| File: | obj-scan-build/../kern/thread.c |
| Location: | line 1674, column 2 |
| Description: | Function call argument is an uninitialized value |
| 1 | /* | |||
| 2 | * Mach Operating System | |||
| 3 | * Copyright (c) 1994-1987 Carnegie Mellon University | |||
| 4 | * All Rights Reserved. | |||
| 5 | * | |||
| 6 | * Permission to use, copy, modify and distribute this software and its | |||
| 7 | * documentation is hereby granted, provided that both the copyright | |||
| 8 | * notice and this permission notice appear in all copies of the | |||
| 9 | * software, derivative works or modified versions, and any portions | |||
| 10 | * thereof, and that both notices appear in supporting documentation. | |||
| 11 | * | |||
| 12 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" | |||
| 13 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR | |||
| 14 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. | |||
| 15 | * | |||
| 16 | * Carnegie Mellon requests users of this software to return to | |||
| 17 | * | |||
| 18 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU | |||
| 19 | * School of Computer Science | |||
| 20 | * Carnegie Mellon University | |||
| 21 | * Pittsburgh PA 15213-3890 | |||
| 22 | * | |||
| 23 | * any improvements or extensions that they make and grant Carnegie Mellon | |||
| 24 | * the rights to redistribute these changes. | |||
| 25 | */ | |||
| 26 | /* | |||
| 27 | * File: kern/thread.c | |||
| 28 | * Author: Avadis Tevanian, Jr., Michael Wayne Young, David Golub | |||
| 29 | * Date: 1986 | |||
| 30 | * | |||
| 31 | * Thread management primitives implementation. | |||
| 32 | */ | |||
| 33 | ||||
| 34 | #include <kern/printf.h> | |||
| 35 | #include <mach/std_types.h> | |||
| 36 | #include <mach/policy.h> | |||
| 37 | #include <mach/thread_info.h> | |||
| 38 | #include <mach/thread_special_ports.h> | |||
| 39 | #include <mach/thread_status.h> | |||
| 40 | #include <mach/time_value.h> | |||
| 41 | #include <machine/vm_param.h> | |||
| 42 | #include <kern/ast.h> | |||
| 43 | #include <kern/counters.h> | |||
| 44 | #include <kern/debug.h> | |||
| 45 | #include <kern/eventcount.h> | |||
| 46 | #include <kern/ipc_mig.h> | |||
| 47 | #include <kern/ipc_tt.h> | |||
| 48 | #include <kern/processor.h> | |||
| 49 | #include <kern/queue.h> | |||
| 50 | #include <kern/sched.h> | |||
| 51 | #include <kern/sched_prim.h> | |||
| 52 | #include <kern/syscall_subr.h> | |||
| 53 | #include <kern/thread.h> | |||
| 54 | #include <kern/thread_swap.h> | |||
| 55 | #include <kern/host.h> | |||
| 56 | #include <kern/kalloc.h> | |||
| 57 | #include <kern/slab.h> | |||
| 58 | #include <kern/mach_clock.h> | |||
| 59 | #include <vm/vm_kern.h> | |||
| 60 | #include <vm/vm_user.h> | |||
| 61 | #include <ipc/ipc_kmsg.h> | |||
| 62 | #include <ipc/ipc_port.h> | |||
| 63 | #include <ipc/mach_msg.h> | |||
| 64 | #include <ipc/mach_port.h> | |||
| 65 | #include <machine/machspl.h> /* for splsched */ | |||
| 66 | #include <machine/pcb.h> | |||
| 67 | #include <machine/thread.h> /* for MACHINE_STACK */ | |||
| 68 | ||||
| 69 | thread_t active_threads[NCPUS1]; | |||
| 70 | vm_offset_t active_stacks[NCPUS1]; | |||
| 71 | ||||
| 72 | struct kmem_cache thread_cache; | |||
| 73 | ||||
| 74 | queue_head_t reaper_queue; | |||
| 75 | decl_simple_lock_data(, reaper_lock)struct simple_lock_data_empty reaper_lock; | |||
| 76 | ||||
| 77 | /* private */ | |||
| 78 | struct thread thread_template; | |||
| 79 | ||||
| 80 | #if MACH_DEBUG1 | |||
| 81 | #define STACK_MARKER0xdeadbeefU 0xdeadbeefU | |||
| 82 | boolean_t stack_check_usage = FALSE((boolean_t) 0); | |||
| 83 | decl_simple_lock_data(, stack_usage_lock)struct simple_lock_data_empty stack_usage_lock; | |||
| 84 | vm_size_t stack_max_usage = 0; | |||
| 85 | #endif /* MACH_DEBUG */ | |||
| 86 | ||||
| 87 | /* | |||
| 88 | * Machine-dependent code must define: | |||
| 89 | * pcb_init | |||
| 90 | * pcb_terminate | |||
| 91 | * pcb_collect | |||
| 92 | * | |||
| 93 | * The thread->pcb field is reserved for machine-dependent code. | |||
| 94 | */ | |||
| 95 | ||||
| 96 | #ifdef MACHINE_STACK | |||
| 97 | /* | |||
| 98 | * Machine-dependent code must define: | |||
| 99 | * stack_alloc_try | |||
| 100 | * stack_alloc | |||
| 101 | * stack_free | |||
| 102 | * stack_handoff | |||
| 103 | * stack_collect | |||
| 104 | * and if MACH_DEBUG: | |||
| 105 | * stack_statistics | |||
| 106 | */ | |||
| 107 | #else /* MACHINE_STACK */ | |||
| 108 | /* | |||
| 109 | * We allocate stacks from generic kernel VM. | |||
| 110 | * Machine-dependent code must define: | |||
| 111 | * stack_attach | |||
| 112 | * stack_detach | |||
| 113 | * stack_handoff | |||
| 114 | * | |||
| 115 | * The stack_free_list can only be accessed at splsched, | |||
| 116 | * because stack_alloc_try/thread_invoke operate at splsched. | |||
| 117 | */ | |||
| 118 | ||||
| 119 | decl_simple_lock_data(, stack_lock_data)struct simple_lock_data_empty stack_lock_data;/* splsched only */ | |||
| 120 | #define stack_lock() simple_lock(&stack_lock_data) | |||
| 121 | #define stack_unlock()((void)(&stack_lock_data)) simple_unlock(&stack_lock_data)((void)(&stack_lock_data)) | |||
| 122 | ||||
| 123 | vm_offset_t stack_free_list; /* splsched only */ | |||
| 124 | unsigned int stack_free_count = 0; /* splsched only */ | |||
| 125 | unsigned int stack_free_limit = 1; /* patchable */ | |||
| 126 | ||||
| 127 | unsigned int stack_alloc_hits = 0; /* debugging */ | |||
| 128 | unsigned int stack_alloc_misses = 0; /* debugging */ | |||
| 129 | unsigned int stack_alloc_max = 0; /* debugging */ | |||
| 130 | ||||
| 131 | /* | |||
| 132 | * The next field is at the base of the stack, | |||
| 133 | * so the low end is left unsullied. | |||
| 134 | */ | |||
| 135 | ||||
| 136 | #define stack_next(stack)(*((vm_offset_t *)((stack) + (1*4096)) - 1)) (*((vm_offset_t *)((stack) + KERNEL_STACK_SIZE(1*4096)) - 1)) | |||
| 137 | ||||
| 138 | /* | |||
| 139 | * stack_alloc_try: | |||
| 140 | * | |||
| 141 | * Non-blocking attempt to allocate a kernel stack. | |||
| 142 | * Called at splsched with the thread locked. | |||
| 143 | */ | |||
| 144 | ||||
| 145 | boolean_t stack_alloc_try( | |||
| 146 | thread_t thread, | |||
| 147 | void (*resume)(thread_t)) | |||
| 148 | { | |||
| 149 | vm_offset_t stack; | |||
| 150 | ||||
| 151 | stack_lock(); | |||
| 152 | stack = stack_free_list; | |||
| 153 | if (stack != 0) { | |||
| 154 | stack_free_list = stack_next(stack)(*((vm_offset_t *)((stack) + (1*4096)) - 1)); | |||
| 155 | stack_free_count--; | |||
| 156 | } else { | |||
| 157 | stack = thread->stack_privilege; | |||
| 158 | } | |||
| 159 | stack_unlock()((void)(&stack_lock_data)); | |||
| 160 | ||||
| 161 | if (stack != 0) { | |||
| 162 | stack_attach(thread, stack, resume); | |||
| 163 | stack_alloc_hits++; | |||
| 164 | return TRUE((boolean_t) 1); | |||
| 165 | } else { | |||
| 166 | stack_alloc_misses++; | |||
| 167 | return FALSE((boolean_t) 0); | |||
| 168 | } | |||
| 169 | } | |||
| 170 | ||||
| 171 | /* | |||
| 172 | * stack_alloc: | |||
| 173 | * | |||
| 174 | * Allocate a kernel stack for a thread. | |||
| 175 | * May block. | |||
| 176 | */ | |||
| 177 | ||||
| 178 | void stack_alloc( | |||
| 179 | thread_t thread, | |||
| 180 | void (*resume)(thread_t)) | |||
| 181 | { | |||
| 182 | vm_offset_t stack; | |||
| 183 | spl_t s; | |||
| 184 | ||||
| 185 | /* | |||
| 186 | * We first try the free list. It is probably empty, | |||
| 187 | * or stack_alloc_try would have succeeded, but possibly | |||
| 188 | * a stack was freed before the swapin thread got to us. | |||
| 189 | */ | |||
| 190 | ||||
| 191 | s = splsched(); | |||
| 192 | stack_lock(); | |||
| 193 | stack = stack_free_list; | |||
| 194 | if (stack != 0) { | |||
| 195 | stack_free_list = stack_next(stack)(*((vm_offset_t *)((stack) + (1*4096)) - 1)); | |||
| 196 | stack_free_count--; | |||
| 197 | } | |||
| 198 | stack_unlock()((void)(&stack_lock_data)); | |||
| 199 | (void) splx(s); | |||
| 200 | ||||
| 201 | if (stack == 0) { | |||
| 202 | /* | |||
| 203 | * Kernel stacks should be naturally aligned, | |||
| 204 | * so that it is easy to find the starting/ending | |||
| 205 | * addresses of a stack given an address in the middle. | |||
| 206 | */ | |||
| 207 | ||||
| 208 | if (kmem_alloc_aligned(kmem_map, &stack, KERNEL_STACK_SIZE(1*4096)) | |||
| 209 | != KERN_SUCCESS0) | |||
| 210 | panic("stack_alloc"); | |||
| 211 | ||||
| 212 | #if MACH_DEBUG1 | |||
| 213 | stack_init(stack); | |||
| 214 | #endif /* MACH_DEBUG */ | |||
| 215 | } | |||
| 216 | ||||
| 217 | stack_attach(thread, stack, resume); | |||
| 218 | } | |||
| 219 | ||||
| 220 | /* | |||
| 221 | * stack_free: | |||
| 222 | * | |||
| 223 | * Free a thread's kernel stack. | |||
| 224 | * Called at splsched with the thread locked. | |||
| 225 | */ | |||
| 226 | ||||
| 227 | void stack_free( | |||
| 228 | thread_t thread) | |||
| 229 | { | |||
| 230 | vm_offset_t stack; | |||
| 231 | ||||
| 232 | stack = stack_detach(thread); | |||
| 233 | ||||
| 234 | if (stack != thread->stack_privilege) { | |||
| 235 | stack_lock(); | |||
| 236 | stack_next(stack)(*((vm_offset_t *)((stack) + (1*4096)) - 1)) = stack_free_list; | |||
| 237 | stack_free_list = stack; | |||
| 238 | if (++stack_free_count > stack_alloc_max) | |||
| 239 | stack_alloc_max = stack_free_count; | |||
| 240 | stack_unlock()((void)(&stack_lock_data)); | |||
| 241 | } | |||
| 242 | } | |||
| 243 | ||||
| 244 | /* | |||
| 245 | * stack_collect: | |||
| 246 | * | |||
| 247 | * Free excess kernel stacks. | |||
| 248 | * May block. | |||
| 249 | */ | |||
| 250 | ||||
| 251 | void stack_collect(void) | |||
| 252 | { | |||
| 253 | vm_offset_t stack; | |||
| 254 | spl_t s; | |||
| 255 | ||||
| 256 | s = splsched(); | |||
| 257 | stack_lock(); | |||
| 258 | while (stack_free_count > stack_free_limit) { | |||
| 259 | stack = stack_free_list; | |||
| 260 | stack_free_list = stack_next(stack)(*((vm_offset_t *)((stack) + (1*4096)) - 1)); | |||
| 261 | stack_free_count--; | |||
| 262 | stack_unlock()((void)(&stack_lock_data)); | |||
| 263 | (void) splx(s); | |||
| 264 | ||||
| 265 | #if MACH_DEBUG1 | |||
| 266 | stack_finalize(stack); | |||
| 267 | #endif /* MACH_DEBUG */ | |||
| 268 | kmem_free(kmem_map, stack, KERNEL_STACK_SIZE(1*4096)); | |||
| 269 | ||||
| 270 | s = splsched(); | |||
| 271 | stack_lock(); | |||
| 272 | } | |||
| 273 | stack_unlock()((void)(&stack_lock_data)); | |||
| 274 | (void) splx(s); | |||
| 275 | } | |||
| 276 | #endif /* MACHINE_STACK */ | |||
| 277 | ||||
| 278 | /* | |||
| 279 | * stack_privilege: | |||
| 280 | * | |||
| 281 | * stack_alloc_try on this thread must always succeed. | |||
| 282 | */ | |||
| 283 | ||||
| 284 | void stack_privilege( | |||
| 285 | thread_t thread) | |||
| 286 | { | |||
| 287 | /* | |||
| 288 | * This implementation only works for the current thread. | |||
| 289 | */ | |||
| 290 | ||||
| 291 | if (thread != current_thread()(active_threads[(0)])) | |||
| 292 | panic("stack_privilege"); | |||
| 293 | ||||
| 294 | if (thread->stack_privilege == 0) | |||
| 295 | thread->stack_privilege = current_stack()(active_stacks[(0)]); | |||
| 296 | } | |||
| 297 | ||||
| 298 | void thread_init(void) | |||
| 299 | { | |||
| 300 | kmem_cache_init(&thread_cache, "thread", sizeof(struct thread), 0, | |||
| 301 | NULL((void *) 0), NULL((void *) 0), NULL((void *) 0), 0); | |||
| 302 | ||||
| 303 | /* | |||
| 304 | * Fill in a template thread for fast initialization. | |||
| 305 | * [Fields that must be (or are typically) reset at | |||
| 306 | * time of creation are so noted.] | |||
| 307 | */ | |||
| 308 | ||||
| 309 | /* thread_template.links (none) */ | |||
| 310 | thread_template.runq = RUN_QUEUE_NULL((run_queue_t) 0); | |||
| 311 | ||||
| 312 | /* thread_template.task (later) */ | |||
| 313 | /* thread_template.thread_list (later) */ | |||
| 314 | /* thread_template.pset_threads (later) */ | |||
| 315 | ||||
| 316 | /* thread_template.lock (later) */ | |||
| 317 | /* one ref for being alive; one for the guy who creates the thread */ | |||
| 318 | thread_template.ref_count = 2; | |||
| 319 | ||||
| 320 | thread_template.pcb = (pcb_t) 0; /* (reset) */ | |||
| 321 | thread_template.kernel_stack = (vm_offset_t) 0; | |||
| 322 | thread_template.stack_privilege = (vm_offset_t) 0; | |||
| 323 | ||||
| 324 | thread_template.wait_event = 0; | |||
| 325 | /* thread_template.suspend_count (later) */ | |||
| 326 | thread_template.wait_result = KERN_SUCCESS0; | |||
| 327 | thread_template.wake_active = FALSE((boolean_t) 0); | |||
| 328 | thread_template.state = TH_SUSP0x02 | TH_SWAPPED0x0100; | |||
| 329 | thread_template.swap_func = thread_bootstrap_return; | |||
| 330 | ||||
| 331 | /* thread_template.priority (later) */ | |||
| 332 | thread_template.max_priority = BASEPRI_USER25; | |||
| 333 | /* thread_template.sched_pri (later - compute_priority) */ | |||
| 334 | #if MACH_FIXPRI1 | |||
| 335 | thread_template.sched_data = 0; | |||
| 336 | thread_template.policy = POLICY_TIMESHARE1; | |||
| 337 | #endif /* MACH_FIXPRI */ | |||
| 338 | thread_template.depress_priority = -1; | |||
| 339 | thread_template.cpu_usage = 0; | |||
| 340 | thread_template.sched_usage = 0; | |||
| 341 | /* thread_template.sched_stamp (later) */ | |||
| 342 | ||||
| 343 | thread_template.recover = (vm_offset_t) 0; | |||
| 344 | thread_template.vm_privilege = FALSE((boolean_t) 0); | |||
| 345 | ||||
| 346 | thread_template.user_stop_count = 1; | |||
| 347 | ||||
| 348 | /* thread_template.<IPC structures> (later) */ | |||
| 349 | ||||
| 350 | timer_init(&(thread_template.user_timer)); | |||
| 351 | timer_init(&(thread_template.system_timer)); | |||
| 352 | thread_template.user_timer_save.low = 0; | |||
| 353 | thread_template.user_timer_save.high = 0; | |||
| 354 | thread_template.system_timer_save.low = 0; | |||
| 355 | thread_template.system_timer_save.high = 0; | |||
| 356 | thread_template.cpu_delta = 0; | |||
| 357 | thread_template.sched_delta = 0; | |||
| 358 | ||||
| 359 | thread_template.active = FALSE((boolean_t) 0); /* reset */ | |||
| 360 | thread_template.ast = AST_ZILCH0x0; | |||
| 361 | ||||
| 362 | /* thread_template.processor_set (later) */ | |||
| 363 | thread_template.bound_processor = PROCESSOR_NULL((processor_t) 0); | |||
| 364 | #if MACH_HOST0 | |||
| 365 | thread_template.may_assign = TRUE((boolean_t) 1); | |||
| 366 | thread_template.assign_active = FALSE((boolean_t) 0); | |||
| 367 | #endif /* MACH_HOST */ | |||
| 368 | ||||
| 369 | #if NCPUS1 > 1 | |||
| 370 | /* thread_template.last_processor (later) */ | |||
| 371 | #endif /* NCPUS > 1 */ | |||
| 372 | ||||
| 373 | /* | |||
| 374 | * Initialize other data structures used in | |||
| 375 | * this module. | |||
| 376 | */ | |||
| 377 | ||||
| 378 | queue_init(&reaper_queue)((&reaper_queue)->next = (&reaper_queue)->prev = &reaper_queue); | |||
| 379 | simple_lock_init(&reaper_lock); | |||
| 380 | ||||
| 381 | #ifndef MACHINE_STACK | |||
| 382 | simple_lock_init(&stack_lock_data); | |||
| 383 | #endif /* MACHINE_STACK */ | |||
| 384 | ||||
| 385 | #if MACH_DEBUG1 | |||
| 386 | simple_lock_init(&stack_usage_lock); | |||
| 387 | #endif /* MACH_DEBUG */ | |||
| 388 | ||||
| 389 | /* | |||
| 390 | * Initialize any machine-dependent | |||
| 391 | * per-thread structures necessary. | |||
| 392 | */ | |||
| 393 | ||||
| 394 | pcb_module_init(); | |||
| 395 | } | |||
| 396 | ||||
| 397 | kern_return_t thread_create( | |||
| 398 | task_t parent_task, | |||
| 399 | thread_t *child_thread) /* OUT */ | |||
| 400 | { | |||
| 401 | thread_t new_thread; | |||
| 402 | processor_set_t pset; | |||
| 403 | ||||
| 404 | if (parent_task == TASK_NULL((task_t) 0)) | |||
| 405 | return KERN_INVALID_ARGUMENT4; | |||
| 406 | ||||
| 407 | /* | |||
| 408 | * Allocate a thread and initialize static fields | |||
| 409 | */ | |||
| 410 | ||||
| 411 | new_thread = (thread_t) kmem_cache_alloc(&thread_cache); | |||
| 412 | ||||
| 413 | if (new_thread == THREAD_NULL((thread_t) 0)) | |||
| 414 | return KERN_RESOURCE_SHORTAGE6; | |||
| 415 | ||||
| 416 | *new_thread = thread_template; | |||
| 417 | ||||
| 418 | record_time_stamp (&new_thread->creation_time); | |||
| 419 | ||||
| 420 | /* | |||
| 421 | * Initialize runtime-dependent fields | |||
| 422 | */ | |||
| 423 | ||||
| 424 | new_thread->task = parent_task; | |||
| 425 | simple_lock_init(&new_thread->lock); | |||
| 426 | new_thread->sched_stamp = sched_tick; | |||
| 427 | thread_timeout_setup(new_thread); | |||
| 428 | ||||
| 429 | /* | |||
| 430 | * Create a pcb. The kernel stack is created later, | |||
| 431 | * when the thread is swapped-in. | |||
| 432 | */ | |||
| 433 | pcb_init(new_thread); | |||
| 434 | ||||
| 435 | ipc_thread_init(new_thread); | |||
| 436 | ||||
| 437 | /* | |||
| 438 | * Find the processor set for the parent task. | |||
| 439 | */ | |||
| 440 | task_lock(parent_task); | |||
| 441 | pset = parent_task->processor_set; | |||
| 442 | pset_reference(pset); | |||
| 443 | task_unlock(parent_task)((void)(&(parent_task)->lock)); | |||
| 444 | ||||
| 445 | /* | |||
| 446 | * Lock both the processor set and the task, | |||
| 447 | * so that the thread can be added to both | |||
| 448 | * simultaneously. Processor set must be | |||
| 449 | * locked first. | |||
| 450 | */ | |||
| 451 | ||||
| 452 | Restart: | |||
| 453 | pset_lock(pset); | |||
| 454 | task_lock(parent_task); | |||
| 455 | ||||
| 456 | /* | |||
| 457 | * If the task has changed processor sets, | |||
| 458 | * catch up (involves lots of lock juggling). | |||
| 459 | */ | |||
| 460 | { | |||
| 461 | processor_set_t cur_pset; | |||
| 462 | ||||
| 463 | cur_pset = parent_task->processor_set; | |||
| 464 | if (!cur_pset->active) | |||
| 465 | cur_pset = &default_pset; | |||
| 466 | ||||
| 467 | if (cur_pset != pset) { | |||
| 468 | pset_reference(cur_pset); | |||
| 469 | task_unlock(parent_task)((void)(&(parent_task)->lock)); | |||
| 470 | pset_unlock(pset)((void)(&(pset)->lock)); | |||
| 471 | pset_deallocate(pset); | |||
| 472 | pset = cur_pset; | |||
| 473 | goto Restart; | |||
| 474 | } | |||
| 475 | } | |||
| 476 | ||||
| 477 | /* | |||
| 478 | * Set the thread`s priority from the pset and task. | |||
| 479 | */ | |||
| 480 | ||||
| 481 | new_thread->priority = parent_task->priority; | |||
| 482 | if (pset->max_priority > new_thread->max_priority) | |||
| 483 | new_thread->max_priority = pset->max_priority; | |||
| 484 | if (new_thread->max_priority > new_thread->priority) | |||
| 485 | new_thread->priority = new_thread->max_priority; | |||
| 486 | /* | |||
| 487 | * Don't need to lock thread here because it can't | |||
| 488 | * possibly execute and no one else knows about it. | |||
| 489 | */ | |||
| 490 | compute_priority(new_thread, TRUE((boolean_t) 1)); | |||
| 491 | ||||
| 492 | /* | |||
| 493 | * Thread is suspended if the task is. Add 1 to | |||
| 494 | * suspend count since thread is created in suspended | |||
| 495 | * state. | |||
| 496 | */ | |||
| 497 | new_thread->suspend_count = parent_task->suspend_count + 1; | |||
| 498 | ||||
| 499 | /* | |||
| 500 | * Add the thread to the processor set. | |||
| 501 | * If the pset is empty, suspend the thread again. | |||
| 502 | */ | |||
| 503 | ||||
| 504 | pset_add_thread(pset, new_thread); | |||
| 505 | if (pset->empty) | |||
| 506 | new_thread->suspend_count++; | |||
| 507 | ||||
| 508 | #if HW_FOOTPRINT0 | |||
| 509 | /* | |||
| 510 | * Need to set last_processor, idle processor would be best, but | |||
| 511 | * that requires extra locking nonsense. Go for tail of | |||
| 512 | * processors queue to avoid master. | |||
| 513 | */ | |||
| 514 | if (!pset->empty) { | |||
| 515 | new_thread->last_processor = | |||
| 516 | (processor_t)queue_first(&pset->processors)((&pset->processors)->next); | |||
| 517 | } | |||
| 518 | else { | |||
| 519 | /* | |||
| 520 | * Thread created in empty processor set. Pick | |||
| 521 | * master processor as an acceptable legal value. | |||
| 522 | */ | |||
| 523 | new_thread->last_processor = master_processor; | |||
| 524 | } | |||
| 525 | #else /* HW_FOOTPRINT */ | |||
| 526 | /* | |||
| 527 | * Don't need to initialize because the context switch | |||
| 528 | * code will set it before it can be used. | |||
| 529 | */ | |||
| 530 | #endif /* HW_FOOTPRINT */ | |||
| 531 | ||||
| 532 | #if MACH_PCSAMPLE1 | |||
| 533 | new_thread->pc_sample.seqno = 0; | |||
| 534 | new_thread->pc_sample.sampletypes = 0; | |||
| 535 | #endif /* MACH_PCSAMPLE */ | |||
| 536 | ||||
| 537 | new_thread->pc_sample.buffer = 0; | |||
| 538 | /* | |||
| 539 | * Add the thread to the task`s list of threads. | |||
| 540 | * The new thread holds another reference to the task. | |||
| 541 | */ | |||
| 542 | ||||
| 543 | parent_task->ref_count++; | |||
| 544 | ||||
| 545 | parent_task->thread_count++; | |||
| 546 | queue_enter(&parent_task->thread_list, new_thread, thread_t,{ queue_entry_t prev; prev = (&parent_task->thread_list )->prev; if ((&parent_task->thread_list) == prev) { (&parent_task->thread_list)->next = (queue_entry_t ) (new_thread); } else { ((thread_t)prev)->thread_list.next = (queue_entry_t)(new_thread); } (new_thread)->thread_list .prev = prev; (new_thread)->thread_list.next = &parent_task ->thread_list; (&parent_task->thread_list)->prev = (queue_entry_t) new_thread; } | |||
| 547 | thread_list){ queue_entry_t prev; prev = (&parent_task->thread_list )->prev; if ((&parent_task->thread_list) == prev) { (&parent_task->thread_list)->next = (queue_entry_t ) (new_thread); } else { ((thread_t)prev)->thread_list.next = (queue_entry_t)(new_thread); } (new_thread)->thread_list .prev = prev; (new_thread)->thread_list.next = &parent_task ->thread_list; (&parent_task->thread_list)->prev = (queue_entry_t) new_thread; }; | |||
| 548 | ||||
| 549 | /* | |||
| 550 | * Finally, mark the thread active. | |||
| 551 | */ | |||
| 552 | ||||
| 553 | new_thread->active = TRUE((boolean_t) 1); | |||
| 554 | ||||
| 555 | if (!parent_task->active) { | |||
| 556 | task_unlock(parent_task)((void)(&(parent_task)->lock)); | |||
| 557 | pset_unlock(pset)((void)(&(pset)->lock)); | |||
| 558 | (void) thread_terminate(new_thread); | |||
| 559 | /* release ref we would have given our caller */ | |||
| 560 | thread_deallocate(new_thread); | |||
| 561 | return KERN_FAILURE5; | |||
| 562 | } | |||
| 563 | task_unlock(parent_task)((void)(&(parent_task)->lock)); | |||
| 564 | pset_unlock(pset)((void)(&(pset)->lock)); | |||
| 565 | ||||
| 566 | ipc_thread_enable(new_thread); | |||
| 567 | ||||
| 568 | *child_thread = new_thread; | |||
| 569 | return KERN_SUCCESS0; | |||
| 570 | } | |||
| 571 | ||||
| 572 | unsigned int thread_deallocate_stack = 0; | |||
| 573 | ||||
| 574 | void thread_deallocate( | |||
| 575 | thread_t thread) | |||
| 576 | { | |||
| 577 | spl_t s; | |||
| 578 | task_t task; | |||
| 579 | processor_set_t pset; | |||
| 580 | ||||
| 581 | time_value_t user_time, system_time; | |||
| 582 | ||||
| 583 | if (thread == THREAD_NULL((thread_t) 0)) | |||
| 584 | return; | |||
| 585 | ||||
| 586 | /* | |||
| 587 | * First, check for new count > 0 (the common case). | |||
| 588 | * Only the thread needs to be locked. | |||
| 589 | */ | |||
| 590 | s = splsched(); | |||
| 591 | thread_lock(thread); | |||
| 592 | if (--thread->ref_count > 0) { | |||
| 593 | thread_unlock(thread)((void)(&(thread)->lock)); | |||
| 594 | (void) splx(s); | |||
| 595 | return; | |||
| 596 | } | |||
| 597 | ||||
| 598 | /* | |||
| 599 | * Count is zero. However, the task's and processor set's | |||
| 600 | * thread lists have implicit references to | |||
| 601 | * the thread, and may make new ones. Their locks also | |||
| 602 | * dominate the thread lock. To check for this, we | |||
| 603 | * temporarily restore the one thread reference, unlock | |||
| 604 | * the thread, and then lock the other structures in | |||
| 605 | * the proper order. | |||
| 606 | */ | |||
| 607 | thread->ref_count = 1; | |||
| 608 | thread_unlock(thread)((void)(&(thread)->lock)); | |||
| 609 | (void) splx(s); | |||
| 610 | ||||
| 611 | pset = thread->processor_set; | |||
| 612 | pset_lock(pset); | |||
| 613 | ||||
| 614 | #if MACH_HOST0 | |||
| 615 | /* | |||
| 616 | * The thread might have moved. | |||
| 617 | */ | |||
| 618 | while (pset != thread->processor_set) { | |||
| 619 | pset_unlock(pset)((void)(&(pset)->lock)); | |||
| 620 | pset = thread->processor_set; | |||
| 621 | pset_lock(pset); | |||
| 622 | } | |||
| 623 | #endif /* MACH_HOST */ | |||
| 624 | ||||
| 625 | task = thread->task; | |||
| 626 | task_lock(task); | |||
| 627 | ||||
| 628 | s = splsched(); | |||
| 629 | thread_lock(thread); | |||
| 630 | ||||
| 631 | if (--thread->ref_count > 0) { | |||
| 632 | /* | |||
| 633 | * Task or processor_set made extra reference. | |||
| 634 | */ | |||
| 635 | thread_unlock(thread)((void)(&(thread)->lock)); | |||
| 636 | (void) splx(s); | |||
| 637 | task_unlock(task)((void)(&(task)->lock)); | |||
| 638 | pset_unlock(pset)((void)(&(pset)->lock)); | |||
| 639 | return; | |||
| 640 | } | |||
| 641 | ||||
| 642 | /* | |||
| 643 | * Thread has no references - we can remove it. | |||
| 644 | */ | |||
| 645 | ||||
| 646 | /* | |||
| 647 | * Remove pending timeouts. | |||
| 648 | */ | |||
| 649 | reset_timeout_check(&thread->timer)({ if ((&thread->timer)->set) reset_timeout((&thread ->timer)); }); | |||
| 650 | ||||
| 651 | reset_timeout_check(&thread->depress_timer)({ if ((&thread->depress_timer)->set) reset_timeout ((&thread->depress_timer)); }); | |||
| 652 | thread->depress_priority = -1; | |||
| 653 | ||||
| 654 | /* | |||
| 655 | * Accumulate times for dead threads in task. | |||
| 656 | */ | |||
| 657 | thread_read_times(thread, &user_time, &system_time); | |||
| 658 | time_value_add(&task->total_user_time, &user_time){ (&task->total_user_time)->microseconds += (&user_time )->microseconds; (&task->total_user_time)->seconds += (&user_time)->seconds; if ((&task->total_user_time )->microseconds >= (1000000)) { (&task->total_user_time )->microseconds -= (1000000); (&task->total_user_time )->seconds++; } }; | |||
| 659 | time_value_add(&task->total_system_time, &system_time){ (&task->total_system_time)->microseconds += (& system_time)->microseconds; (&task->total_system_time )->seconds += (&system_time)->seconds; if ((&task ->total_system_time)->microseconds >= (1000000)) { ( &task->total_system_time)->microseconds -= (1000000 ); (&task->total_system_time)->seconds++; } }; | |||
| 660 | ||||
| 661 | /* | |||
| 662 | * Remove thread from task list and processor_set threads list. | |||
| 663 | */ | |||
| 664 | task->thread_count--; | |||
| 665 | queue_remove(&task->thread_list, thread, thread_t, thread_list){ queue_entry_t next, prev; next = (thread)->thread_list.next ; prev = (thread)->thread_list.prev; if ((&task->thread_list ) == next) (&task->thread_list)->prev = prev; else ( (thread_t)next)->thread_list.prev = prev; if ((&task-> thread_list) == prev) (&task->thread_list)->next = next ; else ((thread_t)prev)->thread_list.next = next; }; | |||
| 666 | ||||
| 667 | pset_remove_thread(pset, thread); | |||
| 668 | ||||
| 669 | thread_unlock(thread)((void)(&(thread)->lock)); /* no more references - safe */ | |||
| 670 | (void) splx(s); | |||
| 671 | task_unlock(task)((void)(&(task)->lock)); | |||
| 672 | pset_unlock(pset)((void)(&(pset)->lock)); | |||
| 673 | pset_deallocate(pset); | |||
| 674 | ||||
| 675 | /* | |||
| 676 | * A couple of quick sanity checks | |||
| 677 | */ | |||
| 678 | ||||
| 679 | if (thread == current_thread()(active_threads[(0)])) { | |||
| 680 | panic("thread deallocating itself"); | |||
| 681 | } | |||
| 682 | if ((thread->state & ~(TH_RUN0x04 | TH_HALTED0x10 | TH_SWAPPED0x0100)) != TH_SUSP0x02) | |||
| 683 | panic("unstopped thread destroyed!"); | |||
| 684 | ||||
| 685 | /* | |||
| 686 | * Deallocate the task reference, since we know the thread | |||
| 687 | * is not running. | |||
| 688 | */ | |||
| 689 | task_deallocate(thread->task); /* may block */ | |||
| 690 | ||||
| 691 | /* | |||
| 692 | * Clean up any machine-dependent resources. | |||
| 693 | */ | |||
| 694 | if ((thread->state & TH_SWAPPED0x0100) == 0) { | |||
| 695 | splsched(); | |||
| 696 | stack_free(thread); | |||
| 697 | (void) splx(s); | |||
| 698 | thread_deallocate_stack++; | |||
| 699 | } | |||
| 700 | /* | |||
| 701 | * Rattle the event count machinery (gag) | |||
| 702 | */ | |||
| 703 | evc_notify_abort(thread); | |||
| 704 | ||||
| 705 | pcb_terminate(thread); | |||
| 706 | kmem_cache_free(&thread_cache, (vm_offset_t) thread); | |||
| 707 | } | |||
| 708 | ||||
| 709 | void thread_reference( | |||
| 710 | thread_t thread) | |||
| 711 | { | |||
| 712 | spl_t s; | |||
| 713 | ||||
| 714 | if (thread == THREAD_NULL((thread_t) 0)) | |||
| 715 | return; | |||
| 716 | ||||
| 717 | s = splsched(); | |||
| 718 | thread_lock(thread); | |||
| 719 | thread->ref_count++; | |||
| 720 | thread_unlock(thread)((void)(&(thread)->lock)); | |||
| 721 | (void) splx(s); | |||
| 722 | } | |||
| 723 | ||||
| 724 | /* | |||
| 725 | * thread_terminate: | |||
| 726 | * | |||
| 727 | * Permanently stop execution of the specified thread. | |||
| 728 | * | |||
| 729 | * A thread to be terminated must be allowed to clean up any state | |||
| 730 | * that it has before it exits. The thread is broken out of any | |||
| 731 | * wait condition that it is in, and signalled to exit. It then | |||
| 732 | * cleans up its state and calls thread_halt_self on its way out of | |||
| 733 | * the kernel. The caller waits for the thread to halt, terminates | |||
| 734 | * its IPC state, and then deallocates it. | |||
| 735 | * | |||
| 736 | * If the caller is the current thread, it must still exit the kernel | |||
| 737 | * to clean up any state (thread and port references, messages, etc). | |||
| 738 | * When it exits the kernel, it then terminates its IPC state and | |||
| 739 | * queues itself for the reaper thread, which will wait for the thread | |||
| 740 | * to stop and then deallocate it. (A thread cannot deallocate itself, | |||
| 741 | * since it needs a kernel stack to execute.) | |||
| 742 | */ | |||
| 743 | kern_return_t thread_terminate( | |||
| 744 | thread_t thread) | |||
| 745 | { | |||
| 746 | thread_t cur_thread = current_thread()(active_threads[(0)]); | |||
| 747 | task_t cur_task; | |||
| 748 | spl_t s; | |||
| 749 | ||||
| 750 | if (thread == THREAD_NULL((thread_t) 0)) | |||
| 751 | return KERN_INVALID_ARGUMENT4; | |||
| 752 | ||||
| 753 | /* | |||
| 754 | * Break IPC control over the thread. | |||
| 755 | */ | |||
| 756 | ipc_thread_disable(thread); | |||
| 757 | ||||
| 758 | if (thread == cur_thread) { | |||
| 759 | ||||
| 760 | /* | |||
| 761 | * Current thread will queue itself for reaper when | |||
| 762 | * exiting kernel. | |||
| 763 | */ | |||
| 764 | s = splsched(); | |||
| 765 | thread_lock(thread); | |||
| 766 | if (thread->active) { | |||
| 767 | thread->active = FALSE((boolean_t) 0); | |||
| 768 | thread_ast_set(thread, AST_TERMINATE)(thread)->ast |= (0x2); | |||
| 769 | } | |||
| 770 | thread_unlock(thread)((void)(&(thread)->lock)); | |||
| 771 | ast_on(cpu_number(), AST_TERMINATE)({ if ((need_ast[(0)] |= (0x2)) != 0x0) { ; } }); | |||
| 772 | splx(s); | |||
| 773 | return KERN_SUCCESS0; | |||
| 774 | } | |||
| 775 | ||||
| 776 | /* | |||
| 777 | * Lock both threads and the current task | |||
| 778 | * to check termination races and prevent deadlocks. | |||
| 779 | */ | |||
| 780 | cur_task = current_task()((active_threads[(0)])->task); | |||
| 781 | task_lock(cur_task); | |||
| 782 | s = splsched(); | |||
| 783 | if ((vm_offset_t)thread < (vm_offset_t)cur_thread) { | |||
| 784 | thread_lock(thread); | |||
| 785 | thread_lock(cur_thread); | |||
| 786 | } | |||
| 787 | else { | |||
| 788 | thread_lock(cur_thread); | |||
| 789 | thread_lock(thread); | |||
| 790 | } | |||
| 791 | ||||
| 792 | /* | |||
| 793 | * If the current thread is being terminated, help out. | |||
| 794 | */ | |||
| 795 | if ((!cur_task->active) || (!cur_thread->active)) { | |||
| 796 | thread_unlock(cur_thread)((void)(&(cur_thread)->lock)); | |||
| 797 | thread_unlock(thread)((void)(&(thread)->lock)); | |||
| 798 | (void) splx(s); | |||
| 799 | task_unlock(cur_task)((void)(&(cur_task)->lock)); | |||
| 800 | thread_terminate(cur_thread); | |||
| 801 | return KERN_FAILURE5; | |||
| 802 | } | |||
| 803 | ||||
| 804 | thread_unlock(cur_thread)((void)(&(cur_thread)->lock)); | |||
| 805 | task_unlock(cur_task)((void)(&(cur_task)->lock)); | |||
| 806 | ||||
| 807 | /* | |||
| 808 | * Terminate victim thread. | |||
| 809 | */ | |||
| 810 | if (!thread->active) { | |||
| 811 | /* | |||
| 812 | * Someone else got there first. | |||
| 813 | */ | |||
| 814 | thread_unlock(thread)((void)(&(thread)->lock)); | |||
| 815 | (void) splx(s); | |||
| 816 | return KERN_FAILURE5; | |||
| 817 | } | |||
| 818 | ||||
| 819 | thread->active = FALSE((boolean_t) 0); | |||
| 820 | ||||
| 821 | thread_unlock(thread)((void)(&(thread)->lock)); | |||
| 822 | (void) splx(s); | |||
| 823 | ||||
| 824 | #if MACH_HOST0 | |||
| 825 | /* | |||
| 826 | * Reassign thread to default pset if needed. | |||
| 827 | */ | |||
| 828 | thread_freeze(thread); | |||
| 829 | if (thread->processor_set != &default_pset) { | |||
| 830 | thread_doassign(thread, &default_pset, FALSE((boolean_t) 0)); | |||
| 831 | } | |||
| 832 | #endif /* MACH_HOST */ | |||
| 833 | ||||
| 834 | /* | |||
| 835 | * Halt the victim at the clean point. | |||
| 836 | */ | |||
| 837 | (void) thread_halt(thread, TRUE((boolean_t) 1)); | |||
| 838 | #if MACH_HOST0 | |||
| 839 | thread_unfreeze(thread); | |||
| 840 | #endif /* MACH_HOST */ | |||
| 841 | /* | |||
| 842 | * Shut down the victims IPC and deallocate its | |||
| 843 | * reference to itself. | |||
| 844 | */ | |||
| 845 | ipc_thread_terminate(thread); | |||
| 846 | thread_deallocate(thread); | |||
| 847 | return KERN_SUCCESS0; | |||
| 848 | } | |||
| 849 | ||||
| 850 | kern_return_t thread_terminate_release( | |||
| 851 | thread_t thread, | |||
| 852 | task_t task, | |||
| 853 | mach_port_t thread_name, | |||
| 854 | mach_port_t reply_port, | |||
| 855 | vm_offset_t address, | |||
| 856 | vm_size_t size) | |||
| 857 | { | |||
| 858 | if (task == NULL((void *) 0)) | |||
| 859 | return KERN_INVALID_ARGUMENT4; | |||
| 860 | ||||
| 861 | mach_port_deallocate(task->itk_space, thread_name); | |||
| 862 | ||||
| 863 | if (reply_port != MACH_PORT_NULL((mach_port_t) 0)) | |||
| 864 | mach_port_destroy(task->itk_space, reply_port); | |||
| 865 | ||||
| 866 | if ((address != 0) || (size != 0)) | |||
| 867 | vm_deallocate(task->map, address, size); | |||
| 868 | ||||
| 869 | return thread_terminate(thread); | |||
| 870 | } | |||
| 871 | ||||
| 872 | /* | |||
| 873 | * thread_force_terminate: | |||
| 874 | * | |||
| 875 | * Version of thread_terminate called by task_terminate. thread is | |||
| 876 | * not the current thread. task_terminate is the dominant operation, | |||
| 877 | * so we can force this thread to stop. | |||
| 878 | */ | |||
| 879 | void | |||
| 880 | thread_force_terminate( | |||
| 881 | thread_t thread) | |||
| 882 | { | |||
| 883 | boolean_t deallocate_here; | |||
| 884 | spl_t s; | |||
| 885 | ||||
| 886 | ipc_thread_disable(thread); | |||
| 887 | ||||
| 888 | #if MACH_HOST0 | |||
| 889 | /* | |||
| 890 | * Reassign thread to default pset if needed. | |||
| 891 | */ | |||
| 892 | thread_freeze(thread); | |||
| 893 | if (thread->processor_set != &default_pset) | |||
| 894 | thread_doassign(thread, &default_pset, FALSE((boolean_t) 0)); | |||
| 895 | #endif /* MACH_HOST */ | |||
| 896 | ||||
| 897 | s = splsched(); | |||
| 898 | thread_lock(thread); | |||
| 899 | deallocate_here = thread->active; | |||
| 900 | thread->active = FALSE((boolean_t) 0); | |||
| 901 | thread_unlock(thread)((void)(&(thread)->lock)); | |||
| 902 | (void) splx(s); | |||
| 903 | ||||
| 904 | (void) thread_halt(thread, TRUE((boolean_t) 1)); | |||
| 905 | ipc_thread_terminate(thread); | |||
| 906 | ||||
| 907 | #if MACH_HOST0 | |||
| 908 | thread_unfreeze(thread); | |||
| 909 | #endif /* MACH_HOST */ | |||
| 910 | ||||
| 911 | if (deallocate_here) | |||
| 912 | thread_deallocate(thread); | |||
| 913 | } | |||
| 914 | ||||
| 915 | ||||
| 916 | /* | |||
| 917 | * Halt a thread at a clean point, leaving it suspended. | |||
| 918 | * | |||
| 919 | * must_halt indicates whether thread must halt. | |||
| 920 | * | |||
| 921 | */ | |||
| 922 | kern_return_t thread_halt( | |||
| 923 | thread_t thread, | |||
| 924 | boolean_t must_halt) | |||
| 925 | { | |||
| 926 | thread_t cur_thread = current_thread()(active_threads[(0)]); | |||
| 927 | kern_return_t ret; | |||
| 928 | spl_t s; | |||
| 929 | ||||
| 930 | if (thread == cur_thread) | |||
| 931 | panic("thread_halt: trying to halt current thread."); | |||
| 932 | /* | |||
| 933 | * If must_halt is FALSE, then a check must be made for | |||
| 934 | * a cycle of halt operations. | |||
| 935 | */ | |||
| 936 | if (!must_halt) { | |||
| 937 | /* | |||
| 938 | * Grab both thread locks. | |||
| 939 | */ | |||
| 940 | s = splsched(); | |||
| 941 | if ((vm_offset_t)thread < (vm_offset_t)cur_thread) { | |||
| 942 | thread_lock(thread); | |||
| 943 | thread_lock(cur_thread); | |||
| 944 | } | |||
| 945 | else { | |||
| 946 | thread_lock(cur_thread); | |||
| 947 | thread_lock(thread); | |||
| 948 | } | |||
| 949 | ||||
| 950 | /* | |||
| 951 | * If target thread is already halted, grab a hold | |||
| 952 | * on it and return. | |||
| 953 | */ | |||
| 954 | if (thread->state & TH_HALTED0x10) { | |||
| 955 | thread->suspend_count++; | |||
| 956 | thread_unlock(cur_thread)((void)(&(cur_thread)->lock)); | |||
| 957 | thread_unlock(thread)((void)(&(thread)->lock)); | |||
| 958 | (void) splx(s); | |||
| 959 | return KERN_SUCCESS0; | |||
| 960 | } | |||
| 961 | ||||
| 962 | /* | |||
| 963 | * If someone is trying to halt us, we have a potential | |||
| 964 | * halt cycle. Break the cycle by interrupting anyone | |||
| 965 | * who is trying to halt us, and causing this operation | |||
| 966 | * to fail; retry logic will only retry operations | |||
| 967 | * that cannot deadlock. (If must_halt is TRUE, this | |||
| 968 | * operation can never cause a deadlock.) | |||
| 969 | */ | |||
| 970 | if (cur_thread->ast & AST_HALT0x1) { | |||
| 971 | thread_wakeup_with_result((event_t)&cur_thread->wake_active,thread_wakeup_prim(((event_t)&cur_thread->wake_active) , ((boolean_t) 0), (2)) | |||
| 972 | THREAD_INTERRUPTED)thread_wakeup_prim(((event_t)&cur_thread->wake_active) , ((boolean_t) 0), (2)); | |||
| 973 | thread_unlock(thread)((void)(&(thread)->lock)); | |||
| 974 | thread_unlock(cur_thread)((void)(&(cur_thread)->lock)); | |||
| 975 | (void) splx(s); | |||
| 976 | return KERN_FAILURE5; | |||
| 977 | } | |||
| 978 | ||||
| 979 | thread_unlock(cur_thread)((void)(&(cur_thread)->lock)); | |||
| 980 | ||||
| 981 | } | |||
| 982 | else { | |||
| 983 | /* | |||
| 984 | * Lock thread and check whether it is already halted. | |||
| 985 | */ | |||
| 986 | s = splsched(); | |||
| 987 | thread_lock(thread); | |||
| 988 | if (thread->state & TH_HALTED0x10) { | |||
| 989 | thread->suspend_count++; | |||
| 990 | thread_unlock(thread)((void)(&(thread)->lock)); | |||
| 991 | (void) splx(s); | |||
| 992 | return KERN_SUCCESS0; | |||
| 993 | } | |||
| 994 | } | |||
| 995 | ||||
| 996 | /* | |||
| 997 | * Suspend thread - inline version of thread_hold() because | |||
| 998 | * thread is already locked. | |||
| 999 | */ | |||
| 1000 | thread->suspend_count++; | |||
| 1001 | thread->state |= TH_SUSP0x02; | |||
| 1002 | ||||
| 1003 | /* | |||
| 1004 | * If someone else is halting it, wait for that to complete. | |||
| 1005 | * Fail if wait interrupted and must_halt is false. | |||
| 1006 | */ | |||
| 1007 | while ((thread->ast & AST_HALT0x1) && (!(thread->state & TH_HALTED0x10))) { | |||
| 1008 | thread->wake_active = TRUE((boolean_t) 1); | |||
| 1009 | thread_sleep((event_t) &thread->wake_active, | |||
| 1010 | simple_lock_addr(thread->lock)((simple_lock_t)0), TRUE((boolean_t) 1)); | |||
| 1011 | ||||
| 1012 | if (thread->state & TH_HALTED0x10) { | |||
| 1013 | (void) splx(s); | |||
| 1014 | return KERN_SUCCESS0; | |||
| 1015 | } | |||
| 1016 | if ((current_thread()(active_threads[(0)])->wait_result != THREAD_AWAKENED0) | |||
| 1017 | && !(must_halt)) { | |||
| 1018 | (void) splx(s); | |||
| 1019 | thread_release(thread); | |||
| 1020 | return KERN_FAILURE5; | |||
| 1021 | } | |||
| 1022 | thread_lock(thread); | |||
| 1023 | } | |||
| 1024 | ||||
| 1025 | /* | |||
| 1026 | * Otherwise, have to do it ourselves. | |||
| 1027 | */ | |||
| 1028 | ||||
| 1029 | thread_ast_set(thread, AST_HALT)(thread)->ast |= (0x1); | |||
| 1030 | ||||
| 1031 | while (TRUE((boolean_t) 1)) { | |||
| 1032 | /* | |||
| 1033 | * Wait for thread to stop. | |||
| 1034 | */ | |||
| 1035 | thread_unlock(thread)((void)(&(thread)->lock)); | |||
| 1036 | (void) splx(s); | |||
| 1037 | ||||
| 1038 | ret = thread_dowait(thread, must_halt); | |||
| 1039 | ||||
| 1040 | /* | |||
| 1041 | * If the dowait failed, so do we. Drop AST_HALT, and | |||
| 1042 | * wake up anyone else who might be waiting for it. | |||
| 1043 | */ | |||
| 1044 | if (ret != KERN_SUCCESS0) { | |||
| 1045 | s = splsched(); | |||
| 1046 | thread_lock(thread); | |||
| 1047 | thread_ast_clear(thread, AST_HALT)(thread)->ast &= ~(0x1); | |||
| 1048 | thread_wakeup_with_result((event_t)&thread->wake_active,thread_wakeup_prim(((event_t)&thread->wake_active), (( boolean_t) 0), (2)) | |||
| 1049 | THREAD_INTERRUPTED)thread_wakeup_prim(((event_t)&thread->wake_active), (( boolean_t) 0), (2)); | |||
| 1050 | thread_unlock(thread)((void)(&(thread)->lock)); | |||
| 1051 | (void) splx(s); | |||
| 1052 | ||||
| 1053 | thread_release(thread); | |||
| 1054 | return ret; | |||
| 1055 | } | |||
| 1056 | ||||
| 1057 | /* | |||
| 1058 | * Clear any interruptible wait. | |||
| 1059 | */ | |||
| 1060 | clear_wait(thread, THREAD_INTERRUPTED2, TRUE((boolean_t) 1)); | |||
| 1061 | ||||
| 1062 | /* | |||
| 1063 | * If the thread's at a clean point, we're done. | |||
| 1064 | * Don't need a lock because it really is stopped. | |||
| 1065 | */ | |||
| 1066 | if (thread->state & TH_HALTED0x10) { | |||
| 1067 | return KERN_SUCCESS0; | |||
| 1068 | } | |||
| 1069 | ||||
| 1070 | /* | |||
| 1071 | * If the thread is at a nice continuation, | |||
| 1072 | * or a continuation with a cleanup routine, | |||
| 1073 | * call the cleanup routine. | |||
| 1074 | */ | |||
| 1075 | if ((((thread->swap_func == mach_msg_continue) || | |||
| 1076 | (thread->swap_func == mach_msg_receive_continue)) && | |||
| 1077 | mach_msg_interrupt(thread)) || | |||
| 1078 | (thread->swap_func == thread_exception_return) || | |||
| 1079 | (thread->swap_func == thread_bootstrap_return)) { | |||
| 1080 | s = splsched(); | |||
| 1081 | thread_lock(thread); | |||
| 1082 | thread->state |= TH_HALTED0x10; | |||
| 1083 | thread_ast_clear(thread, AST_HALT)(thread)->ast &= ~(0x1); | |||
| 1084 | thread_unlock(thread)((void)(&(thread)->lock)); | |||
| 1085 | splx(s); | |||
| 1086 | ||||
| 1087 | return KERN_SUCCESS0; | |||
| 1088 | } | |||
| 1089 | ||||
| 1090 | /* | |||
| 1091 | * Force the thread to stop at a clean | |||
| 1092 | * point, and arrange to wait for it. | |||
| 1093 | * | |||
| 1094 | * Set it running, so it can notice. Override | |||
| 1095 | * the suspend count. We know that the thread | |||
| 1096 | * is suspended and not waiting. | |||
| 1097 | * | |||
| 1098 | * Since the thread may hit an interruptible wait | |||
| 1099 | * before it reaches a clean point, we must force it | |||
| 1100 | * to wake us up when it does so. This involves some | |||
| 1101 | * trickery: | |||
| 1102 | * We mark the thread SUSPENDED so that thread_block | |||
| 1103 | * will suspend it and wake us up. | |||
| 1104 | * We mark the thread RUNNING so that it will run. | |||
| 1105 | * We mark the thread UN-INTERRUPTIBLE (!) so that | |||
| 1106 | * some other thread trying to halt or suspend it won't | |||
| 1107 | * take it off the run queue before it runs. Since | |||
| 1108 | * dispatching a thread (the tail of thread_invoke) marks | |||
| 1109 | * the thread interruptible, it will stop at the next | |||
| 1110 | * context switch or interruptible wait. | |||
| 1111 | */ | |||
| 1112 | ||||
| 1113 | s = splsched(); | |||
| 1114 | thread_lock(thread); | |||
| 1115 | if ((thread->state & TH_SCHED_STATE(0x01|0x02|0x04|0x08)) != TH_SUSP0x02) | |||
| 1116 | panic("thread_halt"); | |||
| 1117 | thread->state |= TH_RUN0x04 | TH_UNINT0x08; | |||
| 1118 | thread_setrun(thread, FALSE((boolean_t) 0)); | |||
| 1119 | ||||
| 1120 | /* | |||
| 1121 | * Continue loop and wait for thread to stop. | |||
| 1122 | */ | |||
| 1123 | } | |||
| 1124 | } | |||
| 1125 | ||||
| 1126 | void __attribute__((noreturn)) walking_zombie(void) | |||
| 1127 | { | |||
| 1128 | panic("the zombie walks!"); | |||
| 1129 | } | |||
| 1130 | ||||
| 1131 | /* | |||
| 1132 | * Thread calls this routine on exit from the kernel when it | |||
| 1133 | * notices a halt request. | |||
| 1134 | */ | |||
| 1135 | void thread_halt_self(void) | |||
| 1136 | { | |||
| 1137 | thread_t thread = current_thread()(active_threads[(0)]); | |||
| 1138 | spl_t s; | |||
| 1139 | ||||
| 1140 | if (thread->ast & AST_TERMINATE0x2) { | |||
| 1141 | /* | |||
| 1142 | * Thread is terminating itself. Shut | |||
| 1143 | * down IPC, then queue it up for the | |||
| 1144 | * reaper thread. | |||
| 1145 | */ | |||
| 1146 | ipc_thread_terminate(thread); | |||
| 1147 | ||||
| 1148 | thread_hold(thread); | |||
| 1149 | ||||
| 1150 | s = splsched(); | |||
| 1151 | simple_lock(&reaper_lock); | |||
| 1152 | enqueue_tail(&reaper_queue, &(thread->links)); | |||
| 1153 | simple_unlock(&reaper_lock)((void)(&reaper_lock)); | |||
| 1154 | ||||
| 1155 | thread_lock(thread); | |||
| 1156 | thread->state |= TH_HALTED0x10; | |||
| 1157 | thread_unlock(thread)((void)(&(thread)->lock)); | |||
| 1158 | (void) splx(s); | |||
| 1159 | ||||
| 1160 | thread_wakeup((event_t)&reaper_queue)thread_wakeup_prim(((event_t)&reaper_queue), ((boolean_t) 0), 0); | |||
| 1161 | counter(c_thread_halt_self_block++); | |||
| 1162 | thread_block(walking_zombie); | |||
| 1163 | /*NOTREACHED*/ | |||
| 1164 | } else { | |||
| 1165 | /* | |||
| 1166 | * Thread was asked to halt - show that it | |||
| 1167 | * has done so. | |||
| 1168 | */ | |||
| 1169 | s = splsched(); | |||
| 1170 | thread_lock(thread); | |||
| 1171 | thread->state |= TH_HALTED0x10; | |||
| 1172 | thread_ast_clear(thread, AST_HALT)(thread)->ast &= ~(0x1); | |||
| 1173 | thread_unlock(thread)((void)(&(thread)->lock)); | |||
| 1174 | splx(s); | |||
| 1175 | counter(c_thread_halt_self_block++); | |||
| 1176 | thread_block(thread_exception_return); | |||
| 1177 | /* | |||
| 1178 | * thread_release resets TH_HALTED. | |||
| 1179 | */ | |||
| 1180 | } | |||
| 1181 | } | |||
| 1182 | ||||
| 1183 | /* | |||
| 1184 | * thread_hold: | |||
| 1185 | * | |||
| 1186 | * Suspend execution of the specified thread. | |||
| 1187 | * This is a recursive-style suspension of the thread, a count of | |||
| 1188 | * suspends is maintained. | |||
| 1189 | */ | |||
| 1190 | void thread_hold( | |||
| 1191 | thread_t thread) | |||
| 1192 | { | |||
| 1193 | spl_t s; | |||
| 1194 | ||||
| 1195 | s = splsched(); | |||
| 1196 | thread_lock(thread); | |||
| 1197 | thread->suspend_count++; | |||
| 1198 | thread->state |= TH_SUSP0x02; | |||
| 1199 | thread_unlock(thread)((void)(&(thread)->lock)); | |||
| 1200 | (void) splx(s); | |||
| 1201 | } | |||
| 1202 | ||||
| 1203 | /* | |||
| 1204 | * thread_dowait: | |||
| 1205 | * | |||
| 1206 | * Wait for a thread to actually enter stopped state. | |||
| 1207 | * | |||
| 1208 | * must_halt argument indicates if this may fail on interruption. | |||
| 1209 | * This is FALSE only if called from thread_abort via thread_halt. | |||
| 1210 | */ | |||
| 1211 | kern_return_t | |||
| 1212 | thread_dowait( | |||
| 1213 | thread_t thread, | |||
| 1214 | boolean_t must_halt) | |||
| 1215 | { | |||
| 1216 | boolean_t need_wakeup; | |||
| 1217 | kern_return_t ret = KERN_SUCCESS0; | |||
| 1218 | spl_t s; | |||
| 1219 | ||||
| 1220 | if (thread == current_thread()(active_threads[(0)])) | |||
| 1221 | panic("thread_dowait"); | |||
| 1222 | ||||
| 1223 | /* | |||
| 1224 | * If a thread is not interruptible, it may not be suspended | |||
| 1225 | * until it becomes interruptible. In this case, we wait for | |||
| 1226 | * the thread to stop itself, and indicate that we are waiting | |||
| 1227 | * for it to stop so that it can wake us up when it does stop. | |||
| 1228 | * | |||
| 1229 | * If the thread is interruptible, we may be able to suspend | |||
| 1230 | * it immediately. There are several cases: | |||
| 1231 | * | |||
| 1232 | * 1) The thread is already stopped (trivial) | |||
| 1233 | * 2) The thread is runnable (marked RUN and on a run queue). | |||
| 1234 | * We pull it off the run queue and mark it stopped. | |||
| 1235 | * 3) The thread is running. We wait for it to stop. | |||
| 1236 | */ | |||
| 1237 | ||||
| 1238 | need_wakeup = FALSE((boolean_t) 0); | |||
| 1239 | s = splsched(); | |||
| 1240 | thread_lock(thread); | |||
| 1241 | ||||
| 1242 | for (;;) { | |||
| 1243 | switch (thread->state & TH_SCHED_STATE(0x01|0x02|0x04|0x08)) { | |||
| 1244 | case TH_SUSP0x02: | |||
| 1245 | case TH_WAIT0x01 | TH_SUSP0x02: | |||
| 1246 | /* | |||
| 1247 | * Thread is already suspended, or sleeping in an | |||
| 1248 | * interruptible wait. We win! | |||
| 1249 | */ | |||
| 1250 | break; | |||
| 1251 | ||||
| 1252 | case TH_RUN0x04 | TH_SUSP0x02: | |||
| 1253 | /* | |||
| 1254 | * The thread is interruptible. If we can pull | |||
| 1255 | * it off a runq, stop it here. | |||
| 1256 | */ | |||
| 1257 | if (rem_runq(thread) != RUN_QUEUE_NULL((run_queue_t) 0)) { | |||
| 1258 | thread->state &= ~TH_RUN0x04; | |||
| 1259 | need_wakeup = thread->wake_active; | |||
| 1260 | thread->wake_active = FALSE((boolean_t) 0); | |||
| 1261 | break; | |||
| 1262 | } | |||
| 1263 | #if NCPUS1 > 1 | |||
| 1264 | /* | |||
| 1265 | * The thread must be running, so make its | |||
| 1266 | * processor execute ast_check(). This | |||
| 1267 | * should cause the thread to take an ast and | |||
| 1268 | * context switch to suspend for us. | |||
| 1269 | */ | |||
| 1270 | cause_ast_check(thread->last_processor); | |||
| 1271 | #endif /* NCPUS > 1 */ | |||
| 1272 | ||||
| 1273 | /* | |||
| 1274 | * Fall through to wait for thread to stop. | |||
| 1275 | */ | |||
| 1276 | ||||
| 1277 | case TH_RUN0x04 | TH_SUSP0x02 | TH_UNINT0x08: | |||
| 1278 | case TH_RUN0x04 | TH_WAIT0x01 | TH_SUSP0x02: | |||
| 1279 | case TH_RUN0x04 | TH_WAIT0x01 | TH_SUSP0x02 | TH_UNINT0x08: | |||
| 1280 | case TH_WAIT0x01 | TH_SUSP0x02 | TH_UNINT0x08: | |||
| 1281 | /* | |||
| 1282 | * Wait for the thread to stop, or sleep interruptibly | |||
| 1283 | * (thread_block will stop it in the latter case). | |||
| 1284 | * Check for failure if interrupted. | |||
| 1285 | */ | |||
| 1286 | thread->wake_active = TRUE((boolean_t) 1); | |||
| 1287 | thread_sleep((event_t) &thread->wake_active, | |||
| 1288 | simple_lock_addr(thread->lock)((simple_lock_t)0), TRUE((boolean_t) 1)); | |||
| 1289 | thread_lock(thread); | |||
| 1290 | if ((current_thread()(active_threads[(0)])->wait_result != THREAD_AWAKENED0) && | |||
| 1291 | !must_halt) { | |||
| 1292 | ret = KERN_FAILURE5; | |||
| 1293 | break; | |||
| 1294 | } | |||
| 1295 | ||||
| 1296 | /* | |||
| 1297 | * Repeat loop to check thread`s state. | |||
| 1298 | */ | |||
| 1299 | continue; | |||
| 1300 | } | |||
| 1301 | /* | |||
| 1302 | * Thread is stopped at this point. | |||
| 1303 | */ | |||
| 1304 | break; | |||
| 1305 | } | |||
| 1306 | ||||
| 1307 | thread_unlock(thread)((void)(&(thread)->lock)); | |||
| 1308 | (void) splx(s); | |||
| 1309 | ||||
| 1310 | if (need_wakeup) | |||
| 1311 | thread_wakeup((event_t) &thread->wake_active)thread_wakeup_prim(((event_t) &thread->wake_active), ( (boolean_t) 0), 0); | |||
| 1312 | ||||
| 1313 | return ret; | |||
| 1314 | } | |||
| 1315 | ||||
| 1316 | void thread_release( | |||
| 1317 | thread_t thread) | |||
| 1318 | { | |||
| 1319 | spl_t s; | |||
| 1320 | ||||
| 1321 | s = splsched(); | |||
| 1322 | thread_lock(thread); | |||
| 1323 | if (--thread->suspend_count == 0) { | |||
| 1324 | thread->state &= ~(TH_SUSP0x02 | TH_HALTED0x10); | |||
| 1325 | if ((thread->state & (TH_WAIT0x01 | TH_RUN0x04)) == 0) { | |||
| 1326 | /* was only suspended */ | |||
| 1327 | thread->state |= TH_RUN0x04; | |||
| 1328 | thread_setrun(thread, TRUE((boolean_t) 1)); | |||
| 1329 | } | |||
| 1330 | } | |||
| 1331 | thread_unlock(thread)((void)(&(thread)->lock)); | |||
| 1332 | (void) splx(s); | |||
| 1333 | } | |||
| 1334 | ||||
| 1335 | kern_return_t thread_suspend( | |||
| 1336 | thread_t thread) | |||
| 1337 | { | |||
| 1338 | boolean_t hold; | |||
| 1339 | spl_t spl; | |||
| 1340 | ||||
| 1341 | if (thread == THREAD_NULL((thread_t) 0)) | |||
| 1342 | return KERN_INVALID_ARGUMENT4; | |||
| 1343 | ||||
| 1344 | hold = FALSE((boolean_t) 0); | |||
| 1345 | spl = splsched(); | |||
| 1346 | thread_lock(thread); | |||
| 1347 | /* Wait for thread to get interruptible */ | |||
| 1348 | while (thread->state & TH_UNINT0x08) { | |||
| 1349 | assert_wait(&thread->state, TRUE((boolean_t) 1)); | |||
| 1350 | thread_unlock(thread)((void)(&(thread)->lock)); | |||
| 1351 | thread_block(NULL((void *) 0)); | |||
| 1352 | thread_lock(thread); | |||
| 1353 | } | |||
| 1354 | if (thread->user_stop_count++ == 0) { | |||
| 1355 | hold = TRUE((boolean_t) 1); | |||
| 1356 | thread->suspend_count++; | |||
| 1357 | thread->state |= TH_SUSP0x02; | |||
| 1358 | } | |||
| 1359 | thread_unlock(thread)((void)(&(thread)->lock)); | |||
| 1360 | (void) splx(spl); | |||
| 1361 | ||||
| 1362 | /* | |||
| 1363 | * Now wait for the thread if necessary. | |||
| 1364 | */ | |||
| 1365 | if (hold) { | |||
| 1366 | if (thread == current_thread()(active_threads[(0)])) { | |||
| 1367 | /* | |||
| 1368 | * We want to call thread_block on our way out, | |||
| 1369 | * to stop running. | |||
| 1370 | */ | |||
| 1371 | spl = splsched(); | |||
| 1372 | ast_on(cpu_number(), AST_BLOCK)({ if ((need_ast[(0)] |= (0x4)) != 0x0) { ; } }); | |||
| 1373 | (void) splx(spl); | |||
| 1374 | } else | |||
| 1375 | (void) thread_dowait(thread, TRUE((boolean_t) 1)); | |||
| 1376 | } | |||
| 1377 | return KERN_SUCCESS0; | |||
| 1378 | } | |||
| 1379 | ||||
| 1380 | ||||
| 1381 | kern_return_t thread_resume( | |||
| 1382 | thread_t thread) | |||
| 1383 | { | |||
| 1384 | kern_return_t ret; | |||
| 1385 | spl_t s; | |||
| 1386 | ||||
| 1387 | if (thread == THREAD_NULL((thread_t) 0)) | |||
| 1388 | return KERN_INVALID_ARGUMENT4; | |||
| 1389 | ||||
| 1390 | ret = KERN_SUCCESS0; | |||
| 1391 | ||||
| 1392 | s = splsched(); | |||
| 1393 | thread_lock(thread); | |||
| 1394 | if (thread->user_stop_count > 0) { | |||
| 1395 | if (--thread->user_stop_count == 0) { | |||
| 1396 | if (--thread->suspend_count == 0) { | |||
| 1397 | thread->state &= ~(TH_SUSP0x02 | TH_HALTED0x10); | |||
| 1398 | if ((thread->state & (TH_WAIT0x01 | TH_RUN0x04)) == 0) { | |||
| 1399 | /* was only suspended */ | |||
| 1400 | thread->state |= TH_RUN0x04; | |||
| 1401 | thread_setrun(thread, TRUE((boolean_t) 1)); | |||
| 1402 | } | |||
| 1403 | } | |||
| 1404 | } | |||
| 1405 | } | |||
| 1406 | else { | |||
| 1407 | ret = KERN_FAILURE5; | |||
| 1408 | } | |||
| 1409 | ||||
| 1410 | thread_unlock(thread)((void)(&(thread)->lock)); | |||
| 1411 | (void) splx(s); | |||
| 1412 | ||||
| 1413 | return ret; | |||
| 1414 | } | |||
| 1415 | ||||
| 1416 | /* | |||
| 1417 | * Return thread's machine-dependent state. | |||
| 1418 | */ | |||
| 1419 | kern_return_t thread_get_state( | |||
| 1420 | thread_t thread, | |||
| 1421 | int flavor, | |||
| 1422 | thread_state_t old_state, /* pointer to OUT array */ | |||
| 1423 | natural_t *old_state_count) /*IN/OUT*/ | |||
| 1424 | { | |||
| 1425 | kern_return_t ret; | |||
| 1426 | ||||
| 1427 | if (thread == THREAD_NULL((thread_t) 0) || thread == current_thread()(active_threads[(0)])) { | |||
| 1428 | return KERN_INVALID_ARGUMENT4; | |||
| 1429 | } | |||
| 1430 | ||||
| 1431 | thread_hold(thread); | |||
| 1432 | (void) thread_dowait(thread, TRUE((boolean_t) 1)); | |||
| 1433 | ||||
| 1434 | ret = thread_getstatus(thread, flavor, old_state, old_state_count); | |||
| 1435 | ||||
| 1436 | thread_release(thread); | |||
| 1437 | return ret; | |||
| 1438 | } | |||
| 1439 | ||||
| 1440 | /* | |||
| 1441 | * Change thread's machine-dependent state. | |||
| 1442 | */ | |||
| 1443 | kern_return_t thread_set_state( | |||
| 1444 | thread_t thread, | |||
| 1445 | int flavor, | |||
| 1446 | thread_state_t new_state, | |||
| 1447 | natural_t new_state_count) | |||
| 1448 | { | |||
| 1449 | kern_return_t ret; | |||
| 1450 | ||||
| 1451 | if (thread == THREAD_NULL((thread_t) 0) || thread == current_thread()(active_threads[(0)])) { | |||
| 1452 | return KERN_INVALID_ARGUMENT4; | |||
| 1453 | } | |||
| 1454 | ||||
| 1455 | thread_hold(thread); | |||
| 1456 | (void) thread_dowait(thread, TRUE((boolean_t) 1)); | |||
| 1457 | ||||
| 1458 | ret = thread_setstatus(thread, flavor, new_state, new_state_count); | |||
| 1459 | ||||
| 1460 | thread_release(thread); | |||
| 1461 | return ret; | |||
| 1462 | } | |||
| 1463 | ||||
| 1464 | kern_return_t thread_info( | |||
| 1465 | thread_t thread, | |||
| 1466 | int flavor, | |||
| 1467 | thread_info_t thread_info_out, /* pointer to OUT array */ | |||
| 1468 | natural_t *thread_info_count) /*IN/OUT*/ | |||
| 1469 | { | |||
| 1470 | int state, flags; | |||
| 1471 | spl_t s; | |||
| 1472 | ||||
| 1473 | if (thread == THREAD_NULL((thread_t) 0)) | |||
| 1474 | return KERN_INVALID_ARGUMENT4; | |||
| 1475 | ||||
| 1476 | if (flavor == THREAD_BASIC_INFO1) { | |||
| 1477 | thread_basic_info_t basic_info; | |||
| 1478 | ||||
| 1479 | /* Allow *thread_info_count to be one smaller than the | |||
| 1480 | usual amount, because creation_time is a new member | |||
| 1481 | that some callers might not know about. */ | |||
| 1482 | ||||
| 1483 | if (*thread_info_count < THREAD_BASIC_INFO_COUNT(sizeof(thread_basic_info_data_t) / sizeof(natural_t)) - 1) { | |||
| 1484 | return KERN_INVALID_ARGUMENT4; | |||
| 1485 | } | |||
| 1486 | ||||
| 1487 | basic_info = (thread_basic_info_t) thread_info_out; | |||
| 1488 | ||||
| 1489 | s = splsched(); | |||
| 1490 | thread_lock(thread); | |||
| 1491 | ||||
| 1492 | /* | |||
| 1493 | * Update lazy-evaluated scheduler info because someone wants it. | |||
| 1494 | */ | |||
| 1495 | if ((thread->state & TH_RUN0x04) == 0 && | |||
| 1496 | thread->sched_stamp != sched_tick) | |||
| 1497 | update_priority(thread); | |||
| 1498 | ||||
| 1499 | /* fill in info */ | |||
| 1500 | ||||
| 1501 | thread_read_times(thread, | |||
| 1502 | &basic_info->user_time, | |||
| 1503 | &basic_info->system_time); | |||
| 1504 | basic_info->base_priority = thread->priority; | |||
| 1505 | basic_info->cur_priority = thread->sched_pri; | |||
| 1506 | basic_info->creation_time = thread->creation_time; | |||
| 1507 | ||||
| 1508 | /* | |||
| 1509 | * To calculate cpu_usage, first correct for timer rate, | |||
| 1510 | * then for 5/8 ageing. The correction factor [3/5] is | |||
| 1511 | * (1/(5/8) - 1). | |||
| 1512 | */ | |||
| 1513 | basic_info->cpu_usage = thread->cpu_usage / | |||
| 1514 | (TIMER_RATE1000000/TH_USAGE_SCALE1000); | |||
| 1515 | basic_info->cpu_usage = (basic_info->cpu_usage * 3) / 5; | |||
| 1516 | #if SIMPLE_CLOCK0 | |||
| 1517 | /* | |||
| 1518 | * Clock drift compensation. | |||
| 1519 | */ | |||
| 1520 | basic_info->cpu_usage = | |||
| 1521 | (basic_info->cpu_usage * 1000000)/sched_usec; | |||
| 1522 | #endif /* SIMPLE_CLOCK */ | |||
| 1523 | ||||
| 1524 | flags = 0; | |||
| 1525 | if (thread->state & TH_SWAPPED0x0100) | |||
| 1526 | flags |= TH_FLAGS_SWAPPED0x1; | |||
| 1527 | if (thread->state & TH_IDLE0x80) | |||
| 1528 | flags |= TH_FLAGS_IDLE0x2; | |||
| 1529 | ||||
| 1530 | if (thread->state & TH_HALTED0x10) | |||
| 1531 | state = TH_STATE_HALTED5; | |||
| 1532 | else | |||
| 1533 | if (thread->state & TH_RUN0x04) | |||
| 1534 | state = TH_STATE_RUNNING1; | |||
| 1535 | else | |||
| 1536 | if (thread->state & TH_UNINT0x08) | |||
| 1537 | state = TH_STATE_UNINTERRUPTIBLE4; | |||
| 1538 | else | |||
| 1539 | if (thread->state & TH_SUSP0x02) | |||
| 1540 | state = TH_STATE_STOPPED2; | |||
| 1541 | else | |||
| 1542 | if (thread->state & TH_WAIT0x01) | |||
| 1543 | state = TH_STATE_WAITING3; | |||
| 1544 | else | |||
| 1545 | state = 0; /* ? */ | |||
| 1546 | ||||
| 1547 | basic_info->run_state = state; | |||
| 1548 | basic_info->flags = flags; | |||
| 1549 | basic_info->suspend_count = thread->user_stop_count; | |||
| 1550 | if (state == TH_STATE_RUNNING1) | |||
| 1551 | basic_info->sleep_time = 0; | |||
| 1552 | else | |||
| 1553 | basic_info->sleep_time = sched_tick - thread->sched_stamp; | |||
| 1554 | ||||
| 1555 | thread_unlock(thread)((void)(&(thread)->lock)); | |||
| 1556 | splx(s); | |||
| 1557 | ||||
| 1558 | if (*thread_info_count > THREAD_BASIC_INFO_COUNT(sizeof(thread_basic_info_data_t) / sizeof(natural_t))) | |||
| 1559 | *thread_info_count = THREAD_BASIC_INFO_COUNT(sizeof(thread_basic_info_data_t) / sizeof(natural_t)); | |||
| 1560 | return KERN_SUCCESS0; | |||
| 1561 | } | |||
| 1562 | else if (flavor == THREAD_SCHED_INFO2) { | |||
| 1563 | thread_sched_info_t sched_info; | |||
| 1564 | ||||
| 1565 | if (*thread_info_count < THREAD_SCHED_INFO_COUNT(sizeof(thread_sched_info_data_t) / sizeof(natural_t))) { | |||
| 1566 | return KERN_INVALID_ARGUMENT4; | |||
| 1567 | } | |||
| 1568 | ||||
| 1569 | sched_info = (thread_sched_info_t) thread_info_out; | |||
| 1570 | ||||
| 1571 | s = splsched(); | |||
| 1572 | thread_lock(thread); | |||
| 1573 | ||||
| 1574 | #if MACH_FIXPRI1 | |||
| 1575 | sched_info->policy = thread->policy; | |||
| 1576 | if (thread->policy == POLICY_FIXEDPRI2) { | |||
| 1577 | sched_info->data = (thread->sched_data * tick)/1000; | |||
| 1578 | } | |||
| 1579 | else { | |||
| 1580 | sched_info->data = 0; | |||
| 1581 | } | |||
| 1582 | #else /* MACH_FIXPRI */ | |||
| 1583 | sched_info->policy = POLICY_TIMESHARE1; | |||
| 1584 | sched_info->data = 0; | |||
| 1585 | #endif /* MACH_FIXPRI */ | |||
| 1586 | ||||
| 1587 | sched_info->base_priority = thread->priority; | |||
| 1588 | sched_info->max_priority = thread->max_priority; | |||
| 1589 | sched_info->cur_priority = thread->sched_pri; | |||
| 1590 | ||||
| 1591 | sched_info->depressed = (thread->depress_priority >= 0); | |||
| 1592 | sched_info->depress_priority = thread->depress_priority; | |||
| 1593 | ||||
| 1594 | thread_unlock(thread)((void)(&(thread)->lock)); | |||
| 1595 | splx(s); | |||
| 1596 | ||||
| 1597 | *thread_info_count = THREAD_SCHED_INFO_COUNT(sizeof(thread_sched_info_data_t) / sizeof(natural_t)); | |||
| 1598 | return KERN_SUCCESS0; | |||
| 1599 | } | |||
| 1600 | ||||
| 1601 | return KERN_INVALID_ARGUMENT4; | |||
| 1602 | } | |||
| 1603 | ||||
| 1604 | kern_return_t thread_abort( | |||
| 1605 | thread_t thread) | |||
| 1606 | { | |||
| 1607 | if (thread == THREAD_NULL((thread_t) 0) || thread == current_thread()(active_threads[(0)])) { | |||
| 1608 | return KERN_INVALID_ARGUMENT4; | |||
| 1609 | } | |||
| 1610 | ||||
| 1611 | /* | |||
| 1612 | * | |||
| 1613 | * clear it of an event wait | |||
| 1614 | */ | |||
| 1615 | evc_notify_abort(thread); | |||
| 1616 | ||||
| 1617 | /* | |||
| 1618 | * Try to force the thread to a clean point | |||
| 1619 | * If the halt operation fails return KERN_ABORTED. | |||
| 1620 | * ipc code will convert this to an ipc interrupted error code. | |||
| 1621 | */ | |||
| 1622 | if (thread_halt(thread, FALSE((boolean_t) 0)) != KERN_SUCCESS0) | |||
| 1623 | return KERN_ABORTED14; | |||
| 1624 | ||||
| 1625 | /* | |||
| 1626 | * If the thread was in an exception, abort that too. | |||
| 1627 | */ | |||
| 1628 | mach_msg_abort_rpc(thread); | |||
| 1629 | ||||
| 1630 | /* | |||
| 1631 | * Then set it going again. | |||
| 1632 | */ | |||
| 1633 | thread_release(thread); | |||
| 1634 | ||||
| 1635 | /* | |||
| 1636 | * Also abort any depression. | |||
| 1637 | */ | |||
| 1638 | if (thread->depress_priority != -1) | |||
| 1639 | thread_depress_abort(thread); | |||
| 1640 | ||||
| 1641 | return KERN_SUCCESS0; | |||
| 1642 | } | |||
| 1643 | ||||
| 1644 | /* | |||
| 1645 | * thread_start: | |||
| 1646 | * | |||
| 1647 | * Start a thread at the specified routine. | |||
| 1648 | * The thread must be in a swapped state. | |||
| 1649 | */ | |||
| 1650 | ||||
| 1651 | void | |||
| 1652 | thread_start( | |||
| 1653 | thread_t thread, | |||
| 1654 | continuation_t start) | |||
| 1655 | { | |||
| 1656 | thread->swap_func = start; | |||
| 1657 | } | |||
| 1658 | ||||
| 1659 | /* | |||
| 1660 | * kernel_thread: | |||
| 1661 | * | |||
| 1662 | * Start up a kernel thread in the specified task. | |||
| 1663 | */ | |||
| 1664 | ||||
| 1665 | thread_t kernel_thread( | |||
| 1666 | task_t task, | |||
| 1667 | continuation_t start, | |||
| 1668 | void * arg) | |||
| 1669 | { | |||
| 1670 | thread_t thread; | |||
| ||||
| 1671 | ||||
| 1672 | (void) thread_create(task, &thread); | |||
| 1673 | /* release "extra" ref that thread_create gave us */ | |||
| 1674 | thread_deallocate(thread); | |||
| ||||
| 1675 | thread_start(thread, start); | |||
| 1676 | thread->ith_othersaved.other = arg; | |||
| 1677 | ||||
| 1678 | /* | |||
| 1679 | * We ensure that the kernel thread starts with a stack. | |||
| 1680 | * The swapin mechanism might not be operational yet. | |||
| 1681 | */ | |||
| 1682 | thread_doswapin(thread); | |||
| 1683 | thread->max_priority = BASEPRI_SYSTEM6; | |||
| 1684 | thread->priority = BASEPRI_SYSTEM6; | |||
| 1685 | thread->sched_pri = BASEPRI_SYSTEM6; | |||
| 1686 | (void) thread_resume(thread); | |||
| 1687 | return thread; | |||
| 1688 | } | |||
| 1689 | ||||
| 1690 | /* | |||
| 1691 | * reaper_thread: | |||
| 1692 | * | |||
| 1693 | * This kernel thread runs forever looking for threads to destroy | |||
| 1694 | * (when they request that they be destroyed, of course). | |||
| 1695 | */ | |||
| 1696 | void __attribute__((noreturn)) reaper_thread_continue(void) | |||
| 1697 | { | |||
| 1698 | for (;;) { | |||
| 1699 | thread_t thread; | |||
| 1700 | spl_t s; | |||
| 1701 | ||||
| 1702 | s = splsched(); | |||
| 1703 | simple_lock(&reaper_lock); | |||
| 1704 | ||||
| 1705 | while ((thread = (thread_t) dequeue_head(&reaper_queue)) | |||
| 1706 | != THREAD_NULL((thread_t) 0)) { | |||
| 1707 | simple_unlock(&reaper_lock)((void)(&reaper_lock)); | |||
| 1708 | (void) splx(s); | |||
| 1709 | ||||
| 1710 | (void) thread_dowait(thread, TRUE((boolean_t) 1)); /* may block */ | |||
| 1711 | thread_deallocate(thread); /* may block */ | |||
| 1712 | ||||
| 1713 | s = splsched(); | |||
| 1714 | simple_lock(&reaper_lock); | |||
| 1715 | } | |||
| 1716 | ||||
| 1717 | assert_wait((event_t) &reaper_queue, FALSE((boolean_t) 0)); | |||
| 1718 | simple_unlock(&reaper_lock)((void)(&reaper_lock)); | |||
| 1719 | (void) splx(s); | |||
| 1720 | counter(c_reaper_thread_block++); | |||
| 1721 | thread_block(reaper_thread_continue); | |||
| 1722 | } | |||
| 1723 | } | |||
| 1724 | ||||
| 1725 | void reaper_thread(void) | |||
| 1726 | { | |||
| 1727 | reaper_thread_continue(); | |||
| 1728 | /*NOTREACHED*/ | |||
| 1729 | } | |||
| 1730 | ||||
| 1731 | #if MACH_HOST0 | |||
| 1732 | /* | |||
| 1733 | * thread_assign: | |||
| 1734 | * | |||
| 1735 | * Change processor set assignment. | |||
| 1736 | * Caller must hold an extra reference to the thread (if this is | |||
| 1737 | * called directly from the ipc interface, this is an operation | |||
| 1738 | * in progress reference). Caller must hold no locks -- this may block. | |||
| 1739 | */ | |||
| 1740 | ||||
| 1741 | kern_return_t | |||
| 1742 | thread_assign( | |||
| 1743 | thread_t thread, | |||
| 1744 | processor_set_t new_pset) | |||
| 1745 | { | |||
| 1746 | if (thread == THREAD_NULL((thread_t) 0) || new_pset == PROCESSOR_SET_NULL((processor_set_t) 0)) { | |||
| 1747 | return KERN_INVALID_ARGUMENT4; | |||
| 1748 | } | |||
| 1749 | ||||
| 1750 | thread_freeze(thread); | |||
| 1751 | thread_doassign(thread, new_pset, TRUE((boolean_t) 1)); | |||
| 1752 | ||||
| 1753 | return KERN_SUCCESS0; | |||
| 1754 | } | |||
| 1755 | ||||
| 1756 | /* | |||
| 1757 | * thread_freeze: | |||
| 1758 | * | |||
| 1759 | * Freeze thread's assignment. Prelude to assigning thread. | |||
| 1760 | * Only one freeze may be held per thread. | |||
| 1761 | */ | |||
| 1762 | void | |||
| 1763 | thread_freeze( | |||
| 1764 | thread_t thread) | |||
| 1765 | { | |||
| 1766 | spl_t s; | |||
| 1767 | /* | |||
| 1768 | * Freeze the assignment, deferring to a prior freeze. | |||
| 1769 | */ | |||
| 1770 | s = splsched(); | |||
| 1771 | thread_lock(thread); | |||
| 1772 | while (thread->may_assign == FALSE((boolean_t) 0)) { | |||
| 1773 | thread->assign_active = TRUE((boolean_t) 1); | |||
| 1774 | thread_sleep((event_t) &thread->assign_active, | |||
| 1775 | simple_lock_addr(thread->lock)((simple_lock_t)0), FALSE((boolean_t) 0)); | |||
| 1776 | thread_lock(thread); | |||
| 1777 | } | |||
| 1778 | thread->may_assign = FALSE((boolean_t) 0); | |||
| 1779 | thread_unlock(thread)((void)(&(thread)->lock)); | |||
| 1780 | (void) splx(s); | |||
| 1781 | ||||
| 1782 | } | |||
| 1783 | ||||
| 1784 | /* | |||
| 1785 | * thread_unfreeze: release freeze on thread's assignment. | |||
| 1786 | */ | |||
| 1787 | void | |||
| 1788 | thread_unfreeze( | |||
| 1789 | thread_t thread) | |||
| 1790 | { | |||
| 1791 | spl_t s; | |||
| 1792 | ||||
| 1793 | s = splsched(); | |||
| 1794 | thread_lock(thread); | |||
| 1795 | thread->may_assign = TRUE((boolean_t) 1); | |||
| 1796 | if (thread->assign_active) { | |||
| 1797 | thread->assign_active = FALSE((boolean_t) 0); | |||
| 1798 | thread_wakeup((event_t)&thread->assign_active)thread_wakeup_prim(((event_t)&thread->assign_active), ( (boolean_t) 0), 0); | |||
| 1799 | } | |||
| 1800 | thread_unlock(thread)((void)(&(thread)->lock)); | |||
| 1801 | splx(s); | |||
| 1802 | } | |||
| 1803 | ||||
| 1804 | /* | |||
| 1805 | * thread_doassign: | |||
| 1806 | * | |||
| 1807 | * Actually do thread assignment. thread_will_assign must have been | |||
| 1808 | * called on the thread. release_freeze argument indicates whether | |||
| 1809 | * to release freeze on thread. | |||
| 1810 | */ | |||
| 1811 | ||||
| 1812 | void | |||
| 1813 | thread_doassign( | |||
| 1814 | thread_t thread, | |||
| 1815 | processor_set_t new_pset, | |||
| 1816 | boolean_t release_freeze) | |||
| 1817 | { | |||
| 1818 | processor_set_t pset; | |||
| 1819 | boolean_t old_empty, new_empty; | |||
| 1820 | boolean_t recompute_pri = FALSE((boolean_t) 0); | |||
| 1821 | spl_t s; | |||
| 1822 | ||||
| 1823 | /* | |||
| 1824 | * Check for silly no-op. | |||
| 1825 | */ | |||
| 1826 | pset = thread->processor_set; | |||
| 1827 | if (pset == new_pset) { | |||
| 1828 | if (release_freeze) | |||
| 1829 | thread_unfreeze(thread); | |||
| 1830 | return; | |||
| 1831 | } | |||
| 1832 | /* | |||
| 1833 | * Suspend the thread and stop it if it's not the current thread. | |||
| 1834 | */ | |||
| 1835 | thread_hold(thread); | |||
| 1836 | if (thread != current_thread()(active_threads[(0)])) | |||
| 1837 | (void) thread_dowait(thread, TRUE((boolean_t) 1)); | |||
| 1838 | ||||
| 1839 | /* | |||
| 1840 | * Lock both psets now, use ordering to avoid deadlocks. | |||
| 1841 | */ | |||
| 1842 | Restart: | |||
| 1843 | if ((vm_offset_t)pset < (vm_offset_t)new_pset) { | |||
| 1844 | pset_lock(pset); | |||
| 1845 | pset_lock(new_pset); | |||
| 1846 | } | |||
| 1847 | else { | |||
| 1848 | pset_lock(new_pset); | |||
| 1849 | pset_lock(pset); | |||
| 1850 | } | |||
| 1851 | ||||
| 1852 | /* | |||
| 1853 | * Check if new_pset is ok to assign to. If not, reassign | |||
| 1854 | * to default_pset. | |||
| 1855 | */ | |||
| 1856 | if (!new_pset->active) { | |||
| 1857 | pset_unlock(pset)((void)(&(pset)->lock)); | |||
| 1858 | pset_unlock(new_pset)((void)(&(new_pset)->lock)); | |||
| 1859 | new_pset = &default_pset; | |||
| 1860 | goto Restart; | |||
| 1861 | } | |||
| 1862 | ||||
| 1863 | pset_reference(new_pset); | |||
| 1864 | ||||
| 1865 | /* | |||
| 1866 | * Grab the thread lock and move the thread. | |||
| 1867 | * Then drop the lock on the old pset and the thread's | |||
| 1868 | * reference to it. | |||
| 1869 | */ | |||
| 1870 | s = splsched(); | |||
| 1871 | thread_lock(thread); | |||
| 1872 | ||||
| 1873 | thread_change_psets(thread, pset, new_pset); | |||
| 1874 | ||||
| 1875 | old_empty = pset->empty; | |||
| 1876 | new_empty = new_pset->empty; | |||
| 1877 | ||||
| 1878 | pset_unlock(pset)((void)(&(pset)->lock)); | |||
| 1879 | ||||
| 1880 | /* | |||
| 1881 | * Reset policy and priorities if needed. | |||
| 1882 | */ | |||
| 1883 | #if MACH_FIXPRI1 | |||
| 1884 | if (thread->policy & new_pset->policies == 0) { | |||
| 1885 | thread->policy = POLICY_TIMESHARE1; | |||
| 1886 | recompute_pri = TRUE((boolean_t) 1); | |||
| 1887 | } | |||
| 1888 | #endif /* MACH_FIXPRI */ | |||
| 1889 | ||||
| 1890 | if (thread->max_priority < new_pset->max_priority) { | |||
| 1891 | thread->max_priority = new_pset->max_priority; | |||
| 1892 | if (thread->priority < thread->max_priority) { | |||
| 1893 | thread->priority = thread->max_priority; | |||
| 1894 | recompute_pri = TRUE((boolean_t) 1); | |||
| 1895 | } | |||
| 1896 | else { | |||
| 1897 | if ((thread->depress_priority >= 0) && | |||
| 1898 | (thread->depress_priority < thread->max_priority)) { | |||
| 1899 | thread->depress_priority = thread->max_priority; | |||
| 1900 | } | |||
| 1901 | } | |||
| 1902 | } | |||
| 1903 | ||||
| 1904 | pset_unlock(new_pset)((void)(&(new_pset)->lock)); | |||
| 1905 | ||||
| 1906 | if (recompute_pri) | |||
| 1907 | compute_priority(thread, TRUE((boolean_t) 1)); | |||
| 1908 | ||||
| 1909 | if (release_freeze) { | |||
| 1910 | thread->may_assign = TRUE((boolean_t) 1); | |||
| 1911 | if (thread->assign_active) { | |||
| 1912 | thread->assign_active = FALSE((boolean_t) 0); | |||
| 1913 | thread_wakeup((event_t)&thread->assign_active)thread_wakeup_prim(((event_t)&thread->assign_active), ( (boolean_t) 0), 0); | |||
| 1914 | } | |||
| 1915 | } | |||
| 1916 | ||||
| 1917 | thread_unlock(thread)((void)(&(thread)->lock)); | |||
| 1918 | splx(s); | |||
| 1919 | ||||
| 1920 | pset_deallocate(pset); | |||
| 1921 | ||||
| 1922 | /* | |||
| 1923 | * Figure out hold status of thread. Threads assigned to empty | |||
| 1924 | * psets must be held. Therefore: | |||
| 1925 | * If old pset was empty release its hold. | |||
| 1926 | * Release our hold from above unless new pset is empty. | |||
| 1927 | */ | |||
| 1928 | ||||
| 1929 | if (old_empty) | |||
| 1930 | thread_release(thread); | |||
| 1931 | if (!new_empty) | |||
| 1932 | thread_release(thread); | |||
| 1933 | ||||
| 1934 | /* | |||
| 1935 | * If current_thread is assigned, context switch to force | |||
| 1936 | * assignment to happen. This also causes hold to take | |||
| 1937 | * effect if the new pset is empty. | |||
| 1938 | */ | |||
| 1939 | if (thread == current_thread()(active_threads[(0)])) { | |||
| 1940 | s = splsched(); | |||
| 1941 | ast_on(cpu_number(), AST_BLOCK)({ if ((need_ast[(0)] |= (0x4)) != 0x0) { ; } }); | |||
| 1942 | (void) splx(s); | |||
| 1943 | } | |||
| 1944 | } | |||
| 1945 | #else /* MACH_HOST */ | |||
| 1946 | kern_return_t | |||
| 1947 | thread_assign( | |||
| 1948 | thread_t thread, | |||
| 1949 | processor_set_t new_pset) | |||
| 1950 | { | |||
| 1951 | return KERN_FAILURE5; | |||
| 1952 | } | |||
| 1953 | #endif /* MACH_HOST */ | |||
| 1954 | ||||
| 1955 | /* | |||
| 1956 | * thread_assign_default: | |||
| 1957 | * | |||
| 1958 | * Special version of thread_assign for assigning threads to default | |||
| 1959 | * processor set. | |||
| 1960 | */ | |||
| 1961 | kern_return_t | |||
| 1962 | thread_assign_default( | |||
| 1963 | thread_t thread) | |||
| 1964 | { | |||
| 1965 | return thread_assign(thread, &default_pset); | |||
| 1966 | } | |||
| 1967 | ||||
| 1968 | /* | |||
| 1969 | * thread_get_assignment | |||
| 1970 | * | |||
| 1971 | * Return current assignment for this thread. | |||
| 1972 | */ | |||
| 1973 | kern_return_t thread_get_assignment( | |||
| 1974 | thread_t thread, | |||
| 1975 | processor_set_t *pset) | |||
| 1976 | { | |||
| 1977 | *pset = thread->processor_set; | |||
| 1978 | pset_reference(*pset); | |||
| 1979 | return KERN_SUCCESS0; | |||
| 1980 | } | |||
| 1981 | ||||
| 1982 | /* | |||
| 1983 | * thread_priority: | |||
| 1984 | * | |||
| 1985 | * Set priority (and possibly max priority) for thread. | |||
| 1986 | */ | |||
| 1987 | kern_return_t | |||
| 1988 | thread_priority( | |||
| 1989 | thread_t thread, | |||
| 1990 | int priority, | |||
| 1991 | boolean_t set_max) | |||
| 1992 | { | |||
| 1993 | spl_t s; | |||
| 1994 | kern_return_t ret = KERN_SUCCESS0; | |||
| 1995 | ||||
| 1996 | if ((thread == THREAD_NULL((thread_t) 0)) || invalid_pri(priority)(((priority) < 0) || ((priority) >= 50))) | |||
| 1997 | return KERN_INVALID_ARGUMENT4; | |||
| 1998 | ||||
| 1999 | s = splsched(); | |||
| 2000 | thread_lock(thread); | |||
| 2001 | ||||
| 2002 | /* | |||
| 2003 | * Check for violation of max priority | |||
| 2004 | */ | |||
| 2005 | if (priority < thread->max_priority) { | |||
| 2006 | ret = KERN_FAILURE5; | |||
| 2007 | } | |||
| 2008 | else { | |||
| 2009 | /* | |||
| 2010 | * Set priorities. If a depression is in progress, | |||
| 2011 | * change the priority to restore. | |||
| 2012 | */ | |||
| 2013 | if (thread->depress_priority >= 0) { | |||
| 2014 | thread->depress_priority = priority; | |||
| 2015 | } | |||
| 2016 | else { | |||
| 2017 | thread->priority = priority; | |||
| 2018 | compute_priority(thread, TRUE((boolean_t) 1)); | |||
| 2019 | } | |||
| 2020 | ||||
| 2021 | if (set_max) | |||
| 2022 | thread->max_priority = priority; | |||
| 2023 | } | |||
| 2024 | thread_unlock(thread)((void)(&(thread)->lock)); | |||
| 2025 | (void) splx(s); | |||
| 2026 | ||||
| 2027 | return ret; | |||
| 2028 | } | |||
| 2029 | ||||
| 2030 | /* | |||
| 2031 | * thread_set_own_priority: | |||
| 2032 | * | |||
| 2033 | * Internal use only; sets the priority of the calling thread. | |||
| 2034 | * Will adjust max_priority if necessary. | |||
| 2035 | */ | |||
| 2036 | void | |||
| 2037 | thread_set_own_priority( | |||
| 2038 | int priority) | |||
| 2039 | { | |||
| 2040 | spl_t s; | |||
| 2041 | thread_t thread = current_thread()(active_threads[(0)]); | |||
| 2042 | ||||
| 2043 | s = splsched(); | |||
| 2044 | thread_lock(thread); | |||
| 2045 | ||||
| 2046 | if (priority < thread->max_priority) | |||
| 2047 | thread->max_priority = priority; | |||
| 2048 | thread->priority = priority; | |||
| 2049 | compute_priority(thread, TRUE((boolean_t) 1)); | |||
| 2050 | ||||
| 2051 | thread_unlock(thread)((void)(&(thread)->lock)); | |||
| 2052 | (void) splx(s); | |||
| 2053 | } | |||
| 2054 | ||||
| 2055 | /* | |||
| 2056 | * thread_max_priority: | |||
| 2057 | * | |||
| 2058 | * Reset the max priority for a thread. | |||
| 2059 | */ | |||
| 2060 | kern_return_t | |||
| 2061 | thread_max_priority( | |||
| 2062 | thread_t thread, | |||
| 2063 | processor_set_t pset, | |||
| 2064 | int max_priority) | |||
| 2065 | { | |||
| 2066 | spl_t s; | |||
| 2067 | kern_return_t ret = KERN_SUCCESS0; | |||
| 2068 | ||||
| 2069 | if ((thread == THREAD_NULL((thread_t) 0)) || (pset == PROCESSOR_SET_NULL((processor_set_t) 0)) || | |||
| 2070 | invalid_pri(max_priority)(((max_priority) < 0) || ((max_priority) >= 50))) | |||
| 2071 | return KERN_INVALID_ARGUMENT4; | |||
| 2072 | ||||
| 2073 | s = splsched(); | |||
| 2074 | thread_lock(thread); | |||
| 2075 | ||||
| 2076 | #if MACH_HOST0 | |||
| 2077 | /* | |||
| 2078 | * Check for wrong processor set. | |||
| 2079 | */ | |||
| 2080 | if (pset != thread->processor_set) { | |||
| 2081 | ret = KERN_FAILURE5; | |||
| 2082 | } | |||
| 2083 | else { | |||
| 2084 | #endif /* MACH_HOST */ | |||
| 2085 | thread->max_priority = max_priority; | |||
| 2086 | ||||
| 2087 | /* | |||
| 2088 | * Reset priority if it violates new max priority | |||
| 2089 | */ | |||
| 2090 | if (max_priority > thread->priority) { | |||
| 2091 | thread->priority = max_priority; | |||
| 2092 | ||||
| 2093 | compute_priority(thread, TRUE((boolean_t) 1)); | |||
| 2094 | } | |||
| 2095 | else { | |||
| 2096 | if (thread->depress_priority >= 0 && | |||
| 2097 | max_priority > thread->depress_priority) | |||
| 2098 | thread->depress_priority = max_priority; | |||
| 2099 | } | |||
| 2100 | #if MACH_HOST0 | |||
| 2101 | } | |||
| 2102 | #endif /* MACH_HOST */ | |||
| 2103 | ||||
| 2104 | thread_unlock(thread)((void)(&(thread)->lock)); | |||
| 2105 | (void) splx(s); | |||
| 2106 | ||||
| 2107 | return ret; | |||
| 2108 | } | |||
| 2109 | ||||
| 2110 | /* | |||
| 2111 | * thread_policy: | |||
| 2112 | * | |||
| 2113 | * Set scheduling policy for thread. | |||
| 2114 | */ | |||
| 2115 | kern_return_t | |||
| 2116 | thread_policy( | |||
| 2117 | thread_t thread, | |||
| 2118 | int policy, | |||
| 2119 | int data) | |||
| 2120 | { | |||
| 2121 | #if MACH_FIXPRI1 | |||
| 2122 | kern_return_t ret = KERN_SUCCESS0; | |||
| 2123 | int temp; | |||
| 2124 | spl_t s; | |||
| 2125 | #endif /* MACH_FIXPRI */ | |||
| 2126 | ||||
| 2127 | if ((thread == THREAD_NULL((thread_t) 0)) || invalid_policy(policy)(((policy) <= 0) || ((policy) > 2))) | |||
| 2128 | return KERN_INVALID_ARGUMENT4; | |||
| 2129 | ||||
| 2130 | #if MACH_FIXPRI1 | |||
| 2131 | s = splsched(); | |||
| 2132 | thread_lock(thread); | |||
| 2133 | ||||
| 2134 | /* | |||
| 2135 | * Check if changing policy. | |||
| 2136 | */ | |||
| 2137 | if (policy == thread->policy) { | |||
| 2138 | /* | |||
| 2139 | * Just changing data. This is meaningless for | |||
| 2140 | * timesharing, quantum for fixed priority (but | |||
| 2141 | * has no effect until current quantum runs out). | |||
| 2142 | */ | |||
| 2143 | if (policy == POLICY_FIXEDPRI2) { | |||
| 2144 | temp = data * 1000; | |||
| 2145 | if (temp % tick) | |||
| 2146 | temp += tick; | |||
| 2147 | thread->sched_data = temp/tick; | |||
| 2148 | } | |||
| 2149 | } | |||
| 2150 | else { | |||
| 2151 | /* | |||
| 2152 | * Changing policy. Check if new policy is allowed. | |||
| 2153 | */ | |||
| 2154 | if ((thread->processor_set->policies & policy) == 0) { | |||
| 2155 | ret = KERN_FAILURE5; | |||
| 2156 | } | |||
| 2157 | else { | |||
| 2158 | /* | |||
| 2159 | * Changing policy. Save data and calculate new | |||
| 2160 | * priority. | |||
| 2161 | */ | |||
| 2162 | thread->policy = policy; | |||
| 2163 | if (policy == POLICY_FIXEDPRI2) { | |||
| 2164 | temp = data * 1000; | |||
| 2165 | if (temp % tick) | |||
| 2166 | temp += tick; | |||
| 2167 | thread->sched_data = temp/tick; | |||
| 2168 | } | |||
| 2169 | compute_priority(thread, TRUE((boolean_t) 1)); | |||
| 2170 | } | |||
| 2171 | } | |||
| 2172 | thread_unlock(thread)((void)(&(thread)->lock)); | |||
| 2173 | (void) splx(s); | |||
| 2174 | ||||
| 2175 | return ret; | |||
| 2176 | #else /* MACH_FIXPRI */ | |||
| 2177 | if (policy == POLICY_TIMESHARE1) | |||
| 2178 | return KERN_SUCCESS0; | |||
| 2179 | else | |||
| 2180 | return KERN_FAILURE5; | |||
| 2181 | #endif /* MACH_FIXPRI */ | |||
| 2182 | } | |||
| 2183 | ||||
| 2184 | /* | |||
| 2185 | * thread_wire: | |||
| 2186 | * | |||
| 2187 | * Specify that the target thread must always be able | |||
| 2188 | * to run and to allocate memory. | |||
| 2189 | */ | |||
| 2190 | kern_return_t | |||
| 2191 | thread_wire( | |||
| 2192 | host_t host, | |||
| 2193 | thread_t thread, | |||
| 2194 | boolean_t wired) | |||
| 2195 | { | |||
| 2196 | spl_t s; | |||
| 2197 | ||||
| 2198 | if (host == HOST_NULL((host_t)0)) | |||
| 2199 | return KERN_INVALID_ARGUMENT4; | |||
| 2200 | ||||
| 2201 | if (thread == THREAD_NULL((thread_t) 0)) | |||
| 2202 | return KERN_INVALID_ARGUMENT4; | |||
| 2203 | ||||
| 2204 | /* | |||
| 2205 | * This implementation only works for the current thread. | |||
| 2206 | * See stack_privilege. | |||
| 2207 | */ | |||
| 2208 | if (thread != current_thread()(active_threads[(0)])) | |||
| 2209 | return KERN_INVALID_ARGUMENT4; | |||
| 2210 | ||||
| 2211 | s = splsched(); | |||
| 2212 | thread_lock(thread); | |||
| 2213 | ||||
| 2214 | if (wired) { | |||
| 2215 | thread->vm_privilege = TRUE((boolean_t) 1); | |||
| 2216 | stack_privilege(thread); | |||
| 2217 | } | |||
| 2218 | else { | |||
| 2219 | thread->vm_privilege = FALSE((boolean_t) 0); | |||
| 2220 | /*XXX stack_unprivilege(thread); */ | |||
| 2221 | thread->stack_privilege = 0; | |||
| 2222 | } | |||
| 2223 | ||||
| 2224 | thread_unlock(thread)((void)(&(thread)->lock)); | |||
| 2225 | splx(s); | |||
| 2226 | ||||
| 2227 | return KERN_SUCCESS0; | |||
| 2228 | } | |||
| 2229 | ||||
| 2230 | /* | |||
| 2231 | * thread_collect_scan: | |||
| 2232 | * | |||
| 2233 | * Attempt to free resources owned by threads. | |||
| 2234 | * pcb_collect doesn't do anything yet. | |||
| 2235 | */ | |||
| 2236 | ||||
| 2237 | void thread_collect_scan(void) | |||
| 2238 | { | |||
| 2239 | #if 0 | |||
| 2240 | register thread_t thread, prev_thread; | |||
| 2241 | processor_set_t pset, prev_pset; | |||
| 2242 | ||||
| 2243 | prev_thread = THREAD_NULL((thread_t) 0); | |||
| 2244 | prev_pset = PROCESSOR_SET_NULL((processor_set_t) 0); | |||
| 2245 | ||||
| 2246 | simple_lock(&all_psets_lock); | |||
| 2247 | queue_iterate(&all_psets, pset, processor_set_t, all_psets)for ((pset) = (processor_set_t) ((&all_psets)->next); ! (((&all_psets)) == ((queue_entry_t)(pset))); (pset) = (processor_set_t ) ((&(pset)->all_psets)->next)) { | |||
| 2248 | pset_lock(pset); | |||
| 2249 | queue_iterate(&pset->threads, thread, thread_t, pset_threads)for ((thread) = (thread_t) ((&pset->threads)->next) ; !(((&pset->threads)) == ((queue_entry_t)(thread))); ( thread) = (thread_t) ((&(thread)->pset_threads)->next )) { | |||
| 2250 | spl_t s = splsched(); | |||
| 2251 | thread_lock(thread); | |||
| 2252 | ||||
| 2253 | /* | |||
| 2254 | * Only collect threads which are | |||
| 2255 | * not runnable and are swapped. | |||
| 2256 | */ | |||
| 2257 | ||||
| 2258 | if ((thread->state & (TH_RUN0x04|TH_SWAPPED0x0100)) | |||
| 2259 | == TH_SWAPPED0x0100) { | |||
| 2260 | thread->ref_count++; | |||
| 2261 | thread_unlock(thread)((void)(&(thread)->lock)); | |||
| 2262 | (void) splx(s); | |||
| 2263 | pset->ref_count++; | |||
| 2264 | pset_unlock(pset)((void)(&(pset)->lock)); | |||
| 2265 | simple_unlock(&all_psets_lock)((void)(&all_psets_lock)); | |||
| 2266 | ||||
| 2267 | pcb_collect(thread); | |||
| 2268 | ||||
| 2269 | if (prev_thread != THREAD_NULL((thread_t) 0)) | |||
| 2270 | thread_deallocate(prev_thread); | |||
| 2271 | prev_thread = thread; | |||
| 2272 | ||||
| 2273 | if (prev_pset != PROCESSOR_SET_NULL((processor_set_t) 0)) | |||
| 2274 | pset_deallocate(prev_pset); | |||
| 2275 | prev_pset = pset; | |||
| 2276 | ||||
| 2277 | simple_lock(&all_psets_lock); | |||
| 2278 | pset_lock(pset); | |||
| 2279 | } else { | |||
| 2280 | thread_unlock(thread)((void)(&(thread)->lock)); | |||
| 2281 | (void) splx(s); | |||
| 2282 | } | |||
| 2283 | } | |||
| 2284 | pset_unlock(pset)((void)(&(pset)->lock)); | |||
| 2285 | } | |||
| 2286 | simple_unlock(&all_psets_lock)((void)(&all_psets_lock)); | |||
| 2287 | ||||
| 2288 | if (prev_thread != THREAD_NULL((thread_t) 0)) | |||
| 2289 | thread_deallocate(prev_thread); | |||
| 2290 | if (prev_pset != PROCESSOR_SET_NULL((processor_set_t) 0)) | |||
| 2291 | pset_deallocate(prev_pset); | |||
| 2292 | #endif /* 0 */ | |||
| 2293 | } | |||
| 2294 | ||||
| 2295 | boolean_t thread_collect_allowed = TRUE((boolean_t) 1); | |||
| 2296 | unsigned thread_collect_last_tick = 0; | |||
| 2297 | unsigned thread_collect_max_rate = 0; /* in ticks */ | |||
| 2298 | ||||
| 2299 | /* | |||
| 2300 | * consider_thread_collect: | |||
| 2301 | * | |||
| 2302 | * Called by the pageout daemon when the system needs more free pages. | |||
| 2303 | */ | |||
| 2304 | ||||
| 2305 | void consider_thread_collect(void) | |||
| 2306 | { | |||
| 2307 | /* | |||
| 2308 | * By default, don't attempt thread collection more frequently | |||
| 2309 | * than once a second. | |||
| 2310 | */ | |||
| 2311 | ||||
| 2312 | if (thread_collect_max_rate == 0) | |||
| 2313 | thread_collect_max_rate = hz; | |||
| 2314 | ||||
| 2315 | if (thread_collect_allowed && | |||
| 2316 | (sched_tick > | |||
| 2317 | (thread_collect_last_tick + thread_collect_max_rate))) { | |||
| 2318 | thread_collect_last_tick = sched_tick; | |||
| 2319 | thread_collect_scan(); | |||
| 2320 | } | |||
| 2321 | } | |||
| 2322 | ||||
| 2323 | #if MACH_DEBUG1 | |||
| 2324 | ||||
| 2325 | vm_size_t stack_usage( | |||
| 2326 | vm_offset_t stack) | |||
| 2327 | { | |||
| 2328 | int i; | |||
| 2329 | ||||
| 2330 | for (i = 0; i < KERNEL_STACK_SIZE(1*4096)/sizeof(unsigned int); i++) | |||
| 2331 | if (((unsigned int *)stack)[i] != STACK_MARKER0xdeadbeefU) | |||
| 2332 | break; | |||
| 2333 | ||||
| 2334 | return KERNEL_STACK_SIZE(1*4096) - i * sizeof(unsigned int); | |||
| 2335 | } | |||
| 2336 | ||||
| 2337 | /* | |||
| 2338 | * Machine-dependent code should call stack_init | |||
| 2339 | * before doing its own initialization of the stack. | |||
| 2340 | */ | |||
| 2341 | ||||
| 2342 | void stack_init( | |||
| 2343 | vm_offset_t stack) | |||
| 2344 | { | |||
| 2345 | if (stack_check_usage) { | |||
| 2346 | int i; | |||
| 2347 | ||||
| 2348 | for (i = 0; i < KERNEL_STACK_SIZE(1*4096)/sizeof(unsigned int); i++) | |||
| 2349 | ((unsigned int *)stack)[i] = STACK_MARKER0xdeadbeefU; | |||
| 2350 | } | |||
| 2351 | } | |||
| 2352 | ||||
| 2353 | /* | |||
| 2354 | * Machine-dependent code should call stack_finalize | |||
| 2355 | * before releasing the stack memory. | |||
| 2356 | */ | |||
| 2357 | ||||
| 2358 | void stack_finalize( | |||
| 2359 | vm_offset_t stack) | |||
| 2360 | { | |||
| 2361 | if (stack_check_usage) { | |||
| 2362 | vm_size_t used = stack_usage(stack); | |||
| 2363 | ||||
| 2364 | simple_lock(&stack_usage_lock); | |||
| 2365 | if (used > stack_max_usage) | |||
| 2366 | stack_max_usage = used; | |||
| 2367 | simple_unlock(&stack_usage_lock)((void)(&stack_usage_lock)); | |||
| 2368 | } | |||
| 2369 | } | |||
| 2370 | ||||
| 2371 | #ifndef MACHINE_STACK | |||
| 2372 | /* | |||
| 2373 | * stack_statistics: | |||
| 2374 | * | |||
| 2375 | * Return statistics on cached kernel stacks. | |||
| 2376 | * *maxusagep must be initialized by the caller. | |||
| 2377 | */ | |||
| 2378 | ||||
| 2379 | void stack_statistics( | |||
| 2380 | natural_t *totalp, | |||
| 2381 | vm_size_t *maxusagep) | |||
| 2382 | { | |||
| 2383 | spl_t s; | |||
| 2384 | ||||
| 2385 | s = splsched(); | |||
| 2386 | stack_lock(); | |||
| 2387 | if (stack_check_usage) { | |||
| 2388 | vm_offset_t stack; | |||
| 2389 | ||||
| 2390 | /* | |||
| 2391 | * This is pretty expensive to do at splsched, | |||
| 2392 | * but it only happens when someone makes | |||
| 2393 | * a debugging call, so it should be OK. | |||
| 2394 | */ | |||
| 2395 | ||||
| 2396 | for (stack = stack_free_list; stack != 0; | |||
| 2397 | stack = stack_next(stack)(*((vm_offset_t *)((stack) + (1*4096)) - 1))) { | |||
| 2398 | vm_size_t usage = stack_usage(stack); | |||
| 2399 | ||||
| 2400 | if (usage > *maxusagep) | |||
| 2401 | *maxusagep = usage; | |||
| 2402 | } | |||
| 2403 | } | |||
| 2404 | ||||
| 2405 | *totalp = stack_free_count; | |||
| 2406 | stack_unlock()((void)(&stack_lock_data)); | |||
| 2407 | (void) splx(s); | |||
| 2408 | } | |||
| 2409 | #endif /* MACHINE_STACK */ | |||
| 2410 | ||||
| 2411 | kern_return_t host_stack_usage( | |||
| 2412 | host_t host, | |||
| 2413 | vm_size_t *reservedp, | |||
| 2414 | unsigned int *totalp, | |||
| 2415 | vm_size_t *spacep, | |||
| 2416 | vm_size_t *residentp, | |||
| 2417 | vm_size_t *maxusagep, | |||
| 2418 | vm_offset_t *maxstackp) | |||
| 2419 | { | |||
| 2420 | natural_t total; | |||
| 2421 | vm_size_t maxusage; | |||
| 2422 | ||||
| 2423 | if (host == HOST_NULL((host_t)0)) | |||
| 2424 | return KERN_INVALID_HOST22; | |||
| 2425 | ||||
| 2426 | simple_lock(&stack_usage_lock); | |||
| 2427 | maxusage = stack_max_usage; | |||
| 2428 | simple_unlock(&stack_usage_lock)((void)(&stack_usage_lock)); | |||
| 2429 | ||||
| 2430 | stack_statistics(&total, &maxusage); | |||
| 2431 | ||||
| 2432 | *reservedp = 0; | |||
| 2433 | *totalp = total; | |||
| 2434 | *spacep = *residentp = total * round_page(KERNEL_STACK_SIZE)((vm_offset_t)((((vm_offset_t)((1*4096))) + ((1 << 12)- 1)) & ~((1 << 12)-1))); | |||
| 2435 | *maxusagep = maxusage; | |||
| 2436 | *maxstackp = 0; | |||
| 2437 | return KERN_SUCCESS0; | |||
| 2438 | } | |||
| 2439 | ||||
| 2440 | kern_return_t processor_set_stack_usage( | |||
| 2441 | processor_set_t pset, | |||
| 2442 | unsigned int *totalp, | |||
| 2443 | vm_size_t *spacep, | |||
| 2444 | vm_size_t *residentp, | |||
| 2445 | vm_size_t *maxusagep, | |||
| 2446 | vm_offset_t *maxstackp) | |||
| 2447 | { | |||
| 2448 | unsigned int total; | |||
| 2449 | vm_size_t maxusage; | |||
| 2450 | vm_offset_t maxstack; | |||
| 2451 | ||||
| 2452 | thread_t *threads; | |||
| 2453 | thread_t tmp_thread; | |||
| 2454 | ||||
| 2455 | unsigned int actual; /* this many things */ | |||
| 2456 | unsigned int i; | |||
| 2457 | ||||
| 2458 | vm_size_t size, size_needed; | |||
| 2459 | vm_offset_t addr; | |||
| 2460 | ||||
| 2461 | if (pset == PROCESSOR_SET_NULL((processor_set_t) 0)) | |||
| 2462 | return KERN_INVALID_ARGUMENT4; | |||
| 2463 | ||||
| 2464 | size = 0; addr = 0; | |||
| 2465 | ||||
| 2466 | for (;;) { | |||
| 2467 | pset_lock(pset); | |||
| 2468 | if (!pset->active) { | |||
| 2469 | pset_unlock(pset)((void)(&(pset)->lock)); | |||
| 2470 | return KERN_INVALID_ARGUMENT4; | |||
| 2471 | } | |||
| 2472 | ||||
| 2473 | actual = pset->thread_count; | |||
| 2474 | ||||
| 2475 | /* do we have the memory we need? */ | |||
| 2476 | ||||
| 2477 | size_needed = actual * sizeof(thread_t); | |||
| 2478 | if (size_needed <= size) | |||
| 2479 | break; | |||
| 2480 | ||||
| 2481 | /* unlock the pset and allocate more memory */ | |||
| 2482 | pset_unlock(pset)((void)(&(pset)->lock)); | |||
| 2483 | ||||
| 2484 | if (size != 0) | |||
| 2485 | kfree(addr, size); | |||
| 2486 | ||||
| 2487 | assert(size_needed > 0)({ if (!(size_needed > 0)) Assert("size_needed > 0", "../kern/thread.c" , 2487); }); | |||
| 2488 | size = size_needed; | |||
| 2489 | ||||
| 2490 | addr = kalloc(size); | |||
| 2491 | if (addr == 0) | |||
| 2492 | return KERN_RESOURCE_SHORTAGE6; | |||
| 2493 | } | |||
| 2494 | ||||
| 2495 | /* OK, have memory and the processor_set is locked & active */ | |||
| 2496 | ||||
| 2497 | threads = (thread_t *) addr; | |||
| 2498 | for (i = 0, tmp_thread = (thread_t) queue_first(&pset->threads)((&pset->threads)->next); | |||
| 2499 | i < actual; | |||
| 2500 | i++, | |||
| 2501 | tmp_thread = (thread_t) queue_next(&tmp_thread->pset_threads)((&tmp_thread->pset_threads)->next)) { | |||
| 2502 | thread_reference(tmp_thread); | |||
| 2503 | threads[i] = tmp_thread; | |||
| 2504 | } | |||
| 2505 | assert(queue_end(&pset->threads, (queue_entry_t) tmp_thread))({ if (!(((&pset->threads) == ((queue_entry_t) tmp_thread )))) Assert("queue_end(&pset->threads, (queue_entry_t) tmp_thread)" , "../kern/thread.c", 2505); }); | |||
| 2506 | ||||
| 2507 | /* can unlock processor set now that we have the thread refs */ | |||
| 2508 | pset_unlock(pset)((void)(&(pset)->lock)); | |||
| 2509 | ||||
| 2510 | /* calculate maxusage and free thread references */ | |||
| 2511 | ||||
| 2512 | total = 0; | |||
| 2513 | maxusage = 0; | |||
| 2514 | maxstack = 0; | |||
| 2515 | for (i = 0; i < actual; i++) { | |||
| 2516 | thread_t thread = threads[i]; | |||
| 2517 | vm_offset_t stack = 0; | |||
| 2518 | ||||
| 2519 | /* | |||
| 2520 | * thread->kernel_stack is only accurate if the | |||
| 2521 | * thread isn't swapped and is not executing. | |||
| 2522 | * | |||
| 2523 | * Of course, we don't have the appropriate locks | |||
| 2524 | * for these shenanigans. | |||
| 2525 | */ | |||
| 2526 | ||||
| 2527 | if ((thread->state & TH_SWAPPED0x0100) == 0) { | |||
| 2528 | int cpu; | |||
| 2529 | ||||
| 2530 | stack = thread->kernel_stack; | |||
| 2531 | ||||
| 2532 | for (cpu = 0; cpu < NCPUS1; cpu++) | |||
| 2533 | if (active_threads[cpu] == thread) { | |||
| 2534 | stack = active_stacks[cpu]; | |||
| 2535 | break; | |||
| 2536 | } | |||
| 2537 | } | |||
| 2538 | ||||
| 2539 | if (stack != 0) { | |||
| 2540 | total++; | |||
| 2541 | ||||
| 2542 | if (stack_check_usage) { | |||
| 2543 | vm_size_t usage = stack_usage(stack); | |||
| 2544 | ||||
| 2545 | if (usage > maxusage) { | |||
| 2546 | maxusage = usage; | |||
| 2547 | maxstack = (vm_offset_t) thread; | |||
| 2548 | } | |||
| 2549 | } | |||
| 2550 | } | |||
| 2551 | ||||
| 2552 | thread_deallocate(thread); | |||
| 2553 | } | |||
| 2554 | ||||
| 2555 | if (size != 0) | |||
| 2556 | kfree(addr, size); | |||
| 2557 | ||||
| 2558 | *totalp = total; | |||
| 2559 | *residentp = *spacep = total * round_page(KERNEL_STACK_SIZE)((vm_offset_t)((((vm_offset_t)((1*4096))) + ((1 << 12)- 1)) & ~((1 << 12)-1))); | |||
| 2560 | *maxusagep = maxusage; | |||
| 2561 | *maxstackp = maxstack; | |||
| 2562 | return KERN_SUCCESS0; | |||
| 2563 | } | |||
| 2564 | ||||
| 2565 | /* | |||
| 2566 | * Useful in the debugger: | |||
| 2567 | */ | |||
| 2568 | void | |||
| 2569 | thread_stats(void) | |||
| 2570 | { | |||
| 2571 | thread_t thread; | |||
| 2572 | int total = 0, rpcreply = 0; | |||
| 2573 | ||||
| 2574 | queue_iterate(&default_pset.threads, thread, thread_t, pset_threads)for ((thread) = (thread_t) ((&default_pset.threads)->next ); !(((&default_pset.threads)) == ((queue_entry_t)(thread ))); (thread) = (thread_t) ((&(thread)->pset_threads)-> next)) { | |||
| 2575 | total++; | |||
| 2576 | if (thread->ith_rpc_reply != IP_NULL((ipc_port_t) ((ipc_object_t) 0))) | |||
| 2577 | rpcreply++; | |||
| 2578 | } | |||
| 2579 | ||||
| 2580 | printf("%d total threads.\n", total); | |||
| 2581 | printf("%d using rpc_reply.\n", rpcreply); | |||
| 2582 | } | |||
| 2583 | #endif /* MACH_DEBUG */ |