suggested_cache_line_size) { |
| 13356 | cache_line_size = suggested_cache_line_size; |
| 13357 | pci_write_config_byte(pdev,pcibios_write_config_byte(((pdev)>>8), ((pdev)&0xff ), 0x0c, cache_line_size) |
| 13358 | PCI_CACHE_LINE_SIZE, cache_line_size)pcibios_write_config_byte(((pdev)>>8), ((pdev)&0xff ), 0x0c, cache_line_size); |
| 13359 | printk(NAME53C8XX"sym53c8xx" ": PCI_CACHE_LINE_SIZE set to %d (fix-up).\n", |
| 13360 | cache_line_size); |
| 13361 | } |
| 13362 | |
| 13363 | if ((pci_fix_up & 2) && cache_line_size && |
| 13364 | (chip->features & FE_WRIE(1<<8)) && !(command & PCI_COMMAND_INVALIDATE0x10)) { |
| 13365 | printk(NAME53C8XX"sym53c8xx"": setting PCI_COMMAND_INVALIDATE (fix-up)\n"); |
| 13366 | command |= PCI_COMMAND_INVALIDATE0x10; |
| 13367 | pci_write_config_word(pdev, PCI_COMMAND, command)pcibios_write_config_word(((pdev)>>8), ((pdev)&0xff ), 0x04, command); |
| 13368 | } |
| 13369 | |
| 13370 | /* |
| 13371 | ** Tune PCI LATENCY TIMER according to burst max length transfer. |
| 13372 | ** (latency timer >= burst length + 6, we add 10 to be quite sure) |
| 13373 | */ |
| 13374 | |
| 13375 | if (chip->burst_max && (latency_timer == 0 || (pci_fix_up & 4))) { |
| 13376 | ucharunsigned char lt = (1 << chip->burst_max) + 6 + 10; |
| 13377 | if (latency_timer < lt) { |
| 13378 | printk(NAME53C8XX"sym53c8xx" |
| 13379 | ": changing PCI_LATENCY_TIMER from %d to %d.\n", |
| 13380 | (int) latency_timer, (int) lt); |
| 13381 | latency_timer = lt; |
| 13382 | pci_write_config_byte(pdev,pcibios_write_config_byte(((pdev)>>8), ((pdev)&0xff ), 0x0d, latency_timer) |
| 13383 | PCI_LATENCY_TIMER, latency_timer)pcibios_write_config_byte(((pdev)>>8), ((pdev)&0xff ), 0x0d, latency_timer); |
| 13384 | } |
| 13385 | } |
| 13386 | |
| 13387 | #endif /* SCSI_NCR_PCI_FIX_UP_SUPPORT */ |
| 13388 | |
| 13389 | /* |
| 13390 | ** Initialise ncr_device structure with items required by ncr_attach. |
| 13391 | */ |
| 13392 | device->pdev = pdev; |
| 13393 | device->slot.bus = PciBusNumber(pdev)((pdev)>>8); |
| 13394 | device->slot.device_fn = PciDeviceFn(pdev)((pdev)&0xff); |
| 13395 | device->slot.base = base; |
| 13396 | device->slot.base_2 = base_2; |
| 13397 | device->slot.io_port = io_port; |
| 13398 | device->slot.irq = irq; |
| 13399 | device->attach_done = 0; |
| 13400 | |
| 13401 | return 0; |
| 13402 | } |
| 13403 | |
| 13404 | |
| 13405 | /*=================================================================== |
| 13406 | ** Detect and try to read SYMBIOS and TEKRAM NVRAM. |
| 13407 | ** |
| 13408 | ** Data can be used to order booting of boards. |
| 13409 | ** |
| 13410 | ** Data is saved in ncr_device structure if NVRAM found. This |
| 13411 | ** is then used to find drive boot order for ncr_attach(). |
| 13412 | ** |
| 13413 | ** NVRAM data is passed to Scsi_Host_Template later during |
| 13414 | ** ncr_attach() for any device set up. |
| 13415 | *=================================================================== |
| 13416 | */ |
| 13417 | #ifdef SCSI_NCR_NVRAM_SUPPORT |
| 13418 | static void __init ncr_get_nvram(ncr_device *devp, ncr_nvram *nvp) |
| 13419 | { |
| 13420 | devp->nvram = nvp; |
| 13421 | if (!nvp) |
| 13422 | return; |
| 13423 | /* |
| 13424 | ** Get access to chip IO registers |
| 13425 | */ |
| 13426 | #ifdef SCSI_NCR_IOMAPPED |
| 13427 | request_region(devp->slot.io_port, 128, NAME53C8XX"sym53c8xx"); |
| 13428 | devp->slot.base_io = devp->slot.io_port; |
| 13429 | #else |
| 13430 | devp->slot.reg = (struct ncr_reg *) remap_pci_mem(devp->slot.base, 128); |
| 13431 | if (!devp->slot.reg) |
| 13432 | return; |
| 13433 | #endif |
| 13434 | |
| 13435 | /* |
| 13436 | ** Try to read SYMBIOS nvram. |
| 13437 | ** Try to read TEKRAM nvram if Symbios nvram not found. |
| 13438 | */ |
| 13439 | if (!sym_read_Symbios_nvram(&devp->slot, &nvp->data.Symbios)) |
| 13440 | nvp->type = SCSI_NCR_SYMBIOS_NVRAM(1); |
| 13441 | else if (!sym_read_Tekram_nvram(&devp->slot, devp->chip.device_id, |
| 13442 | &nvp->data.Tekram)) |
| 13443 | nvp->type = SCSI_NCR_TEKRAM_NVRAM(2); |
| 13444 | else { |
| 13445 | nvp->type = 0; |
| 13446 | devp->nvram = 0; |
| 13447 | } |
| 13448 | |
| 13449 | /* |
| 13450 | ** Release access to chip IO registers |
| 13451 | */ |
| 13452 | #ifdef SCSI_NCR_IOMAPPED |
| 13453 | release_region(devp->slot.base_io, 128); |
| 13454 | #else |
| 13455 | unmap_pci_mem((u_longunsigned long) devp->slot.reg, 128ul); |
| 13456 | #endif |
| 13457 | |
| 13458 | } |
| 13459 | #endif /* SCSI_NCR_NVRAM_SUPPORT */ |
| 13460 | |
| 13461 | /* |
| 13462 | ** Linux select queue depths function |
| 13463 | */ |
| 13464 | |
| 13465 | #define DEF_DEPTH(driver_setup.default_tags) (driver_setup.default_tags) |
| 13466 | #define ALL_TARGETS-2 -2 |
| 13467 | #define NO_TARGET-1 -1 |
| 13468 | #define ALL_LUNS-2 -2 |
| 13469 | #define NO_LUN-1 -1 |
| 13470 | |
| 13471 | static int device_queue_depth(ncb_p np, int target, int lun) |
| 13472 | { |
| 13473 | int c, h, t, u, v; |
| 13474 | char *p = driver_setup.tag_ctrl; |
| 13475 | char *ep; |
| 13476 | |
| 13477 | h = -1; |
| 13478 | t = NO_TARGET-1; |
| 13479 | u = NO_LUN-1; |
| 13480 | while ((c = *p++) != 0) { |
| 13481 | v = simple_strtoul(p, &ep, 0); |
| 13482 | switch(c) { |
| 13483 | case '/': |
| 13484 | ++h; |
| 13485 | t = ALL_TARGETS-2; |
| 13486 | u = ALL_LUNS-2; |
| 13487 | break; |
| 13488 | case 't': |
| 13489 | if (t != target) |
| 13490 | t = (target == v) ? v : NO_TARGET-1; |
| 13491 | u = ALL_LUNS-2; |
| 13492 | break; |
| 13493 | case 'u': |
| 13494 | if (u != lun) |
| 13495 | u = (lun == v) ? v : NO_LUN-1; |
| 13496 | break; |
| 13497 | case 'q': |
| 13498 | if (h == np->unit && |
| 13499 | (t == ALL_TARGETS-2 || t == target) && |
| 13500 | (u == ALL_LUNS-2 || u == lun)) |
| 13501 | return v; |
| 13502 | break; |
| 13503 | case '-': |
| 13504 | t = ALL_TARGETS-2; |
| 13505 | u = ALL_LUNS-2; |
| 13506 | break; |
| 13507 | default: |
| 13508 | break; |
| 13509 | } |
| 13510 | p = ep; |
| 13511 | } |
| 13512 | return DEF_DEPTH(driver_setup.default_tags); |
| 13513 | } |
| 13514 | |
| 13515 | static void sym53c8xx_select_queue_depths(struct Scsi_Host *host, struct scsi_device *devlist) |
| 13516 | { |
| 13517 | struct scsi_device *device; |
| 13518 | |
| 13519 | for (device = devlist; device; device = device->next) { |
| 13520 | ncb_p np; |
| 13521 | tcb_p tp; |
| 13522 | lcb_p lp; |
| 13523 | int numtags; |
| 13524 | |
| 13525 | if (device->host != host) |
| 13526 | continue; |
| 13527 | |
| 13528 | np = ((struct host_data *) host->hostdata)->ncb; |
| 13529 | tp = &np->target[device->id]; |
| 13530 | lp = ncr_lp(np, tp, device->lun)(!device->lun) ? (tp)->l0p : (tp)->lmp ? (tp)->lmp [(device->lun)] : 0; |
| 13531 | |
| 13532 | /* |
| 13533 | ** Select queue depth from driver setup. |
| 13534 | ** Donnot use more than configured by user. |
| 13535 | ** Use at least 2. |
| 13536 | ** Donnot use more than our maximum. |
| 13537 | */ |
| 13538 | numtags = device_queue_depth(np, device->id, device->lun); |
| 13539 | if (numtags > tp->usrtags) |
| 13540 | numtags = tp->usrtags; |
| 13541 | if (!device->tagged_supported) |
| 13542 | numtags = 1; |
| 13543 | device->queue_depth = numtags; |
| 13544 | if (device->queue_depth < 2) |
| 13545 | device->queue_depth = 2; |
| 13546 | if (device->queue_depth > MAX_TAGS(8)) |
| 13547 | device->queue_depth = MAX_TAGS(8); |
| 13548 | |
| 13549 | /* |
| 13550 | ** Since the queue depth is not tunable under Linux, |
| 13551 | ** we need to know this value in order not to |
| 13552 | ** announce stupid things to user. |
| 13553 | */ |
| 13554 | if (lp) { |
| 13555 | lp->numtags = lp->maxtags = numtags; |
| 13556 | lp->scdev_depth = device->queue_depth; |
| 13557 | } |
| 13558 | ncr_setup_tags (np, device->id, device->lun); |
| 13559 | |
| 13560 | #ifdef DEBUG_SYM53C8XX |
| 13561 | printk("sym53c8xx_select_queue_depth: host=%d, id=%d, lun=%d, depth=%d\n", |
| 13562 | np->unit, device->id, device->lun, device->queue_depth); |
| 13563 | #endif |
| 13564 | } |
| 13565 | } |
| 13566 | |
| 13567 | /* |
| 13568 | ** Linux entry point for info() function |
| 13569 | */ |
| 13570 | const char *sym53c8xx_info (struct Scsi_Host *host) |
| 13571 | { |
| 13572 | return SCSI_NCR_DRIVER_NAME"sym53c8xx-1.7.1-20000726"; |
| 13573 | } |
| 13574 | |
| 13575 | /* |
| 13576 | ** Linux entry point of queuecommand() function |
| 13577 | */ |
| 13578 | |
| 13579 | int sym53c8xx_queue_command (Scsi_Cmnd *cmd, void (* done)(Scsi_Cmnd *)) |
| 13580 | { |
| 13581 | ncb_p np = ((struct host_data *) cmd->host->hostdata)->ncb; |
| 13582 | unsigned long flags; |
| 13583 | int sts; |
| 13584 | |
| 13585 | #ifdef DEBUG_SYM53C8XX |
| 13586 | printk("sym53c8xx_queue_command\n"); |
| 13587 | #endif |
| 13588 | |
| 13589 | cmd->scsi_done = done; |
| 13590 | cmd->host_scribble = NULL((void *) 0); |
| 13591 | cmd->SCp.ptr = NULL((void *) 0); |
| 13592 | cmd->SCp.buffer = NULL((void *) 0); |
| 13593 | #ifdef SCSI_NCR_DYNAMIC_DMA_MAPPING |
| 13594 | cmd->__data_mapped = 0; |
| 13595 | cmd->__data_mapping = 0; |
| 13596 | #endif |
| 13597 | |
| 13598 | NCR_LOCK_NCB(np, flags)do { __asm__ __volatile__("pushf ; pop %0" : "=r" (flags): :"memory" ); __asm__ __volatile__ ("cli": : :"memory"); } while (0); |
| 13599 | |
| 13600 | if ((sts = ncr_queue_command(np, cmd)) != DID_OK0x00) { |
| 13601 | SetScsiResult(cmd, sts, 0)cmd->result = (((sts) << 16) + ((0) & 0x7f)); |
| 13602 | #ifdef DEBUG_SYM53C8XX |
| 13603 | printk("sym53c8xx : command not queued - result=%d\n", sts); |
| 13604 | #endif |
| 13605 | } |
| 13606 | #ifdef DEBUG_SYM53C8XX |
| 13607 | else |
| 13608 | printk("sym53c8xx : command successfully queued\n"); |
| 13609 | #endif |
| 13610 | |
| 13611 | NCR_UNLOCK_NCB(np, flags)do { __asm__ __volatile__("push %0 ; popf": :"g" (flags):"memory" ); } while (0); |
| 13612 | |
| 13613 | if (sts != DID_OK0x00) { |
| 13614 | unmap_scsi_data(np, cmd)do {; } while (0); |
| 13615 | done(cmd); |
| 13616 | } |
| 13617 | |
| 13618 | return sts; |
| 13619 | } |
| 13620 | |
| 13621 | /* |
| 13622 | ** Linux entry point of the interrupt handler. |
| 13623 | ** Since linux versions > 1.3.70, we trust the kernel for |
| 13624 | ** passing the internal host descriptor as 'dev_id'. |
| 13625 | ** Otherwise, we scan the host list and call the interrupt |
| 13626 | ** routine for each host that uses this IRQ. |
| 13627 | */ |
| 13628 | |
| 13629 | static void sym53c8xx_intr(int irq, void *dev_id, struct pt_regs * regs) |
| 13630 | { |
| 13631 | unsigned long flags; |
| 13632 | ncb_p np = (ncb_p) dev_id; |
| 13633 | Scsi_Cmnd *done_list; |
| 13634 | |
| 13635 | #ifdef DEBUG_SYM53C8XX |
| 13636 | printk("sym53c8xx : interrupt received\n"); |
| 13637 | #endif |
| 13638 | |
| 13639 | if (DEBUG_FLAGSncr_debug & DEBUG_TINY(0x0080)) printk ("["); |
| 13640 | |
| 13641 | NCR_LOCK_NCB(np, flags)do { __asm__ __volatile__("pushf ; pop %0" : "=r" (flags): :"memory" ); __asm__ __volatile__ ("cli": : :"memory"); } while (0); |
| 13642 | ncr_exception(np); |
| 13643 | done_list = np->done_list; |
| 13644 | np->done_list = 0; |
| 13645 | NCR_UNLOCK_NCB(np, flags)do { __asm__ __volatile__("push %0 ; popf": :"g" (flags):"memory" ); } while (0); |
| 13646 | |
| 13647 | if (DEBUG_FLAGSncr_debug & DEBUG_TINY(0x0080)) printk ("]\n"); |
| 13648 | |
| 13649 | if (done_list) { |
| 13650 | NCR_LOCK_SCSI_DONE(np, flags)do {;} while (0); |
| 13651 | ncr_flush_done_cmds(done_list); |
| 13652 | NCR_UNLOCK_SCSI_DONE(np, flags)do {;} while (0); |
| 13653 | } |
| 13654 | } |
| 13655 | |
| 13656 | /* |
| 13657 | ** Linux entry point of the timer handler |
| 13658 | */ |
| 13659 | |
| 13660 | static void sym53c8xx_timeout(unsigned long npref) |
| 13661 | { |
| 13662 | ncb_p np = (ncb_p) npref; |
| 13663 | unsigned long flags; |
| 13664 | Scsi_Cmnd *done_list; |
| 13665 | |
| 13666 | NCR_LOCK_NCB(np, flags)do { __asm__ __volatile__("pushf ; pop %0" : "=r" (flags): :"memory" ); __asm__ __volatile__ ("cli": : :"memory"); } while (0); |
| 13667 | ncr_timeout((ncb_p) np); |
| 13668 | done_list = np->done_list; |
| 13669 | np->done_list = 0; |
| 13670 | NCR_UNLOCK_NCB(np, flags)do { __asm__ __volatile__("push %0 ; popf": :"g" (flags):"memory" ); } while (0); |
| 13671 | |
| 13672 | if (done_list) { |
| 13673 | NCR_LOCK_SCSI_DONE(np, flags)do {;} while (0); |
| 13674 | ncr_flush_done_cmds(done_list); |
| 13675 | NCR_UNLOCK_SCSI_DONE(np, flags)do {;} while (0); |
| 13676 | } |
| 13677 | } |
| 13678 | |
| 13679 | /* |
| 13680 | ** Linux entry point of reset() function |
| 13681 | */ |
| 13682 | |
| 13683 | #if defined SCSI_RESET_SYNCHRONOUS0x01 && defined SCSI_RESET_ASYNCHRONOUS0x02 |
| 13684 | int sym53c8xx_reset(Scsi_Cmnd *cmd, unsigned int reset_flags) |
| 13685 | #else |
| 13686 | int sym53c8xx_reset(Scsi_Cmnd *cmd) |
| 13687 | #endif |
| 13688 | { |
| 13689 | ncb_p np = ((struct host_data *) cmd->host->hostdata)->ncb; |
| 13690 | int sts; |
| 13691 | unsigned long flags; |
| 13692 | Scsi_Cmnd *done_list; |
| 13693 | |
| 13694 | #if defined SCSI_RESET_SYNCHRONOUS0x01 && defined SCSI_RESET_ASYNCHRONOUS0x02 |
| 13695 | printk("sym53c8xx_reset: pid=%lu reset_flags=%x serial_number=%ld serial_number_at_timeout=%ld\n", |
| 13696 | cmd->pid, reset_flags, cmd->serial_number, cmd->serial_number_at_timeout); |
| 13697 | #else |
| 13698 | printk("sym53c8xx_reset: command pid %lu\n", cmd->pid); |
| 13699 | #endif |
| 13700 | |
| 13701 | NCR_LOCK_NCB(np, flags)do { __asm__ __volatile__("pushf ; pop %0" : "=r" (flags): :"memory" ); __asm__ __volatile__ ("cli": : :"memory"); } while (0); |
| 13702 | |
| 13703 | /* |
| 13704 | * We have to just ignore reset requests in some situations. |
| 13705 | */ |
| 13706 | #if defined SCSI_RESET_NOT_RUNNING5 |
| 13707 | if (cmd->serial_number != cmd->serial_number_at_timeout) { |
| 13708 | sts = SCSI_RESET_NOT_RUNNING5; |
| 13709 | goto out; |
| 13710 | } |
| 13711 | #endif |
| 13712 | /* |
| 13713 | * If the mid-level driver told us reset is synchronous, it seems |
| 13714 | * that we must call the done() callback for the involved command, |
| 13715 | * even if this command was not queued to the low-level driver, |
| 13716 | * before returning SCSI_RESET_SUCCESS. |
| 13717 | */ |
| 13718 | |
| 13719 | #if defined SCSI_RESET_SYNCHRONOUS0x01 && defined SCSI_RESET_ASYNCHRONOUS0x02 |
| 13720 | sts = ncr_reset_bus(np, cmd, |
| 13721 | (reset_flags & (SCSI_RESET_SYNCHRONOUS0x01 | SCSI_RESET_ASYNCHRONOUS0x02)) == SCSI_RESET_SYNCHRONOUS0x01); |
| 13722 | #else |
| 13723 | sts = ncr_reset_bus(np, cmd, 0); |
| 13724 | #endif |
| 13725 | |
| 13726 | /* |
| 13727 | * Since we always reset the controller, when we return success, |
| 13728 | * we add this information to the return code. |
| 13729 | */ |
| 13730 | #if defined SCSI_RESET_HOST_RESET0x200 |
| 13731 | if (sts == SCSI_RESET_SUCCESS2) |
| 13732 | sts |= SCSI_RESET_HOST_RESET0x200; |
| 13733 | #endif |
| 13734 | |
| 13735 | out: |
| 13736 | done_list = np->done_list; |
| 13737 | np->done_list = 0; |
| 13738 | NCR_UNLOCK_NCB(np, flags)do { __asm__ __volatile__("push %0 ; popf": :"g" (flags):"memory" ); } while (0); |
| 13739 | |
| 13740 | ncr_flush_done_cmds(done_list); |
| 13741 | |
| 13742 | return sts; |
| 13743 | } |
| 13744 | |
| 13745 | /* |
| 13746 | ** Linux entry point of abort() function |
| 13747 | */ |
| 13748 | |
| 13749 | int sym53c8xx_abort(Scsi_Cmnd *cmd) |
| 13750 | { |
| 13751 | ncb_p np = ((struct host_data *) cmd->host->hostdata)->ncb; |
| 13752 | int sts; |
| 13753 | unsigned long flags; |
| 13754 | Scsi_Cmnd *done_list; |
| 13755 | |
| 13756 | #if defined SCSI_RESET_SYNCHRONOUS0x01 && defined SCSI_RESET_ASYNCHRONOUS0x02 |
| 13757 | printk("sym53c8xx_abort: pid=%lu serial_number=%ld serial_number_at_timeout=%ld\n", |
| 13758 | cmd->pid, cmd->serial_number, cmd->serial_number_at_timeout); |
| 13759 | #else |
| 13760 | printk("sym53c8xx_abort: command pid %lu\n", cmd->pid); |
| 13761 | #endif |
| 13762 | |
| 13763 | NCR_LOCK_NCB(np, flags)do { __asm__ __volatile__("pushf ; pop %0" : "=r" (flags): :"memory" ); __asm__ __volatile__ ("cli": : :"memory"); } while (0); |
| 13764 | |
| 13765 | #if defined SCSI_RESET_SYNCHRONOUS0x01 && defined SCSI_RESET_ASYNCHRONOUS0x02 |
| 13766 | /* |
| 13767 | * We have to just ignore abort requests in some situations. |
| 13768 | */ |
| 13769 | if (cmd->serial_number != cmd->serial_number_at_timeout) { |
| 13770 | sts = SCSI_ABORT_NOT_RUNNING4; |
| 13771 | goto out; |
| 13772 | } |
| 13773 | #endif |
| 13774 | |
| 13775 | sts = ncr_abort_command(np, cmd); |
| 13776 | out: |
| 13777 | done_list = np->done_list; |
| 13778 | np->done_list = 0; |
| 13779 | NCR_UNLOCK_NCB(np, flags)do { __asm__ __volatile__("push %0 ; popf": :"g" (flags):"memory" ); } while (0); |
| 13780 | |
| 13781 | ncr_flush_done_cmds(done_list); |
| 13782 | |
| 13783 | return sts; |
| 13784 | } |
| 13785 | |
| 13786 | |
| 13787 | #ifdef MODULE |
| 13788 | int sym53c8xx_release(struct Scsi_Host *host) |
| 13789 | { |
| 13790 | #ifdef DEBUG_SYM53C8XX |
| 13791 | printk("sym53c8xx : release\n"); |
| 13792 | #endif |
| 13793 | ncr_detach(((struct host_data *) host->hostdata)->ncb); |
| 13794 | |
| 13795 | return 1; |
| 13796 | } |
| 13797 | #endif |
| 13798 | |
| 13799 | |
| 13800 | /* |
| 13801 | ** Scsi command waiting list management. |
| 13802 | ** |
| 13803 | ** It may happen that we cannot insert a scsi command into the start queue, |
| 13804 | ** in the following circumstances. |
| 13805 | ** Too few preallocated ccb(s), |
| 13806 | ** maxtags < cmd_per_lun of the Linux host control block, |
| 13807 | ** etc... |
| 13808 | ** Such scsi commands are inserted into a waiting list. |
| 13809 | ** When a scsi command complete, we try to requeue the commands of the |
| 13810 | ** waiting list. |
| 13811 | */ |
| 13812 | |
| 13813 | #define next_wcmd host_scribble |
| 13814 | |
| 13815 | static void insert_into_waiting_list(ncb_p np, Scsi_Cmnd *cmd) |
| 13816 | { |
| 13817 | Scsi_Cmnd *wcmd; |
| 13818 | |
| 13819 | #ifdef DEBUG_WAITING_LIST |
| 13820 | printk("%s: cmd %lx inserted into waiting list\n", ncr_name(np), (u_longunsigned long) cmd); |
| 13821 | #endif |
| 13822 | cmd->next_wcmd = 0; |
| 13823 | if (!(wcmd = np->waiting_list)) np->waiting_list = cmd; |
| 13824 | else { |
| 13825 | while ((wcmd->next_wcmd) != 0) |
| 13826 | wcmd = (Scsi_Cmnd *) wcmd->next_wcmd; |
| 13827 | wcmd->next_wcmd = (char *) cmd; |
| 13828 | } |
| 13829 | } |
| 13830 | |
| 13831 | static Scsi_Cmnd *retrieve_from_waiting_list(int to_remove, ncb_p np, Scsi_Cmnd *cmd) |
| 13832 | { |
| 13833 | Scsi_Cmnd **pcmd = &np->waiting_list; |
| 13834 | |
| 13835 | while (*pcmd) { |
| 13836 | if (cmd == *pcmd) { |
| 13837 | if (to_remove) { |
| 13838 | *pcmd = (Scsi_Cmnd *) cmd->next_wcmd; |
| 13839 | cmd->next_wcmd = 0; |
| 13840 | } |
| 13841 | #ifdef DEBUG_WAITING_LIST |
| 13842 | printk("%s: cmd %lx retrieved from waiting list\n", ncr_name(np), (u_longunsigned long) cmd); |
| 13843 | #endif |
| 13844 | return cmd; |
| 13845 | } |
| 13846 | pcmd = (Scsi_Cmnd **) &(*pcmd)->next_wcmd; |
| 13847 | } |
| 13848 | return 0; |
| 13849 | } |
| 13850 | |
| 13851 | static void process_waiting_list(ncb_p np, int sts) |
| 13852 | { |
| 13853 | Scsi_Cmnd *waiting_list, *wcmd; |
| 13854 | |
| 13855 | waiting_list = np->waiting_list; |
| 13856 | np->waiting_list = 0; |
| 13857 | |
| 13858 | #ifdef DEBUG_WAITING_LIST |
| 13859 | if (waiting_list) printk("%s: waiting_list=%lx processing sts=%d\n", ncr_name(np), (u_longunsigned long) waiting_list, sts); |
| 13860 | #endif |
| 13861 | while ((wcmd = waiting_list) != 0) { |
| 13862 | waiting_list = (Scsi_Cmnd *) wcmd->next_wcmd; |
| 13863 | wcmd->next_wcmd = 0; |
| 13864 | if (sts == DID_OK0x00) { |
| 13865 | #ifdef DEBUG_WAITING_LIST |
| 13866 | printk("%s: cmd %lx trying to requeue\n", ncr_name(np), (u_longunsigned long) wcmd); |
| 13867 | #endif |
| 13868 | sts = ncr_queue_command(np, wcmd); |
| 13869 | } |
| 13870 | if (sts != DID_OK0x00) { |
| 13871 | #ifdef DEBUG_WAITING_LIST |
| 13872 | printk("%s: cmd %lx done forced sts=%d\n", ncr_name(np), (u_longunsigned long) wcmd, sts); |
| 13873 | #endif |
| 13874 | SetScsiResult(wcmd, sts, 0)wcmd->result = (((sts) << 16) + ((0) & 0x7f)); |
| 13875 | ncr_queue_done_cmd(np, wcmd); |
| 13876 | } |
| 13877 | } |
| 13878 | } |
| 13879 | |
| 13880 | #undef next_wcmd |
| 13881 | |
| 13882 | #ifdef SCSI_NCR_PROC_INFO_SUPPORT |
| 13883 | |
| 13884 | /*========================================================================= |
| 13885 | ** Proc file system stuff |
| 13886 | ** |
| 13887 | ** A read operation returns adapter information. |
| 13888 | ** A write operation is a control command. |
| 13889 | ** The string is parsed in the driver code and the command is passed |
| 13890 | ** to the ncr_usercmd() function. |
| 13891 | **========================================================================= |
| 13892 | */ |
| 13893 | |
| 13894 | #ifdef SCSI_NCR_USER_COMMAND_SUPPORT |
| 13895 | |
| 13896 | #define is_digit(c) ((c) >= '0' && (c) <= '9') |
| 13897 | #define digit_to_bin(c) ((c) - '0') |
| 13898 | #define is_space(c) ((c) == ' ' || (c) == '\t') |
| 13899 | |
| 13900 | static int skip_spaces(char *ptr, int len) |
| 13901 | { |
| 13902 | int cnt, c; |
| 13903 | |
| 13904 | for (cnt = len; cnt > 0 && (c = *ptr++) && is_space(c); cnt--); |
| 13905 | |
| 13906 | return (len - cnt); |
| 13907 | } |
| 13908 | |
| 13909 | static int get_int_arg(char *ptr, int len, u_longunsigned long *pv) |
| 13910 | { |
| 13911 | int cnt, c; |
| 13912 | u_longunsigned long v; |
| 13913 | |
| 13914 | for (v = 0, cnt = len; cnt > 0 && (c = *ptr++) && is_digit(c); cnt--) { |
| 13915 | v = (v * 10) + digit_to_bin(c); |
| 13916 | } |
| 13917 | |
| 13918 | if (pv) |
| 13919 | *pv = v; |
| 13920 | |
| 13921 | return (len - cnt); |
| 13922 | } |
| 13923 | |
| 13924 | static int is_keyword(char *ptr, int len, char *verb) |
| 13925 | { |
| 13926 | int verb_len = strlen(verb); |
| 13927 | |
| 13928 | if (len >= strlen(verb) && !memcmp__builtin_memcmp(verb, ptr, verb_len)) |
| 13929 | return verb_len; |
| 13930 | else |
| 13931 | return 0; |
| 13932 | |
| 13933 | } |
| 13934 | |
| 13935 | #define SKIP_SPACES(min_spaces) \ |
| 13936 | if ((arg_len = skip_spaces(ptr, len)) < (min_spaces)) \ |
| 13937 | return -EINVAL22; \ |
| 13938 | ptr += arg_len; len -= arg_len; |
| 13939 | |
| 13940 | #define GET_INT_ARG(v) \ |
| 13941 | if (!(arg_len = get_int_arg(ptr, len, &(v)))) \ |
| 13942 | return -EINVAL22; \ |
| 13943 | ptr += arg_len; len -= arg_len; |
| 13944 | |
| 13945 | |
| 13946 | /* |
| 13947 | ** Parse a control command |
| 13948 | */ |
| 13949 | |
| 13950 | static int ncr_user_command(ncb_p np, char *buffer, int length) |
| 13951 | { |
| 13952 | char *ptr = buffer; |
| 13953 | int len = length; |
| 13954 | struct usrcmd *uc = &np->user; |
| 13955 | int arg_len; |
| 13956 | u_longunsigned long target; |
| 13957 | |
| 13958 | bzero(uc, sizeof(*uc))(__builtin_constant_p(0) ? (__builtin_constant_p(((sizeof(*uc )))) ? __constant_c_and_count_memset((((uc))),((0x01010101UL* (unsigned char)(0))),(((sizeof(*uc))))) : __constant_c_memset ((((uc))),((0x01010101UL*(unsigned char)(0))),(((sizeof(*uc)) )))) : (__builtin_constant_p(((sizeof(*uc)))) ? __memset_generic (((((uc)))),(((0))),((((sizeof(*uc)))))) : __memset_generic(( ((uc))),((0)),(((sizeof(*uc))))))); |
| 13959 | |
| 13960 | if (len > 0 && ptr[len-1] == '\n') |
| 13961 | --len; |
| 13962 | |
| 13963 | if ((arg_len = is_keyword(ptr, len, "setsync")) != 0) |
| 13964 | uc->cmd = UC_SETSYNC10; |
| 13965 | else if ((arg_len = is_keyword(ptr, len, "settags")) != 0) |
| 13966 | uc->cmd = UC_SETTAGS11; |
| 13967 | else if ((arg_len = is_keyword(ptr, len, "setorder")) != 0) |
| 13968 | uc->cmd = UC_SETORDER13; |
| 13969 | else if ((arg_len = is_keyword(ptr, len, "setverbose")) != 0) |
| 13970 | uc->cmd = UC_SETVERBOSE17; |
| 13971 | else if ((arg_len = is_keyword(ptr, len, "setwide")) != 0) |
| 13972 | uc->cmd = UC_SETWIDE14; |
| 13973 | else if ((arg_len = is_keyword(ptr, len, "setdebug")) != 0) |
| 13974 | uc->cmd = UC_SETDEBUG12; |
| 13975 | else if ((arg_len = is_keyword(ptr, len, "setflag")) != 0) |
| 13976 | uc->cmd = UC_SETFLAG15; |
| 13977 | else if ((arg_len = is_keyword(ptr, len, "resetdev")) != 0) |
| 13978 | uc->cmd = UC_RESETDEV18; |
| 13979 | else if ((arg_len = is_keyword(ptr, len, "cleardev")) != 0) |
| 13980 | uc->cmd = UC_CLEARDEV19; |
| 13981 | else |
| 13982 | arg_len = 0; |
| 13983 | |
| 13984 | #ifdef DEBUG_PROC_INFO |
| 13985 | printk("ncr_user_command: arg_len=%d, cmd=%ld\n", arg_len, uc->cmd); |
| 13986 | #endif |
| 13987 | |
| 13988 | if (!arg_len) |
| 13989 | return -EINVAL22; |
| 13990 | ptr += arg_len; len -= arg_len; |
| 13991 | |
| 13992 | switch(uc->cmd) { |
| 13993 | case UC_SETSYNC10: |
| 13994 | case UC_SETTAGS11: |
| 13995 | case UC_SETWIDE14: |
| 13996 | case UC_SETFLAG15: |
| 13997 | case UC_RESETDEV18: |
| 13998 | case UC_CLEARDEV19: |
| 13999 | SKIP_SPACES(1); |
| 14000 | if ((arg_len = is_keyword(ptr, len, "all")) != 0) { |
| 14001 | ptr += arg_len; len -= arg_len; |
| 14002 | uc->target = ~0; |
| 14003 | } else { |
| 14004 | GET_INT_ARG(target); |
| 14005 | uc->target = (1<<target); |
| 14006 | #ifdef DEBUG_PROC_INFO |
| 14007 | printk("ncr_user_command: target=%ld\n", target); |
| 14008 | #endif |
| 14009 | } |
| 14010 | break; |
| 14011 | } |
| 14012 | |
| 14013 | switch(uc->cmd) { |
| 14014 | case UC_SETVERBOSE17: |
| 14015 | case UC_SETSYNC10: |
| 14016 | case UC_SETTAGS11: |
| 14017 | case UC_SETWIDE14: |
| 14018 | SKIP_SPACES(1); |
| 14019 | GET_INT_ARG(uc->data); |
| 14020 | #ifdef DEBUG_PROC_INFO |
| 14021 | printk("ncr_user_command: data=%ld\n", uc->data); |
| 14022 | #endif |
| 14023 | break; |
| 14024 | case UC_SETORDER13: |
| 14025 | SKIP_SPACES(1); |
| 14026 | if ((arg_len = is_keyword(ptr, len, "simple"))) |
| 14027 | uc->data = M_SIMPLE_TAG(0x20); |
| 14028 | else if ((arg_len = is_keyword(ptr, len, "ordered"))) |
| 14029 | uc->data = M_ORDERED_TAG(0x22); |
| 14030 | else if ((arg_len = is_keyword(ptr, len, "default"))) |
| 14031 | uc->data = 0; |
| 14032 | else |
| 14033 | return -EINVAL22; |
| 14034 | break; |
| 14035 | case UC_SETDEBUG12: |
| 14036 | while (len > 0) { |
| 14037 | SKIP_SPACES(1); |
| 14038 | if ((arg_len = is_keyword(ptr, len, "alloc"))) |
| 14039 | uc->data |= DEBUG_ALLOC(0x0001); |
| 14040 | else if ((arg_len = is_keyword(ptr, len, "phase"))) |
| 14041 | uc->data |= DEBUG_PHASE(0x0002); |
| 14042 | else if ((arg_len = is_keyword(ptr, len, "queue"))) |
| 14043 | uc->data |= DEBUG_QUEUE(0x0008); |
| 14044 | else if ((arg_len = is_keyword(ptr, len, "result"))) |
| 14045 | uc->data |= DEBUG_RESULT(0x0010); |
| 14046 | else if ((arg_len = is_keyword(ptr, len, "pointer"))) |
| 14047 | uc->data |= DEBUG_POINTER(0x0020); |
| 14048 | else if ((arg_len = is_keyword(ptr, len, "script"))) |
| 14049 | uc->data |= DEBUG_SCRIPT(0x0040); |
| 14050 | else if ((arg_len = is_keyword(ptr, len, "tiny"))) |
| 14051 | uc->data |= DEBUG_TINY(0x0080); |
| 14052 | else if ((arg_len = is_keyword(ptr, len, "timing"))) |
| 14053 | uc->data |= DEBUG_TIMING(0x0100); |
| 14054 | else if ((arg_len = is_keyword(ptr, len, "nego"))) |
| 14055 | uc->data |= DEBUG_NEGO(0x0200); |
| 14056 | else if ((arg_len = is_keyword(ptr, len, "tags"))) |
| 14057 | uc->data |= DEBUG_TAGS(0x0400); |
| 14058 | else |
| 14059 | return -EINVAL22; |
| 14060 | ptr += arg_len; len -= arg_len; |
| 14061 | } |
| 14062 | #ifdef DEBUG_PROC_INFO |
| 14063 | printk("ncr_user_command: data=%ld\n", uc->data); |
| 14064 | #endif |
| 14065 | break; |
| 14066 | case UC_SETFLAG15: |
| 14067 | while (len > 0) { |
| 14068 | SKIP_SPACES(1); |
| 14069 | if ((arg_len = is_keyword(ptr, len, "trace"))) |
| 14070 | uc->data |= UF_TRACE(0x01); |
| 14071 | else if ((arg_len = is_keyword(ptr, len, "no_disc"))) |
| 14072 | uc->data |= UF_NODISC(0x02); |
| 14073 | else |
| 14074 | return -EINVAL22; |
| 14075 | ptr += arg_len; len -= arg_len; |
| 14076 | } |
| 14077 | break; |
| 14078 | default: |
| 14079 | break; |
| 14080 | } |
| 14081 | |
| 14082 | if (len) |
| 14083 | return -EINVAL22; |
| 14084 | else { |
| 14085 | long flags; |
| 14086 | |
| 14087 | NCR_LOCK_NCB(np, flags)do { __asm__ __volatile__("pushf ; pop %0" : "=r" (flags): :"memory" ); __asm__ __volatile__ ("cli": : :"memory"); } while (0); |
| 14088 | ncr_usercmd (np); |
| 14089 | NCR_UNLOCK_NCB(np, flags)do { __asm__ __volatile__("push %0 ; popf": :"g" (flags):"memory" ); } while (0); |
| 14090 | } |
| 14091 | return length; |
| 14092 | } |
| 14093 | |
| 14094 | #endif /* SCSI_NCR_USER_COMMAND_SUPPORT */ |
| 14095 | |
| 14096 | #ifdef SCSI_NCR_USER_INFO_SUPPORT |
| 14097 | |
| 14098 | struct info_str |
| 14099 | { |
| 14100 | char *buffer; |
| 14101 | int length; |
| 14102 | int offset; |
| 14103 | int pos; |
| 14104 | }; |
| 14105 | |
| 14106 | static void copy_mem_info(struct info_str *info, char *data, int len) |
| 14107 | { |
| 14108 | if (info->pos + len > info->length) |
| 14109 | len = info->length - info->pos; |
| 14110 | |
| 14111 | if (info->pos + len < info->offset) { |
| 14112 | info->pos += len; |
| 14113 | return; |
| 14114 | } |
| 14115 | if (info->pos < info->offset) { |
| 14116 | data += (info->offset - info->pos); |
| 14117 | len -= (info->offset - info->pos); |
| 14118 | } |
| 14119 | |
| 14120 | if (len > 0) { |
| 14121 | memcpy(info->buffer + info->pos, data, len)(__builtin_constant_p(len) ? __constant_memcpy((info->buffer + info->pos),(data),(len)) : __memcpy((info->buffer + info ->pos),(data),(len))); |
| 14122 | info->pos += len; |
| 14123 | } |
| 14124 | } |
| 14125 | |
| 14126 | static int copy_info(struct info_str *info, char *fmt, ...) |
| 14127 | { |
| 14128 | va_list args; |
| 14129 | char buf[81]; |
| 14130 | int len; |
| 14131 | |
| 14132 | va_start(args, fmt)__builtin_va_start(args,fmt); |
| 14133 | len = vsprintflinux_vsprintf(buf, fmt, args); |
| 14134 | va_end(args)__builtin_va_end(args); |
| 14135 | |
| 14136 | copy_mem_info(info, buf, len); |
| 14137 | return len; |
| 14138 | } |
| 14139 | |
| 14140 | /* |
| 14141 | ** Copy formatted information into the input buffer. |
| 14142 | */ |
| 14143 | |
| 14144 | static int ncr_host_info(ncb_p np, char *ptr, off_t offset, int len) |
| 14145 | { |
| 14146 | struct info_str info; |
| 14147 | #ifdef CONFIG_ALL_PPC |
| 14148 | struct device_node* of_node; |
| 14149 | #endif |
| 14150 | |
| 14151 | info.buffer = ptr; |
| 14152 | info.length = len; |
| 14153 | info.offset = offset; |
| 14154 | info.pos = 0; |
| 14155 | |
| 14156 | copy_info(&info, "General information:\n"); |
| 14157 | copy_info(&info, " Chip " NAME53C"sym53c" "%s, device id 0x%x, " |
| 14158 | "revision id 0x%x\n", |
| 14159 | np->chip_name, np->device_id, np->revision_id); |
| 14160 | copy_info(&info, " On PCI bus %d, device %d, function %d, " |
| 14161 | #ifdef __sparc__ |
| 14162 | "IRQ %s\n", |
| 14163 | #else |
| 14164 | "IRQ %d\n", |
| 14165 | #endif |
| 14166 | np->bus, (np->device_fn & 0xf8) >> 3, np->device_fn & 7, |
| 14167 | #ifdef __sparc__ |
| 14168 | __irq_itoa(np->irq)); |
| 14169 | #else |
| 14170 | (int) np->irq); |
| 14171 | #endif |
| 14172 | #ifdef CONFIG_ALL_PPC |
| 14173 | of_node = find_pci_device_OFnode(np->bus, np->device_fn); |
| 14174 | if (of_node && of_node->full_name) |
| 14175 | copy_info(&info, "PPC OpenFirmware path : %s\n", of_node->full_name); |
| 14176 | #endif |
| 14177 | copy_info(&info, " Synchronous period factor %d, " |
| 14178 | "max commands per lun %d\n", |
| 14179 | (int) np->minsync, MAX_TAGS(8)); |
| 14180 | |
| 14181 | if (driver_setup.debug || driver_setup.verbose > 1) { |
| 14182 | copy_info(&info, " Debug flags 0x%x, verbosity level %d\n", |
| 14183 | driver_setup.debug, driver_setup.verbose); |
| 14184 | } |
| 14185 | |
| 14186 | return info.pos > info.offset? info.pos - info.offset : 0; |
| 14187 | } |
| 14188 | |
| 14189 | #endif /* SCSI_NCR_USER_INFO_SUPPORT */ |
| 14190 | |
| 14191 | /* |
| 14192 | ** Entry point of the scsi proc fs of the driver. |
| 14193 | ** - func = 0 means read (returns adapter infos) |
| 14194 | ** - func = 1 means write (parse user control command) |
| 14195 | */ |
| 14196 | |
| 14197 | static int sym53c8xx_proc_info(char *buffer, char **start, off_t offset, |
| 14198 | int length, int hostno, int func) |
| 14199 | { |
| 14200 | struct Scsi_Host *host; |
| 14201 | struct host_data *host_data; |
| 14202 | ncb_p ncb = 0; |
| 14203 | int retv; |
| 14204 | |
| 14205 | #ifdef DEBUG_PROC_INFO |
| 14206 | printk("sym53c8xx_proc_info: hostno=%d, func=%d\n", hostno, func); |
| 14207 | #endif |
| 14208 | |
| 14209 | for (host = first_host; host; host = host->next) { |
| 14210 | if (host->hostt != first_host->hostt) |
| 14211 | continue; |
| 14212 | if (host->host_no == hostno) { |
| 14213 | host_data = (struct host_data *) host->hostdata; |
| 14214 | ncb = host_data->ncb; |
| 14215 | break; |
| 14216 | } |
| 14217 | } |
| 14218 | |
| 14219 | if (!ncb) |
| 14220 | return -EINVAL22; |
| 14221 | |
| 14222 | if (func) { |
| 14223 | #ifdef SCSI_NCR_USER_COMMAND_SUPPORT |
| 14224 | retv = ncr_user_command(ncb, buffer, length); |
| 14225 | #else |
| 14226 | retv = -EINVAL22; |
| 14227 | #endif |
| 14228 | } |
| 14229 | else { |
| 14230 | if (start) |
| 14231 | *start = buffer; |
| 14232 | #ifdef SCSI_NCR_USER_INFO_SUPPORT |
| 14233 | retv = ncr_host_info(ncb, buffer, offset, length); |
| 14234 | #else |
| 14235 | retv = -EINVAL22; |
| 14236 | #endif |
| 14237 | } |
| 14238 | |
| 14239 | return retv; |
| 14240 | } |
| 14241 | |
| 14242 | |
| 14243 | /*========================================================================= |
| 14244 | ** End of proc file system stuff |
| 14245 | **========================================================================= |
| 14246 | */ |
| 14247 | #endif |
| 14248 | |
| 14249 | |
| 14250 | #ifdef SCSI_NCR_NVRAM_SUPPORT |
| 14251 | |
| 14252 | /* |
| 14253 | * 24C16 EEPROM reading. |
| 14254 | * |
| 14255 | * GPOI0 - data in/data out |
| 14256 | * GPIO1 - clock |
| 14257 | * Symbios NVRAM wiring now also used by Tekram. |
| 14258 | */ |
| 14259 | |
| 14260 | #define SET_BIT 0 |
| 14261 | #define CLR_BIT 1 |
| 14262 | #define SET_CLK 2 |
| 14263 | #define CLR_CLK 3 |
| 14264 | |
| 14265 | /* |
| 14266 | * Set/clear data/clock bit in GPIO0 |
| 14267 | */ |
| 14268 | static void __init |
| 14269 | S24C16_set_bit(ncr_slot *np, u_charunsigned char write_bit, u_charunsigned char *gpreg, int bit_mode) |
| 14270 | { |
| 14271 | UDELAY (5); |
| 14272 | switch (bit_mode){ |
| 14273 | case SET_BIT: |
| 14274 | *gpreg |= write_bit; |
| 14275 | break; |
| 14276 | case CLR_BIT: |
| 14277 | *gpreg &= 0xfe; |
| 14278 | break; |
| 14279 | case SET_CLK: |
| 14280 | *gpreg |= 0x02; |
| 14281 | break; |
| 14282 | case CLR_CLK: |
| 14283 | *gpreg &= 0xfd; |
| 14284 | break; |
| 14285 | |
| 14286 | } |
| 14287 | OUTB (nc_gpreg, *gpreg)((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_gpreg))))) = (((*gpreg)) )); |
| 14288 | UDELAY (5); |
| 14289 | } |
| 14290 | |
| 14291 | /* |
| 14292 | * Send START condition to NVRAM to wake it up. |
| 14293 | */ |
| 14294 | static void __init S24C16_start(ncr_slot *np, u_charunsigned char *gpreg) |
| 14295 | { |
| 14296 | S24C16_set_bit(np, 1, gpreg, SET_BIT); |
| 14297 | S24C16_set_bit(np, 0, gpreg, SET_CLK); |
| 14298 | S24C16_set_bit(np, 0, gpreg, CLR_BIT); |
| 14299 | S24C16_set_bit(np, 0, gpreg, CLR_CLK); |
| 14300 | } |
| 14301 | |
| 14302 | /* |
| 14303 | * Send STOP condition to NVRAM - puts NVRAM to sleep... ZZzzzz!! |
| 14304 | */ |
| 14305 | static void __init S24C16_stop(ncr_slot *np, u_charunsigned char *gpreg) |
| 14306 | { |
| 14307 | S24C16_set_bit(np, 0, gpreg, SET_CLK); |
| 14308 | S24C16_set_bit(np, 1, gpreg, SET_BIT); |
| 14309 | } |
| 14310 | |
| 14311 | /* |
| 14312 | * Read or write a bit to the NVRAM, |
| 14313 | * read if GPIO0 input else write if GPIO0 output |
| 14314 | */ |
| 14315 | static void __init |
| 14316 | S24C16_do_bit(ncr_slot *np, u_charunsigned char *read_bit, u_charunsigned char write_bit, u_charunsigned char *gpreg) |
| 14317 | { |
| 14318 | S24C16_set_bit(np, write_bit, gpreg, SET_BIT); |
| 14319 | S24C16_set_bit(np, 0, gpreg, SET_CLK); |
| 14320 | if (read_bit) |
| 14321 | *read_bit = INB (nc_gpreg)(*(volatile unsigned char *) ((char *)np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_gpreg))))); |
| 14322 | S24C16_set_bit(np, 0, gpreg, CLR_CLK); |
| 14323 | S24C16_set_bit(np, 0, gpreg, CLR_BIT); |
| 14324 | } |
| 14325 | |
| 14326 | /* |
| 14327 | * Output an ACK to the NVRAM after reading, |
| 14328 | * change GPIO0 to output and when done back to an input |
| 14329 | */ |
| 14330 | static void __init |
| 14331 | S24C16_write_ack(ncr_slot *np, u_charunsigned char write_bit, u_charunsigned char *gpreg, u_charunsigned char *gpcntl) |
| 14332 | { |
| 14333 | OUTB (nc_gpcntl, *gpcntl & 0xfe)((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_gpcntl))))) = (((*gpcntl & 0xfe)))); |
| 14334 | S24C16_do_bit(np, 0, write_bit, gpreg); |
| 14335 | OUTB (nc_gpcntl, *gpcntl)((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_gpcntl))))) = (((*gpcntl )))); |
| 14336 | } |
| 14337 | |
| 14338 | /* |
| 14339 | * Input an ACK from NVRAM after writing, |
| 14340 | * change GPIO0 to input and when done back to an output |
| 14341 | */ |
| 14342 | static void __init |
| 14343 | S24C16_read_ack(ncr_slot *np, u_charunsigned char *read_bit, u_charunsigned char *gpreg, u_charunsigned char *gpcntl) |
| 14344 | { |
| 14345 | OUTB (nc_gpcntl, *gpcntl | 0x01)((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_gpcntl))))) = (((*gpcntl | 0x01)))); |
| 14346 | S24C16_do_bit(np, read_bit, 1, gpreg); |
| 14347 | OUTB (nc_gpcntl, *gpcntl)((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_gpcntl))))) = (((*gpcntl )))); |
| 14348 | } |
| 14349 | |
| 14350 | /* |
| 14351 | * WRITE a byte to the NVRAM and then get an ACK to see it was accepted OK, |
| 14352 | * GPIO0 must already be set as an output |
| 14353 | */ |
| 14354 | static void __init |
| 14355 | S24C16_write_byte(ncr_slot *np, u_charunsigned char *ack_data, u_charunsigned char write_data, |
| 14356 | u_charunsigned char *gpreg, u_charunsigned char *gpcntl) |
| 14357 | { |
| 14358 | int x; |
| 14359 | |
| 14360 | for (x = 0; x < 8; x++) |
| 14361 | S24C16_do_bit(np, 0, (write_data >> (7 - x)) & 0x01, gpreg); |
| 14362 | |
| 14363 | S24C16_read_ack(np, ack_data, gpreg, gpcntl); |
| 14364 | } |
| 14365 | |
| 14366 | /* |
| 14367 | * READ a byte from the NVRAM and then send an ACK to say we have got it, |
| 14368 | * GPIO0 must already be set as an input |
| 14369 | */ |
| 14370 | static void __init |
| 14371 | S24C16_read_byte(ncr_slot *np, u_charunsigned char *read_data, u_charunsigned char ack_data, |
| 14372 | u_charunsigned char *gpreg, u_charunsigned char *gpcntl) |
| 14373 | { |
| 14374 | int x; |
| 14375 | u_charunsigned char read_bit; |
| 14376 | |
| 14377 | *read_data = 0; |
| 14378 | for (x = 0; x < 8; x++) { |
| 14379 | S24C16_do_bit(np, &read_bit, 1, gpreg); |
| 14380 | *read_data |= ((read_bit & 0x01) << (7 - x)); |
| 14381 | } |
| 14382 | |
| 14383 | S24C16_write_ack(np, ack_data, gpreg, gpcntl); |
| 14384 | } |
| 14385 | |
| 14386 | /* |
| 14387 | * Read 'len' bytes starting at 'offset'. |
| 14388 | */ |
| 14389 | static int __init |
| 14390 | sym_read_S24C16_nvram (ncr_slot *np, int offset, u_charunsigned char *data, int len) |
| 14391 | { |
| 14392 | u_charunsigned char gpcntl, gpreg; |
| 14393 | u_charunsigned char old_gpcntl, old_gpreg; |
| 14394 | u_charunsigned char ack_data; |
| 14395 | int retv = 1; |
| 14396 | int x; |
| 14397 | |
| 14398 | /* save current state of GPCNTL and GPREG */ |
| 14399 | old_gpreg = INB (nc_gpreg)(*(volatile unsigned char *) ((char *)np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_gpreg))))); |
| 14400 | old_gpcntl = INB (nc_gpcntl)(*(volatile unsigned char *) ((char *)np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_gpcntl))))); |
| 14401 | gpcntl = old_gpcntl & 0xfc; |
| 14402 | |
| 14403 | /* set up GPREG & GPCNTL to set GPIO0 and GPIO1 in to known state */ |
| 14404 | OUTB (nc_gpreg, old_gpreg)((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_gpreg))))) = (((old_gpreg )))); |
| 14405 | OUTB (nc_gpcntl, gpcntl)((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_gpcntl))))) = (((gpcntl) ))); |
| 14406 | |
| 14407 | /* this is to set NVRAM into a known state with GPIO0/1 both low */ |
| 14408 | gpreg = old_gpreg; |
| 14409 | S24C16_set_bit(np, 0, &gpreg, CLR_CLK); |
| 14410 | S24C16_set_bit(np, 0, &gpreg, CLR_BIT); |
| 14411 | |
| 14412 | /* now set NVRAM inactive with GPIO0/1 both high */ |
| 14413 | S24C16_stop(np, &gpreg); |
| 14414 | |
| 14415 | /* activate NVRAM */ |
| 14416 | S24C16_start(np, &gpreg); |
| 14417 | |
| 14418 | /* write device code and random address MSB */ |
| 14419 | S24C16_write_byte(np, &ack_data, |
| 14420 | 0xa0 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl); |
| 14421 | if (ack_data & 0x01) |
| 14422 | goto out; |
| 14423 | |
| 14424 | /* write random address LSB */ |
| 14425 | S24C16_write_byte(np, &ack_data, |
| 14426 | offset & 0xff, &gpreg, &gpcntl); |
| 14427 | if (ack_data & 0x01) |
| 14428 | goto out; |
| 14429 | |
| 14430 | /* regenerate START state to set up for reading */ |
| 14431 | S24C16_start(np, &gpreg); |
| 14432 | |
| 14433 | /* rewrite device code and address MSB with read bit set (lsb = 0x01) */ |
| 14434 | S24C16_write_byte(np, &ack_data, |
| 14435 | 0xa1 | ((offset >> 7) & 0x0e), &gpreg, &gpcntl); |
| 14436 | if (ack_data & 0x01) |
| 14437 | goto out; |
| 14438 | |
| 14439 | /* now set up GPIO0 for inputting data */ |
| 14440 | gpcntl |= 0x01; |
| 14441 | OUTB (nc_gpcntl, gpcntl)((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_gpcntl))))) = (((gpcntl) ))); |
| 14442 | |
| 14443 | /* input all requested data - only part of total NVRAM */ |
| 14444 | for (x = 0; x < len; x++) |
| 14445 | S24C16_read_byte(np, &data[x], (x == (len-1)), &gpreg, &gpcntl); |
| 14446 | |
| 14447 | /* finally put NVRAM back in inactive mode */ |
| 14448 | gpcntl &= 0xfe; |
| 14449 | OUTB (nc_gpcntl, gpcntl)((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_gpcntl))))) = (((gpcntl) ))); |
| 14450 | S24C16_stop(np, &gpreg); |
| 14451 | retv = 0; |
| 14452 | out: |
| 14453 | /* return GPIO0/1 to original states after having accessed NVRAM */ |
| 14454 | OUTB (nc_gpcntl, old_gpcntl)((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_gpcntl))))) = (((old_gpcntl )))); |
| 14455 | OUTB (nc_gpreg, old_gpreg)((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_gpreg))))) = (((old_gpreg )))); |
| 14456 | |
| 14457 | return retv; |
| 14458 | } |
| 14459 | |
| 14460 | #undef SET_BIT |
| 14461 | #undef CLR_BIT |
| 14462 | #undef SET_CLK |
| 14463 | #undef CLR_CLK |
| 14464 | |
| 14465 | /* |
| 14466 | * Try reading Symbios NVRAM. |
| 14467 | * Return 0 if OK. |
| 14468 | */ |
| 14469 | static int __init sym_read_Symbios_nvram (ncr_slot *np, Symbios_nvram *nvram) |
| 14470 | { |
| 14471 | static u_charunsigned char Symbios_trailer[6] = {0xfe, 0xfe, 0, 0, 0, 0}; |
| 14472 | u_charunsigned char *data = (u_charunsigned char *) nvram; |
| 14473 | int len = sizeof(*nvram); |
| 14474 | u_shortunsigned short csum; |
| 14475 | int x; |
| 14476 | |
| 14477 | /* probe the 24c16 and read the SYMBIOS 24c16 area */ |
| 14478 | if (sym_read_S24C16_nvram (np, SYMBIOS_NVRAM_ADDRESS0x100, data, len)) |
| 14479 | return 1; |
| 14480 | |
| 14481 | /* check valid NVRAM signature, verify byte count and checksum */ |
| 14482 | if (nvram->type != 0 || |
| 14483 | memcmp__builtin_memcmp(nvram->trailer, Symbios_trailer, 6) || |
| 14484 | nvram->byte_count != len - 12) |
| 14485 | return 1; |
| 14486 | |
| 14487 | /* verify checksum */ |
| 14488 | for (x = 6, csum = 0; x < len - 6; x++) |
| 14489 | csum += data[x]; |
| 14490 | if (csum != nvram->checksum) |
| 14491 | return 1; |
| 14492 | |
| 14493 | return 0; |
| 14494 | } |
| 14495 | |
| 14496 | /* |
| 14497 | * 93C46 EEPROM reading. |
| 14498 | * |
| 14499 | * GPOI0 - data in |
| 14500 | * GPIO1 - data out |
| 14501 | * GPIO2 - clock |
| 14502 | * GPIO4 - chip select |
| 14503 | * |
| 14504 | * Used by Tekram. |
| 14505 | */ |
| 14506 | |
| 14507 | /* |
| 14508 | * Pulse clock bit in GPIO0 |
| 14509 | */ |
| 14510 | static void __init T93C46_Clk(ncr_slot *np, u_charunsigned char *gpreg) |
| 14511 | { |
| 14512 | OUTB (nc_gpreg, *gpreg | 0x04)((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_gpreg))))) = (((*gpreg | 0x04)))); |
| 14513 | UDELAY (2); |
| 14514 | OUTB (nc_gpreg, *gpreg)((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_gpreg))))) = (((*gpreg)) )); |
| 14515 | } |
| 14516 | |
| 14517 | /* |
| 14518 | * Read bit from NVRAM |
| 14519 | */ |
| 14520 | static void __init T93C46_Read_Bit(ncr_slot *np, u_charunsigned char *read_bit, u_charunsigned char *gpreg) |
| 14521 | { |
| 14522 | UDELAY (2); |
| 14523 | T93C46_Clk(np, gpreg); |
| 14524 | *read_bit = INB (nc_gpreg)(*(volatile unsigned char *) ((char *)np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_gpreg))))); |
| 14525 | } |
| 14526 | |
| 14527 | /* |
| 14528 | * Write bit to GPIO0 |
| 14529 | */ |
| 14530 | static void __init T93C46_Write_Bit(ncr_slot *np, u_charunsigned char write_bit, u_charunsigned char *gpreg) |
| 14531 | { |
| 14532 | if (write_bit & 0x01) |
| 14533 | *gpreg |= 0x02; |
| 14534 | else |
| 14535 | *gpreg &= 0xfd; |
| 14536 | |
| 14537 | *gpreg |= 0x10; |
| 14538 | |
| 14539 | OUTB (nc_gpreg, *gpreg)((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_gpreg))))) = (((*gpreg)) )); |
| 14540 | UDELAY (2); |
| 14541 | |
| 14542 | T93C46_Clk(np, gpreg); |
| 14543 | } |
| 14544 | |
| 14545 | /* |
| 14546 | * Send STOP condition to NVRAM - puts NVRAM to sleep... ZZZzzz!! |
| 14547 | */ |
| 14548 | static void __init T93C46_Stop(ncr_slot *np, u_charunsigned char *gpreg) |
| 14549 | { |
| 14550 | *gpreg &= 0xef; |
| 14551 | OUTB (nc_gpreg, *gpreg)((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_gpreg))))) = (((*gpreg)) )); |
| 14552 | UDELAY (2); |
| 14553 | |
| 14554 | T93C46_Clk(np, gpreg); |
| 14555 | } |
| 14556 | |
| 14557 | /* |
| 14558 | * Send read command and address to NVRAM |
| 14559 | */ |
| 14560 | static void __init |
| 14561 | T93C46_Send_Command(ncr_slot *np, u_shortunsigned short write_data, |
| 14562 | u_charunsigned char *read_bit, u_charunsigned char *gpreg) |
| 14563 | { |
| 14564 | int x; |
| 14565 | |
| 14566 | /* send 9 bits, start bit (1), command (2), address (6) */ |
| 14567 | for (x = 0; x < 9; x++) |
| 14568 | T93C46_Write_Bit(np, (u_charunsigned char) (write_data >> (8 - x)), gpreg); |
| 14569 | |
| 14570 | *read_bit = INB (nc_gpreg)(*(volatile unsigned char *) ((char *)np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_gpreg))))); |
| 14571 | } |
| 14572 | |
| 14573 | /* |
| 14574 | * READ 2 bytes from the NVRAM |
| 14575 | */ |
| 14576 | static void __init |
| 14577 | T93C46_Read_Word(ncr_slot *np, u_shortunsigned short *nvram_data, u_charunsigned char *gpreg) |
| 14578 | { |
| 14579 | int x; |
| 14580 | u_charunsigned char read_bit; |
| 14581 | |
| 14582 | *nvram_data = 0; |
| 14583 | for (x = 0; x < 16; x++) { |
| 14584 | T93C46_Read_Bit(np, &read_bit, gpreg); |
| 14585 | |
| 14586 | if (read_bit & 0x01) |
| 14587 | *nvram_data |= (0x01 << (15 - x)); |
| 14588 | else |
| 14589 | *nvram_data &= ~(0x01 << (15 - x)); |
| 14590 | } |
| 14591 | } |
| 14592 | |
| 14593 | /* |
| 14594 | * Read Tekram NvRAM data. |
| 14595 | */ |
| 14596 | static int __init |
| 14597 | T93C46_Read_Data(ncr_slot *np, u_shortunsigned short *data,int len,u_charunsigned char *gpreg) |
| 14598 | { |
| 14599 | u_charunsigned char read_bit; |
| 14600 | int x; |
| 14601 | |
| 14602 | for (x = 0; x < len; x++) { |
| 14603 | |
| 14604 | /* output read command and address */ |
| 14605 | T93C46_Send_Command(np, 0x180 | x, &read_bit, gpreg); |
| 14606 | if (read_bit & 0x01) |
| 14607 | return 1; /* Bad */ |
| 14608 | T93C46_Read_Word(np, &data[x], gpreg); |
| 14609 | T93C46_Stop(np, gpreg); |
| 14610 | } |
| 14611 | |
| 14612 | return 0; |
| 14613 | } |
| 14614 | |
| 14615 | /* |
| 14616 | * Try reading 93C46 Tekram NVRAM. |
| 14617 | */ |
| 14618 | static int __init |
| 14619 | sym_read_T93C46_nvram (ncr_slot *np, Tekram_nvram *nvram) |
| 14620 | { |
| 14621 | u_charunsigned char gpcntl, gpreg; |
| 14622 | u_charunsigned char old_gpcntl, old_gpreg; |
| 14623 | int retv = 1; |
| 14624 | |
| 14625 | /* save current state of GPCNTL and GPREG */ |
| 14626 | old_gpreg = INB (nc_gpreg)(*(volatile unsigned char *) ((char *)np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_gpreg))))); |
| 14627 | old_gpcntl = INB (nc_gpcntl)(*(volatile unsigned char *) ((char *)np->reg + (((size_t) (&((struct ncr_reg *)0)->nc_gpcntl))))); |
| 14628 | |
| 14629 | /* set up GPREG & GPCNTL to set GPIO0/1/2/4 in to known state, 0 in, |
| 14630 | 1/2/4 out */ |
| 14631 | gpreg = old_gpreg & 0xe9; |
| 14632 | OUTB (nc_gpreg, gpreg)((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_gpreg))))) = (((gpreg))) ); |
| 14633 | gpcntl = (old_gpcntl & 0xe9) | 0x09; |
| 14634 | OUTB (nc_gpcntl, gpcntl)((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_gpcntl))))) = (((gpcntl) ))); |
| 14635 | |
| 14636 | /* input all of NVRAM, 64 words */ |
| 14637 | retv = T93C46_Read_Data(np, (u_shortunsigned short *) nvram, |
| 14638 | sizeof(*nvram) / sizeof(short), &gpreg); |
| 14639 | |
| 14640 | /* return GPIO0/1/2/4 to original states after having accessed NVRAM */ |
| 14641 | OUTB (nc_gpcntl, old_gpcntl)((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_gpcntl))))) = (((old_gpcntl )))); |
| 14642 | OUTB (nc_gpreg, old_gpreg)((*(volatile unsigned char *) ((char *)np->reg + (((size_t ) (&((struct ncr_reg *)0)->nc_gpreg))))) = (((old_gpreg )))); |
| 14643 | |
| 14644 | return retv; |
| 14645 | } |
| 14646 | |
| 14647 | /* |
| 14648 | * Try reading Tekram NVRAM. |
| 14649 | * Return 0 if OK. |
| 14650 | */ |
| 14651 | static int __init |
| 14652 | sym_read_Tekram_nvram (ncr_slot *np, u_shortunsigned short device_id, Tekram_nvram *nvram) |
| 14653 | { |
| 14654 | u_charunsigned char *data = (u_charunsigned char *) nvram; |
| 14655 | int len = sizeof(*nvram); |
| 14656 | u_shortunsigned short csum; |
| 14657 | int x; |
| 14658 | |
| 14659 | switch (device_id) { |
| 14660 | case PCI_DEVICE_ID_NCR_53C8850x000d: |
| 14661 | case PCI_DEVICE_ID_NCR_53C8950x000c: |
| 14662 | case PCI_DEVICE_ID_NCR_53C8960x000b: |
| 14663 | x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS0x40, |
| 14664 | data, len); |
| 14665 | break; |
| 14666 | case PCI_DEVICE_ID_NCR_53C8750x000f: |
| 14667 | x = sym_read_S24C16_nvram(np, TEKRAM_24C16_NVRAM_ADDRESS0x40, |
| 14668 | data, len); |
| 14669 | if (!x) |
| 14670 | break; |
| 14671 | default: |
| 14672 | x = sym_read_T93C46_nvram(np, nvram); |
| 14673 | break; |
| 14674 | } |
| 14675 | if (x) |
| 14676 | return 1; |
| 14677 | |
| 14678 | /* verify checksum */ |
| 14679 | for (x = 0, csum = 0; x < len - 1; x += 2) |
| 14680 | csum += data[x] + (data[x+1] << 8); |
| 14681 | if (csum != 0x1234) |
| 14682 | return 1; |
| 14683 | |
| 14684 | return 0; |
| 14685 | } |
| 14686 | |
| 14687 | #endif /* SCSI_NCR_NVRAM_SUPPORT */ |
| 14688 | |
| 14689 | /* |
| 14690 | ** Module stuff |
| 14691 | */ |
| 14692 | |
| 14693 | #ifdef MODULE |
| 14694 | Scsi_Host_Template driver_template = SYM53C8XX; |
| 14695 | #include "scsi_module.c" |
| 14696 | #endif |