| File: | obj-scan-build/../vm/vm_fault.c |
| Location: | line 724, column 5 |
| Description: | Value stored to 'offset' is never read |
| 1 | /* |
| 2 | * Mach Operating System |
| 3 | * Copyright (c) 1994,1990,1989,1988,1987 Carnegie Mellon University. |
| 4 | * Copyright (c) 1993,1994 The University of Utah and |
| 5 | * the Computer Systems Laboratory (CSL). |
| 6 | * All rights reserved. |
| 7 | * |
| 8 | * Permission to use, copy, modify and distribute this software and its |
| 9 | * documentation is hereby granted, provided that both the copyright |
| 10 | * notice and this permission notice appear in all copies of the |
| 11 | * software, derivative works or modified versions, and any portions |
| 12 | * thereof, and that both notices appear in supporting documentation. |
| 13 | * |
| 14 | * CARNEGIE MELLON, THE UNIVERSITY OF UTAH AND CSL ALLOW FREE USE OF |
| 15 | * THIS SOFTWARE IN ITS "AS IS" CONDITION, AND DISCLAIM ANY LIABILITY |
| 16 | * OF ANY KIND FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF |
| 17 | * THIS SOFTWARE. |
| 18 | * |
| 19 | * Carnegie Mellon requests users of this software to return to |
| 20 | * |
| 21 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU |
| 22 | * School of Computer Science |
| 23 | * Carnegie Mellon University |
| 24 | * Pittsburgh PA 15213-3890 |
| 25 | * |
| 26 | * any improvements or extensions that they make and grant Carnegie Mellon |
| 27 | * the rights to redistribute these changes. |
| 28 | */ |
| 29 | /* |
| 30 | * File: vm_fault.c |
| 31 | * Author: Avadis Tevanian, Jr., Michael Wayne Young |
| 32 | * |
| 33 | * Page fault handling module. |
| 34 | */ |
| 35 | |
| 36 | #include <kern/printf.h> |
| 37 | #include <vm/vm_fault.h> |
| 38 | #include <mach/kern_return.h> |
| 39 | #include <mach/message.h> /* for error codes */ |
| 40 | #include <kern/counters.h> |
| 41 | #include <kern/debug.h> |
| 42 | #include <kern/thread.h> |
| 43 | #include <kern/sched_prim.h> |
| 44 | #include <vm/vm_map.h> |
| 45 | #include <vm/vm_object.h> |
| 46 | #include <vm/vm_page.h> |
| 47 | #include <vm/pmap.h> |
| 48 | #include <mach/vm_statistics.h> |
| 49 | #include <vm/vm_pageout.h> |
| 50 | #include <mach/vm_param.h> |
| 51 | #include <mach/memory_object.h> |
| 52 | #include <vm/memory_object_user.user.h> |
| 53 | /* For memory_object_data_{request,unlock} */ |
| 54 | #include <kern/macro_help.h> |
| 55 | #include <kern/slab.h> |
| 56 | |
| 57 | #if MACH_PCSAMPLE1 |
| 58 | #include <kern/pc_sample.h> |
| 59 | #endif |
| 60 | |
| 61 | |
| 62 | |
| 63 | /* |
| 64 | * State needed by vm_fault_continue. |
| 65 | * This is a little hefty to drop directly |
| 66 | * into the thread structure. |
| 67 | */ |
| 68 | typedef struct vm_fault_state { |
| 69 | struct vm_map *vmf_map; |
| 70 | vm_offset_t vmf_vaddr; |
| 71 | vm_prot_t vmf_fault_type; |
| 72 | boolean_t vmf_change_wiring; |
| 73 | void (*vmf_continuation)(); |
| 74 | vm_map_version_t vmf_version; |
| 75 | boolean_t vmf_wired; |
| 76 | struct vm_object *vmf_object; |
| 77 | vm_offset_t vmf_offset; |
| 78 | vm_prot_t vmf_prot; |
| 79 | |
| 80 | boolean_t vmfp_backoff; |
| 81 | struct vm_object *vmfp_object; |
| 82 | vm_offset_t vmfp_offset; |
| 83 | struct vm_page *vmfp_first_m; |
| 84 | vm_prot_t vmfp_access; |
| 85 | } vm_fault_state_t; |
| 86 | |
| 87 | struct kmem_cache vm_fault_state_cache; |
| 88 | |
| 89 | int vm_object_absent_max = 50; |
| 90 | |
| 91 | boolean_t vm_fault_dirty_handling = FALSE((boolean_t) 0); |
| 92 | boolean_t vm_fault_interruptible = TRUE((boolean_t) 1); |
| 93 | |
| 94 | boolean_t software_reference_bits = TRUE((boolean_t) 1); |
| 95 | |
| 96 | #if MACH_KDB0 |
| 97 | extern struct db_watchpoint *db_watchpoint_list; |
| 98 | #endif /* MACH_KDB */ |
| 99 | |
| 100 | /* |
| 101 | * Routine: vm_fault_init |
| 102 | * Purpose: |
| 103 | * Initialize our private data structures. |
| 104 | */ |
| 105 | void vm_fault_init(void) |
| 106 | { |
| 107 | kmem_cache_init(&vm_fault_state_cache, "vm_fault_state", |
| 108 | sizeof(vm_fault_state_t), 0, NULL((void *) 0), NULL((void *) 0), NULL((void *) 0), 0); |
| 109 | } |
| 110 | |
| 111 | /* |
| 112 | * Routine: vm_fault_cleanup |
| 113 | * Purpose: |
| 114 | * Clean up the result of vm_fault_page. |
| 115 | * Results: |
| 116 | * The paging reference for "object" is released. |
| 117 | * "object" is unlocked. |
| 118 | * If "top_page" is not null, "top_page" is |
| 119 | * freed and the paging reference for the object |
| 120 | * containing it is released. |
| 121 | * |
| 122 | * In/out conditions: |
| 123 | * "object" must be locked. |
| 124 | */ |
| 125 | void |
| 126 | vm_fault_cleanup(object, top_page) |
| 127 | vm_object_t object; |
| 128 | vm_page_t top_page; |
| 129 | { |
| 130 | vm_object_paging_end(object)({ ({ if (!((object)->paging_in_progress != 0)) Assert("(object)->paging_in_progress != 0" , "../vm/vm_fault.c", 130); }); if (--(object)->paging_in_progress == 0) { ({ if ((object)->all_wanted & (1 << (2) )) thread_wakeup_prim(((event_t)(((vm_offset_t) object) + (2) )), ((boolean_t) 0), 0); (object)->all_wanted &= ~(1 << (2)); }); } }); |
| 131 | vm_object_unlock(object)((void)(&(object)->Lock)); |
| 132 | |
| 133 | if (top_page != VM_PAGE_NULL((vm_page_t) 0)) { |
| 134 | object = top_page->object; |
| 135 | vm_object_lock(object); |
| 136 | VM_PAGE_FREE(top_page)({ ; vm_page_free(top_page); ((void)(&vm_page_queue_lock) ); }); |
| 137 | vm_object_paging_end(object)({ ({ if (!((object)->paging_in_progress != 0)) Assert("(object)->paging_in_progress != 0" , "../vm/vm_fault.c", 137); }); if (--(object)->paging_in_progress == 0) { ({ if ((object)->all_wanted & (1 << (2) )) thread_wakeup_prim(((event_t)(((vm_offset_t) object) + (2) )), ((boolean_t) 0), 0); (object)->all_wanted &= ~(1 << (2)); }); } }); |
| 138 | vm_object_unlock(object)((void)(&(object)->Lock)); |
| 139 | } |
| 140 | } |
| 141 | |
| 142 | |
| 143 | #if MACH_PCSAMPLE1 |
| 144 | /* |
| 145 | * Do PC sampling on current thread, assuming |
| 146 | * that it is the thread taking this page fault. |
| 147 | * |
| 148 | * Must check for THREAD_NULL, since faults |
| 149 | * can occur before threads are running. |
| 150 | */ |
| 151 | |
| 152 | #define vm_stat_sample(flavor)({ thread_t _thread_ = (active_threads[(0)]); if (_thread_ != ((thread_t) 0)) ({ task_t task; if ((_thread_)->pc_sample .sampletypes & ((flavor))) take_pc_sample((_thread_), & (_thread_)->pc_sample, ((flavor))); task = (_thread_)-> task; if (task->pc_sample.sampletypes & ((flavor))) take_pc_sample ((_thread_), &task->pc_sample, ((flavor))); }); }) \ |
| 153 | MACRO_BEGIN({ \ |
| 154 | thread_t _thread_ = current_thread()(active_threads[(0)]); \ |
| 155 | \ |
| 156 | if (_thread_ != THREAD_NULL((thread_t) 0)) \ |
| 157 | take_pc_sample_macro(_thread_, (flavor))({ task_t task; if ((_thread_)->pc_sample.sampletypes & ((flavor))) take_pc_sample((_thread_), &(_thread_)->pc_sample , ((flavor))); task = (_thread_)->task; if (task->pc_sample .sampletypes & ((flavor))) take_pc_sample((_thread_), & task->pc_sample, ((flavor))); }); \ |
| 158 | MACRO_END}) |
| 159 | |
| 160 | #else |
| 161 | #define vm_stat_sample(x)({ thread_t _thread_ = (active_threads[(0)]); if (_thread_ != ((thread_t) 0)) ({ task_t task; if ((_thread_)->pc_sample .sampletypes & ((x))) take_pc_sample((_thread_), &(_thread_ )->pc_sample, ((x))); task = (_thread_)->task; if (task ->pc_sample.sampletypes & ((x))) take_pc_sample((_thread_ ), &task->pc_sample, ((x))); }); }) |
| 162 | #endif /* MACH_PCSAMPLE */ |
| 163 | |
| 164 | |
| 165 | |
| 166 | /* |
| 167 | * Routine: vm_fault_page |
| 168 | * Purpose: |
| 169 | * Find the resident page for the virtual memory |
| 170 | * specified by the given virtual memory object |
| 171 | * and offset. |
| 172 | * Additional arguments: |
| 173 | * The required permissions for the page is given |
| 174 | * in "fault_type". Desired permissions are included |
| 175 | * in "protection". |
| 176 | * |
| 177 | * If the desired page is known to be resident (for |
| 178 | * example, because it was previously wired down), asserting |
| 179 | * the "unwiring" parameter will speed the search. |
| 180 | * |
| 181 | * If the operation can be interrupted (by thread_abort |
| 182 | * or thread_terminate), then the "interruptible" |
| 183 | * parameter should be asserted. |
| 184 | * |
| 185 | * Results: |
| 186 | * The page containing the proper data is returned |
| 187 | * in "result_page". |
| 188 | * |
| 189 | * In/out conditions: |
| 190 | * The source object must be locked and referenced, |
| 191 | * and must donate one paging reference. The reference |
| 192 | * is not affected. The paging reference and lock are |
| 193 | * consumed. |
| 194 | * |
| 195 | * If the call succeeds, the object in which "result_page" |
| 196 | * resides is left locked and holding a paging reference. |
| 197 | * If this is not the original object, a busy page in the |
| 198 | * original object is returned in "top_page", to prevent other |
| 199 | * callers from pursuing this same data, along with a paging |
| 200 | * reference for the original object. The "top_page" should |
| 201 | * be destroyed when this guarantee is no longer required. |
| 202 | * The "result_page" is also left busy. It is not removed |
| 203 | * from the pageout queues. |
| 204 | */ |
| 205 | vm_fault_return_t vm_fault_page(first_object, first_offset, |
| 206 | fault_type, must_be_resident, interruptible, |
| 207 | protection, |
| 208 | result_page, top_page, |
| 209 | resume, continuation) |
| 210 | /* Arguments: */ |
| 211 | vm_object_t first_object; /* Object to begin search */ |
| 212 | vm_offset_t first_offset; /* Offset into object */ |
| 213 | vm_prot_t fault_type; /* What access is requested */ |
| 214 | boolean_t must_be_resident;/* Must page be resident? */ |
| 215 | boolean_t interruptible; /* May fault be interrupted? */ |
| 216 | /* Modifies in place: */ |
| 217 | vm_prot_t *protection; /* Protection for mapping */ |
| 218 | /* Returns: */ |
| 219 | vm_page_t *result_page; /* Page found, if successful */ |
| 220 | vm_page_t *top_page; /* Page in top object, if |
| 221 | * not result_page. |
| 222 | */ |
| 223 | /* More arguments: */ |
| 224 | boolean_t resume; /* We are restarting. */ |
| 225 | void (*continuation)(); /* Continuation for blocking. */ |
| 226 | { |
| 227 | vm_page_t m; |
| 228 | vm_object_t object; |
| 229 | vm_offset_t offset; |
| 230 | vm_page_t first_m; |
| 231 | vm_object_t next_object; |
| 232 | vm_object_t copy_object; |
| 233 | boolean_t look_for_page; |
| 234 | vm_prot_t access_required; |
| 235 | |
| 236 | if (resume) { |
| 237 | vm_fault_state_t *state = |
| 238 | (vm_fault_state_t *) current_thread()(active_threads[(0)])->ith_othersaved.other; |
| 239 | |
| 240 | if (state->vmfp_backoff) |
| 241 | goto after_block_and_backoff; |
| 242 | |
| 243 | object = state->vmfp_object; |
| 244 | offset = state->vmfp_offset; |
| 245 | first_m = state->vmfp_first_m; |
| 246 | access_required = state->vmfp_access; |
| 247 | goto after_thread_block; |
| 248 | } |
| 249 | |
| 250 | vm_stat_sample(SAMPLED_PC_VM_FAULTS_ANY)({ thread_t _thread_ = (active_threads[(0)]); if (_thread_ != ((thread_t) 0)) ({ task_t task; if ((_thread_)->pc_sample .sampletypes & ((0x100))) take_pc_sample((_thread_), & (_thread_)->pc_sample, ((0x100))); task = (_thread_)->task ; if (task->pc_sample.sampletypes & ((0x100))) take_pc_sample ((_thread_), &task->pc_sample, ((0x100))); }); }); |
| 251 | vm_stat.faults++; /* needs lock XXX */ |
| 252 | current_task()((active_threads[(0)])->task)->faults++; |
| 253 | |
| 254 | /* |
| 255 | * Recovery actions |
| 256 | */ |
| 257 | #define RELEASE_PAGE(m){ ({ (m)->busy = ((boolean_t) 0); if ((m)->wanted) { (m )->wanted = ((boolean_t) 0); thread_wakeup_prim((((event_t ) m)), ((boolean_t) 0), 0); } }); ; vm_page_unwire(m); ((void )(&vm_page_queue_lock)); } \ |
| 258 | MACRO_BEGIN({ \ |
| 259 | PAGE_WAKEUP_DONE(m)({ (m)->busy = ((boolean_t) 0); if ((m)->wanted) { (m)-> wanted = ((boolean_t) 0); thread_wakeup_prim((((event_t) m)), ((boolean_t) 0), 0); } }); \ |
| 260 | vm_page_lock_queues(); \ |
| 261 | if (!m->active && !m->inactive) \ |
| 262 | vm_page_activate(m); \ |
| 263 | vm_page_unlock_queues()((void)(&vm_page_queue_lock)); \ |
| 264 | MACRO_END}) |
| 265 | |
| 266 | if (vm_fault_dirty_handling |
| 267 | #if MACH_KDB0 |
| 268 | /* |
| 269 | * If there are watchpoints set, then |
| 270 | * we don't want to give away write permission |
| 271 | * on a read fault. Make the task write fault, |
| 272 | * so that the watchpoint code notices the access. |
| 273 | */ |
| 274 | || db_watchpoint_list |
| 275 | #endif /* MACH_KDB */ |
| 276 | ) { |
| 277 | /* |
| 278 | * If we aren't asking for write permission, |
| 279 | * then don't give it away. We're using write |
| 280 | * faults to set the dirty bit. |
| 281 | */ |
| 282 | if (!(fault_type & VM_PROT_WRITE((vm_prot_t) 0x02))) |
| 283 | *protection &= ~VM_PROT_WRITE((vm_prot_t) 0x02); |
| 284 | } |
| 285 | |
| 286 | if (!vm_fault_interruptible) |
| 287 | interruptible = FALSE((boolean_t) 0); |
| 288 | |
| 289 | /* |
| 290 | * INVARIANTS (through entire routine): |
| 291 | * |
| 292 | * 1) At all times, we must either have the object |
| 293 | * lock or a busy page in some object to prevent |
| 294 | * some other thread from trying to bring in |
| 295 | * the same page. |
| 296 | * |
| 297 | * Note that we cannot hold any locks during the |
| 298 | * pager access or when waiting for memory, so |
| 299 | * we use a busy page then. |
| 300 | * |
| 301 | * Note also that we aren't as concerned about more than |
| 302 | * one thread attempting to memory_object_data_unlock |
| 303 | * the same page at once, so we don't hold the page |
| 304 | * as busy then, but do record the highest unlock |
| 305 | * value so far. [Unlock requests may also be delivered |
| 306 | * out of order.] |
| 307 | * |
| 308 | * 2) To prevent another thread from racing us down the |
| 309 | * shadow chain and entering a new page in the top |
| 310 | * object before we do, we must keep a busy page in |
| 311 | * the top object while following the shadow chain. |
| 312 | * |
| 313 | * 3) We must increment paging_in_progress on any object |
| 314 | * for which we have a busy page, to prevent |
| 315 | * vm_object_collapse from removing the busy page |
| 316 | * without our noticing. |
| 317 | * |
| 318 | * 4) We leave busy pages on the pageout queues. |
| 319 | * If the pageout daemon comes across a busy page, |
| 320 | * it will remove the page from the pageout queues. |
| 321 | */ |
| 322 | |
| 323 | /* |
| 324 | * Search for the page at object/offset. |
| 325 | */ |
| 326 | |
| 327 | object = first_object; |
| 328 | offset = first_offset; |
| 329 | first_m = VM_PAGE_NULL((vm_page_t) 0); |
| 330 | access_required = fault_type; |
| 331 | |
| 332 | /* |
| 333 | * See whether this page is resident |
| 334 | */ |
| 335 | |
| 336 | while (TRUE((boolean_t) 1)) { |
| 337 | m = vm_page_lookup(object, offset); |
| 338 | if (m != VM_PAGE_NULL((vm_page_t) 0)) { |
| 339 | /* |
| 340 | * If the page is being brought in, |
| 341 | * wait for it and then retry. |
| 342 | * |
| 343 | * A possible optimization: if the page |
| 344 | * is known to be resident, we can ignore |
| 345 | * pages that are absent (regardless of |
| 346 | * whether they're busy). |
| 347 | */ |
| 348 | |
| 349 | if (m->busy) { |
| 350 | kern_return_t wait_result; |
| 351 | |
| 352 | PAGE_ASSERT_WAIT(m, interruptible)({ (m)->wanted = ((boolean_t) 1); assert_wait((event_t) (m ), (interruptible)); }); |
| 353 | vm_object_unlock(object)((void)(&(object)->Lock)); |
| 354 | if (continuation != (void (*)()) 0) { |
| 355 | vm_fault_state_t *state = |
| 356 | (vm_fault_state_t *) current_thread()(active_threads[(0)])->ith_othersaved.other; |
| 357 | |
| 358 | /* |
| 359 | * Save variables in case |
| 360 | * thread_block discards |
| 361 | * our kernel stack. |
| 362 | */ |
| 363 | |
| 364 | state->vmfp_backoff = FALSE((boolean_t) 0); |
| 365 | state->vmfp_object = object; |
| 366 | state->vmfp_offset = offset; |
| 367 | state->vmfp_first_m = first_m; |
| 368 | state->vmfp_access = |
| 369 | access_required; |
| 370 | state->vmf_prot = *protection; |
| 371 | |
| 372 | counter(c_vm_fault_page_block_busy_user++); |
| 373 | thread_block(continuation); |
| 374 | } else |
| 375 | { |
| 376 | counter(c_vm_fault_page_block_busy_kernel++); |
| 377 | thread_block((void (*)()) 0); |
| 378 | } |
| 379 | after_thread_block: |
| 380 | wait_result = current_thread()(active_threads[(0)])->wait_result; |
| 381 | vm_object_lock(object); |
| 382 | if (wait_result != THREAD_AWAKENED0) { |
| 383 | vm_fault_cleanup(object, first_m); |
| 384 | if (wait_result == THREAD_RESTART3) |
| 385 | return(VM_FAULT_RETRY1); |
| 386 | else |
| 387 | return(VM_FAULT_INTERRUPTED2); |
| 388 | } |
| 389 | continue; |
| 390 | } |
| 391 | |
| 392 | /* |
| 393 | * If the page is in error, give up now. |
| 394 | */ |
| 395 | |
| 396 | if (m->error) { |
| 397 | VM_PAGE_FREE(m)({ ; vm_page_free(m); ((void)(&vm_page_queue_lock)); }); |
| 398 | vm_fault_cleanup(object, first_m); |
| 399 | return(VM_FAULT_MEMORY_ERROR5); |
| 400 | } |
| 401 | |
| 402 | /* |
| 403 | * If the page isn't busy, but is absent, |
| 404 | * then it was deemed "unavailable". |
| 405 | */ |
| 406 | |
| 407 | if (m->absent) { |
| 408 | /* |
| 409 | * Remove the non-existent page (unless it's |
| 410 | * in the top object) and move on down to the |
| 411 | * next object (if there is one). |
| 412 | */ |
| 413 | |
| 414 | offset += object->shadow_offset; |
| 415 | access_required = VM_PROT_READ((vm_prot_t) 0x01); |
| 416 | next_object = object->shadow; |
| 417 | if (next_object == VM_OBJECT_NULL((vm_object_t) 0)) { |
| 418 | vm_page_t real_m; |
| 419 | |
| 420 | assert(!must_be_resident)({ if (!(!must_be_resident)) Assert("!must_be_resident", "../vm/vm_fault.c" , 420); }); |
| 421 | |
| 422 | /* |
| 423 | * Absent page at bottom of shadow |
| 424 | * chain; zero fill the page we left |
| 425 | * busy in the first object, and flush |
| 426 | * the absent page. But first we |
| 427 | * need to allocate a real page. |
| 428 | */ |
| 429 | |
| 430 | real_m = vm_page_grab(!object->internal); |
| 431 | if (real_m == VM_PAGE_NULL((vm_page_t) 0)) { |
| 432 | vm_fault_cleanup(object, first_m); |
| 433 | return(VM_FAULT_MEMORY_SHORTAGE3); |
| 434 | } |
| 435 | |
| 436 | if (object != first_object) { |
| 437 | VM_PAGE_FREE(m)({ ; vm_page_free(m); ((void)(&vm_page_queue_lock)); }); |
| 438 | vm_object_paging_end(object)({ ({ if (!((object)->paging_in_progress != 0)) Assert("(object)->paging_in_progress != 0" , "../vm/vm_fault.c", 438); }); if (--(object)->paging_in_progress == 0) { ({ if ((object)->all_wanted & (1 << (2) )) thread_wakeup_prim(((event_t)(((vm_offset_t) object) + (2) )), ((boolean_t) 0), 0); (object)->all_wanted &= ~(1 << (2)); }); } }); |
| 439 | vm_object_unlock(object)((void)(&(object)->Lock)); |
| 440 | object = first_object; |
| 441 | offset = first_offset; |
| 442 | m = first_m; |
| 443 | first_m = VM_PAGE_NULL((vm_page_t) 0); |
| 444 | vm_object_lock(object); |
| 445 | } |
| 446 | |
| 447 | VM_PAGE_FREE(m)({ ; vm_page_free(m); ((void)(&vm_page_queue_lock)); }); |
| 448 | assert(real_m->busy)({ if (!(real_m->busy)) Assert("real_m->busy", "../vm/vm_fault.c" , 448); }); |
| 449 | vm_page_lock_queues(); |
| 450 | vm_page_insert(real_m, object, offset); |
| 451 | vm_page_unlock_queues()((void)(&vm_page_queue_lock)); |
| 452 | m = real_m; |
| 453 | |
| 454 | /* |
| 455 | * Drop the lock while zero filling |
| 456 | * page. Then break because this |
| 457 | * is the page we wanted. Checking |
| 458 | * the page lock is a waste of time; |
| 459 | * this page was either absent or |
| 460 | * newly allocated -- in both cases |
| 461 | * it can't be page locked by a pager. |
| 462 | */ |
| 463 | vm_object_unlock(object)((void)(&(object)->Lock)); |
| 464 | |
| 465 | vm_page_zero_fill(m); |
| 466 | |
| 467 | vm_stat_sample(SAMPLED_PC_VM_ZFILL_FAULTS)({ thread_t _thread_ = (active_threads[(0)]); if (_thread_ != ((thread_t) 0)) ({ task_t task; if ((_thread_)->pc_sample .sampletypes & ((0x10))) take_pc_sample((_thread_), & (_thread_)->pc_sample, ((0x10))); task = (_thread_)->task ; if (task->pc_sample.sampletypes & ((0x10))) take_pc_sample ((_thread_), &task->pc_sample, ((0x10))); }); }); |
| 468 | |
| 469 | vm_stat.zero_fill_count++; |
| 470 | current_task()((active_threads[(0)])->task)->zero_fills++; |
| 471 | vm_object_lock(object); |
| 472 | pmap_clear_modify(m->phys_addr); |
| 473 | break; |
| 474 | } else { |
| 475 | if (must_be_resident) { |
| 476 | vm_object_paging_end(object)({ ({ if (!((object)->paging_in_progress != 0)) Assert("(object)->paging_in_progress != 0" , "../vm/vm_fault.c", 476); }); if (--(object)->paging_in_progress == 0) { ({ if ((object)->all_wanted & (1 << (2) )) thread_wakeup_prim(((event_t)(((vm_offset_t) object) + (2) )), ((boolean_t) 0), 0); (object)->all_wanted &= ~(1 << (2)); }); } }); |
| 477 | } else if (object != first_object) { |
| 478 | vm_object_paging_end(object)({ ({ if (!((object)->paging_in_progress != 0)) Assert("(object)->paging_in_progress != 0" , "../vm/vm_fault.c", 478); }); if (--(object)->paging_in_progress == 0) { ({ if ((object)->all_wanted & (1 << (2) )) thread_wakeup_prim(((event_t)(((vm_offset_t) object) + (2) )), ((boolean_t) 0), 0); (object)->all_wanted &= ~(1 << (2)); }); } }); |
| 479 | VM_PAGE_FREE(m)({ ; vm_page_free(m); ((void)(&vm_page_queue_lock)); }); |
| 480 | } else { |
| 481 | first_m = m; |
| 482 | m->absent = FALSE((boolean_t) 0); |
| 483 | vm_object_absent_release(object)({ (object)->absent_count--; ({ if (((object))->all_wanted & (1 << (3))) thread_wakeup_prim(((event_t)(((vm_offset_t ) (object)) + (3))), ((boolean_t) 0), 0); ((object))->all_wanted &= ~(1 << (3)); }); }); |
| 484 | m->busy = TRUE((boolean_t) 1); |
| 485 | |
| 486 | vm_page_lock_queues(); |
| 487 | VM_PAGE_QUEUES_REMOVE(m)({ if (m->active) { { queue_entry_t next, prev; next = (m) ->pageq.next; prev = (m)->pageq.prev; if ((&vm_page_queue_active ) == next) (&vm_page_queue_active)->prev = prev; else ( (vm_page_t)next)->pageq.prev = prev; if ((&vm_page_queue_active ) == prev) (&vm_page_queue_active)->next = next; else ( (vm_page_t)prev)->pageq.next = next; }; m->active = ((boolean_t ) 0); vm_page_active_count--; } if (m->inactive) { { queue_entry_t next, prev; next = (m)->pageq.next; prev = (m)->pageq. prev; if ((&vm_page_queue_inactive) == next) (&vm_page_queue_inactive )->prev = prev; else ((vm_page_t)next)->pageq.prev = prev ; if ((&vm_page_queue_inactive) == prev) (&vm_page_queue_inactive )->next = next; else ((vm_page_t)prev)->pageq.next = next ; }; m->inactive = ((boolean_t) 0); vm_page_inactive_count --; } }); |
| 488 | vm_page_unlock_queues()((void)(&vm_page_queue_lock)); |
| 489 | } |
| 490 | vm_object_lock(next_object); |
| 491 | vm_object_unlock(object)((void)(&(object)->Lock)); |
| 492 | object = next_object; |
| 493 | vm_object_paging_begin(object)((object)->paging_in_progress++); |
| 494 | continue; |
| 495 | } |
| 496 | } |
| 497 | |
| 498 | /* |
| 499 | * If the desired access to this page has |
| 500 | * been locked out, request that it be unlocked. |
| 501 | */ |
| 502 | |
| 503 | if (access_required & m->page_lock) { |
| 504 | if ((access_required & m->unlock_request) != access_required) { |
| 505 | vm_prot_t new_unlock_request; |
| 506 | kern_return_t rc; |
| 507 | |
| 508 | if (!object->pager_ready) { |
| 509 | vm_object_assert_wait(object,({ (object)->all_wanted |= 1 << (1); assert_wait((event_t )(((vm_offset_t) object) + (1)), (interruptible)); }) |
| 510 | VM_OBJECT_EVENT_PAGER_READY,({ (object)->all_wanted |= 1 << (1); assert_wait((event_t )(((vm_offset_t) object) + (1)), (interruptible)); }) |
| 511 | interruptible)({ (object)->all_wanted |= 1 << (1); assert_wait((event_t )(((vm_offset_t) object) + (1)), (interruptible)); }); |
| 512 | goto block_and_backoff; |
| 513 | } |
| 514 | |
| 515 | new_unlock_request = m->unlock_request = |
| 516 | (access_required | m->unlock_request); |
| 517 | vm_object_unlock(object)((void)(&(object)->Lock)); |
| 518 | if ((rc = memory_object_data_unlock( |
| 519 | object->pager, |
| 520 | object->pager_request, |
| 521 | offset + object->paging_offset, |
| 522 | PAGE_SIZE(1 << 12), |
| 523 | new_unlock_request)) |
| 524 | != KERN_SUCCESS0) { |
| 525 | printf("vm_fault: memory_object_data_unlock failed\n"); |
| 526 | vm_object_lock(object); |
| 527 | vm_fault_cleanup(object, first_m); |
| 528 | return((rc == MACH_SEND_INTERRUPTED0x10000007) ? |
| 529 | VM_FAULT_INTERRUPTED2 : |
| 530 | VM_FAULT_MEMORY_ERROR5); |
| 531 | } |
| 532 | vm_object_lock(object); |
| 533 | continue; |
| 534 | } |
| 535 | |
| 536 | PAGE_ASSERT_WAIT(m, interruptible)({ (m)->wanted = ((boolean_t) 1); assert_wait((event_t) (m ), (interruptible)); }); |
| 537 | goto block_and_backoff; |
| 538 | } |
| 539 | |
| 540 | /* |
| 541 | * We mark the page busy and leave it on |
| 542 | * the pageout queues. If the pageout |
| 543 | * deamon comes across it, then it will |
| 544 | * remove the page. |
| 545 | */ |
| 546 | |
| 547 | if (!software_reference_bits) { |
| 548 | vm_page_lock_queues(); |
| 549 | if (m->inactive) { |
| 550 | vm_stat_sample(SAMPLED_PC_VM_REACTIVATION_FAULTS)({ thread_t _thread_ = (active_threads[(0)]); if (_thread_ != ((thread_t) 0)) ({ task_t task; if ((_thread_)->pc_sample .sampletypes & ((0x20))) take_pc_sample((_thread_), & (_thread_)->pc_sample, ((0x20))); task = (_thread_)->task ; if (task->pc_sample.sampletypes & ((0x20))) take_pc_sample ((_thread_), &task->pc_sample, ((0x20))); }); }); |
| 551 | vm_stat.reactivations++; |
| 552 | current_task()((active_threads[(0)])->task)->reactivations++; |
| 553 | } |
| 554 | |
| 555 | VM_PAGE_QUEUES_REMOVE(m)({ if (m->active) { { queue_entry_t next, prev; next = (m) ->pageq.next; prev = (m)->pageq.prev; if ((&vm_page_queue_active ) == next) (&vm_page_queue_active)->prev = prev; else ( (vm_page_t)next)->pageq.prev = prev; if ((&vm_page_queue_active ) == prev) (&vm_page_queue_active)->next = next; else ( (vm_page_t)prev)->pageq.next = next; }; m->active = ((boolean_t ) 0); vm_page_active_count--; } if (m->inactive) { { queue_entry_t next, prev; next = (m)->pageq.next; prev = (m)->pageq. prev; if ((&vm_page_queue_inactive) == next) (&vm_page_queue_inactive )->prev = prev; else ((vm_page_t)next)->pageq.prev = prev ; if ((&vm_page_queue_inactive) == prev) (&vm_page_queue_inactive )->next = next; else ((vm_page_t)prev)->pageq.next = next ; }; m->inactive = ((boolean_t) 0); vm_page_inactive_count --; } }); |
| 556 | vm_page_unlock_queues()((void)(&vm_page_queue_lock)); |
| 557 | } |
| 558 | |
| 559 | assert(!m->busy)({ if (!(!m->busy)) Assert("!m->busy", "../vm/vm_fault.c" , 559); }); |
| 560 | m->busy = TRUE((boolean_t) 1); |
| 561 | assert(!m->absent)({ if (!(!m->absent)) Assert("!m->absent", "../vm/vm_fault.c" , 561); }); |
| 562 | break; |
| 563 | } |
| 564 | |
| 565 | look_for_page = |
| 566 | (object->pager_created) |
| 567 | #if MACH_PAGEMAP1 |
| 568 | && (vm_external_state_get(object->existence_info, offset + object->paging_offset)(((object->existence_info) != ((vm_external_t) 0)) ? _vm_external_state_get (object->existence_info, offset + object->paging_offset ) : 2) != |
| 569 | VM_EXTERNAL_STATE_ABSENT3) |
| 570 | #endif /* MACH_PAGEMAP */ |
| 571 | ; |
| 572 | |
| 573 | if ((look_for_page || (object == first_object)) |
| 574 | && !must_be_resident) { |
| 575 | /* |
| 576 | * Allocate a new page for this object/offset |
| 577 | * pair. |
| 578 | */ |
| 579 | |
| 580 | m = vm_page_grab_fictitious(); |
| 581 | if (m == VM_PAGE_NULL((vm_page_t) 0)) { |
| 582 | vm_fault_cleanup(object, first_m); |
| 583 | return(VM_FAULT_FICTITIOUS_SHORTAGE4); |
| 584 | } |
| 585 | |
| 586 | vm_page_lock_queues(); |
| 587 | vm_page_insert(m, object, offset); |
| 588 | vm_page_unlock_queues()((void)(&vm_page_queue_lock)); |
| 589 | } |
| 590 | |
| 591 | if (look_for_page && !must_be_resident) { |
| 592 | kern_return_t rc; |
| 593 | |
| 594 | /* |
| 595 | * If the memory manager is not ready, we |
| 596 | * cannot make requests. |
| 597 | */ |
| 598 | if (!object->pager_ready) { |
| 599 | vm_object_assert_wait(object,({ (object)->all_wanted |= 1 << (1); assert_wait((event_t )(((vm_offset_t) object) + (1)), (interruptible)); }) |
| 600 | VM_OBJECT_EVENT_PAGER_READY,({ (object)->all_wanted |= 1 << (1); assert_wait((event_t )(((vm_offset_t) object) + (1)), (interruptible)); }) |
| 601 | interruptible)({ (object)->all_wanted |= 1 << (1); assert_wait((event_t )(((vm_offset_t) object) + (1)), (interruptible)); }); |
| 602 | VM_PAGE_FREE(m)({ ; vm_page_free(m); ((void)(&vm_page_queue_lock)); }); |
| 603 | goto block_and_backoff; |
| 604 | } |
| 605 | |
| 606 | if (object->internal) { |
| 607 | /* |
| 608 | * Requests to the default pager |
| 609 | * must reserve a real page in advance, |
| 610 | * because the pager's data-provided |
| 611 | * won't block for pages. |
| 612 | */ |
| 613 | |
| 614 | if (m->fictitious && !vm_page_convert(m, FALSE((boolean_t) 0))) { |
| 615 | VM_PAGE_FREE(m)({ ; vm_page_free(m); ((void)(&vm_page_queue_lock)); }); |
| 616 | vm_fault_cleanup(object, first_m); |
| 617 | return(VM_FAULT_MEMORY_SHORTAGE3); |
| 618 | } |
| 619 | } else if (object->absent_count > |
| 620 | vm_object_absent_max) { |
| 621 | /* |
| 622 | * If there are too many outstanding page |
| 623 | * requests pending on this object, we |
| 624 | * wait for them to be resolved now. |
| 625 | */ |
| 626 | |
| 627 | vm_object_absent_assert_wait(object, interruptible)({ ({ ((object))->all_wanted |= 1 << (3); assert_wait ((event_t)(((vm_offset_t) (object)) + (3)), ((interruptible)) ); }); }); |
| 628 | VM_PAGE_FREE(m)({ ; vm_page_free(m); ((void)(&vm_page_queue_lock)); }); |
| 629 | goto block_and_backoff; |
| 630 | } |
| 631 | |
| 632 | /* |
| 633 | * Indicate that the page is waiting for data |
| 634 | * from the memory manager. |
| 635 | */ |
| 636 | |
| 637 | m->absent = TRUE((boolean_t) 1); |
| 638 | object->absent_count++; |
| 639 | |
| 640 | /* |
| 641 | * We have a busy page, so we can |
| 642 | * release the object lock. |
| 643 | */ |
| 644 | vm_object_unlock(object)((void)(&(object)->Lock)); |
| 645 | |
| 646 | /* |
| 647 | * Call the memory manager to retrieve the data. |
| 648 | */ |
| 649 | |
| 650 | vm_stat.pageins++; |
| 651 | vm_stat_sample(SAMPLED_PC_VM_PAGEIN_FAULTS)({ thread_t _thread_ = (active_threads[(0)]); if (_thread_ != ((thread_t) 0)) ({ task_t task; if ((_thread_)->pc_sample .sampletypes & ((0x40))) take_pc_sample((_thread_), & (_thread_)->pc_sample, ((0x40))); task = (_thread_)->task ; if (task->pc_sample.sampletypes & ((0x40))) take_pc_sample ((_thread_), &task->pc_sample, ((0x40))); }); }); |
| 652 | current_task()((active_threads[(0)])->task)->pageins++; |
| 653 | |
| 654 | if ((rc = memory_object_data_request(object->pager, |
| 655 | object->pager_request, |
| 656 | m->offset + object->paging_offset, |
| 657 | PAGE_SIZE(1 << 12), access_required)) != KERN_SUCCESS0) { |
| 658 | if (rc != MACH_SEND_INTERRUPTED0x10000007) |
| 659 | printf("%s(0x%p, 0x%p, 0x%lx, 0x%x, 0x%x) failed, %x\n", |
| 660 | "memory_object_data_request", |
| 661 | object->pager, |
| 662 | object->pager_request, |
| 663 | m->offset + object->paging_offset, |
| 664 | PAGE_SIZE(1 << 12), access_required, rc); |
| 665 | /* |
| 666 | * Don't want to leave a busy page around, |
| 667 | * but the data request may have blocked, |
| 668 | * so check if it's still there and busy. |
| 669 | */ |
| 670 | vm_object_lock(object); |
| 671 | if (m == vm_page_lookup(object,offset) && |
| 672 | m->absent && m->busy) |
| 673 | VM_PAGE_FREE(m)({ ; vm_page_free(m); ((void)(&vm_page_queue_lock)); }); |
| 674 | vm_fault_cleanup(object, first_m); |
| 675 | return((rc == MACH_SEND_INTERRUPTED0x10000007) ? |
| 676 | VM_FAULT_INTERRUPTED2 : |
| 677 | VM_FAULT_MEMORY_ERROR5); |
| 678 | } |
| 679 | |
| 680 | /* |
| 681 | * Retry with same object/offset, since new data may |
| 682 | * be in a different page (i.e., m is meaningless at |
| 683 | * this point). |
| 684 | */ |
| 685 | vm_object_lock(object); |
| 686 | continue; |
| 687 | } |
| 688 | |
| 689 | /* |
| 690 | * For the XP system, the only case in which we get here is if |
| 691 | * object has no pager (or unwiring). If the pager doesn't |
| 692 | * have the page this is handled in the m->absent case above |
| 693 | * (and if you change things here you should look above). |
| 694 | */ |
| 695 | if (object == first_object) |
| 696 | first_m = m; |
| 697 | else |
| 698 | { |
| 699 | assert(m == VM_PAGE_NULL)({ if (!(m == ((vm_page_t) 0))) Assert("m == VM_PAGE_NULL", "../vm/vm_fault.c" , 699); }); |
| 700 | } |
| 701 | |
| 702 | /* |
| 703 | * Move on to the next object. Lock the next |
| 704 | * object before unlocking the current one. |
| 705 | */ |
| 706 | access_required = VM_PROT_READ((vm_prot_t) 0x01); |
| 707 | |
| 708 | offset += object->shadow_offset; |
| 709 | next_object = object->shadow; |
| 710 | if (next_object == VM_OBJECT_NULL((vm_object_t) 0)) { |
| 711 | assert(!must_be_resident)({ if (!(!must_be_resident)) Assert("!must_be_resident", "../vm/vm_fault.c" , 711); }); |
| 712 | |
| 713 | /* |
| 714 | * If there's no object left, fill the page |
| 715 | * in the top object with zeros. But first we |
| 716 | * need to allocate a real page. |
| 717 | */ |
| 718 | |
| 719 | if (object != first_object) { |
| 720 | vm_object_paging_end(object)({ ({ if (!((object)->paging_in_progress != 0)) Assert("(object)->paging_in_progress != 0" , "../vm/vm_fault.c", 720); }); if (--(object)->paging_in_progress == 0) { ({ if ((object)->all_wanted & (1 << (2) )) thread_wakeup_prim(((event_t)(((vm_offset_t) object) + (2) )), ((boolean_t) 0), 0); (object)->all_wanted &= ~(1 << (2)); }); } }); |
| 721 | vm_object_unlock(object)((void)(&(object)->Lock)); |
| 722 | |
| 723 | object = first_object; |
| 724 | offset = first_offset; |
Value stored to 'offset' is never read | |
| 725 | vm_object_lock(object); |
| 726 | } |
| 727 | |
| 728 | m = first_m; |
| 729 | assert(m->object == object)({ if (!(m->object == object)) Assert("m->object == object" , "../vm/vm_fault.c", 729); }); |
| 730 | first_m = VM_PAGE_NULL((vm_page_t) 0); |
| 731 | |
| 732 | if (m->fictitious && !vm_page_convert(m, !object->internal)) { |
| 733 | VM_PAGE_FREE(m)({ ; vm_page_free(m); ((void)(&vm_page_queue_lock)); }); |
| 734 | vm_fault_cleanup(object, VM_PAGE_NULL((vm_page_t) 0)); |
| 735 | return(VM_FAULT_MEMORY_SHORTAGE3); |
| 736 | } |
| 737 | |
| 738 | vm_object_unlock(object)((void)(&(object)->Lock)); |
| 739 | vm_page_zero_fill(m); |
| 740 | vm_stat_sample(SAMPLED_PC_VM_ZFILL_FAULTS)({ thread_t _thread_ = (active_threads[(0)]); if (_thread_ != ((thread_t) 0)) ({ task_t task; if ((_thread_)->pc_sample .sampletypes & ((0x10))) take_pc_sample((_thread_), & (_thread_)->pc_sample, ((0x10))); task = (_thread_)->task ; if (task->pc_sample.sampletypes & ((0x10))) take_pc_sample ((_thread_), &task->pc_sample, ((0x10))); }); }); |
| 741 | vm_stat.zero_fill_count++; |
| 742 | current_task()((active_threads[(0)])->task)->zero_fills++; |
| 743 | vm_object_lock(object); |
| 744 | pmap_clear_modify(m->phys_addr); |
| 745 | break; |
| 746 | } |
| 747 | else { |
| 748 | vm_object_lock(next_object); |
| 749 | if ((object != first_object) || must_be_resident) |
| 750 | vm_object_paging_end(object)({ ({ if (!((object)->paging_in_progress != 0)) Assert("(object)->paging_in_progress != 0" , "../vm/vm_fault.c", 750); }); if (--(object)->paging_in_progress == 0) { ({ if ((object)->all_wanted & (1 << (2) )) thread_wakeup_prim(((event_t)(((vm_offset_t) object) + (2) )), ((boolean_t) 0), 0); (object)->all_wanted &= ~(1 << (2)); }); } }); |
| 751 | vm_object_unlock(object)((void)(&(object)->Lock)); |
| 752 | object = next_object; |
| 753 | vm_object_paging_begin(object)((object)->paging_in_progress++); |
| 754 | } |
| 755 | } |
| 756 | |
| 757 | /* |
| 758 | * PAGE HAS BEEN FOUND. |
| 759 | * |
| 760 | * This page (m) is: |
| 761 | * busy, so that we can play with it; |
| 762 | * not absent, so that nobody else will fill it; |
| 763 | * possibly eligible for pageout; |
| 764 | * |
| 765 | * The top-level page (first_m) is: |
| 766 | * VM_PAGE_NULL if the page was found in the |
| 767 | * top-level object; |
| 768 | * busy, not absent, and ineligible for pageout. |
| 769 | * |
| 770 | * The current object (object) is locked. A paging |
| 771 | * reference is held for the current and top-level |
| 772 | * objects. |
| 773 | */ |
| 774 | |
| 775 | #if EXTRA_ASSERTIONS |
| 776 | assert(m->busy && !m->absent)({ if (!(m->busy && !m->absent)) Assert("m->busy && !m->absent" , "../vm/vm_fault.c", 776); }); |
| 777 | assert((first_m == VM_PAGE_NULL) ||({ if (!((first_m == ((vm_page_t) 0)) || (first_m->busy && !first_m->absent && !first_m->active && !first_m->inactive))) Assert("(first_m == VM_PAGE_NULL) || (first_m->busy && !first_m->absent && !first_m->active && !first_m->inactive)" , "../vm/vm_fault.c", 779); }) |
| 778 | (first_m->busy && !first_m->absent &&({ if (!((first_m == ((vm_page_t) 0)) || (first_m->busy && !first_m->absent && !first_m->active && !first_m->inactive))) Assert("(first_m == VM_PAGE_NULL) || (first_m->busy && !first_m->absent && !first_m->active && !first_m->inactive)" , "../vm/vm_fault.c", 779); }) |
| 779 | !first_m->active && !first_m->inactive))({ if (!((first_m == ((vm_page_t) 0)) || (first_m->busy && !first_m->absent && !first_m->active && !first_m->inactive))) Assert("(first_m == VM_PAGE_NULL) || (first_m->busy && !first_m->absent && !first_m->active && !first_m->inactive)" , "../vm/vm_fault.c", 779); }); |
| 780 | #endif /* EXTRA_ASSERTIONS */ |
| 781 | |
| 782 | /* |
| 783 | * If the page is being written, but isn't |
| 784 | * already owned by the top-level object, |
| 785 | * we have to copy it into a new page owned |
| 786 | * by the top-level object. |
| 787 | */ |
| 788 | |
| 789 | if (object != first_object) { |
| 790 | /* |
| 791 | * We only really need to copy if we |
| 792 | * want to write it. |
| 793 | */ |
| 794 | |
| 795 | if (fault_type & VM_PROT_WRITE((vm_prot_t) 0x02)) { |
| 796 | vm_page_t copy_m; |
| 797 | |
| 798 | assert(!must_be_resident)({ if (!(!must_be_resident)) Assert("!must_be_resident", "../vm/vm_fault.c" , 798); }); |
| 799 | |
| 800 | /* |
| 801 | * If we try to collapse first_object at this |
| 802 | * point, we may deadlock when we try to get |
| 803 | * the lock on an intermediate object (since we |
| 804 | * have the bottom object locked). We can't |
| 805 | * unlock the bottom object, because the page |
| 806 | * we found may move (by collapse) if we do. |
| 807 | * |
| 808 | * Instead, we first copy the page. Then, when |
| 809 | * we have no more use for the bottom object, |
| 810 | * we unlock it and try to collapse. |
| 811 | * |
| 812 | * Note that we copy the page even if we didn't |
| 813 | * need to... that's the breaks. |
| 814 | */ |
| 815 | |
| 816 | /* |
| 817 | * Allocate a page for the copy |
| 818 | */ |
| 819 | copy_m = vm_page_grab(!first_object->internal); |
| 820 | if (copy_m == VM_PAGE_NULL((vm_page_t) 0)) { |
| 821 | RELEASE_PAGE(m){ ({ (m)->busy = ((boolean_t) 0); if ((m)->wanted) { (m )->wanted = ((boolean_t) 0); thread_wakeup_prim((((event_t ) m)), ((boolean_t) 0), 0); } }); ; vm_page_unwire(m); ((void )(&vm_page_queue_lock)); }; |
| 822 | vm_fault_cleanup(object, first_m); |
| 823 | return(VM_FAULT_MEMORY_SHORTAGE3); |
| 824 | } |
| 825 | |
| 826 | vm_object_unlock(object)((void)(&(object)->Lock)); |
| 827 | vm_page_copy(m, copy_m); |
| 828 | vm_object_lock(object); |
| 829 | |
| 830 | /* |
| 831 | * If another map is truly sharing this |
| 832 | * page with us, we have to flush all |
| 833 | * uses of the original page, since we |
| 834 | * can't distinguish those which want the |
| 835 | * original from those which need the |
| 836 | * new copy. |
| 837 | * |
| 838 | * XXXO If we know that only one map has |
| 839 | * access to this page, then we could |
| 840 | * avoid the pmap_page_protect() call. |
| 841 | */ |
| 842 | |
| 843 | vm_page_lock_queues(); |
| 844 | vm_page_deactivate(m); |
| 845 | pmap_page_protect(m->phys_addr, VM_PROT_NONE((vm_prot_t) 0x00)); |
| 846 | vm_page_unlock_queues()((void)(&vm_page_queue_lock)); |
| 847 | |
| 848 | /* |
| 849 | * We no longer need the old page or object. |
| 850 | */ |
| 851 | |
| 852 | PAGE_WAKEUP_DONE(m)({ (m)->busy = ((boolean_t) 0); if ((m)->wanted) { (m)-> wanted = ((boolean_t) 0); thread_wakeup_prim((((event_t) m)), ((boolean_t) 0), 0); } }); |
| 853 | vm_object_paging_end(object)({ ({ if (!((object)->paging_in_progress != 0)) Assert("(object)->paging_in_progress != 0" , "../vm/vm_fault.c", 853); }); if (--(object)->paging_in_progress == 0) { ({ if ((object)->all_wanted & (1 << (2) )) thread_wakeup_prim(((event_t)(((vm_offset_t) object) + (2) )), ((boolean_t) 0), 0); (object)->all_wanted &= ~(1 << (2)); }); } }); |
| 854 | vm_object_unlock(object)((void)(&(object)->Lock)); |
| 855 | |
| 856 | vm_stat.cow_faults++; |
| 857 | vm_stat_sample(SAMPLED_PC_VM_COW_FAULTS)({ thread_t _thread_ = (active_threads[(0)]); if (_thread_ != ((thread_t) 0)) ({ task_t task; if ((_thread_)->pc_sample .sampletypes & ((0x80))) take_pc_sample((_thread_), & (_thread_)->pc_sample, ((0x80))); task = (_thread_)->task ; if (task->pc_sample.sampletypes & ((0x80))) take_pc_sample ((_thread_), &task->pc_sample, ((0x80))); }); }); |
| 858 | current_task()((active_threads[(0)])->task)->cow_faults++; |
| 859 | object = first_object; |
| 860 | offset = first_offset; |
| 861 | |
| 862 | vm_object_lock(object); |
| 863 | VM_PAGE_FREE(first_m)({ ; vm_page_free(first_m); ((void)(&vm_page_queue_lock)) ; }); |
| 864 | first_m = VM_PAGE_NULL((vm_page_t) 0); |
| 865 | assert(copy_m->busy)({ if (!(copy_m->busy)) Assert("copy_m->busy", "../vm/vm_fault.c" , 865); }); |
| 866 | vm_page_lock_queues(); |
| 867 | vm_page_insert(copy_m, object, offset); |
| 868 | vm_page_unlock_queues()((void)(&vm_page_queue_lock)); |
| 869 | m = copy_m; |
| 870 | |
| 871 | /* |
| 872 | * Now that we've gotten the copy out of the |
| 873 | * way, let's try to collapse the top object. |
| 874 | * But we have to play ugly games with |
| 875 | * paging_in_progress to do that... |
| 876 | */ |
| 877 | |
| 878 | vm_object_paging_end(object)({ ({ if (!((object)->paging_in_progress != 0)) Assert("(object)->paging_in_progress != 0" , "../vm/vm_fault.c", 878); }); if (--(object)->paging_in_progress == 0) { ({ if ((object)->all_wanted & (1 << (2) )) thread_wakeup_prim(((event_t)(((vm_offset_t) object) + (2) )), ((boolean_t) 0), 0); (object)->all_wanted &= ~(1 << (2)); }); } }); |
| 879 | vm_object_collapse(object); |
| 880 | vm_object_paging_begin(object)((object)->paging_in_progress++); |
| 881 | } |
| 882 | else { |
| 883 | *protection &= (~VM_PROT_WRITE((vm_prot_t) 0x02)); |
| 884 | } |
| 885 | } |
| 886 | |
| 887 | /* |
| 888 | * Now check whether the page needs to be pushed into the |
| 889 | * copy object. The use of asymmetric copy on write for |
| 890 | * shared temporary objects means that we may do two copies to |
| 891 | * satisfy the fault; one above to get the page from a |
| 892 | * shadowed object, and one here to push it into the copy. |
| 893 | */ |
| 894 | |
| 895 | while ((copy_object = first_object->copy) != VM_OBJECT_NULL((vm_object_t) 0)) { |
| 896 | vm_offset_t copy_offset; |
| 897 | vm_page_t copy_m; |
| 898 | |
| 899 | /* |
| 900 | * If the page is being written, but hasn't been |
| 901 | * copied to the copy-object, we have to copy it there. |
| 902 | */ |
| 903 | |
| 904 | if ((fault_type & VM_PROT_WRITE((vm_prot_t) 0x02)) == 0) { |
| 905 | *protection &= ~VM_PROT_WRITE((vm_prot_t) 0x02); |
| 906 | break; |
| 907 | } |
| 908 | |
| 909 | /* |
| 910 | * If the page was guaranteed to be resident, |
| 911 | * we must have already performed the copy. |
| 912 | */ |
| 913 | |
| 914 | if (must_be_resident) |
| 915 | break; |
| 916 | |
| 917 | /* |
| 918 | * Try to get the lock on the copy_object. |
| 919 | */ |
| 920 | if (!vm_object_lock_try(copy_object)(((boolean_t) 1))) { |
| 921 | vm_object_unlock(object)((void)(&(object)->Lock)); |
| 922 | |
| 923 | simple_lock_pause(); /* wait a bit */ |
| 924 | |
| 925 | vm_object_lock(object); |
| 926 | continue; |
| 927 | } |
| 928 | |
| 929 | /* |
| 930 | * Make another reference to the copy-object, |
| 931 | * to keep it from disappearing during the |
| 932 | * copy. |
| 933 | */ |
| 934 | assert(copy_object->ref_count > 0)({ if (!(copy_object->ref_count > 0)) Assert("copy_object->ref_count > 0" , "../vm/vm_fault.c", 934); }); |
| 935 | copy_object->ref_count++; |
| 936 | |
| 937 | /* |
| 938 | * Does the page exist in the copy? |
| 939 | */ |
| 940 | copy_offset = first_offset - copy_object->shadow_offset; |
| 941 | copy_m = vm_page_lookup(copy_object, copy_offset); |
| 942 | if (copy_m != VM_PAGE_NULL((vm_page_t) 0)) { |
| 943 | if (copy_m->busy) { |
| 944 | /* |
| 945 | * If the page is being brought |
| 946 | * in, wait for it and then retry. |
| 947 | */ |
| 948 | PAGE_ASSERT_WAIT(copy_m, interruptible)({ (copy_m)->wanted = ((boolean_t) 1); assert_wait((event_t ) (copy_m), (interruptible)); }); |
| 949 | RELEASE_PAGE(m){ ({ (m)->busy = ((boolean_t) 0); if ((m)->wanted) { (m )->wanted = ((boolean_t) 0); thread_wakeup_prim((((event_t ) m)), ((boolean_t) 0), 0); } }); ; vm_page_unwire(m); ((void )(&vm_page_queue_lock)); }; |
| 950 | copy_object->ref_count--; |
| 951 | assert(copy_object->ref_count > 0)({ if (!(copy_object->ref_count > 0)) Assert("copy_object->ref_count > 0" , "../vm/vm_fault.c", 951); }); |
| 952 | vm_object_unlock(copy_object)((void)(&(copy_object)->Lock)); |
| 953 | goto block_and_backoff; |
| 954 | } |
| 955 | } |
| 956 | else { |
| 957 | /* |
| 958 | * Allocate a page for the copy |
| 959 | */ |
| 960 | copy_m = vm_page_alloc(copy_object, copy_offset); |
| 961 | if (copy_m == VM_PAGE_NULL((vm_page_t) 0)) { |
| 962 | RELEASE_PAGE(m){ ({ (m)->busy = ((boolean_t) 0); if ((m)->wanted) { (m )->wanted = ((boolean_t) 0); thread_wakeup_prim((((event_t ) m)), ((boolean_t) 0), 0); } }); ; vm_page_unwire(m); ((void )(&vm_page_queue_lock)); }; |
| 963 | copy_object->ref_count--; |
| 964 | assert(copy_object->ref_count > 0)({ if (!(copy_object->ref_count > 0)) Assert("copy_object->ref_count > 0" , "../vm/vm_fault.c", 964); }); |
| 965 | vm_object_unlock(copy_object)((void)(&(copy_object)->Lock)); |
| 966 | vm_fault_cleanup(object, first_m); |
| 967 | return(VM_FAULT_MEMORY_SHORTAGE3); |
| 968 | } |
| 969 | |
| 970 | /* |
| 971 | * Must copy page into copy-object. |
| 972 | */ |
| 973 | |
| 974 | vm_page_copy(m, copy_m); |
| 975 | |
| 976 | /* |
| 977 | * If the old page was in use by any users |
| 978 | * of the copy-object, it must be removed |
| 979 | * from all pmaps. (We can't know which |
| 980 | * pmaps use it.) |
| 981 | */ |
| 982 | |
| 983 | vm_page_lock_queues(); |
| 984 | pmap_page_protect(m->phys_addr, VM_PROT_NONE((vm_prot_t) 0x00)); |
| 985 | copy_m->dirty = TRUE((boolean_t) 1); |
| 986 | vm_page_unlock_queues()((void)(&vm_page_queue_lock)); |
| 987 | |
| 988 | /* |
| 989 | * If there's a pager, then immediately |
| 990 | * page out this page, using the "initialize" |
| 991 | * option. Else, we use the copy. |
| 992 | */ |
| 993 | |
| 994 | if (!copy_object->pager_created) { |
| 995 | vm_page_lock_queues(); |
| 996 | vm_page_activate(copy_m); |
| 997 | vm_page_unlock_queues()((void)(&vm_page_queue_lock)); |
| 998 | PAGE_WAKEUP_DONE(copy_m)({ (copy_m)->busy = ((boolean_t) 0); if ((copy_m)->wanted ) { (copy_m)->wanted = ((boolean_t) 0); thread_wakeup_prim ((((event_t) copy_m)), ((boolean_t) 0), 0); } }); |
| 999 | } else { |
| 1000 | /* |
| 1001 | * The page is already ready for pageout: |
| 1002 | * not on pageout queues and busy. |
| 1003 | * Unlock everything except the |
| 1004 | * copy_object itself. |
| 1005 | */ |
| 1006 | |
| 1007 | vm_object_unlock(object)((void)(&(object)->Lock)); |
| 1008 | |
| 1009 | /* |
| 1010 | * Write the page to the copy-object, |
| 1011 | * flushing it from the kernel. |
| 1012 | */ |
| 1013 | |
| 1014 | vm_pageout_page(copy_m, TRUE((boolean_t) 1), TRUE((boolean_t) 1)); |
| 1015 | |
| 1016 | /* |
| 1017 | * Since the pageout may have |
| 1018 | * temporarily dropped the |
| 1019 | * copy_object's lock, we |
| 1020 | * check whether we'll have |
| 1021 | * to deallocate the hard way. |
| 1022 | */ |
| 1023 | |
| 1024 | if ((copy_object->shadow != object) || |
| 1025 | (copy_object->ref_count == 1)) { |
| 1026 | vm_object_unlock(copy_object)((void)(&(copy_object)->Lock)); |
| 1027 | vm_object_deallocate(copy_object); |
| 1028 | vm_object_lock(object); |
| 1029 | continue; |
| 1030 | } |
| 1031 | |
| 1032 | /* |
| 1033 | * Pick back up the old object's |
| 1034 | * lock. [It is safe to do so, |
| 1035 | * since it must be deeper in the |
| 1036 | * object tree.] |
| 1037 | */ |
| 1038 | |
| 1039 | vm_object_lock(object); |
| 1040 | } |
| 1041 | |
| 1042 | /* |
| 1043 | * Because we're pushing a page upward |
| 1044 | * in the object tree, we must restart |
| 1045 | * any faults that are waiting here. |
| 1046 | * [Note that this is an expansion of |
| 1047 | * PAGE_WAKEUP that uses the THREAD_RESTART |
| 1048 | * wait result]. Can't turn off the page's |
| 1049 | * busy bit because we're not done with it. |
| 1050 | */ |
| 1051 | |
| 1052 | if (m->wanted) { |
| 1053 | m->wanted = FALSE((boolean_t) 0); |
| 1054 | thread_wakeup_with_result((event_t) m,thread_wakeup_prim(((event_t) m), ((boolean_t) 0), (3)) |
| 1055 | THREAD_RESTART)thread_wakeup_prim(((event_t) m), ((boolean_t) 0), (3)); |
| 1056 | } |
| 1057 | } |
| 1058 | |
| 1059 | /* |
| 1060 | * The reference count on copy_object must be |
| 1061 | * at least 2: one for our extra reference, |
| 1062 | * and at least one from the outside world |
| 1063 | * (we checked that when we last locked |
| 1064 | * copy_object). |
| 1065 | */ |
| 1066 | copy_object->ref_count--; |
| 1067 | assert(copy_object->ref_count > 0)({ if (!(copy_object->ref_count > 0)) Assert("copy_object->ref_count > 0" , "../vm/vm_fault.c", 1067); }); |
| 1068 | vm_object_unlock(copy_object)((void)(&(copy_object)->Lock)); |
| 1069 | |
| 1070 | break; |
| 1071 | } |
| 1072 | |
| 1073 | *result_page = m; |
| 1074 | *top_page = first_m; |
| 1075 | |
| 1076 | /* |
| 1077 | * If the page can be written, assume that it will be. |
| 1078 | * [Earlier, we restrict the permission to allow write |
| 1079 | * access only if the fault so required, so we don't |
| 1080 | * mark read-only data as dirty.] |
| 1081 | */ |
| 1082 | |
| 1083 | if (vm_fault_dirty_handling && (*protection & VM_PROT_WRITE((vm_prot_t) 0x02))) |
| 1084 | m->dirty = TRUE((boolean_t) 1); |
| 1085 | |
| 1086 | return(VM_FAULT_SUCCESS0); |
| 1087 | |
| 1088 | block_and_backoff: |
| 1089 | vm_fault_cleanup(object, first_m); |
| 1090 | |
| 1091 | if (continuation != (void (*)()) 0) { |
| 1092 | vm_fault_state_t *state = |
| 1093 | (vm_fault_state_t *) current_thread()(active_threads[(0)])->ith_othersaved.other; |
| 1094 | |
| 1095 | /* |
| 1096 | * Save variables in case we must restart. |
| 1097 | */ |
| 1098 | |
| 1099 | state->vmfp_backoff = TRUE((boolean_t) 1); |
| 1100 | state->vmf_prot = *protection; |
| 1101 | |
| 1102 | counter(c_vm_fault_page_block_backoff_user++); |
| 1103 | thread_block(continuation); |
| 1104 | } else |
| 1105 | { |
| 1106 | counter(c_vm_fault_page_block_backoff_kernel++); |
| 1107 | thread_block((void (*)()) 0); |
| 1108 | } |
| 1109 | after_block_and_backoff: |
| 1110 | if (current_thread()(active_threads[(0)])->wait_result == THREAD_AWAKENED0) |
| 1111 | return VM_FAULT_RETRY1; |
| 1112 | else |
| 1113 | return VM_FAULT_INTERRUPTED2; |
| 1114 | |
| 1115 | #undef RELEASE_PAGE |
| 1116 | } |
| 1117 | |
| 1118 | /* |
| 1119 | * Routine: vm_fault |
| 1120 | * Purpose: |
| 1121 | * Handle page faults, including pseudo-faults |
| 1122 | * used to change the wiring status of pages. |
| 1123 | * Returns: |
| 1124 | * If an explicit (expression) continuation is supplied, |
| 1125 | * then we call the continuation instead of returning. |
| 1126 | * Implementation: |
| 1127 | * Explicit continuations make this a little icky, |
| 1128 | * because it hasn't been rewritten to embrace CPS. |
| 1129 | * Instead, we have resume arguments for vm_fault and |
| 1130 | * vm_fault_page, to let continue the fault computation. |
| 1131 | * |
| 1132 | * vm_fault and vm_fault_page save mucho state |
| 1133 | * in the moral equivalent of a closure. The state |
| 1134 | * structure is allocated when first entering vm_fault |
| 1135 | * and deallocated when leaving vm_fault. |
| 1136 | */ |
| 1137 | |
| 1138 | void |
| 1139 | vm_fault_continue(void) |
| 1140 | { |
| 1141 | vm_fault_state_t *state = |
| 1142 | (vm_fault_state_t *) current_thread()(active_threads[(0)])->ith_othersaved.other; |
| 1143 | |
| 1144 | (void) vm_fault(state->vmf_map, |
| 1145 | state->vmf_vaddr, |
| 1146 | state->vmf_fault_type, |
| 1147 | state->vmf_change_wiring, |
| 1148 | TRUE((boolean_t) 1), state->vmf_continuation); |
| 1149 | /*NOTREACHED*/ |
| 1150 | } |
| 1151 | |
| 1152 | kern_return_t vm_fault(map, vaddr, fault_type, change_wiring, |
| 1153 | resume, continuation) |
| 1154 | vm_map_t map; |
| 1155 | vm_offset_t vaddr; |
| 1156 | vm_prot_t fault_type; |
| 1157 | boolean_t change_wiring; |
| 1158 | boolean_t resume; |
| 1159 | void (*continuation)(); |
| 1160 | { |
| 1161 | vm_map_version_t version; /* Map version for verificiation */ |
| 1162 | boolean_t wired; /* Should mapping be wired down? */ |
| 1163 | vm_object_t object; /* Top-level object */ |
| 1164 | vm_offset_t offset; /* Top-level offset */ |
| 1165 | vm_prot_t prot; /* Protection for mapping */ |
| 1166 | vm_object_t old_copy_object; /* Saved copy object */ |
| 1167 | vm_page_t result_page; /* Result of vm_fault_page */ |
| 1168 | vm_page_t top_page; /* Placeholder page */ |
| 1169 | kern_return_t kr; |
| 1170 | |
| 1171 | vm_page_t m; /* Fast access to result_page */ |
| 1172 | |
| 1173 | if (resume) { |
| 1174 | vm_fault_state_t *state = |
| 1175 | (vm_fault_state_t *) current_thread()(active_threads[(0)])->ith_othersaved.other; |
| 1176 | |
| 1177 | /* |
| 1178 | * Retrieve cached variables and |
| 1179 | * continue vm_fault_page. |
| 1180 | */ |
| 1181 | |
| 1182 | object = state->vmf_object; |
| 1183 | if (object == VM_OBJECT_NULL((vm_object_t) 0)) |
| 1184 | goto RetryFault; |
| 1185 | version = state->vmf_version; |
| 1186 | wired = state->vmf_wired; |
| 1187 | offset = state->vmf_offset; |
| 1188 | prot = state->vmf_prot; |
| 1189 | |
| 1190 | kr = vm_fault_page(object, offset, fault_type, |
| 1191 | (change_wiring && !wired), !change_wiring, |
| 1192 | &prot, &result_page, &top_page, |
| 1193 | TRUE((boolean_t) 1), vm_fault_continue); |
| 1194 | goto after_vm_fault_page; |
| 1195 | } |
| 1196 | |
| 1197 | if (continuation != (void (*)()) 0) { |
| 1198 | /* |
| 1199 | * We will probably need to save state. |
| 1200 | */ |
| 1201 | |
| 1202 | char * state; |
| 1203 | |
| 1204 | /* |
| 1205 | * if this assignment stmt is written as |
| 1206 | * 'active_threads[cpu_number()] = kmem_cache_alloc()', |
| 1207 | * cpu_number may be evaluated before kmem_cache_alloc; |
| 1208 | * if kmem_cache_alloc blocks, cpu_number will be wrong |
| 1209 | */ |
| 1210 | |
| 1211 | state = (char *) kmem_cache_alloc(&vm_fault_state_cache); |
| 1212 | current_thread()(active_threads[(0)])->ith_othersaved.other = state; |
| 1213 | |
| 1214 | } |
| 1215 | |
| 1216 | RetryFault: ; |
| 1217 | |
| 1218 | /* |
| 1219 | * Find the backing store object and offset into |
| 1220 | * it to begin the search. |
| 1221 | */ |
| 1222 | |
| 1223 | if ((kr = vm_map_lookup(&map, vaddr, fault_type, &version, |
| 1224 | &object, &offset, |
| 1225 | &prot, &wired)) != KERN_SUCCESS0) { |
| 1226 | goto done; |
| 1227 | } |
| 1228 | |
| 1229 | /* |
| 1230 | * If the page is wired, we must fault for the current protection |
| 1231 | * value, to avoid further faults. |
| 1232 | */ |
| 1233 | |
| 1234 | if (wired) |
| 1235 | fault_type = prot; |
| 1236 | |
| 1237 | /* |
| 1238 | * Make a reference to this object to |
| 1239 | * prevent its disposal while we are messing with |
| 1240 | * it. Once we have the reference, the map is free |
| 1241 | * to be diddled. Since objects reference their |
| 1242 | * shadows (and copies), they will stay around as well. |
| 1243 | */ |
| 1244 | |
| 1245 | assert(object->ref_count > 0)({ if (!(object->ref_count > 0)) Assert("object->ref_count > 0" , "../vm/vm_fault.c", 1245); }); |
| 1246 | object->ref_count++; |
| 1247 | vm_object_paging_begin(object)((object)->paging_in_progress++); |
| 1248 | |
| 1249 | if (continuation != (void (*)()) 0) { |
| 1250 | vm_fault_state_t *state = |
| 1251 | (vm_fault_state_t *) current_thread()(active_threads[(0)])->ith_othersaved.other; |
| 1252 | |
| 1253 | /* |
| 1254 | * Save variables, in case vm_fault_page discards |
| 1255 | * our kernel stack and we have to restart. |
| 1256 | */ |
| 1257 | |
| 1258 | state->vmf_map = map; |
| 1259 | state->vmf_vaddr = vaddr; |
| 1260 | state->vmf_fault_type = fault_type; |
| 1261 | state->vmf_change_wiring = change_wiring; |
| 1262 | state->vmf_continuation = continuation; |
| 1263 | |
| 1264 | state->vmf_version = version; |
| 1265 | state->vmf_wired = wired; |
| 1266 | state->vmf_object = object; |
| 1267 | state->vmf_offset = offset; |
| 1268 | state->vmf_prot = prot; |
| 1269 | |
| 1270 | kr = vm_fault_page(object, offset, fault_type, |
| 1271 | (change_wiring && !wired), !change_wiring, |
| 1272 | &prot, &result_page, &top_page, |
| 1273 | FALSE((boolean_t) 0), vm_fault_continue); |
| 1274 | } else |
| 1275 | { |
| 1276 | kr = vm_fault_page(object, offset, fault_type, |
| 1277 | (change_wiring && !wired), !change_wiring, |
| 1278 | &prot, &result_page, &top_page, |
| 1279 | FALSE((boolean_t) 0), (void (*)()) 0); |
| 1280 | } |
| 1281 | after_vm_fault_page: |
| 1282 | |
| 1283 | /* |
| 1284 | * If we didn't succeed, lose the object reference immediately. |
| 1285 | */ |
| 1286 | |
| 1287 | if (kr != VM_FAULT_SUCCESS0) |
| 1288 | vm_object_deallocate(object); |
| 1289 | |
| 1290 | /* |
| 1291 | * See why we failed, and take corrective action. |
| 1292 | */ |
| 1293 | |
| 1294 | switch (kr) { |
| 1295 | case VM_FAULT_SUCCESS0: |
| 1296 | break; |
| 1297 | case VM_FAULT_RETRY1: |
| 1298 | goto RetryFault; |
| 1299 | case VM_FAULT_INTERRUPTED2: |
| 1300 | kr = KERN_SUCCESS0; |
| 1301 | goto done; |
| 1302 | case VM_FAULT_MEMORY_SHORTAGE3: |
| 1303 | if (continuation != (void (*)()) 0) { |
| 1304 | vm_fault_state_t *state = |
| 1305 | (vm_fault_state_t *) current_thread()(active_threads[(0)])->ith_othersaved.other; |
| 1306 | |
| 1307 | /* |
| 1308 | * Save variables in case VM_PAGE_WAIT |
| 1309 | * discards our kernel stack. |
| 1310 | */ |
| 1311 | |
| 1312 | state->vmf_map = map; |
| 1313 | state->vmf_vaddr = vaddr; |
| 1314 | state->vmf_fault_type = fault_type; |
| 1315 | state->vmf_change_wiring = change_wiring; |
| 1316 | state->vmf_continuation = continuation; |
| 1317 | state->vmf_object = VM_OBJECT_NULL((vm_object_t) 0); |
| 1318 | |
| 1319 | VM_PAGE_WAIT(vm_fault_continue)vm_page_wait(vm_fault_continue); |
| 1320 | } else |
| 1321 | VM_PAGE_WAIT((void (*)()) 0)vm_page_wait((void (*)()) 0); |
| 1322 | goto RetryFault; |
| 1323 | case VM_FAULT_FICTITIOUS_SHORTAGE4: |
| 1324 | vm_page_more_fictitious(); |
| 1325 | goto RetryFault; |
| 1326 | case VM_FAULT_MEMORY_ERROR5: |
| 1327 | kr = KERN_MEMORY_ERROR10; |
| 1328 | goto done; |
| 1329 | } |
| 1330 | |
| 1331 | m = result_page; |
| 1332 | |
| 1333 | assert((change_wiring && !wired) ?({ if (!((change_wiring && !wired) ? (top_page == ((vm_page_t ) 0)) : ((top_page == ((vm_page_t) 0)) == (m->object == object )))) Assert("(change_wiring && !wired) ? (top_page == VM_PAGE_NULL) : ((top_page == VM_PAGE_NULL) == (m->object == object))" , "../vm/vm_fault.c", 1335); }) |
| 1334 | (top_page == VM_PAGE_NULL) :({ if (!((change_wiring && !wired) ? (top_page == ((vm_page_t ) 0)) : ((top_page == ((vm_page_t) 0)) == (m->object == object )))) Assert("(change_wiring && !wired) ? (top_page == VM_PAGE_NULL) : ((top_page == VM_PAGE_NULL) == (m->object == object))" , "../vm/vm_fault.c", 1335); }) |
| 1335 | ((top_page == VM_PAGE_NULL) == (m->object == object)))({ if (!((change_wiring && !wired) ? (top_page == ((vm_page_t ) 0)) : ((top_page == ((vm_page_t) 0)) == (m->object == object )))) Assert("(change_wiring && !wired) ? (top_page == VM_PAGE_NULL) : ((top_page == VM_PAGE_NULL) == (m->object == object))" , "../vm/vm_fault.c", 1335); }); |
| 1336 | |
| 1337 | /* |
| 1338 | * How to clean up the result of vm_fault_page. This |
| 1339 | * happens whether the mapping is entered or not. |
| 1340 | */ |
| 1341 | |
| 1342 | #define UNLOCK_AND_DEALLOCATE{ { object->paging_in_progress--; ((void)(&(object)-> Lock)); }; vm_object_deallocate(object); } \ |
| 1343 | MACRO_BEGIN({ \ |
| 1344 | vm_fault_cleanup(m->object, top_page); \ |
| 1345 | vm_object_deallocate(object); \ |
| 1346 | MACRO_END}) |
| 1347 | |
| 1348 | /* |
| 1349 | * What to do with the resulting page from vm_fault_page |
| 1350 | * if it doesn't get entered into the physical map: |
| 1351 | */ |
| 1352 | |
| 1353 | #define RELEASE_PAGE(m){ ({ (m)->busy = ((boolean_t) 0); if ((m)->wanted) { (m )->wanted = ((boolean_t) 0); thread_wakeup_prim((((event_t ) m)), ((boolean_t) 0), 0); } }); ; vm_page_unwire(m); ((void )(&vm_page_queue_lock)); } \ |
| 1354 | MACRO_BEGIN({ \ |
| 1355 | PAGE_WAKEUP_DONE(m)({ (m)->busy = ((boolean_t) 0); if ((m)->wanted) { (m)-> wanted = ((boolean_t) 0); thread_wakeup_prim((((event_t) m)), ((boolean_t) 0), 0); } }); \ |
| 1356 | vm_page_lock_queues(); \ |
| 1357 | if (!m->active && !m->inactive) \ |
| 1358 | vm_page_activate(m); \ |
| 1359 | vm_page_unlock_queues()((void)(&vm_page_queue_lock)); \ |
| 1360 | MACRO_END}) |
| 1361 | |
| 1362 | /* |
| 1363 | * We must verify that the maps have not changed |
| 1364 | * since our last lookup. |
| 1365 | */ |
| 1366 | |
| 1367 | old_copy_object = m->object->copy; |
| 1368 | |
| 1369 | vm_object_unlock(m->object)((void)(&(m->object)->Lock)); |
| 1370 | while (!vm_map_verify(map, &version)) { |
| 1371 | vm_object_t retry_object; |
| 1372 | vm_offset_t retry_offset; |
| 1373 | vm_prot_t retry_prot; |
| 1374 | |
| 1375 | /* |
| 1376 | * To avoid trying to write_lock the map while another |
| 1377 | * thread has it read_locked (in vm_map_pageable), we |
| 1378 | * do not try for write permission. If the page is |
| 1379 | * still writable, we will get write permission. If it |
| 1380 | * is not, or has been marked needs_copy, we enter the |
| 1381 | * mapping without write permission, and will merely |
| 1382 | * take another fault. |
| 1383 | */ |
| 1384 | kr = vm_map_lookup(&map, vaddr, |
| 1385 | fault_type & ~VM_PROT_WRITE((vm_prot_t) 0x02), &version, |
| 1386 | &retry_object, &retry_offset, &retry_prot, |
| 1387 | &wired); |
| 1388 | |
| 1389 | if (kr != KERN_SUCCESS0) { |
| 1390 | vm_object_lock(m->object); |
| 1391 | RELEASE_PAGE(m){ ({ (m)->busy = ((boolean_t) 0); if ((m)->wanted) { (m )->wanted = ((boolean_t) 0); thread_wakeup_prim((((event_t ) m)), ((boolean_t) 0), 0); } }); ; vm_page_unwire(m); ((void )(&vm_page_queue_lock)); }; |
| 1392 | UNLOCK_AND_DEALLOCATE{ { object->paging_in_progress--; ((void)(&(object)-> Lock)); }; vm_object_deallocate(object); }; |
| 1393 | goto done; |
| 1394 | } |
| 1395 | |
| 1396 | vm_object_unlock(retry_object)((void)(&(retry_object)->Lock)); |
| 1397 | vm_object_lock(m->object); |
| 1398 | |
| 1399 | if ((retry_object != object) || |
| 1400 | (retry_offset != offset)) { |
| 1401 | RELEASE_PAGE(m){ ({ (m)->busy = ((boolean_t) 0); if ((m)->wanted) { (m )->wanted = ((boolean_t) 0); thread_wakeup_prim((((event_t ) m)), ((boolean_t) 0), 0); } }); ; vm_page_unwire(m); ((void )(&vm_page_queue_lock)); }; |
| 1402 | UNLOCK_AND_DEALLOCATE{ { object->paging_in_progress--; ((void)(&(object)-> Lock)); }; vm_object_deallocate(object); }; |
| 1403 | goto RetryFault; |
| 1404 | } |
| 1405 | |
| 1406 | /* |
| 1407 | * Check whether the protection has changed or the object |
| 1408 | * has been copied while we left the map unlocked. |
| 1409 | */ |
| 1410 | prot &= retry_prot; |
| 1411 | vm_object_unlock(m->object)((void)(&(m->object)->Lock)); |
| 1412 | } |
| 1413 | vm_object_lock(m->object); |
| 1414 | |
| 1415 | /* |
| 1416 | * If the copy object changed while the top-level object |
| 1417 | * was unlocked, then we must take away write permission. |
| 1418 | */ |
| 1419 | |
| 1420 | if (m->object->copy != old_copy_object) |
| 1421 | prot &= ~VM_PROT_WRITE((vm_prot_t) 0x02); |
| 1422 | |
| 1423 | /* |
| 1424 | * If we want to wire down this page, but no longer have |
| 1425 | * adequate permissions, we must start all over. |
| 1426 | */ |
| 1427 | |
| 1428 | if (wired && (prot != fault_type)) { |
| 1429 | vm_map_verify_done(map, &version)(lock_done(&(map)->lock)); |
| 1430 | RELEASE_PAGE(m){ ({ (m)->busy = ((boolean_t) 0); if ((m)->wanted) { (m )->wanted = ((boolean_t) 0); thread_wakeup_prim((((event_t ) m)), ((boolean_t) 0), 0); } }); ; vm_page_unwire(m); ((void )(&vm_page_queue_lock)); }; |
| 1431 | UNLOCK_AND_DEALLOCATE{ { object->paging_in_progress--; ((void)(&(object)-> Lock)); }; vm_object_deallocate(object); }; |
| 1432 | goto RetryFault; |
| 1433 | } |
| 1434 | |
| 1435 | /* |
| 1436 | * It's critically important that a wired-down page be faulted |
| 1437 | * only once in each map for which it is wired. |
| 1438 | */ |
| 1439 | |
| 1440 | vm_object_unlock(m->object)((void)(&(m->object)->Lock)); |
| 1441 | |
| 1442 | /* |
| 1443 | * Put this page into the physical map. |
| 1444 | * We had to do the unlock above because pmap_enter |
| 1445 | * may cause other faults. The page may be on |
| 1446 | * the pageout queues. If the pageout daemon comes |
| 1447 | * across the page, it will remove it from the queues. |
| 1448 | */ |
| 1449 | |
| 1450 | PMAP_ENTER(map->pmap, vaddr, m, prot, wired)({ pmap_enter( (map->pmap), (vaddr), (m)->phys_addr, (prot ) & ~(m)->page_lock, (wired) ); }); |
| 1451 | |
| 1452 | /* |
| 1453 | * If the page is not wired down and isn't already |
| 1454 | * on a pageout queue, then put it where the |
| 1455 | * pageout daemon can find it. |
| 1456 | */ |
| 1457 | vm_object_lock(m->object); |
| 1458 | vm_page_lock_queues(); |
| 1459 | if (change_wiring) { |
| 1460 | if (wired) |
| 1461 | vm_page_wire(m); |
| 1462 | else |
| 1463 | vm_page_unwire(m); |
| 1464 | } else if (software_reference_bits) { |
| 1465 | if (!m->active && !m->inactive) |
| 1466 | vm_page_activate(m); |
| 1467 | m->reference = TRUE((boolean_t) 1); |
| 1468 | } else { |
| 1469 | vm_page_activate(m); |
| 1470 | } |
| 1471 | vm_page_unlock_queues()((void)(&vm_page_queue_lock)); |
| 1472 | |
| 1473 | /* |
| 1474 | * Unlock everything, and return |
| 1475 | */ |
| 1476 | |
| 1477 | vm_map_verify_done(map, &version)(lock_done(&(map)->lock)); |
| 1478 | PAGE_WAKEUP_DONE(m)({ (m)->busy = ((boolean_t) 0); if ((m)->wanted) { (m)-> wanted = ((boolean_t) 0); thread_wakeup_prim((((event_t) m)), ((boolean_t) 0), 0); } }); |
| 1479 | kr = KERN_SUCCESS0; |
| 1480 | UNLOCK_AND_DEALLOCATE{ { object->paging_in_progress--; ((void)(&(object)-> Lock)); }; vm_object_deallocate(object); }; |
| 1481 | |
| 1482 | #undef UNLOCK_AND_DEALLOCATE{ { object->paging_in_progress--; ((void)(&(object)-> Lock)); }; vm_object_deallocate(object); } |
| 1483 | #undef RELEASE_PAGE |
| 1484 | |
| 1485 | done: |
| 1486 | if (continuation != (void (*)()) 0) { |
| 1487 | vm_fault_state_t *state = |
| 1488 | (vm_fault_state_t *) current_thread()(active_threads[(0)])->ith_othersaved.other; |
| 1489 | |
| 1490 | kmem_cache_free(&vm_fault_state_cache, (vm_offset_t) state); |
| 1491 | (*continuation)(kr); |
| 1492 | /*NOTREACHED*/ |
| 1493 | } |
| 1494 | |
| 1495 | return(kr); |
| 1496 | } |
| 1497 | |
| 1498 | /* |
| 1499 | * vm_fault_wire: |
| 1500 | * |
| 1501 | * Wire down a range of virtual addresses in a map. |
| 1502 | */ |
| 1503 | void vm_fault_wire(map, entry) |
| 1504 | vm_map_t map; |
| 1505 | vm_map_entry_t entry; |
| 1506 | { |
| 1507 | |
| 1508 | vm_offset_t va; |
| 1509 | pmap_t pmap; |
| 1510 | vm_offset_t end_addr = entry->vme_endlinks.end; |
| 1511 | |
| 1512 | pmap = vm_map_pmap(map)((map)->pmap); |
| 1513 | |
| 1514 | /* |
| 1515 | * Inform the physical mapping system that the |
| 1516 | * range of addresses may not fault, so that |
| 1517 | * page tables and such can be locked down as well. |
| 1518 | */ |
| 1519 | |
| 1520 | pmap_pageable(pmap, entry->vme_startlinks.start, end_addr, FALSE((boolean_t) 0)); |
| 1521 | |
| 1522 | /* |
| 1523 | * We simulate a fault to get the page and enter it |
| 1524 | * in the physical map. |
| 1525 | */ |
| 1526 | |
| 1527 | for (va = entry->vme_startlinks.start; va < end_addr; va += PAGE_SIZE(1 << 12)) { |
| 1528 | if (vm_fault_wire_fast(map, va, entry) != KERN_SUCCESS0) |
| 1529 | (void) vm_fault(map, va, VM_PROT_NONE((vm_prot_t) 0x00), TRUE((boolean_t) 1), |
| 1530 | FALSE((boolean_t) 0), (void (*)()) 0); |
| 1531 | } |
| 1532 | } |
| 1533 | |
| 1534 | /* |
| 1535 | * vm_fault_unwire: |
| 1536 | * |
| 1537 | * Unwire a range of virtual addresses in a map. |
| 1538 | */ |
| 1539 | void vm_fault_unwire(map, entry) |
| 1540 | vm_map_t map; |
| 1541 | vm_map_entry_t entry; |
| 1542 | { |
| 1543 | vm_offset_t va; |
| 1544 | pmap_t pmap; |
| 1545 | vm_offset_t end_addr = entry->vme_endlinks.end; |
| 1546 | vm_object_t object; |
| 1547 | |
| 1548 | pmap = vm_map_pmap(map)((map)->pmap); |
| 1549 | |
| 1550 | object = (entry->is_sub_map) |
| 1551 | ? VM_OBJECT_NULL((vm_object_t) 0) : entry->object.vm_object; |
| 1552 | |
| 1553 | /* |
| 1554 | * Since the pages are wired down, we must be able to |
| 1555 | * get their mappings from the physical map system. |
| 1556 | */ |
| 1557 | |
| 1558 | for (va = entry->vme_startlinks.start; va < end_addr; va += PAGE_SIZE(1 << 12)) { |
| 1559 | pmap_change_wiring(pmap, va, FALSE((boolean_t) 0)); |
| 1560 | |
| 1561 | if (object == VM_OBJECT_NULL((vm_object_t) 0)) { |
| 1562 | vm_map_lock_set_recursive(map)lock_set_recursive(&(map)->lock); |
| 1563 | (void) vm_fault(map, va, VM_PROT_NONE((vm_prot_t) 0x00), TRUE((boolean_t) 1), |
| 1564 | FALSE((boolean_t) 0), (void (*)()) 0); |
| 1565 | vm_map_lock_clear_recursive(map)lock_clear_recursive(&(map)->lock); |
| 1566 | } else { |
| 1567 | vm_prot_t prot; |
| 1568 | vm_page_t result_page; |
| 1569 | vm_page_t top_page; |
| 1570 | vm_fault_return_t result; |
| 1571 | |
| 1572 | do { |
| 1573 | prot = VM_PROT_NONE((vm_prot_t) 0x00); |
| 1574 | |
| 1575 | vm_object_lock(object); |
| 1576 | vm_object_paging_begin(object)((object)->paging_in_progress++); |
| 1577 | result = vm_fault_page(object, |
| 1578 | entry->offset + |
| 1579 | (va - entry->vme_startlinks.start), |
| 1580 | VM_PROT_NONE((vm_prot_t) 0x00), TRUE((boolean_t) 1), |
| 1581 | FALSE((boolean_t) 0), &prot, |
| 1582 | &result_page, |
| 1583 | &top_page, |
| 1584 | FALSE((boolean_t) 0), (void (*)()) 0); |
| 1585 | } while (result == VM_FAULT_RETRY1); |
| 1586 | |
| 1587 | if (result != VM_FAULT_SUCCESS0) |
| 1588 | panic("vm_fault_unwire: failure"); |
| 1589 | |
| 1590 | vm_page_lock_queues(); |
| 1591 | vm_page_unwire(result_page); |
| 1592 | vm_page_unlock_queues()((void)(&vm_page_queue_lock)); |
| 1593 | PAGE_WAKEUP_DONE(result_page)({ (result_page)->busy = ((boolean_t) 0); if ((result_page )->wanted) { (result_page)->wanted = ((boolean_t) 0); thread_wakeup_prim ((((event_t) result_page)), ((boolean_t) 0), 0); } }); |
| 1594 | |
| 1595 | vm_fault_cleanup(result_page->object, top_page); |
| 1596 | } |
| 1597 | } |
| 1598 | |
| 1599 | /* |
| 1600 | * Inform the physical mapping system that the range |
| 1601 | * of addresses may fault, so that page tables and |
| 1602 | * such may be unwired themselves. |
| 1603 | */ |
| 1604 | |
| 1605 | pmap_pageable(pmap, entry->vme_startlinks.start, end_addr, TRUE((boolean_t) 1)); |
| 1606 | } |
| 1607 | |
| 1608 | /* |
| 1609 | * vm_fault_wire_fast: |
| 1610 | * |
| 1611 | * Handle common case of a wire down page fault at the given address. |
| 1612 | * If successful, the page is inserted into the associated physical map. |
| 1613 | * The map entry is passed in to avoid the overhead of a map lookup. |
| 1614 | * |
| 1615 | * NOTE: the given address should be truncated to the |
| 1616 | * proper page address. |
| 1617 | * |
| 1618 | * KERN_SUCCESS is returned if the page fault is handled; otherwise, |
| 1619 | * a standard error specifying why the fault is fatal is returned. |
| 1620 | * |
| 1621 | * The map in question must be referenced, and remains so. |
| 1622 | * Caller has a read lock on the map. |
| 1623 | * |
| 1624 | * This is a stripped version of vm_fault() for wiring pages. Anything |
| 1625 | * other than the common case will return KERN_FAILURE, and the caller |
| 1626 | * is expected to call vm_fault(). |
| 1627 | */ |
| 1628 | kern_return_t vm_fault_wire_fast(map, va, entry) |
| 1629 | vm_map_t map; |
| 1630 | vm_offset_t va; |
| 1631 | vm_map_entry_t entry; |
| 1632 | { |
| 1633 | vm_object_t object; |
| 1634 | vm_offset_t offset; |
| 1635 | vm_page_t m; |
| 1636 | vm_prot_t prot; |
| 1637 | |
| 1638 | vm_stat.faults++; /* needs lock XXX */ |
| 1639 | current_task()((active_threads[(0)])->task)->faults++; |
| 1640 | /* |
| 1641 | * Recovery actions |
| 1642 | */ |
| 1643 | |
| 1644 | #undef RELEASE_PAGE |
| 1645 | #define RELEASE_PAGE(m){ ({ (m)->busy = ((boolean_t) 0); if ((m)->wanted) { (m )->wanted = ((boolean_t) 0); thread_wakeup_prim((((event_t ) m)), ((boolean_t) 0), 0); } }); ; vm_page_unwire(m); ((void )(&vm_page_queue_lock)); } { \ |
| 1646 | PAGE_WAKEUP_DONE(m)({ (m)->busy = ((boolean_t) 0); if ((m)->wanted) { (m)-> wanted = ((boolean_t) 0); thread_wakeup_prim((((event_t) m)), ((boolean_t) 0), 0); } }); \ |
| 1647 | vm_page_lock_queues(); \ |
| 1648 | vm_page_unwire(m); \ |
| 1649 | vm_page_unlock_queues()((void)(&vm_page_queue_lock)); \ |
| 1650 | } |
| 1651 | |
| 1652 | |
| 1653 | #undef UNLOCK_THINGS{ object->paging_in_progress--; ((void)(&(object)-> Lock)); } |
| 1654 | #define UNLOCK_THINGS{ object->paging_in_progress--; ((void)(&(object)-> Lock)); } { \ |
| 1655 | object->paging_in_progress--; \ |
| 1656 | vm_object_unlock(object)((void)(&(object)->Lock)); \ |
| 1657 | } |
| 1658 | |
| 1659 | #undef UNLOCK_AND_DEALLOCATE{ { object->paging_in_progress--; ((void)(&(object)-> Lock)); }; vm_object_deallocate(object); } |
| 1660 | #define UNLOCK_AND_DEALLOCATE{ { object->paging_in_progress--; ((void)(&(object)-> Lock)); }; vm_object_deallocate(object); } { \ |
| 1661 | UNLOCK_THINGS{ object->paging_in_progress--; ((void)(&(object)-> Lock)); }; \ |
| 1662 | vm_object_deallocate(object); \ |
| 1663 | } |
| 1664 | /* |
| 1665 | * Give up and have caller do things the hard way. |
| 1666 | */ |
| 1667 | |
| 1668 | #define GIVE_UP{ { { object->paging_in_progress--; ((void)(&(object)-> Lock)); }; vm_object_deallocate(object); }; return(5); } { \ |
| 1669 | UNLOCK_AND_DEALLOCATE{ { object->paging_in_progress--; ((void)(&(object)-> Lock)); }; vm_object_deallocate(object); }; \ |
| 1670 | return(KERN_FAILURE5); \ |
| 1671 | } |
| 1672 | |
| 1673 | |
| 1674 | /* |
| 1675 | * If this entry is not directly to a vm_object, bail out. |
| 1676 | */ |
| 1677 | if (entry->is_sub_map) |
| 1678 | return(KERN_FAILURE5); |
| 1679 | |
| 1680 | /* |
| 1681 | * Find the backing store object and offset into it. |
| 1682 | */ |
| 1683 | |
| 1684 | object = entry->object.vm_object; |
| 1685 | offset = (va - entry->vme_startlinks.start) + entry->offset; |
| 1686 | prot = entry->protection; |
| 1687 | |
| 1688 | /* |
| 1689 | * Make a reference to this object to prevent its |
| 1690 | * disposal while we are messing with it. |
| 1691 | */ |
| 1692 | |
| 1693 | vm_object_lock(object); |
| 1694 | assert(object->ref_count > 0)({ if (!(object->ref_count > 0)) Assert("object->ref_count > 0" , "../vm/vm_fault.c", 1694); }); |
| 1695 | object->ref_count++; |
| 1696 | object->paging_in_progress++; |
| 1697 | |
| 1698 | /* |
| 1699 | * INVARIANTS (through entire routine): |
| 1700 | * |
| 1701 | * 1) At all times, we must either have the object |
| 1702 | * lock or a busy page in some object to prevent |
| 1703 | * some other thread from trying to bring in |
| 1704 | * the same page. |
| 1705 | * |
| 1706 | * 2) Once we have a busy page, we must remove it from |
| 1707 | * the pageout queues, so that the pageout daemon |
| 1708 | * will not grab it away. |
| 1709 | * |
| 1710 | */ |
| 1711 | |
| 1712 | /* |
| 1713 | * Look for page in top-level object. If it's not there or |
| 1714 | * there's something going on, give up. |
| 1715 | */ |
| 1716 | m = vm_page_lookup(object, offset); |
| 1717 | if ((m == VM_PAGE_NULL((vm_page_t) 0)) || (m->error) || |
| 1718 | (m->busy) || (m->absent) || (prot & m->page_lock)) { |
| 1719 | GIVE_UP{ { { object->paging_in_progress--; ((void)(&(object)-> Lock)); }; vm_object_deallocate(object); }; return(5); }; |
| 1720 | } |
| 1721 | |
| 1722 | /* |
| 1723 | * Wire the page down now. All bail outs beyond this |
| 1724 | * point must unwire the page. |
| 1725 | */ |
| 1726 | |
| 1727 | vm_page_lock_queues(); |
| 1728 | vm_page_wire(m); |
| 1729 | vm_page_unlock_queues()((void)(&vm_page_queue_lock)); |
| 1730 | |
| 1731 | /* |
| 1732 | * Mark page busy for other threads. |
| 1733 | */ |
| 1734 | assert(!m->busy)({ if (!(!m->busy)) Assert("!m->busy", "../vm/vm_fault.c" , 1734); }); |
| 1735 | m->busy = TRUE((boolean_t) 1); |
| 1736 | assert(!m->absent)({ if (!(!m->absent)) Assert("!m->absent", "../vm/vm_fault.c" , 1736); }); |
| 1737 | |
| 1738 | /* |
| 1739 | * Give up if the page is being written and there's a copy object |
| 1740 | */ |
| 1741 | if ((object->copy != VM_OBJECT_NULL((vm_object_t) 0)) && (prot & VM_PROT_WRITE((vm_prot_t) 0x02))) { |
| 1742 | RELEASE_PAGE(m){ ({ (m)->busy = ((boolean_t) 0); if ((m)->wanted) { (m )->wanted = ((boolean_t) 0); thread_wakeup_prim((((event_t ) m)), ((boolean_t) 0), 0); } }); ; vm_page_unwire(m); ((void )(&vm_page_queue_lock)); }; |
| 1743 | GIVE_UP{ { { object->paging_in_progress--; ((void)(&(object)-> Lock)); }; vm_object_deallocate(object); }; return(5); }; |
| 1744 | } |
| 1745 | |
| 1746 | /* |
| 1747 | * Put this page into the physical map. |
| 1748 | * We have to unlock the object because pmap_enter |
| 1749 | * may cause other faults. |
| 1750 | */ |
| 1751 | vm_object_unlock(object)((void)(&(object)->Lock)); |
| 1752 | |
| 1753 | PMAP_ENTER(map->pmap, va, m, prot, TRUE)({ pmap_enter( (map->pmap), (va), (m)->phys_addr, (prot ) & ~(m)->page_lock, (((boolean_t) 1)) ); }); |
| 1754 | |
| 1755 | /* |
| 1756 | * Must relock object so that paging_in_progress can be cleared. |
| 1757 | */ |
| 1758 | vm_object_lock(object); |
| 1759 | |
| 1760 | /* |
| 1761 | * Unlock everything, and return |
| 1762 | */ |
| 1763 | |
| 1764 | PAGE_WAKEUP_DONE(m)({ (m)->busy = ((boolean_t) 0); if ((m)->wanted) { (m)-> wanted = ((boolean_t) 0); thread_wakeup_prim((((event_t) m)), ((boolean_t) 0), 0); } }); |
| 1765 | UNLOCK_AND_DEALLOCATE{ { object->paging_in_progress--; ((void)(&(object)-> Lock)); }; vm_object_deallocate(object); }; |
| 1766 | |
| 1767 | return(KERN_SUCCESS0); |
| 1768 | |
| 1769 | } |
| 1770 | |
| 1771 | /* |
| 1772 | * Routine: vm_fault_copy_cleanup |
| 1773 | * Purpose: |
| 1774 | * Release a page used by vm_fault_copy. |
| 1775 | */ |
| 1776 | |
| 1777 | void vm_fault_copy_cleanup(page, top_page) |
| 1778 | vm_page_t page; |
| 1779 | vm_page_t top_page; |
| 1780 | { |
| 1781 | vm_object_t object = page->object; |
| 1782 | |
| 1783 | vm_object_lock(object); |
| 1784 | PAGE_WAKEUP_DONE(page)({ (page)->busy = ((boolean_t) 0); if ((page)->wanted) { (page)->wanted = ((boolean_t) 0); thread_wakeup_prim((((event_t ) page)), ((boolean_t) 0), 0); } }); |
| 1785 | vm_page_lock_queues(); |
| 1786 | if (!page->active && !page->inactive) |
| 1787 | vm_page_activate(page); |
| 1788 | vm_page_unlock_queues()((void)(&vm_page_queue_lock)); |
| 1789 | vm_fault_cleanup(object, top_page); |
| 1790 | } |
| 1791 | |
| 1792 | /* |
| 1793 | * Routine: vm_fault_copy |
| 1794 | * |
| 1795 | * Purpose: |
| 1796 | * Copy pages from one virtual memory object to another -- |
| 1797 | * neither the source nor destination pages need be resident. |
| 1798 | * |
| 1799 | * Before actually copying a page, the version associated with |
| 1800 | * the destination address map wil be verified. |
| 1801 | * |
| 1802 | * In/out conditions: |
| 1803 | * The caller must hold a reference, but not a lock, to |
| 1804 | * each of the source and destination objects and to the |
| 1805 | * destination map. |
| 1806 | * |
| 1807 | * Results: |
| 1808 | * Returns KERN_SUCCESS if no errors were encountered in |
| 1809 | * reading or writing the data. Returns KERN_INTERRUPTED if |
| 1810 | * the operation was interrupted (only possible if the |
| 1811 | * "interruptible" argument is asserted). Other return values |
| 1812 | * indicate a permanent error in copying the data. |
| 1813 | * |
| 1814 | * The actual amount of data copied will be returned in the |
| 1815 | * "copy_size" argument. In the event that the destination map |
| 1816 | * verification failed, this amount may be less than the amount |
| 1817 | * requested. |
| 1818 | */ |
| 1819 | kern_return_t vm_fault_copy( |
| 1820 | src_object, |
| 1821 | src_offset, |
| 1822 | src_size, |
| 1823 | dst_object, |
| 1824 | dst_offset, |
| 1825 | dst_map, |
| 1826 | dst_version, |
| 1827 | interruptible |
| 1828 | ) |
| 1829 | vm_object_t src_object; |
| 1830 | vm_offset_t src_offset; |
| 1831 | vm_size_t *src_size; /* INOUT */ |
| 1832 | vm_object_t dst_object; |
| 1833 | vm_offset_t dst_offset; |
| 1834 | vm_map_t dst_map; |
| 1835 | vm_map_version_t *dst_version; |
| 1836 | boolean_t interruptible; |
| 1837 | { |
| 1838 | vm_page_t result_page; |
| 1839 | vm_prot_t prot; |
| 1840 | |
| 1841 | vm_page_t src_page; |
| 1842 | vm_page_t src_top_page; |
| 1843 | |
| 1844 | vm_page_t dst_page; |
| 1845 | vm_page_t dst_top_page; |
| 1846 | |
| 1847 | vm_size_t amount_done; |
| 1848 | vm_object_t old_copy_object; |
| 1849 | |
| 1850 | #define RETURN(x) \ |
| 1851 | MACRO_BEGIN({ \ |
| 1852 | *src_size = amount_done; \ |
| 1853 | MACRO_RETURNif (((boolean_t) 1)) return(x); \ |
| 1854 | MACRO_END}) |
| 1855 | |
| 1856 | amount_done = 0; |
| 1857 | do { /* while (amount_done != *src_size) */ |
| 1858 | |
| 1859 | RetrySourceFault: ; |
| 1860 | |
| 1861 | if (src_object == VM_OBJECT_NULL((vm_object_t) 0)) { |
| 1862 | /* |
| 1863 | * No source object. We will just |
| 1864 | * zero-fill the page in dst_object. |
| 1865 | */ |
| 1866 | |
| 1867 | src_page = VM_PAGE_NULL((vm_page_t) 0); |
| 1868 | } else { |
| 1869 | prot = VM_PROT_READ((vm_prot_t) 0x01); |
| 1870 | |
| 1871 | vm_object_lock(src_object); |
| 1872 | vm_object_paging_begin(src_object)((src_object)->paging_in_progress++); |
| 1873 | |
| 1874 | switch (vm_fault_page(src_object, src_offset, |
| 1875 | VM_PROT_READ((vm_prot_t) 0x01), FALSE((boolean_t) 0), interruptible, |
| 1876 | &prot, &result_page, &src_top_page, |
| 1877 | FALSE((boolean_t) 0), (void (*)()) 0)) { |
| 1878 | |
| 1879 | case VM_FAULT_SUCCESS0: |
| 1880 | break; |
| 1881 | case VM_FAULT_RETRY1: |
| 1882 | goto RetrySourceFault; |
| 1883 | case VM_FAULT_INTERRUPTED2: |
| 1884 | RETURN(MACH_SEND_INTERRUPTED0x10000007); |
| 1885 | case VM_FAULT_MEMORY_SHORTAGE3: |
| 1886 | VM_PAGE_WAIT((void (*)()) 0)vm_page_wait((void (*)()) 0); |
| 1887 | goto RetrySourceFault; |
| 1888 | case VM_FAULT_FICTITIOUS_SHORTAGE4: |
| 1889 | vm_page_more_fictitious(); |
| 1890 | goto RetrySourceFault; |
| 1891 | case VM_FAULT_MEMORY_ERROR5: |
| 1892 | return(KERN_MEMORY_ERROR10); |
| 1893 | } |
| 1894 | |
| 1895 | src_page = result_page; |
| 1896 | |
| 1897 | assert((src_top_page == VM_PAGE_NULL) ==({ if (!((src_top_page == ((vm_page_t) 0)) == (src_page->object == src_object))) Assert("(src_top_page == VM_PAGE_NULL) == (src_page->object == src_object)" , "../vm/vm_fault.c", 1898); }) |
| 1898 | (src_page->object == src_object))({ if (!((src_top_page == ((vm_page_t) 0)) == (src_page->object == src_object))) Assert("(src_top_page == VM_PAGE_NULL) == (src_page->object == src_object)" , "../vm/vm_fault.c", 1898); }); |
| 1899 | |
| 1900 | assert ((prot & VM_PROT_READ) != VM_PROT_NONE)({ if (!((prot & ((vm_prot_t) 0x01)) != ((vm_prot_t) 0x00 ))) Assert("(prot & VM_PROT_READ) != VM_PROT_NONE", "../vm/vm_fault.c" , 1900); }); |
| 1901 | |
| 1902 | vm_object_unlock(src_page->object)((void)(&(src_page->object)->Lock)); |
| 1903 | } |
| 1904 | |
| 1905 | RetryDestinationFault: ; |
| 1906 | |
| 1907 | prot = VM_PROT_WRITE((vm_prot_t) 0x02); |
| 1908 | |
| 1909 | vm_object_lock(dst_object); |
| 1910 | vm_object_paging_begin(dst_object)((dst_object)->paging_in_progress++); |
| 1911 | |
| 1912 | switch (vm_fault_page(dst_object, dst_offset, VM_PROT_WRITE((vm_prot_t) 0x02), |
| 1913 | FALSE((boolean_t) 0), FALSE((boolean_t) 0) /* interruptible */, |
| 1914 | &prot, &result_page, &dst_top_page, |
| 1915 | FALSE((boolean_t) 0), (void (*)()) 0)) { |
| 1916 | |
| 1917 | case VM_FAULT_SUCCESS0: |
| 1918 | break; |
| 1919 | case VM_FAULT_RETRY1: |
| 1920 | goto RetryDestinationFault; |
| 1921 | case VM_FAULT_INTERRUPTED2: |
| 1922 | if (src_page != VM_PAGE_NULL((vm_page_t) 0)) |
| 1923 | vm_fault_copy_cleanup(src_page, |
| 1924 | src_top_page); |
| 1925 | RETURN(MACH_SEND_INTERRUPTED0x10000007); |
| 1926 | case VM_FAULT_MEMORY_SHORTAGE3: |
| 1927 | VM_PAGE_WAIT((void (*)()) 0)vm_page_wait((void (*)()) 0); |
| 1928 | goto RetryDestinationFault; |
| 1929 | case VM_FAULT_FICTITIOUS_SHORTAGE4: |
| 1930 | vm_page_more_fictitious(); |
| 1931 | goto RetryDestinationFault; |
| 1932 | case VM_FAULT_MEMORY_ERROR5: |
| 1933 | if (src_page != VM_PAGE_NULL((vm_page_t) 0)) |
| 1934 | vm_fault_copy_cleanup(src_page, |
| 1935 | src_top_page); |
| 1936 | return(KERN_MEMORY_ERROR10); |
| 1937 | } |
| 1938 | assert ((prot & VM_PROT_WRITE) != VM_PROT_NONE)({ if (!((prot & ((vm_prot_t) 0x02)) != ((vm_prot_t) 0x00 ))) Assert("(prot & VM_PROT_WRITE) != VM_PROT_NONE", "../vm/vm_fault.c" , 1938); }); |
| 1939 | |
| 1940 | dst_page = result_page; |
| 1941 | |
| 1942 | old_copy_object = dst_page->object->copy; |
| 1943 | |
| 1944 | vm_object_unlock(dst_page->object)((void)(&(dst_page->object)->Lock)); |
| 1945 | |
| 1946 | if (!vm_map_verify(dst_map, dst_version)) { |
| 1947 | |
| 1948 | BailOut: ; |
| 1949 | |
| 1950 | if (src_page != VM_PAGE_NULL((vm_page_t) 0)) |
| 1951 | vm_fault_copy_cleanup(src_page, src_top_page); |
| 1952 | vm_fault_copy_cleanup(dst_page, dst_top_page); |
| 1953 | break; |
| 1954 | } |
| 1955 | |
| 1956 | |
| 1957 | vm_object_lock(dst_page->object); |
| 1958 | if (dst_page->object->copy != old_copy_object) { |
| 1959 | vm_object_unlock(dst_page->object)((void)(&(dst_page->object)->Lock)); |
| 1960 | vm_map_verify_done(dst_map, dst_version)(lock_done(&(dst_map)->lock)); |
| 1961 | goto BailOut; |
| 1962 | } |
| 1963 | vm_object_unlock(dst_page->object)((void)(&(dst_page->object)->Lock)); |
| 1964 | |
| 1965 | /* |
| 1966 | * Copy the page, and note that it is dirty |
| 1967 | * immediately. |
| 1968 | */ |
| 1969 | |
| 1970 | if (src_page == VM_PAGE_NULL((vm_page_t) 0)) |
| 1971 | vm_page_zero_fill(dst_page); |
| 1972 | else |
| 1973 | vm_page_copy(src_page, dst_page); |
| 1974 | dst_page->dirty = TRUE((boolean_t) 1); |
| 1975 | |
| 1976 | /* |
| 1977 | * Unlock everything, and return |
| 1978 | */ |
| 1979 | |
| 1980 | vm_map_verify_done(dst_map, dst_version)(lock_done(&(dst_map)->lock)); |
| 1981 | |
| 1982 | if (src_page != VM_PAGE_NULL((vm_page_t) 0)) |
| 1983 | vm_fault_copy_cleanup(src_page, src_top_page); |
| 1984 | vm_fault_copy_cleanup(dst_page, dst_top_page); |
| 1985 | |
| 1986 | amount_done += PAGE_SIZE(1 << 12); |
| 1987 | src_offset += PAGE_SIZE(1 << 12); |
| 1988 | dst_offset += PAGE_SIZE(1 << 12); |
| 1989 | |
| 1990 | } while (amount_done != *src_size); |
| 1991 | |
| 1992 | RETURN(KERN_SUCCESS0); |
| 1993 | #undef RETURN |
| 1994 | |
| 1995 | /*NOTREACHED*/ |
| 1996 | } |
| 1997 | |
| 1998 | |
| 1999 | |
| 2000 | |
| 2001 | |
| 2002 | #ifdef notdef |
| 2003 | |
| 2004 | /* |
| 2005 | * Routine: vm_fault_page_overwrite |
| 2006 | * |
| 2007 | * Description: |
| 2008 | * A form of vm_fault_page that assumes that the |
| 2009 | * resulting page will be overwritten in its entirety, |
| 2010 | * making it unnecessary to obtain the correct *contents* |
| 2011 | * of the page. |
| 2012 | * |
| 2013 | * Implementation: |
| 2014 | * XXX Untested. Also unused. Eventually, this technology |
| 2015 | * could be used in vm_fault_copy() to advantage. |
| 2016 | */ |
| 2017 | vm_fault_return_t vm_fault_page_overwrite(dst_object, dst_offset, result_page) |
| 2018 | vm_object_t dst_object; |
| 2019 | vm_offset_t dst_offset; |
| 2020 | vm_page_t *result_page; /* OUT */ |
| 2021 | { |
| 2022 | vm_page_t dst_page; |
| 2023 | |
| 2024 | #define interruptible FALSE((boolean_t) 0) /* XXX */ |
| 2025 | |
| 2026 | while (TRUE((boolean_t) 1)) { |
| 2027 | /* |
| 2028 | * Look for a page at this offset |
| 2029 | */ |
| 2030 | |
| 2031 | while ((dst_page = vm_page_lookup(dst_object, dst_offset)) |
| 2032 | == VM_PAGE_NULL((vm_page_t) 0)) { |
| 2033 | /* |
| 2034 | * No page, no problem... just allocate one. |
| 2035 | */ |
| 2036 | |
| 2037 | dst_page = vm_page_alloc(dst_object, dst_offset); |
| 2038 | if (dst_page == VM_PAGE_NULL((vm_page_t) 0)) { |
| 2039 | vm_object_unlock(dst_object)((void)(&(dst_object)->Lock)); |
| 2040 | VM_PAGE_WAIT((void (*)()) 0)vm_page_wait((void (*)()) 0); |
| 2041 | vm_object_lock(dst_object); |
| 2042 | continue; |
| 2043 | } |
| 2044 | |
| 2045 | /* |
| 2046 | * Pretend that the memory manager |
| 2047 | * write-protected the page. |
| 2048 | * |
| 2049 | * Note that we will be asking for write |
| 2050 | * permission without asking for the data |
| 2051 | * first. |
| 2052 | */ |
| 2053 | |
| 2054 | dst_page->overwriting = TRUE((boolean_t) 1); |
| 2055 | dst_page->page_lock = VM_PROT_WRITE((vm_prot_t) 0x02); |
| 2056 | dst_page->absent = TRUE((boolean_t) 1); |
| 2057 | dst_object->absent_count++; |
| 2058 | |
| 2059 | break; |
| 2060 | |
| 2061 | /* |
| 2062 | * When we bail out, we might have to throw |
| 2063 | * away the page created here. |
| 2064 | */ |
| 2065 | |
| 2066 | #define DISCARD_PAGE \ |
| 2067 | MACRO_BEGIN({ \ |
| 2068 | vm_object_lock(dst_object); \ |
| 2069 | dst_page = vm_page_lookup(dst_object, dst_offset); \ |
| 2070 | if ((dst_page != VM_PAGE_NULL((vm_page_t) 0)) && dst_page->overwriting) \ |
| 2071 | VM_PAGE_FREE(dst_page)({ ; vm_page_free(dst_page); ((void)(&vm_page_queue_lock) ); }); \ |
| 2072 | vm_object_unlock(dst_object)((void)(&(dst_object)->Lock)); \ |
| 2073 | MACRO_END}) |
| 2074 | } |
| 2075 | |
| 2076 | /* |
| 2077 | * If the page is write-protected... |
| 2078 | */ |
| 2079 | |
| 2080 | if (dst_page->page_lock & VM_PROT_WRITE((vm_prot_t) 0x02)) { |
| 2081 | /* |
| 2082 | * ... and an unlock request hasn't been sent |
| 2083 | */ |
| 2084 | |
| 2085 | if ( ! (dst_page->unlock_request & VM_PROT_WRITE((vm_prot_t) 0x02))) { |
| 2086 | vm_prot_t u; |
| 2087 | kern_return_t rc; |
| 2088 | |
| 2089 | /* |
| 2090 | * ... then send one now. |
| 2091 | */ |
| 2092 | |
| 2093 | if (!dst_object->pager_ready) { |
| 2094 | vm_object_assert_wait(dst_object,({ (dst_object)->all_wanted |= 1 << (1); assert_wait ((event_t)(((vm_offset_t) dst_object) + (1)), (interruptible) ); }) |
| 2095 | VM_OBJECT_EVENT_PAGER_READY,({ (dst_object)->all_wanted |= 1 << (1); assert_wait ((event_t)(((vm_offset_t) dst_object) + (1)), (interruptible) ); }) |
| 2096 | interruptible)({ (dst_object)->all_wanted |= 1 << (1); assert_wait ((event_t)(((vm_offset_t) dst_object) + (1)), (interruptible) ); }); |
| 2097 | vm_object_unlock(dst_object)((void)(&(dst_object)->Lock)); |
| 2098 | thread_block((void (*)()) 0); |
| 2099 | if (current_thread()(active_threads[(0)])->wait_result != |
| 2100 | THREAD_AWAKENED0) { |
| 2101 | DISCARD_PAGE; |
| 2102 | return(VM_FAULT_INTERRUPTED2); |
| 2103 | } |
| 2104 | continue; |
| 2105 | } |
| 2106 | |
| 2107 | u = dst_page->unlock_request |= VM_PROT_WRITE((vm_prot_t) 0x02); |
| 2108 | vm_object_unlock(dst_object)((void)(&(dst_object)->Lock)); |
| 2109 | |
| 2110 | if ((rc = memory_object_data_unlock( |
| 2111 | dst_object->pager, |
| 2112 | dst_object->pager_request, |
| 2113 | dst_offset + dst_object->paging_offset, |
| 2114 | PAGE_SIZE(1 << 12), |
| 2115 | u)) != KERN_SUCCESS0) { |
| 2116 | printf("vm_object_overwrite: memory_object_data_unlock failed\n"); |
| 2117 | DISCARD_PAGE; |
| 2118 | return((rc == MACH_SEND_INTERRUPTED0x10000007) ? |
| 2119 | VM_FAULT_INTERRUPTED2 : |
| 2120 | VM_FAULT_MEMORY_ERROR5); |
| 2121 | } |
| 2122 | vm_object_lock(dst_object); |
| 2123 | continue; |
| 2124 | } |
| 2125 | |
| 2126 | /* ... fall through to wait below */ |
| 2127 | } else { |
| 2128 | /* |
| 2129 | * If the page isn't being used for other |
| 2130 | * purposes, then we're done. |
| 2131 | */ |
| 2132 | if ( ! (dst_page->busy || dst_page->absent || dst_page->error) ) |
| 2133 | break; |
| 2134 | } |
| 2135 | |
| 2136 | PAGE_ASSERT_WAIT(dst_page, interruptible)({ (dst_page)->wanted = ((boolean_t) 1); assert_wait((event_t ) (dst_page), (interruptible)); }); |
| 2137 | vm_object_unlock(dst_object)((void)(&(dst_object)->Lock)); |
| 2138 | thread_block((void (*)()) 0); |
| 2139 | if (current_thread()(active_threads[(0)])->wait_result != THREAD_AWAKENED0) { |
| 2140 | DISCARD_PAGE; |
| 2141 | return(VM_FAULT_INTERRUPTED2); |
| 2142 | } |
| 2143 | } |
| 2144 | |
| 2145 | *result_page = dst_page; |
| 2146 | return(VM_FAULT_SUCCESS0); |
| 2147 | |
| 2148 | #undef interruptible |
| 2149 | #undef DISCARD_PAGE |
| 2150 | } |
| 2151 | |
| 2152 | #endif /* notdef */ |