| File: | obj-scan-build/../kern/task.c |
| Location: | line 1097, column 17 |
| Description: | Access to field 'map' results in a dereference of a null pointer (loaded from variable 'task') |
| 1 | /* | |||
| 2 | * Mach Operating System | |||
| 3 | * Copyright (c) 1993-1988 Carnegie Mellon University | |||
| 4 | * All Rights Reserved. | |||
| 5 | * | |||
| 6 | * Permission to use, copy, modify and distribute this software and its | |||
| 7 | * documentation is hereby granted, provided that both the copyright | |||
| 8 | * notice and this permission notice appear in all copies of the | |||
| 9 | * software, derivative works or modified versions, and any portions | |||
| 10 | * thereof, and that both notices appear in supporting documentation. | |||
| 11 | * | |||
| 12 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" | |||
| 13 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR | |||
| 14 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. | |||
| 15 | * | |||
| 16 | * Carnegie Mellon requests users of this software to return to | |||
| 17 | * | |||
| 18 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU | |||
| 19 | * School of Computer Science | |||
| 20 | * Carnegie Mellon University | |||
| 21 | * Pittsburgh PA 15213-3890 | |||
| 22 | * | |||
| 23 | * any improvements or extensions that they make and grant Carnegie Mellon | |||
| 24 | * the rights to redistribute these changes. | |||
| 25 | */ | |||
| 26 | /* | |||
| 27 | * File: kern/task.c | |||
| 28 | * Author: Avadis Tevanian, Jr., Michael Wayne Young, David Golub, | |||
| 29 | * David Black | |||
| 30 | * | |||
| 31 | * Task management primitives implementation. | |||
| 32 | */ | |||
| 33 | ||||
| 34 | #include <string.h> | |||
| 35 | ||||
| 36 | #include <mach/machine/vm_types.h> | |||
| 37 | #include <mach/vm_param.h> | |||
| 38 | #include <mach/task_info.h> | |||
| 39 | #include <mach/task_special_ports.h> | |||
| 40 | #include <ipc/ipc_space.h> | |||
| 41 | #include <ipc/ipc_types.h> | |||
| 42 | #include <kern/debug.h> | |||
| 43 | #include <kern/task.h> | |||
| 44 | #include <kern/thread.h> | |||
| 45 | #include <kern/slab.h> | |||
| 46 | #include <kern/kalloc.h> | |||
| 47 | #include <kern/processor.h> | |||
| 48 | #include <kern/sched_prim.h> /* for thread_wakeup */ | |||
| 49 | #include <kern/ipc_tt.h> | |||
| 50 | #include <vm/vm_kern.h> /* for kernel_map, ipc_kernel_map */ | |||
| 51 | #include <machine/machspl.h> /* for splsched */ | |||
| 52 | ||||
| 53 | task_t kernel_task = TASK_NULL((task_t) 0); | |||
| 54 | struct kmem_cache task_cache; | |||
| 55 | ||||
| 56 | extern void eml_init(void); | |||
| 57 | extern void eml_task_reference(task_t, task_t); | |||
| 58 | extern void eml_task_deallocate(task_t); | |||
| 59 | ||||
| 60 | void task_init(void) | |||
| 61 | { | |||
| 62 | kmem_cache_init(&task_cache, "task", sizeof(struct task), 0, | |||
| 63 | NULL((void *) 0), NULL((void *) 0), NULL((void *) 0), 0); | |||
| 64 | ||||
| 65 | eml_init(); | |||
| 66 | machine_task_module_init (); | |||
| 67 | ||||
| 68 | /* | |||
| 69 | * Create the kernel task as the first task. | |||
| 70 | * Task_create must assign to kernel_task as a side effect, | |||
| 71 | * for other initialization. (:-() | |||
| 72 | */ | |||
| 73 | (void) task_create(TASK_NULL((task_t) 0), FALSE((boolean_t) 0), &kernel_task); | |||
| 74 | } | |||
| 75 | ||||
| 76 | kern_return_t task_create( | |||
| 77 | task_t parent_task, | |||
| 78 | boolean_t inherit_memory, | |||
| 79 | task_t *child_task) /* OUT */ | |||
| 80 | { | |||
| 81 | task_t new_task; | |||
| 82 | processor_set_t pset; | |||
| 83 | #if FAST_TAS0 | |||
| 84 | int i; | |||
| 85 | #endif | |||
| 86 | ||||
| 87 | new_task = (task_t) kmem_cache_alloc(&task_cache); | |||
| 88 | if (new_task == TASK_NULL((task_t) 0)) { | |||
| 89 | panic("task_create: no memory for task structure"); | |||
| 90 | } | |||
| 91 | ||||
| 92 | /* one ref for just being alive; one for our caller */ | |||
| 93 | new_task->ref_count = 2; | |||
| 94 | ||||
| 95 | if (child_task == &kernel_task) { | |||
| 96 | new_task->map = kernel_map; | |||
| 97 | } else if (inherit_memory) { | |||
| 98 | new_task->map = vm_map_fork(parent_task->map); | |||
| 99 | } else { | |||
| 100 | new_task->map = vm_map_create(pmap_create(0), | |||
| 101 | round_page(VM_MIN_ADDRESS)((vm_offset_t)((((vm_offset_t)((0))) + ((1 << 12)-1)) & ~((1 << 12)-1))), | |||
| 102 | trunc_page(VM_MAX_ADDRESS)((vm_offset_t)(((vm_offset_t)((0xc0000000UL))) & ~((1 << 12)-1))), TRUE((boolean_t) 1)); | |||
| 103 | } | |||
| 104 | ||||
| 105 | simple_lock_init(&new_task->lock); | |||
| 106 | queue_init(&new_task->thread_list)((&new_task->thread_list)->next = (&new_task-> thread_list)->prev = &new_task->thread_list); | |||
| 107 | new_task->suspend_count = 0; | |||
| 108 | new_task->active = TRUE((boolean_t) 1); | |||
| 109 | new_task->user_stop_count = 0; | |||
| 110 | new_task->thread_count = 0; | |||
| 111 | new_task->faults = 0; | |||
| 112 | new_task->zero_fills = 0; | |||
| 113 | new_task->reactivations = 0; | |||
| 114 | new_task->pageins = 0; | |||
| 115 | new_task->cow_faults = 0; | |||
| 116 | new_task->messages_sent = 0; | |||
| 117 | new_task->messages_received = 0; | |||
| 118 | ||||
| 119 | eml_task_reference(new_task, parent_task); | |||
| 120 | ||||
| 121 | ipc_task_init(new_task, parent_task); | |||
| 122 | machine_task_init (new_task); | |||
| 123 | ||||
| 124 | new_task->total_user_time.seconds = 0; | |||
| 125 | new_task->total_user_time.microseconds = 0; | |||
| 126 | new_task->total_system_time.seconds = 0; | |||
| 127 | new_task->total_system_time.microseconds = 0; | |||
| 128 | ||||
| 129 | record_time_stamp (&new_task->creation_time); | |||
| 130 | ||||
| 131 | if (parent_task != TASK_NULL((task_t) 0)) { | |||
| 132 | task_lock(parent_task); | |||
| 133 | pset = parent_task->processor_set; | |||
| 134 | if (!pset->active) | |||
| 135 | pset = &default_pset; | |||
| 136 | pset_reference(pset); | |||
| 137 | new_task->priority = parent_task->priority; | |||
| 138 | task_unlock(parent_task); | |||
| 139 | } | |||
| 140 | else { | |||
| 141 | pset = &default_pset; | |||
| 142 | pset_reference(pset); | |||
| 143 | new_task->priority = BASEPRI_USER25; | |||
| 144 | } | |||
| 145 | pset_lock(pset); | |||
| 146 | pset_add_task(pset, new_task); | |||
| 147 | pset_unlock(pset); | |||
| 148 | ||||
| 149 | new_task->may_assign = TRUE((boolean_t) 1); | |||
| 150 | new_task->assign_active = FALSE((boolean_t) 0); | |||
| 151 | ||||
| 152 | #if MACH_PCSAMPLE1 | |||
| 153 | new_task->pc_sample.buffer = 0; | |||
| 154 | new_task->pc_sample.seqno = 0; | |||
| 155 | new_task->pc_sample.sampletypes = 0; | |||
| 156 | #endif /* MACH_PCSAMPLE */ | |||
| 157 | ||||
| 158 | #if FAST_TAS0 | |||
| 159 | for (i = 0; i < TASK_FAST_TAS_NRAS; i++) { | |||
| 160 | if (inherit_memory) { | |||
| 161 | new_task->fast_tas_base[i] = parent_task->fast_tas_base[i]; | |||
| 162 | new_task->fast_tas_end[i] = parent_task->fast_tas_end[i]; | |||
| 163 | } else { | |||
| 164 | new_task->fast_tas_base[i] = (vm_offset_t)0; | |||
| 165 | new_task->fast_tas_end[i] = (vm_offset_t)0; | |||
| 166 | } | |||
| 167 | } | |||
| 168 | #endif /* FAST_TAS */ | |||
| 169 | ||||
| 170 | ipc_task_enable(new_task); | |||
| 171 | ||||
| 172 | *child_task = new_task; | |||
| 173 | return KERN_SUCCESS0; | |||
| 174 | } | |||
| 175 | ||||
| 176 | /* | |||
| 177 | * task_deallocate: | |||
| 178 | * | |||
| 179 | * Give up a reference to the specified task and destroy it if there | |||
| 180 | * are no other references left. It is assumed that the current thread | |||
| 181 | * is never in this task. | |||
| 182 | */ | |||
| 183 | void task_deallocate( | |||
| 184 | task_t task) | |||
| 185 | { | |||
| 186 | int c; | |||
| 187 | processor_set_t pset; | |||
| 188 | ||||
| 189 | if (task == TASK_NULL((task_t) 0)) | |||
| 190 | return; | |||
| 191 | ||||
| 192 | task_lock(task); | |||
| 193 | c = --(task->ref_count); | |||
| 194 | task_unlock(task); | |||
| 195 | if (c != 0) | |||
| 196 | return; | |||
| 197 | ||||
| 198 | machine_task_terminate (task); | |||
| 199 | ||||
| 200 | eml_task_deallocate(task); | |||
| 201 | ||||
| 202 | pset = task->processor_set; | |||
| 203 | pset_lock(pset); | |||
| 204 | pset_remove_task(pset,task); | |||
| 205 | pset_unlock(pset); | |||
| 206 | pset_deallocate(pset); | |||
| 207 | vm_map_deallocate(task->map); | |||
| 208 | is_release(task->itk_space)ipc_space_release(task->itk_space); | |||
| 209 | kmem_cache_free(&task_cache, (vm_offset_t) task); | |||
| 210 | } | |||
| 211 | ||||
| 212 | void task_reference( | |||
| 213 | task_t task) | |||
| 214 | { | |||
| 215 | if (task == TASK_NULL((task_t) 0)) | |||
| 216 | return; | |||
| 217 | ||||
| 218 | task_lock(task); | |||
| 219 | task->ref_count++; | |||
| 220 | task_unlock(task); | |||
| 221 | } | |||
| 222 | ||||
| 223 | /* | |||
| 224 | * task_terminate: | |||
| 225 | * | |||
| 226 | * Terminate the specified task. See comments on thread_terminate | |||
| 227 | * (kern/thread.c) about problems with terminating the "current task." | |||
| 228 | */ | |||
| 229 | kern_return_t task_terminate( | |||
| 230 | task_t task) | |||
| 231 | { | |||
| 232 | thread_t thread, cur_thread; | |||
| 233 | queue_head_t *list; | |||
| 234 | task_t cur_task; | |||
| 235 | spl_t s; | |||
| 236 | ||||
| 237 | if (task == TASK_NULL((task_t) 0)) | |||
| 238 | return KERN_INVALID_ARGUMENT4; | |||
| 239 | ||||
| 240 | list = &task->thread_list; | |||
| 241 | cur_task = current_task()((active_threads[(0)])->task); | |||
| 242 | cur_thread = current_thread()(active_threads[(0)]); | |||
| 243 | ||||
| 244 | /* | |||
| 245 | * Deactivate task so that it can't be terminated again, | |||
| 246 | * and so lengthy operations in progress will abort. | |||
| 247 | * | |||
| 248 | * If the current thread is in this task, remove it from | |||
| 249 | * the task's thread list to keep the thread-termination | |||
| 250 | * loop simple. | |||
| 251 | */ | |||
| 252 | if (task == cur_task) { | |||
| 253 | task_lock(task); | |||
| 254 | if (!task->active) { | |||
| 255 | /* | |||
| 256 | * Task is already being terminated. | |||
| 257 | */ | |||
| 258 | task_unlock(task); | |||
| 259 | return KERN_FAILURE5; | |||
| 260 | } | |||
| 261 | /* | |||
| 262 | * Make sure current thread is not being terminated. | |||
| 263 | */ | |||
| 264 | s = splsched(); | |||
| 265 | thread_lock(cur_thread); | |||
| 266 | if (!cur_thread->active) { | |||
| 267 | thread_unlock(cur_thread); | |||
| 268 | (void) splx(s); | |||
| 269 | task_unlock(task); | |||
| 270 | thread_terminate(cur_thread); | |||
| 271 | return KERN_FAILURE5; | |||
| 272 | } | |||
| 273 | task->active = FALSE((boolean_t) 0); | |||
| 274 | queue_remove(list, cur_thread, thread_t, thread_list){ queue_entry_t next, prev; next = (cur_thread)->thread_list .next; prev = (cur_thread)->thread_list.prev; if ((list) == next) (list)->prev = prev; else ((thread_t)next)->thread_list .prev = prev; if ((list) == prev) (list)->next = next; else ((thread_t)prev)->thread_list.next = next; }; | |||
| 275 | thread_unlock(cur_thread); | |||
| 276 | (void) splx(s); | |||
| 277 | task_unlock(task); | |||
| 278 | ||||
| 279 | /* | |||
| 280 | * Shut down this thread's ipc now because it must | |||
| 281 | * be left alone to terminate the task. | |||
| 282 | */ | |||
| 283 | ipc_thread_disable(cur_thread); | |||
| 284 | ipc_thread_terminate(cur_thread); | |||
| 285 | } | |||
| 286 | else { | |||
| 287 | /* | |||
| 288 | * Lock both current and victim task to check for | |||
| 289 | * potential deadlock. | |||
| 290 | */ | |||
| 291 | if ((vm_offset_t)task < (vm_offset_t)cur_task) { | |||
| 292 | task_lock(task); | |||
| 293 | task_lock(cur_task); | |||
| 294 | } | |||
| 295 | else { | |||
| 296 | task_lock(cur_task); | |||
| 297 | task_lock(task); | |||
| 298 | } | |||
| 299 | /* | |||
| 300 | * Check if current thread or task is being terminated. | |||
| 301 | */ | |||
| 302 | s = splsched(); | |||
| 303 | thread_lock(cur_thread); | |||
| 304 | if ((!cur_task->active) ||(!cur_thread->active)) { | |||
| 305 | /* | |||
| 306 | * Current task or thread is being terminated. | |||
| 307 | */ | |||
| 308 | thread_unlock(cur_thread); | |||
| 309 | (void) splx(s); | |||
| 310 | task_unlock(task); | |||
| 311 | task_unlock(cur_task); | |||
| 312 | thread_terminate(cur_thread); | |||
| 313 | return KERN_FAILURE5; | |||
| 314 | } | |||
| 315 | thread_unlock(cur_thread); | |||
| 316 | (void) splx(s); | |||
| 317 | task_unlock(cur_task); | |||
| 318 | ||||
| 319 | if (!task->active) { | |||
| 320 | /* | |||
| 321 | * Task is already being terminated. | |||
| 322 | */ | |||
| 323 | task_unlock(task); | |||
| 324 | return KERN_FAILURE5; | |||
| 325 | } | |||
| 326 | task->active = FALSE((boolean_t) 0); | |||
| 327 | task_unlock(task); | |||
| 328 | } | |||
| 329 | ||||
| 330 | /* | |||
| 331 | * Prevent further execution of the task. ipc_task_disable | |||
| 332 | * prevents further task operations via the task port. | |||
| 333 | * If this is the current task, the current thread will | |||
| 334 | * be left running. | |||
| 335 | */ | |||
| 336 | ipc_task_disable(task); | |||
| 337 | (void) task_hold(task); | |||
| 338 | (void) task_dowait(task,TRUE((boolean_t) 1)); /* may block */ | |||
| 339 | ||||
| 340 | /* | |||
| 341 | * Terminate each thread in the task. | |||
| 342 | * | |||
| 343 | * The task_port is closed down, so no more thread_create | |||
| 344 | * operations can be done. Thread_force_terminate closes the | |||
| 345 | * thread port for each thread; when that is done, the | |||
| 346 | * thread will eventually disappear. Thus the loop will | |||
| 347 | * terminate. Call thread_force_terminate instead of | |||
| 348 | * thread_terminate to avoid deadlock checks. Need | |||
| 349 | * to call thread_block() inside loop because some other | |||
| 350 | * thread (e.g., the reaper) may have to run to get rid | |||
| 351 | * of all references to the thread; it won't vanish from | |||
| 352 | * the task's thread list until the last one is gone. | |||
| 353 | */ | |||
| 354 | task_lock(task); | |||
| 355 | while (!queue_empty(list)(((list)) == (((list)->next)))) { | |||
| 356 | thread = (thread_t) queue_first(list)((list)->next); | |||
| 357 | thread_reference(thread); | |||
| 358 | task_unlock(task); | |||
| 359 | thread_force_terminate(thread); | |||
| 360 | thread_deallocate(thread); | |||
| 361 | thread_block((void (*)()) 0); | |||
| 362 | task_lock(task); | |||
| 363 | } | |||
| 364 | task_unlock(task); | |||
| 365 | ||||
| 366 | /* | |||
| 367 | * Shut down IPC. | |||
| 368 | */ | |||
| 369 | ipc_task_terminate(task); | |||
| 370 | ||||
| 371 | ||||
| 372 | /* | |||
| 373 | * Deallocate the task's reference to itself. | |||
| 374 | */ | |||
| 375 | task_deallocate(task); | |||
| 376 | ||||
| 377 | /* | |||
| 378 | * If the current thread is in this task, it has not yet | |||
| 379 | * been terminated (since it was removed from the task's | |||
| 380 | * thread-list). Put it back in the thread list (for | |||
| 381 | * completeness), and terminate it. Since it holds the | |||
| 382 | * last reference to the task, terminating it will deallocate | |||
| 383 | * the task. | |||
| 384 | */ | |||
| 385 | if (cur_thread->task == task) { | |||
| 386 | task_lock(task); | |||
| 387 | s = splsched(); | |||
| 388 | queue_enter(list, cur_thread, thread_t, thread_list){ queue_entry_t prev; prev = (list)->prev; if ((list) == prev ) { (list)->next = (queue_entry_t) (cur_thread); } else { ( (thread_t)prev)->thread_list.next = (queue_entry_t)(cur_thread ); } (cur_thread)->thread_list.prev = prev; (cur_thread)-> thread_list.next = list; (list)->prev = (queue_entry_t) cur_thread ; }; | |||
| 389 | (void) splx(s); | |||
| 390 | task_unlock(task); | |||
| 391 | (void) thread_terminate(cur_thread); | |||
| 392 | } | |||
| 393 | ||||
| 394 | return KERN_SUCCESS0; | |||
| 395 | } | |||
| 396 | ||||
| 397 | /* | |||
| 398 | * task_hold: | |||
| 399 | * | |||
| 400 | * Suspend execution of the specified task. | |||
| 401 | * This is a recursive-style suspension of the task, a count of | |||
| 402 | * suspends is maintained. | |||
| 403 | */ | |||
| 404 | kern_return_t task_hold( | |||
| 405 | task_t task) | |||
| 406 | { | |||
| 407 | queue_head_t *list; | |||
| 408 | thread_t thread, cur_thread; | |||
| 409 | ||||
| 410 | cur_thread = current_thread()(active_threads[(0)]); | |||
| 411 | ||||
| 412 | task_lock(task); | |||
| 413 | if (!task->active) { | |||
| 414 | task_unlock(task); | |||
| 415 | return KERN_FAILURE5; | |||
| 416 | } | |||
| 417 | ||||
| 418 | task->suspend_count++; | |||
| 419 | ||||
| 420 | /* | |||
| 421 | * Iterate through all the threads and hold them. | |||
| 422 | * Do not hold the current thread if it is within the | |||
| 423 | * task. | |||
| 424 | */ | |||
| 425 | list = &task->thread_list; | |||
| 426 | queue_iterate(list, thread, thread_t, thread_list)for ((thread) = (thread_t) ((list)->next); !(((list)) == ( (queue_entry_t)(thread))); (thread) = (thread_t) ((&(thread )->thread_list)->next)) { | |||
| 427 | if (thread != cur_thread) | |||
| 428 | thread_hold(thread); | |||
| 429 | } | |||
| 430 | task_unlock(task); | |||
| 431 | return KERN_SUCCESS0; | |||
| 432 | } | |||
| 433 | ||||
| 434 | /* | |||
| 435 | * task_dowait: | |||
| 436 | * | |||
| 437 | * Wait until the task has really been suspended (all of the threads | |||
| 438 | * are stopped). Skip the current thread if it is within the task. | |||
| 439 | * | |||
| 440 | * If task is deactivated while waiting, return a failure code unless | |||
| 441 | * must_wait is true. | |||
| 442 | */ | |||
| 443 | kern_return_t task_dowait( | |||
| 444 | task_t task, | |||
| 445 | boolean_t must_wait) | |||
| 446 | { | |||
| 447 | queue_head_t *list; | |||
| 448 | thread_t thread, cur_thread, prev_thread; | |||
| 449 | kern_return_t ret = KERN_SUCCESS0; | |||
| 450 | ||||
| 451 | /* | |||
| 452 | * Iterate through all the threads. | |||
| 453 | * While waiting for each thread, we gain a reference to it | |||
| 454 | * to prevent it from going away on us. This guarantees | |||
| 455 | * that the "next" thread in the list will be a valid thread. | |||
| 456 | * | |||
| 457 | * We depend on the fact that if threads are created while | |||
| 458 | * we are looping through the threads, they will be held | |||
| 459 | * automatically. We don't care about threads that get | |||
| 460 | * deallocated along the way (the reference prevents it | |||
| 461 | * from happening to the thread we are working with). | |||
| 462 | * | |||
| 463 | * If the current thread is in the affected task, it is skipped. | |||
| 464 | * | |||
| 465 | * If the task is deactivated before we're done, and we don't | |||
| 466 | * have to wait for it (must_wait is FALSE), just bail out. | |||
| 467 | */ | |||
| 468 | cur_thread = current_thread()(active_threads[(0)]); | |||
| 469 | ||||
| 470 | list = &task->thread_list; | |||
| 471 | prev_thread = THREAD_NULL((thread_t) 0); | |||
| 472 | task_lock(task); | |||
| 473 | queue_iterate(list, thread, thread_t, thread_list)for ((thread) = (thread_t) ((list)->next); !(((list)) == ( (queue_entry_t)(thread))); (thread) = (thread_t) ((&(thread )->thread_list)->next)) { | |||
| 474 | if (!(task->active) && !(must_wait)) { | |||
| 475 | ret = KERN_FAILURE5; | |||
| 476 | break; | |||
| 477 | } | |||
| 478 | if (thread != cur_thread) { | |||
| 479 | thread_reference(thread); | |||
| 480 | task_unlock(task); | |||
| 481 | if (prev_thread != THREAD_NULL((thread_t) 0)) | |||
| 482 | thread_deallocate(prev_thread); | |||
| 483 | /* may block */ | |||
| 484 | (void) thread_dowait(thread, TRUE((boolean_t) 1)); /* may block */ | |||
| 485 | prev_thread = thread; | |||
| 486 | task_lock(task); | |||
| 487 | } | |||
| 488 | } | |||
| 489 | task_unlock(task); | |||
| 490 | if (prev_thread != THREAD_NULL((thread_t) 0)) | |||
| 491 | thread_deallocate(prev_thread); /* may block */ | |||
| 492 | return ret; | |||
| 493 | } | |||
| 494 | ||||
| 495 | kern_return_t task_release( | |||
| 496 | task_t task) | |||
| 497 | { | |||
| 498 | queue_head_t *list; | |||
| 499 | thread_t thread, next; | |||
| 500 | ||||
| 501 | task_lock(task); | |||
| 502 | if (!task->active) { | |||
| 503 | task_unlock(task); | |||
| 504 | return KERN_FAILURE5; | |||
| 505 | } | |||
| 506 | ||||
| 507 | task->suspend_count--; | |||
| 508 | ||||
| 509 | /* | |||
| 510 | * Iterate through all the threads and release them | |||
| 511 | */ | |||
| 512 | list = &task->thread_list; | |||
| 513 | thread = (thread_t) queue_first(list)((list)->next); | |||
| 514 | while (!queue_end(list, (queue_entry_t) thread)((list) == ((queue_entry_t) thread))) { | |||
| 515 | next = (thread_t) queue_next(&thread->thread_list)((&thread->thread_list)->next); | |||
| 516 | thread_release(thread); | |||
| 517 | thread = next; | |||
| 518 | } | |||
| 519 | task_unlock(task); | |||
| 520 | return KERN_SUCCESS0; | |||
| 521 | } | |||
| 522 | ||||
| 523 | kern_return_t task_threads( | |||
| 524 | task_t task, | |||
| 525 | thread_array_t *thread_list, | |||
| 526 | natural_t *count) | |||
| 527 | { | |||
| 528 | unsigned int actual; /* this many threads */ | |||
| 529 | thread_t thread; | |||
| 530 | thread_t *threads; | |||
| 531 | int i; | |||
| 532 | ||||
| 533 | vm_size_t size, size_needed; | |||
| 534 | vm_offset_t addr; | |||
| 535 | ||||
| 536 | if (task == TASK_NULL((task_t) 0)) | |||
| 537 | return KERN_INVALID_ARGUMENT4; | |||
| 538 | ||||
| 539 | size = 0; addr = 0; | |||
| 540 | ||||
| 541 | for (;;) { | |||
| 542 | task_lock(task); | |||
| 543 | if (!task->active) { | |||
| 544 | task_unlock(task); | |||
| 545 | return KERN_FAILURE5; | |||
| 546 | } | |||
| 547 | ||||
| 548 | actual = task->thread_count; | |||
| 549 | ||||
| 550 | /* do we have the memory we need? */ | |||
| 551 | ||||
| 552 | size_needed = actual * sizeof(mach_port_t); | |||
| 553 | if (size_needed <= size) | |||
| 554 | break; | |||
| 555 | ||||
| 556 | /* unlock the task and allocate more memory */ | |||
| 557 | task_unlock(task); | |||
| 558 | ||||
| 559 | if (size != 0) | |||
| 560 | kfree(addr, size); | |||
| 561 | ||||
| 562 | assert(size_needed > 0)({ if (!(size_needed > 0)) Assert("size_needed > 0", "../kern/task.c" , 562); }); | |||
| 563 | size = size_needed; | |||
| 564 | ||||
| 565 | addr = kalloc(size); | |||
| 566 | if (addr == 0) | |||
| 567 | return KERN_RESOURCE_SHORTAGE6; | |||
| 568 | } | |||
| 569 | ||||
| 570 | /* OK, have memory and the task is locked & active */ | |||
| 571 | ||||
| 572 | threads = (thread_t *) addr; | |||
| 573 | ||||
| 574 | for (i = 0, thread = (thread_t) queue_first(&task->thread_list)((&task->thread_list)->next); | |||
| 575 | i < actual; | |||
| 576 | i++, thread = (thread_t) queue_next(&thread->thread_list)((&thread->thread_list)->next)) { | |||
| 577 | /* take ref for convert_thread_to_port */ | |||
| 578 | thread_reference(thread); | |||
| 579 | threads[i] = thread; | |||
| 580 | } | |||
| 581 | assert(queue_end(&task->thread_list, (queue_entry_t) thread))({ if (!(((&task->thread_list) == ((queue_entry_t) thread )))) Assert("queue_end(&task->thread_list, (queue_entry_t) thread)" , "../kern/task.c", 581); }); | |||
| 582 | ||||
| 583 | /* can unlock task now that we've got the thread refs */ | |||
| 584 | task_unlock(task); | |||
| 585 | ||||
| 586 | if (actual == 0) { | |||
| 587 | /* no threads, so return null pointer and deallocate memory */ | |||
| 588 | ||||
| 589 | *thread_list = 0; | |||
| 590 | *count = 0; | |||
| 591 | ||||
| 592 | if (size != 0) | |||
| 593 | kfree(addr, size); | |||
| 594 | } else { | |||
| 595 | /* if we allocated too much, must copy */ | |||
| 596 | ||||
| 597 | if (size_needed < size) { | |||
| 598 | vm_offset_t newaddr; | |||
| 599 | ||||
| 600 | newaddr = kalloc(size_needed); | |||
| 601 | if (newaddr == 0) { | |||
| 602 | for (i = 0; i < actual; i++) | |||
| 603 | thread_deallocate(threads[i]); | |||
| 604 | kfree(addr, size); | |||
| 605 | return KERN_RESOURCE_SHORTAGE6; | |||
| 606 | } | |||
| 607 | ||||
| 608 | memcpy((void *) newaddr, (void *) addr, size_needed); | |||
| 609 | kfree(addr, size); | |||
| 610 | threads = (thread_t *) newaddr; | |||
| 611 | } | |||
| 612 | ||||
| 613 | *thread_list = (mach_port_t *) threads; | |||
| 614 | *count = actual; | |||
| 615 | ||||
| 616 | /* do the conversion that Mig should handle */ | |||
| 617 | ||||
| 618 | for (i = 0; i < actual; i++) | |||
| 619 | ((ipc_port_t *) threads)[i] = | |||
| 620 | convert_thread_to_port(threads[i]); | |||
| 621 | } | |||
| 622 | ||||
| 623 | return KERN_SUCCESS0; | |||
| 624 | } | |||
| 625 | ||||
| 626 | kern_return_t task_suspend( | |||
| 627 | task_t task) | |||
| 628 | { | |||
| 629 | boolean_t hold; | |||
| 630 | ||||
| 631 | if (task == TASK_NULL((task_t) 0)) | |||
| 632 | return KERN_INVALID_ARGUMENT4; | |||
| 633 | ||||
| 634 | hold = FALSE((boolean_t) 0); | |||
| 635 | task_lock(task); | |||
| 636 | if ((task->user_stop_count)++ == 0) | |||
| 637 | hold = TRUE((boolean_t) 1); | |||
| 638 | task_unlock(task); | |||
| 639 | ||||
| 640 | /* | |||
| 641 | * If the stop count was positive, the task is | |||
| 642 | * already stopped and we can exit. | |||
| 643 | */ | |||
| 644 | if (!hold) { | |||
| 645 | return KERN_SUCCESS0; | |||
| 646 | } | |||
| 647 | ||||
| 648 | /* | |||
| 649 | * Hold all of the threads in the task, and wait for | |||
| 650 | * them to stop. If the current thread is within | |||
| 651 | * this task, hold it separately so that all of the | |||
| 652 | * other threads can stop first. | |||
| 653 | */ | |||
| 654 | ||||
| 655 | if (task_hold(task) != KERN_SUCCESS0) | |||
| 656 | return KERN_FAILURE5; | |||
| 657 | ||||
| 658 | if (task_dowait(task, FALSE((boolean_t) 0)) != KERN_SUCCESS0) | |||
| 659 | return KERN_FAILURE5; | |||
| 660 | ||||
| 661 | if (current_task()((active_threads[(0)])->task) == task) { | |||
| 662 | spl_t s; | |||
| 663 | ||||
| 664 | thread_hold(current_thread()(active_threads[(0)])); | |||
| 665 | /* | |||
| 666 | * We want to call thread_block on our way out, | |||
| 667 | * to stop running. | |||
| 668 | */ | |||
| 669 | s = splsched(); | |||
| 670 | ast_on(cpu_number(), AST_BLOCK)({ if ((need_ast[(0)] |= (0x4)) != 0x0) { ; } }); | |||
| 671 | (void) splx(s); | |||
| 672 | } | |||
| 673 | ||||
| 674 | return KERN_SUCCESS0; | |||
| 675 | } | |||
| 676 | ||||
| 677 | kern_return_t task_resume( | |||
| 678 | task_t task) | |||
| 679 | { | |||
| 680 | boolean_t release; | |||
| 681 | ||||
| 682 | if (task == TASK_NULL((task_t) 0)) | |||
| 683 | return KERN_INVALID_ARGUMENT4; | |||
| 684 | ||||
| 685 | release = FALSE((boolean_t) 0); | |||
| 686 | task_lock(task); | |||
| 687 | if (task->user_stop_count > 0) { | |||
| 688 | if (--(task->user_stop_count) == 0) | |||
| 689 | release = TRUE((boolean_t) 1); | |||
| 690 | } | |||
| 691 | else { | |||
| 692 | task_unlock(task); | |||
| 693 | return KERN_FAILURE5; | |||
| 694 | } | |||
| 695 | task_unlock(task); | |||
| 696 | ||||
| 697 | /* | |||
| 698 | * Release the task if necessary. | |||
| 699 | */ | |||
| 700 | if (release) | |||
| 701 | return task_release(task); | |||
| 702 | ||||
| 703 | return KERN_SUCCESS0; | |||
| 704 | } | |||
| 705 | ||||
| 706 | kern_return_t task_info( | |||
| 707 | task_t task, | |||
| 708 | int flavor, | |||
| 709 | task_info_t task_info_out, /* pointer to OUT array */ | |||
| 710 | natural_t *task_info_count) /* IN/OUT */ | |||
| 711 | { | |||
| 712 | vm_map_t map; | |||
| 713 | ||||
| 714 | if (task == TASK_NULL((task_t) 0)) | |||
| 715 | return KERN_INVALID_ARGUMENT4; | |||
| 716 | ||||
| 717 | switch (flavor) { | |||
| 718 | case TASK_BASIC_INFO1: | |||
| 719 | { | |||
| 720 | task_basic_info_t basic_info; | |||
| 721 | ||||
| 722 | /* Allow *task_info_count to be two words smaller than | |||
| 723 | the usual amount, because creation_time is a new member | |||
| 724 | that some callers might not know about. */ | |||
| 725 | ||||
| 726 | if (*task_info_count < TASK_BASIC_INFO_COUNT(sizeof(task_basic_info_data_t) / sizeof(natural_t)) - 2) { | |||
| 727 | return KERN_INVALID_ARGUMENT4; | |||
| 728 | } | |||
| 729 | ||||
| 730 | basic_info = (task_basic_info_t) task_info_out; | |||
| 731 | ||||
| 732 | map = (task == kernel_task) ? kernel_map : task->map; | |||
| 733 | ||||
| 734 | basic_info->virtual_size = map->size; | |||
| 735 | basic_info->resident_size = pmap_resident_count(map->pmap)((map->pmap)->stats.resident_count) | |||
| 736 | * PAGE_SIZE(1 << 12); | |||
| 737 | ||||
| 738 | task_lock(task); | |||
| 739 | basic_info->base_priority = task->priority; | |||
| 740 | basic_info->suspend_count = task->user_stop_count; | |||
| 741 | basic_info->user_time.seconds | |||
| 742 | = task->total_user_time.seconds; | |||
| 743 | basic_info->user_time.microseconds | |||
| 744 | = task->total_user_time.microseconds; | |||
| 745 | basic_info->system_time.seconds | |||
| 746 | = task->total_system_time.seconds; | |||
| 747 | basic_info->system_time.microseconds | |||
| 748 | = task->total_system_time.microseconds; | |||
| 749 | basic_info->creation_time = task->creation_time; | |||
| 750 | task_unlock(task); | |||
| 751 | ||||
| 752 | if (*task_info_count > TASK_BASIC_INFO_COUNT(sizeof(task_basic_info_data_t) / sizeof(natural_t))) | |||
| 753 | *task_info_count = TASK_BASIC_INFO_COUNT(sizeof(task_basic_info_data_t) / sizeof(natural_t)); | |||
| 754 | break; | |||
| 755 | } | |||
| 756 | ||||
| 757 | case TASK_EVENTS_INFO2: | |||
| 758 | { | |||
| 759 | task_events_info_t event_info; | |||
| 760 | ||||
| 761 | if (*task_info_count < TASK_EVENTS_INFO_COUNT(sizeof(task_events_info_data_t) / sizeof(natural_t))) { | |||
| 762 | return KERN_INVALID_ARGUMENT4; | |||
| 763 | } | |||
| 764 | ||||
| 765 | event_info = (task_events_info_t) task_info_out; | |||
| 766 | ||||
| 767 | task_lock(&task); | |||
| 768 | event_info->faults = task->faults; | |||
| 769 | event_info->zero_fills = task->zero_fills; | |||
| 770 | event_info->reactivations = task->reactivations; | |||
| 771 | event_info->pageins = task->pageins; | |||
| 772 | event_info->cow_faults = task->cow_faults; | |||
| 773 | event_info->messages_sent = task->messages_sent; | |||
| 774 | event_info->messages_received = task->messages_received; | |||
| 775 | task_unlock(&task); | |||
| 776 | ||||
| 777 | *task_info_count = TASK_EVENTS_INFO_COUNT(sizeof(task_events_info_data_t) / sizeof(natural_t)); | |||
| 778 | break; | |||
| 779 | } | |||
| 780 | ||||
| 781 | case TASK_THREAD_TIMES_INFO3: | |||
| 782 | { | |||
| 783 | task_thread_times_info_t times_info; | |||
| 784 | thread_t thread; | |||
| 785 | ||||
| 786 | if (*task_info_count < TASK_THREAD_TIMES_INFO_COUNT(sizeof(task_thread_times_info_data_t) / sizeof(natural_t))) { | |||
| 787 | return KERN_INVALID_ARGUMENT4; | |||
| 788 | } | |||
| 789 | ||||
| 790 | times_info = (task_thread_times_info_t) task_info_out; | |||
| 791 | times_info->user_time.seconds = 0; | |||
| 792 | times_info->user_time.microseconds = 0; | |||
| 793 | times_info->system_time.seconds = 0; | |||
| 794 | times_info->system_time.microseconds = 0; | |||
| 795 | ||||
| 796 | task_lock(task); | |||
| 797 | queue_iterate(&task->thread_list, thread,for ((thread) = (thread_t) ((&task->thread_list)->next ); !(((&task->thread_list)) == ((queue_entry_t)(thread ))); (thread) = (thread_t) ((&(thread)->thread_list)-> next)) | |||
| 798 | thread_t, thread_list)for ((thread) = (thread_t) ((&task->thread_list)->next ); !(((&task->thread_list)) == ((queue_entry_t)(thread ))); (thread) = (thread_t) ((&(thread)->thread_list)-> next)) | |||
| 799 | { | |||
| 800 | time_value_t user_time, system_time; | |||
| 801 | spl_t s; | |||
| 802 | ||||
| 803 | s = splsched(); | |||
| 804 | thread_lock(thread); | |||
| 805 | ||||
| 806 | thread_read_times(thread, &user_time, &system_time); | |||
| 807 | ||||
| 808 | thread_unlock(thread); | |||
| 809 | splx(s); | |||
| 810 | ||||
| 811 | time_value_add(×_info->user_time, &user_time){ (×_info->user_time)->microseconds += (&user_time )->microseconds; (×_info->user_time)->seconds += (&user_time)->seconds; if ((×_info->user_time )->microseconds >= (1000000)) { (×_info->user_time )->microseconds -= (1000000); (×_info->user_time )->seconds++; } }; | |||
| 812 | time_value_add(×_info->system_time, &system_time){ (×_info->system_time)->microseconds += (& system_time)->microseconds; (×_info->system_time )->seconds += (&system_time)->seconds; if ((×_info ->system_time)->microseconds >= (1000000)) { (×_info ->system_time)->microseconds -= (1000000); (×_info ->system_time)->seconds++; } }; | |||
| 813 | } | |||
| 814 | task_unlock(task); | |||
| 815 | ||||
| 816 | *task_info_count = TASK_THREAD_TIMES_INFO_COUNT(sizeof(task_thread_times_info_data_t) / sizeof(natural_t)); | |||
| 817 | break; | |||
| 818 | } | |||
| 819 | ||||
| 820 | default: | |||
| 821 | return KERN_INVALID_ARGUMENT4; | |||
| 822 | } | |||
| 823 | ||||
| 824 | return KERN_SUCCESS0; | |||
| 825 | } | |||
| 826 | ||||
| 827 | #if MACH_HOST0 | |||
| 828 | /* | |||
| 829 | * task_assign: | |||
| 830 | * | |||
| 831 | * Change the assigned processor set for the task | |||
| 832 | */ | |||
| 833 | kern_return_t | |||
| 834 | task_assign( | |||
| 835 | task_t task, | |||
| 836 | processor_set_t new_pset, | |||
| 837 | boolean_t assign_threads) | |||
| 838 | { | |||
| 839 | kern_return_t ret = KERN_SUCCESS0; | |||
| 840 | thread_t thread, prev_thread; | |||
| 841 | queue_head_t *list; | |||
| 842 | processor_set_t pset; | |||
| 843 | ||||
| 844 | if (task == TASK_NULL((task_t) 0) || new_pset == PROCESSOR_SET_NULL((processor_set_t) 0)) { | |||
| 845 | return KERN_INVALID_ARGUMENT4; | |||
| 846 | } | |||
| 847 | ||||
| 848 | /* | |||
| 849 | * Freeze task`s assignment. Prelude to assigning | |||
| 850 | * task. Only one freeze may be held per task. | |||
| 851 | */ | |||
| 852 | ||||
| 853 | task_lock(task); | |||
| 854 | while (task->may_assign == FALSE((boolean_t) 0)) { | |||
| 855 | task->assign_active = TRUE((boolean_t) 1); | |||
| 856 | assert_wait((event_t)&task->assign_active, TRUE((boolean_t) 1)); | |||
| 857 | task_unlock(task); | |||
| 858 | thread_block((void (*)()) 0); | |||
| 859 | task_lock(task); | |||
| 860 | } | |||
| 861 | ||||
| 862 | /* | |||
| 863 | * Avoid work if task already in this processor set. | |||
| 864 | */ | |||
| 865 | if (task->processor_set == new_pset) { | |||
| 866 | /* | |||
| 867 | * No need for task->assign_active wakeup: | |||
| 868 | * task->may_assign is still TRUE. | |||
| 869 | */ | |||
| 870 | task_unlock(task); | |||
| 871 | return KERN_SUCCESS0; | |||
| 872 | } | |||
| 873 | ||||
| 874 | task->may_assign = FALSE((boolean_t) 0); | |||
| 875 | task_unlock(task); | |||
| 876 | ||||
| 877 | /* | |||
| 878 | * Safe to get the task`s pset: it cannot change while | |||
| 879 | * task is frozen. | |||
| 880 | */ | |||
| 881 | pset = task->processor_set; | |||
| 882 | ||||
| 883 | /* | |||
| 884 | * Lock both psets now. Use ordering to avoid deadlock. | |||
| 885 | */ | |||
| 886 | Restart: | |||
| 887 | if ((vm_offset_t) pset < (vm_offset_t) new_pset) { | |||
| 888 | pset_lock(pset); | |||
| 889 | pset_lock(new_pset); | |||
| 890 | } | |||
| 891 | else { | |||
| 892 | pset_lock(new_pset); | |||
| 893 | pset_lock(pset); | |||
| 894 | } | |||
| 895 | ||||
| 896 | /* | |||
| 897 | * Check if new_pset is ok to assign to. If not, | |||
| 898 | * reassign to default_pset. | |||
| 899 | */ | |||
| 900 | if (!new_pset->active) { | |||
| 901 | pset_unlock(pset); | |||
| 902 | pset_unlock(new_pset); | |||
| 903 | new_pset = &default_pset; | |||
| 904 | goto Restart; | |||
| 905 | } | |||
| 906 | ||||
| 907 | pset_reference(new_pset); | |||
| 908 | ||||
| 909 | /* | |||
| 910 | * Now grab the task lock and move the task. | |||
| 911 | */ | |||
| 912 | ||||
| 913 | task_lock(task); | |||
| 914 | pset_remove_task(pset, task); | |||
| 915 | pset_add_task(new_pset, task); | |||
| 916 | ||||
| 917 | pset_unlock(pset); | |||
| 918 | pset_unlock(new_pset); | |||
| 919 | ||||
| 920 | if (assign_threads == FALSE((boolean_t) 0)) { | |||
| 921 | /* | |||
| 922 | * We leave existing threads at their | |||
| 923 | * old assignments. Unfreeze task`s | |||
| 924 | * assignment. | |||
| 925 | */ | |||
| 926 | task->may_assign = TRUE((boolean_t) 1); | |||
| 927 | if (task->assign_active) { | |||
| 928 | task->assign_active = FALSE((boolean_t) 0); | |||
| 929 | thread_wakeup((event_t) &task->assign_active)thread_wakeup_prim(((event_t) &task->assign_active), ( (boolean_t) 0), 0); | |||
| 930 | } | |||
| 931 | task_unlock(task); | |||
| 932 | pset_deallocate(pset); | |||
| 933 | return KERN_SUCCESS0; | |||
| 934 | } | |||
| 935 | ||||
| 936 | /* | |||
| 937 | * If current thread is in task, freeze its assignment. | |||
| 938 | */ | |||
| 939 | if (current_thread()(active_threads[(0)])->task == task) { | |||
| 940 | task_unlock(task); | |||
| 941 | thread_freeze(current_thread()(active_threads[(0)])); | |||
| 942 | task_lock(task); | |||
| 943 | } | |||
| 944 | ||||
| 945 | /* | |||
| 946 | * Iterate down the thread list reassigning all the threads. | |||
| 947 | * New threads pick up task's new processor set automatically. | |||
| 948 | * Do current thread last because new pset may be empty. | |||
| 949 | */ | |||
| 950 | list = &task->thread_list; | |||
| 951 | prev_thread = THREAD_NULL((thread_t) 0); | |||
| 952 | queue_iterate(list, thread, thread_t, thread_list)for ((thread) = (thread_t) ((list)->next); !(((list)) == ( (queue_entry_t)(thread))); (thread) = (thread_t) ((&(thread )->thread_list)->next)) { | |||
| 953 | if (!(task->active)) { | |||
| 954 | ret = KERN_FAILURE5; | |||
| 955 | break; | |||
| 956 | } | |||
| 957 | if (thread != current_thread()(active_threads[(0)])) { | |||
| 958 | thread_reference(thread); | |||
| 959 | task_unlock(task); | |||
| 960 | if (prev_thread != THREAD_NULL((thread_t) 0)) | |||
| 961 | thread_deallocate(prev_thread); /* may block */ | |||
| 962 | thread_assign(thread,new_pset); /* may block */ | |||
| 963 | prev_thread = thread; | |||
| 964 | task_lock(task); | |||
| 965 | } | |||
| 966 | } | |||
| 967 | ||||
| 968 | /* | |||
| 969 | * Done, wakeup anyone waiting for us. | |||
| 970 | */ | |||
| 971 | task->may_assign = TRUE((boolean_t) 1); | |||
| 972 | if (task->assign_active) { | |||
| 973 | task->assign_active = FALSE((boolean_t) 0); | |||
| 974 | thread_wakeup((event_t)&task->assign_active)thread_wakeup_prim(((event_t)&task->assign_active), (( boolean_t) 0), 0); | |||
| 975 | } | |||
| 976 | task_unlock(task); | |||
| 977 | if (prev_thread != THREAD_NULL((thread_t) 0)) | |||
| 978 | thread_deallocate(prev_thread); /* may block */ | |||
| 979 | ||||
| 980 | /* | |||
| 981 | * Finish assignment of current thread. | |||
| 982 | */ | |||
| 983 | if (current_thread()(active_threads[(0)])->task == task) | |||
| 984 | thread_doassign(current_thread()(active_threads[(0)]), new_pset, TRUE((boolean_t) 1)); | |||
| 985 | ||||
| 986 | pset_deallocate(pset); | |||
| 987 | ||||
| 988 | return ret; | |||
| 989 | } | |||
| 990 | #else /* MACH_HOST */ | |||
| 991 | /* | |||
| 992 | * task_assign: | |||
| 993 | * | |||
| 994 | * Change the assigned processor set for the task | |||
| 995 | */ | |||
| 996 | kern_return_t | |||
| 997 | task_assign( | |||
| 998 | task_t task, | |||
| 999 | processor_set_t new_pset, | |||
| 1000 | boolean_t assign_threads) | |||
| 1001 | { | |||
| 1002 | return KERN_FAILURE5; | |||
| 1003 | } | |||
| 1004 | #endif /* MACH_HOST */ | |||
| 1005 | ||||
| 1006 | ||||
| 1007 | /* | |||
| 1008 | * task_assign_default: | |||
| 1009 | * | |||
| 1010 | * Version of task_assign to assign to default processor set. | |||
| 1011 | */ | |||
| 1012 | kern_return_t | |||
| 1013 | task_assign_default( | |||
| 1014 | task_t task, | |||
| 1015 | boolean_t assign_threads) | |||
| 1016 | { | |||
| 1017 | return task_assign(task, &default_pset, assign_threads); | |||
| 1018 | } | |||
| 1019 | ||||
| 1020 | /* | |||
| 1021 | * task_get_assignment | |||
| 1022 | * | |||
| 1023 | * Return name of processor set that task is assigned to. | |||
| 1024 | */ | |||
| 1025 | kern_return_t task_get_assignment( | |||
| 1026 | task_t task, | |||
| 1027 | processor_set_t *pset) | |||
| 1028 | { | |||
| 1029 | if (!task->active) | |||
| 1030 | return KERN_FAILURE5; | |||
| 1031 | ||||
| 1032 | *pset = task->processor_set; | |||
| 1033 | pset_reference(*pset); | |||
| 1034 | return KERN_SUCCESS0; | |||
| 1035 | } | |||
| 1036 | ||||
| 1037 | /* | |||
| 1038 | * task_priority | |||
| 1039 | * | |||
| 1040 | * Set priority of task; used only for newly created threads. | |||
| 1041 | * Optionally change priorities of threads. | |||
| 1042 | */ | |||
| 1043 | kern_return_t | |||
| 1044 | task_priority( | |||
| 1045 | task_t task, | |||
| 1046 | int priority, | |||
| 1047 | boolean_t change_threads) | |||
| 1048 | { | |||
| 1049 | kern_return_t ret = KERN_SUCCESS0; | |||
| 1050 | ||||
| 1051 | if (task == TASK_NULL((task_t) 0) || invalid_pri(priority)(((priority) < 0) || ((priority) >= 50))) | |||
| 1052 | return KERN_INVALID_ARGUMENT4; | |||
| 1053 | ||||
| 1054 | task_lock(task); | |||
| 1055 | task->priority = priority; | |||
| 1056 | ||||
| 1057 | if (change_threads) { | |||
| 1058 | thread_t thread; | |||
| 1059 | queue_head_t *list; | |||
| 1060 | ||||
| 1061 | list = &task->thread_list; | |||
| 1062 | queue_iterate(list, thread, thread_t, thread_list)for ((thread) = (thread_t) ((list)->next); !(((list)) == ( (queue_entry_t)(thread))); (thread) = (thread_t) ((&(thread )->thread_list)->next)) { | |||
| 1063 | if (thread_priority(thread, priority, FALSE((boolean_t) 0)) | |||
| 1064 | != KERN_SUCCESS0) | |||
| 1065 | ret = KERN_FAILURE5; | |||
| 1066 | } | |||
| 1067 | } | |||
| 1068 | ||||
| 1069 | task_unlock(task); | |||
| 1070 | return ret; | |||
| 1071 | } | |||
| 1072 | ||||
| 1073 | /* | |||
| 1074 | * task_collect_scan: | |||
| 1075 | * | |||
| 1076 | * Attempt to free resources owned by tasks. | |||
| 1077 | */ | |||
| 1078 | ||||
| 1079 | void task_collect_scan(void) | |||
| 1080 | { | |||
| 1081 | task_t task, prev_task; | |||
| 1082 | processor_set_t pset, prev_pset; | |||
| 1083 | ||||
| 1084 | prev_task = TASK_NULL((task_t) 0); | |||
| 1085 | prev_pset = PROCESSOR_SET_NULL((processor_set_t) 0); | |||
| 1086 | ||||
| 1087 | simple_lock(&all_psets_lock); | |||
| 1088 | queue_iterate(&all_psets, pset, processor_set_t, all_psets)for ((pset) = (processor_set_t) ((&all_psets)->next); ! (((&all_psets)) == ((queue_entry_t)(pset))); (pset) = (processor_set_t ) ((&(pset)->all_psets)->next)) { | |||
| 1089 | pset_lock(pset); | |||
| 1090 | queue_iterate(&pset->tasks, task, task_t, pset_tasks)for ((task) = (task_t) ((&pset->tasks)->next); !((( &pset->tasks)) == ((queue_entry_t)(task))); (task) = ( task_t) ((&(task)->pset_tasks)->next)) { | |||
| 1091 | task_reference(task); | |||
| 1092 | pset_reference(pset); | |||
| 1093 | pset_unlock(pset); | |||
| 1094 | simple_unlock(&all_psets_lock); | |||
| 1095 | ||||
| 1096 | machine_task_collect (task); | |||
| 1097 | pmap_collect(task->map->pmap); | |||
| ||||
| 1098 | ||||
| 1099 | if (prev_task != TASK_NULL((task_t) 0)) | |||
| 1100 | task_deallocate(prev_task); | |||
| 1101 | prev_task = task; | |||
| 1102 | ||||
| 1103 | if (prev_pset != PROCESSOR_SET_NULL((processor_set_t) 0)) | |||
| 1104 | pset_deallocate(prev_pset); | |||
| 1105 | prev_pset = pset; | |||
| 1106 | ||||
| 1107 | simple_lock(&all_psets_lock); | |||
| 1108 | pset_lock(pset); | |||
| 1109 | } | |||
| 1110 | pset_unlock(pset); | |||
| 1111 | } | |||
| 1112 | simple_unlock(&all_psets_lock); | |||
| 1113 | ||||
| 1114 | if (prev_task != TASK_NULL((task_t) 0)) | |||
| 1115 | task_deallocate(prev_task); | |||
| 1116 | if (prev_pset != PROCESSOR_SET_NULL((processor_set_t) 0)) | |||
| 1117 | pset_deallocate(prev_pset); | |||
| 1118 | } | |||
| 1119 | ||||
| 1120 | boolean_t task_collect_allowed = TRUE((boolean_t) 1); | |||
| 1121 | unsigned task_collect_last_tick = 0; | |||
| 1122 | unsigned task_collect_max_rate = 0; /* in ticks */ | |||
| 1123 | ||||
| 1124 | /* | |||
| 1125 | * consider_task_collect: | |||
| 1126 | * | |||
| 1127 | * Called by the pageout daemon when the system needs more free pages. | |||
| 1128 | */ | |||
| 1129 | ||||
| 1130 | void consider_task_collect(void) | |||
| 1131 | { | |||
| 1132 | /* | |||
| 1133 | * By default, don't attempt task collection more frequently | |||
| 1134 | * than once a second. | |||
| 1135 | */ | |||
| 1136 | ||||
| 1137 | if (task_collect_max_rate == 0) | |||
| ||||
| 1138 | task_collect_max_rate = hz; | |||
| 1139 | ||||
| 1140 | if (task_collect_allowed && | |||
| 1141 | (sched_tick > (task_collect_last_tick + task_collect_max_rate))) { | |||
| 1142 | task_collect_last_tick = sched_tick; | |||
| 1143 | task_collect_scan(); | |||
| 1144 | } | |||
| 1145 | } | |||
| 1146 | ||||
| 1147 | kern_return_t | |||
| 1148 | task_ras_control( | |||
| 1149 | task_t task, | |||
| 1150 | vm_offset_t pc, | |||
| 1151 | vm_offset_t endpc, | |||
| 1152 | int flavor) | |||
| 1153 | { | |||
| 1154 | kern_return_t ret = KERN_FAILURE5; | |||
| 1155 | ||||
| 1156 | #if FAST_TAS0 | |||
| 1157 | int i; | |||
| 1158 | ||||
| 1159 | ret = KERN_SUCCESS0; | |||
| 1160 | task_lock(task); | |||
| 1161 | switch (flavor) { | |||
| 1162 | case TASK_RAS_CONTROL_PURGE_ALL0: /* remove all RAS */ | |||
| 1163 | for (i = 0; i < TASK_FAST_TAS_NRAS; i++) { | |||
| 1164 | task->fast_tas_base[i] = task->fast_tas_end[i] = 0; | |||
| 1165 | } | |||
| 1166 | break; | |||
| 1167 | case TASK_RAS_CONTROL_PURGE_ONE1: /* remove this RAS, collapse remaining */ | |||
| 1168 | for (i = 0; i < TASK_FAST_TAS_NRAS; i++) { | |||
| 1169 | if ( (task->fast_tas_base[i] == pc) | |||
| 1170 | && (task->fast_tas_end[i] == endpc)) { | |||
| 1171 | while (i < TASK_FAST_TAS_NRAS-1) { | |||
| 1172 | task->fast_tas_base[i] = task->fast_tas_base[i+1]; | |||
| 1173 | task->fast_tas_end[i] = task->fast_tas_end[i+1]; | |||
| 1174 | i++; | |||
| 1175 | } | |||
| 1176 | task->fast_tas_base[TASK_FAST_TAS_NRAS-1] = 0; | |||
| 1177 | task->fast_tas_end[TASK_FAST_TAS_NRAS-1] = 0; | |||
| 1178 | break; | |||
| 1179 | } | |||
| 1180 | } | |||
| 1181 | if (i == TASK_FAST_TAS_NRAS) { | |||
| 1182 | ret = KERN_INVALID_ADDRESS1; | |||
| 1183 | } | |||
| 1184 | break; | |||
| 1185 | case TASK_RAS_CONTROL_PURGE_ALL_AND_INSTALL_ONE2: | |||
| 1186 | /* remove all RAS an install this RAS */ | |||
| 1187 | for (i = 0; i < TASK_FAST_TAS_NRAS; i++) { | |||
| 1188 | task->fast_tas_base[i] = task->fast_tas_end[i] = 0; | |||
| 1189 | } | |||
| 1190 | /* FALL THROUGH */ | |||
| 1191 | case TASK_RAS_CONTROL_INSTALL_ONE3: /* install this RAS */ | |||
| 1192 | for (i = 0; i < TASK_FAST_TAS_NRAS; i++) { | |||
| 1193 | if ( (task->fast_tas_base[i] == pc) | |||
| 1194 | && (task->fast_tas_end[i] == endpc)) { | |||
| 1195 | /* already installed */ | |||
| 1196 | break; | |||
| 1197 | } | |||
| 1198 | if ((task->fast_tas_base[i] == 0) && (task->fast_tas_end[i] == 0)){ | |||
| 1199 | task->fast_tas_base[i] = pc; | |||
| 1200 | task->fast_tas_end[i] = endpc; | |||
| 1201 | break; | |||
| 1202 | } | |||
| 1203 | } | |||
| 1204 | if (i == TASK_FAST_TAS_NRAS) { | |||
| 1205 | ret = KERN_RESOURCE_SHORTAGE6; | |||
| 1206 | } | |||
| 1207 | break; | |||
| 1208 | default: ret = KERN_INVALID_VALUE18; | |||
| 1209 | break; | |||
| 1210 | } | |||
| 1211 | task_unlock(task); | |||
| 1212 | #endif | |||
| 1213 | return ret; | |||
| 1214 | } |