| File: | obj-scan-build/../kern/slab.c |
| Location: | line 1146, column 15 |
| Description: | Access to field 'addr' results in a dereference of a null pointer (loaded from variable 'slab') |
| 1 | /* | |||||
| 2 | * Copyright (c) 2011 Free Software Foundation. | |||||
| 3 | * | |||||
| 4 | * This program is free software; you can redistribute it and/or modify | |||||
| 5 | * it under the terms of the GNU General Public License as published by | |||||
| 6 | * the Free Software Foundation; either version 2 of the License, or | |||||
| 7 | * (at your option) any later version. | |||||
| 8 | * | |||||
| 9 | * This program is distributed in the hope that it will be useful, | |||||
| 10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |||||
| 11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |||||
| 12 | * GNU General Public License for more details. | |||||
| 13 | * | |||||
| 14 | * You should have received a copy of the GNU General Public License along | |||||
| 15 | * with this program; if not, write to the Free Software Foundation, Inc., | |||||
| 16 | * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | |||||
| 17 | */ | |||||
| 18 | ||||||
| 19 | /* | |||||
| 20 | * Copyright (c) 2010, 2011 Richard Braun. | |||||
| 21 | * All rights reserved. | |||||
| 22 | * | |||||
| 23 | * Redistribution and use in source and binary forms, with or without | |||||
| 24 | * modification, are permitted provided that the following conditions | |||||
| 25 | * are met: | |||||
| 26 | * 1. Redistributions of source code must retain the above copyright | |||||
| 27 | * notice, this list of conditions and the following disclaimer. | |||||
| 28 | * 2. Redistributions in binary form must reproduce the above copyright | |||||
| 29 | * notice, this list of conditions and the following disclaimer in the | |||||
| 30 | * documentation and/or other materials provided with the distribution. | |||||
| 31 | * | |||||
| 32 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR | |||||
| 33 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES | |||||
| 34 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. | |||||
| 35 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, | |||||
| 36 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | |||||
| 37 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | |||||
| 38 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | |||||
| 39 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |||||
| 40 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF | |||||
| 41 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |||||
| 42 | * | |||||
| 43 | * | |||||
| 44 | * Object caching and general purpose memory allocator. | |||||
| 45 | * | |||||
| 46 | * This allocator is based on the paper "The Slab Allocator: An Object-Caching | |||||
| 47 | * Kernel Memory Allocator" by Jeff Bonwick. | |||||
| 48 | * | |||||
| 49 | * It allows the allocation of objects (i.e. fixed-size typed buffers) from | |||||
| 50 | * caches and is efficient in both space and time. This implementation follows | |||||
| 51 | * many of the indications from the paper mentioned. The most notable | |||||
| 52 | * differences are outlined below. | |||||
| 53 | * | |||||
| 54 | * The per-cache self-scaling hash table for buffer-to-bufctl conversion, | |||||
| 55 | * described in 3.2.3 "Slab Layout for Large Objects", has been replaced by | |||||
| 56 | * a red-black tree storing slabs, sorted by address. The use of a | |||||
| 57 | * self-balancing tree for buffer-to-slab conversions provides a few advantages | |||||
| 58 | * over a hash table. Unlike a hash table, a BST provides a "lookup nearest" | |||||
| 59 | * operation, so obtaining the slab data (whether it is embedded in the slab or | |||||
| 60 | * off slab) from a buffer address simply consists of a "lookup nearest towards | |||||
| 61 | * 0" tree search. Storing slabs instead of buffers also considerably reduces | |||||
| 62 | * the number of elements to retain. Finally, a self-balancing tree is a true | |||||
| 63 | * self-scaling data structure, whereas a hash table requires periodic | |||||
| 64 | * maintenance and complete resizing, which is expensive. The only drawback is | |||||
| 65 | * that releasing a buffer to the slab layer takes logarithmic time instead of | |||||
| 66 | * constant time. But as the data set size is kept reasonable (because slabs | |||||
| 67 | * are stored instead of buffers) and because the CPU pool layer services most | |||||
| 68 | * requests, avoiding many accesses to the slab layer, it is considered an | |||||
| 69 | * acceptable tradeoff. | |||||
| 70 | * | |||||
| 71 | * This implementation uses per-cpu pools of objects, which service most | |||||
| 72 | * allocation requests. These pools act as caches (but are named differently | |||||
| 73 | * to avoid confusion with CPU caches) that reduce contention on multiprocessor | |||||
| 74 | * systems. When a pool is empty and cannot provide an object, it is filled by | |||||
| 75 | * transferring multiple objects from the slab layer. The symmetric case is | |||||
| 76 | * handled likewise. | |||||
| 77 | */ | |||||
| 78 | ||||||
| 79 | #include <string.h> | |||||
| 80 | #include <kern/assert.h> | |||||
| 81 | #include <kern/mach_clock.h> | |||||
| 82 | #include <kern/printf.h> | |||||
| 83 | #include <kern/slab.h> | |||||
| 84 | #include <kern/kalloc.h> | |||||
| 85 | #include <kern/cpu_number.h> | |||||
| 86 | #include <mach/vm_param.h> | |||||
| 87 | #include <mach/machine/vm_types.h> | |||||
| 88 | #include <vm/vm_kern.h> | |||||
| 89 | #include <vm/vm_types.h> | |||||
| 90 | #include <sys/types.h> | |||||
| 91 | ||||||
| 92 | #ifdef MACH_DEBUG1 | |||||
| 93 | #include <mach_debug/slab_info.h> | |||||
| 94 | #endif | |||||
| 95 | ||||||
| 96 | /* | |||||
| 97 | * Utility macros. | |||||
| 98 | */ | |||||
| 99 | #define ARRAY_SIZE(x)(sizeof(x) / sizeof((x)[0])) (sizeof(x) / sizeof((x)[0])) | |||||
| 100 | #define P2ALIGNED(x, a)(((x) & ((a) - 1)) == 0) (((x) & ((a) - 1)) == 0) | |||||
| 101 | #define ISP2(x)(((x) & ((x) - 1)) == 0) P2ALIGNED(x, x)(((x) & ((x) - 1)) == 0) | |||||
| 102 | #define P2ALIGN(x, a)((x) & -(a)) ((x) & -(a)) | |||||
| 103 | #define P2ROUND(x, a)(-(-(x) & -(a))) (-(-(x) & -(a))) | |||||
| 104 | #define P2END(x, a)(-(~(x) & -(a))) (-(~(x) & -(a))) | |||||
| 105 | #define likely(expr)__builtin_expect(!!(expr), 1) __builtin_expect(!!(expr), 1) | |||||
| 106 | #define unlikely(expr)__builtin_expect(!!(expr), 0) __builtin_expect(!!(expr), 0) | |||||
| 107 | ||||||
| 108 | /* | |||||
| 109 | * Minimum required alignment. | |||||
| 110 | */ | |||||
| 111 | #define KMEM_ALIGN_MIN8 8 | |||||
| 112 | ||||||
| 113 | /* | |||||
| 114 | * Minimum number of buffers per slab. | |||||
| 115 | * | |||||
| 116 | * This value is ignored when the slab size exceeds a threshold. | |||||
| 117 | */ | |||||
| 118 | #define KMEM_MIN_BUFS_PER_SLAB8 8 | |||||
| 119 | ||||||
| 120 | /* | |||||
| 121 | * Special slab size beyond which the minimum number of buffers per slab is | |||||
| 122 | * ignored when computing the slab size of a cache. | |||||
| 123 | */ | |||||
| 124 | #define KMEM_SLAB_SIZE_THRESHOLD(8 * (1 << 12)) (8 * PAGE_SIZE(1 << 12)) | |||||
| 125 | ||||||
| 126 | /* | |||||
| 127 | * Special buffer size under which slab data is unconditionnally allocated | |||||
| 128 | * from its associated slab. | |||||
| 129 | */ | |||||
| 130 | #define KMEM_BUF_SIZE_THRESHOLD((1 << 12) / 8) (PAGE_SIZE(1 << 12) / 8) | |||||
| 131 | ||||||
| 132 | /* | |||||
| 133 | * Time (in ticks) between two garbage collection operations. | |||||
| 134 | */ | |||||
| 135 | #define KMEM_GC_INTERVAL(5 * hz) (5 * hz) | |||||
| 136 | ||||||
| 137 | /* | |||||
| 138 | * The transfer size of a CPU pool is computed by dividing the pool size by | |||||
| 139 | * this value. | |||||
| 140 | */ | |||||
| 141 | #define KMEM_CPU_POOL_TRANSFER_RATIO2 2 | |||||
| 142 | ||||||
| 143 | /* | |||||
| 144 | * Redzone guard word. | |||||
| 145 | */ | |||||
| 146 | #ifdef __LP64__ | |||||
| 147 | #if _HOST_BIG_ENDIAN | |||||
| 148 | #define KMEM_REDZONE_WORD0xcefaedfeUL 0xfeedfacefeedfaceUL | |||||
| 149 | #else /* _HOST_BIG_ENDIAN */ | |||||
| 150 | #define KMEM_REDZONE_WORD0xcefaedfeUL 0xcefaedfecefaedfeUL | |||||
| 151 | #endif /* _HOST_BIG_ENDIAN */ | |||||
| 152 | #else /* __LP64__ */ | |||||
| 153 | #if _HOST_BIG_ENDIAN | |||||
| 154 | #define KMEM_REDZONE_WORD0xcefaedfeUL 0xfeedfaceUL | |||||
| 155 | #else /* _HOST_BIG_ENDIAN */ | |||||
| 156 | #define KMEM_REDZONE_WORD0xcefaedfeUL 0xcefaedfeUL | |||||
| 157 | #endif /* _HOST_BIG_ENDIAN */ | |||||
| 158 | #endif /* __LP64__ */ | |||||
| 159 | ||||||
| 160 | /* | |||||
| 161 | * Redzone byte for padding. | |||||
| 162 | */ | |||||
| 163 | #define KMEM_REDZONE_BYTE0xbb 0xbb | |||||
| 164 | ||||||
| 165 | /* | |||||
| 166 | * Size of the VM submap from which default backend functions allocate. | |||||
| 167 | */ | |||||
| 168 | #define KMEM_MAP_SIZE(128 * 1024 * 1024) (128 * 1024 * 1024) | |||||
| 169 | ||||||
| 170 | /* | |||||
| 171 | * Shift for the first kalloc cache size. | |||||
| 172 | */ | |||||
| 173 | #define KALLOC_FIRST_SHIFT5 5 | |||||
| 174 | ||||||
| 175 | /* | |||||
| 176 | * Number of caches backing general purpose allocations. | |||||
| 177 | */ | |||||
| 178 | #define KALLOC_NR_CACHES13 13 | |||||
| 179 | ||||||
| 180 | /* | |||||
| 181 | * Values the buftag state member can take. | |||||
| 182 | */ | |||||
| 183 | #ifdef __LP64__ | |||||
| 184 | #if _HOST_BIG_ENDIAN | |||||
| 185 | #define KMEM_BUFTAG_ALLOC0xedc810a1UL 0xa110c8eda110c8edUL | |||||
| 186 | #define KMEM_BUFTAG_FREE0x0cb1eef4UL 0xf4eeb10cf4eeb10cUL | |||||
| 187 | #else /* _HOST_BIG_ENDIAN */ | |||||
| 188 | #define KMEM_BUFTAG_ALLOC0xedc810a1UL 0xedc810a1edc810a1UL | |||||
| 189 | #define KMEM_BUFTAG_FREE0x0cb1eef4UL 0x0cb1eef40cb1eef4UL | |||||
| 190 | #endif /* _HOST_BIG_ENDIAN */ | |||||
| 191 | #else /* __LP64__ */ | |||||
| 192 | #if _HOST_BIG_ENDIAN | |||||
| 193 | #define KMEM_BUFTAG_ALLOC0xedc810a1UL 0xa110c8edUL | |||||
| 194 | #define KMEM_BUFTAG_FREE0x0cb1eef4UL 0xf4eeb10cUL | |||||
| 195 | #else /* _HOST_BIG_ENDIAN */ | |||||
| 196 | #define KMEM_BUFTAG_ALLOC0xedc810a1UL 0xedc810a1UL | |||||
| 197 | #define KMEM_BUFTAG_FREE0x0cb1eef4UL 0x0cb1eef4UL | |||||
| 198 | #endif /* _HOST_BIG_ENDIAN */ | |||||
| 199 | #endif /* __LP64__ */ | |||||
| 200 | ||||||
| 201 | /* | |||||
| 202 | * Free and uninitialized patterns. | |||||
| 203 | * | |||||
| 204 | * These values are unconditionnally 64-bit wide since buffers are at least | |||||
| 205 | * 8-byte aligned. | |||||
| 206 | */ | |||||
| 207 | #if _HOST_BIG_ENDIAN | |||||
| 208 | #define KMEM_FREE_PATTERN0xefbeaddeefbeaddeULL 0xdeadbeefdeadbeefULL | |||||
| 209 | #define KMEM_UNINIT_PATTERN0xfecaddbafecaddbaULL 0xbaddcafebaddcafeULL | |||||
| 210 | #else /* _HOST_BIG_ENDIAN */ | |||||
| 211 | #define KMEM_FREE_PATTERN0xefbeaddeefbeaddeULL 0xefbeaddeefbeaddeULL | |||||
| 212 | #define KMEM_UNINIT_PATTERN0xfecaddbafecaddbaULL 0xfecaddbafecaddbaULL | |||||
| 213 | #endif /* _HOST_BIG_ENDIAN */ | |||||
| 214 | ||||||
| 215 | /* | |||||
| 216 | * Cache flags. | |||||
| 217 | * | |||||
| 218 | * The flags don't change once set and can be tested without locking. | |||||
| 219 | */ | |||||
| 220 | #define KMEM_CF_NO_CPU_POOL0x01 0x01 /* CPU pool layer disabled */ | |||||
| 221 | #define KMEM_CF_SLAB_EXTERNAL0x02 0x02 /* Slab data is off slab */ | |||||
| 222 | #define KMEM_CF_NO_RECLAIM0x04 0x04 /* Slabs are not reclaimable */ | |||||
| 223 | #define KMEM_CF_VERIFY0x08 0x08 /* Debugging facilities enabled */ | |||||
| 224 | #define KMEM_CF_DIRECT0x10 0x10 /* No buf-to-slab tree lookup */ | |||||
| 225 | ||||||
| 226 | /* | |||||
| 227 | * Options for kmem_cache_alloc_verify(). | |||||
| 228 | */ | |||||
| 229 | #define KMEM_AV_NOCONSTRUCT0 0 | |||||
| 230 | #define KMEM_AV_CONSTRUCT1 1 | |||||
| 231 | ||||||
| 232 | /* | |||||
| 233 | * Error codes for kmem_cache_error(). | |||||
| 234 | */ | |||||
| 235 | #define KMEM_ERR_INVALID0 0 /* Invalid address being freed */ | |||||
| 236 | #define KMEM_ERR_DOUBLEFREE1 1 /* Freeing already free address */ | |||||
| 237 | #define KMEM_ERR_BUFTAG2 2 /* Invalid buftag content */ | |||||
| 238 | #define KMEM_ERR_MODIFIED3 3 /* Buffer modified while free */ | |||||
| 239 | #define KMEM_ERR_REDZONE4 4 /* Redzone violation */ | |||||
| 240 | ||||||
| 241 | #if SLAB_USE_CPU_POOLS0 | |||||
| 242 | /* | |||||
| 243 | * Available CPU pool types. | |||||
| 244 | * | |||||
| 245 | * For each entry, the CPU pool size applies from the entry buf_size | |||||
| 246 | * (excluded) up to (and including) the buf_size of the preceding entry. | |||||
| 247 | * | |||||
| 248 | * See struct kmem_cpu_pool_type for a description of the values. | |||||
| 249 | */ | |||||
| 250 | static struct kmem_cpu_pool_type kmem_cpu_pool_types[] = { | |||||
| 251 | { 32768, 1, 0, NULL((void *) 0) }, | |||||
| 252 | { 4096, 8, CPU_L1_SIZE, NULL((void *) 0) }, | |||||
| 253 | { 256, 64, CPU_L1_SIZE, NULL((void *) 0) }, | |||||
| 254 | { 0, 128, CPU_L1_SIZE, NULL((void *) 0) } | |||||
| 255 | }; | |||||
| 256 | ||||||
| 257 | /* | |||||
| 258 | * Caches where CPU pool arrays are allocated from. | |||||
| 259 | */ | |||||
| 260 | static struct kmem_cache kmem_cpu_array_caches[ARRAY_SIZE(kmem_cpu_pool_types)(sizeof(kmem_cpu_pool_types) / sizeof((kmem_cpu_pool_types)[0 ]))]; | |||||
| 261 | #endif /* SLAB_USE_CPU_POOLS */ | |||||
| 262 | ||||||
| 263 | /* | |||||
| 264 | * Cache for off slab data. | |||||
| 265 | */ | |||||
| 266 | static struct kmem_cache kmem_slab_cache; | |||||
| 267 | ||||||
| 268 | /* | |||||
| 269 | * General purpose caches array. | |||||
| 270 | */ | |||||
| 271 | static struct kmem_cache kalloc_caches[KALLOC_NR_CACHES13]; | |||||
| 272 | ||||||
| 273 | /* | |||||
| 274 | * List of all caches managed by the allocator. | |||||
| 275 | */ | |||||
| 276 | static struct list kmem_cache_list; | |||||
| 277 | static unsigned int kmem_nr_caches; | |||||
| 278 | static simple_lock_data_t __attribute__((used)) kmem_cache_list_lock; | |||||
| 279 | ||||||
| 280 | /* | |||||
| 281 | * VM submap for slab caches. | |||||
| 282 | */ | |||||
| 283 | static struct vm_map kmem_map_store; | |||||
| 284 | vm_map_t kmem_map = &kmem_map_store; | |||||
| 285 | ||||||
| 286 | /* | |||||
| 287 | * Time of the last memory reclaim, in clock ticks. | |||||
| 288 | */ | |||||
| 289 | static unsigned long kmem_gc_last_tick; | |||||
| 290 | ||||||
| 291 | #define kmem_error(format, ...)printf("mem: error: %s(): " format "\n", __func__, ...) \ | |||||
| 292 | printf("mem: error: %s(): " format "\n", __func__, \ | |||||
| 293 | ## __VA_ARGS__) | |||||
| 294 | ||||||
| 295 | #define kmem_warn(format, ...)printf("mem: warning: %s(): " format "\n", __func__, ...) \ | |||||
| 296 | printf("mem: warning: %s(): " format "\n", __func__, \ | |||||
| 297 | ## __VA_ARGS__) | |||||
| 298 | ||||||
| 299 | #define kmem_print(format, ...)printf(format "\n", ...) \ | |||||
| 300 | printf(format "\n", ## __VA_ARGS__) | |||||
| 301 | ||||||
| 302 | static void kmem_cache_error(struct kmem_cache *cache, void *buf, int error, | |||||
| 303 | void *arg); | |||||
| 304 | static void * kmem_cache_alloc_from_slab(struct kmem_cache *cache); | |||||
| 305 | static void kmem_cache_free_to_slab(struct kmem_cache *cache, void *buf); | |||||
| 306 | ||||||
| 307 | static void * kmem_buf_verify_bytes(void *buf, void *pattern, size_t size) | |||||
| 308 | { | |||||
| 309 | char *ptr, *pattern_ptr, *end; | |||||
| 310 | ||||||
| 311 | end = buf + size; | |||||
| 312 | ||||||
| 313 | for (ptr = buf, pattern_ptr = pattern; ptr < end; ptr++, pattern_ptr++) | |||||
| 314 | if (*ptr != *pattern_ptr) | |||||
| 315 | return ptr; | |||||
| 316 | ||||||
| 317 | return NULL((void *) 0); | |||||
| 318 | } | |||||
| 319 | ||||||
| 320 | static void * kmem_buf_verify(void *buf, uint64_t pattern, vm_size_t size) | |||||
| 321 | { | |||||
| 322 | uint64_t *ptr, *end; | |||||
| 323 | ||||||
| 324 | assert(P2ALIGNED((unsigned long)buf, sizeof(uint64_t)))({ if (!(((((unsigned long)buf) & ((sizeof(uint64_t)) - 1 )) == 0))) Assert("P2ALIGNED((unsigned long)buf, sizeof(uint64_t))" , "../kern/slab.c", 324); }); | |||||
| 325 | assert(P2ALIGNED(size, sizeof(uint64_t)))({ if (!((((size) & ((sizeof(uint64_t)) - 1)) == 0))) Assert ("P2ALIGNED(size, sizeof(uint64_t))", "../kern/slab.c", 325); }); | |||||
| 326 | ||||||
| 327 | end = buf + size; | |||||
| 328 | ||||||
| 329 | for (ptr = buf; ptr < end; ptr++) | |||||
| 330 | if (*ptr != pattern) | |||||
| 331 | return kmem_buf_verify_bytes(ptr, &pattern, sizeof(pattern)); | |||||
| 332 | ||||||
| 333 | return NULL((void *) 0); | |||||
| 334 | } | |||||
| 335 | ||||||
| 336 | static void kmem_buf_fill(void *buf, uint64_t pattern, size_t size) | |||||
| 337 | { | |||||
| 338 | uint64_t *ptr, *end; | |||||
| 339 | ||||||
| 340 | assert(P2ALIGNED((unsigned long)buf, sizeof(uint64_t)))({ if (!(((((unsigned long)buf) & ((sizeof(uint64_t)) - 1 )) == 0))) Assert("P2ALIGNED((unsigned long)buf, sizeof(uint64_t))" , "../kern/slab.c", 340); }); | |||||
| 341 | assert(P2ALIGNED(size, sizeof(uint64_t)))({ if (!((((size) & ((sizeof(uint64_t)) - 1)) == 0))) Assert ("P2ALIGNED(size, sizeof(uint64_t))", "../kern/slab.c", 341); }); | |||||
| 342 | ||||||
| 343 | end = buf + size; | |||||
| 344 | ||||||
| 345 | for (ptr = buf; ptr < end; ptr++) | |||||
| 346 | *ptr = pattern; | |||||
| 347 | } | |||||
| 348 | ||||||
| 349 | static void * kmem_buf_verify_fill(void *buf, uint64_t old, uint64_t new, | |||||
| 350 | size_t size) | |||||
| 351 | { | |||||
| 352 | uint64_t *ptr, *end; | |||||
| 353 | ||||||
| 354 | assert(P2ALIGNED((unsigned long)buf, sizeof(uint64_t)))({ if (!(((((unsigned long)buf) & ((sizeof(uint64_t)) - 1 )) == 0))) Assert("P2ALIGNED((unsigned long)buf, sizeof(uint64_t))" , "../kern/slab.c", 354); }); | |||||
| 355 | assert(P2ALIGNED(size, sizeof(uint64_t)))({ if (!((((size) & ((sizeof(uint64_t)) - 1)) == 0))) Assert ("P2ALIGNED(size, sizeof(uint64_t))", "../kern/slab.c", 355); }); | |||||
| 356 | ||||||
| 357 | end = buf + size; | |||||
| 358 | ||||||
| 359 | for (ptr = buf; ptr < end; ptr++) { | |||||
| 360 | if (*ptr != old) | |||||
| 361 | return kmem_buf_verify_bytes(ptr, &old, sizeof(old)); | |||||
| 362 | ||||||
| 363 | *ptr = new; | |||||
| 364 | } | |||||
| 365 | ||||||
| 366 | return NULL((void *) 0); | |||||
| 367 | } | |||||
| 368 | ||||||
| 369 | static inline union kmem_bufctl * | |||||
| 370 | kmem_buf_to_bufctl(void *buf, struct kmem_cache *cache) | |||||
| 371 | { | |||||
| 372 | return (union kmem_bufctl *)(buf + cache->bufctl_dist); | |||||
| 373 | } | |||||
| 374 | ||||||
| 375 | static inline struct kmem_buftag * | |||||
| 376 | kmem_buf_to_buftag(void *buf, struct kmem_cache *cache) | |||||
| 377 | { | |||||
| 378 | return (struct kmem_buftag *)(buf + cache->buftag_dist); | |||||
| 379 | } | |||||
| 380 | ||||||
| 381 | static inline void * kmem_bufctl_to_buf(union kmem_bufctl *bufctl, | |||||
| 382 | struct kmem_cache *cache) | |||||
| 383 | { | |||||
| 384 | return (void *)bufctl - cache->bufctl_dist; | |||||
| 385 | } | |||||
| 386 | ||||||
| 387 | static vm_offset_t kmem_pagealloc(vm_size_t size) | |||||
| 388 | { | |||||
| 389 | vm_offset_t addr; | |||||
| 390 | kern_return_t kr; | |||||
| 391 | ||||||
| 392 | kr = kmem_alloc_wired(kmem_map, &addr, size); | |||||
| 393 | ||||||
| 394 | if (kr != KERN_SUCCESS0) | |||||
| 395 | return 0; | |||||
| 396 | ||||||
| 397 | return addr; | |||||
| 398 | } | |||||
| 399 | ||||||
| 400 | static void kmem_pagefree(vm_offset_t ptr, vm_size_t size) | |||||
| 401 | { | |||||
| 402 | kmem_free(kmem_map, ptr, size); | |||||
| 403 | } | |||||
| 404 | ||||||
| 405 | static void kmem_slab_create_verify(struct kmem_slab *slab, | |||||
| 406 | struct kmem_cache *cache) | |||||
| 407 | { | |||||
| 408 | struct kmem_buftag *buftag; | |||||
| 409 | size_t buf_size; | |||||
| 410 | unsigned long buffers; | |||||
| 411 | void *buf; | |||||
| 412 | ||||||
| 413 | buf_size = cache->buf_size; | |||||
| 414 | buf = slab->addr; | |||||
| 415 | buftag = kmem_buf_to_buftag(buf, cache); | |||||
| 416 | ||||||
| 417 | for (buffers = cache->bufs_per_slab; buffers != 0; buffers--) { | |||||
| 418 | kmem_buf_fill(buf, KMEM_FREE_PATTERN0xefbeaddeefbeaddeULL, cache->bufctl_dist); | |||||
| 419 | buftag->state = KMEM_BUFTAG_FREE0x0cb1eef4UL; | |||||
| 420 | buf += buf_size; | |||||
| 421 | buftag = kmem_buf_to_buftag(buf, cache); | |||||
| 422 | } | |||||
| 423 | } | |||||
| 424 | ||||||
| 425 | /* | |||||
| 426 | * Create an empty slab for a cache. | |||||
| 427 | * | |||||
| 428 | * The caller must drop all locks before calling this function. | |||||
| 429 | */ | |||||
| 430 | static struct kmem_slab * kmem_slab_create(struct kmem_cache *cache, | |||||
| 431 | size_t color) | |||||
| 432 | { | |||||
| 433 | struct kmem_slab *slab; | |||||
| 434 | union kmem_bufctl *bufctl; | |||||
| 435 | size_t buf_size; | |||||
| 436 | unsigned long buffers; | |||||
| 437 | void *slab_buf; | |||||
| 438 | ||||||
| 439 | if (cache->slab_alloc_fn == NULL((void *) 0)) | |||||
| 440 | slab_buf = (void *)kmem_pagealloc(cache->slab_size); | |||||
| 441 | else | |||||
| 442 | slab_buf = (void *)cache->slab_alloc_fn(cache->slab_size); | |||||
| 443 | ||||||
| 444 | if (slab_buf == NULL((void *) 0)) | |||||
| 445 | return NULL((void *) 0); | |||||
| 446 | ||||||
| 447 | if (cache->flags & KMEM_CF_SLAB_EXTERNAL0x02) { | |||||
| 448 | assert(!(cache->flags & KMEM_CF_NO_RECLAIM))({ if (!(!(cache->flags & 0x04))) Assert("!(cache->flags & KMEM_CF_NO_RECLAIM)" , "../kern/slab.c", 448); }); | |||||
| 449 | slab = (struct kmem_slab *)kmem_cache_alloc(&kmem_slab_cache); | |||||
| 450 | ||||||
| 451 | if (slab == NULL((void *) 0)) { | |||||
| 452 | if (cache->slab_free_fn == NULL((void *) 0)) | |||||
| 453 | kmem_pagefree((vm_offset_t)slab_buf, cache->slab_size); | |||||
| 454 | else | |||||
| 455 | cache->slab_free_fn((vm_offset_t)slab_buf, cache->slab_size); | |||||
| 456 | ||||||
| 457 | return NULL((void *) 0); | |||||
| 458 | } | |||||
| 459 | } else { | |||||
| 460 | slab = (struct kmem_slab *)(slab_buf + cache->slab_size) - 1; | |||||
| 461 | } | |||||
| 462 | ||||||
| 463 | list_node_init(&slab->list_node); | |||||
| 464 | rbtree_node_init(&slab->tree_node); | |||||
| 465 | slab->nr_refs = 0; | |||||
| 466 | slab->first_free = NULL((void *) 0); | |||||
| 467 | slab->addr = slab_buf + color; | |||||
| 468 | ||||||
| 469 | buf_size = cache->buf_size; | |||||
| 470 | bufctl = kmem_buf_to_bufctl(slab->addr, cache); | |||||
| 471 | ||||||
| 472 | for (buffers = cache->bufs_per_slab; buffers != 0; buffers--) { | |||||
| 473 | bufctl->next = slab->first_free; | |||||
| 474 | slab->first_free = bufctl; | |||||
| 475 | bufctl = (union kmem_bufctl *)((void *)bufctl + buf_size); | |||||
| 476 | } | |||||
| 477 | ||||||
| 478 | if (cache->flags & KMEM_CF_VERIFY0x08) | |||||
| 479 | kmem_slab_create_verify(slab, cache); | |||||
| 480 | ||||||
| 481 | return slab; | |||||
| 482 | } | |||||
| 483 | ||||||
| 484 | static void kmem_slab_destroy_verify(struct kmem_slab *slab, | |||||
| 485 | struct kmem_cache *cache) | |||||
| 486 | { | |||||
| 487 | struct kmem_buftag *buftag; | |||||
| 488 | size_t buf_size; | |||||
| 489 | unsigned long buffers; | |||||
| 490 | void *buf, *addr; | |||||
| 491 | ||||||
| 492 | buf_size = cache->buf_size; | |||||
| 493 | buf = slab->addr; | |||||
| 494 | buftag = kmem_buf_to_buftag(buf, cache); | |||||
| 495 | ||||||
| 496 | for (buffers = cache->bufs_per_slab; buffers != 0; buffers--) { | |||||
| 497 | if (buftag->state != KMEM_BUFTAG_FREE0x0cb1eef4UL) | |||||
| 498 | kmem_cache_error(cache, buf, KMEM_ERR_BUFTAG2, buftag); | |||||
| 499 | ||||||
| 500 | addr = kmem_buf_verify(buf, KMEM_FREE_PATTERN0xefbeaddeefbeaddeULL, cache->bufctl_dist); | |||||
| 501 | ||||||
| 502 | if (addr != NULL((void *) 0)) | |||||
| 503 | kmem_cache_error(cache, buf, KMEM_ERR_MODIFIED3, addr); | |||||
| 504 | ||||||
| 505 | buf += buf_size; | |||||
| 506 | buftag = kmem_buf_to_buftag(buf, cache); | |||||
| 507 | } | |||||
| 508 | } | |||||
| 509 | ||||||
| 510 | /* | |||||
| 511 | * Destroy a slab. | |||||
| 512 | * | |||||
| 513 | * The caller must drop all locks before calling this function. | |||||
| 514 | */ | |||||
| 515 | static void kmem_slab_destroy(struct kmem_slab *slab, struct kmem_cache *cache) | |||||
| 516 | { | |||||
| 517 | vm_offset_t slab_buf; | |||||
| 518 | ||||||
| 519 | assert(slab->nr_refs == 0)({ if (!(slab->nr_refs == 0)) Assert("slab->nr_refs == 0" , "../kern/slab.c", 519); }); | |||||
| 520 | assert(slab->first_free != NULL)({ if (!(slab->first_free != ((void *) 0))) Assert("slab->first_free != NULL" , "../kern/slab.c", 520); }); | |||||
| 521 | assert(!(cache->flags & KMEM_CF_NO_RECLAIM))({ if (!(!(cache->flags & 0x04))) Assert("!(cache->flags & KMEM_CF_NO_RECLAIM)" , "../kern/slab.c", 521); }); | |||||
| 522 | ||||||
| 523 | if (cache->flags & KMEM_CF_VERIFY0x08) | |||||
| 524 | kmem_slab_destroy_verify(slab, cache); | |||||
| 525 | ||||||
| 526 | slab_buf = (vm_offset_t)P2ALIGN((unsigned long)slab->addr, PAGE_SIZE)(((unsigned long)slab->addr) & -((1 << 12))); | |||||
| 527 | ||||||
| 528 | if (cache->slab_free_fn == NULL((void *) 0)) | |||||
| 529 | kmem_pagefree(slab_buf, cache->slab_size); | |||||
| 530 | else | |||||
| 531 | cache->slab_free_fn(slab_buf, cache->slab_size); | |||||
| 532 | ||||||
| 533 | if (cache->flags & KMEM_CF_SLAB_EXTERNAL0x02) | |||||
| 534 | kmem_cache_free(&kmem_slab_cache, (vm_offset_t)slab); | |||||
| 535 | } | |||||
| 536 | ||||||
| 537 | static inline int kmem_slab_use_tree(int flags) | |||||
| 538 | { | |||||
| 539 | return !(flags & KMEM_CF_DIRECT0x10) || (flags & KMEM_CF_VERIFY0x08); | |||||
| 540 | } | |||||
| 541 | ||||||
| 542 | static inline int kmem_slab_cmp_lookup(const void *addr, | |||||
| 543 | const struct rbtree_node *node) | |||||
| 544 | { | |||||
| 545 | struct kmem_slab *slab; | |||||
| 546 | ||||||
| 547 | slab = rbtree_entry(node, struct kmem_slab, tree_node)((struct kmem_slab *)((char *)node - __builtin_offsetof (struct kmem_slab, tree_node))); | |||||
| 548 | ||||||
| 549 | if (addr == slab->addr) | |||||
| 550 | return 0; | |||||
| 551 | else if (addr < slab->addr) | |||||
| 552 | return -1; | |||||
| 553 | else | |||||
| 554 | return 1; | |||||
| 555 | } | |||||
| 556 | ||||||
| 557 | static inline int kmem_slab_cmp_insert(const struct rbtree_node *a, | |||||
| 558 | const struct rbtree_node *b) | |||||
| 559 | { | |||||
| 560 | struct kmem_slab *slab; | |||||
| 561 | ||||||
| 562 | slab = rbtree_entry(a, struct kmem_slab, tree_node)((struct kmem_slab *)((char *)a - __builtin_offsetof (struct kmem_slab , tree_node))); | |||||
| 563 | return kmem_slab_cmp_lookup(slab->addr, b); | |||||
| 564 | } | |||||
| 565 | ||||||
| 566 | #if SLAB_USE_CPU_POOLS0 | |||||
| 567 | static void kmem_cpu_pool_init(struct kmem_cpu_pool *cpu_pool, | |||||
| 568 | struct kmem_cache *cache) | |||||
| 569 | { | |||||
| 570 | simple_lock_init(&cpu_pool->lock); | |||||
| 571 | cpu_pool->flags = cache->flags; | |||||
| 572 | cpu_pool->size = 0; | |||||
| 573 | cpu_pool->transfer_size = 0; | |||||
| 574 | cpu_pool->nr_objs = 0; | |||||
| 575 | cpu_pool->array = NULL((void *) 0); | |||||
| 576 | } | |||||
| 577 | ||||||
| 578 | /* | |||||
| 579 | * Return a CPU pool. | |||||
| 580 | * | |||||
| 581 | * This function will generally return the pool matching the CPU running the | |||||
| 582 | * calling thread. Because of context switches and thread migration, the | |||||
| 583 | * caller might be running on another processor after this function returns. | |||||
| 584 | * Although not optimal, this should rarely happen, and it doesn't affect the | |||||
| 585 | * allocator operations in any other way, as CPU pools are always valid, and | |||||
| 586 | * their access is serialized by a lock. | |||||
| 587 | */ | |||||
| 588 | static inline struct kmem_cpu_pool * kmem_cpu_pool_get(struct kmem_cache *cache) | |||||
| 589 | { | |||||
| 590 | return &cache->cpu_pools[cpu_number()(0)]; | |||||
| 591 | } | |||||
| 592 | ||||||
| 593 | static inline void kmem_cpu_pool_build(struct kmem_cpu_pool *cpu_pool, | |||||
| 594 | struct kmem_cache *cache, void **array) | |||||
| 595 | { | |||||
| 596 | cpu_pool->size = cache->cpu_pool_type->array_size; | |||||
| 597 | cpu_pool->transfer_size = (cpu_pool->size | |||||
| 598 | + KMEM_CPU_POOL_TRANSFER_RATIO2 - 1) | |||||
| 599 | / KMEM_CPU_POOL_TRANSFER_RATIO2; | |||||
| 600 | cpu_pool->array = array; | |||||
| 601 | } | |||||
| 602 | ||||||
| 603 | static inline void * kmem_cpu_pool_pop(struct kmem_cpu_pool *cpu_pool) | |||||
| 604 | { | |||||
| 605 | cpu_pool->nr_objs--; | |||||
| 606 | return cpu_pool->array[cpu_pool->nr_objs]; | |||||
| 607 | } | |||||
| 608 | ||||||
| 609 | static inline void kmem_cpu_pool_push(struct kmem_cpu_pool *cpu_pool, void *obj) | |||||
| 610 | { | |||||
| 611 | cpu_pool->array[cpu_pool->nr_objs] = obj; | |||||
| 612 | cpu_pool->nr_objs++; | |||||
| 613 | } | |||||
| 614 | ||||||
| 615 | static int kmem_cpu_pool_fill(struct kmem_cpu_pool *cpu_pool, | |||||
| 616 | struct kmem_cache *cache) | |||||
| 617 | { | |||||
| 618 | kmem_cache_ctor_t ctor; | |||||
| 619 | void *buf; | |||||
| 620 | int i; | |||||
| 621 | ||||||
| 622 | ctor = (cpu_pool->flags & KMEM_CF_VERIFY0x08) ? NULL((void *) 0) : cache->ctor; | |||||
| 623 | ||||||
| 624 | simple_lock(&cache->lock); | |||||
| 625 | ||||||
| 626 | for (i = 0; i < cpu_pool->transfer_size; i++) { | |||||
| 627 | buf = kmem_cache_alloc_from_slab(cache); | |||||
| 628 | ||||||
| 629 | if (buf == NULL((void *) 0)) | |||||
| 630 | break; | |||||
| 631 | ||||||
| 632 | if (ctor != NULL((void *) 0)) | |||||
| 633 | ctor(buf); | |||||
| 634 | ||||||
| 635 | kmem_cpu_pool_push(cpu_pool, buf); | |||||
| 636 | } | |||||
| 637 | ||||||
| 638 | simple_unlock(&cache->lock)((void)(&cache->lock)); | |||||
| 639 | ||||||
| 640 | return i; | |||||
| 641 | } | |||||
| 642 | ||||||
| 643 | static void kmem_cpu_pool_drain(struct kmem_cpu_pool *cpu_pool, | |||||
| 644 | struct kmem_cache *cache) | |||||
| 645 | { | |||||
| 646 | void *obj; | |||||
| 647 | int i; | |||||
| 648 | ||||||
| 649 | simple_lock(&cache->lock); | |||||
| 650 | ||||||
| 651 | for (i = cpu_pool->transfer_size; i > 0; i--) { | |||||
| 652 | obj = kmem_cpu_pool_pop(cpu_pool); | |||||
| 653 | kmem_cache_free_to_slab(cache, obj); | |||||
| 654 | } | |||||
| 655 | ||||||
| 656 | simple_unlock(&cache->lock)((void)(&cache->lock)); | |||||
| 657 | } | |||||
| 658 | #endif /* SLAB_USE_CPU_POOLS */ | |||||
| 659 | ||||||
| 660 | static void kmem_cache_error(struct kmem_cache *cache, void *buf, int error, | |||||
| 661 | void *arg) | |||||
| 662 | { | |||||
| 663 | struct kmem_buftag *buftag; | |||||
| 664 | ||||||
| 665 | kmem_error("cache: %s, buffer: %p", cache->name, (void *)buf)printf("mem: error: %s(): " "cache: %s, buffer: %p" "\n", __func__ , cache->name, (void *)buf); | |||||
| 666 | ||||||
| 667 | switch(error) { | |||||
| 668 | case KMEM_ERR_INVALID0: | |||||
| 669 | kmem_error("freeing invalid address")printf("mem: error: %s(): " "freeing invalid address" "\n", __func__ ); | |||||
| 670 | break; | |||||
| 671 | case KMEM_ERR_DOUBLEFREE1: | |||||
| 672 | kmem_error("attempting to free the same address twice")printf("mem: error: %s(): " "attempting to free the same address twice" "\n", __func__); | |||||
| 673 | break; | |||||
| 674 | case KMEM_ERR_BUFTAG2: | |||||
| 675 | buftag = arg; | |||||
| 676 | kmem_error("invalid buftag content, buftag state: %p",printf("mem: error: %s(): " "invalid buftag content, buftag state: %p" "\n", __func__, (void *)buftag->state) | |||||
| 677 | (void *)buftag->state)printf("mem: error: %s(): " "invalid buftag content, buftag state: %p" "\n", __func__, (void *)buftag->state); | |||||
| 678 | break; | |||||
| 679 | case KMEM_ERR_MODIFIED3: | |||||
| 680 | kmem_error("free buffer modified, fault address: %p, "printf("mem: error: %s(): " "free buffer modified, fault address: %p, " "offset in buffer: %td" "\n", __func__, arg, arg - buf) | |||||
| 681 | "offset in buffer: %td", arg, arg - buf)printf("mem: error: %s(): " "free buffer modified, fault address: %p, " "offset in buffer: %td" "\n", __func__, arg, arg - buf); | |||||
| 682 | break; | |||||
| 683 | case KMEM_ERR_REDZONE4: | |||||
| 684 | kmem_error("write beyond end of buffer, fault address: %p, "printf("mem: error: %s(): " "write beyond end of buffer, fault address: %p, " "offset in buffer: %td" "\n", __func__, arg, arg - buf) | |||||
| 685 | "offset in buffer: %td", arg, arg - buf)printf("mem: error: %s(): " "write beyond end of buffer, fault address: %p, " "offset in buffer: %td" "\n", __func__, arg, arg - buf); | |||||
| 686 | break; | |||||
| 687 | default: | |||||
| 688 | kmem_error("unknown error")printf("mem: error: %s(): " "unknown error" "\n", __func__); | |||||
| 689 | } | |||||
| 690 | ||||||
| 691 | /* | |||||
| 692 | * Never reached. | |||||
| 693 | */ | |||||
| 694 | } | |||||
| 695 | ||||||
| 696 | /* | |||||
| 697 | * Compute an appropriate slab size for the given cache. | |||||
| 698 | * | |||||
| 699 | * Once the slab size is known, this function sets the related properties | |||||
| 700 | * (buffers per slab and maximum color). It can also set the KMEM_CF_DIRECT | |||||
| 701 | * and/or KMEM_CF_SLAB_EXTERNAL flags depending on the resulting layout. | |||||
| 702 | */ | |||||
| 703 | static void kmem_cache_compute_sizes(struct kmem_cache *cache, int flags) | |||||
| 704 | { | |||||
| 705 | size_t i, buffers, buf_size, slab_size, free_slab_size, optimal_size; | |||||
| 706 | size_t waste, waste_min; | |||||
| 707 | int embed, optimal_embed = 0; | |||||
| 708 | ||||||
| 709 | buf_size = cache->buf_size; | |||||
| 710 | ||||||
| 711 | if (buf_size < KMEM_BUF_SIZE_THRESHOLD((1 << 12) / 8)) | |||||
| 712 | flags |= KMEM_CACHE_NOOFFSLAB0x2; | |||||
| 713 | ||||||
| 714 | i = 0; | |||||
| 715 | waste_min = (size_t)-1; | |||||
| 716 | ||||||
| 717 | do { | |||||
| 718 | i++; | |||||
| 719 | slab_size = P2ROUND(i * buf_size, PAGE_SIZE)(-(-(i * buf_size) & -((1 << 12)))); | |||||
| 720 | free_slab_size = slab_size; | |||||
| 721 | ||||||
| 722 | if (flags & KMEM_CACHE_NOOFFSLAB0x2) | |||||
| 723 | free_slab_size -= sizeof(struct kmem_slab); | |||||
| 724 | ||||||
| 725 | buffers = free_slab_size / buf_size; | |||||
| 726 | waste = free_slab_size % buf_size; | |||||
| 727 | ||||||
| 728 | if (buffers > i) | |||||
| 729 | i = buffers; | |||||
| 730 | ||||||
| 731 | if (flags & KMEM_CACHE_NOOFFSLAB0x2) | |||||
| 732 | embed = 1; | |||||
| 733 | else if (sizeof(struct kmem_slab) <= waste) { | |||||
| 734 | embed = 1; | |||||
| 735 | waste -= sizeof(struct kmem_slab); | |||||
| 736 | } else { | |||||
| 737 | embed = 0; | |||||
| 738 | } | |||||
| 739 | ||||||
| 740 | if (waste <= waste_min) { | |||||
| 741 | waste_min = waste; | |||||
| 742 | optimal_size = slab_size; | |||||
| 743 | optimal_embed = embed; | |||||
| 744 | } | |||||
| 745 | } while ((buffers < KMEM_MIN_BUFS_PER_SLAB8) | |||||
| 746 | && (slab_size < KMEM_SLAB_SIZE_THRESHOLD(8 * (1 << 12)))); | |||||
| 747 | ||||||
| 748 | assert(!(flags & KMEM_CACHE_NOOFFSLAB) || optimal_embed)({ if (!(!(flags & 0x2) || optimal_embed)) Assert("!(flags & KMEM_CACHE_NOOFFSLAB) || optimal_embed" , "../kern/slab.c", 748); }); | |||||
| 749 | ||||||
| 750 | cache->slab_size = optimal_size; | |||||
| 751 | slab_size = cache->slab_size - (optimal_embed | |||||
| 752 | ? sizeof(struct kmem_slab) | |||||
| 753 | : 0); | |||||
| 754 | cache->bufs_per_slab = slab_size / buf_size; | |||||
| 755 | cache->color_max = slab_size % buf_size; | |||||
| 756 | ||||||
| 757 | if (cache->color_max >= PAGE_SIZE(1 << 12)) | |||||
| 758 | cache->color_max = PAGE_SIZE(1 << 12) - 1; | |||||
| 759 | ||||||
| 760 | if (optimal_embed) { | |||||
| 761 | if (cache->slab_size == PAGE_SIZE(1 << 12)) | |||||
| 762 | cache->flags |= KMEM_CF_DIRECT0x10; | |||||
| 763 | } else { | |||||
| 764 | cache->flags |= KMEM_CF_SLAB_EXTERNAL0x02; | |||||
| 765 | } | |||||
| 766 | } | |||||
| 767 | ||||||
| 768 | void kmem_cache_init(struct kmem_cache *cache, const char *name, | |||||
| 769 | size_t obj_size, size_t align, kmem_cache_ctor_t ctor, | |||||
| 770 | kmem_slab_alloc_fn_t slab_alloc_fn, | |||||
| 771 | kmem_slab_free_fn_t slab_free_fn, int flags) | |||||
| 772 | { | |||||
| 773 | #if SLAB_USE_CPU_POOLS0 | |||||
| 774 | struct kmem_cpu_pool_type *cpu_pool_type; | |||||
| 775 | size_t i; | |||||
| 776 | #endif /* SLAB_USE_CPU_POOLS */ | |||||
| 777 | size_t buf_size; | |||||
| 778 | ||||||
| 779 | #if SLAB_VERIFY0 | |||||
| 780 | cache->flags = KMEM_CF_VERIFY0x08; | |||||
| 781 | #else /* SLAB_VERIFY */ | |||||
| 782 | cache->flags = 0; | |||||
| 783 | #endif /* SLAB_VERIFY */ | |||||
| 784 | ||||||
| 785 | if (flags & KMEM_CACHE_NOCPUPOOL0x1) | |||||
| 786 | cache->flags |= KMEM_CF_NO_CPU_POOL0x01; | |||||
| 787 | ||||||
| 788 | if (flags & KMEM_CACHE_NORECLAIM0x4) { | |||||
| 789 | assert(slab_free_fn == NULL)({ if (!(slab_free_fn == ((void *) 0))) Assert("slab_free_fn == NULL" , "../kern/slab.c", 789); }); | |||||
| 790 | flags |= KMEM_CACHE_NOOFFSLAB0x2; | |||||
| 791 | cache->flags |= KMEM_CF_NO_RECLAIM0x04; | |||||
| 792 | } | |||||
| 793 | ||||||
| 794 | if (flags & KMEM_CACHE_VERIFY0x8) | |||||
| 795 | cache->flags |= KMEM_CF_VERIFY0x08; | |||||
| 796 | ||||||
| 797 | if (align < KMEM_ALIGN_MIN8) | |||||
| 798 | align = KMEM_ALIGN_MIN8; | |||||
| 799 | ||||||
| 800 | assert(obj_size > 0)({ if (!(obj_size > 0)) Assert("obj_size > 0", "../kern/slab.c" , 800); }); | |||||
| 801 | assert(ISP2(align))({ if (!((((align) & ((align) - 1)) == 0))) Assert("ISP2(align)" , "../kern/slab.c", 801); }); | |||||
| 802 | assert(align < PAGE_SIZE)({ if (!(align < (1 << 12))) Assert("align < PAGE_SIZE" , "../kern/slab.c", 802); }); | |||||
| 803 | ||||||
| 804 | buf_size = P2ROUND(obj_size, align)(-(-(obj_size) & -(align))); | |||||
| 805 | ||||||
| 806 | simple_lock_init(&cache->lock); | |||||
| 807 | list_node_init(&cache->node); | |||||
| 808 | list_init(&cache->partial_slabs); | |||||
| 809 | list_init(&cache->free_slabs); | |||||
| 810 | rbtree_init(&cache->active_slabs); | |||||
| 811 | cache->obj_size = obj_size; | |||||
| 812 | cache->align = align; | |||||
| 813 | cache->buf_size = buf_size; | |||||
| 814 | cache->bufctl_dist = buf_size - sizeof(union kmem_bufctl); | |||||
| 815 | cache->color = 0; | |||||
| 816 | cache->nr_objs = 0; | |||||
| 817 | cache->nr_bufs = 0; | |||||
| 818 | cache->nr_slabs = 0; | |||||
| 819 | cache->nr_free_slabs = 0; | |||||
| 820 | cache->ctor = ctor; | |||||
| 821 | cache->slab_alloc_fn = slab_alloc_fn; | |||||
| 822 | cache->slab_free_fn = slab_free_fn; | |||||
| 823 | strncpy(cache->name, name, sizeof(cache->name)); | |||||
| 824 | cache->name[sizeof(cache->name) - 1] = '\0'; | |||||
| 825 | cache->buftag_dist = 0; | |||||
| 826 | cache->redzone_pad = 0; | |||||
| 827 | ||||||
| 828 | if (cache->flags & KMEM_CF_VERIFY0x08) { | |||||
| 829 | cache->bufctl_dist = buf_size; | |||||
| 830 | cache->buftag_dist = cache->bufctl_dist + sizeof(union kmem_bufctl); | |||||
| 831 | cache->redzone_pad = cache->bufctl_dist - cache->obj_size; | |||||
| 832 | buf_size += sizeof(union kmem_bufctl) + sizeof(struct kmem_buftag); | |||||
| 833 | buf_size = P2ROUND(buf_size, align)(-(-(buf_size) & -(align))); | |||||
| 834 | cache->buf_size = buf_size; | |||||
| 835 | } | |||||
| 836 | ||||||
| 837 | kmem_cache_compute_sizes(cache, flags); | |||||
| 838 | ||||||
| 839 | #if SLAB_USE_CPU_POOLS0 | |||||
| 840 | for (cpu_pool_type = kmem_cpu_pool_types; | |||||
| 841 | buf_size <= cpu_pool_type->buf_size; | |||||
| 842 | cpu_pool_type++); | |||||
| 843 | ||||||
| 844 | cache->cpu_pool_type = cpu_pool_type; | |||||
| 845 | ||||||
| 846 | for (i = 0; i < ARRAY_SIZE(cache->cpu_pools)(sizeof(cache->cpu_pools) / sizeof((cache->cpu_pools)[0 ])); i++) | |||||
| 847 | kmem_cpu_pool_init(&cache->cpu_pools[i], cache); | |||||
| 848 | #endif /* SLAB_USE_CPU_POOLS */ | |||||
| 849 | ||||||
| 850 | simple_lock(&kmem_cache_list_lock); | |||||
| 851 | list_insert_tail(&kmem_cache_list, &cache->node); | |||||
| 852 | kmem_nr_caches++; | |||||
| 853 | simple_unlock(&kmem_cache_list_lock)((void)(&kmem_cache_list_lock)); | |||||
| 854 | } | |||||
| 855 | ||||||
| 856 | static inline int kmem_cache_empty(struct kmem_cache *cache) | |||||
| 857 | { | |||||
| 858 | return cache->nr_objs == cache->nr_bufs; | |||||
| 859 | } | |||||
| 860 | ||||||
| 861 | static int kmem_cache_grow(struct kmem_cache *cache) | |||||
| 862 | { | |||||
| 863 | struct kmem_slab *slab; | |||||
| 864 | size_t color; | |||||
| 865 | int empty; | |||||
| 866 | ||||||
| 867 | simple_lock(&cache->lock); | |||||
| 868 | ||||||
| 869 | if (!kmem_cache_empty(cache)) { | |||||
| 870 | simple_unlock(&cache->lock)((void)(&cache->lock)); | |||||
| 871 | return 1; | |||||
| 872 | } | |||||
| 873 | ||||||
| 874 | color = cache->color; | |||||
| 875 | cache->color += cache->align; | |||||
| 876 | ||||||
| 877 | if (cache->color > cache->color_max) | |||||
| 878 | cache->color = 0; | |||||
| 879 | ||||||
| 880 | simple_unlock(&cache->lock)((void)(&cache->lock)); | |||||
| 881 | ||||||
| 882 | slab = kmem_slab_create(cache, color); | |||||
| 883 | ||||||
| 884 | simple_lock(&cache->lock); | |||||
| 885 | ||||||
| 886 | if (slab != NULL((void *) 0)) { | |||||
| 887 | list_insert_head(&cache->free_slabs, &slab->list_node); | |||||
| 888 | cache->nr_bufs += cache->bufs_per_slab; | |||||
| 889 | cache->nr_slabs++; | |||||
| 890 | cache->nr_free_slabs++; | |||||
| 891 | } | |||||
| 892 | ||||||
| 893 | /* | |||||
| 894 | * Even if our slab creation failed, another thread might have succeeded | |||||
| 895 | * in growing the cache. | |||||
| 896 | */ | |||||
| 897 | empty = kmem_cache_empty(cache); | |||||
| 898 | ||||||
| 899 | simple_unlock(&cache->lock)((void)(&cache->lock)); | |||||
| 900 | ||||||
| 901 | return !empty; | |||||
| 902 | } | |||||
| 903 | ||||||
| 904 | static void kmem_cache_reap(struct kmem_cache *cache) | |||||
| 905 | { | |||||
| 906 | struct kmem_slab *slab; | |||||
| 907 | struct list dead_slabs; | |||||
| 908 | unsigned long nr_free_slabs; | |||||
| 909 | ||||||
| 910 | if (cache->flags & KMEM_CF_NO_RECLAIM0x04) | |||||
| 911 | return; | |||||
| 912 | ||||||
| 913 | simple_lock(&cache->lock); | |||||
| 914 | list_set_head(&dead_slabs, &cache->free_slabs); | |||||
| 915 | list_init(&cache->free_slabs); | |||||
| 916 | nr_free_slabs = cache->nr_free_slabs; | |||||
| 917 | cache->nr_bufs -= cache->bufs_per_slab * nr_free_slabs; | |||||
| 918 | cache->nr_slabs -= nr_free_slabs; | |||||
| 919 | cache->nr_free_slabs = 0; | |||||
| 920 | simple_unlock(&cache->lock)((void)(&cache->lock)); | |||||
| 921 | ||||||
| 922 | while (!list_empty(&dead_slabs)) { | |||||
| 923 | slab = list_first_entry(&dead_slabs, struct kmem_slab, list_node)((struct kmem_slab *)((char *)list_first(&dead_slabs) - __builtin_offsetof (struct kmem_slab, list_node))); | |||||
| 924 | list_remove(&slab->list_node); | |||||
| 925 | kmem_slab_destroy(slab, cache); | |||||
| 926 | nr_free_slabs--; | |||||
| 927 | } | |||||
| 928 | ||||||
| 929 | assert(nr_free_slabs == 0)({ if (!(nr_free_slabs == 0)) Assert("nr_free_slabs == 0", "../kern/slab.c" , 929); }); | |||||
| 930 | } | |||||
| 931 | ||||||
| 932 | /* | |||||
| 933 | * Allocate a raw (unconstructed) buffer from the slab layer of a cache. | |||||
| 934 | * | |||||
| 935 | * The cache must be locked before calling this function. | |||||
| 936 | */ | |||||
| 937 | static void * kmem_cache_alloc_from_slab(struct kmem_cache *cache) | |||||
| 938 | { | |||||
| 939 | struct kmem_slab *slab; | |||||
| 940 | union kmem_bufctl *bufctl; | |||||
| 941 | ||||||
| 942 | if (!list_empty(&cache->partial_slabs)) | |||||
| 943 | slab = list_first_entry(&cache->partial_slabs, struct kmem_slab,((struct kmem_slab *)((char *)list_first(&cache->partial_slabs ) - __builtin_offsetof (struct kmem_slab, list_node))) | |||||
| 944 | list_node)((struct kmem_slab *)((char *)list_first(&cache->partial_slabs ) - __builtin_offsetof (struct kmem_slab, list_node))); | |||||
| 945 | else if (!list_empty(&cache->free_slabs)) | |||||
| 946 | slab = list_first_entry(&cache->free_slabs, struct kmem_slab,((struct kmem_slab *)((char *)list_first(&cache->free_slabs ) - __builtin_offsetof (struct kmem_slab, list_node))) | |||||
| 947 | list_node)((struct kmem_slab *)((char *)list_first(&cache->free_slabs ) - __builtin_offsetof (struct kmem_slab, list_node))); | |||||
| 948 | else | |||||
| 949 | return NULL((void *) 0); | |||||
| 950 | ||||||
| 951 | bufctl = slab->first_free; | |||||
| 952 | assert(bufctl != NULL)({ if (!(bufctl != ((void *) 0))) Assert("bufctl != NULL", "../kern/slab.c" , 952); }); | |||||
| 953 | slab->first_free = bufctl->next; | |||||
| 954 | slab->nr_refs++; | |||||
| 955 | cache->nr_objs++; | |||||
| 956 | ||||||
| 957 | if (slab->nr_refs == cache->bufs_per_slab) { | |||||
| 958 | /* The slab has become complete */ | |||||
| 959 | list_remove(&slab->list_node); | |||||
| 960 | ||||||
| 961 | if (slab->nr_refs == 1) | |||||
| 962 | cache->nr_free_slabs--; | |||||
| 963 | } else if (slab->nr_refs == 1) { | |||||
| 964 | /* | |||||
| 965 | * The slab has become partial. Insert the new slab at the end of | |||||
| 966 | * the list to reduce fragmentation. | |||||
| 967 | */ | |||||
| 968 | list_remove(&slab->list_node); | |||||
| 969 | list_insert_tail(&cache->partial_slabs, &slab->list_node); | |||||
| 970 | cache->nr_free_slabs--; | |||||
| 971 | } | |||||
| 972 | ||||||
| 973 | if ((slab->nr_refs == 1) && kmem_slab_use_tree(cache->flags)) | |||||
| 974 | rbtree_insert(&cache->active_slabs, &slab->tree_node,({ struct rbtree_node *___cur, *___prev; int ___diff, ___index ; ___prev = ((void *) 0); ___index = -1; ___cur = (&cache ->active_slabs)->root; while (___cur != ((void *) 0)) { ___diff = kmem_slab_cmp_insert(&slab->tree_node, ___cur ); ({ if (!(___diff != 0)) Assert("___diff != 0", "../kern/slab.c" , 975); }); ___prev = ___cur; ___index = rbtree_d2i(___diff); ___cur = ___cur->children[___index]; } rbtree_insert_rebalance (&cache->active_slabs, ___prev, ___index, &slab-> tree_node); }) | |||||
| 975 | kmem_slab_cmp_insert)({ struct rbtree_node *___cur, *___prev; int ___diff, ___index ; ___prev = ((void *) 0); ___index = -1; ___cur = (&cache ->active_slabs)->root; while (___cur != ((void *) 0)) { ___diff = kmem_slab_cmp_insert(&slab->tree_node, ___cur ); ({ if (!(___diff != 0)) Assert("___diff != 0", "../kern/slab.c" , 975); }); ___prev = ___cur; ___index = rbtree_d2i(___diff); ___cur = ___cur->children[___index]; } rbtree_insert_rebalance (&cache->active_slabs, ___prev, ___index, &slab-> tree_node); }); | |||||
| 976 | ||||||
| 977 | return kmem_bufctl_to_buf(bufctl, cache); | |||||
| 978 | } | |||||
| 979 | ||||||
| 980 | /* | |||||
| 981 | * Release a buffer to the slab layer of a cache. | |||||
| 982 | * | |||||
| 983 | * The cache must be locked before calling this function. | |||||
| 984 | */ | |||||
| 985 | static void kmem_cache_free_to_slab(struct kmem_cache *cache, void *buf) | |||||
| 986 | { | |||||
| 987 | struct kmem_slab *slab; | |||||
| 988 | union kmem_bufctl *bufctl; | |||||
| 989 | ||||||
| 990 | if (cache->flags & KMEM_CF_DIRECT0x10) { | |||||
| 991 | assert(cache->slab_size == PAGE_SIZE)({ if (!(cache->slab_size == (1 << 12))) Assert("cache->slab_size == PAGE_SIZE" , "../kern/slab.c", 991); }); | |||||
| 992 | slab = (struct kmem_slab *)P2END((unsigned long)buf, cache->slab_size)(-(~((unsigned long)buf) & -(cache->slab_size))) | |||||
| 993 | - 1; | |||||
| 994 | } else { | |||||
| 995 | struct rbtree_node *node; | |||||
| 996 | ||||||
| 997 | node = rbtree_lookup_nearest(&cache->active_slabs, buf,({ struct rbtree_node *___cur, *___prev; int ___diff, ___index ; ___prev = ((void *) 0); ___index = -1; ___cur = (&cache ->active_slabs)->root; while (___cur != ((void *) 0)) { ___diff = kmem_slab_cmp_lookup(buf, ___cur); if (___diff == 0 ) break; ___prev = ___cur; ___index = rbtree_d2i(___diff); ___cur = ___cur->children[___index]; } if (___cur == ((void *) 0 )) ___cur = rbtree_nearest(___prev, ___index, 0); ___cur; }) | |||||
| 998 | kmem_slab_cmp_lookup, RBTREE_LEFT)({ struct rbtree_node *___cur, *___prev; int ___diff, ___index ; ___prev = ((void *) 0); ___index = -1; ___cur = (&cache ->active_slabs)->root; while (___cur != ((void *) 0)) { ___diff = kmem_slab_cmp_lookup(buf, ___cur); if (___diff == 0 ) break; ___prev = ___cur; ___index = rbtree_d2i(___diff); ___cur = ___cur->children[___index]; } if (___cur == ((void *) 0 )) ___cur = rbtree_nearest(___prev, ___index, 0); ___cur; }); | |||||
| 999 | assert(node != NULL)({ if (!(node != ((void *) 0))) Assert("node != NULL", "../kern/slab.c" , 999); }); | |||||
| 1000 | slab = rbtree_entry(node, struct kmem_slab, tree_node)((struct kmem_slab *)((char *)node - __builtin_offsetof (struct kmem_slab, tree_node))); | |||||
| 1001 | assert((unsigned long)buf < (P2ALIGN((unsigned long)slab->addr({ if (!((unsigned long)buf < ((((unsigned long)slab->addr + cache->slab_size) & -((1 << 12)))))) Assert("(unsigned long)buf < (P2ALIGN((unsigned long)slab->addr + cache->slab_size, PAGE_SIZE))" , "../kern/slab.c", 1002); }) | |||||
| 1002 | + cache->slab_size, PAGE_SIZE)))({ if (!((unsigned long)buf < ((((unsigned long)slab->addr + cache->slab_size) & -((1 << 12)))))) Assert("(unsigned long)buf < (P2ALIGN((unsigned long)slab->addr + cache->slab_size, PAGE_SIZE))" , "../kern/slab.c", 1002); }); | |||||
| 1003 | } | |||||
| 1004 | ||||||
| 1005 | assert(slab->nr_refs >= 1)({ if (!(slab->nr_refs >= 1)) Assert("slab->nr_refs >= 1" , "../kern/slab.c", 1005); }); | |||||
| 1006 | assert(slab->nr_refs <= cache->bufs_per_slab)({ if (!(slab->nr_refs <= cache->bufs_per_slab)) Assert ("slab->nr_refs <= cache->bufs_per_slab", "../kern/slab.c" , 1006); }); | |||||
| 1007 | bufctl = kmem_buf_to_bufctl(buf, cache); | |||||
| 1008 | bufctl->next = slab->first_free; | |||||
| 1009 | slab->first_free = bufctl; | |||||
| 1010 | slab->nr_refs--; | |||||
| 1011 | cache->nr_objs--; | |||||
| 1012 | ||||||
| 1013 | if (slab->nr_refs == 0) { | |||||
| 1014 | /* The slab has become free */ | |||||
| 1015 | ||||||
| 1016 | if (kmem_slab_use_tree(cache->flags)) | |||||
| 1017 | rbtree_remove(&cache->active_slabs, &slab->tree_node); | |||||
| 1018 | ||||||
| 1019 | if (cache->bufs_per_slab > 1) | |||||
| 1020 | list_remove(&slab->list_node); | |||||
| 1021 | ||||||
| 1022 | list_insert_head(&cache->free_slabs, &slab->list_node); | |||||
| 1023 | cache->nr_free_slabs++; | |||||
| 1024 | } else if (slab->nr_refs == (cache->bufs_per_slab - 1)) { | |||||
| 1025 | /* The slab has become partial */ | |||||
| 1026 | list_insert_head(&cache->partial_slabs, &slab->list_node); | |||||
| 1027 | } | |||||
| 1028 | } | |||||
| 1029 | ||||||
| 1030 | static void kmem_cache_alloc_verify(struct kmem_cache *cache, void *buf, | |||||
| 1031 | int construct) | |||||
| 1032 | { | |||||
| 1033 | struct kmem_buftag *buftag; | |||||
| 1034 | union kmem_bufctl *bufctl; | |||||
| 1035 | void *addr; | |||||
| 1036 | ||||||
| 1037 | buftag = kmem_buf_to_buftag(buf, cache); | |||||
| 1038 | ||||||
| 1039 | if (buftag->state != KMEM_BUFTAG_FREE0x0cb1eef4UL) | |||||
| 1040 | kmem_cache_error(cache, buf, KMEM_ERR_BUFTAG2, buftag); | |||||
| 1041 | ||||||
| 1042 | addr = kmem_buf_verify_fill(buf, KMEM_FREE_PATTERN0xefbeaddeefbeaddeULL, KMEM_UNINIT_PATTERN0xfecaddbafecaddbaULL, | |||||
| 1043 | cache->bufctl_dist); | |||||
| 1044 | ||||||
| 1045 | if (addr != NULL((void *) 0)) | |||||
| 1046 | kmem_cache_error(cache, buf, KMEM_ERR_MODIFIED3, addr); | |||||
| 1047 | ||||||
| 1048 | addr = buf + cache->obj_size; | |||||
| 1049 | memset(addr, KMEM_REDZONE_BYTE0xbb, cache->redzone_pad); | |||||
| 1050 | ||||||
| 1051 | bufctl = kmem_buf_to_bufctl(buf, cache); | |||||
| 1052 | bufctl->redzone = KMEM_REDZONE_WORD0xcefaedfeUL; | |||||
| 1053 | buftag->state = KMEM_BUFTAG_ALLOC0xedc810a1UL; | |||||
| 1054 | ||||||
| 1055 | if (construct && (cache->ctor != NULL((void *) 0))) | |||||
| 1056 | cache->ctor(buf); | |||||
| 1057 | } | |||||
| 1058 | ||||||
| 1059 | vm_offset_t kmem_cache_alloc(struct kmem_cache *cache) | |||||
| 1060 | { | |||||
| 1061 | int filled; | |||||
| 1062 | void *buf; | |||||
| 1063 | ||||||
| 1064 | #if SLAB_USE_CPU_POOLS0 | |||||
| 1065 | struct kmem_cpu_pool *cpu_pool; | |||||
| 1066 | ||||||
| 1067 | cpu_pool = kmem_cpu_pool_get(cache); | |||||
| 1068 | ||||||
| 1069 | if (cpu_pool->flags & KMEM_CF_NO_CPU_POOL0x01) | |||||
| 1070 | goto slab_alloc; | |||||
| 1071 | ||||||
| 1072 | simple_lock(&cpu_pool->lock); | |||||
| 1073 | ||||||
| 1074 | fast_alloc: | |||||
| 1075 | if (likely(cpu_pool->nr_objs > 0)__builtin_expect(!!(cpu_pool->nr_objs > 0), 1)) { | |||||
| 1076 | buf = kmem_cpu_pool_pop(cpu_pool); | |||||
| 1077 | simple_unlock(&cpu_pool->lock)((void)(&cpu_pool->lock)); | |||||
| 1078 | ||||||
| 1079 | if (cpu_pool->flags & KMEM_CF_VERIFY0x08) | |||||
| 1080 | kmem_cache_alloc_verify(cache, buf, KMEM_AV_CONSTRUCT1); | |||||
| 1081 | ||||||
| 1082 | return (vm_offset_t)buf; | |||||
| 1083 | } | |||||
| 1084 | ||||||
| 1085 | if (cpu_pool->array != NULL((void *) 0)) { | |||||
| 1086 | filled = kmem_cpu_pool_fill(cpu_pool, cache); | |||||
| 1087 | ||||||
| 1088 | if (!filled) { | |||||
| 1089 | simple_unlock(&cpu_pool->lock)((void)(&cpu_pool->lock)); | |||||
| 1090 | ||||||
| 1091 | filled = kmem_cache_grow(cache); | |||||
| 1092 | ||||||
| 1093 | if (!filled) | |||||
| 1094 | return 0; | |||||
| 1095 | ||||||
| 1096 | simple_lock(&cpu_pool->lock); | |||||
| 1097 | } | |||||
| 1098 | ||||||
| 1099 | goto fast_alloc; | |||||
| 1100 | } | |||||
| 1101 | ||||||
| 1102 | simple_unlock(&cpu_pool->lock)((void)(&cpu_pool->lock)); | |||||
| 1103 | #endif /* SLAB_USE_CPU_POOLS */ | |||||
| 1104 | ||||||
| 1105 | slab_alloc: | |||||
| 1106 | simple_lock(&cache->lock); | |||||
| 1107 | buf = kmem_cache_alloc_from_slab(cache); | |||||
| 1108 | simple_unlock(&cache->lock)((void)(&cache->lock)); | |||||
| 1109 | ||||||
| 1110 | if (buf == NULL((void *) 0)) { | |||||
| 1111 | filled = kmem_cache_grow(cache); | |||||
| 1112 | ||||||
| 1113 | if (!filled) | |||||
| 1114 | return 0; | |||||
| 1115 | ||||||
| 1116 | goto slab_alloc; | |||||
| 1117 | } | |||||
| 1118 | ||||||
| 1119 | if (cache->flags & KMEM_CF_VERIFY0x08) | |||||
| 1120 | kmem_cache_alloc_verify(cache, buf, KMEM_AV_NOCONSTRUCT0); | |||||
| 1121 | ||||||
| 1122 | if (cache->ctor != NULL((void *) 0)) | |||||
| 1123 | cache->ctor(buf); | |||||
| 1124 | ||||||
| 1125 | return (vm_offset_t)buf; | |||||
| 1126 | } | |||||
| 1127 | ||||||
| 1128 | static void kmem_cache_free_verify(struct kmem_cache *cache, void *buf) | |||||
| 1129 | { | |||||
| 1130 | struct rbtree_node *node; | |||||
| 1131 | struct kmem_buftag *buftag; | |||||
| 1132 | struct kmem_slab *slab; | |||||
| 1133 | union kmem_bufctl *bufctl; | |||||
| 1134 | unsigned char *redzone_byte; | |||||
| 1135 | unsigned long slabend; | |||||
| 1136 | ||||||
| 1137 | simple_lock(&cache->lock); | |||||
| 1138 | node = rbtree_lookup_nearest(&cache->active_slabs, buf,({ struct rbtree_node *___cur, *___prev; int ___diff, ___index ; ___prev = ((void *) 0); ___index = -1; ___cur = (&cache ->active_slabs)->root; while (___cur != ((void *) 0)) { ___diff = kmem_slab_cmp_lookup(buf, ___cur); if (___diff == 0 ) break; ___prev = ___cur; ___index = rbtree_d2i(___diff); ___cur = ___cur->children[___index]; } if (___cur == ((void *) 0 )) ___cur = rbtree_nearest(___prev, ___index, 0); ___cur; }) | |||||
| 1139 | kmem_slab_cmp_lookup, RBTREE_LEFT)({ struct rbtree_node *___cur, *___prev; int ___diff, ___index ; ___prev = ((void *) 0); ___index = -1; ___cur = (&cache ->active_slabs)->root; while (___cur != ((void *) 0)) { ___diff = kmem_slab_cmp_lookup(buf, ___cur); if (___diff == 0 ) break; ___prev = ___cur; ___index = rbtree_d2i(___diff); ___cur = ___cur->children[___index]; } if (___cur == ((void *) 0 )) ___cur = rbtree_nearest(___prev, ___index, 0); ___cur; }); | |||||
| 1140 | simple_unlock(&cache->lock)((void)(&cache->lock)); | |||||
| 1141 | ||||||
| 1142 | if (node == NULL((void *) 0)) | |||||
| 1143 | kmem_cache_error(cache, buf, KMEM_ERR_INVALID0, NULL((void *) 0)); | |||||
| 1144 | ||||||
| 1145 | slab = rbtree_entry(node, struct kmem_slab, tree_node)((struct kmem_slab *)((char *)node - __builtin_offsetof (struct kmem_slab, tree_node))); | |||||
| 1146 | slabend = P2ALIGN((unsigned long)slab->addr + cache->slab_size, PAGE_SIZE)(((unsigned long)slab->addr + cache->slab_size) & - ((1 << 12))); | |||||
| ||||||
| 1147 | ||||||
| 1148 | if ((unsigned long)buf >= slabend) | |||||
| 1149 | kmem_cache_error(cache, buf, KMEM_ERR_INVALID0, NULL((void *) 0)); | |||||
| 1150 | ||||||
| 1151 | if ((((unsigned long)buf - (unsigned long)slab->addr) % cache->buf_size) | |||||
| 1152 | != 0) | |||||
| 1153 | kmem_cache_error(cache, buf, KMEM_ERR_INVALID0, NULL((void *) 0)); | |||||
| 1154 | ||||||
| 1155 | /* | |||||
| 1156 | * As the buffer address is valid, accessing its buftag is safe. | |||||
| 1157 | */ | |||||
| 1158 | buftag = kmem_buf_to_buftag(buf, cache); | |||||
| 1159 | ||||||
| 1160 | if (buftag->state != KMEM_BUFTAG_ALLOC0xedc810a1UL) { | |||||
| 1161 | if (buftag->state == KMEM_BUFTAG_FREE0x0cb1eef4UL) | |||||
| 1162 | kmem_cache_error(cache, buf, KMEM_ERR_DOUBLEFREE1, NULL((void *) 0)); | |||||
| 1163 | else | |||||
| 1164 | kmem_cache_error(cache, buf, KMEM_ERR_BUFTAG2, buftag); | |||||
| 1165 | } | |||||
| 1166 | ||||||
| 1167 | redzone_byte = buf + cache->obj_size; | |||||
| 1168 | bufctl = kmem_buf_to_bufctl(buf, cache); | |||||
| 1169 | ||||||
| 1170 | while (redzone_byte < (unsigned char *)bufctl) { | |||||
| 1171 | if (*redzone_byte != KMEM_REDZONE_BYTE0xbb) | |||||
| 1172 | kmem_cache_error(cache, buf, KMEM_ERR_REDZONE4, redzone_byte); | |||||
| 1173 | ||||||
| 1174 | redzone_byte++; | |||||
| 1175 | } | |||||
| 1176 | ||||||
| 1177 | if (bufctl->redzone != KMEM_REDZONE_WORD0xcefaedfeUL) { | |||||
| 1178 | unsigned long word; | |||||
| 1179 | ||||||
| 1180 | word = KMEM_REDZONE_WORD0xcefaedfeUL; | |||||
| 1181 | redzone_byte = kmem_buf_verify_bytes(&bufctl->redzone, &word, | |||||
| 1182 | sizeof(bufctl->redzone)); | |||||
| 1183 | kmem_cache_error(cache, buf, KMEM_ERR_REDZONE4, redzone_byte); | |||||
| 1184 | } | |||||
| 1185 | ||||||
| 1186 | kmem_buf_fill(buf, KMEM_FREE_PATTERN0xefbeaddeefbeaddeULL, cache->bufctl_dist); | |||||
| 1187 | buftag->state = KMEM_BUFTAG_FREE0x0cb1eef4UL; | |||||
| 1188 | } | |||||
| 1189 | ||||||
| 1190 | void kmem_cache_free(struct kmem_cache *cache, vm_offset_t obj) | |||||
| 1191 | { | |||||
| 1192 | #if SLAB_USE_CPU_POOLS0 | |||||
| 1193 | struct kmem_cpu_pool *cpu_pool; | |||||
| 1194 | void **array; | |||||
| 1195 | ||||||
| 1196 | cpu_pool = kmem_cpu_pool_get(cache); | |||||
| 1197 | ||||||
| 1198 | if (cpu_pool->flags & KMEM_CF_VERIFY0x08) { | |||||
| 1199 | #else /* SLAB_USE_CPU_POOLS */ | |||||
| 1200 | if (cache->flags & KMEM_CF_VERIFY0x08) { | |||||
| 1201 | #endif /* SLAB_USE_CPU_POOLS */ | |||||
| 1202 | kmem_cache_free_verify(cache, (void *)obj); | |||||
| 1203 | } | |||||
| 1204 | ||||||
| 1205 | #if SLAB_USE_CPU_POOLS0 | |||||
| 1206 | if (cpu_pool->flags & KMEM_CF_NO_CPU_POOL0x01) | |||||
| 1207 | goto slab_free; | |||||
| 1208 | ||||||
| 1209 | simple_lock(&cpu_pool->lock); | |||||
| 1210 | ||||||
| 1211 | fast_free: | |||||
| 1212 | if (likely(cpu_pool->nr_objs < cpu_pool->size)__builtin_expect(!!(cpu_pool->nr_objs < cpu_pool->size ), 1)) { | |||||
| 1213 | kmem_cpu_pool_push(cpu_pool, (void *)obj); | |||||
| 1214 | simple_unlock(&cpu_pool->lock)((void)(&cpu_pool->lock)); | |||||
| 1215 | return; | |||||
| 1216 | } | |||||
| 1217 | ||||||
| 1218 | if (cpu_pool->array != NULL((void *) 0)) { | |||||
| 1219 | kmem_cpu_pool_drain(cpu_pool, cache); | |||||
| 1220 | goto fast_free; | |||||
| 1221 | } | |||||
| 1222 | ||||||
| 1223 | simple_unlock(&cpu_pool->lock)((void)(&cpu_pool->lock)); | |||||
| 1224 | ||||||
| 1225 | array = (void *)kmem_cache_alloc(cache->cpu_pool_type->array_cache); | |||||
| 1226 | ||||||
| 1227 | if (array != NULL((void *) 0)) { | |||||
| 1228 | simple_lock(&cpu_pool->lock); | |||||
| 1229 | ||||||
| 1230 | /* | |||||
| 1231 | * Another thread may have built the CPU pool while the lock was | |||||
| 1232 | * dropped. | |||||
| 1233 | */ | |||||
| 1234 | if (cpu_pool->array != NULL((void *) 0)) { | |||||
| 1235 | simple_unlock(&cpu_pool->lock)((void)(&cpu_pool->lock)); | |||||
| 1236 | kmem_cache_free(cache->cpu_pool_type->array_cache, | |||||
| 1237 | (vm_offset_t)array); | |||||
| 1238 | simple_lock(&cpu_pool->lock); | |||||
| 1239 | goto fast_free; | |||||
| 1240 | } | |||||
| 1241 | ||||||
| 1242 | kmem_cpu_pool_build(cpu_pool, cache, array); | |||||
| 1243 | goto fast_free; | |||||
| 1244 | } | |||||
| 1245 | ||||||
| 1246 | slab_free: | |||||
| 1247 | #endif /* SLAB_USE_CPU_POOLS */ | |||||
| 1248 | ||||||
| 1249 | simple_lock(&cache->lock); | |||||
| 1250 | kmem_cache_free_to_slab(cache, (void *)obj); | |||||
| 1251 | simple_unlock(&cache->lock)((void)(&cache->lock)); | |||||
| 1252 | } | |||||
| 1253 | ||||||
| 1254 | void slab_collect(void) | |||||
| 1255 | { | |||||
| 1256 | struct kmem_cache *cache; | |||||
| 1257 | ||||||
| 1258 | if (elapsed_ticks <= (kmem_gc_last_tick + KMEM_GC_INTERVAL(5 * hz))) | |||||
| 1259 | return; | |||||
| 1260 | ||||||
| 1261 | kmem_gc_last_tick = elapsed_ticks; | |||||
| 1262 | ||||||
| 1263 | simple_lock(&kmem_cache_list_lock); | |||||
| 1264 | ||||||
| 1265 | list_for_each_entry(&kmem_cache_list, cache, node)for (cache = ((typeof(*cache) *)((char *)list_first(&kmem_cache_list ) - __builtin_offsetof (typeof(*cache), node))); !list_end(& kmem_cache_list, &cache->node); cache = ((typeof(*cache ) *)((char *)list_next(&cache->node) - __builtin_offsetof (typeof(*cache), node)))) | |||||
| 1266 | kmem_cache_reap(cache); | |||||
| 1267 | ||||||
| 1268 | simple_unlock(&kmem_cache_list_lock)((void)(&kmem_cache_list_lock)); | |||||
| 1269 | } | |||||
| 1270 | ||||||
| 1271 | void slab_bootstrap(void) | |||||
| 1272 | { | |||||
| 1273 | /* Make sure a bufctl can always be stored in a buffer */ | |||||
| 1274 | assert(sizeof(union kmem_bufctl) <= KMEM_ALIGN_MIN)({ if (!(sizeof(union kmem_bufctl) <= 8)) Assert("sizeof(union kmem_bufctl) <= KMEM_ALIGN_MIN" , "../kern/slab.c", 1274); }); | |||||
| 1275 | ||||||
| 1276 | list_init(&kmem_cache_list); | |||||
| 1277 | simple_lock_init(&kmem_cache_list_lock); | |||||
| 1278 | } | |||||
| 1279 | ||||||
| 1280 | void slab_init(void) | |||||
| 1281 | { | |||||
| 1282 | vm_offset_t min, max; | |||||
| 1283 | ||||||
| 1284 | #if SLAB_USE_CPU_POOLS0 | |||||
| 1285 | struct kmem_cpu_pool_type *cpu_pool_type; | |||||
| 1286 | char name[KMEM_CACHE_NAME_SIZE32]; | |||||
| 1287 | size_t i, size; | |||||
| 1288 | #endif /* SLAB_USE_CPU_POOLS */ | |||||
| 1289 | ||||||
| 1290 | kmem_submap(kmem_map, kernel_map, &min, &max, KMEM_MAP_SIZE(128 * 1024 * 1024), FALSE((boolean_t) 0)); | |||||
| 1291 | ||||||
| 1292 | #if SLAB_USE_CPU_POOLS0 | |||||
| 1293 | for (i = 0; i < ARRAY_SIZE(kmem_cpu_pool_types)(sizeof(kmem_cpu_pool_types) / sizeof((kmem_cpu_pool_types)[0 ])); i++) { | |||||
| 1294 | cpu_pool_type = &kmem_cpu_pool_types[i]; | |||||
| 1295 | cpu_pool_type->array_cache = &kmem_cpu_array_caches[i]; | |||||
| 1296 | sprintf(name, "kmem_cpu_array_%d", cpu_pool_type->array_size); | |||||
| 1297 | size = sizeof(void *) * cpu_pool_type->array_size; | |||||
| 1298 | kmem_cache_init(cpu_pool_type->array_cache, name, size, | |||||
| 1299 | cpu_pool_type->array_align, NULL((void *) 0), NULL((void *) 0), NULL((void *) 0), 0); | |||||
| 1300 | } | |||||
| 1301 | #endif /* SLAB_USE_CPU_POOLS */ | |||||
| 1302 | ||||||
| 1303 | /* | |||||
| 1304 | * Prevent off slab data for the slab cache to avoid infinite recursion. | |||||
| 1305 | */ | |||||
| 1306 | kmem_cache_init(&kmem_slab_cache, "kmem_slab", sizeof(struct kmem_slab), | |||||
| 1307 | 0, NULL((void *) 0), NULL((void *) 0), NULL((void *) 0), KMEM_CACHE_NOOFFSLAB0x2); | |||||
| 1308 | } | |||||
| 1309 | ||||||
| 1310 | static vm_offset_t kalloc_pagealloc(vm_size_t size) | |||||
| 1311 | { | |||||
| 1312 | vm_offset_t addr; | |||||
| 1313 | kern_return_t kr; | |||||
| 1314 | ||||||
| 1315 | kr = kmem_alloc_wired(kmem_map, &addr, size); | |||||
| 1316 | ||||||
| 1317 | if (kr != KERN_SUCCESS0) | |||||
| 1318 | return 0; | |||||
| 1319 | ||||||
| 1320 | return addr; | |||||
| 1321 | } | |||||
| 1322 | ||||||
| 1323 | static void kalloc_pagefree(vm_offset_t ptr, vm_size_t size) | |||||
| 1324 | { | |||||
| 1325 | kmem_free(kmem_map, ptr, size); | |||||
| 1326 | } | |||||
| 1327 | ||||||
| 1328 | void kalloc_init(void) | |||||
| 1329 | { | |||||
| 1330 | char name[KMEM_CACHE_NAME_SIZE32]; | |||||
| 1331 | size_t i, size; | |||||
| 1332 | ||||||
| 1333 | size = 1 << KALLOC_FIRST_SHIFT5; | |||||
| 1334 | ||||||
| 1335 | for (i = 0; i < ARRAY_SIZE(kalloc_caches)(sizeof(kalloc_caches) / sizeof((kalloc_caches)[0])); i++) { | |||||
| 1336 | sprintf(name, "kalloc_%lu", size); | |||||
| 1337 | kmem_cache_init(&kalloc_caches[i], name, size, 0, NULL((void *) 0), | |||||
| 1338 | kalloc_pagealloc, kalloc_pagefree, 0); | |||||
| 1339 | size <<= 1; | |||||
| 1340 | } | |||||
| 1341 | } | |||||
| 1342 | ||||||
| 1343 | /* | |||||
| 1344 | * Return the kalloc cache index matching the given allocation size, which | |||||
| 1345 | * must be strictly greater than 0. | |||||
| 1346 | */ | |||||
| 1347 | static inline size_t kalloc_get_index(unsigned long size) | |||||
| 1348 | { | |||||
| 1349 | assert(size != 0)({ if (!(size != 0)) Assert("size != 0", "../kern/slab.c", 1349 ); }); | |||||
| 1350 | ||||||
| 1351 | size = (size - 1) >> KALLOC_FIRST_SHIFT5; | |||||
| 1352 | ||||||
| 1353 | if (size == 0) | |||||
| 1354 | return 0; | |||||
| 1355 | else | |||||
| 1356 | return (sizeof(long) * 8) - __builtin_clzl(size); | |||||
| 1357 | } | |||||
| 1358 | ||||||
| 1359 | static void kalloc_verify(struct kmem_cache *cache, void *buf, size_t size) | |||||
| 1360 | { | |||||
| 1361 | size_t redzone_size; | |||||
| 1362 | void *redzone; | |||||
| 1363 | ||||||
| 1364 | assert(size <= cache->obj_size)({ if (!(size <= cache->obj_size)) Assert("size <= cache->obj_size" , "../kern/slab.c", 1364); }); | |||||
| 1365 | ||||||
| 1366 | redzone = buf + size; | |||||
| 1367 | redzone_size = cache->obj_size - size; | |||||
| 1368 | memset(redzone, KMEM_REDZONE_BYTE0xbb, redzone_size); | |||||
| 1369 | } | |||||
| 1370 | ||||||
| 1371 | vm_offset_t kalloc(vm_size_t size) | |||||
| 1372 | { | |||||
| 1373 | size_t index; | |||||
| 1374 | void *buf; | |||||
| 1375 | ||||||
| 1376 | if (size == 0) | |||||
| 1377 | return 0; | |||||
| 1378 | ||||||
| 1379 | index = kalloc_get_index(size); | |||||
| 1380 | ||||||
| 1381 | if (index < ARRAY_SIZE(kalloc_caches)(sizeof(kalloc_caches) / sizeof((kalloc_caches)[0]))) { | |||||
| 1382 | struct kmem_cache *cache; | |||||
| 1383 | ||||||
| 1384 | cache = &kalloc_caches[index]; | |||||
| 1385 | buf = (void *)kmem_cache_alloc(cache); | |||||
| 1386 | ||||||
| 1387 | if ((buf != 0) && (cache->flags & KMEM_CF_VERIFY0x08)) | |||||
| 1388 | kalloc_verify(cache, buf, size); | |||||
| 1389 | } else | |||||
| 1390 | buf = (void *)kalloc_pagealloc(size); | |||||
| 1391 | ||||||
| 1392 | return (vm_offset_t)buf; | |||||
| 1393 | } | |||||
| 1394 | ||||||
| 1395 | static void kfree_verify(struct kmem_cache *cache, void *buf, size_t size) | |||||
| 1396 | { | |||||
| 1397 | unsigned char *redzone_byte, *redzone_end; | |||||
| 1398 | ||||||
| 1399 | assert(size <= cache->obj_size)({ if (!(size <= cache->obj_size)) Assert("size <= cache->obj_size" , "../kern/slab.c", 1399); }); | |||||
| 1400 | ||||||
| 1401 | redzone_byte = buf + size; | |||||
| 1402 | redzone_end = buf + cache->obj_size; | |||||
| 1403 | ||||||
| 1404 | while (redzone_byte < redzone_end) { | |||||
| 1405 | if (*redzone_byte != KMEM_REDZONE_BYTE0xbb) | |||||
| 1406 | kmem_cache_error(cache, buf, KMEM_ERR_REDZONE4, redzone_byte); | |||||
| 1407 | ||||||
| 1408 | redzone_byte++; | |||||
| 1409 | } | |||||
| 1410 | } | |||||
| 1411 | ||||||
| 1412 | void kfree(vm_offset_t data, vm_size_t size) | |||||
| 1413 | { | |||||
| 1414 | size_t index; | |||||
| 1415 | ||||||
| 1416 | if ((data == 0) || (size == 0)) | |||||
| ||||||
| 1417 | return; | |||||
| 1418 | ||||||
| 1419 | index = kalloc_get_index(size); | |||||
| 1420 | ||||||
| 1421 | if (index < ARRAY_SIZE(kalloc_caches)(sizeof(kalloc_caches) / sizeof((kalloc_caches)[0]))) { | |||||
| 1422 | struct kmem_cache *cache; | |||||
| 1423 | ||||||
| 1424 | cache = &kalloc_caches[index]; | |||||
| 1425 | ||||||
| 1426 | if (cache->flags & KMEM_CF_VERIFY0x08) | |||||
| 1427 | kfree_verify(cache, (void *)data, size); | |||||
| 1428 | ||||||
| 1429 | kmem_cache_free(cache, data); | |||||
| 1430 | } else { | |||||
| 1431 | kalloc_pagefree(data, size); | |||||
| 1432 | } | |||||
| 1433 | } | |||||
| 1434 | ||||||
| 1435 | void slab_info(void) | |||||
| 1436 | { | |||||
| 1437 | struct kmem_cache *cache; | |||||
| 1438 | vm_size_t mem_usage, mem_reclaimable; | |||||
| 1439 | ||||||
| 1440 | printf("cache obj slab bufs objs bufs " | |||||
| 1441 | " total reclaimable\n" | |||||
| 1442 | "name size size /slab usage count " | |||||
| 1443 | " memory memory\n"); | |||||
| 1444 | ||||||
| 1445 | simple_lock(&kmem_cache_list_lock); | |||||
| 1446 | ||||||
| 1447 | list_for_each_entry(&kmem_cache_list, cache, node)for (cache = ((typeof(*cache) *)((char *)list_first(&kmem_cache_list ) - __builtin_offsetof (typeof(*cache), node))); !list_end(& kmem_cache_list, &cache->node); cache = ((typeof(*cache ) *)((char *)list_next(&cache->node) - __builtin_offsetof (typeof(*cache), node)))) { | |||||
| 1448 | simple_lock(&cache->lock); | |||||
| 1449 | ||||||
| 1450 | mem_usage = (cache->nr_slabs * cache->slab_size) >> 10; | |||||
| 1451 | mem_reclaimable = (cache->nr_free_slabs * cache->slab_size) >> 10; | |||||
| 1452 | ||||||
| 1453 | printf("%-19s %6lu %3luk %4lu %6lu %6lu %7uk %10uk\n", | |||||
| 1454 | cache->name, cache->obj_size, cache->slab_size >> 10, | |||||
| 1455 | cache->bufs_per_slab, cache->nr_objs, cache->nr_bufs, | |||||
| 1456 | mem_usage, mem_reclaimable); | |||||
| 1457 | ||||||
| 1458 | simple_unlock(&cache->lock)((void)(&cache->lock)); | |||||
| 1459 | } | |||||
| 1460 | ||||||
| 1461 | simple_unlock(&kmem_cache_list_lock)((void)(&kmem_cache_list_lock)); | |||||
| 1462 | } | |||||
| 1463 | ||||||
| 1464 | #if MACH_DEBUG1 | |||||
| 1465 | kern_return_t host_slab_info(host_t host, cache_info_array_t *infop, | |||||
| 1466 | unsigned int *infoCntp) | |||||
| 1467 | { | |||||
| 1468 | struct kmem_cache *cache; | |||||
| 1469 | cache_info_t *info; | |||||
| 1470 | unsigned int i, nr_caches; | |||||
| 1471 | vm_size_t info_size = 0; | |||||
| 1472 | kern_return_t kr; | |||||
| 1473 | ||||||
| 1474 | if (host == HOST_NULL((host_t)0)) | |||||
| 1475 | return KERN_INVALID_HOST22; | |||||
| 1476 | ||||||
| 1477 | /* | |||||
| 1478 | * Assume the cache list is unaltered once the kernel is ready. | |||||
| 1479 | */ | |||||
| 1480 | ||||||
| 1481 | simple_lock(&kmem_cache_list_lock); | |||||
| 1482 | nr_caches = kmem_nr_caches; | |||||
| 1483 | simple_unlock(&kmem_cache_list_lock)((void)(&kmem_cache_list_lock)); | |||||
| 1484 | ||||||
| 1485 | if (nr_caches <= *infoCntp) | |||||
| 1486 | info = *infop; | |||||
| 1487 | else { | |||||
| 1488 | vm_offset_t info_addr; | |||||
| 1489 | ||||||
| 1490 | info_size = round_page(nr_caches * sizeof(*info))((vm_offset_t)((((vm_offset_t)(nr_caches * sizeof(*info))) + ( (1 << 12)-1)) & ~((1 << 12)-1))); | |||||
| 1491 | kr = kmem_alloc_pageable(ipc_kernel_map, &info_addr, info_size); | |||||
| 1492 | ||||||
| 1493 | if (kr != KERN_SUCCESS0) | |||||
| 1494 | return kr; | |||||
| 1495 | ||||||
| 1496 | info = (cache_info_t *)info_addr; | |||||
| 1497 | } | |||||
| 1498 | ||||||
| 1499 | if (info == NULL((void *) 0)) | |||||
| 1500 | return KERN_RESOURCE_SHORTAGE6; | |||||
| 1501 | ||||||
| 1502 | i = 0; | |||||
| 1503 | ||||||
| 1504 | list_for_each_entry(&kmem_cache_list, cache, node)for (cache = ((typeof(*cache) *)((char *)list_first(&kmem_cache_list ) - __builtin_offsetof (typeof(*cache), node))); !list_end(& kmem_cache_list, &cache->node); cache = ((typeof(*cache ) *)((char *)list_next(&cache->node) - __builtin_offsetof (typeof(*cache), node)))) { | |||||
| 1505 | simple_lock(&cache_lock); | |||||
| 1506 | info[i].flags = ((cache->flags & KMEM_CF_NO_CPU_POOL0x01) | |||||
| 1507 | ? CACHE_FLAGS_NO_CPU_POOL0x01 : 0) | |||||
| 1508 | | ((cache->flags & KMEM_CF_SLAB_EXTERNAL0x02) | |||||
| 1509 | ? CACHE_FLAGS_SLAB_EXTERNAL0x02 : 0) | |||||
| 1510 | | ((cache->flags & KMEM_CF_NO_RECLAIM0x04) | |||||
| 1511 | ? CACHE_FLAGS_NO_RECLAIM0x04 : 0) | |||||
| 1512 | | ((cache->flags & KMEM_CF_VERIFY0x08) | |||||
| 1513 | ? CACHE_FLAGS_VERIFY0x08 : 0) | |||||
| 1514 | | ((cache->flags & KMEM_CF_DIRECT0x10) | |||||
| 1515 | ? CACHE_FLAGS_DIRECT0x10 : 0); | |||||
| 1516 | #if SLAB_USE_CPU_POOLS0 | |||||
| 1517 | info[i].cpu_pool_size = cache->cpu_pool_type->array_size; | |||||
| 1518 | #else /* SLAB_USE_CPU_POOLS */ | |||||
| 1519 | info[i].cpu_pool_size = 0; | |||||
| 1520 | #endif /* SLAB_USE_CPU_POOLS */ | |||||
| 1521 | info[i].obj_size = cache->obj_size; | |||||
| 1522 | info[i].align = cache->align; | |||||
| 1523 | info[i].buf_size = cache->buf_size; | |||||
| 1524 | info[i].slab_size = cache->slab_size; | |||||
| 1525 | info[i].bufs_per_slab = cache->bufs_per_slab; | |||||
| 1526 | info[i].nr_objs = cache->nr_objs; | |||||
| 1527 | info[i].nr_bufs = cache->nr_bufs; | |||||
| 1528 | info[i].nr_slabs = cache->nr_slabs; | |||||
| 1529 | info[i].nr_free_slabs = cache->nr_free_slabs; | |||||
| 1530 | strncpy(info[i].name, cache->name, sizeof(info[i].name)); | |||||
| 1531 | info[i].name[sizeof(info[i].name) - 1] = '\0'; | |||||
| 1532 | simple_unlock(&cache->lock)((void)(&cache->lock)); | |||||
| 1533 | ||||||
| 1534 | i++; | |||||
| 1535 | } | |||||
| 1536 | ||||||
| 1537 | if (info != *infop) { | |||||
| 1538 | vm_map_copy_t copy; | |||||
| 1539 | vm_size_t used; | |||||
| 1540 | ||||||
| 1541 | used = nr_caches * sizeof(*info); | |||||
| 1542 | ||||||
| 1543 | if (used != info_size) | |||||
| 1544 | memset((char *)info + used, 0, info_size - used); | |||||
| 1545 | ||||||
| 1546 | kr = vm_map_copyin(ipc_kernel_map, (vm_offset_t)info, used, TRUE((boolean_t) 1), | |||||
| 1547 | ©); | |||||
| 1548 | ||||||
| 1549 | assert(kr == KERN_SUCCESS)({ if (!(kr == 0)) Assert("kr == KERN_SUCCESS", "../kern/slab.c" , 1549); }); | |||||
| 1550 | *infop = (cache_info_t *)copy; | |||||
| 1551 | } | |||||
| 1552 | ||||||
| 1553 | *infoCntp = nr_caches; | |||||
| 1554 | ||||||
| 1555 | return KERN_SUCCESS0; | |||||
| 1556 | } | |||||
| 1557 | #endif /* MACH_DEBUG */ |