| File: | obj-scan-build/../vm/vm_map.c |
| Location: | line 3370, column 4 |
| Description: | Value stored to 'src_size' is never read |
| 1 | /* |
| 2 | * Mach Operating System |
| 3 | * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University. |
| 4 | * Copyright (c) 1993,1994 The University of Utah and |
| 5 | * the Computer Systems Laboratory (CSL). |
| 6 | * All rights reserved. |
| 7 | * |
| 8 | * Permission to use, copy, modify and distribute this software and its |
| 9 | * documentation is hereby granted, provided that both the copyright |
| 10 | * notice and this permission notice appear in all copies of the |
| 11 | * software, derivative works or modified versions, and any portions |
| 12 | * thereof, and that both notices appear in supporting documentation. |
| 13 | * |
| 14 | * CARNEGIE MELLON, THE UNIVERSITY OF UTAH AND CSL ALLOW FREE USE OF |
| 15 | * THIS SOFTWARE IN ITS "AS IS" CONDITION, AND DISCLAIM ANY LIABILITY |
| 16 | * OF ANY KIND FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF |
| 17 | * THIS SOFTWARE. |
| 18 | * |
| 19 | * Carnegie Mellon requests users of this software to return to |
| 20 | * |
| 21 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU |
| 22 | * School of Computer Science |
| 23 | * Carnegie Mellon University |
| 24 | * Pittsburgh PA 15213-3890 |
| 25 | * |
| 26 | * any improvements or extensions that they make and grant Carnegie Mellon |
| 27 | * the rights to redistribute these changes. |
| 28 | */ |
| 29 | /* |
| 30 | * File: vm/vm_map.c |
| 31 | * Author: Avadis Tevanian, Jr., Michael Wayne Young |
| 32 | * Date: 1985 |
| 33 | * |
| 34 | * Virtual memory mapping module. |
| 35 | */ |
| 36 | |
| 37 | #include <kern/printfdb_printf.h> |
| 38 | #include <mach/kern_return.h> |
| 39 | #include <mach/port.h> |
| 40 | #include <mach/vm_attributes.h> |
| 41 | #include <mach/vm_param.h> |
| 42 | #include <kern/assert.h> |
| 43 | #include <kern/debug.h> |
| 44 | #include <kern/kalloc.h> |
| 45 | #include <kern/rbtree.h> |
| 46 | #include <kern/slab.h> |
| 47 | #include <vm/pmap.h> |
| 48 | #include <vm/vm_fault.h> |
| 49 | #include <vm/vm_map.h> |
| 50 | #include <vm/vm_object.h> |
| 51 | #include <vm/vm_page.h> |
| 52 | #include <vm/vm_resident.h> |
| 53 | #include <vm/vm_kern.h> |
| 54 | #include <ipc/ipc_port.h> |
| 55 | |
| 56 | #if MACH_KDB1 |
| 57 | #include <ddb/db_output.h> |
| 58 | #include <vm/vm_print.h> |
| 59 | #endif /* MACH_KDB */ |
| 60 | |
| 61 | /* |
| 62 | * Macros to copy a vm_map_entry. We must be careful to correctly |
| 63 | * manage the wired page count. vm_map_entry_copy() creates a new |
| 64 | * map entry to the same memory - the wired count in the new entry |
| 65 | * must be set to zero. vm_map_entry_copy_full() creates a new |
| 66 | * entry that is identical to the old entry. This preserves the |
| 67 | * wire count; it's used for map splitting and cache changing in |
| 68 | * vm_map_copyout. |
| 69 | */ |
| 70 | #define vm_map_entry_copy(NEW,OLD)({ *(NEW) = *(OLD); (NEW)->is_shared = ((boolean_t) 0); (NEW )->needs_wakeup = ((boolean_t) 0); (NEW)->in_transition = ((boolean_t) 0); (NEW)->wired_count = 0; (NEW)->user_wired_count = 0; }) \({ |
| 71 | MACRO_BEGIN({ \ |
| 72 | *(NEW) = *(OLD); \ |
| 73 | (NEW)->is_shared = FALSE((boolean_t) 0); \ |
| 74 | (NEW)->needs_wakeup = FALSE((boolean_t) 0); \ |
| 75 | (NEW)->in_transition = FALSE((boolean_t) 0); \ |
| 76 | (NEW)->wired_count = 0; \ |
| 77 | (NEW)->user_wired_count = 0; \}) |
| 78 | MACRO_END}) |
| 79 | |
| 80 | #define vm_map_entry_copy_full(NEW,OLD)(*(NEW) = *(OLD)) (*(NEW) = *(OLD)) |
| 81 | |
| 82 | /* |
| 83 | * Virtual memory maps provide for the mapping, protection, |
| 84 | * and sharing of virtual memory objects. In addition, |
| 85 | * this module provides for an efficient virtual copy of |
| 86 | * memory from one map to another. |
| 87 | * |
| 88 | * Synchronization is required prior to most operations. |
| 89 | * |
| 90 | * Maps consist of an ordered doubly-linked list of simple |
| 91 | * entries; a hint and a red-black tree are used to speed up lookups. |
| 92 | * |
| 93 | * Sharing maps have been deleted from this version of Mach. |
| 94 | * All shared objects are now mapped directly into the respective |
| 95 | * maps. This requires a change in the copy on write strategy; |
| 96 | * the asymmetric (delayed) strategy is used for shared temporary |
| 97 | * objects instead of the symmetric (shadow) strategy. This is |
| 98 | * selected by the (new) use_shared_copy bit in the object. See |
| 99 | * vm_object_copy_temporary in vm_object.c for details. All maps |
| 100 | * are now "top level" maps (either task map, kernel map or submap |
| 101 | * of the kernel map). |
| 102 | * |
| 103 | * Since portions of maps are specified by start/end addreses, |
| 104 | * which may not align with existing map entries, all |
| 105 | * routines merely "clip" entries to these start/end values. |
| 106 | * [That is, an entry is split into two, bordering at a |
| 107 | * start or end value.] Note that these clippings may not |
| 108 | * always be necessary (as the two resulting entries are then |
| 109 | * not changed); however, the clipping is done for convenience. |
| 110 | * No attempt is currently made to "glue back together" two |
| 111 | * abutting entries. |
| 112 | * |
| 113 | * The symmetric (shadow) copy strategy implements virtual copy |
| 114 | * by copying VM object references from one map to |
| 115 | * another, and then marking both regions as copy-on-write. |
| 116 | * It is important to note that only one writeable reference |
| 117 | * to a VM object region exists in any map when this strategy |
| 118 | * is used -- this means that shadow object creation can be |
| 119 | * delayed until a write operation occurs. The asymmetric (delayed) |
| 120 | * strategy allows multiple maps to have writeable references to |
| 121 | * the same region of a vm object, and hence cannot delay creating |
| 122 | * its copy objects. See vm_object_copy_temporary() in vm_object.c. |
| 123 | * Copying of permanent objects is completely different; see |
| 124 | * vm_object_copy_strategically() in vm_object.c. |
| 125 | */ |
| 126 | |
| 127 | struct kmem_cache vm_map_cache; /* cache for vm_map structures */ |
| 128 | struct kmem_cache vm_map_entry_cache; /* cache for vm_map_entry structures */ |
| 129 | struct kmem_cache vm_map_kentry_cache; /* cache for kernel entry structures */ |
| 130 | struct kmem_cache vm_map_copy_cache; /* cache for vm_map_copy structures */ |
| 131 | |
| 132 | /* |
| 133 | * Placeholder object for submap operations. This object is dropped |
| 134 | * into the range by a call to vm_map_find, and removed when |
| 135 | * vm_map_submap creates the submap. |
| 136 | */ |
| 137 | |
| 138 | static struct vm_object vm_submap_object_store; |
| 139 | vm_object_t vm_submap_object = &vm_submap_object_store; |
| 140 | |
| 141 | /* |
| 142 | * vm_map_init: |
| 143 | * |
| 144 | * Initialize the vm_map module. Must be called before |
| 145 | * any other vm_map routines. |
| 146 | * |
| 147 | * Map and entry structures are allocated from caches -- we must |
| 148 | * initialize those caches. |
| 149 | * |
| 150 | * There are three caches of interest: |
| 151 | * |
| 152 | * vm_map_cache: used to allocate maps. |
| 153 | * vm_map_entry_cache: used to allocate map entries. |
| 154 | * vm_map_kentry_cache: used to allocate map entries for the kernel. |
| 155 | * |
| 156 | * Kernel map entries are allocated from a special cache, using a custom |
| 157 | * page allocation function to avoid recursion. It would be difficult |
| 158 | * (perhaps impossible) for the kernel to allocate more memory to an entry |
| 159 | * cache when it became empty since the very act of allocating memory |
| 160 | * implies the creation of a new entry. |
| 161 | */ |
| 162 | |
| 163 | vm_offset_t kentry_data; |
| 164 | vm_size_t kentry_data_size = KENTRY_DATA_SIZE(256*(1 << 12)); |
| 165 | |
| 166 | static vm_offset_t kentry_pagealloc(vm_size_t size) |
| 167 | { |
| 168 | vm_offset_t result; |
| 169 | |
| 170 | if (size > kentry_data_size) |
| 171 | panic("vm_map: kentry memory exhausted"); |
| 172 | |
| 173 | result = kentry_data; |
| 174 | kentry_data += size; |
| 175 | kentry_data_size -= size; |
| 176 | return result; |
| 177 | } |
| 178 | |
| 179 | void vm_map_init(void) |
| 180 | { |
| 181 | kmem_cache_init(&vm_map_cache, "vm_map", sizeof(struct vm_map), 0, |
| 182 | NULL((void *) 0), NULL((void *) 0), NULL((void *) 0), 0); |
| 183 | kmem_cache_init(&vm_map_entry_cache, "vm_map_entry", |
| 184 | sizeof(struct vm_map_entry), 0, NULL((void *) 0), NULL((void *) 0), NULL((void *) 0), 0); |
| 185 | kmem_cache_init(&vm_map_kentry_cache, "vm_map_kentry", |
| 186 | sizeof(struct vm_map_entry), 0, NULL((void *) 0), kentry_pagealloc, |
| 187 | NULL((void *) 0), KMEM_CACHE_NOCPUPOOL0x1 | KMEM_CACHE_NOOFFSLAB0x2 |
| 188 | | KMEM_CACHE_NORECLAIM0x4); |
| 189 | kmem_cache_init(&vm_map_copy_cache, "vm_map_copy", |
| 190 | sizeof(struct vm_map_copy), 0, NULL((void *) 0), NULL((void *) 0), NULL((void *) 0), 0); |
| 191 | |
| 192 | /* |
| 193 | * Submap object is initialized by vm_object_init. |
| 194 | */ |
| 195 | } |
| 196 | |
| 197 | void vm_map_setup(map, pmap, min, max, pageable) |
| 198 | vm_map_t map; |
| 199 | pmap_t pmap; |
| 200 | vm_offset_t min, max; |
| 201 | boolean_t pageable; |
| 202 | { |
| 203 | vm_map_first_entry(map)((map)->hdr.links.next) = vm_map_to_entry(map)((struct vm_map_entry *) &(map)->hdr.links); |
| 204 | vm_map_last_entry(map)((map)->hdr.links.prev) = vm_map_to_entry(map)((struct vm_map_entry *) &(map)->hdr.links); |
| 205 | map->hdr.nentries = 0; |
| 206 | map->hdr.entries_pageable = pageable; |
| 207 | rbtree_init(&map->hdr.tree); |
| 208 | |
| 209 | map->size = 0; |
| 210 | map->ref_count = 1; |
| 211 | map->pmap = pmap; |
| 212 | map->min_offsethdr.links.start = min; |
| 213 | map->max_offsethdr.links.end = max; |
| 214 | map->wiring_required = FALSE((boolean_t) 0); |
| 215 | map->wait_for_space = FALSE((boolean_t) 0); |
| 216 | map->first_free = vm_map_to_entry(map)((struct vm_map_entry *) &(map)->hdr.links); |
| 217 | map->hint = vm_map_to_entry(map)((struct vm_map_entry *) &(map)->hdr.links); |
| 218 | vm_map_lock_init(map)({ lock_init(&(map)->lock, ((boolean_t) 1)); (map)-> timestamp = 0; }); |
| 219 | simple_lock_init(&map->ref_lock); |
| 220 | simple_lock_init(&map->hint_lock); |
| 221 | } |
| 222 | |
| 223 | /* |
| 224 | * vm_map_create: |
| 225 | * |
| 226 | * Creates and returns a new empty VM map with |
| 227 | * the given physical map structure, and having |
| 228 | * the given lower and upper address bounds. |
| 229 | */ |
| 230 | vm_map_t vm_map_create(pmap, min, max, pageable) |
| 231 | pmap_t pmap; |
| 232 | vm_offset_t min, max; |
| 233 | boolean_t pageable; |
| 234 | { |
| 235 | vm_map_t result; |
| 236 | |
| 237 | result = (vm_map_t) kmem_cache_alloc(&vm_map_cache); |
| 238 | if (result == VM_MAP_NULL((vm_map_t) 0)) |
| 239 | panic("vm_map_create"); |
| 240 | |
| 241 | vm_map_setup(result, pmap, min, max, pageable); |
| 242 | |
| 243 | return(result); |
| 244 | } |
| 245 | |
| 246 | /* |
| 247 | * vm_map_entry_create: [ internal use only ] |
| 248 | * |
| 249 | * Allocates a VM map entry for insertion in the |
| 250 | * given map (or map copy). No fields are filled. |
| 251 | */ |
| 252 | #define vm_map_entry_create(map)_vm_map_entry_create(&(map)->hdr) \ |
| 253 | _vm_map_entry_create(&(map)->hdr) |
| 254 | |
| 255 | #define vm_map_copy_entry_create(copy)_vm_map_entry_create(&(copy)->c_u.hdr) \ |
| 256 | _vm_map_entry_create(&(copy)->cpy_hdrc_u.hdr) |
| 257 | |
| 258 | vm_map_entry_t _vm_map_entry_create(map_header) |
| 259 | const struct vm_map_header *map_header; |
| 260 | { |
| 261 | kmem_cache_t cache; |
| 262 | vm_map_entry_t entry; |
| 263 | |
| 264 | if (map_header->entries_pageable) |
| 265 | cache = &vm_map_entry_cache; |
| 266 | else |
| 267 | cache = &vm_map_kentry_cache; |
| 268 | |
| 269 | entry = (vm_map_entry_t) kmem_cache_alloc(cache); |
| 270 | if (entry == VM_MAP_ENTRY_NULL((vm_map_entry_t) 0)) |
| 271 | panic("vm_map_entry_create"); |
| 272 | |
| 273 | return(entry); |
| 274 | } |
| 275 | |
| 276 | /* |
| 277 | * vm_map_entry_dispose: [ internal use only ] |
| 278 | * |
| 279 | * Inverse of vm_map_entry_create. |
| 280 | */ |
| 281 | #define vm_map_entry_dispose(map, entry)_vm_map_entry_dispose(&(map)->hdr, (entry)) \ |
| 282 | _vm_map_entry_dispose(&(map)->hdr, (entry)) |
| 283 | |
| 284 | #define vm_map_copy_entry_dispose(map, entry)_vm_map_entry_dispose(&(copy)->c_u.hdr, (entry)) \ |
| 285 | _vm_map_entry_dispose(&(copy)->cpy_hdrc_u.hdr, (entry)) |
| 286 | |
| 287 | void _vm_map_entry_dispose(map_header, entry) |
| 288 | const struct vm_map_header *map_header; |
| 289 | vm_map_entry_t entry; |
| 290 | { |
| 291 | kmem_cache_t cache; |
| 292 | |
| 293 | if (map_header->entries_pageable) |
| 294 | cache = &vm_map_entry_cache; |
| 295 | else |
| 296 | cache = &vm_map_kentry_cache; |
| 297 | |
| 298 | kmem_cache_free(cache, (vm_offset_t) entry); |
| 299 | } |
| 300 | |
| 301 | /* |
| 302 | * Red-black tree lookup/insert comparison functions |
| 303 | */ |
| 304 | static inline int vm_map_entry_cmp_lookup(vm_offset_t addr, |
| 305 | const struct rbtree_node *node) |
| 306 | { |
| 307 | struct vm_map_entry *entry; |
| 308 | |
| 309 | entry = rbtree_entry(node, struct vm_map_entry, tree_node)((struct vm_map_entry *)((char *)node - __builtin_offsetof (struct vm_map_entry, tree_node))); |
| 310 | |
| 311 | if (addr < entry->vme_startlinks.start) |
| 312 | return -1; |
| 313 | else if (addr < entry->vme_endlinks.end) |
| 314 | return 0; |
| 315 | else |
| 316 | return 1; |
| 317 | } |
| 318 | |
| 319 | static inline int vm_map_entry_cmp_insert(const struct rbtree_node *a, |
| 320 | const struct rbtree_node *b) |
| 321 | { |
| 322 | struct vm_map_entry *entry; |
| 323 | |
| 324 | entry = rbtree_entry(a, struct vm_map_entry, tree_node)((struct vm_map_entry *)((char *)a - __builtin_offsetof (struct vm_map_entry, tree_node))); |
| 325 | return vm_map_entry_cmp_lookup(entry->vme_startlinks.start, b); |
| 326 | } |
| 327 | |
| 328 | /* |
| 329 | * vm_map_entry_{un,}link: |
| 330 | * |
| 331 | * Insert/remove entries from maps (or map copies). |
| 332 | * |
| 333 | * The start and end addresses of the entries must be properly set |
| 334 | * before using these macros. |
| 335 | */ |
| 336 | #define vm_map_entry_link(map, after_where, entry)({ (&(map)->hdr)->nentries++; (entry)->links.prev = (after_where); (entry)->links.next = (after_where)-> links.next; (entry)->links.prev->links.next = (entry)-> links.next->links.prev = (entry); ({ struct rbtree_node *___cur , *___prev; int ___diff, ___index; ___prev = ((void *) 0); ___index = -1; ___cur = (&(&(map)->hdr)->tree)->root ; while (___cur != ((void *) 0)) { ___diff = vm_map_entry_cmp_insert (&(entry)->tree_node, ___cur); ({ if (!(___diff != 0)) Assert("___diff != 0", "../vm/vm_map.c", 336); }); ___prev = ___cur; ___index = rbtree_d2i(___diff); ___cur = ___cur-> children[___index]; } rbtree_insert_rebalance(&(&(map )->hdr)->tree, ___prev, ___index, &(entry)->tree_node ); }); }) \ |
| 337 | _vm_map_entry_link(&(map)->hdr, after_where, entry)({ (&(map)->hdr)->nentries++; (entry)->links.prev = (after_where); (entry)->links.next = (after_where)-> links.next; (entry)->links.prev->links.next = (entry)-> links.next->links.prev = (entry); ({ struct rbtree_node *___cur , *___prev; int ___diff, ___index; ___prev = ((void *) 0); ___index = -1; ___cur = (&(&(map)->hdr)->tree)->root ; while (___cur != ((void *) 0)) { ___diff = vm_map_entry_cmp_insert (&(entry)->tree_node, ___cur); ({ if (!(___diff != 0)) Assert("___diff != 0", "../vm/vm_map.c", 337); }); ___prev = ___cur; ___index = rbtree_d2i(___diff); ___cur = ___cur-> children[___index]; } rbtree_insert_rebalance(&(&(map )->hdr)->tree, ___prev, ___index, &(entry)->tree_node ); }); }) |
| 338 | |
| 339 | #define vm_map_copy_entry_link(copy, after_where, entry)({ (&(copy)->c_u.hdr)->nentries++; (entry)->links .prev = (after_where); (entry)->links.next = (after_where) ->links.next; (entry)->links.prev->links.next = (entry )->links.next->links.prev = (entry); ({ struct rbtree_node *___cur, *___prev; int ___diff, ___index; ___prev = ((void * ) 0); ___index = -1; ___cur = (&(&(copy)->c_u.hdr) ->tree)->root; while (___cur != ((void *) 0)) { ___diff = vm_map_entry_cmp_insert(&(entry)->tree_node, ___cur ); ({ if (!(___diff != 0)) Assert("___diff != 0", "../vm/vm_map.c" , 339); }); ___prev = ___cur; ___index = rbtree_d2i(___diff); ___cur = ___cur->children[___index]; } rbtree_insert_rebalance (&(&(copy)->c_u.hdr)->tree, ___prev, ___index, & (entry)->tree_node); }); }) \ |
| 340 | _vm_map_entry_link(&(copy)->cpy_hdr, after_where, entry)({ (&(copy)->c_u.hdr)->nentries++; (entry)->links .prev = (after_where); (entry)->links.next = (after_where) ->links.next; (entry)->links.prev->links.next = (entry )->links.next->links.prev = (entry); ({ struct rbtree_node *___cur, *___prev; int ___diff, ___index; ___prev = ((void * ) 0); ___index = -1; ___cur = (&(&(copy)->c_u.hdr) ->tree)->root; while (___cur != ((void *) 0)) { ___diff = vm_map_entry_cmp_insert(&(entry)->tree_node, ___cur ); ({ if (!(___diff != 0)) Assert("___diff != 0", "../vm/vm_map.c" , 340); }); ___prev = ___cur; ___index = rbtree_d2i(___diff); ___cur = ___cur->children[___index]; } rbtree_insert_rebalance (&(&(copy)->c_u.hdr)->tree, ___prev, ___index, & (entry)->tree_node); }); }) |
| 341 | |
| 342 | #define _vm_map_entry_link(hdr, after_where, entry)({ (hdr)->nentries++; (entry)->links.prev = (after_where ); (entry)->links.next = (after_where)->links.next; (entry )->links.prev->links.next = (entry)->links.next-> links.prev = (entry); ({ struct rbtree_node *___cur, *___prev ; int ___diff, ___index; ___prev = ((void *) 0); ___index = - 1; ___cur = (&(hdr)->tree)->root; while (___cur != ( (void *) 0)) { ___diff = vm_map_entry_cmp_insert(&(entry) ->tree_node, ___cur); ({ if (!(___diff != 0)) Assert("___diff != 0" , "../vm/vm_map.c", 342); }); ___prev = ___cur; ___index = rbtree_d2i (___diff); ___cur = ___cur->children[___index]; } rbtree_insert_rebalance (&(hdr)->tree, ___prev, ___index, &(entry)->tree_node ); }); }) \ |
| 343 | MACRO_BEGIN({ \ |
| 344 | (hdr)->nentries++; \ |
| 345 | (entry)->vme_prevlinks.prev = (after_where); \ |
| 346 | (entry)->vme_nextlinks.next = (after_where)->vme_nextlinks.next; \ |
| 347 | (entry)->vme_prevlinks.prev->vme_nextlinks.next = \ |
| 348 | (entry)->vme_nextlinks.next->vme_prevlinks.prev = (entry); \ |
| 349 | rbtree_insert(&(hdr)->tree, &(entry)->tree_node, \({ struct rbtree_node *___cur, *___prev; int ___diff, ___index ; ___prev = ((void *) 0); ___index = -1; ___cur = (&(hdr) ->tree)->root; while (___cur != ((void *) 0)) { ___diff = vm_map_entry_cmp_insert(&(entry)->tree_node, ___cur ); ({ if (!(___diff != 0)) Assert("___diff != 0", "../vm/vm_map.c" , 350); }); ___prev = ___cur; ___index = rbtree_d2i(___diff); ___cur = ___cur->children[___index]; } rbtree_insert_rebalance (&(hdr)->tree, ___prev, ___index, &(entry)->tree_node ); }) |
| 350 | vm_map_entry_cmp_insert)({ struct rbtree_node *___cur, *___prev; int ___diff, ___index ; ___prev = ((void *) 0); ___index = -1; ___cur = (&(hdr) ->tree)->root; while (___cur != ((void *) 0)) { ___diff = vm_map_entry_cmp_insert(&(entry)->tree_node, ___cur ); ({ if (!(___diff != 0)) Assert("___diff != 0", "../vm/vm_map.c" , 350); }); ___prev = ___cur; ___index = rbtree_d2i(___diff); ___cur = ___cur->children[___index]; } rbtree_insert_rebalance (&(hdr)->tree, ___prev, ___index, &(entry)->tree_node ); }); \ |
| 351 | MACRO_END}) |
| 352 | |
| 353 | #define vm_map_entry_unlink(map, entry)({ (&(map)->hdr)->nentries--; (entry)->links.next ->links.prev = (entry)->links.prev; (entry)->links.prev ->links.next = (entry)->links.next; rbtree_remove(& (&(map)->hdr)->tree, &(entry)->tree_node); } ) \ |
| 354 | _vm_map_entry_unlink(&(map)->hdr, entry)({ (&(map)->hdr)->nentries--; (entry)->links.next ->links.prev = (entry)->links.prev; (entry)->links.prev ->links.next = (entry)->links.next; rbtree_remove(& (&(map)->hdr)->tree, &(entry)->tree_node); } ) |
| 355 | |
| 356 | #define vm_map_copy_entry_unlink(copy, entry)({ (&(copy)->c_u.hdr)->nentries--; (entry)->links .next->links.prev = (entry)->links.prev; (entry)->links .prev->links.next = (entry)->links.next; rbtree_remove( &(&(copy)->c_u.hdr)->tree, &(entry)->tree_node ); }) \ |
| 357 | _vm_map_entry_unlink(&(copy)->cpy_hdr, entry)({ (&(copy)->c_u.hdr)->nentries--; (entry)->links .next->links.prev = (entry)->links.prev; (entry)->links .prev->links.next = (entry)->links.next; rbtree_remove( &(&(copy)->c_u.hdr)->tree, &(entry)->tree_node ); }) |
| 358 | |
| 359 | #define _vm_map_entry_unlink(hdr, entry)({ (hdr)->nentries--; (entry)->links.next->links.prev = (entry)->links.prev; (entry)->links.prev->links.next = (entry)->links.next; rbtree_remove(&(hdr)->tree, &(entry)->tree_node); }) \ |
| 360 | MACRO_BEGIN({ \ |
| 361 | (hdr)->nentries--; \ |
| 362 | (entry)->vme_nextlinks.next->vme_prevlinks.prev = (entry)->vme_prevlinks.prev; \ |
| 363 | (entry)->vme_prevlinks.prev->vme_nextlinks.next = (entry)->vme_nextlinks.next; \ |
| 364 | rbtree_remove(&(hdr)->tree, &(entry)->tree_node); \ |
| 365 | MACRO_END}) |
| 366 | |
| 367 | /* |
| 368 | * vm_map_reference: |
| 369 | * |
| 370 | * Creates another valid reference to the given map. |
| 371 | * |
| 372 | */ |
| 373 | void vm_map_reference(map) |
| 374 | vm_map_t map; |
| 375 | { |
| 376 | if (map == VM_MAP_NULL((vm_map_t) 0)) |
| 377 | return; |
| 378 | |
| 379 | simple_lock(&map->ref_lock); |
| 380 | map->ref_count++; |
| 381 | simple_unlock(&map->ref_lock)((void)(&map->ref_lock)); |
| 382 | } |
| 383 | |
| 384 | /* |
| 385 | * vm_map_deallocate: |
| 386 | * |
| 387 | * Removes a reference from the specified map, |
| 388 | * destroying it if no references remain. |
| 389 | * The map should not be locked. |
| 390 | */ |
| 391 | void vm_map_deallocate(map) |
| 392 | vm_map_t map; |
| 393 | { |
| 394 | int c; |
| 395 | |
| 396 | if (map == VM_MAP_NULL((vm_map_t) 0)) |
| 397 | return; |
| 398 | |
| 399 | simple_lock(&map->ref_lock); |
| 400 | c = --map->ref_count; |
| 401 | simple_unlock(&map->ref_lock)((void)(&map->ref_lock)); |
| 402 | |
| 403 | if (c > 0) { |
| 404 | return; |
| 405 | } |
| 406 | |
| 407 | projected_buffer_collect(map); |
| 408 | (void) vm_map_delete(map, map->min_offsethdr.links.start, map->max_offsethdr.links.end); |
| 409 | |
| 410 | pmap_destroy(map->pmap); |
| 411 | |
| 412 | kmem_cache_free(&vm_map_cache, (vm_offset_t) map); |
| 413 | } |
| 414 | |
| 415 | /* |
| 416 | * SAVE_HINT: |
| 417 | * |
| 418 | * Saves the specified entry as the hint for |
| 419 | * future lookups. Performs necessary interlocks. |
| 420 | */ |
| 421 | #define SAVE_HINT(map,value); (map)->hint = (value); ((void)(&(map)->hint_lock) ); \ |
| 422 | simple_lock(&(map)->hint_lock); \ |
| 423 | (map)->hint = (value); \ |
| 424 | simple_unlock(&(map)->hint_lock)((void)(&(map)->hint_lock)); |
| 425 | |
| 426 | /* |
| 427 | * vm_map_lookup_entry: [ internal use only ] |
| 428 | * |
| 429 | * Finds the map entry containing (or |
| 430 | * immediately preceding) the specified address |
| 431 | * in the given map; the entry is returned |
| 432 | * in the "entry" parameter. The boolean |
| 433 | * result indicates whether the address is |
| 434 | * actually contained in the map. |
| 435 | */ |
| 436 | boolean_t vm_map_lookup_entry(map, address, entry) |
| 437 | vm_map_t map; |
| 438 | vm_offset_t address; |
| 439 | vm_map_entry_t *entry; /* OUT */ |
| 440 | { |
| 441 | struct rbtree_node *node; |
| 442 | vm_map_entry_t hint; |
| 443 | |
| 444 | /* |
| 445 | * First, make a quick check to see if we are already |
| 446 | * looking at the entry we want (which is often the case). |
| 447 | */ |
| 448 | |
| 449 | simple_lock(&map->hint_lock); |
| 450 | hint = map->hint; |
| 451 | simple_unlock(&map->hint_lock)((void)(&map->hint_lock)); |
| 452 | |
| 453 | if ((hint != vm_map_to_entry(map)((struct vm_map_entry *) &(map)->hdr.links)) && (address >= hint->vme_startlinks.start)) { |
| 454 | if (address < hint->vme_endlinks.end) { |
| 455 | *entry = hint; |
| 456 | return(TRUE((boolean_t) 1)); |
| 457 | } else { |
| 458 | vm_map_entry_t next = hint->vme_nextlinks.next; |
| 459 | |
| 460 | if ((next == vm_map_to_entry(map)((struct vm_map_entry *) &(map)->hdr.links)) |
| 461 | || (address < next->vme_startlinks.start)) { |
| 462 | *entry = hint; |
| 463 | return(FALSE((boolean_t) 0)); |
| 464 | } |
| 465 | } |
| 466 | } |
| 467 | |
| 468 | /* |
| 469 | * If the hint didn't help, use the red-black tree. |
| 470 | */ |
| 471 | |
| 472 | node = rbtree_lookup_nearest(&map->hdr.tree, address,({ struct rbtree_node *___cur, *___prev; int ___diff, ___index ; ___prev = ((void *) 0); ___index = -1; ___cur = (&map-> hdr.tree)->root; while (___cur != ((void *) 0)) { ___diff = vm_map_entry_cmp_lookup(address, ___cur); if (___diff == 0) break ; ___prev = ___cur; ___index = rbtree_d2i(___diff); ___cur = ___cur ->children[___index]; } if (___cur == ((void *) 0)) ___cur = rbtree_nearest(___prev, ___index, 0); ___cur; }) |
| 473 | vm_map_entry_cmp_lookup, RBTREE_LEFT)({ struct rbtree_node *___cur, *___prev; int ___diff, ___index ; ___prev = ((void *) 0); ___index = -1; ___cur = (&map-> hdr.tree)->root; while (___cur != ((void *) 0)) { ___diff = vm_map_entry_cmp_lookup(address, ___cur); if (___diff == 0) break ; ___prev = ___cur; ___index = rbtree_d2i(___diff); ___cur = ___cur ->children[___index]; } if (___cur == ((void *) 0)) ___cur = rbtree_nearest(___prev, ___index, 0); ___cur; }); |
| 474 | |
| 475 | if (node == NULL((void *) 0)) { |
| 476 | *entry = vm_map_to_entry(map)((struct vm_map_entry *) &(map)->hdr.links); |
| 477 | SAVE_HINT(map, *entry); (map)->hint = (*entry); ((void)(&(map)->hint_lock ));; |
| 478 | return(FALSE((boolean_t) 0)); |
| 479 | } else { |
| 480 | *entry = rbtree_entry(node, struct vm_map_entry, tree_node)((struct vm_map_entry *)((char *)node - __builtin_offsetof (struct vm_map_entry, tree_node))); |
| 481 | SAVE_HINT(map, *entry); (map)->hint = (*entry); ((void)(&(map)->hint_lock ));; |
| 482 | return((address < (*entry)->vme_endlinks.end) ? TRUE((boolean_t) 1) : FALSE((boolean_t) 0)); |
| 483 | } |
| 484 | } |
| 485 | |
| 486 | /* |
| 487 | * Routine: invalid_user_access |
| 488 | * |
| 489 | * Verifies whether user access is valid. |
| 490 | */ |
| 491 | |
| 492 | boolean_t |
| 493 | invalid_user_access(map, start, end, prot) |
| 494 | vm_map_t map; |
| 495 | vm_offset_t start, end; |
| 496 | vm_prot_t prot; |
| 497 | { |
| 498 | vm_map_entry_t entry; |
| 499 | |
| 500 | return (map == VM_MAP_NULL((vm_map_t) 0) || map == kernel_map || |
| 501 | !vm_map_lookup_entry(map, start, &entry) || |
| 502 | entry->vme_endlinks.end < end || |
| 503 | (prot & ~(entry->protection))); |
| 504 | } |
| 505 | |
| 506 | |
| 507 | /* |
| 508 | * Routine: vm_map_find_entry |
| 509 | * Purpose: |
| 510 | * Allocate a range in the specified virtual address map, |
| 511 | * returning the entry allocated for that range. |
| 512 | * Used by kmem_alloc, etc. Returns wired entries. |
| 513 | * |
| 514 | * The map must be locked. |
| 515 | * |
| 516 | * If an entry is allocated, the object/offset fields |
| 517 | * are initialized to zero. If an object is supplied, |
| 518 | * then an existing entry may be extended. |
| 519 | */ |
| 520 | kern_return_t vm_map_find_entry(map, address, size, mask, object, o_entry) |
| 521 | vm_map_t map; |
| 522 | vm_offset_t *address; /* OUT */ |
| 523 | vm_size_t size; |
| 524 | vm_offset_t mask; |
| 525 | vm_object_t object; |
| 526 | vm_map_entry_t *o_entry; /* OUT */ |
| 527 | { |
| 528 | vm_map_entry_t entry, new_entry; |
| 529 | vm_offset_t start; |
| 530 | vm_offset_t end; |
| 531 | |
| 532 | /* |
| 533 | * Look for the first possible address; |
| 534 | * if there's already something at this |
| 535 | * address, we have to start after it. |
| 536 | */ |
| 537 | |
| 538 | if ((entry = map->first_free) == vm_map_to_entry(map)((struct vm_map_entry *) &(map)->hdr.links)) |
| 539 | start = map->min_offsethdr.links.start; |
| 540 | else |
| 541 | start = entry->vme_endlinks.end; |
| 542 | |
| 543 | /* |
| 544 | * In any case, the "entry" always precedes |
| 545 | * the proposed new region throughout the loop: |
| 546 | */ |
| 547 | |
| 548 | while (TRUE((boolean_t) 1)) { |
| 549 | vm_map_entry_t next; |
| 550 | |
| 551 | /* |
| 552 | * Find the end of the proposed new region. |
| 553 | * Be sure we didn't go beyond the end, or |
| 554 | * wrap around the address. |
| 555 | */ |
| 556 | |
| 557 | if (((start + mask) & ~mask) < start) { |
| 558 | printf_once("no more room for vm_map_find_entry in %p\n", map)({ static int __once = 0; if (!__once) { db_printf("no more room for vm_map_find_entry in %p\n" , map); __once = 1; } }); |
| 559 | return(KERN_NO_SPACE3); |
| 560 | } |
| 561 | start = ((start + mask) & ~mask); |
| 562 | end = start + size; |
| 563 | |
| 564 | if ((end > map->max_offsethdr.links.end) || (end < start)) { |
| 565 | printf_once("no more room for vm_map_find_entry in %p\n", map)({ static int __once = 0; if (!__once) { db_printf("no more room for vm_map_find_entry in %p\n" , map); __once = 1; } }); |
| 566 | return(KERN_NO_SPACE3); |
| 567 | } |
| 568 | |
| 569 | /* |
| 570 | * If there are no more entries, we must win. |
| 571 | */ |
| 572 | |
| 573 | next = entry->vme_nextlinks.next; |
| 574 | if (next == vm_map_to_entry(map)((struct vm_map_entry *) &(map)->hdr.links)) |
| 575 | break; |
| 576 | |
| 577 | /* |
| 578 | * If there is another entry, it must be |
| 579 | * after the end of the potential new region. |
| 580 | */ |
| 581 | |
| 582 | if (next->vme_startlinks.start >= end) |
| 583 | break; |
| 584 | |
| 585 | /* |
| 586 | * Didn't fit -- move to the next entry. |
| 587 | */ |
| 588 | |
| 589 | entry = next; |
| 590 | start = entry->vme_endlinks.end; |
| 591 | } |
| 592 | |
| 593 | /* |
| 594 | * At this point, |
| 595 | * "start" and "end" should define the endpoints of the |
| 596 | * available new range, and |
| 597 | * "entry" should refer to the region before the new |
| 598 | * range, and |
| 599 | * |
| 600 | * the map should be locked. |
| 601 | */ |
| 602 | |
| 603 | *address = start; |
| 604 | |
| 605 | /* |
| 606 | * See whether we can avoid creating a new entry by |
| 607 | * extending one of our neighbors. [So far, we only attempt to |
| 608 | * extend from below.] |
| 609 | */ |
| 610 | |
| 611 | if ((object != VM_OBJECT_NULL((vm_object_t) 0)) && |
| 612 | (entry != vm_map_to_entry(map)((struct vm_map_entry *) &(map)->hdr.links)) && |
| 613 | (entry->vme_endlinks.end == start) && |
| 614 | (!entry->is_shared) && |
| 615 | (!entry->is_sub_map) && |
| 616 | (entry->object.vm_object == object) && |
| 617 | (entry->needs_copy == FALSE((boolean_t) 0)) && |
| 618 | (entry->inheritance == VM_INHERIT_DEFAULT((vm_inherit_t) 1)) && |
| 619 | (entry->protection == VM_PROT_DEFAULT(((vm_prot_t) 0x01)|((vm_prot_t) 0x02))) && |
| 620 | (entry->max_protection == VM_PROT_ALL(((vm_prot_t) 0x01)|((vm_prot_t) 0x02)|((vm_prot_t) 0x04))) && |
| 621 | (entry->wired_count == 1) && |
| 622 | (entry->user_wired_count == 0) && |
| 623 | (entry->projected_on == 0)) { |
| 624 | /* |
| 625 | * Because this is a special case, |
| 626 | * we don't need to use vm_object_coalesce. |
| 627 | */ |
| 628 | |
| 629 | entry->vme_endlinks.end = end; |
| 630 | new_entry = entry; |
| 631 | } else { |
| 632 | new_entry = vm_map_entry_create(map)_vm_map_entry_create(&(map)->hdr); |
| 633 | |
| 634 | new_entry->vme_startlinks.start = start; |
| 635 | new_entry->vme_endlinks.end = end; |
| 636 | |
| 637 | new_entry->is_shared = FALSE((boolean_t) 0); |
| 638 | new_entry->is_sub_map = FALSE((boolean_t) 0); |
| 639 | new_entry->object.vm_object = VM_OBJECT_NULL((vm_object_t) 0); |
| 640 | new_entry->offset = (vm_offset_t) 0; |
| 641 | |
| 642 | new_entry->needs_copy = FALSE((boolean_t) 0); |
| 643 | |
| 644 | new_entry->inheritance = VM_INHERIT_DEFAULT((vm_inherit_t) 1); |
| 645 | new_entry->protection = VM_PROT_DEFAULT(((vm_prot_t) 0x01)|((vm_prot_t) 0x02)); |
| 646 | new_entry->max_protection = VM_PROT_ALL(((vm_prot_t) 0x01)|((vm_prot_t) 0x02)|((vm_prot_t) 0x04)); |
| 647 | new_entry->wired_count = 1; |
| 648 | new_entry->user_wired_count = 0; |
| 649 | |
| 650 | new_entry->in_transition = FALSE((boolean_t) 0); |
| 651 | new_entry->needs_wakeup = FALSE((boolean_t) 0); |
| 652 | new_entry->projected_on = 0; |
| 653 | |
| 654 | /* |
| 655 | * Insert the new entry into the list |
| 656 | */ |
| 657 | |
| 658 | vm_map_entry_link(map, entry, new_entry)({ (&(map)->hdr)->nentries++; (new_entry)->links .prev = (entry); (new_entry)->links.next = (entry)->links .next; (new_entry)->links.prev->links.next = (new_entry )->links.next->links.prev = (new_entry); ({ struct rbtree_node *___cur, *___prev; int ___diff, ___index; ___prev = ((void * ) 0); ___index = -1; ___cur = (&(&(map)->hdr)-> tree)->root; while (___cur != ((void *) 0)) { ___diff = vm_map_entry_cmp_insert (&(new_entry)->tree_node, ___cur); ({ if (!(___diff != 0)) Assert("___diff != 0", "../vm/vm_map.c", 658); }); ___prev = ___cur; ___index = rbtree_d2i(___diff); ___cur = ___cur-> children[___index]; } rbtree_insert_rebalance(&(&(map )->hdr)->tree, ___prev, ___index, &(new_entry)-> tree_node); }); }); |
| 659 | } |
| 660 | |
| 661 | map->size += size; |
| 662 | |
| 663 | /* |
| 664 | * Update the free space hint and the lookup hint |
| 665 | */ |
| 666 | |
| 667 | map->first_free = new_entry; |
| 668 | SAVE_HINT(map, new_entry); (map)->hint = (new_entry); ((void)(&(map)->hint_lock ));; |
| 669 | |
| 670 | *o_entry = new_entry; |
| 671 | return(KERN_SUCCESS0); |
| 672 | } |
| 673 | |
| 674 | boolean_t vm_map_pmap_enter_print = FALSE((boolean_t) 0); |
| 675 | boolean_t vm_map_pmap_enter_enable = FALSE((boolean_t) 0); |
| 676 | |
| 677 | /* |
| 678 | * Routine: vm_map_pmap_enter |
| 679 | * |
| 680 | * Description: |
| 681 | * Force pages from the specified object to be entered into |
| 682 | * the pmap at the specified address if they are present. |
| 683 | * As soon as a page not found in the object the scan ends. |
| 684 | * |
| 685 | * Returns: |
| 686 | * Nothing. |
| 687 | * |
| 688 | * In/out conditions: |
| 689 | * The source map should not be locked on entry. |
| 690 | */ |
| 691 | void |
| 692 | vm_map_pmap_enter(map, addr, end_addr, object, offset, protection) |
| 693 | vm_map_t map; |
| 694 | vm_offset_t addr; |
| 695 | vm_offset_t end_addr; |
| 696 | vm_object_t object; |
| 697 | vm_offset_t offset; |
| 698 | vm_prot_t protection; |
| 699 | { |
| 700 | while (addr < end_addr) { |
| 701 | vm_page_t m; |
| 702 | |
| 703 | vm_object_lock(object); |
| 704 | vm_object_paging_begin(object)((object)->paging_in_progress++); |
| 705 | |
| 706 | m = vm_page_lookup(object, offset); |
| 707 | if (m == VM_PAGE_NULL((vm_page_t) 0) || m->absent) { |
| 708 | vm_object_paging_end(object)({ ({ if (!((object)->paging_in_progress != 0)) Assert("(object)->paging_in_progress != 0" , "../vm/vm_map.c", 708); }); if (--(object)->paging_in_progress == 0) { ({ if ((object)->all_wanted & (1 << (2) )) thread_wakeup_prim(((event_t)(((vm_offset_t) object) + (2) )), ((boolean_t) 0), 0); (object)->all_wanted &= ~(1 << (2)); }); } }); |
| 709 | vm_object_unlock(object)((void)(&(object)->Lock)); |
| 710 | return; |
| 711 | } |
| 712 | |
| 713 | if (vm_map_pmap_enter_print) { |
| 714 | printfdb_printf("vm_map_pmap_enter:"); |
| 715 | printfdb_printf("map: %p, addr: %lx, object: %p, offset: %lx\n", |
| 716 | map, addr, object, offset); |
| 717 | } |
| 718 | |
| 719 | m->busy = TRUE((boolean_t) 1); |
| 720 | vm_object_unlock(object)((void)(&(object)->Lock)); |
| 721 | |
| 722 | PMAP_ENTER(map->pmap, addr, m,({ pmap_enter( (map->pmap), (addr), (m)->phys_addr, (protection ) & ~(m)->page_lock, (((boolean_t) 0)) ); }) |
| 723 | protection, FALSE)({ pmap_enter( (map->pmap), (addr), (m)->phys_addr, (protection ) & ~(m)->page_lock, (((boolean_t) 0)) ); }); |
| 724 | |
| 725 | vm_object_lock(object); |
| 726 | PAGE_WAKEUP_DONE(m)({ (m)->busy = ((boolean_t) 0); if ((m)->wanted) { (m)-> wanted = ((boolean_t) 0); thread_wakeup_prim((((event_t) m)), ((boolean_t) 0), 0); } }); |
| 727 | vm_page_lock_queues(); |
| 728 | if (!m->active && !m->inactive) |
| 729 | vm_page_activate(m); |
| 730 | vm_page_unlock_queues()((void)(&vm_page_queue_lock)); |
| 731 | vm_object_paging_end(object)({ ({ if (!((object)->paging_in_progress != 0)) Assert("(object)->paging_in_progress != 0" , "../vm/vm_map.c", 731); }); if (--(object)->paging_in_progress == 0) { ({ if ((object)->all_wanted & (1 << (2) )) thread_wakeup_prim(((event_t)(((vm_offset_t) object) + (2) )), ((boolean_t) 0), 0); (object)->all_wanted &= ~(1 << (2)); }); } }); |
| 732 | vm_object_unlock(object)((void)(&(object)->Lock)); |
| 733 | |
| 734 | offset += PAGE_SIZE(1 << 12); |
| 735 | addr += PAGE_SIZE(1 << 12); |
| 736 | } |
| 737 | } |
| 738 | |
| 739 | /* |
| 740 | * Routine: vm_map_enter |
| 741 | * |
| 742 | * Description: |
| 743 | * Allocate a range in the specified virtual address map. |
| 744 | * The resulting range will refer to memory defined by |
| 745 | * the given memory object and offset into that object. |
| 746 | * |
| 747 | * Arguments are as defined in the vm_map call. |
| 748 | */ |
| 749 | kern_return_t vm_map_enter( |
| 750 | map, |
| 751 | address, size, mask, anywhere, |
| 752 | object, offset, needs_copy, |
| 753 | cur_protection, max_protection, inheritance) |
| 754 | vm_map_t map; |
| 755 | vm_offset_t *address; /* IN/OUT */ |
| 756 | vm_size_t size; |
| 757 | vm_offset_t mask; |
| 758 | boolean_t anywhere; |
| 759 | vm_object_t object; |
| 760 | vm_offset_t offset; |
| 761 | boolean_t needs_copy; |
| 762 | vm_prot_t cur_protection; |
| 763 | vm_prot_t max_protection; |
| 764 | vm_inherit_t inheritance; |
| 765 | { |
| 766 | vm_map_entry_t entry; |
| 767 | vm_offset_t start; |
| 768 | vm_offset_t end; |
| 769 | kern_return_t result = KERN_SUCCESS0; |
| 770 | |
| 771 | #define RETURN(value) { result = value; goto BailOut; } |
| 772 | |
| 773 | if (size == 0) |
| 774 | return KERN_INVALID_ARGUMENT4; |
| 775 | |
| 776 | StartAgain: ; |
| 777 | |
| 778 | start = *address; |
| 779 | |
| 780 | if (anywhere) { |
| 781 | vm_map_lock(map)({ lock_write(&(map)->lock); (map)->timestamp++; }); |
| 782 | |
| 783 | /* |
| 784 | * Calculate the first possible address. |
| 785 | */ |
| 786 | |
| 787 | if (start < map->min_offsethdr.links.start) |
| 788 | start = map->min_offsethdr.links.start; |
| 789 | if (start > map->max_offsethdr.links.end) |
| 790 | RETURN(KERN_NO_SPACE3); |
| 791 | |
| 792 | /* |
| 793 | * Look for the first possible address; |
| 794 | * if there's already something at this |
| 795 | * address, we have to start after it. |
| 796 | */ |
| 797 | |
| 798 | if (start == map->min_offsethdr.links.start) { |
| 799 | if ((entry = map->first_free) != vm_map_to_entry(map)((struct vm_map_entry *) &(map)->hdr.links)) |
| 800 | start = entry->vme_endlinks.end; |
| 801 | } else { |
| 802 | vm_map_entry_t tmp_entry; |
| 803 | if (vm_map_lookup_entry(map, start, &tmp_entry)) |
| 804 | start = tmp_entry->vme_endlinks.end; |
| 805 | entry = tmp_entry; |
| 806 | } |
| 807 | |
| 808 | /* |
| 809 | * In any case, the "entry" always precedes |
| 810 | * the proposed new region throughout the |
| 811 | * loop: |
| 812 | */ |
| 813 | |
| 814 | while (TRUE((boolean_t) 1)) { |
| 815 | vm_map_entry_t next; |
| 816 | |
| 817 | /* |
| 818 | * Find the end of the proposed new region. |
| 819 | * Be sure we didn't go beyond the end, or |
| 820 | * wrap around the address. |
| 821 | */ |
| 822 | |
| 823 | if (((start + mask) & ~mask) < start) { |
| 824 | printf_once("no more room for vm_map_enter in %p\n", map)({ static int __once = 0; if (!__once) { db_printf("no more room for vm_map_enter in %p\n" , map); __once = 1; } }); |
| 825 | RETURN(KERN_NO_SPACE3); |
| 826 | } |
| 827 | start = ((start + mask) & ~mask); |
| 828 | end = start + size; |
| 829 | |
| 830 | if ((end > map->max_offsethdr.links.end) || (end < start)) { |
| 831 | if (map->wait_for_space) { |
| 832 | if (size <= (map->max_offsethdr.links.end - |
| 833 | map->min_offsethdr.links.start)) { |
| 834 | assert_wait((event_t) map, TRUE((boolean_t) 1)); |
| 835 | vm_map_unlock(map)lock_done(&(map)->lock); |
| 836 | thread_block((void (*)()) 0); |
| 837 | goto StartAgain; |
| 838 | } |
| 839 | } |
| 840 | |
| 841 | printf_once("no more room for vm_map_enter in %p\n", map)({ static int __once = 0; if (!__once) { db_printf("no more room for vm_map_enter in %p\n" , map); __once = 1; } }); |
| 842 | RETURN(KERN_NO_SPACE3); |
| 843 | } |
| 844 | |
| 845 | /* |
| 846 | * If there are no more entries, we must win. |
| 847 | */ |
| 848 | |
| 849 | next = entry->vme_nextlinks.next; |
| 850 | if (next == vm_map_to_entry(map)((struct vm_map_entry *) &(map)->hdr.links)) |
| 851 | break; |
| 852 | |
| 853 | /* |
| 854 | * If there is another entry, it must be |
| 855 | * after the end of the potential new region. |
| 856 | */ |
| 857 | |
| 858 | if (next->vme_startlinks.start >= end) |
| 859 | break; |
| 860 | |
| 861 | /* |
| 862 | * Didn't fit -- move to the next entry. |
| 863 | */ |
| 864 | |
| 865 | entry = next; |
| 866 | start = entry->vme_endlinks.end; |
| 867 | } |
| 868 | *address = start; |
| 869 | } else { |
| 870 | vm_map_entry_t temp_entry; |
| 871 | |
| 872 | /* |
| 873 | * Verify that: |
| 874 | * the address doesn't itself violate |
| 875 | * the mask requirement. |
| 876 | */ |
| 877 | |
| 878 | if ((start & mask) != 0) |
| 879 | return(KERN_NO_SPACE3); |
| 880 | |
| 881 | vm_map_lock(map)({ lock_write(&(map)->lock); (map)->timestamp++; }); |
| 882 | |
| 883 | /* |
| 884 | * ... the address is within bounds |
| 885 | */ |
| 886 | |
| 887 | end = start + size; |
| 888 | |
| 889 | if ((start < map->min_offsethdr.links.start) || |
| 890 | (end > map->max_offsethdr.links.end) || |
| 891 | (start >= end)) { |
| 892 | RETURN(KERN_INVALID_ADDRESS1); |
| 893 | } |
| 894 | |
| 895 | /* |
| 896 | * ... the starting address isn't allocated |
| 897 | */ |
| 898 | |
| 899 | if (vm_map_lookup_entry(map, start, &temp_entry)) |
| 900 | RETURN(KERN_NO_SPACE3); |
| 901 | |
| 902 | entry = temp_entry; |
| 903 | |
| 904 | /* |
| 905 | * ... the next region doesn't overlap the |
| 906 | * end point. |
| 907 | */ |
| 908 | |
| 909 | if ((entry->vme_nextlinks.next != vm_map_to_entry(map)((struct vm_map_entry *) &(map)->hdr.links)) && |
| 910 | (entry->vme_nextlinks.next->vme_startlinks.start < end)) |
| 911 | RETURN(KERN_NO_SPACE3); |
| 912 | } |
| 913 | |
| 914 | /* |
| 915 | * At this point, |
| 916 | * "start" and "end" should define the endpoints of the |
| 917 | * available new range, and |
| 918 | * "entry" should refer to the region before the new |
| 919 | * range, and |
| 920 | * |
| 921 | * the map should be locked. |
| 922 | */ |
| 923 | |
| 924 | /* |
| 925 | * See whether we can avoid creating a new entry (and object) by |
| 926 | * extending one of our neighbors. [So far, we only attempt to |
| 927 | * extend from below.] |
| 928 | */ |
| 929 | |
| 930 | if ((object == VM_OBJECT_NULL((vm_object_t) 0)) && |
| 931 | (entry != vm_map_to_entry(map)((struct vm_map_entry *) &(map)->hdr.links)) && |
| 932 | (entry->vme_endlinks.end == start) && |
| 933 | (!entry->is_shared) && |
| 934 | (!entry->is_sub_map) && |
| 935 | (entry->inheritance == inheritance) && |
| 936 | (entry->protection == cur_protection) && |
| 937 | (entry->max_protection == max_protection) && |
| 938 | (entry->wired_count == 0) && /* implies user_wired_count == 0 */ |
| 939 | (entry->projected_on == 0)) { |
| 940 | if (vm_object_coalesce(entry->object.vm_object, |
| 941 | VM_OBJECT_NULL((vm_object_t) 0), |
| 942 | entry->offset, |
| 943 | (vm_offset_t) 0, |
| 944 | (vm_size_t)(entry->vme_endlinks.end - entry->vme_startlinks.start), |
| 945 | (vm_size_t)(end - entry->vme_endlinks.end))) { |
| 946 | |
| 947 | /* |
| 948 | * Coalesced the two objects - can extend |
| 949 | * the previous map entry to include the |
| 950 | * new range. |
| 951 | */ |
| 952 | map->size += (end - entry->vme_endlinks.end); |
| 953 | entry->vme_endlinks.end = end; |
| 954 | RETURN(KERN_SUCCESS0); |
| 955 | } |
| 956 | } |
| 957 | |
| 958 | /* |
| 959 | * Create a new entry |
| 960 | */ |
| 961 | |
| 962 | /**/ { |
| 963 | vm_map_entry_t new_entry; |
| 964 | |
| 965 | new_entry = vm_map_entry_create(map)_vm_map_entry_create(&(map)->hdr); |
| 966 | |
| 967 | new_entry->vme_startlinks.start = start; |
| 968 | new_entry->vme_endlinks.end = end; |
| 969 | |
| 970 | new_entry->is_shared = FALSE((boolean_t) 0); |
| 971 | new_entry->is_sub_map = FALSE((boolean_t) 0); |
| 972 | new_entry->object.vm_object = object; |
| 973 | new_entry->offset = offset; |
| 974 | |
| 975 | new_entry->needs_copy = needs_copy; |
| 976 | |
| 977 | new_entry->inheritance = inheritance; |
| 978 | new_entry->protection = cur_protection; |
| 979 | new_entry->max_protection = max_protection; |
| 980 | new_entry->wired_count = 0; |
| 981 | new_entry->user_wired_count = 0; |
| 982 | |
| 983 | new_entry->in_transition = FALSE((boolean_t) 0); |
| 984 | new_entry->needs_wakeup = FALSE((boolean_t) 0); |
| 985 | new_entry->projected_on = 0; |
| 986 | |
| 987 | /* |
| 988 | * Insert the new entry into the list |
| 989 | */ |
| 990 | |
| 991 | vm_map_entry_link(map, entry, new_entry)({ (&(map)->hdr)->nentries++; (new_entry)->links .prev = (entry); (new_entry)->links.next = (entry)->links .next; (new_entry)->links.prev->links.next = (new_entry )->links.next->links.prev = (new_entry); ({ struct rbtree_node *___cur, *___prev; int ___diff, ___index; ___prev = ((void * ) 0); ___index = -1; ___cur = (&(&(map)->hdr)-> tree)->root; while (___cur != ((void *) 0)) { ___diff = vm_map_entry_cmp_insert (&(new_entry)->tree_node, ___cur); ({ if (!(___diff != 0)) Assert("___diff != 0", "../vm/vm_map.c", 991); }); ___prev = ___cur; ___index = rbtree_d2i(___diff); ___cur = ___cur-> children[___index]; } rbtree_insert_rebalance(&(&(map )->hdr)->tree, ___prev, ___index, &(new_entry)-> tree_node); }); }); |
| 992 | map->size += size; |
| 993 | |
| 994 | /* |
| 995 | * Update the free space hint and the lookup hint |
| 996 | */ |
| 997 | |
| 998 | if ((map->first_free == entry) && |
| 999 | ((entry == vm_map_to_entry(map)((struct vm_map_entry *) &(map)->hdr.links) ? map->min_offsethdr.links.start : entry->vme_endlinks.end) |
| 1000 | >= new_entry->vme_startlinks.start)) |
| 1001 | map->first_free = new_entry; |
| 1002 | |
| 1003 | SAVE_HINT(map, new_entry); (map)->hint = (new_entry); ((void)(&(map)->hint_lock ));; |
| 1004 | |
| 1005 | vm_map_unlock(map)lock_done(&(map)->lock); |
| 1006 | |
| 1007 | if ((object != VM_OBJECT_NULL((vm_object_t) 0)) && |
| 1008 | (vm_map_pmap_enter_enable) && |
| 1009 | (!anywhere) && |
| 1010 | (!needs_copy) && |
| 1011 | (size < (128*1024))) { |
| 1012 | vm_map_pmap_enter(map, start, end, |
| 1013 | object, offset, cur_protection); |
| 1014 | } |
| 1015 | |
| 1016 | return(result); |
| 1017 | /**/ } |
| 1018 | |
| 1019 | BailOut: ; |
| 1020 | |
| 1021 | vm_map_unlock(map)lock_done(&(map)->lock); |
| 1022 | return(result); |
| 1023 | |
| 1024 | #undef RETURN |
| 1025 | } |
| 1026 | |
| 1027 | /* |
| 1028 | * vm_map_clip_start: [ internal use only ] |
| 1029 | * |
| 1030 | * Asserts that the given entry begins at or after |
| 1031 | * the specified address; if necessary, |
| 1032 | * it splits the entry into two. |
| 1033 | */ |
| 1034 | #define vm_map_clip_start(map, entry, startaddr)({ if ((startaddr) > (entry)->links.start) _vm_map_clip_start (&(map)->hdr,(entry),(startaddr)); }) \ |
| 1035 | MACRO_BEGIN({ \ |
| 1036 | if ((startaddr) > (entry)->vme_startlinks.start) \ |
| 1037 | _vm_map_clip_start(&(map)->hdr,(entry),(startaddr)); \ |
| 1038 | MACRO_END}) |
| 1039 | |
| 1040 | #define vm_map_copy_clip_start(copy, entry, startaddr)({ if ((startaddr) > (entry)->links.start) _vm_map_clip_start (&(copy)->c_u.hdr,(entry),(startaddr)); }) \ |
| 1041 | MACRO_BEGIN({ \ |
| 1042 | if ((startaddr) > (entry)->vme_startlinks.start) \ |
| 1043 | _vm_map_clip_start(&(copy)->cpy_hdrc_u.hdr,(entry),(startaddr)); \ |
| 1044 | MACRO_END}) |
| 1045 | |
| 1046 | /* |
| 1047 | * This routine is called only when it is known that |
| 1048 | * the entry must be split. |
| 1049 | */ |
| 1050 | void _vm_map_clip_start(map_header, entry, start) |
| 1051 | struct vm_map_header *map_header; |
| 1052 | vm_map_entry_t entry; |
| 1053 | vm_offset_t start; |
| 1054 | { |
| 1055 | vm_map_entry_t new_entry; |
| 1056 | |
| 1057 | /* |
| 1058 | * Split off the front portion -- |
| 1059 | * note that we must insert the new |
| 1060 | * entry BEFORE this one, so that |
| 1061 | * this entry has the specified starting |
| 1062 | * address. |
| 1063 | */ |
| 1064 | |
| 1065 | new_entry = _vm_map_entry_create(map_header); |
| 1066 | vm_map_entry_copy_full(new_entry, entry)(*(new_entry) = *(entry)); |
| 1067 | |
| 1068 | new_entry->vme_endlinks.end = start; |
| 1069 | entry->offset += (start - entry->vme_startlinks.start); |
| 1070 | entry->vme_startlinks.start = start; |
| 1071 | |
| 1072 | _vm_map_entry_link(map_header, entry->vme_prev, new_entry)({ (map_header)->nentries++; (new_entry)->links.prev = ( entry->links.prev); (new_entry)->links.next = (entry-> links.prev)->links.next; (new_entry)->links.prev->links .next = (new_entry)->links.next->links.prev = (new_entry ); ({ struct rbtree_node *___cur, *___prev; int ___diff, ___index ; ___prev = ((void *) 0); ___index = -1; ___cur = (&(map_header )->tree)->root; while (___cur != ((void *) 0)) { ___diff = vm_map_entry_cmp_insert(&(new_entry)->tree_node, ___cur ); ({ if (!(___diff != 0)) Assert("___diff != 0", "../vm/vm_map.c" , 1072); }); ___prev = ___cur; ___index = rbtree_d2i(___diff) ; ___cur = ___cur->children[___index]; } rbtree_insert_rebalance (&(map_header)->tree, ___prev, ___index, &(new_entry )->tree_node); }); }); |
| 1073 | |
| 1074 | if (entry->is_sub_map) |
| 1075 | vm_map_reference(new_entry->object.sub_map); |
| 1076 | else |
| 1077 | vm_object_reference(new_entry->object.vm_object); |
| 1078 | } |
| 1079 | |
| 1080 | /* |
| 1081 | * vm_map_clip_end: [ internal use only ] |
| 1082 | * |
| 1083 | * Asserts that the given entry ends at or before |
| 1084 | * the specified address; if necessary, |
| 1085 | * it splits the entry into two. |
| 1086 | */ |
| 1087 | #define vm_map_clip_end(map, entry, endaddr)({ if ((endaddr) < (entry)->links.end) _vm_map_clip_end (&(map)->hdr,(entry),(endaddr)); }) \ |
| 1088 | MACRO_BEGIN({ \ |
| 1089 | if ((endaddr) < (entry)->vme_endlinks.end) \ |
| 1090 | _vm_map_clip_end(&(map)->hdr,(entry),(endaddr)); \ |
| 1091 | MACRO_END}) |
| 1092 | |
| 1093 | #define vm_map_copy_clip_end(copy, entry, endaddr)({ if ((endaddr) < (entry)->links.end) _vm_map_clip_end (&(copy)->c_u.hdr,(entry),(endaddr)); }) \ |
| 1094 | MACRO_BEGIN({ \ |
| 1095 | if ((endaddr) < (entry)->vme_endlinks.end) \ |
| 1096 | _vm_map_clip_end(&(copy)->cpy_hdrc_u.hdr,(entry),(endaddr)); \ |
| 1097 | MACRO_END}) |
| 1098 | |
| 1099 | /* |
| 1100 | * This routine is called only when it is known that |
| 1101 | * the entry must be split. |
| 1102 | */ |
| 1103 | void _vm_map_clip_end(map_header, entry, end) |
| 1104 | struct vm_map_header *map_header; |
| 1105 | vm_map_entry_t entry; |
| 1106 | vm_offset_t end; |
| 1107 | { |
| 1108 | vm_map_entry_t new_entry; |
| 1109 | |
| 1110 | /* |
| 1111 | * Create a new entry and insert it |
| 1112 | * AFTER the specified entry |
| 1113 | */ |
| 1114 | |
| 1115 | new_entry = _vm_map_entry_create(map_header); |
| 1116 | vm_map_entry_copy_full(new_entry, entry)(*(new_entry) = *(entry)); |
| 1117 | |
| 1118 | new_entry->vme_startlinks.start = entry->vme_endlinks.end = end; |
| 1119 | new_entry->offset += (end - entry->vme_startlinks.start); |
| 1120 | |
| 1121 | _vm_map_entry_link(map_header, entry, new_entry)({ (map_header)->nentries++; (new_entry)->links.prev = ( entry); (new_entry)->links.next = (entry)->links.next; ( new_entry)->links.prev->links.next = (new_entry)->links .next->links.prev = (new_entry); ({ struct rbtree_node *___cur , *___prev; int ___diff, ___index; ___prev = ((void *) 0); ___index = -1; ___cur = (&(map_header)->tree)->root; while ( ___cur != ((void *) 0)) { ___diff = vm_map_entry_cmp_insert(& (new_entry)->tree_node, ___cur); ({ if (!(___diff != 0)) Assert ("___diff != 0", "../vm/vm_map.c", 1121); }); ___prev = ___cur ; ___index = rbtree_d2i(___diff); ___cur = ___cur->children [___index]; } rbtree_insert_rebalance(&(map_header)->tree , ___prev, ___index, &(new_entry)->tree_node); }); }); |
| 1122 | |
| 1123 | if (entry->is_sub_map) |
| 1124 | vm_map_reference(new_entry->object.sub_map); |
| 1125 | else |
| 1126 | vm_object_reference(new_entry->object.vm_object); |
| 1127 | } |
| 1128 | |
| 1129 | /* |
| 1130 | * VM_MAP_RANGE_CHECK: [ internal use only ] |
| 1131 | * |
| 1132 | * Asserts that the starting and ending region |
| 1133 | * addresses fall within the valid range of the map. |
| 1134 | */ |
| 1135 | #define VM_MAP_RANGE_CHECK(map, start, end){ if (start < ((map)->hdr.links.start)) start = ((map)-> hdr.links.start); if (end > ((map)->hdr.links.end)) end = ((map)->hdr.links.end); if (start > end) start = end ; } \ |
| 1136 | { \ |
| 1137 | if (start < vm_map_min(map)((map)->hdr.links.start)) \ |
| 1138 | start = vm_map_min(map)((map)->hdr.links.start); \ |
| 1139 | if (end > vm_map_max(map)((map)->hdr.links.end)) \ |
| 1140 | end = vm_map_max(map)((map)->hdr.links.end); \ |
| 1141 | if (start > end) \ |
| 1142 | start = end; \ |
| 1143 | } |
| 1144 | |
| 1145 | /* |
| 1146 | * vm_map_submap: [ kernel use only ] |
| 1147 | * |
| 1148 | * Mark the given range as handled by a subordinate map. |
| 1149 | * |
| 1150 | * This range must have been created with vm_map_find using |
| 1151 | * the vm_submap_object, and no other operations may have been |
| 1152 | * performed on this range prior to calling vm_map_submap. |
| 1153 | * |
| 1154 | * Only a limited number of operations can be performed |
| 1155 | * within this rage after calling vm_map_submap: |
| 1156 | * vm_fault |
| 1157 | * [Don't try vm_map_copyin!] |
| 1158 | * |
| 1159 | * To remove a submapping, one must first remove the |
| 1160 | * range from the superior map, and then destroy the |
| 1161 | * submap (if desired). [Better yet, don't try it.] |
| 1162 | */ |
| 1163 | kern_return_t vm_map_submap(map, start, end, submap) |
| 1164 | vm_map_t map; |
| 1165 | vm_offset_t start; |
| 1166 | vm_offset_t end; |
| 1167 | vm_map_t submap; |
| 1168 | { |
| 1169 | vm_map_entry_t entry; |
| 1170 | kern_return_t result = KERN_INVALID_ARGUMENT4; |
| 1171 | vm_object_t object; |
| 1172 | |
| 1173 | vm_map_lock(map)({ lock_write(&(map)->lock); (map)->timestamp++; }); |
| 1174 | |
| 1175 | VM_MAP_RANGE_CHECK(map, start, end){ if (start < ((map)->hdr.links.start)) start = ((map)-> hdr.links.start); if (end > ((map)->hdr.links.end)) end = ((map)->hdr.links.end); if (start > end) start = end ; }; |
| 1176 | |
| 1177 | if (vm_map_lookup_entry(map, start, &entry)) { |
| 1178 | vm_map_clip_start(map, entry, start)({ if ((start) > (entry)->links.start) _vm_map_clip_start (&(map)->hdr,(entry),(start)); }); |
| 1179 | } |
| 1180 | else |
| 1181 | entry = entry->vme_nextlinks.next; |
| 1182 | |
| 1183 | vm_map_clip_end(map, entry, end)({ if ((end) < (entry)->links.end) _vm_map_clip_end(& (map)->hdr,(entry),(end)); }); |
| 1184 | |
| 1185 | if ((entry->vme_startlinks.start == start) && (entry->vme_endlinks.end == end) && |
| 1186 | (!entry->is_sub_map) && |
| 1187 | ((object = entry->object.vm_object) == vm_submap_object) && |
| 1188 | (object->resident_page_count == 0) && |
| 1189 | (object->copy == VM_OBJECT_NULL((vm_object_t) 0)) && |
| 1190 | (object->shadow == VM_OBJECT_NULL((vm_object_t) 0)) && |
| 1191 | (!object->pager_created)) { |
| 1192 | entry->object.vm_object = VM_OBJECT_NULL((vm_object_t) 0); |
| 1193 | vm_object_deallocate(object); |
| 1194 | entry->is_sub_map = TRUE((boolean_t) 1); |
| 1195 | vm_map_reference(entry->object.sub_map = submap); |
| 1196 | result = KERN_SUCCESS0; |
| 1197 | } |
| 1198 | vm_map_unlock(map)lock_done(&(map)->lock); |
| 1199 | |
| 1200 | return(result); |
| 1201 | } |
| 1202 | |
| 1203 | /* |
| 1204 | * vm_map_protect: |
| 1205 | * |
| 1206 | * Sets the protection of the specified address |
| 1207 | * region in the target map. If "set_max" is |
| 1208 | * specified, the maximum protection is to be set; |
| 1209 | * otherwise, only the current protection is affected. |
| 1210 | */ |
| 1211 | kern_return_t vm_map_protect(map, start, end, new_prot, set_max) |
| 1212 | vm_map_t map; |
| 1213 | vm_offset_t start; |
| 1214 | vm_offset_t end; |
| 1215 | vm_prot_t new_prot; |
| 1216 | boolean_t set_max; |
| 1217 | { |
| 1218 | vm_map_entry_t current; |
| 1219 | vm_map_entry_t entry; |
| 1220 | |
| 1221 | vm_map_lock(map)({ lock_write(&(map)->lock); (map)->timestamp++; }); |
| 1222 | |
| 1223 | VM_MAP_RANGE_CHECK(map, start, end){ if (start < ((map)->hdr.links.start)) start = ((map)-> hdr.links.start); if (end > ((map)->hdr.links.end)) end = ((map)->hdr.links.end); if (start > end) start = end ; }; |
| 1224 | |
| 1225 | if (vm_map_lookup_entry(map, start, &entry)) { |
| 1226 | vm_map_clip_start(map, entry, start)({ if ((start) > (entry)->links.start) _vm_map_clip_start (&(map)->hdr,(entry),(start)); }); |
| 1227 | } |
| 1228 | else |
| 1229 | entry = entry->vme_nextlinks.next; |
| 1230 | |
| 1231 | /* |
| 1232 | * Make a first pass to check for protection |
| 1233 | * violations. |
| 1234 | */ |
| 1235 | |
| 1236 | current = entry; |
| 1237 | while ((current != vm_map_to_entry(map)((struct vm_map_entry *) &(map)->hdr.links)) && |
| 1238 | (current->vme_startlinks.start < end)) { |
| 1239 | |
| 1240 | if (current->is_sub_map) { |
| 1241 | vm_map_unlock(map)lock_done(&(map)->lock); |
| 1242 | return(KERN_INVALID_ARGUMENT4); |
| 1243 | } |
| 1244 | if ((new_prot & (VM_PROT_NOTIFY((vm_prot_t) 0x10) | current->max_protection)) |
| 1245 | != new_prot) { |
| 1246 | vm_map_unlock(map)lock_done(&(map)->lock); |
| 1247 | return(KERN_PROTECTION_FAILURE2); |
| 1248 | } |
| 1249 | |
| 1250 | current = current->vme_nextlinks.next; |
| 1251 | } |
| 1252 | |
| 1253 | /* |
| 1254 | * Go back and fix up protections. |
| 1255 | * [Note that clipping is not necessary the second time.] |
| 1256 | */ |
| 1257 | |
| 1258 | current = entry; |
| 1259 | |
| 1260 | while ((current != vm_map_to_entry(map)((struct vm_map_entry *) &(map)->hdr.links)) && |
| 1261 | (current->vme_startlinks.start < end)) { |
| 1262 | |
| 1263 | vm_prot_t old_prot; |
| 1264 | |
| 1265 | vm_map_clip_end(map, current, end)({ if ((end) < (current)->links.end) _vm_map_clip_end(& (map)->hdr,(current),(end)); }); |
| 1266 | |
| 1267 | old_prot = current->protection; |
| 1268 | if (set_max) |
| 1269 | current->protection = |
| 1270 | (current->max_protection = new_prot) & |
| 1271 | old_prot; |
| 1272 | else |
| 1273 | current->protection = new_prot; |
| 1274 | |
| 1275 | /* |
| 1276 | * Update physical map if necessary. |
| 1277 | */ |
| 1278 | |
| 1279 | if (current->protection != old_prot) { |
| 1280 | pmap_protect(map->pmap, current->vme_startlinks.start, |
| 1281 | current->vme_endlinks.end, |
| 1282 | current->protection); |
| 1283 | } |
| 1284 | current = current->vme_nextlinks.next; |
| 1285 | } |
| 1286 | |
| 1287 | vm_map_unlock(map)lock_done(&(map)->lock); |
| 1288 | return(KERN_SUCCESS0); |
| 1289 | } |
| 1290 | |
| 1291 | /* |
| 1292 | * vm_map_inherit: |
| 1293 | * |
| 1294 | * Sets the inheritance of the specified address |
| 1295 | * range in the target map. Inheritance |
| 1296 | * affects how the map will be shared with |
| 1297 | * child maps at the time of vm_map_fork. |
| 1298 | */ |
| 1299 | kern_return_t vm_map_inherit(map, start, end, new_inheritance) |
| 1300 | vm_map_t map; |
| 1301 | vm_offset_t start; |
| 1302 | vm_offset_t end; |
| 1303 | vm_inherit_t new_inheritance; |
| 1304 | { |
| 1305 | vm_map_entry_t entry; |
| 1306 | vm_map_entry_t temp_entry; |
| 1307 | |
| 1308 | vm_map_lock(map)({ lock_write(&(map)->lock); (map)->timestamp++; }); |
| 1309 | |
| 1310 | VM_MAP_RANGE_CHECK(map, start, end){ if (start < ((map)->hdr.links.start)) start = ((map)-> hdr.links.start); if (end > ((map)->hdr.links.end)) end = ((map)->hdr.links.end); if (start > end) start = end ; }; |
| 1311 | |
| 1312 | if (vm_map_lookup_entry(map, start, &temp_entry)) { |
| 1313 | entry = temp_entry; |
| 1314 | vm_map_clip_start(map, entry, start)({ if ((start) > (entry)->links.start) _vm_map_clip_start (&(map)->hdr,(entry),(start)); }); |
| 1315 | } |
| 1316 | else |
| 1317 | entry = temp_entry->vme_nextlinks.next; |
| 1318 | |
| 1319 | while ((entry != vm_map_to_entry(map)((struct vm_map_entry *) &(map)->hdr.links)) && (entry->vme_startlinks.start < end)) { |
| 1320 | vm_map_clip_end(map, entry, end)({ if ((end) < (entry)->links.end) _vm_map_clip_end(& (map)->hdr,(entry),(end)); }); |
| 1321 | |
| 1322 | entry->inheritance = new_inheritance; |
| 1323 | |
| 1324 | entry = entry->vme_nextlinks.next; |
| 1325 | } |
| 1326 | |
| 1327 | vm_map_unlock(map)lock_done(&(map)->lock); |
| 1328 | return(KERN_SUCCESS0); |
| 1329 | } |
| 1330 | |
| 1331 | /* |
| 1332 | * vm_map_pageable_common: |
| 1333 | * |
| 1334 | * Sets the pageability of the specified address |
| 1335 | * range in the target map. Regions specified |
| 1336 | * as not pageable require locked-down physical |
| 1337 | * memory and physical page maps. access_type indicates |
| 1338 | * types of accesses that must not generate page faults. |
| 1339 | * This is checked against protection of memory being locked-down. |
| 1340 | * access_type of VM_PROT_NONE makes memory pageable. |
| 1341 | * |
| 1342 | * The map must not be locked, but a reference |
| 1343 | * must remain to the map throughout the call. |
| 1344 | * |
| 1345 | * Callers should use macros in vm/vm_map.h (i.e. vm_map_pageable, |
| 1346 | * or vm_map_pageable_user); don't call vm_map_pageable directly. |
| 1347 | */ |
| 1348 | kern_return_t vm_map_pageable_common(map, start, end, access_type, user_wire) |
| 1349 | vm_map_t map; |
| 1350 | vm_offset_t start; |
| 1351 | vm_offset_t end; |
| 1352 | vm_prot_t access_type; |
| 1353 | boolean_t user_wire; |
| 1354 | { |
| 1355 | vm_map_entry_t entry; |
| 1356 | vm_map_entry_t start_entry; |
| 1357 | |
| 1358 | vm_map_lock(map)({ lock_write(&(map)->lock); (map)->timestamp++; }); |
| 1359 | |
| 1360 | VM_MAP_RANGE_CHECK(map, start, end){ if (start < ((map)->hdr.links.start)) start = ((map)-> hdr.links.start); if (end > ((map)->hdr.links.end)) end = ((map)->hdr.links.end); if (start > end) start = end ; }; |
| 1361 | |
| 1362 | if (vm_map_lookup_entry(map, start, &start_entry)) { |
| 1363 | entry = start_entry; |
| 1364 | /* |
| 1365 | * vm_map_clip_start will be done later. |
| 1366 | */ |
| 1367 | } |
| 1368 | else { |
| 1369 | /* |
| 1370 | * Start address is not in map; this is fatal. |
| 1371 | */ |
| 1372 | vm_map_unlock(map)lock_done(&(map)->lock); |
| 1373 | return(KERN_FAILURE5); |
| 1374 | } |
| 1375 | |
| 1376 | /* |
| 1377 | * Actions are rather different for wiring and unwiring, |
| 1378 | * so we have two separate cases. |
| 1379 | */ |
| 1380 | |
| 1381 | if (access_type == VM_PROT_NONE((vm_prot_t) 0x00)) { |
| 1382 | |
| 1383 | vm_map_clip_start(map, entry, start)({ if ((start) > (entry)->links.start) _vm_map_clip_start (&(map)->hdr,(entry),(start)); }); |
| 1384 | |
| 1385 | /* |
| 1386 | * Unwiring. First ensure that the range to be |
| 1387 | * unwired is really wired down. |
| 1388 | */ |
| 1389 | while ((entry != vm_map_to_entry(map)((struct vm_map_entry *) &(map)->hdr.links)) && |
| 1390 | (entry->vme_startlinks.start < end)) { |
| 1391 | |
| 1392 | if ((entry->wired_count == 0) || |
| 1393 | ((entry->vme_endlinks.end < end) && |
| 1394 | ((entry->vme_nextlinks.next == vm_map_to_entry(map)((struct vm_map_entry *) &(map)->hdr.links)) || |
| 1395 | (entry->vme_nextlinks.next->vme_startlinks.start > entry->vme_endlinks.end))) || |
| 1396 | (user_wire && (entry->user_wired_count == 0))) { |
| 1397 | vm_map_unlock(map)lock_done(&(map)->lock); |
| 1398 | return(KERN_INVALID_ARGUMENT4); |
| 1399 | } |
| 1400 | entry = entry->vme_nextlinks.next; |
| 1401 | } |
| 1402 | |
| 1403 | /* |
| 1404 | * Now decrement the wiring count for each region. |
| 1405 | * If a region becomes completely unwired, |
| 1406 | * unwire its physical pages and mappings. |
| 1407 | */ |
| 1408 | entry = start_entry; |
| 1409 | while ((entry != vm_map_to_entry(map)((struct vm_map_entry *) &(map)->hdr.links)) && |
| 1410 | (entry->vme_startlinks.start < end)) { |
| 1411 | vm_map_clip_end(map, entry, end)({ if ((end) < (entry)->links.end) _vm_map_clip_end(& (map)->hdr,(entry),(end)); }); |
| 1412 | |
| 1413 | if (user_wire) { |
| 1414 | if (--(entry->user_wired_count) == 0) |
| 1415 | entry->wired_count--; |
| 1416 | } |
| 1417 | else { |
| 1418 | entry->wired_count--; |
| 1419 | } |
| 1420 | |
| 1421 | if (entry->wired_count == 0) |
| 1422 | vm_fault_unwire(map, entry); |
| 1423 | |
| 1424 | entry = entry->vme_nextlinks.next; |
| 1425 | } |
| 1426 | } |
| 1427 | |
| 1428 | else { |
| 1429 | /* |
| 1430 | * Wiring. We must do this in two passes: |
| 1431 | * |
| 1432 | * 1. Holding the write lock, we create any shadow |
| 1433 | * or zero-fill objects that need to be created. |
| 1434 | * Then we clip each map entry to the region to be |
| 1435 | * wired and increment its wiring count. We |
| 1436 | * create objects before clipping the map entries |
| 1437 | * to avoid object proliferation. |
| 1438 | * |
| 1439 | * 2. We downgrade to a read lock, and call |
| 1440 | * vm_fault_wire to fault in the pages for any |
| 1441 | * newly wired area (wired_count is 1). |
| 1442 | * |
| 1443 | * Downgrading to a read lock for vm_fault_wire avoids |
| 1444 | * a possible deadlock with another thread that may have |
| 1445 | * faulted on one of the pages to be wired (it would mark |
| 1446 | * the page busy, blocking us, then in turn block on the |
| 1447 | * map lock that we hold). Because of problems in the |
| 1448 | * recursive lock package, we cannot upgrade to a write |
| 1449 | * lock in vm_map_lookup. Thus, any actions that require |
| 1450 | * the write lock must be done beforehand. Because we |
| 1451 | * keep the read lock on the map, the copy-on-write |
| 1452 | * status of the entries we modify here cannot change. |
| 1453 | */ |
| 1454 | |
| 1455 | /* |
| 1456 | * Pass 1. |
| 1457 | */ |
| 1458 | while ((entry != vm_map_to_entry(map)((struct vm_map_entry *) &(map)->hdr.links)) && |
| 1459 | (entry->vme_startlinks.start < end)) { |
| 1460 | vm_map_clip_end(map, entry, end)({ if ((end) < (entry)->links.end) _vm_map_clip_end(& (map)->hdr,(entry),(end)); }); |
| 1461 | |
| 1462 | if (entry->wired_count == 0) { |
| 1463 | |
| 1464 | /* |
| 1465 | * Perform actions of vm_map_lookup that need |
| 1466 | * the write lock on the map: create a shadow |
| 1467 | * object for a copy-on-write region, or an |
| 1468 | * object for a zero-fill region. |
| 1469 | */ |
| 1470 | if (entry->needs_copy && |
| 1471 | ((entry->protection & VM_PROT_WRITE((vm_prot_t) 0x02)) != 0)) { |
| 1472 | |
| 1473 | vm_object_shadow(&entry->object.vm_object, |
| 1474 | &entry->offset, |
| 1475 | (vm_size_t)(entry->vme_endlinks.end |
| 1476 | - entry->vme_startlinks.start)); |
| 1477 | entry->needs_copy = FALSE((boolean_t) 0); |
| 1478 | } |
| 1479 | if (entry->object.vm_object == VM_OBJECT_NULL((vm_object_t) 0)) { |
| 1480 | entry->object.vm_object = |
| 1481 | vm_object_allocate( |
| 1482 | (vm_size_t)(entry->vme_endlinks.end |
| 1483 | - entry->vme_startlinks.start)); |
| 1484 | entry->offset = (vm_offset_t)0; |
| 1485 | } |
| 1486 | } |
| 1487 | vm_map_clip_start(map, entry, start)({ if ((start) > (entry)->links.start) _vm_map_clip_start (&(map)->hdr,(entry),(start)); }); |
| 1488 | vm_map_clip_end(map, entry, end)({ if ((end) < (entry)->links.end) _vm_map_clip_end(& (map)->hdr,(entry),(end)); }); |
| 1489 | |
| 1490 | if (user_wire) { |
| 1491 | if ((entry->user_wired_count)++ == 0) |
| 1492 | entry->wired_count++; |
| 1493 | } |
| 1494 | else { |
| 1495 | entry->wired_count++; |
| 1496 | } |
| 1497 | |
| 1498 | /* |
| 1499 | * Check for holes and protection mismatch. |
| 1500 | * Holes: Next entry should be contiguous unless |
| 1501 | * this is the end of the region. |
| 1502 | * Protection: Access requested must be allowed. |
| 1503 | */ |
| 1504 | if (((entry->vme_endlinks.end < end) && |
| 1505 | ((entry->vme_nextlinks.next == vm_map_to_entry(map)((struct vm_map_entry *) &(map)->hdr.links)) || |
| 1506 | (entry->vme_nextlinks.next->vme_startlinks.start > entry->vme_endlinks.end))) || |
| 1507 | ((entry->protection & access_type) != access_type)) { |
| 1508 | /* |
| 1509 | * Found a hole or protection problem. |
| 1510 | * Object creation actions |
| 1511 | * do not need to be undone, but the |
| 1512 | * wired counts need to be restored. |
| 1513 | */ |
| 1514 | while ((entry != vm_map_to_entry(map)((struct vm_map_entry *) &(map)->hdr.links)) && |
| 1515 | (entry->vme_endlinks.end > start)) { |
| 1516 | if (user_wire) { |
| 1517 | if (--(entry->user_wired_count) == 0) |
| 1518 | entry->wired_count--; |
| 1519 | } |
| 1520 | else { |
| 1521 | entry->wired_count--; |
| 1522 | } |
| 1523 | |
| 1524 | entry = entry->vme_prevlinks.prev; |
| 1525 | } |
| 1526 | |
| 1527 | vm_map_unlock(map)lock_done(&(map)->lock); |
| 1528 | return(KERN_FAILURE5); |
| 1529 | } |
| 1530 | entry = entry->vme_nextlinks.next; |
| 1531 | } |
| 1532 | |
| 1533 | /* |
| 1534 | * Pass 2. |
| 1535 | */ |
| 1536 | |
| 1537 | /* |
| 1538 | * HACK HACK HACK HACK |
| 1539 | * |
| 1540 | * If we are wiring in the kernel map or a submap of it, |
| 1541 | * unlock the map to avoid deadlocks. We trust that the |
| 1542 | * kernel threads are well-behaved, and therefore will |
| 1543 | * not do anything destructive to this region of the map |
| 1544 | * while we have it unlocked. We cannot trust user threads |
| 1545 | * to do the same. |
| 1546 | * |
| 1547 | * HACK HACK HACK HACK |
| 1548 | */ |
| 1549 | if (vm_map_pmap(map)((map)->pmap) == kernel_pmap) { |
| 1550 | vm_map_unlock(map)lock_done(&(map)->lock); /* trust me ... */ |
| 1551 | } |
| 1552 | else { |
| 1553 | vm_map_lock_set_recursive(map)lock_set_recursive(&(map)->lock); |
| 1554 | vm_map_lock_write_to_read(map)lock_write_to_read(&(map)->lock); |
| 1555 | } |
| 1556 | |
| 1557 | entry = start_entry; |
| 1558 | while (entry != vm_map_to_entry(map)((struct vm_map_entry *) &(map)->hdr.links) && |
| 1559 | entry->vme_startlinks.start < end) { |
| 1560 | /* |
| 1561 | * Wiring cases: |
| 1562 | * Kernel: wired == 1 && user_wired == 0 |
| 1563 | * User: wired == 1 && user_wired == 1 |
| 1564 | * |
| 1565 | * Don't need to wire if either is > 1. wired = 0 && |
| 1566 | * user_wired == 1 can't happen. |
| 1567 | */ |
| 1568 | |
| 1569 | /* |
| 1570 | * XXX This assumes that the faults always succeed. |
| 1571 | */ |
| 1572 | if ((entry->wired_count == 1) && |
| 1573 | (entry->user_wired_count <= 1)) { |
| 1574 | vm_fault_wire(map, entry); |
| 1575 | } |
| 1576 | entry = entry->vme_nextlinks.next; |
| 1577 | } |
| 1578 | |
| 1579 | if (vm_map_pmap(map)((map)->pmap) == kernel_pmap) { |
| 1580 | vm_map_lock(map)({ lock_write(&(map)->lock); (map)->timestamp++; }); |
| 1581 | } |
| 1582 | else { |
| 1583 | vm_map_lock_clear_recursive(map)lock_clear_recursive(&(map)->lock); |
| 1584 | } |
| 1585 | } |
| 1586 | |
| 1587 | vm_map_unlock(map)lock_done(&(map)->lock); |
| 1588 | |
| 1589 | return(KERN_SUCCESS0); |
| 1590 | } |
| 1591 | |
| 1592 | /* |
| 1593 | * vm_map_entry_delete: [ internal use only ] |
| 1594 | * |
| 1595 | * Deallocate the given entry from the target map. |
| 1596 | */ |
| 1597 | void vm_map_entry_delete(map, entry) |
| 1598 | vm_map_t map; |
| 1599 | vm_map_entry_t entry; |
| 1600 | { |
| 1601 | vm_offset_t s, e; |
| 1602 | vm_object_t object; |
| 1603 | extern vm_object_t kernel_object; |
| 1604 | |
| 1605 | s = entry->vme_startlinks.start; |
| 1606 | e = entry->vme_endlinks.end; |
| 1607 | |
| 1608 | /*Check if projected buffer*/ |
| 1609 | if (map != kernel_map && entry->projected_on != 0) { |
| 1610 | /*Check if projected kernel entry is persistent; |
| 1611 | may only manipulate directly if it is*/ |
| 1612 | if (entry->projected_on->projected_on == 0) |
| 1613 | entry->wired_count = 0; /*Avoid unwire fault*/ |
| 1614 | else |
| 1615 | return; |
| 1616 | } |
| 1617 | |
| 1618 | /* |
| 1619 | * Get the object. Null objects cannot have pmap entries. |
| 1620 | */ |
| 1621 | |
| 1622 | if ((object = entry->object.vm_object) != VM_OBJECT_NULL((vm_object_t) 0)) { |
| 1623 | |
| 1624 | /* |
| 1625 | * Unwire before removing addresses from the pmap; |
| 1626 | * otherwise, unwiring will put the entries back in |
| 1627 | * the pmap. |
| 1628 | */ |
| 1629 | |
| 1630 | if (entry->wired_count != 0) { |
| 1631 | vm_fault_unwire(map, entry); |
| 1632 | entry->wired_count = 0; |
| 1633 | entry->user_wired_count = 0; |
| 1634 | } |
| 1635 | |
| 1636 | /* |
| 1637 | * If the object is shared, we must remove |
| 1638 | * *all* references to this data, since we can't |
| 1639 | * find all of the physical maps which are sharing |
| 1640 | * it. |
| 1641 | */ |
| 1642 | |
| 1643 | if (object == kernel_object) { |
| 1644 | vm_object_lock(object); |
| 1645 | vm_object_page_remove(object, entry->offset, |
| 1646 | entry->offset + (e - s)); |
| 1647 | vm_object_unlock(object)((void)(&(object)->Lock)); |
| 1648 | } else if (entry->is_shared) { |
| 1649 | vm_object_pmap_remove(object, |
| 1650 | entry->offset, |
| 1651 | entry->offset + (e - s)); |
| 1652 | } |
| 1653 | else { |
| 1654 | pmap_remove(map->pmap, s, e); |
| 1655 | } |
| 1656 | } |
| 1657 | |
| 1658 | /* |
| 1659 | * Deallocate the object only after removing all |
| 1660 | * pmap entries pointing to its pages. |
| 1661 | */ |
| 1662 | |
| 1663 | if (entry->is_sub_map) |
| 1664 | vm_map_deallocate(entry->object.sub_map); |
| 1665 | else |
| 1666 | vm_object_deallocate(entry->object.vm_object); |
| 1667 | |
| 1668 | vm_map_entry_unlink(map, entry)({ (&(map)->hdr)->nentries--; (entry)->links.next ->links.prev = (entry)->links.prev; (entry)->links.prev ->links.next = (entry)->links.next; rbtree_remove(& (&(map)->hdr)->tree, &(entry)->tree_node); } ); |
| 1669 | map->size -= e - s; |
| 1670 | |
| 1671 | vm_map_entry_dispose(map, entry)_vm_map_entry_dispose(&(map)->hdr, (entry)); |
| 1672 | } |
| 1673 | |
| 1674 | /* |
| 1675 | * vm_map_delete: [ internal use only ] |
| 1676 | * |
| 1677 | * Deallocates the given address range from the target |
| 1678 | * map. |
| 1679 | */ |
| 1680 | |
| 1681 | kern_return_t vm_map_delete(map, start, end) |
| 1682 | vm_map_t map; |
| 1683 | vm_offset_t start; |
| 1684 | vm_offset_t end; |
| 1685 | { |
| 1686 | vm_map_entry_t entry; |
| 1687 | vm_map_entry_t first_entry; |
| 1688 | |
| 1689 | /* |
| 1690 | * Find the start of the region, and clip it |
| 1691 | */ |
| 1692 | |
| 1693 | if (!vm_map_lookup_entry(map, start, &first_entry)) |
| 1694 | entry = first_entry->vme_nextlinks.next; |
| 1695 | else { |
| 1696 | entry = first_entry; |
| 1697 | vm_map_clip_start(map, entry, start)({ if ((start) > (entry)->links.start) _vm_map_clip_start (&(map)->hdr,(entry),(start)); }); |
| 1698 | |
| 1699 | /* |
| 1700 | * Fix the lookup hint now, rather than each |
| 1701 | * time though the loop. |
| 1702 | */ |
| 1703 | |
| 1704 | SAVE_HINT(map, entry->vme_prev); (map)->hint = (entry->links.prev); ((void)(&(map) ->hint_lock));; |
| 1705 | } |
| 1706 | |
| 1707 | /* |
| 1708 | * Save the free space hint |
| 1709 | */ |
| 1710 | |
| 1711 | if (map->first_free->vme_startlinks.start >= start) |
| 1712 | map->first_free = entry->vme_prevlinks.prev; |
| 1713 | |
| 1714 | /* |
| 1715 | * Step through all entries in this region |
| 1716 | */ |
| 1717 | |
| 1718 | while ((entry != vm_map_to_entry(map)((struct vm_map_entry *) &(map)->hdr.links)) && (entry->vme_startlinks.start < end)) { |
| 1719 | vm_map_entry_t next; |
| 1720 | |
| 1721 | vm_map_clip_end(map, entry, end)({ if ((end) < (entry)->links.end) _vm_map_clip_end(& (map)->hdr,(entry),(end)); }); |
| 1722 | |
| 1723 | /* |
| 1724 | * If the entry is in transition, we must wait |
| 1725 | * for it to exit that state. It could be clipped |
| 1726 | * while we leave the map unlocked. |
| 1727 | */ |
| 1728 | if(entry->in_transition) { |
| 1729 | /* |
| 1730 | * Say that we are waiting, and wait for entry. |
| 1731 | */ |
| 1732 | entry->needs_wakeup = TRUE((boolean_t) 1); |
| 1733 | vm_map_entry_wait(map, FALSE)({ assert_wait((event_t)&(map)->hdr, ((boolean_t) 0)); lock_done(&(map)->lock); thread_block((void (*)()) 0) ; }); |
| 1734 | vm_map_lock(map)({ lock_write(&(map)->lock); (map)->timestamp++; }); |
| 1735 | |
| 1736 | /* |
| 1737 | * The entry could have been clipped or it |
| 1738 | * may not exist anymore. look it up again. |
| 1739 | */ |
| 1740 | if(!vm_map_lookup_entry(map, start, &entry)) { |
| 1741 | entry = entry->vme_nextlinks.next; |
| 1742 | } |
| 1743 | continue; |
| 1744 | } |
| 1745 | |
| 1746 | next = entry->vme_nextlinks.next; |
| 1747 | |
| 1748 | vm_map_entry_delete(map, entry); |
| 1749 | entry = next; |
| 1750 | } |
| 1751 | |
| 1752 | if (map->wait_for_space) |
| 1753 | thread_wakeup((event_t) map)thread_wakeup_prim(((event_t) map), ((boolean_t) 0), 0); |
| 1754 | |
| 1755 | return(KERN_SUCCESS0); |
| 1756 | } |
| 1757 | |
| 1758 | /* |
| 1759 | * vm_map_remove: |
| 1760 | * |
| 1761 | * Remove the given address range from the target map. |
| 1762 | * This is the exported form of vm_map_delete. |
| 1763 | */ |
| 1764 | kern_return_t vm_map_remove(map, start, end) |
| 1765 | vm_map_t map; |
| 1766 | vm_offset_t start; |
| 1767 | vm_offset_t end; |
| 1768 | { |
| 1769 | kern_return_t result; |
| 1770 | |
| 1771 | vm_map_lock(map)({ lock_write(&(map)->lock); (map)->timestamp++; }); |
| 1772 | VM_MAP_RANGE_CHECK(map, start, end){ if (start < ((map)->hdr.links.start)) start = ((map)-> hdr.links.start); if (end > ((map)->hdr.links.end)) end = ((map)->hdr.links.end); if (start > end) start = end ; }; |
| 1773 | result = vm_map_delete(map, start, end); |
| 1774 | vm_map_unlock(map)lock_done(&(map)->lock); |
| 1775 | |
| 1776 | return(result); |
| 1777 | } |
| 1778 | |
| 1779 | |
| 1780 | /* |
| 1781 | * vm_map_copy_steal_pages: |
| 1782 | * |
| 1783 | * Steal all the pages from a vm_map_copy page_list by copying ones |
| 1784 | * that have not already been stolen. |
| 1785 | */ |
| 1786 | void |
| 1787 | vm_map_copy_steal_pages(copy) |
| 1788 | vm_map_copy_t copy; |
| 1789 | { |
| 1790 | vm_page_t m, new_m; |
| 1791 | int i; |
| 1792 | vm_object_t object; |
| 1793 | |
| 1794 | for (i = 0; i < copy->cpy_npagesc_u.c_p.npages; i++) { |
| 1795 | |
| 1796 | /* |
| 1797 | * If the page is not tabled, then it's already stolen. |
| 1798 | */ |
| 1799 | m = copy->cpy_page_listc_u.c_p.page_list[i]; |
| 1800 | if (!m->tabled) |
| 1801 | continue; |
| 1802 | |
| 1803 | /* |
| 1804 | * Page was not stolen, get a new |
| 1805 | * one and do the copy now. |
| 1806 | */ |
| 1807 | while ((new_m = vm_page_grab(FALSE((boolean_t) 0))) == VM_PAGE_NULL((vm_page_t) 0)) { |
| 1808 | VM_PAGE_WAIT((void(*)()) 0)vm_page_wait((void(*)()) 0); |
| 1809 | } |
| 1810 | |
| 1811 | vm_page_copy(m, new_m); |
| 1812 | |
| 1813 | object = m->object; |
| 1814 | vm_object_lock(object); |
| 1815 | vm_page_lock_queues(); |
| 1816 | if (!m->active && !m->inactive) |
| 1817 | vm_page_activate(m); |
| 1818 | vm_page_unlock_queues()((void)(&vm_page_queue_lock)); |
| 1819 | PAGE_WAKEUP_DONE(m)({ (m)->busy = ((boolean_t) 0); if ((m)->wanted) { (m)-> wanted = ((boolean_t) 0); thread_wakeup_prim((((event_t) m)), ((boolean_t) 0), 0); } }); |
| 1820 | vm_object_paging_end(object)({ ({ if (!((object)->paging_in_progress != 0)) Assert("(object)->paging_in_progress != 0" , "../vm/vm_map.c", 1820); }); if (--(object)->paging_in_progress == 0) { ({ if ((object)->all_wanted & (1 << (2) )) thread_wakeup_prim(((event_t)(((vm_offset_t) object) + (2) )), ((boolean_t) 0), 0); (object)->all_wanted &= ~(1 << (2)); }); } }); |
| 1821 | vm_object_unlock(object)((void)(&(object)->Lock)); |
| 1822 | |
| 1823 | copy->cpy_page_listc_u.c_p.page_list[i] = new_m; |
| 1824 | } |
| 1825 | } |
| 1826 | |
| 1827 | /* |
| 1828 | * vm_map_copy_page_discard: |
| 1829 | * |
| 1830 | * Get rid of the pages in a page_list copy. If the pages are |
| 1831 | * stolen, they are freed. If the pages are not stolen, they |
| 1832 | * are unbusied, and associated state is cleaned up. |
| 1833 | */ |
| 1834 | void vm_map_copy_page_discard(copy) |
| 1835 | vm_map_copy_t copy; |
| 1836 | { |
| 1837 | while (copy->cpy_npagesc_u.c_p.npages > 0) { |
| 1838 | vm_page_t m; |
| 1839 | |
| 1840 | if((m = copy->cpy_page_listc_u.c_p.page_list[--(copy->cpy_npagesc_u.c_p.npages)]) != |
| 1841 | VM_PAGE_NULL((vm_page_t) 0)) { |
| 1842 | |
| 1843 | /* |
| 1844 | * If it's not in the table, then it's |
| 1845 | * a stolen page that goes back |
| 1846 | * to the free list. Else it belongs |
| 1847 | * to some object, and we hold a |
| 1848 | * paging reference on that object. |
| 1849 | */ |
| 1850 | if (!m->tabled) { |
| 1851 | VM_PAGE_FREE(m)({ ; vm_page_free(m); ((void)(&vm_page_queue_lock)); }); |
| 1852 | } |
| 1853 | else { |
| 1854 | vm_object_t object; |
| 1855 | |
| 1856 | object = m->object; |
| 1857 | |
| 1858 | vm_object_lock(object); |
| 1859 | vm_page_lock_queues(); |
| 1860 | if (!m->active && !m->inactive) |
| 1861 | vm_page_activate(m); |
| 1862 | vm_page_unlock_queues()((void)(&vm_page_queue_lock)); |
| 1863 | |
| 1864 | PAGE_WAKEUP_DONE(m)({ (m)->busy = ((boolean_t) 0); if ((m)->wanted) { (m)-> wanted = ((boolean_t) 0); thread_wakeup_prim((((event_t) m)), ((boolean_t) 0), 0); } }); |
| 1865 | vm_object_paging_end(object)({ ({ if (!((object)->paging_in_progress != 0)) Assert("(object)->paging_in_progress != 0" , "../vm/vm_map.c", 1865); }); if (--(object)->paging_in_progress == 0) { ({ if ((object)->all_wanted & (1 << (2) )) thread_wakeup_prim(((event_t)(((vm_offset_t) object) + (2) )), ((boolean_t) 0), 0); (object)->all_wanted &= ~(1 << (2)); }); } }); |
| 1866 | vm_object_unlock(object)((void)(&(object)->Lock)); |
| 1867 | } |
| 1868 | } |
| 1869 | } |
| 1870 | } |
| 1871 | |
| 1872 | /* |
| 1873 | * Routine: vm_map_copy_discard |
| 1874 | * |
| 1875 | * Description: |
| 1876 | * Dispose of a map copy object (returned by |
| 1877 | * vm_map_copyin). |
| 1878 | */ |
| 1879 | void |
| 1880 | vm_map_copy_discard(copy) |
| 1881 | vm_map_copy_t copy; |
| 1882 | { |
| 1883 | free_next_copy: |
| 1884 | if (copy == VM_MAP_COPY_NULL((vm_map_copy_t) 0)) |
| 1885 | return; |
| 1886 | |
| 1887 | switch (copy->type) { |
| 1888 | case VM_MAP_COPY_ENTRY_LIST1: |
| 1889 | while (vm_map_copy_first_entry(copy)((copy)->c_u.hdr.links.next) != |
| 1890 | vm_map_copy_to_entry(copy)((struct vm_map_entry *) &(copy)->c_u.hdr.links)) { |
| 1891 | vm_map_entry_t entry = vm_map_copy_first_entry(copy)((copy)->c_u.hdr.links.next); |
| 1892 | |
| 1893 | vm_map_copy_entry_unlink(copy, entry)({ (&(copy)->c_u.hdr)->nentries--; (entry)->links .next->links.prev = (entry)->links.prev; (entry)->links .prev->links.next = (entry)->links.next; rbtree_remove( &(&(copy)->c_u.hdr)->tree, &(entry)->tree_node ); }); |
| 1894 | vm_object_deallocate(entry->object.vm_object); |
| 1895 | vm_map_copy_entry_dispose(copy, entry)_vm_map_entry_dispose(&(copy)->c_u.hdr, (entry)); |
| 1896 | } |
| 1897 | break; |
| 1898 | case VM_MAP_COPY_OBJECT2: |
| 1899 | vm_object_deallocate(copy->cpy_objectc_u.c_o.object); |
| 1900 | break; |
| 1901 | case VM_MAP_COPY_PAGE_LIST3: |
| 1902 | |
| 1903 | /* |
| 1904 | * To clean this up, we have to unbusy all the pages |
| 1905 | * and release the paging references in their objects. |
| 1906 | */ |
| 1907 | if (copy->cpy_npagesc_u.c_p.npages > 0) |
| 1908 | vm_map_copy_page_discard(copy); |
| 1909 | |
| 1910 | /* |
| 1911 | * If there's a continuation, abort it. The |
| 1912 | * abort routine releases any storage. |
| 1913 | */ |
| 1914 | if (vm_map_copy_has_cont(copy)(((copy)->c_u.c_p.cont) != (kern_return_t (*)()) 0)) { |
| 1915 | |
| 1916 | /* |
| 1917 | * Special case: recognize |
| 1918 | * vm_map_copy_discard_cont and optimize |
| 1919 | * here to avoid tail recursion. |
| 1920 | */ |
| 1921 | if (copy->cpy_contc_u.c_p.cont == vm_map_copy_discard_cont) { |
| 1922 | vm_map_copy_t new_copy; |
| 1923 | |
| 1924 | new_copy = (vm_map_copy_t) copy->cpy_cont_argsc_u.c_p.cont_args; |
| 1925 | kmem_cache_free(&vm_map_copy_cache, (vm_offset_t) copy); |
| 1926 | copy = new_copy; |
| 1927 | goto free_next_copy; |
| 1928 | } |
| 1929 | else { |
| 1930 | vm_map_copy_abort_cont(copy)({ vm_map_copy_page_discard(copy); (*((copy)->c_u.c_p.cont ))((copy)->c_u.c_p.cont_args, (vm_map_copy_t *) 0); (copy) ->c_u.c_p.cont = (kern_return_t (*)()) 0; (copy)->c_u.c_p .cont_args = (char *) 0; }); |
| 1931 | } |
| 1932 | } |
| 1933 | |
| 1934 | break; |
| 1935 | } |
| 1936 | kmem_cache_free(&vm_map_copy_cache, (vm_offset_t) copy); |
| 1937 | } |
| 1938 | |
| 1939 | /* |
| 1940 | * Routine: vm_map_copy_copy |
| 1941 | * |
| 1942 | * Description: |
| 1943 | * Move the information in a map copy object to |
| 1944 | * a new map copy object, leaving the old one |
| 1945 | * empty. |
| 1946 | * |
| 1947 | * This is used by kernel routines that need |
| 1948 | * to look at out-of-line data (in copyin form) |
| 1949 | * before deciding whether to return SUCCESS. |
| 1950 | * If the routine returns FAILURE, the original |
| 1951 | * copy object will be deallocated; therefore, |
| 1952 | * these routines must make a copy of the copy |
| 1953 | * object and leave the original empty so that |
| 1954 | * deallocation will not fail. |
| 1955 | */ |
| 1956 | vm_map_copy_t |
| 1957 | vm_map_copy_copy(copy) |
| 1958 | vm_map_copy_t copy; |
| 1959 | { |
| 1960 | vm_map_copy_t new_copy; |
| 1961 | |
| 1962 | if (copy == VM_MAP_COPY_NULL((vm_map_copy_t) 0)) |
| 1963 | return VM_MAP_COPY_NULL((vm_map_copy_t) 0); |
| 1964 | |
| 1965 | /* |
| 1966 | * Allocate a new copy object, and copy the information |
| 1967 | * from the old one into it. |
| 1968 | */ |
| 1969 | |
| 1970 | new_copy = (vm_map_copy_t) kmem_cache_alloc(&vm_map_copy_cache); |
| 1971 | *new_copy = *copy; |
| 1972 | |
| 1973 | if (copy->type == VM_MAP_COPY_ENTRY_LIST1) { |
| 1974 | /* |
| 1975 | * The links in the entry chain must be |
| 1976 | * changed to point to the new copy object. |
| 1977 | */ |
| 1978 | vm_map_copy_first_entry(copy)((copy)->c_u.hdr.links.next)->vme_prevlinks.prev |
| 1979 | = vm_map_copy_to_entry(new_copy)((struct vm_map_entry *) &(new_copy)->c_u.hdr.links); |
| 1980 | vm_map_copy_last_entry(copy)((copy)->c_u.hdr.links.prev)->vme_nextlinks.next |
| 1981 | = vm_map_copy_to_entry(new_copy)((struct vm_map_entry *) &(new_copy)->c_u.hdr.links); |
| 1982 | } |
| 1983 | |
| 1984 | /* |
| 1985 | * Change the old copy object into one that contains |
| 1986 | * nothing to be deallocated. |
| 1987 | */ |
| 1988 | copy->type = VM_MAP_COPY_OBJECT2; |
| 1989 | copy->cpy_objectc_u.c_o.object = VM_OBJECT_NULL((vm_object_t) 0); |
| 1990 | |
| 1991 | /* |
| 1992 | * Return the new object. |
| 1993 | */ |
| 1994 | return new_copy; |
| 1995 | } |
| 1996 | |
| 1997 | /* |
| 1998 | * Routine: vm_map_copy_discard_cont |
| 1999 | * |
| 2000 | * Description: |
| 2001 | * A version of vm_map_copy_discard that can be called |
| 2002 | * as a continuation from a vm_map_copy page list. |
| 2003 | */ |
| 2004 | kern_return_t vm_map_copy_discard_cont(cont_args, copy_result) |
| 2005 | vm_map_copyin_args_t cont_args; |
| 2006 | vm_map_copy_t *copy_result; /* OUT */ |
| 2007 | { |
| 2008 | vm_map_copy_discard((vm_map_copy_t) cont_args); |
| 2009 | if (copy_result != (vm_map_copy_t *)0) |
| 2010 | *copy_result = VM_MAP_COPY_NULL((vm_map_copy_t) 0); |
| 2011 | return(KERN_SUCCESS0); |
| 2012 | } |
| 2013 | |
| 2014 | /* |
| 2015 | * Routine: vm_map_copy_overwrite |
| 2016 | * |
| 2017 | * Description: |
| 2018 | * Copy the memory described by the map copy |
| 2019 | * object (copy; returned by vm_map_copyin) onto |
| 2020 | * the specified destination region (dst_map, dst_addr). |
| 2021 | * The destination must be writeable. |
| 2022 | * |
| 2023 | * Unlike vm_map_copyout, this routine actually |
| 2024 | * writes over previously-mapped memory. If the |
| 2025 | * previous mapping was to a permanent (user-supplied) |
| 2026 | * memory object, it is preserved. |
| 2027 | * |
| 2028 | * The attributes (protection and inheritance) of the |
| 2029 | * destination region are preserved. |
| 2030 | * |
| 2031 | * If successful, consumes the copy object. |
| 2032 | * Otherwise, the caller is responsible for it. |
| 2033 | * |
| 2034 | * Implementation notes: |
| 2035 | * To overwrite temporary virtual memory, it is |
| 2036 | * sufficient to remove the previous mapping and insert |
| 2037 | * the new copy. This replacement is done either on |
| 2038 | * the whole region (if no permanent virtual memory |
| 2039 | * objects are embedded in the destination region) or |
| 2040 | * in individual map entries. |
| 2041 | * |
| 2042 | * To overwrite permanent virtual memory, it is |
| 2043 | * necessary to copy each page, as the external |
| 2044 | * memory management interface currently does not |
| 2045 | * provide any optimizations. |
| 2046 | * |
| 2047 | * Once a page of permanent memory has been overwritten, |
| 2048 | * it is impossible to interrupt this function; otherwise, |
| 2049 | * the call would be neither atomic nor location-independent. |
| 2050 | * The kernel-state portion of a user thread must be |
| 2051 | * interruptible. |
| 2052 | * |
| 2053 | * It may be expensive to forward all requests that might |
| 2054 | * overwrite permanent memory (vm_write, vm_copy) to |
| 2055 | * uninterruptible kernel threads. This routine may be |
| 2056 | * called by interruptible threads; however, success is |
| 2057 | * not guaranteed -- if the request cannot be performed |
| 2058 | * atomically and interruptibly, an error indication is |
| 2059 | * returned. |
| 2060 | */ |
| 2061 | kern_return_t vm_map_copy_overwrite(dst_map, dst_addr, copy, interruptible) |
| 2062 | vm_map_t dst_map; |
| 2063 | vm_offset_t dst_addr; |
| 2064 | vm_map_copy_t copy; |
| 2065 | boolean_t interruptible; |
| 2066 | { |
| 2067 | vm_size_t size; |
| 2068 | vm_offset_t start; |
| 2069 | vm_map_entry_t tmp_entry; |
| 2070 | vm_map_entry_t entry; |
| 2071 | |
| 2072 | boolean_t contains_permanent_objects = FALSE((boolean_t) 0); |
| 2073 | |
| 2074 | interruptible = FALSE((boolean_t) 0); /* XXX */ |
| 2075 | |
| 2076 | /* |
| 2077 | * Check for null copy object. |
| 2078 | */ |
| 2079 | |
| 2080 | if (copy == VM_MAP_COPY_NULL((vm_map_copy_t) 0)) |
| 2081 | return(KERN_SUCCESS0); |
| 2082 | |
| 2083 | /* |
| 2084 | * Only works for entry lists at the moment. Will |
| 2085 | * support page lists LATER. |
| 2086 | */ |
| 2087 | |
| 2088 | assert(copy->type == VM_MAP_COPY_ENTRY_LIST)({ if (!(copy->type == 1)) Assert("copy->type == VM_MAP_COPY_ENTRY_LIST" , "../vm/vm_map.c", 2088); }); |
| 2089 | |
| 2090 | /* |
| 2091 | * Currently this routine only handles page-aligned |
| 2092 | * regions. Eventually, it should handle misalignments |
| 2093 | * by actually copying pages. |
| 2094 | */ |
| 2095 | |
| 2096 | if (!page_aligned(copy->offset)((((vm_offset_t) (copy->offset)) & ((1 << 12)-1) ) == 0) || |
| 2097 | !page_aligned(copy->size)((((vm_offset_t) (copy->size)) & ((1 << 12)-1)) == 0) || |
| 2098 | !page_aligned(dst_addr)((((vm_offset_t) (dst_addr)) & ((1 << 12)-1)) == 0)) |
| 2099 | return(KERN_INVALID_ARGUMENT4); |
| 2100 | |
| 2101 | size = copy->size; |
| 2102 | |
| 2103 | if (size == 0) { |
| 2104 | vm_map_copy_discard(copy); |
| 2105 | return(KERN_SUCCESS0); |
| 2106 | } |
| 2107 | |
| 2108 | /* |
| 2109 | * Verify that the destination is all writeable |
| 2110 | * initially. |
| 2111 | */ |
| 2112 | start_pass_1: |
| 2113 | vm_map_lock(dst_map)({ lock_write(&(dst_map)->lock); (dst_map)->timestamp ++; }); |
| 2114 | if (!vm_map_lookup_entry(dst_map, dst_addr, &tmp_entry)) { |
| 2115 | vm_map_unlock(dst_map)lock_done(&(dst_map)->lock); |
| 2116 | return(KERN_INVALID_ADDRESS1); |
| 2117 | } |
| 2118 | vm_map_clip_start(dst_map, tmp_entry, dst_addr)({ if ((dst_addr) > (tmp_entry)->links.start) _vm_map_clip_start (&(dst_map)->hdr,(tmp_entry),(dst_addr)); }); |
| 2119 | for (entry = tmp_entry;;) { |
| 2120 | vm_size_t sub_size = (entry->vme_endlinks.end - entry->vme_startlinks.start); |
| 2121 | vm_map_entry_t next = entry->vme_nextlinks.next; |
| 2122 | |
| 2123 | if ( ! (entry->protection & VM_PROT_WRITE((vm_prot_t) 0x02))) { |
| 2124 | vm_map_unlock(dst_map)lock_done(&(dst_map)->lock); |
| 2125 | return(KERN_PROTECTION_FAILURE2); |
| 2126 | } |
| 2127 | |
| 2128 | /* |
| 2129 | * If the entry is in transition, we must wait |
| 2130 | * for it to exit that state. Anything could happen |
| 2131 | * when we unlock the map, so start over. |
| 2132 | */ |
| 2133 | if (entry->in_transition) { |
| 2134 | |
| 2135 | /* |
| 2136 | * Say that we are waiting, and wait for entry. |
| 2137 | */ |
| 2138 | entry->needs_wakeup = TRUE((boolean_t) 1); |
| 2139 | vm_map_entry_wait(dst_map, FALSE)({ assert_wait((event_t)&(dst_map)->hdr, ((boolean_t) 0 )); lock_done(&(dst_map)->lock); thread_block((void (* )()) 0); }); |
| 2140 | |
| 2141 | goto start_pass_1; |
| 2142 | } |
| 2143 | |
| 2144 | if (size <= sub_size) |
| 2145 | break; |
| 2146 | |
| 2147 | if ((next == vm_map_to_entry(dst_map)((struct vm_map_entry *) &(dst_map)->hdr.links)) || |
| 2148 | (next->vme_startlinks.start != entry->vme_endlinks.end)) { |
| 2149 | vm_map_unlock(dst_map)lock_done(&(dst_map)->lock); |
| 2150 | return(KERN_INVALID_ADDRESS1); |
| 2151 | } |
| 2152 | |
| 2153 | |
| 2154 | /* |
| 2155 | * Check for permanent objects in the destination. |
| 2156 | */ |
| 2157 | |
| 2158 | if ((entry->object.vm_object != VM_OBJECT_NULL((vm_object_t) 0)) && |
| 2159 | !entry->object.vm_object->temporary) |
| 2160 | contains_permanent_objects = TRUE((boolean_t) 1); |
| 2161 | |
| 2162 | size -= sub_size; |
| 2163 | entry = next; |
| 2164 | } |
| 2165 | |
| 2166 | /* |
| 2167 | * If there are permanent objects in the destination, then |
| 2168 | * the copy cannot be interrupted. |
| 2169 | */ |
| 2170 | |
| 2171 | if (interruptible && contains_permanent_objects) { |
| 2172 | vm_map_unlock(dst_map)lock_done(&(dst_map)->lock); |
| 2173 | return(KERN_FAILURE5); /* XXX */ |
| 2174 | } |
| 2175 | |
| 2176 | /* |
| 2177 | * XXXO If there are no permanent objects in the destination, |
| 2178 | * XXXO and the source and destination map entry caches match, |
| 2179 | * XXXO and the destination map entry is not shared, |
| 2180 | * XXXO then the map entries can be deleted and replaced |
| 2181 | * XXXO with those from the copy. The following code is the |
| 2182 | * XXXO basic idea of what to do, but there are lots of annoying |
| 2183 | * XXXO little details about getting protection and inheritance |
| 2184 | * XXXO right. Should add protection, inheritance, and sharing checks |
| 2185 | * XXXO to the above pass and make sure that no wiring is involved. |
| 2186 | */ |
| 2187 | /* |
| 2188 | * if (!contains_permanent_objects && |
| 2189 | * copy->cpy_hdr.entries_pageable == dst_map->hdr.entries_pageable) { |
| 2190 | * |
| 2191 | * * |
| 2192 | * * Run over copy and adjust entries. Steal code |
| 2193 | * * from vm_map_copyout() to do this. |
| 2194 | * * |
| 2195 | * |
| 2196 | * tmp_entry = tmp_entry->vme_prev; |
| 2197 | * vm_map_delete(dst_map, dst_addr, dst_addr + copy->size); |
| 2198 | * vm_map_copy_insert(dst_map, tmp_entry, copy); |
| 2199 | * |
| 2200 | * vm_map_unlock(dst_map); |
| 2201 | * vm_map_copy_discard(copy); |
| 2202 | * } |
| 2203 | */ |
| 2204 | /* |
| 2205 | * |
| 2206 | * Make a second pass, overwriting the data |
| 2207 | * At the beginning of each loop iteration, |
| 2208 | * the next entry to be overwritten is "tmp_entry" |
| 2209 | * (initially, the value returned from the lookup above), |
| 2210 | * and the starting address expected in that entry |
| 2211 | * is "start". |
| 2212 | */ |
| 2213 | |
| 2214 | start = dst_addr; |
| 2215 | |
| 2216 | while (vm_map_copy_first_entry(copy)((copy)->c_u.hdr.links.next) != vm_map_copy_to_entry(copy)((struct vm_map_entry *) &(copy)->c_u.hdr.links)) { |
| 2217 | vm_map_entry_t copy_entry = vm_map_copy_first_entry(copy)((copy)->c_u.hdr.links.next); |
| 2218 | vm_size_t copy_size = (copy_entry->vme_endlinks.end - copy_entry->vme_startlinks.start); |
| 2219 | vm_object_t object; |
| 2220 | |
| 2221 | entry = tmp_entry; |
| 2222 | size = (entry->vme_endlinks.end - entry->vme_startlinks.start); |
| 2223 | /* |
| 2224 | * Make sure that no holes popped up in the |
| 2225 | * address map, and that the protection is |
| 2226 | * still valid, in case the map was unlocked |
| 2227 | * earlier. |
| 2228 | */ |
| 2229 | |
| 2230 | if (entry->vme_startlinks.start != start) { |
| 2231 | vm_map_unlock(dst_map)lock_done(&(dst_map)->lock); |
| 2232 | return(KERN_INVALID_ADDRESS1); |
| 2233 | } |
| 2234 | assert(entry != vm_map_to_entry(dst_map))({ if (!(entry != ((struct vm_map_entry *) &(dst_map)-> hdr.links))) Assert("entry != vm_map_to_entry(dst_map)", "../vm/vm_map.c" , 2234); }); |
| 2235 | |
| 2236 | /* |
| 2237 | * Check protection again |
| 2238 | */ |
| 2239 | |
| 2240 | if ( ! (entry->protection & VM_PROT_WRITE((vm_prot_t) 0x02))) { |
| 2241 | vm_map_unlock(dst_map)lock_done(&(dst_map)->lock); |
| 2242 | return(KERN_PROTECTION_FAILURE2); |
| 2243 | } |
| 2244 | |
| 2245 | /* |
| 2246 | * Adjust to source size first |
| 2247 | */ |
| 2248 | |
| 2249 | if (copy_size < size) { |
| 2250 | vm_map_clip_end(dst_map, entry, entry->vme_start + copy_size)({ if ((entry->links.start + copy_size) < (entry)->links .end) _vm_map_clip_end(&(dst_map)->hdr,(entry),(entry-> links.start + copy_size)); }); |
| 2251 | size = copy_size; |
| 2252 | } |
| 2253 | |
| 2254 | /* |
| 2255 | * Adjust to destination size |
| 2256 | */ |
| 2257 | |
| 2258 | if (size < copy_size) { |
| 2259 | vm_map_copy_clip_end(copy, copy_entry,({ if ((copy_entry->links.start + size) < (copy_entry)-> links.end) _vm_map_clip_end(&(copy)->c_u.hdr,(copy_entry ),(copy_entry->links.start + size)); }) |
| 2260 | copy_entry->vme_start + size)({ if ((copy_entry->links.start + size) < (copy_entry)-> links.end) _vm_map_clip_end(&(copy)->c_u.hdr,(copy_entry ),(copy_entry->links.start + size)); }); |
| 2261 | copy_size = size; |
| 2262 | } |
| 2263 | |
| 2264 | assert((entry->vme_end - entry->vme_start) == size)({ if (!((entry->links.end - entry->links.start) == size )) Assert("(entry->vme_end - entry->vme_start) == size" , "../vm/vm_map.c", 2264); }); |
| 2265 | assert((tmp_entry->vme_end - tmp_entry->vme_start) == size)({ if (!((tmp_entry->links.end - tmp_entry->links.start ) == size)) Assert("(tmp_entry->vme_end - tmp_entry->vme_start) == size" , "../vm/vm_map.c", 2265); }); |
| 2266 | assert((copy_entry->vme_end - copy_entry->vme_start) == size)({ if (!((copy_entry->links.end - copy_entry->links.start ) == size)) Assert("(copy_entry->vme_end - copy_entry->vme_start) == size" , "../vm/vm_map.c", 2266); }); |
| 2267 | |
| 2268 | /* |
| 2269 | * If the destination contains temporary unshared memory, |
| 2270 | * we can perform the copy by throwing it away and |
| 2271 | * installing the source data. |
| 2272 | */ |
| 2273 | |
| 2274 | object = entry->object.vm_object; |
| 2275 | if (!entry->is_shared && |
| 2276 | ((object == VM_OBJECT_NULL((vm_object_t) 0)) || object->temporary)) { |
| 2277 | vm_object_t old_object = entry->object.vm_object; |
| 2278 | vm_offset_t old_offset = entry->offset; |
| 2279 | |
| 2280 | entry->object = copy_entry->object; |
| 2281 | entry->offset = copy_entry->offset; |
| 2282 | entry->needs_copy = copy_entry->needs_copy; |
| 2283 | entry->wired_count = 0; |
| 2284 | entry->user_wired_count = 0; |
| 2285 | |
| 2286 | vm_map_copy_entry_unlink(copy, copy_entry)({ (&(copy)->c_u.hdr)->nentries--; (copy_entry)-> links.next->links.prev = (copy_entry)->links.prev; (copy_entry )->links.prev->links.next = (copy_entry)->links.next ; rbtree_remove(&(&(copy)->c_u.hdr)->tree, & (copy_entry)->tree_node); }); |
| 2287 | vm_map_copy_entry_dispose(copy, copy_entry)_vm_map_entry_dispose(&(copy)->c_u.hdr, (copy_entry)); |
| 2288 | |
| 2289 | vm_object_pmap_protect( |
| 2290 | old_object, |
| 2291 | old_offset, |
| 2292 | size, |
| 2293 | dst_map->pmap, |
| 2294 | tmp_entry->vme_startlinks.start, |
| 2295 | VM_PROT_NONE((vm_prot_t) 0x00)); |
| 2296 | |
| 2297 | vm_object_deallocate(old_object); |
| 2298 | |
| 2299 | /* |
| 2300 | * Set up for the next iteration. The map |
| 2301 | * has not been unlocked, so the next |
| 2302 | * address should be at the end of this |
| 2303 | * entry, and the next map entry should be |
| 2304 | * the one following it. |
| 2305 | */ |
| 2306 | |
| 2307 | start = tmp_entry->vme_endlinks.end; |
| 2308 | tmp_entry = tmp_entry->vme_nextlinks.next; |
| 2309 | } else { |
| 2310 | vm_map_version_t version; |
| 2311 | vm_object_t dst_object = entry->object.vm_object; |
| 2312 | vm_offset_t dst_offset = entry->offset; |
| 2313 | kern_return_t r; |
| 2314 | |
| 2315 | /* |
| 2316 | * Take an object reference, and record |
| 2317 | * the map version information so that the |
| 2318 | * map can be safely unlocked. |
| 2319 | */ |
| 2320 | |
| 2321 | vm_object_reference(dst_object); |
| 2322 | |
| 2323 | version.main_timestamp = dst_map->timestamp; |
| 2324 | |
| 2325 | vm_map_unlock(dst_map)lock_done(&(dst_map)->lock); |
| 2326 | |
| 2327 | /* |
| 2328 | * Copy as much as possible in one pass |
| 2329 | */ |
| 2330 | |
| 2331 | copy_size = size; |
| 2332 | r = vm_fault_copy( |
| 2333 | copy_entry->object.vm_object, |
| 2334 | copy_entry->offset, |
| 2335 | ©_size, |
| 2336 | dst_object, |
| 2337 | dst_offset, |
| 2338 | dst_map, |
| 2339 | &version, |
| 2340 | FALSE((boolean_t) 0) /* XXX interruptible */ ); |
| 2341 | |
| 2342 | /* |
| 2343 | * Release the object reference |
| 2344 | */ |
| 2345 | |
| 2346 | vm_object_deallocate(dst_object); |
| 2347 | |
| 2348 | /* |
| 2349 | * If a hard error occurred, return it now |
| 2350 | */ |
| 2351 | |
| 2352 | if (r != KERN_SUCCESS0) |
| 2353 | return(r); |
| 2354 | |
| 2355 | if (copy_size != 0) { |
| 2356 | /* |
| 2357 | * Dispose of the copied region |
| 2358 | */ |
| 2359 | |
| 2360 | vm_map_copy_clip_end(copy, copy_entry,({ if ((copy_entry->links.start + copy_size) < (copy_entry )->links.end) _vm_map_clip_end(&(copy)->c_u.hdr,(copy_entry ),(copy_entry->links.start + copy_size)); }) |
| 2361 | copy_entry->vme_start + copy_size)({ if ((copy_entry->links.start + copy_size) < (copy_entry )->links.end) _vm_map_clip_end(&(copy)->c_u.hdr,(copy_entry ),(copy_entry->links.start + copy_size)); }); |
| 2362 | vm_map_copy_entry_unlink(copy, copy_entry)({ (&(copy)->c_u.hdr)->nentries--; (copy_entry)-> links.next->links.prev = (copy_entry)->links.prev; (copy_entry )->links.prev->links.next = (copy_entry)->links.next ; rbtree_remove(&(&(copy)->c_u.hdr)->tree, & (copy_entry)->tree_node); }); |
| 2363 | vm_object_deallocate(copy_entry->object.vm_object); |
| 2364 | vm_map_copy_entry_dispose(copy, copy_entry)_vm_map_entry_dispose(&(copy)->c_u.hdr, (copy_entry)); |
| 2365 | } |
| 2366 | |
| 2367 | /* |
| 2368 | * Pick up in the destination map where we left off. |
| 2369 | * |
| 2370 | * Use the version information to avoid a lookup |
| 2371 | * in the normal case. |
| 2372 | */ |
| 2373 | |
| 2374 | start += copy_size; |
| 2375 | vm_map_lock(dst_map)({ lock_write(&(dst_map)->lock); (dst_map)->timestamp ++; }); |
| 2376 | if ((version.main_timestamp + 1) == dst_map->timestamp) { |
| 2377 | /* We can safely use saved tmp_entry value */ |
| 2378 | |
| 2379 | vm_map_clip_end(dst_map, tmp_entry, start)({ if ((start) < (tmp_entry)->links.end) _vm_map_clip_end (&(dst_map)->hdr,(tmp_entry),(start)); }); |
| 2380 | tmp_entry = tmp_entry->vme_nextlinks.next; |
| 2381 | } else { |
| 2382 | /* Must do lookup of tmp_entry */ |
| 2383 | |
| 2384 | if (!vm_map_lookup_entry(dst_map, start, &tmp_entry)) { |
| 2385 | vm_map_unlock(dst_map)lock_done(&(dst_map)->lock); |
| 2386 | return(KERN_INVALID_ADDRESS1); |
| 2387 | } |
| 2388 | vm_map_clip_start(dst_map, tmp_entry, start)({ if ((start) > (tmp_entry)->links.start) _vm_map_clip_start (&(dst_map)->hdr,(tmp_entry),(start)); }); |
| 2389 | } |
| 2390 | } |
| 2391 | |
| 2392 | } |
| 2393 | vm_map_unlock(dst_map)lock_done(&(dst_map)->lock); |
| 2394 | |
| 2395 | /* |
| 2396 | * Throw away the vm_map_copy object |
| 2397 | */ |
| 2398 | vm_map_copy_discard(copy); |
| 2399 | |
| 2400 | return(KERN_SUCCESS0); |
| 2401 | } |
| 2402 | |
| 2403 | /* |
| 2404 | * Macro: vm_map_copy_insert |
| 2405 | * |
| 2406 | * Description: |
| 2407 | * Link a copy chain ("copy") into a map at the |
| 2408 | * specified location (after "where"). |
| 2409 | * Side effects: |
| 2410 | * The copy chain is destroyed. |
| 2411 | * Warning: |
| 2412 | * The arguments are evaluated multiple times. |
| 2413 | */ |
| 2414 | #define vm_map_copy_insert(map, where, copy)({ struct rbtree_node *node, *tmp; for (node = rbtree_postwalk_deepest (&(copy)->c_u.hdr.tree), tmp = rbtree_postwalk_unlink( node); node != ((void *) 0); node = tmp, tmp = rbtree_postwalk_unlink (node)) ({ struct rbtree_node *___cur, *___prev; int ___diff, ___index; ___prev = ((void *) 0); ___index = -1; ___cur = (& (map)->hdr.tree)->root; while (___cur != ((void *) 0)) { ___diff = vm_map_entry_cmp_insert(node, ___cur); ({ if (!(___diff != 0)) Assert("___diff != 0", "../vm/vm_map.c", 2414); }); ___prev = ___cur; ___index = rbtree_d2i(___diff); ___cur = ___cur-> children[___index]; } rbtree_insert_rebalance(&(map)-> hdr.tree, ___prev, ___index, node); }); (((where)->links.next )->links.prev = ((copy)->c_u.hdr.links.prev)) ->links .next = ((where)->links.next); ((where)->links.next = ( (copy)->c_u.hdr.links.next)) ->links.prev = (where); (map )->hdr.nentries += (copy)->c_u.hdr.nentries; kmem_cache_free (&vm_map_copy_cache, (vm_offset_t) copy); }) \ |
| 2415 | MACRO_BEGIN({ \ |
| 2416 | struct rbtree_node *node, *tmp; \ |
| 2417 | rbtree_for_each_remove(&(copy)->cpy_hdr.tree, node, tmp)for (node = rbtree_postwalk_deepest(&(copy)->c_u.hdr.tree ), tmp = rbtree_postwalk_unlink(node); node != ((void *) 0); node = tmp, tmp = rbtree_postwalk_unlink(node)) \ |
| 2418 | rbtree_insert(&(map)->hdr.tree, node, \({ struct rbtree_node *___cur, *___prev; int ___diff, ___index ; ___prev = ((void *) 0); ___index = -1; ___cur = (&(map) ->hdr.tree)->root; while (___cur != ((void *) 0)) { ___diff = vm_map_entry_cmp_insert(node, ___cur); ({ if (!(___diff != 0)) Assert("___diff != 0", "../vm/vm_map.c", 2419); }); ___prev = ___cur; ___index = rbtree_d2i(___diff); ___cur = ___cur-> children[___index]; } rbtree_insert_rebalance(&(map)-> hdr.tree, ___prev, ___index, node); }) |
| 2419 | vm_map_entry_cmp_insert)({ struct rbtree_node *___cur, *___prev; int ___diff, ___index ; ___prev = ((void *) 0); ___index = -1; ___cur = (&(map) ->hdr.tree)->root; while (___cur != ((void *) 0)) { ___diff = vm_map_entry_cmp_insert(node, ___cur); ({ if (!(___diff != 0)) Assert("___diff != 0", "../vm/vm_map.c", 2419); }); ___prev = ___cur; ___index = rbtree_d2i(___diff); ___cur = ___cur-> children[___index]; } rbtree_insert_rebalance(&(map)-> hdr.tree, ___prev, ___index, node); }); \ |
| 2420 | (((where)->vme_nextlinks.next)->vme_prevlinks.prev = vm_map_copy_last_entry(copy)((copy)->c_u.hdr.links.prev)) \ |
| 2421 | ->vme_nextlinks.next = ((where)->vme_nextlinks.next); \ |
| 2422 | ((where)->vme_nextlinks.next = vm_map_copy_first_entry(copy)((copy)->c_u.hdr.links.next)) \ |
| 2423 | ->vme_prevlinks.prev = (where); \ |
| 2424 | (map)->hdr.nentries += (copy)->cpy_hdrc_u.hdr.nentries; \ |
| 2425 | kmem_cache_free(&vm_map_copy_cache, (vm_offset_t) copy); \ |
| 2426 | MACRO_END}) |
| 2427 | |
| 2428 | /* |
| 2429 | * Routine: vm_map_copyout |
| 2430 | * |
| 2431 | * Description: |
| 2432 | * Copy out a copy chain ("copy") into newly-allocated |
| 2433 | * space in the destination map. |
| 2434 | * |
| 2435 | * If successful, consumes the copy object. |
| 2436 | * Otherwise, the caller is responsible for it. |
| 2437 | */ |
| 2438 | kern_return_t vm_map_copyout(dst_map, dst_addr, copy) |
| 2439 | vm_map_t dst_map; |
| 2440 | vm_offset_t *dst_addr; /* OUT */ |
| 2441 | vm_map_copy_t copy; |
| 2442 | { |
| 2443 | vm_size_t size; |
| 2444 | vm_size_t adjustment; |
| 2445 | vm_offset_t start; |
| 2446 | vm_offset_t vm_copy_start; |
| 2447 | vm_map_entry_t last; |
| 2448 | vm_map_entry_t entry; |
| 2449 | |
| 2450 | /* |
| 2451 | * Check for null copy object. |
| 2452 | */ |
| 2453 | |
| 2454 | if (copy == VM_MAP_COPY_NULL((vm_map_copy_t) 0)) { |
| 2455 | *dst_addr = 0; |
| 2456 | return(KERN_SUCCESS0); |
| 2457 | } |
| 2458 | |
| 2459 | /* |
| 2460 | * Check for special copy object, created |
| 2461 | * by vm_map_copyin_object. |
| 2462 | */ |
| 2463 | |
| 2464 | if (copy->type == VM_MAP_COPY_OBJECT2) { |
| 2465 | vm_object_t object = copy->cpy_objectc_u.c_o.object; |
| 2466 | vm_size_t offset = copy->offset; |
| 2467 | vm_size_t tmp_size = copy->size; |
| 2468 | kern_return_t kr; |
| 2469 | |
| 2470 | *dst_addr = 0; |
| 2471 | kr = vm_map_enter(dst_map, dst_addr, tmp_size, |
| 2472 | (vm_offset_t) 0, TRUE((boolean_t) 1), |
| 2473 | object, offset, FALSE((boolean_t) 0), |
| 2474 | VM_PROT_DEFAULT(((vm_prot_t) 0x01)|((vm_prot_t) 0x02)), VM_PROT_ALL(((vm_prot_t) 0x01)|((vm_prot_t) 0x02)|((vm_prot_t) 0x04)), |
| 2475 | VM_INHERIT_DEFAULT((vm_inherit_t) 1)); |
| 2476 | if (kr != KERN_SUCCESS0) |
| 2477 | return(kr); |
| 2478 | kmem_cache_free(&vm_map_copy_cache, (vm_offset_t) copy); |
| 2479 | return(KERN_SUCCESS0); |
| 2480 | } |
| 2481 | |
| 2482 | if (copy->type == VM_MAP_COPY_PAGE_LIST3) |
| 2483 | return(vm_map_copyout_page_list(dst_map, dst_addr, copy)); |
| 2484 | |
| 2485 | /* |
| 2486 | * Find space for the data |
| 2487 | */ |
| 2488 | |
| 2489 | vm_copy_start = trunc_page(copy->offset)((vm_offset_t)(((vm_offset_t)(copy->offset)) & ~((1 << 12)-1))); |
| 2490 | size = round_page(copy->offset + copy->size)((vm_offset_t)((((vm_offset_t)(copy->offset + copy->size )) + ((1 << 12)-1)) & ~((1 << 12)-1))) - vm_copy_start; |
| 2491 | |
| 2492 | StartAgain: ; |
| 2493 | |
| 2494 | vm_map_lock(dst_map)({ lock_write(&(dst_map)->lock); (dst_map)->timestamp ++; }); |
| 2495 | start = ((last = dst_map->first_free) == vm_map_to_entry(dst_map)((struct vm_map_entry *) &(dst_map)->hdr.links)) ? |
| 2496 | vm_map_min(dst_map)((dst_map)->hdr.links.start) : last->vme_endlinks.end; |
| 2497 | |
| 2498 | while (TRUE((boolean_t) 1)) { |
| 2499 | vm_map_entry_t next = last->vme_nextlinks.next; |
| 2500 | vm_offset_t end = start + size; |
| 2501 | |
| 2502 | if ((end > dst_map->max_offsethdr.links.end) || (end < start)) { |
| 2503 | if (dst_map->wait_for_space) { |
| 2504 | if (size <= (dst_map->max_offsethdr.links.end - dst_map->min_offsethdr.links.start)) { |
| 2505 | assert_wait((event_t) dst_map, TRUE((boolean_t) 1)); |
| 2506 | vm_map_unlock(dst_map)lock_done(&(dst_map)->lock); |
| 2507 | thread_block((void (*)()) 0); |
| 2508 | goto StartAgain; |
| 2509 | } |
| 2510 | } |
| 2511 | vm_map_unlock(dst_map)lock_done(&(dst_map)->lock); |
| 2512 | printf_once("no more room for vm_map_copyout in %p\n", dst_map)({ static int __once = 0; if (!__once) { db_printf("no more room for vm_map_copyout in %p\n" , dst_map); __once = 1; } }); |
| 2513 | return(KERN_NO_SPACE3); |
| 2514 | } |
| 2515 | |
| 2516 | if ((next == vm_map_to_entry(dst_map)((struct vm_map_entry *) &(dst_map)->hdr.links)) || |
| 2517 | (next->vme_startlinks.start >= end)) |
| 2518 | break; |
| 2519 | |
| 2520 | last = next; |
| 2521 | start = last->vme_endlinks.end; |
| 2522 | } |
| 2523 | |
| 2524 | /* |
| 2525 | * Since we're going to just drop the map |
| 2526 | * entries from the copy into the destination |
| 2527 | * map, they must come from the same pool. |
| 2528 | */ |
| 2529 | |
| 2530 | if (copy->cpy_hdrc_u.hdr.entries_pageable != dst_map->hdr.entries_pageable) { |
| 2531 | /* |
| 2532 | * Mismatches occur when dealing with the default |
| 2533 | * pager. |
| 2534 | */ |
| 2535 | kmem_cache_t old_cache; |
| 2536 | vm_map_entry_t next, new; |
| 2537 | |
| 2538 | /* |
| 2539 | * Find the cache that the copies were allocated from |
| 2540 | */ |
| 2541 | old_cache = (copy->cpy_hdrc_u.hdr.entries_pageable) |
| 2542 | ? &vm_map_entry_cache |
| 2543 | : &vm_map_kentry_cache; |
| 2544 | entry = vm_map_copy_first_entry(copy)((copy)->c_u.hdr.links.next); |
| 2545 | |
| 2546 | /* |
| 2547 | * Reinitialize the copy so that vm_map_copy_entry_link |
| 2548 | * will work. |
| 2549 | */ |
| 2550 | copy->cpy_hdrc_u.hdr.nentries = 0; |
| 2551 | copy->cpy_hdrc_u.hdr.entries_pageable = dst_map->hdr.entries_pageable; |
| 2552 | vm_map_copy_first_entry(copy)((copy)->c_u.hdr.links.next) = |
| 2553 | vm_map_copy_last_entry(copy)((copy)->c_u.hdr.links.prev) = |
| 2554 | vm_map_copy_to_entry(copy)((struct vm_map_entry *) &(copy)->c_u.hdr.links); |
| 2555 | |
| 2556 | /* |
| 2557 | * Copy each entry. |
| 2558 | */ |
| 2559 | while (entry != vm_map_copy_to_entry(copy)((struct vm_map_entry *) &(copy)->c_u.hdr.links)) { |
| 2560 | new = vm_map_copy_entry_create(copy)_vm_map_entry_create(&(copy)->c_u.hdr); |
| 2561 | vm_map_entry_copy_full(new, entry)(*(new) = *(entry)); |
| 2562 | vm_map_copy_entry_link(copy,({ (&(copy)->c_u.hdr)->nentries++; (new)->links. prev = (((copy)->c_u.hdr.links.prev)); (new)->links.next = (((copy)->c_u.hdr.links.prev))->links.next; (new)-> links.prev->links.next = (new)->links.next->links.prev = (new); ({ struct rbtree_node *___cur, *___prev; int ___diff , ___index; ___prev = ((void *) 0); ___index = -1; ___cur = ( &(&(copy)->c_u.hdr)->tree)->root; while (___cur != ((void *) 0)) { ___diff = vm_map_entry_cmp_insert(&(new )->tree_node, ___cur); ({ if (!(___diff != 0)) Assert("___diff != 0" , "../vm/vm_map.c", 2564); }); ___prev = ___cur; ___index = rbtree_d2i (___diff); ___cur = ___cur->children[___index]; } rbtree_insert_rebalance (&(&(copy)->c_u.hdr)->tree, ___prev, ___index, & (new)->tree_node); }); }) |
| 2563 | vm_map_copy_last_entry(copy),({ (&(copy)->c_u.hdr)->nentries++; (new)->links. prev = (((copy)->c_u.hdr.links.prev)); (new)->links.next = (((copy)->c_u.hdr.links.prev))->links.next; (new)-> links.prev->links.next = (new)->links.next->links.prev = (new); ({ struct rbtree_node *___cur, *___prev; int ___diff , ___index; ___prev = ((void *) 0); ___index = -1; ___cur = ( &(&(copy)->c_u.hdr)->tree)->root; while (___cur != ((void *) 0)) { ___diff = vm_map_entry_cmp_insert(&(new )->tree_node, ___cur); ({ if (!(___diff != 0)) Assert("___diff != 0" , "../vm/vm_map.c", 2564); }); ___prev = ___cur; ___index = rbtree_d2i (___diff); ___cur = ___cur->children[___index]; } rbtree_insert_rebalance (&(&(copy)->c_u.hdr)->tree, ___prev, ___index, & (new)->tree_node); }); }) |
| 2564 | new)({ (&(copy)->c_u.hdr)->nentries++; (new)->links. prev = (((copy)->c_u.hdr.links.prev)); (new)->links.next = (((copy)->c_u.hdr.links.prev))->links.next; (new)-> links.prev->links.next = (new)->links.next->links.prev = (new); ({ struct rbtree_node *___cur, *___prev; int ___diff , ___index; ___prev = ((void *) 0); ___index = -1; ___cur = ( &(&(copy)->c_u.hdr)->tree)->root; while (___cur != ((void *) 0)) { ___diff = vm_map_entry_cmp_insert(&(new )->tree_node, ___cur); ({ if (!(___diff != 0)) Assert("___diff != 0" , "../vm/vm_map.c", 2564); }); ___prev = ___cur; ___index = rbtree_d2i (___diff); ___cur = ___cur->children[___index]; } rbtree_insert_rebalance (&(&(copy)->c_u.hdr)->tree, ___prev, ___index, & (new)->tree_node); }); }); |
| 2565 | next = entry->vme_nextlinks.next; |
| 2566 | kmem_cache_free(old_cache, (vm_offset_t) entry); |
| 2567 | entry = next; |
| 2568 | } |
| 2569 | } |
| 2570 | |
| 2571 | /* |
| 2572 | * Adjust the addresses in the copy chain, and |
| 2573 | * reset the region attributes. |
| 2574 | */ |
| 2575 | |
| 2576 | adjustment = start - vm_copy_start; |
| 2577 | for (entry = vm_map_copy_first_entry(copy)((copy)->c_u.hdr.links.next); |
| 2578 | entry != vm_map_copy_to_entry(copy)((struct vm_map_entry *) &(copy)->c_u.hdr.links); |
| 2579 | entry = entry->vme_nextlinks.next) { |
| 2580 | entry->vme_startlinks.start += adjustment; |
| 2581 | entry->vme_endlinks.end += adjustment; |
| 2582 | |
| 2583 | entry->inheritance = VM_INHERIT_DEFAULT((vm_inherit_t) 1); |
| 2584 | entry->protection = VM_PROT_DEFAULT(((vm_prot_t) 0x01)|((vm_prot_t) 0x02)); |
| 2585 | entry->max_protection = VM_PROT_ALL(((vm_prot_t) 0x01)|((vm_prot_t) 0x02)|((vm_prot_t) 0x04)); |
| 2586 | entry->projected_on = 0; |
| 2587 | |
| 2588 | /* |
| 2589 | * If the entry is now wired, |
| 2590 | * map the pages into the destination map. |
| 2591 | */ |
| 2592 | if (entry->wired_count != 0) { |
| 2593 | vm_offset_t va; |
| 2594 | vm_offset_t offset; |
| 2595 | vm_object_t object; |
| 2596 | |
| 2597 | object = entry->object.vm_object; |
| 2598 | offset = entry->offset; |
| 2599 | va = entry->vme_startlinks.start; |
| 2600 | |
| 2601 | pmap_pageable(dst_map->pmap, |
| 2602 | entry->vme_startlinks.start, |
| 2603 | entry->vme_endlinks.end, |
| 2604 | TRUE((boolean_t) 1)); |
| 2605 | |
| 2606 | while (va < entry->vme_endlinks.end) { |
| 2607 | vm_page_t m; |
| 2608 | |
| 2609 | /* |
| 2610 | * Look up the page in the object. |
| 2611 | * Assert that the page will be found in the |
| 2612 | * top object: |
| 2613 | * either |
| 2614 | * the object was newly created by |
| 2615 | * vm_object_copy_slowly, and has |
| 2616 | * copies of all of the pages from |
| 2617 | * the source object |
| 2618 | * or |
| 2619 | * the object was moved from the old |
| 2620 | * map entry; because the old map |
| 2621 | * entry was wired, all of the pages |
| 2622 | * were in the top-level object. |
| 2623 | * (XXX not true if we wire pages for |
| 2624 | * reading) |
| 2625 | */ |
| 2626 | vm_object_lock(object); |
| 2627 | vm_object_paging_begin(object)((object)->paging_in_progress++); |
| 2628 | |
| 2629 | m = vm_page_lookup(object, offset); |
| 2630 | if (m == VM_PAGE_NULL((vm_page_t) 0) || m->wire_count == 0 || |
| 2631 | m->absent) |
| 2632 | panic("vm_map_copyout: wiring 0x%x", m); |
| 2633 | |
| 2634 | m->busy = TRUE((boolean_t) 1); |
| 2635 | vm_object_unlock(object)((void)(&(object)->Lock)); |
| 2636 | |
| 2637 | PMAP_ENTER(dst_map->pmap, va, m,({ pmap_enter( (dst_map->pmap), (va), (m)->phys_addr, ( entry->protection) & ~(m)->page_lock, (((boolean_t) 1)) ); }) |
| 2638 | entry->protection, TRUE)({ pmap_enter( (dst_map->pmap), (va), (m)->phys_addr, ( entry->protection) & ~(m)->page_lock, (((boolean_t) 1)) ); }); |
| 2639 | |
| 2640 | vm_object_lock(object); |
| 2641 | PAGE_WAKEUP_DONE(m)({ (m)->busy = ((boolean_t) 0); if ((m)->wanted) { (m)-> wanted = ((boolean_t) 0); thread_wakeup_prim((((event_t) m)), ((boolean_t) 0), 0); } }); |
| 2642 | /* the page is wired, so we don't have to activate */ |
| 2643 | vm_object_paging_end(object)({ ({ if (!((object)->paging_in_progress != 0)) Assert("(object)->paging_in_progress != 0" , "../vm/vm_map.c", 2643); }); if (--(object)->paging_in_progress == 0) { ({ if ((object)->all_wanted & (1 << (2) )) thread_wakeup_prim(((event_t)(((vm_offset_t) object) + (2) )), ((boolean_t) 0), 0); (object)->all_wanted &= ~(1 << (2)); }); } }); |
| 2644 | vm_object_unlock(object)((void)(&(object)->Lock)); |
| 2645 | |
| 2646 | offset += PAGE_SIZE(1 << 12); |
| 2647 | va += PAGE_SIZE(1 << 12); |
| 2648 | } |
| 2649 | } |
| 2650 | |
| 2651 | |
| 2652 | } |
| 2653 | |
| 2654 | /* |
| 2655 | * Correct the page alignment for the result |
| 2656 | */ |
| 2657 | |
| 2658 | *dst_addr = start + (copy->offset - vm_copy_start); |
| 2659 | |
| 2660 | /* |
| 2661 | * Update the hints and the map size |
| 2662 | */ |
| 2663 | |
| 2664 | if (dst_map->first_free == last) |
| 2665 | dst_map->first_free = vm_map_copy_last_entry(copy)((copy)->c_u.hdr.links.prev); |
| 2666 | SAVE_HINT(dst_map, vm_map_copy_last_entry(copy)); (dst_map)->hint = (((copy)->c_u.hdr.links.prev)); ((void )(&(dst_map)->hint_lock));; |
| 2667 | |
| 2668 | dst_map->size += size; |
| 2669 | |
| 2670 | /* |
| 2671 | * Link in the copy |
| 2672 | */ |
| 2673 | |
| 2674 | vm_map_copy_insert(dst_map, last, copy)({ struct rbtree_node *node, *tmp; for (node = rbtree_postwalk_deepest (&(copy)->c_u.hdr.tree), tmp = rbtree_postwalk_unlink( node); node != ((void *) 0); node = tmp, tmp = rbtree_postwalk_unlink (node)) ({ struct rbtree_node *___cur, *___prev; int ___diff, ___index; ___prev = ((void *) 0); ___index = -1; ___cur = (& (dst_map)->hdr.tree)->root; while (___cur != ((void *) 0 )) { ___diff = vm_map_entry_cmp_insert(node, ___cur); ({ if ( !(___diff != 0)) Assert("___diff != 0", "../vm/vm_map.c", 2674 ); }); ___prev = ___cur; ___index = rbtree_d2i(___diff); ___cur = ___cur->children[___index]; } rbtree_insert_rebalance(& (dst_map)->hdr.tree, ___prev, ___index, node); }); (((last )->links.next)->links.prev = ((copy)->c_u.hdr.links. prev)) ->links.next = ((last)->links.next); ((last)-> links.next = ((copy)->c_u.hdr.links.next)) ->links.prev = (last); (dst_map)->hdr.nentries += (copy)->c_u.hdr.nentries ; kmem_cache_free(&vm_map_copy_cache, (vm_offset_t) copy) ; }); |
| 2675 | |
| 2676 | vm_map_unlock(dst_map)lock_done(&(dst_map)->lock); |
| 2677 | |
| 2678 | /* |
| 2679 | * XXX If wiring_required, call vm_map_pageable |
| 2680 | */ |
| 2681 | |
| 2682 | return(KERN_SUCCESS0); |
| 2683 | } |
| 2684 | |
| 2685 | /* |
| 2686 | * |
| 2687 | * vm_map_copyout_page_list: |
| 2688 | * |
| 2689 | * Version of vm_map_copyout() for page list vm map copies. |
| 2690 | * |
| 2691 | */ |
| 2692 | kern_return_t vm_map_copyout_page_list(dst_map, dst_addr, copy) |
| 2693 | vm_map_t dst_map; |
| 2694 | vm_offset_t *dst_addr; /* OUT */ |
| 2695 | vm_map_copy_t copy; |
| 2696 | { |
| 2697 | vm_size_t size; |
| 2698 | vm_offset_t start; |
| 2699 | vm_offset_t end; |
| 2700 | vm_offset_t offset; |
| 2701 | vm_map_entry_t last; |
| 2702 | vm_object_t object; |
| 2703 | vm_page_t *page_list, m; |
| 2704 | vm_map_entry_t entry; |
| 2705 | vm_offset_t old_last_offset; |
| 2706 | boolean_t cont_invoked, needs_wakeup = FALSE((boolean_t) 0); |
| 2707 | kern_return_t result = KERN_SUCCESS0; |
| 2708 | vm_map_copy_t orig_copy; |
| 2709 | vm_offset_t dst_offset; |
| 2710 | boolean_t must_wire; |
| 2711 | |
| 2712 | /* |
| 2713 | * Make sure the pages are stolen, because we are |
| 2714 | * going to put them in a new object. Assume that |
| 2715 | * all pages are identical to first in this regard. |
| 2716 | */ |
| 2717 | |
| 2718 | page_list = ©->cpy_page_listc_u.c_p.page_list[0]; |
| 2719 | if ((*page_list)->tabled) |
| 2720 | vm_map_copy_steal_pages(copy); |
| 2721 | |
| 2722 | /* |
| 2723 | * Find space for the data |
| 2724 | */ |
| 2725 | |
| 2726 | size = round_page(copy->offset + copy->size)((vm_offset_t)((((vm_offset_t)(copy->offset + copy->size )) + ((1 << 12)-1)) & ~((1 << 12)-1))) - |
| 2727 | trunc_page(copy->offset)((vm_offset_t)(((vm_offset_t)(copy->offset)) & ~((1 << 12)-1))); |
| 2728 | StartAgain: |
| 2729 | vm_map_lock(dst_map)({ lock_write(&(dst_map)->lock); (dst_map)->timestamp ++; }); |
| 2730 | must_wire = dst_map->wiring_required; |
| 2731 | |
| 2732 | last = dst_map->first_free; |
| 2733 | if (last == vm_map_to_entry(dst_map)((struct vm_map_entry *) &(dst_map)->hdr.links)) { |
| 2734 | start = vm_map_min(dst_map)((dst_map)->hdr.links.start); |
| 2735 | } else { |
| 2736 | start = last->vme_endlinks.end; |
| 2737 | } |
| 2738 | |
| 2739 | while (TRUE((boolean_t) 1)) { |
| 2740 | vm_map_entry_t next = last->vme_nextlinks.next; |
| 2741 | end = start + size; |
| 2742 | |
| 2743 | if ((end > dst_map->max_offsethdr.links.end) || (end < start)) { |
| 2744 | if (dst_map->wait_for_space) { |
| 2745 | if (size <= (dst_map->max_offsethdr.links.end - |
| 2746 | dst_map->min_offsethdr.links.start)) { |
| 2747 | assert_wait((event_t) dst_map, TRUE((boolean_t) 1)); |
| 2748 | vm_map_unlock(dst_map)lock_done(&(dst_map)->lock); |
| 2749 | thread_block((void (*)()) 0); |
| 2750 | goto StartAgain; |
| 2751 | } |
| 2752 | } |
| 2753 | vm_map_unlock(dst_map)lock_done(&(dst_map)->lock); |
| 2754 | printf_once("no more room for vm_map_copyout_page_list in %p\n", dst_map)({ static int __once = 0; if (!__once) { db_printf("no more room for vm_map_copyout_page_list in %p\n" , dst_map); __once = 1; } }); |
| 2755 | return(KERN_NO_SPACE3); |
| 2756 | } |
| 2757 | |
| 2758 | if ((next == vm_map_to_entry(dst_map)((struct vm_map_entry *) &(dst_map)->hdr.links)) || |
| 2759 | (next->vme_startlinks.start >= end)) { |
| 2760 | break; |
| 2761 | } |
| 2762 | |
| 2763 | last = next; |
| 2764 | start = last->vme_endlinks.end; |
| 2765 | } |
| 2766 | |
| 2767 | /* |
| 2768 | * See whether we can avoid creating a new entry (and object) by |
| 2769 | * extending one of our neighbors. [So far, we only attempt to |
| 2770 | * extend from below.] |
| 2771 | * |
| 2772 | * The code path below here is a bit twisted. If any of the |
| 2773 | * extension checks fails, we branch to create_object. If |
| 2774 | * it all works, we fall out the bottom and goto insert_pages. |
| 2775 | */ |
| 2776 | if (last == vm_map_to_entry(dst_map)((struct vm_map_entry *) &(dst_map)->hdr.links) || |
| 2777 | last->vme_endlinks.end != start || |
| 2778 | last->is_shared != FALSE((boolean_t) 0) || |
| 2779 | last->is_sub_map != FALSE((boolean_t) 0) || |
| 2780 | last->inheritance != VM_INHERIT_DEFAULT((vm_inherit_t) 1) || |
| 2781 | last->protection != VM_PROT_DEFAULT(((vm_prot_t) 0x01)|((vm_prot_t) 0x02)) || |
| 2782 | last->max_protection != VM_PROT_ALL(((vm_prot_t) 0x01)|((vm_prot_t) 0x02)|((vm_prot_t) 0x04)) || |
| 2783 | (must_wire ? (last->wired_count != 1 || |
| 2784 | last->user_wired_count != 1) : |
| 2785 | (last->wired_count != 0))) { |
| 2786 | goto create_object; |
| 2787 | } |
| 2788 | |
| 2789 | /* |
| 2790 | * If this entry needs an object, make one. |
| 2791 | */ |
| 2792 | if (last->object.vm_object == VM_OBJECT_NULL((vm_object_t) 0)) { |
| 2793 | object = vm_object_allocate( |
| 2794 | (vm_size_t)(last->vme_endlinks.end - last->vme_startlinks.start + size)); |
| 2795 | last->object.vm_object = object; |
| 2796 | last->offset = 0; |
| 2797 | vm_object_lock(object); |
| 2798 | } |
| 2799 | else { |
| 2800 | vm_offset_t prev_offset = last->offset; |
| 2801 | vm_size_t prev_size = start - last->vme_startlinks.start; |
| 2802 | vm_size_t new_size; |
| 2803 | |
| 2804 | /* |
| 2805 | * This is basically vm_object_coalesce. |
| 2806 | */ |
| 2807 | |
| 2808 | object = last->object.vm_object; |
| 2809 | vm_object_lock(object); |
| 2810 | |
| 2811 | /* |
| 2812 | * Try to collapse the object first |
| 2813 | */ |
| 2814 | vm_object_collapse(object); |
| 2815 | |
| 2816 | /* |
| 2817 | * Can't coalesce if pages not mapped to |
| 2818 | * last may be in use anyway: |
| 2819 | * . more than one reference |
| 2820 | * . paged out |
| 2821 | * . shadows another object |
| 2822 | * . has a copy elsewhere |
| 2823 | * . paging references (pages might be in page-list) |
| 2824 | */ |
| 2825 | |
| 2826 | if ((object->ref_count > 1) || |
| 2827 | object->pager_created || |
| 2828 | (object->shadow != VM_OBJECT_NULL((vm_object_t) 0)) || |
| 2829 | (object->copy != VM_OBJECT_NULL((vm_object_t) 0)) || |
| 2830 | (object->paging_in_progress != 0)) { |
| 2831 | vm_object_unlock(object)((void)(&(object)->Lock)); |
| 2832 | goto create_object; |
| 2833 | } |
| 2834 | |
| 2835 | /* |
| 2836 | * Extend the object if necessary. Don't have to call |
| 2837 | * vm_object_page_remove because the pages aren't mapped, |
| 2838 | * and vm_page_replace will free up any old ones it encounters. |
| 2839 | */ |
| 2840 | new_size = prev_offset + prev_size + size; |
| 2841 | if (new_size > object->size) |
| 2842 | object->size = new_size; |
| 2843 | } |
| 2844 | |
| 2845 | /* |
| 2846 | * Coalesced the two objects - can extend |
| 2847 | * the previous map entry to include the |
| 2848 | * new range. |
| 2849 | */ |
| 2850 | dst_map->size += size; |
| 2851 | last->vme_endlinks.end = end; |
| 2852 | |
| 2853 | SAVE_HINT(dst_map, last); (dst_map)->hint = (last); ((void)(&(dst_map)->hint_lock ));; |
| 2854 | |
| 2855 | goto insert_pages; |
| 2856 | |
| 2857 | create_object: |
| 2858 | |
| 2859 | /* |
| 2860 | * Create object |
| 2861 | */ |
| 2862 | object = vm_object_allocate(size); |
| 2863 | |
| 2864 | /* |
| 2865 | * Create entry |
| 2866 | */ |
| 2867 | |
| 2868 | entry = vm_map_entry_create(dst_map)_vm_map_entry_create(&(dst_map)->hdr); |
| 2869 | |
| 2870 | entry->object.vm_object = object; |
| 2871 | entry->offset = 0; |
| 2872 | |
| 2873 | entry->is_shared = FALSE((boolean_t) 0); |
| 2874 | entry->is_sub_map = FALSE((boolean_t) 0); |
| 2875 | entry->needs_copy = FALSE((boolean_t) 0); |
| 2876 | |
| 2877 | if (must_wire) { |
| 2878 | entry->wired_count = 1; |
| 2879 | entry->user_wired_count = 1; |
| 2880 | } else { |
| 2881 | entry->wired_count = 0; |
| 2882 | entry->user_wired_count = 0; |
| 2883 | } |
| 2884 | |
| 2885 | entry->in_transition = TRUE((boolean_t) 1); |
| 2886 | entry->needs_wakeup = FALSE((boolean_t) 0); |
| 2887 | |
| 2888 | entry->vme_startlinks.start = start; |
| 2889 | entry->vme_endlinks.end = start + size; |
| 2890 | |
| 2891 | entry->inheritance = VM_INHERIT_DEFAULT((vm_inherit_t) 1); |
| 2892 | entry->protection = VM_PROT_DEFAULT(((vm_prot_t) 0x01)|((vm_prot_t) 0x02)); |
| 2893 | entry->max_protection = VM_PROT_ALL(((vm_prot_t) 0x01)|((vm_prot_t) 0x02)|((vm_prot_t) 0x04)); |
| 2894 | entry->projected_on = 0; |
| 2895 | |
| 2896 | vm_object_lock(object); |
| 2897 | |
| 2898 | /* |
| 2899 | * Update the hints and the map size |
| 2900 | */ |
| 2901 | if (dst_map->first_free == last) { |
| 2902 | dst_map->first_free = entry; |
| 2903 | } |
| 2904 | SAVE_HINT(dst_map, entry); (dst_map)->hint = (entry); ((void)(&(dst_map)->hint_lock ));; |
| 2905 | dst_map->size += size; |
| 2906 | |
| 2907 | /* |
| 2908 | * Link in the entry |
| 2909 | */ |
| 2910 | vm_map_entry_link(dst_map, last, entry)({ (&(dst_map)->hdr)->nentries++; (entry)->links .prev = (last); (entry)->links.next = (last)->links.next ; (entry)->links.prev->links.next = (entry)->links.next ->links.prev = (entry); ({ struct rbtree_node *___cur, *___prev ; int ___diff, ___index; ___prev = ((void *) 0); ___index = - 1; ___cur = (&(&(dst_map)->hdr)->tree)->root ; while (___cur != ((void *) 0)) { ___diff = vm_map_entry_cmp_insert (&(entry)->tree_node, ___cur); ({ if (!(___diff != 0)) Assert("___diff != 0", "../vm/vm_map.c", 2910); }); ___prev = ___cur; ___index = rbtree_d2i(___diff); ___cur = ___cur-> children[___index]; } rbtree_insert_rebalance(&(&(dst_map )->hdr)->tree, ___prev, ___index, &(entry)->tree_node ); }); }); |
| 2911 | last = entry; |
| 2912 | |
| 2913 | /* |
| 2914 | * Transfer pages into new object. |
| 2915 | * Scan page list in vm_map_copy. |
| 2916 | */ |
| 2917 | insert_pages: |
| 2918 | dst_offset = copy->offset & PAGE_MASK((1 << 12)-1); |
| 2919 | cont_invoked = FALSE((boolean_t) 0); |
| 2920 | orig_copy = copy; |
| 2921 | last->in_transition = TRUE((boolean_t) 1); |
| 2922 | old_last_offset = last->offset |
| 2923 | + (start - last->vme_startlinks.start); |
| 2924 | |
| 2925 | vm_page_lock_queues(); |
| 2926 | |
| 2927 | for (offset = 0; offset < size; offset += PAGE_SIZE(1 << 12)) { |
| 2928 | m = *page_list; |
| 2929 | assert(m && !m->tabled)({ if (!(m && !m->tabled)) Assert("m && !m->tabled" , "../vm/vm_map.c", 2929); }); |
| 2930 | |
| 2931 | /* |
| 2932 | * Must clear busy bit in page before inserting it. |
| 2933 | * Ok to skip wakeup logic because nobody else |
| 2934 | * can possibly know about this page. |
| 2935 | * The page is dirty in its new object. |
| 2936 | */ |
| 2937 | |
| 2938 | assert(!m->wanted)({ if (!(!m->wanted)) Assert("!m->wanted", "../vm/vm_map.c" , 2938); }); |
| 2939 | |
| 2940 | m->busy = FALSE((boolean_t) 0); |
| 2941 | m->dirty = TRUE((boolean_t) 1); |
| 2942 | vm_page_replace(m, object, old_last_offset + offset); |
| 2943 | if (must_wire) { |
| 2944 | vm_page_wire(m); |
| 2945 | PMAP_ENTER(dst_map->pmap,({ pmap_enter( (dst_map->pmap), (last->links.start + m-> offset - last->offset), (m)->phys_addr, (last->protection ) & ~(m)->page_lock, (((boolean_t) 1)) ); }) |
| 2946 | last->vme_start + m->offset - last->offset,({ pmap_enter( (dst_map->pmap), (last->links.start + m-> offset - last->offset), (m)->phys_addr, (last->protection ) & ~(m)->page_lock, (((boolean_t) 1)) ); }) |
| 2947 | m, last->protection, TRUE)({ pmap_enter( (dst_map->pmap), (last->links.start + m-> offset - last->offset), (m)->phys_addr, (last->protection ) & ~(m)->page_lock, (((boolean_t) 1)) ); }); |
| 2948 | } else { |
| 2949 | vm_page_activate(m); |
| 2950 | } |
| 2951 | |
| 2952 | *page_list++ = VM_PAGE_NULL((vm_page_t) 0); |
| 2953 | if (--(copy->cpy_npagesc_u.c_p.npages) == 0 && |
| 2954 | vm_map_copy_has_cont(copy)(((copy)->c_u.c_p.cont) != (kern_return_t (*)()) 0)) { |
| 2955 | vm_map_copy_t new_copy; |
| 2956 | |
| 2957 | /* |
| 2958 | * Ok to unlock map because entry is |
| 2959 | * marked in_transition. |
| 2960 | */ |
| 2961 | cont_invoked = TRUE((boolean_t) 1); |
| 2962 | vm_page_unlock_queues()((void)(&vm_page_queue_lock)); |
| 2963 | vm_object_unlock(object)((void)(&(object)->Lock)); |
| 2964 | vm_map_unlock(dst_map)lock_done(&(dst_map)->lock); |
| 2965 | vm_map_copy_invoke_cont(copy, &new_copy, &result)({ vm_map_copy_page_discard(copy); *&result = (*((copy)-> c_u.c_p.cont))((copy)->c_u.c_p.cont_args, &new_copy); ( copy)->c_u.c_p.cont = (kern_return_t (*)()) 0; }); |
| 2966 | |
| 2967 | if (result == KERN_SUCCESS0) { |
| 2968 | |
| 2969 | /* |
| 2970 | * If we got back a copy with real pages, |
| 2971 | * steal them now. Either all of the |
| 2972 | * pages in the list are tabled or none |
| 2973 | * of them are; mixtures are not possible. |
| 2974 | * |
| 2975 | * Save original copy for consume on |
| 2976 | * success logic at end of routine. |
| 2977 | */ |
| 2978 | if (copy != orig_copy) |
| 2979 | vm_map_copy_discard(copy); |
| 2980 | |
| 2981 | if ((copy = new_copy) != VM_MAP_COPY_NULL((vm_map_copy_t) 0)) { |
| 2982 | page_list = ©->cpy_page_listc_u.c_p.page_list[0]; |
| 2983 | if ((*page_list)->tabled) |
| 2984 | vm_map_copy_steal_pages(copy); |
| 2985 | } |
| 2986 | } |
| 2987 | else { |
| 2988 | /* |
| 2989 | * Continuation failed. |
| 2990 | */ |
| 2991 | vm_map_lock(dst_map)({ lock_write(&(dst_map)->lock); (dst_map)->timestamp ++; }); |
| 2992 | goto error; |
| 2993 | } |
| 2994 | |
| 2995 | vm_map_lock(dst_map)({ lock_write(&(dst_map)->lock); (dst_map)->timestamp ++; }); |
| 2996 | vm_object_lock(object); |
| 2997 | vm_page_lock_queues(); |
| 2998 | } |
| 2999 | } |
| 3000 | |
| 3001 | vm_page_unlock_queues()((void)(&vm_page_queue_lock)); |
| 3002 | vm_object_unlock(object)((void)(&(object)->Lock)); |
| 3003 | |
| 3004 | *dst_addr = start + dst_offset; |
| 3005 | |
| 3006 | /* |
| 3007 | * Clear the in transition bits. This is easy if we |
| 3008 | * didn't have a continuation. |
| 3009 | */ |
| 3010 | error: |
| 3011 | if (!cont_invoked) { |
| 3012 | /* |
| 3013 | * We didn't unlock the map, so nobody could |
| 3014 | * be waiting. |
| 3015 | */ |
| 3016 | last->in_transition = FALSE((boolean_t) 0); |
| 3017 | assert(!last->needs_wakeup)({ if (!(!last->needs_wakeup)) Assert("!last->needs_wakeup" , "../vm/vm_map.c", 3017); }); |
| 3018 | needs_wakeup = FALSE((boolean_t) 0); |
| 3019 | } |
| 3020 | else { |
| 3021 | if (!vm_map_lookup_entry(dst_map, start, &entry)) |
| 3022 | panic("vm_map_copyout_page_list: missing entry"); |
| 3023 | |
| 3024 | /* |
| 3025 | * Clear transition bit for all constituent entries that |
| 3026 | * were in the original entry. Also check for waiters. |
| 3027 | */ |
| 3028 | while((entry != vm_map_to_entry(dst_map)((struct vm_map_entry *) &(dst_map)->hdr.links)) && |
| 3029 | (entry->vme_startlinks.start < end)) { |
| 3030 | assert(entry->in_transition)({ if (!(entry->in_transition)) Assert("entry->in_transition" , "../vm/vm_map.c", 3030); }); |
| 3031 | entry->in_transition = FALSE((boolean_t) 0); |
| 3032 | if(entry->needs_wakeup) { |
| 3033 | entry->needs_wakeup = FALSE((boolean_t) 0); |
| 3034 | needs_wakeup = TRUE((boolean_t) 1); |
| 3035 | } |
| 3036 | entry = entry->vme_nextlinks.next; |
| 3037 | } |
| 3038 | } |
| 3039 | |
| 3040 | if (result != KERN_SUCCESS0) |
| 3041 | vm_map_delete(dst_map, start, end); |
| 3042 | |
| 3043 | vm_map_unlock(dst_map)lock_done(&(dst_map)->lock); |
| 3044 | |
| 3045 | if (needs_wakeup) |
| 3046 | vm_map_entry_wakeup(dst_map)thread_wakeup_prim(((event_t)&(dst_map)->hdr), ((boolean_t ) 0), 0); |
| 3047 | |
| 3048 | /* |
| 3049 | * Consume on success logic. |
| 3050 | */ |
| 3051 | if (copy != orig_copy) { |
| 3052 | kmem_cache_free(&vm_map_copy_cache, (vm_offset_t) copy); |
| 3053 | } |
| 3054 | if (result == KERN_SUCCESS0) { |
| 3055 | kmem_cache_free(&vm_map_copy_cache, (vm_offset_t) orig_copy); |
| 3056 | } |
| 3057 | |
| 3058 | return(result); |
| 3059 | } |
| 3060 | |
| 3061 | /* |
| 3062 | * Routine: vm_map_copyin |
| 3063 | * |
| 3064 | * Description: |
| 3065 | * Copy the specified region (src_addr, len) from the |
| 3066 | * source address space (src_map), possibly removing |
| 3067 | * the region from the source address space (src_destroy). |
| 3068 | * |
| 3069 | * Returns: |
| 3070 | * A vm_map_copy_t object (copy_result), suitable for |
| 3071 | * insertion into another address space (using vm_map_copyout), |
| 3072 | * copying over another address space region (using |
| 3073 | * vm_map_copy_overwrite). If the copy is unused, it |
| 3074 | * should be destroyed (using vm_map_copy_discard). |
| 3075 | * |
| 3076 | * In/out conditions: |
| 3077 | * The source map should not be locked on entry. |
| 3078 | */ |
| 3079 | kern_return_t vm_map_copyin(src_map, src_addr, len, src_destroy, copy_result) |
| 3080 | vm_map_t src_map; |
| 3081 | vm_offset_t src_addr; |
| 3082 | vm_size_t len; |
| 3083 | boolean_t src_destroy; |
| 3084 | vm_map_copy_t *copy_result; /* OUT */ |
| 3085 | { |
| 3086 | vm_map_entry_t tmp_entry; /* Result of last map lookup -- |
| 3087 | * in multi-level lookup, this |
| 3088 | * entry contains the actual |
| 3089 | * vm_object/offset. |
| 3090 | */ |
| 3091 | |
| 3092 | vm_offset_t src_start; /* Start of current entry -- |
| 3093 | * where copy is taking place now |
| 3094 | */ |
| 3095 | vm_offset_t src_end; /* End of entire region to be |
| 3096 | * copied */ |
| 3097 | |
| 3098 | vm_map_copy_t copy; /* Resulting copy */ |
| 3099 | |
| 3100 | /* |
| 3101 | * Check for copies of zero bytes. |
| 3102 | */ |
| 3103 | |
| 3104 | if (len == 0) { |
| 3105 | *copy_result = VM_MAP_COPY_NULL((vm_map_copy_t) 0); |
| 3106 | return(KERN_SUCCESS0); |
| 3107 | } |
| 3108 | |
| 3109 | /* |
| 3110 | * Compute start and end of region |
| 3111 | */ |
| 3112 | |
| 3113 | src_start = trunc_page(src_addr)((vm_offset_t)(((vm_offset_t)(src_addr)) & ~((1 << 12 )-1))); |
| 3114 | src_end = round_page(src_addr + len)((vm_offset_t)((((vm_offset_t)(src_addr + len)) + ((1 << 12)-1)) & ~((1 << 12)-1))); |
| 3115 | |
| 3116 | /* |
| 3117 | * Check that the end address doesn't overflow |
| 3118 | */ |
| 3119 | |
| 3120 | if (src_end <= src_start) |
| 3121 | if ((src_end < src_start) || (src_start != 0)) |
| 3122 | return(KERN_INVALID_ADDRESS1); |
| 3123 | |
| 3124 | /* |
| 3125 | * Allocate a header element for the list. |
| 3126 | * |
| 3127 | * Use the start and end in the header to |
| 3128 | * remember the endpoints prior to rounding. |
| 3129 | */ |
| 3130 | |
| 3131 | copy = (vm_map_copy_t) kmem_cache_alloc(&vm_map_copy_cache); |
| 3132 | vm_map_copy_first_entry(copy)((copy)->c_u.hdr.links.next) = |
| 3133 | vm_map_copy_last_entry(copy)((copy)->c_u.hdr.links.prev) = vm_map_copy_to_entry(copy)((struct vm_map_entry *) &(copy)->c_u.hdr.links); |
| 3134 | copy->type = VM_MAP_COPY_ENTRY_LIST1; |
| 3135 | copy->cpy_hdrc_u.hdr.nentries = 0; |
| 3136 | copy->cpy_hdrc_u.hdr.entries_pageable = TRUE((boolean_t) 1); |
| 3137 | rbtree_init(©->cpy_hdrc_u.hdr.tree); |
| 3138 | |
| 3139 | copy->offset = src_addr; |
| 3140 | copy->size = len; |
| 3141 | |
| 3142 | #define RETURN(x) \ |
| 3143 | MACRO_BEGIN({ \ |
| 3144 | vm_map_unlock(src_map)lock_done(&(src_map)->lock); \ |
| 3145 | vm_map_copy_discard(copy); \ |
| 3146 | MACRO_RETURNif (((boolean_t) 1)) return(x); \ |
| 3147 | MACRO_END}) |
| 3148 | |
| 3149 | /* |
| 3150 | * Find the beginning of the region. |
| 3151 | */ |
| 3152 | |
| 3153 | vm_map_lock(src_map)({ lock_write(&(src_map)->lock); (src_map)->timestamp ++; }); |
| 3154 | |
| 3155 | if (!vm_map_lookup_entry(src_map, src_start, &tmp_entry)) |
| 3156 | RETURN(KERN_INVALID_ADDRESS1); |
| 3157 | vm_map_clip_start(src_map, tmp_entry, src_start)({ if ((src_start) > (tmp_entry)->links.start) _vm_map_clip_start (&(src_map)->hdr,(tmp_entry),(src_start)); }); |
| 3158 | |
| 3159 | /* |
| 3160 | * Go through entries until we get to the end. |
| 3161 | */ |
| 3162 | |
| 3163 | while (TRUE((boolean_t) 1)) { |
| 3164 | vm_map_entry_t src_entry = tmp_entry; /* Top-level entry */ |
| 3165 | vm_size_t src_size; /* Size of source |
| 3166 | * map entry (in both |
| 3167 | * maps) |
| 3168 | */ |
| 3169 | |
| 3170 | vm_object_t src_object; /* Object to copy */ |
| 3171 | vm_offset_t src_offset; |
| 3172 | |
| 3173 | boolean_t src_needs_copy; /* Should source map |
| 3174 | * be made read-only |
| 3175 | * for copy-on-write? |
| 3176 | */ |
| 3177 | |
| 3178 | vm_map_entry_t new_entry; /* Map entry for copy */ |
| 3179 | boolean_t new_entry_needs_copy; /* Will new entry be COW? */ |
| 3180 | |
| 3181 | boolean_t was_wired; /* Was source wired? */ |
| 3182 | vm_map_version_t version; /* Version before locks |
| 3183 | * dropped to make copy |
| 3184 | */ |
| 3185 | |
| 3186 | /* |
| 3187 | * Verify that the region can be read. |
| 3188 | */ |
| 3189 | |
| 3190 | if (! (src_entry->protection & VM_PROT_READ((vm_prot_t) 0x01))) |
| 3191 | RETURN(KERN_PROTECTION_FAILURE2); |
| 3192 | |
| 3193 | /* |
| 3194 | * Clip against the endpoints of the entire region. |
| 3195 | */ |
| 3196 | |
| 3197 | vm_map_clip_end(src_map, src_entry, src_end)({ if ((src_end) < (src_entry)->links.end) _vm_map_clip_end (&(src_map)->hdr,(src_entry),(src_end)); }); |
| 3198 | |
| 3199 | src_size = src_entry->vme_endlinks.end - src_start; |
| 3200 | src_object = src_entry->object.vm_object; |
| 3201 | src_offset = src_entry->offset; |
| 3202 | was_wired = (src_entry->wired_count != 0); |
| 3203 | |
| 3204 | /* |
| 3205 | * Create a new address map entry to |
| 3206 | * hold the result. Fill in the fields from |
| 3207 | * the appropriate source entries. |
| 3208 | */ |
| 3209 | |
| 3210 | new_entry = vm_map_copy_entry_create(copy)_vm_map_entry_create(&(copy)->c_u.hdr); |
| 3211 | vm_map_entry_copy(new_entry, src_entry)({ *(new_entry) = *(src_entry); (new_entry)->is_shared = ( (boolean_t) 0); (new_entry)->needs_wakeup = ((boolean_t) 0 ); (new_entry)->in_transition = ((boolean_t) 0); (new_entry )->wired_count = 0; (new_entry)->user_wired_count = 0; } ); |
| 3212 | |
| 3213 | /* |
| 3214 | * Attempt non-blocking copy-on-write optimizations. |
| 3215 | */ |
| 3216 | |
| 3217 | if (src_destroy && |
| 3218 | (src_object == VM_OBJECT_NULL((vm_object_t) 0) || |
| 3219 | (src_object->temporary && !src_object->use_shared_copy))) |
| 3220 | { |
| 3221 | /* |
| 3222 | * If we are destroying the source, and the object |
| 3223 | * is temporary, and not shared writable, |
| 3224 | * we can move the object reference |
| 3225 | * from the source to the copy. The copy is |
| 3226 | * copy-on-write only if the source is. |
| 3227 | * We make another reference to the object, because |
| 3228 | * destroying the source entry will deallocate it. |
| 3229 | */ |
| 3230 | vm_object_reference(src_object); |
| 3231 | |
| 3232 | /* |
| 3233 | * Copy is always unwired. vm_map_copy_entry |
| 3234 | * set its wired count to zero. |
| 3235 | */ |
| 3236 | |
| 3237 | goto CopySuccessful; |
| 3238 | } |
| 3239 | |
| 3240 | if (!was_wired && |
| 3241 | vm_object_copy_temporary( |
| 3242 | &new_entry->object.vm_object, |
| 3243 | &new_entry->offset, |
| 3244 | &src_needs_copy, |
| 3245 | &new_entry_needs_copy)) { |
| 3246 | |
| 3247 | new_entry->needs_copy = new_entry_needs_copy; |
| 3248 | |
| 3249 | /* |
| 3250 | * Handle copy-on-write obligations |
| 3251 | */ |
| 3252 | |
| 3253 | if (src_needs_copy && !tmp_entry->needs_copy) { |
| 3254 | vm_object_pmap_protect( |
| 3255 | src_object, |
| 3256 | src_offset, |
| 3257 | src_size, |
| 3258 | (src_entry->is_shared ? PMAP_NULL((pmap_t) 0) |
| 3259 | : src_map->pmap), |
| 3260 | src_entry->vme_startlinks.start, |
| 3261 | src_entry->protection & |
| 3262 | ~VM_PROT_WRITE((vm_prot_t) 0x02)); |
| 3263 | |
| 3264 | tmp_entry->needs_copy = TRUE((boolean_t) 1); |
| 3265 | } |
| 3266 | |
| 3267 | /* |
| 3268 | * The map has never been unlocked, so it's safe to |
| 3269 | * move to the next entry rather than doing another |
| 3270 | * lookup. |
| 3271 | */ |
| 3272 | |
| 3273 | goto CopySuccessful; |
| 3274 | } |
| 3275 | |
| 3276 | new_entry->needs_copy = FALSE((boolean_t) 0); |
| 3277 | |
| 3278 | /* |
| 3279 | * Take an object reference, so that we may |
| 3280 | * release the map lock(s). |
| 3281 | */ |
| 3282 | |
| 3283 | assert(src_object != VM_OBJECT_NULL)({ if (!(src_object != ((vm_object_t) 0))) Assert("src_object != VM_OBJECT_NULL" , "../vm/vm_map.c", 3283); }); |
| 3284 | vm_object_reference(src_object); |
| 3285 | |
| 3286 | /* |
| 3287 | * Record the timestamp for later verification. |
| 3288 | * Unlock the map. |
| 3289 | */ |
| 3290 | |
| 3291 | version.main_timestamp = src_map->timestamp; |
| 3292 | vm_map_unlock(src_map)lock_done(&(src_map)->lock); |
| 3293 | |
| 3294 | /* |
| 3295 | * Perform the copy |
| 3296 | */ |
| 3297 | |
| 3298 | if (was_wired) { |
| 3299 | vm_object_lock(src_object); |
| 3300 | (void) vm_object_copy_slowly( |
| 3301 | src_object, |
| 3302 | src_offset, |
| 3303 | src_size, |
| 3304 | FALSE((boolean_t) 0), |
| 3305 | &new_entry->object.vm_object); |
| 3306 | new_entry->offset = 0; |
| 3307 | new_entry->needs_copy = FALSE((boolean_t) 0); |
| 3308 | } else { |
| 3309 | kern_return_t result; |
| 3310 | |
| 3311 | result = vm_object_copy_strategically(src_object, |
| 3312 | src_offset, |
| 3313 | src_size, |
| 3314 | &new_entry->object.vm_object, |
| 3315 | &new_entry->offset, |
| 3316 | &new_entry_needs_copy); |
| 3317 | |
| 3318 | new_entry->needs_copy = new_entry_needs_copy; |
| 3319 | |
| 3320 | |
| 3321 | if (result != KERN_SUCCESS0) { |
| 3322 | vm_map_copy_entry_dispose(copy, new_entry)_vm_map_entry_dispose(&(copy)->c_u.hdr, (new_entry)); |
| 3323 | |
| 3324 | vm_map_lock(src_map)({ lock_write(&(src_map)->lock); (src_map)->timestamp ++; }); |
| 3325 | RETURN(result); |
| 3326 | } |
| 3327 | |
| 3328 | } |
| 3329 | |
| 3330 | /* |
| 3331 | * Throw away the extra reference |
| 3332 | */ |
| 3333 | |
| 3334 | vm_object_deallocate(src_object); |
| 3335 | |
| 3336 | /* |
| 3337 | * Verify that the map has not substantially |
| 3338 | * changed while the copy was being made. |
| 3339 | */ |
| 3340 | |
| 3341 | vm_map_lock(src_map)({ lock_write(&(src_map)->lock); (src_map)->timestamp ++; }); /* Increments timestamp once! */ |
| 3342 | |
| 3343 | if ((version.main_timestamp + 1) == src_map->timestamp) |
| 3344 | goto CopySuccessful; |
| 3345 | |
| 3346 | /* |
| 3347 | * Simple version comparison failed. |
| 3348 | * |
| 3349 | * Retry the lookup and verify that the |
| 3350 | * same object/offset are still present. |
| 3351 | * |
| 3352 | * [Note: a memory manager that colludes with |
| 3353 | * the calling task can detect that we have |
| 3354 | * cheated. While the map was unlocked, the |
| 3355 | * mapping could have been changed and restored.] |
| 3356 | */ |
| 3357 | |
| 3358 | if (!vm_map_lookup_entry(src_map, src_start, &tmp_entry)) { |
| 3359 | vm_map_copy_entry_dispose(copy, new_entry)_vm_map_entry_dispose(&(copy)->c_u.hdr, (new_entry)); |
| 3360 | RETURN(KERN_INVALID_ADDRESS1); |
| 3361 | } |
| 3362 | |
| 3363 | src_entry = tmp_entry; |
| 3364 | vm_map_clip_start(src_map, src_entry, src_start)({ if ((src_start) > (src_entry)->links.start) _vm_map_clip_start (&(src_map)->hdr,(src_entry),(src_start)); }); |
| 3365 | |
| 3366 | if ((src_entry->protection & VM_PROT_READ((vm_prot_t) 0x01)) == VM_PROT_NONE((vm_prot_t) 0x00)) |
| 3367 | goto VerificationFailed; |
| 3368 | |
| 3369 | if (src_entry->vme_endlinks.end < new_entry->vme_endlinks.end) |
| 3370 | src_size = (new_entry->vme_endlinks.end = src_entry->vme_endlinks.end) - src_start; |
Value stored to 'src_size' is never read | |
| 3371 | |
| 3372 | if ((src_entry->object.vm_object != src_object) || |
| 3373 | (src_entry->offset != src_offset) ) { |
| 3374 | |
| 3375 | /* |
| 3376 | * Verification failed. |
| 3377 | * |
| 3378 | * Start over with this top-level entry. |
| 3379 | */ |
| 3380 | |
| 3381 | VerificationFailed: ; |
| 3382 | |
| 3383 | vm_object_deallocate(new_entry->object.vm_object); |
| 3384 | vm_map_copy_entry_dispose(copy, new_entry)_vm_map_entry_dispose(&(copy)->c_u.hdr, (new_entry)); |
| 3385 | tmp_entry = src_entry; |
| 3386 | continue; |
| 3387 | } |
| 3388 | |
| 3389 | /* |
| 3390 | * Verification succeeded. |
| 3391 | */ |
| 3392 | |
| 3393 | CopySuccessful: ; |
| 3394 | |
| 3395 | /* |
| 3396 | * Link in the new copy entry. |
| 3397 | */ |
| 3398 | |
| 3399 | vm_map_copy_entry_link(copy, vm_map_copy_last_entry(copy),({ (&(copy)->c_u.hdr)->nentries++; (new_entry)-> links.prev = (((copy)->c_u.hdr.links.prev)); (new_entry)-> links.next = (((copy)->c_u.hdr.links.prev))->links.next ; (new_entry)->links.prev->links.next = (new_entry)-> links.next->links.prev = (new_entry); ({ struct rbtree_node *___cur, *___prev; int ___diff, ___index; ___prev = ((void * ) 0); ___index = -1; ___cur = (&(&(copy)->c_u.hdr) ->tree)->root; while (___cur != ((void *) 0)) { ___diff = vm_map_entry_cmp_insert(&(new_entry)->tree_node, ___cur ); ({ if (!(___diff != 0)) Assert("___diff != 0", "../vm/vm_map.c" , 3400); }); ___prev = ___cur; ___index = rbtree_d2i(___diff) ; ___cur = ___cur->children[___index]; } rbtree_insert_rebalance (&(&(copy)->c_u.hdr)->tree, ___prev, ___index, & (new_entry)->tree_node); }); }) |
| 3400 | new_entry)({ (&(copy)->c_u.hdr)->nentries++; (new_entry)-> links.prev = (((copy)->c_u.hdr.links.prev)); (new_entry)-> links.next = (((copy)->c_u.hdr.links.prev))->links.next ; (new_entry)->links.prev->links.next = (new_entry)-> links.next->links.prev = (new_entry); ({ struct rbtree_node *___cur, *___prev; int ___diff, ___index; ___prev = ((void * ) 0); ___index = -1; ___cur = (&(&(copy)->c_u.hdr) ->tree)->root; while (___cur != ((void *) 0)) { ___diff = vm_map_entry_cmp_insert(&(new_entry)->tree_node, ___cur ); ({ if (!(___diff != 0)) Assert("___diff != 0", "../vm/vm_map.c" , 3400); }); ___prev = ___cur; ___index = rbtree_d2i(___diff) ; ___cur = ___cur->children[___index]; } rbtree_insert_rebalance (&(&(copy)->c_u.hdr)->tree, ___prev, ___index, & (new_entry)->tree_node); }); }); |
| 3401 | |
| 3402 | /* |
| 3403 | * Determine whether the entire region |
| 3404 | * has been copied. |
| 3405 | */ |
| 3406 | src_start = new_entry->vme_endlinks.end; |
| 3407 | if ((src_start >= src_end) && (src_end != 0)) |
| 3408 | break; |
| 3409 | |
| 3410 | /* |
| 3411 | * Verify that there are no gaps in the region |
| 3412 | */ |
| 3413 | |
| 3414 | tmp_entry = src_entry->vme_nextlinks.next; |
| 3415 | if (tmp_entry->vme_startlinks.start != src_start) |
| 3416 | RETURN(KERN_INVALID_ADDRESS1); |
| 3417 | } |
| 3418 | |
| 3419 | /* |
| 3420 | * If the source should be destroyed, do it now, since the |
| 3421 | * copy was successful. |
| 3422 | */ |
| 3423 | if (src_destroy) |
| 3424 | (void) vm_map_delete(src_map, trunc_page(src_addr)((vm_offset_t)(((vm_offset_t)(src_addr)) & ~((1 << 12 )-1))), src_end); |
| 3425 | |
| 3426 | vm_map_unlock(src_map)lock_done(&(src_map)->lock); |
| 3427 | |
| 3428 | *copy_result = copy; |
| 3429 | return(KERN_SUCCESS0); |
| 3430 | |
| 3431 | #undef RETURN |
| 3432 | } |
| 3433 | |
| 3434 | /* |
| 3435 | * vm_map_copyin_object: |
| 3436 | * |
| 3437 | * Create a copy object from an object. |
| 3438 | * Our caller donates an object reference. |
| 3439 | */ |
| 3440 | |
| 3441 | kern_return_t vm_map_copyin_object(object, offset, size, copy_result) |
| 3442 | vm_object_t object; |
| 3443 | vm_offset_t offset; /* offset of region in object */ |
| 3444 | vm_size_t size; /* size of region in object */ |
| 3445 | vm_map_copy_t *copy_result; /* OUT */ |
| 3446 | { |
| 3447 | vm_map_copy_t copy; /* Resulting copy */ |
| 3448 | |
| 3449 | /* |
| 3450 | * We drop the object into a special copy object |
| 3451 | * that contains the object directly. These copy objects |
| 3452 | * are distinguished by entries_pageable == FALSE |
| 3453 | * and null links. |
| 3454 | */ |
| 3455 | |
| 3456 | copy = (vm_map_copy_t) kmem_cache_alloc(&vm_map_copy_cache); |
| 3457 | vm_map_copy_first_entry(copy)((copy)->c_u.hdr.links.next) = |
| 3458 | vm_map_copy_last_entry(copy)((copy)->c_u.hdr.links.prev) = VM_MAP_ENTRY_NULL((vm_map_entry_t) 0); |
| 3459 | copy->type = VM_MAP_COPY_OBJECT2; |
| 3460 | copy->cpy_objectc_u.c_o.object = object; |
| 3461 | copy->offset = offset; |
| 3462 | copy->size = size; |
| 3463 | |
| 3464 | *copy_result = copy; |
| 3465 | return(KERN_SUCCESS0); |
| 3466 | } |
| 3467 | |
| 3468 | /* |
| 3469 | * vm_map_copyin_page_list_cont: |
| 3470 | * |
| 3471 | * Continuation routine for vm_map_copyin_page_list. |
| 3472 | * |
| 3473 | * If vm_map_copyin_page_list can't fit the entire vm range |
| 3474 | * into a single page list object, it creates a continuation. |
| 3475 | * When the target of the operation has used the pages in the |
| 3476 | * initial page list, it invokes the continuation, which calls |
| 3477 | * this routine. If an error happens, the continuation is aborted |
| 3478 | * (abort arg to this routine is TRUE). To avoid deadlocks, the |
| 3479 | * pages are discarded from the initial page list before invoking |
| 3480 | * the continuation. |
| 3481 | * |
| 3482 | * NOTE: This is not the same sort of continuation used by |
| 3483 | * the scheduler. |
| 3484 | */ |
| 3485 | |
| 3486 | kern_return_t vm_map_copyin_page_list_cont(cont_args, copy_result) |
| 3487 | vm_map_copyin_args_t cont_args; |
| 3488 | vm_map_copy_t *copy_result; /* OUT */ |
| 3489 | { |
| 3490 | kern_return_t result = 0; /* '=0' to quiet gcc warnings */ |
| 3491 | boolean_t do_abort, src_destroy, src_destroy_only; |
| 3492 | |
| 3493 | /* |
| 3494 | * Check for cases that only require memory destruction. |
| 3495 | */ |
| 3496 | do_abort = (copy_result == (vm_map_copy_t *) 0); |
| 3497 | src_destroy = (cont_args->destroy_len != (vm_size_t) 0); |
| 3498 | src_destroy_only = (cont_args->src_len == (vm_size_t) 0); |
| 3499 | |
| 3500 | if (do_abort || src_destroy_only) { |
| 3501 | if (src_destroy) |
| 3502 | result = vm_map_remove(cont_args->map, |
| 3503 | cont_args->destroy_addr, |
| 3504 | cont_args->destroy_addr + cont_args->destroy_len); |
| 3505 | if (!do_abort) |
| 3506 | *copy_result = VM_MAP_COPY_NULL((vm_map_copy_t) 0); |
| 3507 | } |
| 3508 | else { |
| 3509 | result = vm_map_copyin_page_list(cont_args->map, |
| 3510 | cont_args->src_addr, cont_args->src_len, src_destroy, |
| 3511 | cont_args->steal_pages, copy_result, TRUE((boolean_t) 1)); |
| 3512 | |
| 3513 | if (src_destroy && !cont_args->steal_pages && |
| 3514 | vm_map_copy_has_cont(*copy_result)(((*copy_result)->c_u.c_p.cont) != (kern_return_t (*)()) 0 )) { |
| 3515 | vm_map_copyin_args_t new_args; |
| 3516 | /* |
| 3517 | * Transfer old destroy info. |
| 3518 | */ |
| 3519 | new_args = (vm_map_copyin_args_t) |
| 3520 | (*copy_result)->cpy_cont_argsc_u.c_p.cont_args; |
| 3521 | new_args->destroy_addr = cont_args->destroy_addr; |
| 3522 | new_args->destroy_len = cont_args->destroy_len; |
| 3523 | } |
| 3524 | } |
| 3525 | |
| 3526 | vm_map_deallocate(cont_args->map); |
| 3527 | kfree((vm_offset_t)cont_args, sizeof(vm_map_copyin_args_data_t)); |
| 3528 | |
| 3529 | return(result); |
| 3530 | } |
| 3531 | |
| 3532 | /* |
| 3533 | * vm_map_copyin_page_list: |
| 3534 | * |
| 3535 | * This is a variant of vm_map_copyin that copies in a list of pages. |
| 3536 | * If steal_pages is TRUE, the pages are only in the returned list. |
| 3537 | * If steal_pages is FALSE, the pages are busy and still in their |
| 3538 | * objects. A continuation may be returned if not all the pages fit: |
| 3539 | * the recipient of this copy_result must be prepared to deal with it. |
| 3540 | */ |
| 3541 | |
| 3542 | kern_return_t vm_map_copyin_page_list(src_map, src_addr, len, src_destroy, |
| 3543 | steal_pages, copy_result, is_cont) |
| 3544 | vm_map_t src_map; |
| 3545 | vm_offset_t src_addr; |
| 3546 | vm_size_t len; |
| 3547 | boolean_t src_destroy; |
| 3548 | boolean_t steal_pages; |
| 3549 | vm_map_copy_t *copy_result; /* OUT */ |
| 3550 | boolean_t is_cont; |
| 3551 | { |
| 3552 | vm_map_entry_t src_entry; |
| 3553 | vm_page_t m; |
| 3554 | vm_offset_t src_start; |
| 3555 | vm_offset_t src_end; |
| 3556 | vm_size_t src_size; |
| 3557 | vm_object_t src_object; |
| 3558 | vm_offset_t src_offset; |
| 3559 | vm_offset_t src_last_offset; |
| 3560 | vm_map_copy_t copy; /* Resulting copy */ |
| 3561 | kern_return_t result = KERN_SUCCESS0; |
| 3562 | boolean_t need_map_lookup; |
| 3563 | vm_map_copyin_args_t cont_args; |
| 3564 | |
| 3565 | /* |
| 3566 | * If steal_pages is FALSE, this leaves busy pages in |
| 3567 | * the object. A continuation must be used if src_destroy |
| 3568 | * is true in this case (!steal_pages && src_destroy). |
| 3569 | * |
| 3570 | * XXX Still have a more general problem of what happens |
| 3571 | * XXX if the same page occurs twice in a list. Deadlock |
| 3572 | * XXX can happen if vm_fault_page was called. A |
| 3573 | * XXX possible solution is to use a continuation if vm_fault_page |
| 3574 | * XXX is called and we cross a map entry boundary. |
| 3575 | */ |
| 3576 | |
| 3577 | /* |
| 3578 | * Check for copies of zero bytes. |
| 3579 | */ |
| 3580 | |
| 3581 | if (len == 0) { |
| 3582 | *copy_result = VM_MAP_COPY_NULL((vm_map_copy_t) 0); |
| 3583 | return(KERN_SUCCESS0); |
| 3584 | } |
| 3585 | |
| 3586 | /* |
| 3587 | * Compute start and end of region |
| 3588 | */ |
| 3589 | |
| 3590 | src_start = trunc_page(src_addr)((vm_offset_t)(((vm_offset_t)(src_addr)) & ~((1 << 12 )-1))); |
| 3591 | src_end = round_page(src_addr + len)((vm_offset_t)((((vm_offset_t)(src_addr + len)) + ((1 << 12)-1)) & ~((1 << 12)-1))); |
| 3592 | |
| 3593 | /* |
| 3594 | * Check that the end address doesn't overflow |
| 3595 | */ |
| 3596 | |
| 3597 | if (src_end <= src_start && (src_end < src_start || src_start != 0)) { |
| 3598 | return KERN_INVALID_ADDRESS1; |
| 3599 | } |
| 3600 | |
| 3601 | /* |
| 3602 | * Allocate a header element for the page list. |
| 3603 | * |
| 3604 | * Record original offset and size, as caller may not |
| 3605 | * be page-aligned. |
| 3606 | */ |
| 3607 | |
| 3608 | copy = (vm_map_copy_t) kmem_cache_alloc(&vm_map_copy_cache); |
| 3609 | copy->type = VM_MAP_COPY_PAGE_LIST3; |
| 3610 | copy->cpy_npagesc_u.c_p.npages = 0; |
| 3611 | copy->offset = src_addr; |
| 3612 | copy->size = len; |
| 3613 | copy->cpy_contc_u.c_p.cont = ((kern_return_t (*)()) 0); |
| 3614 | copy->cpy_cont_argsc_u.c_p.cont_args = (char *) VM_MAP_COPYIN_ARGS_NULL((vm_map_copyin_args_t) 0); |
| 3615 | |
| 3616 | /* |
| 3617 | * Find the beginning of the region. |
| 3618 | */ |
| 3619 | |
| 3620 | do_map_lookup: |
| 3621 | |
| 3622 | vm_map_lock(src_map)({ lock_write(&(src_map)->lock); (src_map)->timestamp ++; }); |
| 3623 | |
| 3624 | if (!vm_map_lookup_entry(src_map, src_start, &src_entry)) { |
| 3625 | result = KERN_INVALID_ADDRESS1; |
| 3626 | goto error; |
| 3627 | } |
| 3628 | need_map_lookup = FALSE((boolean_t) 0); |
| 3629 | |
| 3630 | /* |
| 3631 | * Go through entries until we get to the end. |
| 3632 | */ |
| 3633 | |
| 3634 | while (TRUE((boolean_t) 1)) { |
| 3635 | |
| 3636 | if (! (src_entry->protection & VM_PROT_READ((vm_prot_t) 0x01))) { |
| 3637 | result = KERN_PROTECTION_FAILURE2; |
| 3638 | goto error; |
| 3639 | } |
| 3640 | |
| 3641 | if (src_end > src_entry->vme_endlinks.end) |
| 3642 | src_size = src_entry->vme_endlinks.end - src_start; |
| 3643 | else |
| 3644 | src_size = src_end - src_start; |
| 3645 | |
| 3646 | src_object = src_entry->object.vm_object; |
| 3647 | src_offset = src_entry->offset + |
| 3648 | (src_start - src_entry->vme_startlinks.start); |
| 3649 | |
| 3650 | /* |
| 3651 | * If src_object is NULL, allocate it now; |
| 3652 | * we're going to fault on it shortly. |
| 3653 | */ |
| 3654 | if (src_object == VM_OBJECT_NULL((vm_object_t) 0)) { |
| 3655 | src_object = vm_object_allocate((vm_size_t) |
| 3656 | src_entry->vme_endlinks.end - |
| 3657 | src_entry->vme_startlinks.start); |
| 3658 | src_entry->object.vm_object = src_object; |
| 3659 | } |
| 3660 | |
| 3661 | /* |
| 3662 | * Iterate over pages. Fault in ones that aren't present. |
| 3663 | */ |
| 3664 | src_last_offset = src_offset + src_size; |
| 3665 | for (; (src_offset < src_last_offset && !need_map_lookup); |
| 3666 | src_offset += PAGE_SIZE(1 << 12), src_start += PAGE_SIZE(1 << 12)) { |
| 3667 | |
| 3668 | if (copy->cpy_npagesc_u.c_p.npages == VM_MAP_COPY_PAGE_LIST_MAX64) { |
| 3669 | make_continuation: |
| 3670 | /* |
| 3671 | * At this point we have the max number of |
| 3672 | * pages busy for this thread that we're |
| 3673 | * willing to allow. Stop here and record |
| 3674 | * arguments for the remainder. Note: |
| 3675 | * this means that this routine isn't atomic, |
| 3676 | * but that's the breaks. Note that only |
| 3677 | * the first vm_map_copy_t that comes back |
| 3678 | * from this routine has the right offset |
| 3679 | * and size; those from continuations are |
| 3680 | * page rounded, and short by the amount |
| 3681 | * already done. |
| 3682 | * |
| 3683 | * Reset src_end so the src_destroy |
| 3684 | * code at the bottom doesn't do |
| 3685 | * something stupid. |
| 3686 | */ |
| 3687 | |
| 3688 | cont_args = (vm_map_copyin_args_t) |
| 3689 | kalloc(sizeof(vm_map_copyin_args_data_t)); |
| 3690 | cont_args->map = src_map; |
| 3691 | vm_map_reference(src_map); |
| 3692 | cont_args->src_addr = src_start; |
| 3693 | cont_args->src_len = len - (src_start - src_addr); |
| 3694 | if (src_destroy) { |
| 3695 | cont_args->destroy_addr = cont_args->src_addr; |
| 3696 | cont_args->destroy_len = cont_args->src_len; |
| 3697 | } |
| 3698 | else { |
| 3699 | cont_args->destroy_addr = (vm_offset_t) 0; |
| 3700 | cont_args->destroy_len = (vm_offset_t) 0; |
| 3701 | } |
| 3702 | cont_args->steal_pages = steal_pages; |
| 3703 | |
| 3704 | copy->cpy_cont_argsc_u.c_p.cont_args = (char *) cont_args; |
| 3705 | copy->cpy_contc_u.c_p.cont = vm_map_copyin_page_list_cont; |
| 3706 | |
| 3707 | src_end = src_start; |
| 3708 | vm_map_clip_end(src_map, src_entry, src_end)({ if ((src_end) < (src_entry)->links.end) _vm_map_clip_end (&(src_map)->hdr,(src_entry),(src_end)); }); |
| 3709 | break; |
| 3710 | } |
| 3711 | |
| 3712 | /* |
| 3713 | * Try to find the page of data. |
| 3714 | */ |
| 3715 | vm_object_lock(src_object); |
| 3716 | vm_object_paging_begin(src_object)((src_object)->paging_in_progress++); |
| 3717 | if (((m = vm_page_lookup(src_object, src_offset)) != |
| 3718 | VM_PAGE_NULL((vm_page_t) 0)) && !m->busy && !m->fictitious && |
| 3719 | !m->absent && !m->error) { |
| 3720 | |
| 3721 | /* |
| 3722 | * This is the page. Mark it busy |
| 3723 | * and keep the paging reference on |
| 3724 | * the object whilst we do our thing. |
| 3725 | */ |
| 3726 | m->busy = TRUE((boolean_t) 1); |
| 3727 | |
| 3728 | /* |
| 3729 | * Also write-protect the page, so |
| 3730 | * that the map`s owner cannot change |
| 3731 | * the data. The busy bit will prevent |
| 3732 | * faults on the page from succeeding |
| 3733 | * until the copy is released; after |
| 3734 | * that, the page can be re-entered |
| 3735 | * as writable, since we didn`t alter |
| 3736 | * the map entry. This scheme is a |
| 3737 | * cheap copy-on-write. |
| 3738 | * |
| 3739 | * Don`t forget the protection and |
| 3740 | * the page_lock value! |
| 3741 | * |
| 3742 | * If the source is being destroyed |
| 3743 | * AND not shared writable, we don`t |
| 3744 | * have to protect the page, since |
| 3745 | * we will destroy the (only) |
| 3746 | * writable mapping later. |
| 3747 | */ |
| 3748 | if (!src_destroy || |
| 3749 | src_object->use_shared_copy) |
| 3750 | { |
| 3751 | pmap_page_protect(m->phys_addr, |
| 3752 | src_entry->protection |
| 3753 | & ~m->page_lock |
| 3754 | & ~VM_PROT_WRITE((vm_prot_t) 0x02)); |
| 3755 | } |
| 3756 | |
| 3757 | } |
| 3758 | else { |
| 3759 | vm_prot_t result_prot; |
| 3760 | vm_page_t top_page; |
| 3761 | kern_return_t kr; |
| 3762 | |
| 3763 | /* |
| 3764 | * Have to fault the page in; must |
| 3765 | * unlock the map to do so. While |
| 3766 | * the map is unlocked, anything |
| 3767 | * can happen, we must lookup the |
| 3768 | * map entry before continuing. |
| 3769 | */ |
| 3770 | vm_map_unlock(src_map)lock_done(&(src_map)->lock); |
| 3771 | need_map_lookup = TRUE((boolean_t) 1); |
| 3772 | retry: |
| 3773 | result_prot = VM_PROT_READ((vm_prot_t) 0x01); |
| 3774 | |
| 3775 | kr = vm_fault_page(src_object, src_offset, |
| 3776 | VM_PROT_READ((vm_prot_t) 0x01), FALSE((boolean_t) 0), FALSE((boolean_t) 0), |
| 3777 | &result_prot, &m, &top_page, |
| 3778 | FALSE((boolean_t) 0), (void (*)()) 0); |
| 3779 | /* |
| 3780 | * Cope with what happened. |
| 3781 | */ |
| 3782 | switch (kr) { |
| 3783 | case VM_FAULT_SUCCESS0: |
| 3784 | break; |
| 3785 | case VM_FAULT_INTERRUPTED2: /* ??? */ |
| 3786 | case VM_FAULT_RETRY1: |
| 3787 | vm_object_lock(src_object); |
| 3788 | vm_object_paging_begin(src_object)((src_object)->paging_in_progress++); |
| 3789 | goto retry; |
| 3790 | case VM_FAULT_MEMORY_SHORTAGE3: |
| 3791 | VM_PAGE_WAIT((void (*)()) 0)vm_page_wait((void (*)()) 0); |
| 3792 | vm_object_lock(src_object); |
| 3793 | vm_object_paging_begin(src_object)((src_object)->paging_in_progress++); |
| 3794 | goto retry; |
| 3795 | case VM_FAULT_FICTITIOUS_SHORTAGE4: |
| 3796 | vm_page_more_fictitious(); |
| 3797 | vm_object_lock(src_object); |
| 3798 | vm_object_paging_begin(src_object)((src_object)->paging_in_progress++); |
| 3799 | goto retry; |
| 3800 | case VM_FAULT_MEMORY_ERROR5: |
| 3801 | /* |
| 3802 | * Something broke. If this |
| 3803 | * is a continuation, return |
| 3804 | * a partial result if possible, |
| 3805 | * else fail the whole thing. |
| 3806 | * In the continuation case, the |
| 3807 | * next continuation call will |
| 3808 | * get this error if it persists. |
| 3809 | */ |
| 3810 | vm_map_lock(src_map)({ lock_write(&(src_map)->lock); (src_map)->timestamp ++; }); |
| 3811 | if (is_cont && |
| 3812 | copy->cpy_npagesc_u.c_p.npages != 0) |
| 3813 | goto make_continuation; |
| 3814 | |
| 3815 | result = KERN_MEMORY_ERROR10; |
| 3816 | goto error; |
| 3817 | } |
| 3818 | |
| 3819 | if (top_page != VM_PAGE_NULL((vm_page_t) 0)) { |
| 3820 | vm_object_lock(src_object); |
| 3821 | VM_PAGE_FREE(top_page)({ ; vm_page_free(top_page); ((void)(&vm_page_queue_lock) ); }); |
| 3822 | vm_object_paging_end(src_object)({ ({ if (!((src_object)->paging_in_progress != 0)) Assert ("(src_object)->paging_in_progress != 0", "../vm/vm_map.c" , 3822); }); if (--(src_object)->paging_in_progress == 0) { ({ if ((src_object)->all_wanted & (1 << (2))) thread_wakeup_prim (((event_t)(((vm_offset_t) src_object) + (2))), ((boolean_t) 0 ), 0); (src_object)->all_wanted &= ~(1 << (2)); } ); } }); |
| 3823 | vm_object_unlock(src_object)((void)(&(src_object)->Lock)); |
| 3824 | } |
| 3825 | |
| 3826 | /* |
| 3827 | * We do not need to write-protect |
| 3828 | * the page, since it cannot have |
| 3829 | * been in the pmap (and we did not |
| 3830 | * enter it above). The busy bit |
| 3831 | * will protect the page from being |
| 3832 | * entered as writable until it is |
| 3833 | * unlocked. |
| 3834 | */ |
| 3835 | |
| 3836 | } |
| 3837 | |
| 3838 | /* |
| 3839 | * The page is busy, its object is locked, and |
| 3840 | * we have a paging reference on it. Either |
| 3841 | * the map is locked, or need_map_lookup is |
| 3842 | * TRUE. |
| 3843 | * |
| 3844 | * Put the page in the page list. |
| 3845 | */ |
| 3846 | copy->cpy_page_listc_u.c_p.page_list[copy->cpy_npagesc_u.c_p.npages++] = m; |
| 3847 | vm_object_unlock(m->object)((void)(&(m->object)->Lock)); |
| 3848 | } |
| 3849 | |
| 3850 | /* |
| 3851 | * DETERMINE whether the entire region |
| 3852 | * has been copied. |
| 3853 | */ |
| 3854 | if (src_start >= src_end && src_end != 0) { |
| 3855 | if (need_map_lookup) |
| 3856 | vm_map_lock(src_map)({ lock_write(&(src_map)->lock); (src_map)->timestamp ++; }); |
| 3857 | break; |
| 3858 | } |
| 3859 | |
| 3860 | /* |
| 3861 | * If need_map_lookup is TRUE, have to start over with |
| 3862 | * another map lookup. Note that we dropped the map |
| 3863 | * lock (to call vm_fault_page) above only in this case. |
| 3864 | */ |
| 3865 | if (need_map_lookup) |
| 3866 | goto do_map_lookup; |
| 3867 | |
| 3868 | /* |
| 3869 | * Verify that there are no gaps in the region |
| 3870 | */ |
| 3871 | |
| 3872 | src_start = src_entry->vme_endlinks.end; |
| 3873 | src_entry = src_entry->vme_nextlinks.next; |
| 3874 | if (src_entry->vme_startlinks.start != src_start) { |
| 3875 | result = KERN_INVALID_ADDRESS1; |
| 3876 | goto error; |
| 3877 | } |
| 3878 | } |
| 3879 | |
| 3880 | /* |
| 3881 | * If steal_pages is true, make sure all |
| 3882 | * pages in the copy are not in any object |
| 3883 | * We try to remove them from the original |
| 3884 | * object, but we may have to copy them. |
| 3885 | * |
| 3886 | * At this point every page in the list is busy |
| 3887 | * and holds a paging reference to its object. |
| 3888 | * When we're done stealing, every page is busy, |
| 3889 | * and in no object (m->tabled == FALSE). |
| 3890 | */ |
| 3891 | src_start = trunc_page(src_addr)((vm_offset_t)(((vm_offset_t)(src_addr)) & ~((1 << 12 )-1))); |
| 3892 | if (steal_pages) { |
| 3893 | int i; |
| 3894 | vm_offset_t unwire_end; |
| 3895 | |
| 3896 | unwire_end = src_start; |
| 3897 | for (i = 0; i < copy->cpy_npagesc_u.c_p.npages; i++) { |
| 3898 | |
| 3899 | /* |
| 3900 | * Remove the page from its object if it |
| 3901 | * can be stolen. It can be stolen if: |
| 3902 | * |
| 3903 | * (1) The source is being destroyed, |
| 3904 | * the object is temporary, and |
| 3905 | * not shared. |
| 3906 | * (2) The page is not precious. |
| 3907 | * |
| 3908 | * The not shared check consists of two |
| 3909 | * parts: (a) there are no objects that |
| 3910 | * shadow this object. (b) it is not the |
| 3911 | * object in any shared map entries (i.e., |
| 3912 | * use_shared_copy is not set). |
| 3913 | * |
| 3914 | * The first check (a) means that we can't |
| 3915 | * steal pages from objects that are not |
| 3916 | * at the top of their shadow chains. This |
| 3917 | * should not be a frequent occurrence. |
| 3918 | * |
| 3919 | * Stealing wired pages requires telling the |
| 3920 | * pmap module to let go of them. |
| 3921 | * |
| 3922 | * NOTE: stealing clean pages from objects |
| 3923 | * whose mappings survive requires a call to |
| 3924 | * the pmap module. Maybe later. |
| 3925 | */ |
| 3926 | m = copy->cpy_page_listc_u.c_p.page_list[i]; |
| 3927 | src_object = m->object; |
| 3928 | vm_object_lock(src_object); |
| 3929 | |
| 3930 | if (src_destroy && |
| 3931 | src_object->temporary && |
| 3932 | (!src_object->shadowed) && |
| 3933 | (!src_object->use_shared_copy) && |
| 3934 | !m->precious) { |
| 3935 | vm_offset_t page_vaddr; |
| 3936 | |
| 3937 | page_vaddr = src_start + (i * PAGE_SIZE(1 << 12)); |
| 3938 | if (m->wire_count > 0) { |
| 3939 | |
| 3940 | assert(m->wire_count == 1)({ if (!(m->wire_count == 1)) Assert("m->wire_count == 1" , "../vm/vm_map.c", 3940); }); |
| 3941 | /* |
| 3942 | * In order to steal a wired |
| 3943 | * page, we have to unwire it |
| 3944 | * first. We do this inline |
| 3945 | * here because we have the page. |
| 3946 | * |
| 3947 | * Step 1: Unwire the map entry. |
| 3948 | * Also tell the pmap module |
| 3949 | * that this piece of the |
| 3950 | * pmap is pageable. |
| 3951 | */ |
| 3952 | vm_object_unlock(src_object)((void)(&(src_object)->Lock)); |
| 3953 | if (page_vaddr >= unwire_end) { |
| 3954 | if (!vm_map_lookup_entry(src_map, |
| 3955 | page_vaddr, &src_entry)) |
| 3956 | panic("vm_map_copyin_page_list: missing wired map entry"); |
| 3957 | |
| 3958 | vm_map_clip_start(src_map, src_entry,({ if ((page_vaddr) > (src_entry)->links.start) _vm_map_clip_start (&(src_map)->hdr,(src_entry),(page_vaddr)); }) |
| 3959 | page_vaddr)({ if ((page_vaddr) > (src_entry)->links.start) _vm_map_clip_start (&(src_map)->hdr,(src_entry),(page_vaddr)); }); |
| 3960 | vm_map_clip_end(src_map, src_entry,({ if ((src_start + src_size) < (src_entry)->links.end) _vm_map_clip_end(&(src_map)->hdr,(src_entry),(src_start + src_size)); }) |
| 3961 | src_start + src_size)({ if ((src_start + src_size) < (src_entry)->links.end) _vm_map_clip_end(&(src_map)->hdr,(src_entry),(src_start + src_size)); }); |
| 3962 | |
| 3963 | assert(src_entry->wired_count > 0)({ if (!(src_entry->wired_count > 0)) Assert("src_entry->wired_count > 0" , "../vm/vm_map.c", 3963); }); |
| 3964 | src_entry->wired_count = 0; |
| 3965 | src_entry->user_wired_count = 0; |
| 3966 | unwire_end = src_entry->vme_endlinks.end; |
| 3967 | pmap_pageable(vm_map_pmap(src_map)((src_map)->pmap), |
| 3968 | page_vaddr, unwire_end, TRUE((boolean_t) 1)); |
| 3969 | } |
| 3970 | |
| 3971 | /* |
| 3972 | * Step 2: Unwire the page. |
| 3973 | * pmap_remove handles this for us. |
| 3974 | */ |
| 3975 | vm_object_lock(src_object); |
| 3976 | } |
| 3977 | |
| 3978 | /* |
| 3979 | * Don't need to remove the mapping; |
| 3980 | * vm_map_delete will handle it. |
| 3981 | * |
| 3982 | * Steal the page. Setting the wire count |
| 3983 | * to zero is vm_page_unwire without |
| 3984 | * activating the page. |
| 3985 | */ |
| 3986 | vm_page_lock_queues(); |
| 3987 | vm_page_remove(m); |
| 3988 | if (m->wire_count > 0) { |
| 3989 | m->wire_count = 0; |
| 3990 | vm_page_wire_count--; |
| 3991 | } else { |
| 3992 | VM_PAGE_QUEUES_REMOVE(m)({ if (m->active) { { queue_entry_t next, prev; next = (m) ->pageq.next; prev = (m)->pageq.prev; if ((&vm_page_queue_active ) == next) (&vm_page_queue_active)->prev = prev; else ( (vm_page_t)next)->pageq.prev = prev; if ((&vm_page_queue_active ) == prev) (&vm_page_queue_active)->next = next; else ( (vm_page_t)prev)->pageq.next = next; }; m->active = ((boolean_t ) 0); vm_page_active_count--; } if (m->inactive) { { queue_entry_t next, prev; next = (m)->pageq.next; prev = (m)->pageq. prev; if ((&vm_page_queue_inactive) == next) (&vm_page_queue_inactive )->prev = prev; else ((vm_page_t)next)->pageq.prev = prev ; if ((&vm_page_queue_inactive) == prev) (&vm_page_queue_inactive )->next = next; else ((vm_page_t)prev)->pageq.next = next ; }; m->inactive = ((boolean_t) 0); vm_page_inactive_count --; } }); |
| 3993 | } |
| 3994 | vm_page_unlock_queues()((void)(&vm_page_queue_lock)); |
| 3995 | } |
| 3996 | else { |
| 3997 | /* |
| 3998 | * Have to copy this page. Have to |
| 3999 | * unlock the map while copying, |
| 4000 | * hence no further page stealing. |
| 4001 | * Hence just copy all the pages. |
| 4002 | * Unlock the map while copying; |
| 4003 | * This means no further page stealing. |
| 4004 | */ |
| 4005 | vm_object_unlock(src_object)((void)(&(src_object)->Lock)); |
| 4006 | vm_map_unlock(src_map)lock_done(&(src_map)->lock); |
| 4007 | |
| 4008 | vm_map_copy_steal_pages(copy); |
| 4009 | |
| 4010 | vm_map_lock(src_map)({ lock_write(&(src_map)->lock); (src_map)->timestamp ++; }); |
| 4011 | break; |
| 4012 | } |
| 4013 | |
| 4014 | vm_object_paging_end(src_object)({ ({ if (!((src_object)->paging_in_progress != 0)) Assert ("(src_object)->paging_in_progress != 0", "../vm/vm_map.c" , 4014); }); if (--(src_object)->paging_in_progress == 0) { ({ if ((src_object)->all_wanted & (1 << (2))) thread_wakeup_prim (((event_t)(((vm_offset_t) src_object) + (2))), ((boolean_t) 0 ), 0); (src_object)->all_wanted &= ~(1 << (2)); } ); } }); |
| 4015 | vm_object_unlock(src_object)((void)(&(src_object)->Lock)); |
| 4016 | } |
| 4017 | |
| 4018 | /* |
| 4019 | * If the source should be destroyed, do it now, since the |
| 4020 | * copy was successful. |
| 4021 | */ |
| 4022 | |
| 4023 | if (src_destroy) { |
| 4024 | (void) vm_map_delete(src_map, src_start, src_end); |
| 4025 | } |
| 4026 | } |
| 4027 | else { |
| 4028 | /* |
| 4029 | * !steal_pages leaves busy pages in the map. |
| 4030 | * This will cause src_destroy to hang. Use |
| 4031 | * a continuation to prevent this. |
| 4032 | */ |
| 4033 | if (src_destroy && !vm_map_copy_has_cont(copy)(((copy)->c_u.c_p.cont) != (kern_return_t (*)()) 0)) { |
| 4034 | cont_args = (vm_map_copyin_args_t) |
| 4035 | kalloc(sizeof(vm_map_copyin_args_data_t)); |
| 4036 | vm_map_reference(src_map); |
| 4037 | cont_args->map = src_map; |
| 4038 | cont_args->src_addr = (vm_offset_t) 0; |
| 4039 | cont_args->src_len = (vm_size_t) 0; |
| 4040 | cont_args->destroy_addr = src_start; |
| 4041 | cont_args->destroy_len = src_end - src_start; |
| 4042 | cont_args->steal_pages = FALSE((boolean_t) 0); |
| 4043 | |
| 4044 | copy->cpy_cont_argsc_u.c_p.cont_args = (char *) cont_args; |
| 4045 | copy->cpy_contc_u.c_p.cont = vm_map_copyin_page_list_cont; |
| 4046 | } |
| 4047 | |
| 4048 | } |
| 4049 | |
| 4050 | vm_map_unlock(src_map)lock_done(&(src_map)->lock); |
| 4051 | |
| 4052 | *copy_result = copy; |
| 4053 | return(result); |
| 4054 | |
| 4055 | error: |
| 4056 | vm_map_unlock(src_map)lock_done(&(src_map)->lock); |
| 4057 | vm_map_copy_discard(copy); |
| 4058 | return(result); |
| 4059 | } |
| 4060 | |
| 4061 | /* |
| 4062 | * vm_map_fork: |
| 4063 | * |
| 4064 | * Create and return a new map based on the old |
| 4065 | * map, according to the inheritance values on the |
| 4066 | * regions in that map. |
| 4067 | * |
| 4068 | * The source map must not be locked. |
| 4069 | */ |
| 4070 | vm_map_t vm_map_fork(old_map) |
| 4071 | vm_map_t old_map; |
| 4072 | { |
| 4073 | vm_map_t new_map; |
| 4074 | vm_map_entry_t old_entry; |
| 4075 | vm_map_entry_t new_entry; |
| 4076 | pmap_t new_pmap = pmap_create((vm_size_t) 0); |
| 4077 | vm_size_t new_size = 0; |
| 4078 | vm_size_t entry_size; |
| 4079 | vm_object_t object; |
| 4080 | |
| 4081 | vm_map_lock(old_map)({ lock_write(&(old_map)->lock); (old_map)->timestamp ++; }); |
| 4082 | |
| 4083 | new_map = vm_map_create(new_pmap, |
| 4084 | old_map->min_offsethdr.links.start, |
| 4085 | old_map->max_offsethdr.links.end, |
| 4086 | old_map->hdr.entries_pageable); |
| 4087 | |
| 4088 | for ( |
| 4089 | old_entry = vm_map_first_entry(old_map)((old_map)->hdr.links.next); |
| 4090 | old_entry != vm_map_to_entry(old_map)((struct vm_map_entry *) &(old_map)->hdr.links); |
| 4091 | ) { |
| 4092 | if (old_entry->is_sub_map) |
| 4093 | panic("vm_map_fork: encountered a submap"); |
| 4094 | |
| 4095 | entry_size = (old_entry->vme_endlinks.end - old_entry->vme_startlinks.start); |
| 4096 | |
| 4097 | switch (old_entry->inheritance) { |
| 4098 | case VM_INHERIT_NONE((vm_inherit_t) 2): |
| 4099 | break; |
| 4100 | |
| 4101 | case VM_INHERIT_SHARE((vm_inherit_t) 0): |
| 4102 | /* |
| 4103 | * New sharing code. New map entry |
| 4104 | * references original object. Temporary |
| 4105 | * objects use asynchronous copy algorithm for |
| 4106 | * future copies. First make sure we have |
| 4107 | * the right object. If we need a shadow, |
| 4108 | * or someone else already has one, then |
| 4109 | * make a new shadow and share it. |
| 4110 | */ |
| 4111 | |
| 4112 | object = old_entry->object.vm_object; |
| 4113 | if (object == VM_OBJECT_NULL((vm_object_t) 0)) { |
| 4114 | object = vm_object_allocate( |
| 4115 | (vm_size_t)(old_entry->vme_endlinks.end - |
| 4116 | old_entry->vme_startlinks.start)); |
| 4117 | old_entry->offset = 0; |
| 4118 | old_entry->object.vm_object = object; |
| 4119 | assert(!old_entry->needs_copy)({ if (!(!old_entry->needs_copy)) Assert("!old_entry->needs_copy" , "../vm/vm_map.c", 4119); }); |
| 4120 | } |
| 4121 | else if (old_entry->needs_copy || object->shadowed || |
| 4122 | (object->temporary && !old_entry->is_shared && |
| 4123 | object->size > (vm_size_t)(old_entry->vme_endlinks.end - |
| 4124 | old_entry->vme_startlinks.start))) { |
| 4125 | |
| 4126 | assert(object->temporary)({ if (!(object->temporary)) Assert("object->temporary" , "../vm/vm_map.c", 4126); }); |
| 4127 | assert(!(object->shadowed && old_entry->is_shared))({ if (!(!(object->shadowed && old_entry->is_shared ))) Assert("!(object->shadowed && old_entry->is_shared)" , "../vm/vm_map.c", 4127); }); |
| 4128 | vm_object_shadow( |
| 4129 | &old_entry->object.vm_object, |
| 4130 | &old_entry->offset, |
| 4131 | (vm_size_t) (old_entry->vme_endlinks.end - |
| 4132 | old_entry->vme_startlinks.start)); |
| 4133 | |
| 4134 | /* |
| 4135 | * If we're making a shadow for other than |
| 4136 | * copy on write reasons, then we have |
| 4137 | * to remove write permission. |
| 4138 | */ |
| 4139 | |
| 4140 | if (!old_entry->needs_copy && |
| 4141 | (old_entry->protection & VM_PROT_WRITE((vm_prot_t) 0x02))) { |
| 4142 | pmap_protect(vm_map_pmap(old_map)((old_map)->pmap), |
| 4143 | old_entry->vme_startlinks.start, |
| 4144 | old_entry->vme_endlinks.end, |
| 4145 | old_entry->protection & |
| 4146 | ~VM_PROT_WRITE((vm_prot_t) 0x02)); |
| 4147 | } |
| 4148 | old_entry->needs_copy = FALSE((boolean_t) 0); |
| 4149 | object = old_entry->object.vm_object; |
| 4150 | } |
| 4151 | |
| 4152 | /* |
| 4153 | * Set use_shared_copy to indicate that |
| 4154 | * object must use shared (delayed) copy-on |
| 4155 | * write. This is ignored for permanent objects. |
| 4156 | * Bump the reference count for the new entry |
| 4157 | */ |
| 4158 | |
| 4159 | vm_object_lock(object); |
| 4160 | object->use_shared_copy = TRUE((boolean_t) 1); |
| 4161 | object->ref_count++; |
| 4162 | vm_object_unlock(object)((void)(&(object)->Lock)); |
| 4163 | |
| 4164 | new_entry = vm_map_entry_create(new_map)_vm_map_entry_create(&(new_map)->hdr); |
| 4165 | |
| 4166 | if (old_entry->projected_on != 0) { |
| 4167 | /* |
| 4168 | * If entry is projected buffer, clone the |
| 4169 | * entry exactly. |
| 4170 | */ |
| 4171 | |
| 4172 | vm_map_entry_copy_full(new_entry, old_entry)(*(new_entry) = *(old_entry)); |
| 4173 | |
| 4174 | } else { |
| 4175 | /* |
| 4176 | * Clone the entry, using object ref from above. |
| 4177 | * Mark both entries as shared. |
| 4178 | */ |
| 4179 | |
| 4180 | vm_map_entry_copy(new_entry, old_entry)({ *(new_entry) = *(old_entry); (new_entry)->is_shared = ( (boolean_t) 0); (new_entry)->needs_wakeup = ((boolean_t) 0 ); (new_entry)->in_transition = ((boolean_t) 0); (new_entry )->wired_count = 0; (new_entry)->user_wired_count = 0; } ); |
| 4181 | old_entry->is_shared = TRUE((boolean_t) 1); |
| 4182 | new_entry->is_shared = TRUE((boolean_t) 1); |
| 4183 | } |
| 4184 | |
| 4185 | /* |
| 4186 | * Insert the entry into the new map -- we |
| 4187 | * know we're inserting at the end of the new |
| 4188 | * map. |
| 4189 | */ |
| 4190 | |
| 4191 | vm_map_entry_link(({ (&(new_map)->hdr)->nentries++; (new_entry)->links .prev = (((new_map)->hdr.links.prev)); (new_entry)->links .next = (((new_map)->hdr.links.prev))->links.next; (new_entry )->links.prev->links.next = (new_entry)->links.next-> links.prev = (new_entry); ({ struct rbtree_node *___cur, *___prev ; int ___diff, ___index; ___prev = ((void *) 0); ___index = - 1; ___cur = (&(&(new_map)->hdr)->tree)->root ; while (___cur != ((void *) 0)) { ___diff = vm_map_entry_cmp_insert (&(new_entry)->tree_node, ___cur); ({ if (!(___diff != 0)) Assert("___diff != 0", "../vm/vm_map.c", 4194); }); ___prev = ___cur; ___index = rbtree_d2i(___diff); ___cur = ___cur-> children[___index]; } rbtree_insert_rebalance(&(&(new_map )->hdr)->tree, ___prev, ___index, &(new_entry)-> tree_node); }); }) |
| 4192 | new_map,({ (&(new_map)->hdr)->nentries++; (new_entry)->links .prev = (((new_map)->hdr.links.prev)); (new_entry)->links .next = (((new_map)->hdr.links.prev))->links.next; (new_entry )->links.prev->links.next = (new_entry)->links.next-> links.prev = (new_entry); ({ struct rbtree_node *___cur, *___prev ; int ___diff, ___index; ___prev = ((void *) 0); ___index = - 1; ___cur = (&(&(new_map)->hdr)->tree)->root ; while (___cur != ((void *) 0)) { ___diff = vm_map_entry_cmp_insert (&(new_entry)->tree_node, ___cur); ({ if (!(___diff != 0)) Assert("___diff != 0", "../vm/vm_map.c", 4194); }); ___prev = ___cur; ___index = rbtree_d2i(___diff); ___cur = ___cur-> children[___index]; } rbtree_insert_rebalance(&(&(new_map )->hdr)->tree, ___prev, ___index, &(new_entry)-> tree_node); }); }) |
| 4193 | vm_map_last_entry(new_map),({ (&(new_map)->hdr)->nentries++; (new_entry)->links .prev = (((new_map)->hdr.links.prev)); (new_entry)->links .next = (((new_map)->hdr.links.prev))->links.next; (new_entry )->links.prev->links.next = (new_entry)->links.next-> links.prev = (new_entry); ({ struct rbtree_node *___cur, *___prev ; int ___diff, ___index; ___prev = ((void *) 0); ___index = - 1; ___cur = (&(&(new_map)->hdr)->tree)->root ; while (___cur != ((void *) 0)) { ___diff = vm_map_entry_cmp_insert (&(new_entry)->tree_node, ___cur); ({ if (!(___diff != 0)) Assert("___diff != 0", "../vm/vm_map.c", 4194); }); ___prev = ___cur; ___index = rbtree_d2i(___diff); ___cur = ___cur-> children[___index]; } rbtree_insert_rebalance(&(&(new_map )->hdr)->tree, ___prev, ___index, &(new_entry)-> tree_node); }); }) |
| 4194 | new_entry)({ (&(new_map)->hdr)->nentries++; (new_entry)->links .prev = (((new_map)->hdr.links.prev)); (new_entry)->links .next = (((new_map)->hdr.links.prev))->links.next; (new_entry )->links.prev->links.next = (new_entry)->links.next-> links.prev = (new_entry); ({ struct rbtree_node *___cur, *___prev ; int ___diff, ___index; ___prev = ((void *) 0); ___index = - 1; ___cur = (&(&(new_map)->hdr)->tree)->root ; while (___cur != ((void *) 0)) { ___diff = vm_map_entry_cmp_insert (&(new_entry)->tree_node, ___cur); ({ if (!(___diff != 0)) Assert("___diff != 0", "../vm/vm_map.c", 4194); }); ___prev = ___cur; ___index = rbtree_d2i(___diff); ___cur = ___cur-> children[___index]; } rbtree_insert_rebalance(&(&(new_map )->hdr)->tree, ___prev, ___index, &(new_entry)-> tree_node); }); }); |
| 4195 | |
| 4196 | /* |
| 4197 | * Update the physical map |
| 4198 | */ |
| 4199 | |
| 4200 | pmap_copy(new_map->pmap, old_map->pmap, |
| 4201 | new_entry->vme_start, |
| 4202 | entry_size, |
| 4203 | old_entry->vme_start); |
| 4204 | |
| 4205 | new_size += entry_size; |
| 4206 | break; |
| 4207 | |
| 4208 | case VM_INHERIT_COPY((vm_inherit_t) 1): |
| 4209 | if (old_entry->wired_count == 0) { |
| 4210 | boolean_t src_needs_copy; |
| 4211 | boolean_t new_entry_needs_copy; |
| 4212 | |
| 4213 | new_entry = vm_map_entry_create(new_map)_vm_map_entry_create(&(new_map)->hdr); |
| 4214 | vm_map_entry_copy(new_entry, old_entry)({ *(new_entry) = *(old_entry); (new_entry)->is_shared = ( (boolean_t) 0); (new_entry)->needs_wakeup = ((boolean_t) 0 ); (new_entry)->in_transition = ((boolean_t) 0); (new_entry )->wired_count = 0; (new_entry)->user_wired_count = 0; } ); |
| 4215 | |
| 4216 | if (vm_object_copy_temporary( |
| 4217 | &new_entry->object.vm_object, |
| 4218 | &new_entry->offset, |
| 4219 | &src_needs_copy, |
| 4220 | &new_entry_needs_copy)) { |
| 4221 | |
| 4222 | /* |
| 4223 | * Handle copy-on-write obligations |
| 4224 | */ |
| 4225 | |
| 4226 | if (src_needs_copy && !old_entry->needs_copy) { |
| 4227 | vm_object_pmap_protect( |
| 4228 | old_entry->object.vm_object, |
| 4229 | old_entry->offset, |
| 4230 | entry_size, |
| 4231 | (old_entry->is_shared ? |
| 4232 | PMAP_NULL((pmap_t) 0) : |
| 4233 | old_map->pmap), |
| 4234 | old_entry->vme_startlinks.start, |
| 4235 | old_entry->protection & |
| 4236 | ~VM_PROT_WRITE((vm_prot_t) 0x02)); |
| 4237 | |
| 4238 | old_entry->needs_copy = TRUE((boolean_t) 1); |
| 4239 | } |
| 4240 | |
| 4241 | new_entry->needs_copy = new_entry_needs_copy; |
| 4242 | |
| 4243 | /* |
| 4244 | * Insert the entry at the end |
| 4245 | * of the map. |
| 4246 | */ |
| 4247 | |
| 4248 | vm_map_entry_link(new_map,({ (&(new_map)->hdr)->nentries++; (new_entry)->links .prev = (((new_map)->hdr.links.prev)); (new_entry)->links .next = (((new_map)->hdr.links.prev))->links.next; (new_entry )->links.prev->links.next = (new_entry)->links.next-> links.prev = (new_entry); ({ struct rbtree_node *___cur, *___prev ; int ___diff, ___index; ___prev = ((void *) 0); ___index = - 1; ___cur = (&(&(new_map)->hdr)->tree)->root ; while (___cur != ((void *) 0)) { ___diff = vm_map_entry_cmp_insert (&(new_entry)->tree_node, ___cur); ({ if (!(___diff != 0)) Assert("___diff != 0", "../vm/vm_map.c", 4250); }); ___prev = ___cur; ___index = rbtree_d2i(___diff); ___cur = ___cur-> children[___index]; } rbtree_insert_rebalance(&(&(new_map )->hdr)->tree, ___prev, ___index, &(new_entry)-> tree_node); }); }) |
| 4249 | vm_map_last_entry(new_map),({ (&(new_map)->hdr)->nentries++; (new_entry)->links .prev = (((new_map)->hdr.links.prev)); (new_entry)->links .next = (((new_map)->hdr.links.prev))->links.next; (new_entry )->links.prev->links.next = (new_entry)->links.next-> links.prev = (new_entry); ({ struct rbtree_node *___cur, *___prev ; int ___diff, ___index; ___prev = ((void *) 0); ___index = - 1; ___cur = (&(&(new_map)->hdr)->tree)->root ; while (___cur != ((void *) 0)) { ___diff = vm_map_entry_cmp_insert (&(new_entry)->tree_node, ___cur); ({ if (!(___diff != 0)) Assert("___diff != 0", "../vm/vm_map.c", 4250); }); ___prev = ___cur; ___index = rbtree_d2i(___diff); ___cur = ___cur-> children[___index]; } rbtree_insert_rebalance(&(&(new_map )->hdr)->tree, ___prev, ___index, &(new_entry)-> tree_node); }); }) |
| 4250 | new_entry)({ (&(new_map)->hdr)->nentries++; (new_entry)->links .prev = (((new_map)->hdr.links.prev)); (new_entry)->links .next = (((new_map)->hdr.links.prev))->links.next; (new_entry )->links.prev->links.next = (new_entry)->links.next-> links.prev = (new_entry); ({ struct rbtree_node *___cur, *___prev ; int ___diff, ___index; ___prev = ((void *) 0); ___index = - 1; ___cur = (&(&(new_map)->hdr)->tree)->root ; while (___cur != ((void *) 0)) { ___diff = vm_map_entry_cmp_insert (&(new_entry)->tree_node, ___cur); ({ if (!(___diff != 0)) Assert("___diff != 0", "../vm/vm_map.c", 4250); }); ___prev = ___cur; ___index = rbtree_d2i(___diff); ___cur = ___cur-> children[___index]; } rbtree_insert_rebalance(&(&(new_map )->hdr)->tree, ___prev, ___index, &(new_entry)-> tree_node); }); }); |
| 4251 | |
| 4252 | |
| 4253 | new_size += entry_size; |
| 4254 | break; |
| 4255 | } |
| 4256 | |
| 4257 | vm_map_entry_dispose(new_map, new_entry)_vm_map_entry_dispose(&(new_map)->hdr, (new_entry)); |
| 4258 | } |
| 4259 | |
| 4260 | /* INNER BLOCK (copy cannot be optimized) */ { |
| 4261 | |
| 4262 | vm_offset_t start = old_entry->vme_startlinks.start; |
| 4263 | vm_map_copy_t copy; |
| 4264 | vm_map_entry_t last = vm_map_last_entry(new_map)((new_map)->hdr.links.prev); |
| 4265 | |
| 4266 | vm_map_unlock(old_map)lock_done(&(old_map)->lock); |
| 4267 | if (vm_map_copyin(old_map, |
| 4268 | start, |
| 4269 | entry_size, |
| 4270 | FALSE((boolean_t) 0), |
| 4271 | ©) |
| 4272 | != KERN_SUCCESS0) { |
| 4273 | vm_map_lock(old_map)({ lock_write(&(old_map)->lock); (old_map)->timestamp ++; }); |
| 4274 | if (!vm_map_lookup_entry(old_map, start, &last)) |
| 4275 | last = last->vme_nextlinks.next; |
| 4276 | old_entry = last; |
| 4277 | /* |
| 4278 | * For some error returns, want to |
| 4279 | * skip to the next element. |
| 4280 | */ |
| 4281 | |
| 4282 | continue; |
| 4283 | } |
| 4284 | |
| 4285 | /* |
| 4286 | * Insert the copy into the new map |
| 4287 | */ |
| 4288 | |
| 4289 | vm_map_copy_insert(new_map, last, copy)({ struct rbtree_node *node, *tmp; for (node = rbtree_postwalk_deepest (&(copy)->c_u.hdr.tree), tmp = rbtree_postwalk_unlink( node); node != ((void *) 0); node = tmp, tmp = rbtree_postwalk_unlink (node)) ({ struct rbtree_node *___cur, *___prev; int ___diff, ___index; ___prev = ((void *) 0); ___index = -1; ___cur = (& (new_map)->hdr.tree)->root; while (___cur != ((void *) 0 )) { ___diff = vm_map_entry_cmp_insert(node, ___cur); ({ if ( !(___diff != 0)) Assert("___diff != 0", "../vm/vm_map.c", 4289 ); }); ___prev = ___cur; ___index = rbtree_d2i(___diff); ___cur = ___cur->children[___index]; } rbtree_insert_rebalance(& (new_map)->hdr.tree, ___prev, ___index, node); }); (((last )->links.next)->links.prev = ((copy)->c_u.hdr.links. prev)) ->links.next = ((last)->links.next); ((last)-> links.next = ((copy)->c_u.hdr.links.next)) ->links.prev = (last); (new_map)->hdr.nentries += (copy)->c_u.hdr.nentries ; kmem_cache_free(&vm_map_copy_cache, (vm_offset_t) copy) ; }); |
| 4290 | new_size += entry_size; |
| 4291 | |
| 4292 | /* |
| 4293 | * Pick up the traversal at the end of |
| 4294 | * the copied region. |
| 4295 | */ |
| 4296 | |
| 4297 | vm_map_lock(old_map)({ lock_write(&(old_map)->lock); (old_map)->timestamp ++; }); |
| 4298 | start += entry_size; |
| 4299 | if (!vm_map_lookup_entry(old_map, start, &last)) |
| 4300 | last = last->vme_nextlinks.next; |
| 4301 | else |
| 4302 | vm_map_clip_start(old_map, last, start)({ if ((start) > (last)->links.start) _vm_map_clip_start (&(old_map)->hdr,(last),(start)); }); |
| 4303 | old_entry = last; |
| 4304 | |
| 4305 | continue; |
| 4306 | /* INNER BLOCK (copy cannot be optimized) */ } |
| 4307 | } |
| 4308 | old_entry = old_entry->vme_nextlinks.next; |
| 4309 | } |
| 4310 | |
| 4311 | new_map->size = new_size; |
| 4312 | vm_map_unlock(old_map)lock_done(&(old_map)->lock); |
| 4313 | |
| 4314 | return(new_map); |
| 4315 | } |
| 4316 | |
| 4317 | /* |
| 4318 | * vm_map_lookup: |
| 4319 | * |
| 4320 | * Finds the VM object, offset, and |
| 4321 | * protection for a given virtual address in the |
| 4322 | * specified map, assuming a page fault of the |
| 4323 | * type specified. |
| 4324 | * |
| 4325 | * Returns the (object, offset, protection) for |
| 4326 | * this address, whether it is wired down, and whether |
| 4327 | * this map has the only reference to the data in question. |
| 4328 | * In order to later verify this lookup, a "version" |
| 4329 | * is returned. |
| 4330 | * |
| 4331 | * The map should not be locked; it will not be |
| 4332 | * locked on exit. In order to guarantee the |
| 4333 | * existence of the returned object, it is returned |
| 4334 | * locked. |
| 4335 | * |
| 4336 | * If a lookup is requested with "write protection" |
| 4337 | * specified, the map may be changed to perform virtual |
| 4338 | * copying operations, although the data referenced will |
| 4339 | * remain the same. |
| 4340 | */ |
| 4341 | kern_return_t vm_map_lookup(var_map, vaddr, fault_type, out_version, |
| 4342 | object, offset, out_prot, wired) |
| 4343 | vm_map_t *var_map; /* IN/OUT */ |
| 4344 | vm_offset_t vaddr; |
| 4345 | vm_prot_t fault_type; |
| 4346 | |
| 4347 | vm_map_version_t *out_version; /* OUT */ |
| 4348 | vm_object_t *object; /* OUT */ |
| 4349 | vm_offset_t *offset; /* OUT */ |
| 4350 | vm_prot_t *out_prot; /* OUT */ |
| 4351 | boolean_t *wired; /* OUT */ |
| 4352 | { |
| 4353 | vm_map_entry_t entry; |
| 4354 | vm_map_t map = *var_map; |
| 4355 | vm_prot_t prot; |
| 4356 | |
| 4357 | RetryLookup: ; |
| 4358 | |
| 4359 | /* |
| 4360 | * Lookup the faulting address. |
| 4361 | */ |
| 4362 | |
| 4363 | vm_map_lock_read(map)lock_read(&(map)->lock); |
| 4364 | |
| 4365 | #define RETURN(why) \ |
| 4366 | { \ |
| 4367 | vm_map_unlock_read(map)lock_done(&(map)->lock); \ |
| 4368 | return(why); \ |
| 4369 | } |
| 4370 | |
| 4371 | /* |
| 4372 | * If the map has an interesting hint, try it before calling |
| 4373 | * full blown lookup routine. |
| 4374 | */ |
| 4375 | |
| 4376 | simple_lock(&map->hint_lock); |
| 4377 | entry = map->hint; |
| 4378 | simple_unlock(&map->hint_lock)((void)(&map->hint_lock)); |
| 4379 | |
| 4380 | if ((entry == vm_map_to_entry(map)((struct vm_map_entry *) &(map)->hdr.links)) || |
| 4381 | (vaddr < entry->vme_startlinks.start) || (vaddr >= entry->vme_endlinks.end)) { |
| 4382 | vm_map_entry_t tmp_entry; |
| 4383 | |
| 4384 | /* |
| 4385 | * Entry was either not a valid hint, or the vaddr |
| 4386 | * was not contained in the entry, so do a full lookup. |
| 4387 | */ |
| 4388 | if (!vm_map_lookup_entry(map, vaddr, &tmp_entry)) |
| 4389 | RETURN(KERN_INVALID_ADDRESS1); |
| 4390 | |
| 4391 | entry = tmp_entry; |
| 4392 | } |
| 4393 | |
| 4394 | /* |
| 4395 | * Handle submaps. |
| 4396 | */ |
| 4397 | |
| 4398 | if (entry->is_sub_map) { |
| 4399 | vm_map_t old_map = map; |
| 4400 | |
| 4401 | *var_map = map = entry->object.sub_map; |
| 4402 | vm_map_unlock_read(old_map)lock_done(&(old_map)->lock); |
| 4403 | goto RetryLookup; |
| 4404 | } |
| 4405 | |
| 4406 | /* |
| 4407 | * Check whether this task is allowed to have |
| 4408 | * this page. |
| 4409 | */ |
| 4410 | |
| 4411 | prot = entry->protection; |
| 4412 | |
| 4413 | if ((fault_type & (prot)) != fault_type) { |
| 4414 | if ((prot & VM_PROT_NOTIFY((vm_prot_t) 0x10)) && (fault_type & VM_PROT_WRITE((vm_prot_t) 0x02))) { |
| 4415 | RETURN(KERN_WRITE_PROTECTION_FAILURE24); |
| 4416 | } else { |
| 4417 | RETURN(KERN_PROTECTION_FAILURE2); |
| 4418 | } |
| 4419 | } |
| 4420 | |
| 4421 | /* |
| 4422 | * If this page is not pageable, we have to get |
| 4423 | * it for all possible accesses. |
| 4424 | */ |
| 4425 | |
| 4426 | if ((*wired = (entry->wired_count != 0))) |
| 4427 | prot = fault_type = entry->protection; |
| 4428 | |
| 4429 | /* |
| 4430 | * If the entry was copy-on-write, we either ... |
| 4431 | */ |
| 4432 | |
| 4433 | if (entry->needs_copy) { |
| 4434 | /* |
| 4435 | * If we want to write the page, we may as well |
| 4436 | * handle that now since we've got the map locked. |
| 4437 | * |
| 4438 | * If we don't need to write the page, we just |
| 4439 | * demote the permissions allowed. |
| 4440 | */ |
| 4441 | |
| 4442 | if (fault_type & VM_PROT_WRITE((vm_prot_t) 0x02)) { |
| 4443 | /* |
| 4444 | * Make a new object, and place it in the |
| 4445 | * object chain. Note that no new references |
| 4446 | * have appeared -- one just moved from the |
| 4447 | * map to the new object. |
| 4448 | */ |
| 4449 | |
| 4450 | if (vm_map_lock_read_to_write(map)(lock_read_to_write(&(map)->lock) || (((map)->timestamp ++), 0))) { |
| 4451 | goto RetryLookup; |
| 4452 | } |
| 4453 | map->timestamp++; |
| 4454 | |
| 4455 | vm_object_shadow( |
| 4456 | &entry->object.vm_object, |
| 4457 | &entry->offset, |
| 4458 | (vm_size_t) (entry->vme_endlinks.end - entry->vme_startlinks.start)); |
| 4459 | |
| 4460 | entry->needs_copy = FALSE((boolean_t) 0); |
| 4461 | |
| 4462 | vm_map_lock_write_to_read(map)lock_write_to_read(&(map)->lock); |
| 4463 | } |
| 4464 | else { |
| 4465 | /* |
| 4466 | * We're attempting to read a copy-on-write |
| 4467 | * page -- don't allow writes. |
| 4468 | */ |
| 4469 | |
| 4470 | prot &= (~VM_PROT_WRITE((vm_prot_t) 0x02)); |
| 4471 | } |
| 4472 | } |
| 4473 | |
| 4474 | /* |
| 4475 | * Create an object if necessary. |
| 4476 | */ |
| 4477 | if (entry->object.vm_object == VM_OBJECT_NULL((vm_object_t) 0)) { |
| 4478 | |
| 4479 | if (vm_map_lock_read_to_write(map)(lock_read_to_write(&(map)->lock) || (((map)->timestamp ++), 0))) { |
| 4480 | goto RetryLookup; |
| 4481 | } |
| 4482 | |
| 4483 | entry->object.vm_object = vm_object_allocate( |
| 4484 | (vm_size_t)(entry->vme_endlinks.end - entry->vme_startlinks.start)); |
| 4485 | entry->offset = 0; |
| 4486 | vm_map_lock_write_to_read(map)lock_write_to_read(&(map)->lock); |
| 4487 | } |
| 4488 | |
| 4489 | /* |
| 4490 | * Return the object/offset from this entry. If the entry |
| 4491 | * was copy-on-write or empty, it has been fixed up. Also |
| 4492 | * return the protection. |
| 4493 | */ |
| 4494 | |
| 4495 | *offset = (vaddr - entry->vme_startlinks.start) + entry->offset; |
| 4496 | *object = entry->object.vm_object; |
| 4497 | *out_prot = prot; |
| 4498 | |
| 4499 | /* |
| 4500 | * Lock the object to prevent it from disappearing |
| 4501 | */ |
| 4502 | |
| 4503 | vm_object_lock(*object); |
| 4504 | |
| 4505 | /* |
| 4506 | * Save the version number and unlock the map. |
| 4507 | */ |
| 4508 | |
| 4509 | out_version->main_timestamp = map->timestamp; |
| 4510 | |
| 4511 | RETURN(KERN_SUCCESS0); |
| 4512 | |
| 4513 | #undef RETURN |
| 4514 | } |
| 4515 | |
| 4516 | /* |
| 4517 | * vm_map_verify: |
| 4518 | * |
| 4519 | * Verifies that the map in question has not changed |
| 4520 | * since the given version. If successful, the map |
| 4521 | * will not change until vm_map_verify_done() is called. |
| 4522 | */ |
| 4523 | boolean_t vm_map_verify(map, version) |
| 4524 | vm_map_t map; |
| 4525 | vm_map_version_t *version; /* REF */ |
| 4526 | { |
| 4527 | boolean_t result; |
| 4528 | |
| 4529 | vm_map_lock_read(map)lock_read(&(map)->lock); |
| 4530 | result = (map->timestamp == version->main_timestamp); |
| 4531 | |
| 4532 | if (!result) |
| 4533 | vm_map_unlock_read(map)lock_done(&(map)->lock); |
| 4534 | |
| 4535 | return(result); |
| 4536 | } |
| 4537 | |
| 4538 | /* |
| 4539 | * vm_map_verify_done: |
| 4540 | * |
| 4541 | * Releases locks acquired by a vm_map_verify. |
| 4542 | * |
| 4543 | * This is now a macro in vm/vm_map.h. It does a |
| 4544 | * vm_map_unlock_read on the map. |
| 4545 | */ |
| 4546 | |
| 4547 | /* |
| 4548 | * vm_region: |
| 4549 | * |
| 4550 | * User call to obtain information about a region in |
| 4551 | * a task's address map. |
| 4552 | */ |
| 4553 | |
| 4554 | kern_return_t vm_region(map, address, size, |
| 4555 | protection, max_protection, |
| 4556 | inheritance, is_shared, |
| 4557 | object_name, offset_in_object) |
| 4558 | vm_map_t map; |
| 4559 | vm_offset_t *address; /* IN/OUT */ |
| 4560 | vm_size_t *size; /* OUT */ |
| 4561 | vm_prot_t *protection; /* OUT */ |
| 4562 | vm_prot_t *max_protection; /* OUT */ |
| 4563 | vm_inherit_t *inheritance; /* OUT */ |
| 4564 | boolean_t *is_shared; /* OUT */ |
| 4565 | ipc_port_t *object_name; /* OUT */ |
| 4566 | vm_offset_t *offset_in_object; /* OUT */ |
| 4567 | { |
| 4568 | vm_map_entry_t tmp_entry; |
| 4569 | vm_map_entry_t entry; |
| 4570 | vm_offset_t tmp_offset; |
| 4571 | vm_offset_t start; |
| 4572 | |
| 4573 | if (map == VM_MAP_NULL((vm_map_t) 0)) |
| 4574 | return(KERN_INVALID_ARGUMENT4); |
| 4575 | |
| 4576 | start = *address; |
| 4577 | |
| 4578 | vm_map_lock_read(map)lock_read(&(map)->lock); |
| 4579 | if (!vm_map_lookup_entry(map, start, &tmp_entry)) { |
| 4580 | if ((entry = tmp_entry->vme_nextlinks.next) == vm_map_to_entry(map)((struct vm_map_entry *) &(map)->hdr.links)) { |
| 4581 | vm_map_unlock_read(map)lock_done(&(map)->lock); |
| 4582 | return(KERN_NO_SPACE3); |
| 4583 | } |
| 4584 | } else { |
| 4585 | entry = tmp_entry; |
| 4586 | } |
| 4587 | |
| 4588 | start = entry->vme_startlinks.start; |
| 4589 | *protection = entry->protection; |
| 4590 | *max_protection = entry->max_protection; |
| 4591 | *inheritance = entry->inheritance; |
| 4592 | *address = start; |
| 4593 | *size = (entry->vme_endlinks.end - start); |
| 4594 | |
| 4595 | tmp_offset = entry->offset; |
| 4596 | |
| 4597 | |
| 4598 | if (entry->is_sub_map) { |
| 4599 | *is_shared = FALSE((boolean_t) 0); |
| 4600 | *object_name = IP_NULL((ipc_port_t) ((ipc_object_t) 0)); |
| 4601 | *offset_in_object = tmp_offset; |
| 4602 | } else { |
| 4603 | *is_shared = entry->is_shared; |
| 4604 | *object_name = vm_object_name(entry->object.vm_object); |
| 4605 | *offset_in_object = tmp_offset; |
| 4606 | } |
| 4607 | |
| 4608 | vm_map_unlock_read(map)lock_done(&(map)->lock); |
| 4609 | |
| 4610 | return(KERN_SUCCESS0); |
| 4611 | } |
| 4612 | |
| 4613 | /* |
| 4614 | * Routine: vm_map_simplify |
| 4615 | * |
| 4616 | * Description: |
| 4617 | * Attempt to simplify the map representation in |
| 4618 | * the vicinity of the given starting address. |
| 4619 | * Note: |
| 4620 | * This routine is intended primarily to keep the |
| 4621 | * kernel maps more compact -- they generally don't |
| 4622 | * benefit from the "expand a map entry" technology |
| 4623 | * at allocation time because the adjacent entry |
| 4624 | * is often wired down. |
| 4625 | */ |
| 4626 | void vm_map_simplify(map, start) |
| 4627 | vm_map_t map; |
| 4628 | vm_offset_t start; |
| 4629 | { |
| 4630 | vm_map_entry_t this_entry; |
| 4631 | vm_map_entry_t prev_entry; |
| 4632 | |
| 4633 | vm_map_lock(map)({ lock_write(&(map)->lock); (map)->timestamp++; }); |
| 4634 | if ( |
| 4635 | (vm_map_lookup_entry(map, start, &this_entry)) && |
| 4636 | ((prev_entry = this_entry->vme_prevlinks.prev) != vm_map_to_entry(map)((struct vm_map_entry *) &(map)->hdr.links)) && |
| 4637 | |
| 4638 | (prev_entry->vme_endlinks.end == start) && |
| 4639 | |
| 4640 | (prev_entry->is_shared == FALSE((boolean_t) 0)) && |
| 4641 | (prev_entry->is_sub_map == FALSE((boolean_t) 0)) && |
| 4642 | |
| 4643 | (this_entry->is_shared == FALSE((boolean_t) 0)) && |
| 4644 | (this_entry->is_sub_map == FALSE((boolean_t) 0)) && |
| 4645 | |
| 4646 | (prev_entry->inheritance == this_entry->inheritance) && |
| 4647 | (prev_entry->protection == this_entry->protection) && |
| 4648 | (prev_entry->max_protection == this_entry->max_protection) && |
| 4649 | (prev_entry->wired_count == this_entry->wired_count) && |
| 4650 | (prev_entry->user_wired_count == this_entry->user_wired_count) && |
| 4651 | |
| 4652 | (prev_entry->needs_copy == this_entry->needs_copy) && |
| 4653 | |
| 4654 | (prev_entry->object.vm_object == this_entry->object.vm_object) && |
| 4655 | ((prev_entry->offset + (prev_entry->vme_endlinks.end - prev_entry->vme_startlinks.start)) |
| 4656 | == this_entry->offset) && |
| 4657 | (prev_entry->projected_on == 0) && |
| 4658 | (this_entry->projected_on == 0) |
| 4659 | ) { |
| 4660 | if (map->first_free == this_entry) |
| 4661 | map->first_free = prev_entry; |
| 4662 | |
| 4663 | SAVE_HINT(map, prev_entry); (map)->hint = (prev_entry); ((void)(&(map)->hint_lock ));; |
| 4664 | vm_map_entry_unlink(map, this_entry)({ (&(map)->hdr)->nentries--; (this_entry)->links .next->links.prev = (this_entry)->links.prev; (this_entry )->links.prev->links.next = (this_entry)->links.next ; rbtree_remove(&(&(map)->hdr)->tree, &(this_entry )->tree_node); }); |
| 4665 | prev_entry->vme_endlinks.end = this_entry->vme_endlinks.end; |
| 4666 | vm_object_deallocate(this_entry->object.vm_object); |
| 4667 | vm_map_entry_dispose(map, this_entry)_vm_map_entry_dispose(&(map)->hdr, (this_entry)); |
| 4668 | } |
| 4669 | vm_map_unlock(map)lock_done(&(map)->lock); |
| 4670 | } |
| 4671 | |
| 4672 | |
| 4673 | /* |
| 4674 | * Routine: vm_map_machine_attribute |
| 4675 | * Purpose: |
| 4676 | * Provide machine-specific attributes to mappings, |
| 4677 | * such as cachability etc. for machines that provide |
| 4678 | * them. NUMA architectures and machines with big/strange |
| 4679 | * caches will use this. |
| 4680 | * Note: |
| 4681 | * Responsibilities for locking and checking are handled here, |
| 4682 | * everything else in the pmap module. If any non-volatile |
| 4683 | * information must be kept, the pmap module should handle |
| 4684 | * it itself. [This assumes that attributes do not |
| 4685 | * need to be inherited, which seems ok to me] |
| 4686 | */ |
| 4687 | kern_return_t vm_map_machine_attribute(map, address, size, attribute, value) |
| 4688 | vm_map_t map; |
| 4689 | vm_offset_t address; |
| 4690 | vm_size_t size; |
| 4691 | vm_machine_attribute_t attribute; |
| 4692 | vm_machine_attribute_val_t* value; /* IN/OUT */ |
| 4693 | { |
| 4694 | kern_return_t ret; |
| 4695 | |
| 4696 | if (address < vm_map_min(map)((map)->hdr.links.start) || |
| 4697 | (address + size) > vm_map_max(map)((map)->hdr.links.end)) |
| 4698 | return KERN_INVALID_ARGUMENT4; |
| 4699 | |
| 4700 | vm_map_lock(map)({ lock_write(&(map)->lock); (map)->timestamp++; }); |
| 4701 | |
| 4702 | ret = pmap_attribute(map->pmap, address, size, attribute, value)(1); |
| 4703 | |
| 4704 | vm_map_unlock(map)lock_done(&(map)->lock); |
| 4705 | |
| 4706 | return ret; |
| 4707 | } |
| 4708 | |
| 4709 | |
| 4710 | #if MACH_KDB1 |
| 4711 | |
| 4712 | #define printfdb_printf kdbprintfdb_printf |
| 4713 | |
| 4714 | /* |
| 4715 | * vm_map_print: [ debug ] |
| 4716 | */ |
| 4717 | void vm_map_print(map) |
| 4718 | vm_map_t map; |
| 4719 | { |
| 4720 | vm_map_entry_t entry; |
| 4721 | |
| 4722 | iprintf("Task map 0x%X: pmap=0x%X,", |
| 4723 | (vm_offset_t) map, (vm_offset_t) (map->pmap)); |
| 4724 | printfdb_printf("ref=%d,nentries=%d,", map->ref_count, map->hdr.nentries); |
| 4725 | printfdb_printf("version=%d\n", map->timestamp); |
| 4726 | indent += 2; |
| 4727 | for (entry = vm_map_first_entry(map)((map)->hdr.links.next); |
| 4728 | entry != vm_map_to_entry(map)((struct vm_map_entry *) &(map)->hdr.links); |
| 4729 | entry = entry->vme_nextlinks.next) { |
| 4730 | static char *inheritance_name[3] = { "share", "copy", "none"}; |
| 4731 | |
| 4732 | iprintf("map entry 0x%X: ", (vm_offset_t) entry); |
| 4733 | printfdb_printf("start=0x%X, end=0x%X, ", |
| 4734 | (vm_offset_t) entry->vme_startlinks.start, (vm_offset_t) entry->vme_endlinks.end); |
| 4735 | printfdb_printf("prot=%X/%X/%s, ", |
| 4736 | entry->protection, |
| 4737 | entry->max_protection, |
| 4738 | inheritance_name[entry->inheritance]); |
| 4739 | if (entry->wired_count != 0) { |
| 4740 | printfdb_printf("wired("); |
| 4741 | if (entry->user_wired_count != 0) |
| 4742 | printfdb_printf("u"); |
| 4743 | if (entry->wired_count > |
| 4744 | ((entry->user_wired_count == 0) ? 0 : 1)) |
| 4745 | printfdb_printf("k"); |
| 4746 | printfdb_printf(") "); |
| 4747 | } |
| 4748 | if (entry->in_transition) { |
| 4749 | printfdb_printf("in transition"); |
| 4750 | if (entry->needs_wakeup) |
| 4751 | printfdb_printf("(wake request)"); |
| 4752 | printfdb_printf(", "); |
| 4753 | } |
| 4754 | if (entry->is_sub_map) { |
| 4755 | printfdb_printf("submap=0x%X, offset=0x%X\n", |
| 4756 | (vm_offset_t) entry->object.sub_map, |
| 4757 | (vm_offset_t) entry->offset); |
| 4758 | } else { |
| 4759 | printfdb_printf("object=0x%X, offset=0x%X", |
| 4760 | (vm_offset_t) entry->object.vm_object, |
| 4761 | (vm_offset_t) entry->offset); |
| 4762 | if (entry->is_shared) |
| 4763 | printfdb_printf(", shared"); |
| 4764 | if (entry->needs_copy) |
| 4765 | printfdb_printf(", copy needed"); |
| 4766 | printfdb_printf("\n"); |
| 4767 | |
| 4768 | if ((entry->vme_prevlinks.prev == vm_map_to_entry(map)((struct vm_map_entry *) &(map)->hdr.links)) || |
| 4769 | (entry->vme_prevlinks.prev->object.vm_object != entry->object.vm_object)) { |
| 4770 | indent += 2; |
| 4771 | vm_object_print(entry->object.vm_object); |
| 4772 | indent -= 2; |
| 4773 | } |
| 4774 | } |
| 4775 | } |
| 4776 | indent -= 2; |
| 4777 | } |
| 4778 | |
| 4779 | /* |
| 4780 | * Routine: vm_map_copy_print |
| 4781 | * Purpose: |
| 4782 | * Pretty-print a copy object for ddb. |
| 4783 | */ |
| 4784 | |
| 4785 | void vm_map_copy_print(copy) |
| 4786 | const vm_map_copy_t copy; |
| 4787 | { |
| 4788 | int i, npages; |
| 4789 | |
| 4790 | printfdb_printf("copy object 0x%x\n", copy); |
| 4791 | |
| 4792 | indent += 2; |
| 4793 | |
| 4794 | iprintf("type=%d", copy->type); |
| 4795 | switch (copy->type) { |
| 4796 | case VM_MAP_COPY_ENTRY_LIST1: |
| 4797 | printfdb_printf("[entry_list]"); |
| 4798 | break; |
| 4799 | |
| 4800 | case VM_MAP_COPY_OBJECT2: |
| 4801 | printfdb_printf("[object]"); |
| 4802 | break; |
| 4803 | |
| 4804 | case VM_MAP_COPY_PAGE_LIST3: |
| 4805 | printfdb_printf("[page_list]"); |
| 4806 | break; |
| 4807 | |
| 4808 | default: |
| 4809 | printfdb_printf("[bad type]"); |
| 4810 | break; |
| 4811 | } |
| 4812 | printfdb_printf(", offset=0x%x", copy->offset); |
| 4813 | printfdb_printf(", size=0x%x\n", copy->size); |
| 4814 | |
| 4815 | switch (copy->type) { |
| 4816 | case VM_MAP_COPY_ENTRY_LIST1: |
| 4817 | /* XXX add stuff here */ |
| 4818 | break; |
| 4819 | |
| 4820 | case VM_MAP_COPY_OBJECT2: |
| 4821 | iprintf("object=0x%x\n", copy->cpy_objectc_u.c_o.object); |
| 4822 | break; |
| 4823 | |
| 4824 | case VM_MAP_COPY_PAGE_LIST3: |
| 4825 | iprintf("npages=%d", copy->cpy_npagesc_u.c_p.npages); |
| 4826 | printfdb_printf(", cont=%x", copy->cpy_contc_u.c_p.cont); |
| 4827 | printfdb_printf(", cont_args=%x\n", copy->cpy_cont_argsc_u.c_p.cont_args); |
| 4828 | if (copy->cpy_npagesc_u.c_p.npages < 0) { |
| 4829 | npages = 0; |
| 4830 | } else if (copy->cpy_npagesc_u.c_p.npages > VM_MAP_COPY_PAGE_LIST_MAX64) { |
| 4831 | npages = VM_MAP_COPY_PAGE_LIST_MAX64; |
| 4832 | } else { |
| 4833 | npages = copy->cpy_npagesc_u.c_p.npages; |
| 4834 | } |
| 4835 | iprintf("copy->cpy_page_list[0..%d] = {", npages); |
| 4836 | for (i = 0; i < npages - 1; i++) { |
| 4837 | printfdb_printf("0x%x, ", copy->cpy_page_listc_u.c_p.page_list[i]); |
| 4838 | } |
| 4839 | if (npages > 0) { |
| 4840 | printfdb_printf("0x%x", copy->cpy_page_listc_u.c_p.page_list[npages - 1]); |
| 4841 | } |
| 4842 | printfdb_printf("}\n"); |
| 4843 | break; |
| 4844 | } |
| 4845 | |
| 4846 | indent -= 2; |
| 4847 | } |
| 4848 | #endif /* MACH_KDB */ |