File: | obj-scan-build/../vm/vm_fault.c |
Location: | line 724, column 5 |
Description: | Value stored to 'offset' is never read |
1 | /* |
2 | * Mach Operating System |
3 | * Copyright (c) 1994,1990,1989,1988,1987 Carnegie Mellon University. |
4 | * Copyright (c) 1993,1994 The University of Utah and |
5 | * the Computer Systems Laboratory (CSL). |
6 | * All rights reserved. |
7 | * |
8 | * Permission to use, copy, modify and distribute this software and its |
9 | * documentation is hereby granted, provided that both the copyright |
10 | * notice and this permission notice appear in all copies of the |
11 | * software, derivative works or modified versions, and any portions |
12 | * thereof, and that both notices appear in supporting documentation. |
13 | * |
14 | * CARNEGIE MELLON, THE UNIVERSITY OF UTAH AND CSL ALLOW FREE USE OF |
15 | * THIS SOFTWARE IN ITS "AS IS" CONDITION, AND DISCLAIM ANY LIABILITY |
16 | * OF ANY KIND FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF |
17 | * THIS SOFTWARE. |
18 | * |
19 | * Carnegie Mellon requests users of this software to return to |
20 | * |
21 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU |
22 | * School of Computer Science |
23 | * Carnegie Mellon University |
24 | * Pittsburgh PA 15213-3890 |
25 | * |
26 | * any improvements or extensions that they make and grant Carnegie Mellon |
27 | * the rights to redistribute these changes. |
28 | */ |
29 | /* |
30 | * File: vm_fault.c |
31 | * Author: Avadis Tevanian, Jr., Michael Wayne Young |
32 | * |
33 | * Page fault handling module. |
34 | */ |
35 | |
36 | #include <kern/printf.h> |
37 | #include <vm/vm_fault.h> |
38 | #include <mach/kern_return.h> |
39 | #include <mach/message.h> /* for error codes */ |
40 | #include <kern/counters.h> |
41 | #include <kern/debug.h> |
42 | #include <kern/thread.h> |
43 | #include <kern/sched_prim.h> |
44 | #include <vm/vm_map.h> |
45 | #include <vm/vm_object.h> |
46 | #include <vm/vm_page.h> |
47 | #include <vm/pmap.h> |
48 | #include <mach/vm_statistics.h> |
49 | #include <vm/vm_pageout.h> |
50 | #include <mach/vm_param.h> |
51 | #include <mach/memory_object.h> |
52 | #include <vm/memory_object_user.user.h> |
53 | /* For memory_object_data_{request,unlock} */ |
54 | #include <kern/macro_help.h> |
55 | #include <kern/slab.h> |
56 | |
57 | #if MACH_PCSAMPLE1 |
58 | #include <kern/pc_sample.h> |
59 | #endif |
60 | |
61 | |
62 | |
63 | /* |
64 | * State needed by vm_fault_continue. |
65 | * This is a little hefty to drop directly |
66 | * into the thread structure. |
67 | */ |
68 | typedef struct vm_fault_state { |
69 | struct vm_map *vmf_map; |
70 | vm_offset_t vmf_vaddr; |
71 | vm_prot_t vmf_fault_type; |
72 | boolean_t vmf_change_wiring; |
73 | void (*vmf_continuation)(); |
74 | vm_map_version_t vmf_version; |
75 | boolean_t vmf_wired; |
76 | struct vm_object *vmf_object; |
77 | vm_offset_t vmf_offset; |
78 | vm_prot_t vmf_prot; |
79 | |
80 | boolean_t vmfp_backoff; |
81 | struct vm_object *vmfp_object; |
82 | vm_offset_t vmfp_offset; |
83 | struct vm_page *vmfp_first_m; |
84 | vm_prot_t vmfp_access; |
85 | } vm_fault_state_t; |
86 | |
87 | struct kmem_cache vm_fault_state_cache; |
88 | |
89 | int vm_object_absent_max = 50; |
90 | |
91 | boolean_t vm_fault_dirty_handling = FALSE((boolean_t) 0); |
92 | boolean_t vm_fault_interruptible = TRUE((boolean_t) 1); |
93 | |
94 | boolean_t software_reference_bits = TRUE((boolean_t) 1); |
95 | |
96 | #if MACH_KDB0 |
97 | extern struct db_watchpoint *db_watchpoint_list; |
98 | #endif /* MACH_KDB */ |
99 | |
100 | /* |
101 | * Routine: vm_fault_init |
102 | * Purpose: |
103 | * Initialize our private data structures. |
104 | */ |
105 | void vm_fault_init(void) |
106 | { |
107 | kmem_cache_init(&vm_fault_state_cache, "vm_fault_state", |
108 | sizeof(vm_fault_state_t), 0, NULL((void *) 0), NULL((void *) 0), NULL((void *) 0), 0); |
109 | } |
110 | |
111 | /* |
112 | * Routine: vm_fault_cleanup |
113 | * Purpose: |
114 | * Clean up the result of vm_fault_page. |
115 | * Results: |
116 | * The paging reference for "object" is released. |
117 | * "object" is unlocked. |
118 | * If "top_page" is not null, "top_page" is |
119 | * freed and the paging reference for the object |
120 | * containing it is released. |
121 | * |
122 | * In/out conditions: |
123 | * "object" must be locked. |
124 | */ |
125 | void |
126 | vm_fault_cleanup(object, top_page) |
127 | vm_object_t object; |
128 | vm_page_t top_page; |
129 | { |
130 | vm_object_paging_end(object)({ ({ if (!((object)->paging_in_progress != 0)) Assert("(object)->paging_in_progress != 0" , "../vm/vm_fault.c", 130); }); if (--(object)->paging_in_progress == 0) { ({ if ((object)->all_wanted & (1 << (2) )) thread_wakeup_prim(((event_t)(((vm_offset_t) object) + (2) )), ((boolean_t) 0), 0); (object)->all_wanted &= ~(1 << (2)); }); } }); |
131 | vm_object_unlock(object); |
132 | |
133 | if (top_page != VM_PAGE_NULL((vm_page_t) 0)) { |
134 | object = top_page->object; |
135 | vm_object_lock(object); |
136 | VM_PAGE_FREE(top_page)({ ; vm_page_free(top_page); ; }); |
137 | vm_object_paging_end(object)({ ({ if (!((object)->paging_in_progress != 0)) Assert("(object)->paging_in_progress != 0" , "../vm/vm_fault.c", 137); }); if (--(object)->paging_in_progress == 0) { ({ if ((object)->all_wanted & (1 << (2) )) thread_wakeup_prim(((event_t)(((vm_offset_t) object) + (2) )), ((boolean_t) 0), 0); (object)->all_wanted &= ~(1 << (2)); }); } }); |
138 | vm_object_unlock(object); |
139 | } |
140 | } |
141 | |
142 | |
143 | #if MACH_PCSAMPLE1 |
144 | /* |
145 | * Do PC sampling on current thread, assuming |
146 | * that it is the thread taking this page fault. |
147 | * |
148 | * Must check for THREAD_NULL, since faults |
149 | * can occur before threads are running. |
150 | */ |
151 | |
152 | #define vm_stat_sample(flavor)({ thread_t _thread_ = (active_threads[(0)]); if (_thread_ != ((thread_t) 0)) ({ task_t task; if ((_thread_)->pc_sample .sampletypes & ((flavor))) take_pc_sample((_thread_), & (_thread_)->pc_sample, ((flavor))); task = (_thread_)-> task; if (task->pc_sample.sampletypes & ((flavor))) take_pc_sample ((_thread_), &task->pc_sample, ((flavor))); }); }) \ |
153 | MACRO_BEGIN({ \ |
154 | thread_t _thread_ = current_thread()(active_threads[(0)]); \ |
155 | \ |
156 | if (_thread_ != THREAD_NULL((thread_t) 0)) \ |
157 | take_pc_sample_macro(_thread_, (flavor))({ task_t task; if ((_thread_)->pc_sample.sampletypes & ((flavor))) take_pc_sample((_thread_), &(_thread_)->pc_sample , ((flavor))); task = (_thread_)->task; if (task->pc_sample .sampletypes & ((flavor))) take_pc_sample((_thread_), & task->pc_sample, ((flavor))); }); \ |
158 | MACRO_END}) |
159 | |
160 | #else |
161 | #define vm_stat_sample(x)({ thread_t _thread_ = (active_threads[(0)]); if (_thread_ != ((thread_t) 0)) ({ task_t task; if ((_thread_)->pc_sample .sampletypes & ((x))) take_pc_sample((_thread_), &(_thread_ )->pc_sample, ((x))); task = (_thread_)->task; if (task ->pc_sample.sampletypes & ((x))) take_pc_sample((_thread_ ), &task->pc_sample, ((x))); }); }) |
162 | #endif /* MACH_PCSAMPLE */ |
163 | |
164 | |
165 | |
166 | /* |
167 | * Routine: vm_fault_page |
168 | * Purpose: |
169 | * Find the resident page for the virtual memory |
170 | * specified by the given virtual memory object |
171 | * and offset. |
172 | * Additional arguments: |
173 | * The required permissions for the page is given |
174 | * in "fault_type". Desired permissions are included |
175 | * in "protection". |
176 | * |
177 | * If the desired page is known to be resident (for |
178 | * example, because it was previously wired down), asserting |
179 | * the "unwiring" parameter will speed the search. |
180 | * |
181 | * If the operation can be interrupted (by thread_abort |
182 | * or thread_terminate), then the "interruptible" |
183 | * parameter should be asserted. |
184 | * |
185 | * Results: |
186 | * The page containing the proper data is returned |
187 | * in "result_page". |
188 | * |
189 | * In/out conditions: |
190 | * The source object must be locked and referenced, |
191 | * and must donate one paging reference. The reference |
192 | * is not affected. The paging reference and lock are |
193 | * consumed. |
194 | * |
195 | * If the call succeeds, the object in which "result_page" |
196 | * resides is left locked and holding a paging reference. |
197 | * If this is not the original object, a busy page in the |
198 | * original object is returned in "top_page", to prevent other |
199 | * callers from pursuing this same data, along with a paging |
200 | * reference for the original object. The "top_page" should |
201 | * be destroyed when this guarantee is no longer required. |
202 | * The "result_page" is also left busy. It is not removed |
203 | * from the pageout queues. |
204 | */ |
205 | vm_fault_return_t vm_fault_page(first_object, first_offset, |
206 | fault_type, must_be_resident, interruptible, |
207 | protection, |
208 | result_page, top_page, |
209 | resume, continuation) |
210 | /* Arguments: */ |
211 | vm_object_t first_object; /* Object to begin search */ |
212 | vm_offset_t first_offset; /* Offset into object */ |
213 | vm_prot_t fault_type; /* What access is requested */ |
214 | boolean_t must_be_resident;/* Must page be resident? */ |
215 | boolean_t interruptible; /* May fault be interrupted? */ |
216 | /* Modifies in place: */ |
217 | vm_prot_t *protection; /* Protection for mapping */ |
218 | /* Returns: */ |
219 | vm_page_t *result_page; /* Page found, if successful */ |
220 | vm_page_t *top_page; /* Page in top object, if |
221 | * not result_page. |
222 | */ |
223 | /* More arguments: */ |
224 | boolean_t resume; /* We are restarting. */ |
225 | void (*continuation)(); /* Continuation for blocking. */ |
226 | { |
227 | vm_page_t m; |
228 | vm_object_t object; |
229 | vm_offset_t offset; |
230 | vm_page_t first_m; |
231 | vm_object_t next_object; |
232 | vm_object_t copy_object; |
233 | boolean_t look_for_page; |
234 | vm_prot_t access_required; |
235 | |
236 | if (resume) { |
237 | vm_fault_state_t *state = |
238 | (vm_fault_state_t *) current_thread()(active_threads[(0)])->ith_othersaved.other; |
239 | |
240 | if (state->vmfp_backoff) |
241 | goto after_block_and_backoff; |
242 | |
243 | object = state->vmfp_object; |
244 | offset = state->vmfp_offset; |
245 | first_m = state->vmfp_first_m; |
246 | access_required = state->vmfp_access; |
247 | goto after_thread_block; |
248 | } |
249 | |
250 | vm_stat_sample(SAMPLED_PC_VM_FAULTS_ANY)({ thread_t _thread_ = (active_threads[(0)]); if (_thread_ != ((thread_t) 0)) ({ task_t task; if ((_thread_)->pc_sample .sampletypes & ((0x100))) take_pc_sample((_thread_), & (_thread_)->pc_sample, ((0x100))); task = (_thread_)->task ; if (task->pc_sample.sampletypes & ((0x100))) take_pc_sample ((_thread_), &task->pc_sample, ((0x100))); }); }); |
251 | vm_stat.faults++; /* needs lock XXX */ |
252 | current_task()((active_threads[(0)])->task)->faults++; |
253 | |
254 | /* |
255 | * Recovery actions |
256 | */ |
257 | #define RELEASE_PAGE(m){ ({ (m)->busy = ((boolean_t) 0); if ((m)->wanted) { (m )->wanted = ((boolean_t) 0); thread_wakeup_prim((((event_t ) m)), ((boolean_t) 0), 0); } }); ; vm_page_unwire(m); ; } \ |
258 | MACRO_BEGIN({ \ |
259 | PAGE_WAKEUP_DONE(m)({ (m)->busy = ((boolean_t) 0); if ((m)->wanted) { (m)-> wanted = ((boolean_t) 0); thread_wakeup_prim((((event_t) m)), ((boolean_t) 0), 0); } }); \ |
260 | vm_page_lock_queues(); \ |
261 | if (!m->active && !m->inactive) \ |
262 | vm_page_activate(m); \ |
263 | vm_page_unlock_queues(); \ |
264 | MACRO_END}) |
265 | |
266 | if (vm_fault_dirty_handling |
267 | #if MACH_KDB0 |
268 | /* |
269 | * If there are watchpoints set, then |
270 | * we don't want to give away write permission |
271 | * on a read fault. Make the task write fault, |
272 | * so that the watchpoint code notices the access. |
273 | */ |
274 | || db_watchpoint_list |
275 | #endif /* MACH_KDB */ |
276 | ) { |
277 | /* |
278 | * If we aren't asking for write permission, |
279 | * then don't give it away. We're using write |
280 | * faults to set the dirty bit. |
281 | */ |
282 | if (!(fault_type & VM_PROT_WRITE((vm_prot_t) 0x02))) |
283 | *protection &= ~VM_PROT_WRITE((vm_prot_t) 0x02); |
284 | } |
285 | |
286 | if (!vm_fault_interruptible) |
287 | interruptible = FALSE((boolean_t) 0); |
288 | |
289 | /* |
290 | * INVARIANTS (through entire routine): |
291 | * |
292 | * 1) At all times, we must either have the object |
293 | * lock or a busy page in some object to prevent |
294 | * some other thread from trying to bring in |
295 | * the same page. |
296 | * |
297 | * Note that we cannot hold any locks during the |
298 | * pager access or when waiting for memory, so |
299 | * we use a busy page then. |
300 | * |
301 | * Note also that we aren't as concerned about more than |
302 | * one thread attempting to memory_object_data_unlock |
303 | * the same page at once, so we don't hold the page |
304 | * as busy then, but do record the highest unlock |
305 | * value so far. [Unlock requests may also be delivered |
306 | * out of order.] |
307 | * |
308 | * 2) To prevent another thread from racing us down the |
309 | * shadow chain and entering a new page in the top |
310 | * object before we do, we must keep a busy page in |
311 | * the top object while following the shadow chain. |
312 | * |
313 | * 3) We must increment paging_in_progress on any object |
314 | * for which we have a busy page, to prevent |
315 | * vm_object_collapse from removing the busy page |
316 | * without our noticing. |
317 | * |
318 | * 4) We leave busy pages on the pageout queues. |
319 | * If the pageout daemon comes across a busy page, |
320 | * it will remove the page from the pageout queues. |
321 | */ |
322 | |
323 | /* |
324 | * Search for the page at object/offset. |
325 | */ |
326 | |
327 | object = first_object; |
328 | offset = first_offset; |
329 | first_m = VM_PAGE_NULL((vm_page_t) 0); |
330 | access_required = fault_type; |
331 | |
332 | /* |
333 | * See whether this page is resident |
334 | */ |
335 | |
336 | while (TRUE((boolean_t) 1)) { |
337 | m = vm_page_lookup(object, offset); |
338 | if (m != VM_PAGE_NULL((vm_page_t) 0)) { |
339 | /* |
340 | * If the page is being brought in, |
341 | * wait for it and then retry. |
342 | * |
343 | * A possible optimization: if the page |
344 | * is known to be resident, we can ignore |
345 | * pages that are absent (regardless of |
346 | * whether they're busy). |
347 | */ |
348 | |
349 | if (m->busy) { |
350 | kern_return_t wait_result; |
351 | |
352 | PAGE_ASSERT_WAIT(m, interruptible)({ (m)->wanted = ((boolean_t) 1); assert_wait((event_t) (m ), (interruptible)); }); |
353 | vm_object_unlock(object); |
354 | if (continuation != (void (*)()) 0) { |
355 | vm_fault_state_t *state = |
356 | (vm_fault_state_t *) current_thread()(active_threads[(0)])->ith_othersaved.other; |
357 | |
358 | /* |
359 | * Save variables in case |
360 | * thread_block discards |
361 | * our kernel stack. |
362 | */ |
363 | |
364 | state->vmfp_backoff = FALSE((boolean_t) 0); |
365 | state->vmfp_object = object; |
366 | state->vmfp_offset = offset; |
367 | state->vmfp_first_m = first_m; |
368 | state->vmfp_access = |
369 | access_required; |
370 | state->vmf_prot = *protection; |
371 | |
372 | counter(c_vm_fault_page_block_busy_user++); |
373 | thread_block(continuation); |
374 | } else |
375 | { |
376 | counter(c_vm_fault_page_block_busy_kernel++); |
377 | thread_block((void (*)()) 0); |
378 | } |
379 | after_thread_block: |
380 | wait_result = current_thread()(active_threads[(0)])->wait_result; |
381 | vm_object_lock(object); |
382 | if (wait_result != THREAD_AWAKENED0) { |
383 | vm_fault_cleanup(object, first_m); |
384 | if (wait_result == THREAD_RESTART3) |
385 | return(VM_FAULT_RETRY1); |
386 | else |
387 | return(VM_FAULT_INTERRUPTED2); |
388 | } |
389 | continue; |
390 | } |
391 | |
392 | /* |
393 | * If the page is in error, give up now. |
394 | */ |
395 | |
396 | if (m->error) { |
397 | VM_PAGE_FREE(m)({ ; vm_page_free(m); ; }); |
398 | vm_fault_cleanup(object, first_m); |
399 | return(VM_FAULT_MEMORY_ERROR5); |
400 | } |
401 | |
402 | /* |
403 | * If the page isn't busy, but is absent, |
404 | * then it was deemed "unavailable". |
405 | */ |
406 | |
407 | if (m->absent) { |
408 | /* |
409 | * Remove the non-existent page (unless it's |
410 | * in the top object) and move on down to the |
411 | * next object (if there is one). |
412 | */ |
413 | |
414 | offset += object->shadow_offset; |
415 | access_required = VM_PROT_READ((vm_prot_t) 0x01); |
416 | next_object = object->shadow; |
417 | if (next_object == VM_OBJECT_NULL((vm_object_t) 0)) { |
418 | vm_page_t real_m; |
419 | |
420 | assert(!must_be_resident)({ if (!(!must_be_resident)) Assert("!must_be_resident", "../vm/vm_fault.c" , 420); }); |
421 | |
422 | /* |
423 | * Absent page at bottom of shadow |
424 | * chain; zero fill the page we left |
425 | * busy in the first object, and flush |
426 | * the absent page. But first we |
427 | * need to allocate a real page. |
428 | */ |
429 | |
430 | real_m = vm_page_grab(!object->internal); |
431 | if (real_m == VM_PAGE_NULL((vm_page_t) 0)) { |
432 | vm_fault_cleanup(object, first_m); |
433 | return(VM_FAULT_MEMORY_SHORTAGE3); |
434 | } |
435 | |
436 | if (object != first_object) { |
437 | VM_PAGE_FREE(m)({ ; vm_page_free(m); ; }); |
438 | vm_object_paging_end(object)({ ({ if (!((object)->paging_in_progress != 0)) Assert("(object)->paging_in_progress != 0" , "../vm/vm_fault.c", 438); }); if (--(object)->paging_in_progress == 0) { ({ if ((object)->all_wanted & (1 << (2) )) thread_wakeup_prim(((event_t)(((vm_offset_t) object) + (2) )), ((boolean_t) 0), 0); (object)->all_wanted &= ~(1 << (2)); }); } }); |
439 | vm_object_unlock(object); |
440 | object = first_object; |
441 | offset = first_offset; |
442 | m = first_m; |
443 | first_m = VM_PAGE_NULL((vm_page_t) 0); |
444 | vm_object_lock(object); |
445 | } |
446 | |
447 | VM_PAGE_FREE(m)({ ; vm_page_free(m); ; }); |
448 | assert(real_m->busy)({ if (!(real_m->busy)) Assert("real_m->busy", "../vm/vm_fault.c" , 448); }); |
449 | vm_page_lock_queues(); |
450 | vm_page_insert(real_m, object, offset); |
451 | vm_page_unlock_queues(); |
452 | m = real_m; |
453 | |
454 | /* |
455 | * Drop the lock while zero filling |
456 | * page. Then break because this |
457 | * is the page we wanted. Checking |
458 | * the page lock is a waste of time; |
459 | * this page was either absent or |
460 | * newly allocated -- in both cases |
461 | * it can't be page locked by a pager. |
462 | */ |
463 | vm_object_unlock(object); |
464 | |
465 | vm_page_zero_fill(m); |
466 | |
467 | vm_stat_sample(SAMPLED_PC_VM_ZFILL_FAULTS)({ thread_t _thread_ = (active_threads[(0)]); if (_thread_ != ((thread_t) 0)) ({ task_t task; if ((_thread_)->pc_sample .sampletypes & ((0x10))) take_pc_sample((_thread_), & (_thread_)->pc_sample, ((0x10))); task = (_thread_)->task ; if (task->pc_sample.sampletypes & ((0x10))) take_pc_sample ((_thread_), &task->pc_sample, ((0x10))); }); }); |
468 | |
469 | vm_stat.zero_fill_count++; |
470 | current_task()((active_threads[(0)])->task)->zero_fills++; |
471 | vm_object_lock(object); |
472 | pmap_clear_modify(m->phys_addr); |
473 | break; |
474 | } else { |
475 | if (must_be_resident) { |
476 | vm_object_paging_end(object)({ ({ if (!((object)->paging_in_progress != 0)) Assert("(object)->paging_in_progress != 0" , "../vm/vm_fault.c", 476); }); if (--(object)->paging_in_progress == 0) { ({ if ((object)->all_wanted & (1 << (2) )) thread_wakeup_prim(((event_t)(((vm_offset_t) object) + (2) )), ((boolean_t) 0), 0); (object)->all_wanted &= ~(1 << (2)); }); } }); |
477 | } else if (object != first_object) { |
478 | vm_object_paging_end(object)({ ({ if (!((object)->paging_in_progress != 0)) Assert("(object)->paging_in_progress != 0" , "../vm/vm_fault.c", 478); }); if (--(object)->paging_in_progress == 0) { ({ if ((object)->all_wanted & (1 << (2) )) thread_wakeup_prim(((event_t)(((vm_offset_t) object) + (2) )), ((boolean_t) 0), 0); (object)->all_wanted &= ~(1 << (2)); }); } }); |
479 | VM_PAGE_FREE(m)({ ; vm_page_free(m); ; }); |
480 | } else { |
481 | first_m = m; |
482 | m->absent = FALSE((boolean_t) 0); |
483 | vm_object_absent_release(object)({ (object)->absent_count--; ({ if (((object))->all_wanted & (1 << (3))) thread_wakeup_prim(((event_t)(((vm_offset_t ) (object)) + (3))), ((boolean_t) 0), 0); ((object))->all_wanted &= ~(1 << (3)); }); }); |
484 | m->busy = TRUE((boolean_t) 1); |
485 | |
486 | vm_page_lock_queues(); |
487 | VM_PAGE_QUEUES_REMOVE(m)({ if (m->active) { { queue_entry_t next, prev; next = (m) ->pageq.next; prev = (m)->pageq.prev; if ((&vm_page_queue_active ) == next) (&vm_page_queue_active)->prev = prev; else ( (vm_page_t)next)->pageq.prev = prev; if ((&vm_page_queue_active ) == prev) (&vm_page_queue_active)->next = next; else ( (vm_page_t)prev)->pageq.next = next; }; m->active = ((boolean_t ) 0); vm_page_active_count--; } if (m->inactive) { { queue_entry_t next, prev; next = (m)->pageq.next; prev = (m)->pageq. prev; if ((&vm_page_queue_inactive) == next) (&vm_page_queue_inactive )->prev = prev; else ((vm_page_t)next)->pageq.prev = prev ; if ((&vm_page_queue_inactive) == prev) (&vm_page_queue_inactive )->next = next; else ((vm_page_t)prev)->pageq.next = next ; }; m->inactive = ((boolean_t) 0); vm_page_inactive_count --; } }); |
488 | vm_page_unlock_queues(); |
489 | } |
490 | vm_object_lock(next_object); |
491 | vm_object_unlock(object); |
492 | object = next_object; |
493 | vm_object_paging_begin(object)((object)->paging_in_progress++); |
494 | continue; |
495 | } |
496 | } |
497 | |
498 | /* |
499 | * If the desired access to this page has |
500 | * been locked out, request that it be unlocked. |
501 | */ |
502 | |
503 | if (access_required & m->page_lock) { |
504 | if ((access_required & m->unlock_request) != access_required) { |
505 | vm_prot_t new_unlock_request; |
506 | kern_return_t rc; |
507 | |
508 | if (!object->pager_ready) { |
509 | vm_object_assert_wait(object,({ (object)->all_wanted |= 1 << (1); assert_wait((event_t )(((vm_offset_t) object) + (1)), (interruptible)); }) |
510 | VM_OBJECT_EVENT_PAGER_READY,({ (object)->all_wanted |= 1 << (1); assert_wait((event_t )(((vm_offset_t) object) + (1)), (interruptible)); }) |
511 | interruptible)({ (object)->all_wanted |= 1 << (1); assert_wait((event_t )(((vm_offset_t) object) + (1)), (interruptible)); }); |
512 | goto block_and_backoff; |
513 | } |
514 | |
515 | new_unlock_request = m->unlock_request = |
516 | (access_required | m->unlock_request); |
517 | vm_object_unlock(object); |
518 | if ((rc = memory_object_data_unlock( |
519 | object->pager, |
520 | object->pager_request, |
521 | offset + object->paging_offset, |
522 | PAGE_SIZE(1 << 12), |
523 | new_unlock_request)) |
524 | != KERN_SUCCESS0) { |
525 | printf("vm_fault: memory_object_data_unlock failed\n"); |
526 | vm_object_lock(object); |
527 | vm_fault_cleanup(object, first_m); |
528 | return((rc == MACH_SEND_INTERRUPTED0x10000007) ? |
529 | VM_FAULT_INTERRUPTED2 : |
530 | VM_FAULT_MEMORY_ERROR5); |
531 | } |
532 | vm_object_lock(object); |
533 | continue; |
534 | } |
535 | |
536 | PAGE_ASSERT_WAIT(m, interruptible)({ (m)->wanted = ((boolean_t) 1); assert_wait((event_t) (m ), (interruptible)); }); |
537 | goto block_and_backoff; |
538 | } |
539 | |
540 | /* |
541 | * We mark the page busy and leave it on |
542 | * the pageout queues. If the pageout |
543 | * deamon comes across it, then it will |
544 | * remove the page. |
545 | */ |
546 | |
547 | if (!software_reference_bits) { |
548 | vm_page_lock_queues(); |
549 | if (m->inactive) { |
550 | vm_stat_sample(SAMPLED_PC_VM_REACTIVATION_FAULTS)({ thread_t _thread_ = (active_threads[(0)]); if (_thread_ != ((thread_t) 0)) ({ task_t task; if ((_thread_)->pc_sample .sampletypes & ((0x20))) take_pc_sample((_thread_), & (_thread_)->pc_sample, ((0x20))); task = (_thread_)->task ; if (task->pc_sample.sampletypes & ((0x20))) take_pc_sample ((_thread_), &task->pc_sample, ((0x20))); }); }); |
551 | vm_stat.reactivations++; |
552 | current_task()((active_threads[(0)])->task)->reactivations++; |
553 | } |
554 | |
555 | VM_PAGE_QUEUES_REMOVE(m)({ if (m->active) { { queue_entry_t next, prev; next = (m) ->pageq.next; prev = (m)->pageq.prev; if ((&vm_page_queue_active ) == next) (&vm_page_queue_active)->prev = prev; else ( (vm_page_t)next)->pageq.prev = prev; if ((&vm_page_queue_active ) == prev) (&vm_page_queue_active)->next = next; else ( (vm_page_t)prev)->pageq.next = next; }; m->active = ((boolean_t ) 0); vm_page_active_count--; } if (m->inactive) { { queue_entry_t next, prev; next = (m)->pageq.next; prev = (m)->pageq. prev; if ((&vm_page_queue_inactive) == next) (&vm_page_queue_inactive )->prev = prev; else ((vm_page_t)next)->pageq.prev = prev ; if ((&vm_page_queue_inactive) == prev) (&vm_page_queue_inactive )->next = next; else ((vm_page_t)prev)->pageq.next = next ; }; m->inactive = ((boolean_t) 0); vm_page_inactive_count --; } }); |
556 | vm_page_unlock_queues(); |
557 | } |
558 | |
559 | assert(!m->busy)({ if (!(!m->busy)) Assert("!m->busy", "../vm/vm_fault.c" , 559); }); |
560 | m->busy = TRUE((boolean_t) 1); |
561 | assert(!m->absent)({ if (!(!m->absent)) Assert("!m->absent", "../vm/vm_fault.c" , 561); }); |
562 | break; |
563 | } |
564 | |
565 | look_for_page = |
566 | (object->pager_created) |
567 | #if MACH_PAGEMAP1 |
568 | && (vm_external_state_get(object->existence_info, offset + object->paging_offset)(((object->existence_info) != ((vm_external_t) 0)) ? _vm_external_state_get (object->existence_info, offset + object->paging_offset ) : 2) != |
569 | VM_EXTERNAL_STATE_ABSENT3) |
570 | #endif /* MACH_PAGEMAP */ |
571 | ; |
572 | |
573 | if ((look_for_page || (object == first_object)) |
574 | && !must_be_resident) { |
575 | /* |
576 | * Allocate a new page for this object/offset |
577 | * pair. |
578 | */ |
579 | |
580 | m = vm_page_grab_fictitious(); |
581 | if (m == VM_PAGE_NULL((vm_page_t) 0)) { |
582 | vm_fault_cleanup(object, first_m); |
583 | return(VM_FAULT_FICTITIOUS_SHORTAGE4); |
584 | } |
585 | |
586 | vm_page_lock_queues(); |
587 | vm_page_insert(m, object, offset); |
588 | vm_page_unlock_queues(); |
589 | } |
590 | |
591 | if (look_for_page && !must_be_resident) { |
592 | kern_return_t rc; |
593 | |
594 | /* |
595 | * If the memory manager is not ready, we |
596 | * cannot make requests. |
597 | */ |
598 | if (!object->pager_ready) { |
599 | vm_object_assert_wait(object,({ (object)->all_wanted |= 1 << (1); assert_wait((event_t )(((vm_offset_t) object) + (1)), (interruptible)); }) |
600 | VM_OBJECT_EVENT_PAGER_READY,({ (object)->all_wanted |= 1 << (1); assert_wait((event_t )(((vm_offset_t) object) + (1)), (interruptible)); }) |
601 | interruptible)({ (object)->all_wanted |= 1 << (1); assert_wait((event_t )(((vm_offset_t) object) + (1)), (interruptible)); }); |
602 | VM_PAGE_FREE(m)({ ; vm_page_free(m); ; }); |
603 | goto block_and_backoff; |
604 | } |
605 | |
606 | if (object->internal) { |
607 | /* |
608 | * Requests to the default pager |
609 | * must reserve a real page in advance, |
610 | * because the pager's data-provided |
611 | * won't block for pages. |
612 | */ |
613 | |
614 | if (m->fictitious && !vm_page_convert(m, FALSE((boolean_t) 0))) { |
615 | VM_PAGE_FREE(m)({ ; vm_page_free(m); ; }); |
616 | vm_fault_cleanup(object, first_m); |
617 | return(VM_FAULT_MEMORY_SHORTAGE3); |
618 | } |
619 | } else if (object->absent_count > |
620 | vm_object_absent_max) { |
621 | /* |
622 | * If there are too many outstanding page |
623 | * requests pending on this object, we |
624 | * wait for them to be resolved now. |
625 | */ |
626 | |
627 | vm_object_absent_assert_wait(object, interruptible)({ ({ ((object))->all_wanted |= 1 << (3); assert_wait ((event_t)(((vm_offset_t) (object)) + (3)), ((interruptible)) ); }); }); |
628 | VM_PAGE_FREE(m)({ ; vm_page_free(m); ; }); |
629 | goto block_and_backoff; |
630 | } |
631 | |
632 | /* |
633 | * Indicate that the page is waiting for data |
634 | * from the memory manager. |
635 | */ |
636 | |
637 | m->absent = TRUE((boolean_t) 1); |
638 | object->absent_count++; |
639 | |
640 | /* |
641 | * We have a busy page, so we can |
642 | * release the object lock. |
643 | */ |
644 | vm_object_unlock(object); |
645 | |
646 | /* |
647 | * Call the memory manager to retrieve the data. |
648 | */ |
649 | |
650 | vm_stat.pageins++; |
651 | vm_stat_sample(SAMPLED_PC_VM_PAGEIN_FAULTS)({ thread_t _thread_ = (active_threads[(0)]); if (_thread_ != ((thread_t) 0)) ({ task_t task; if ((_thread_)->pc_sample .sampletypes & ((0x40))) take_pc_sample((_thread_), & (_thread_)->pc_sample, ((0x40))); task = (_thread_)->task ; if (task->pc_sample.sampletypes & ((0x40))) take_pc_sample ((_thread_), &task->pc_sample, ((0x40))); }); }); |
652 | current_task()((active_threads[(0)])->task)->pageins++; |
653 | |
654 | if ((rc = memory_object_data_request(object->pager, |
655 | object->pager_request, |
656 | m->offset + object->paging_offset, |
657 | PAGE_SIZE(1 << 12), access_required)) != KERN_SUCCESS0) { |
658 | if (rc != MACH_SEND_INTERRUPTED0x10000007) |
659 | printf("%s(0x%p, 0x%p, 0x%lx, 0x%x, 0x%x) failed, %x\n", |
660 | "memory_object_data_request", |
661 | object->pager, |
662 | object->pager_request, |
663 | m->offset + object->paging_offset, |
664 | PAGE_SIZE(1 << 12), access_required, rc); |
665 | /* |
666 | * Don't want to leave a busy page around, |
667 | * but the data request may have blocked, |
668 | * so check if it's still there and busy. |
669 | */ |
670 | vm_object_lock(object); |
671 | if (m == vm_page_lookup(object,offset) && |
672 | m->absent && m->busy) |
673 | VM_PAGE_FREE(m)({ ; vm_page_free(m); ; }); |
674 | vm_fault_cleanup(object, first_m); |
675 | return((rc == MACH_SEND_INTERRUPTED0x10000007) ? |
676 | VM_FAULT_INTERRUPTED2 : |
677 | VM_FAULT_MEMORY_ERROR5); |
678 | } |
679 | |
680 | /* |
681 | * Retry with same object/offset, since new data may |
682 | * be in a different page (i.e., m is meaningless at |
683 | * this point). |
684 | */ |
685 | vm_object_lock(object); |
686 | continue; |
687 | } |
688 | |
689 | /* |
690 | * For the XP system, the only case in which we get here is if |
691 | * object has no pager (or unwiring). If the pager doesn't |
692 | * have the page this is handled in the m->absent case above |
693 | * (and if you change things here you should look above). |
694 | */ |
695 | if (object == first_object) |
696 | first_m = m; |
697 | else |
698 | { |
699 | assert(m == VM_PAGE_NULL)({ if (!(m == ((vm_page_t) 0))) Assert("m == VM_PAGE_NULL", "../vm/vm_fault.c" , 699); }); |
700 | } |
701 | |
702 | /* |
703 | * Move on to the next object. Lock the next |
704 | * object before unlocking the current one. |
705 | */ |
706 | access_required = VM_PROT_READ((vm_prot_t) 0x01); |
707 | |
708 | offset += object->shadow_offset; |
709 | next_object = object->shadow; |
710 | if (next_object == VM_OBJECT_NULL((vm_object_t) 0)) { |
711 | assert(!must_be_resident)({ if (!(!must_be_resident)) Assert("!must_be_resident", "../vm/vm_fault.c" , 711); }); |
712 | |
713 | /* |
714 | * If there's no object left, fill the page |
715 | * in the top object with zeros. But first we |
716 | * need to allocate a real page. |
717 | */ |
718 | |
719 | if (object != first_object) { |
720 | vm_object_paging_end(object)({ ({ if (!((object)->paging_in_progress != 0)) Assert("(object)->paging_in_progress != 0" , "../vm/vm_fault.c", 720); }); if (--(object)->paging_in_progress == 0) { ({ if ((object)->all_wanted & (1 << (2) )) thread_wakeup_prim(((event_t)(((vm_offset_t) object) + (2) )), ((boolean_t) 0), 0); (object)->all_wanted &= ~(1 << (2)); }); } }); |
721 | vm_object_unlock(object); |
722 | |
723 | object = first_object; |
724 | offset = first_offset; |
Value stored to 'offset' is never read | |
725 | vm_object_lock(object); |
726 | } |
727 | |
728 | m = first_m; |
729 | assert(m->object == object)({ if (!(m->object == object)) Assert("m->object == object" , "../vm/vm_fault.c", 729); }); |
730 | first_m = VM_PAGE_NULL((vm_page_t) 0); |
731 | |
732 | if (m->fictitious && !vm_page_convert(m, !object->internal)) { |
733 | VM_PAGE_FREE(m)({ ; vm_page_free(m); ; }); |
734 | vm_fault_cleanup(object, VM_PAGE_NULL((vm_page_t) 0)); |
735 | return(VM_FAULT_MEMORY_SHORTAGE3); |
736 | } |
737 | |
738 | vm_object_unlock(object); |
739 | vm_page_zero_fill(m); |
740 | vm_stat_sample(SAMPLED_PC_VM_ZFILL_FAULTS)({ thread_t _thread_ = (active_threads[(0)]); if (_thread_ != ((thread_t) 0)) ({ task_t task; if ((_thread_)->pc_sample .sampletypes & ((0x10))) take_pc_sample((_thread_), & (_thread_)->pc_sample, ((0x10))); task = (_thread_)->task ; if (task->pc_sample.sampletypes & ((0x10))) take_pc_sample ((_thread_), &task->pc_sample, ((0x10))); }); }); |
741 | vm_stat.zero_fill_count++; |
742 | current_task()((active_threads[(0)])->task)->zero_fills++; |
743 | vm_object_lock(object); |
744 | pmap_clear_modify(m->phys_addr); |
745 | break; |
746 | } |
747 | else { |
748 | vm_object_lock(next_object); |
749 | if ((object != first_object) || must_be_resident) |
750 | vm_object_paging_end(object)({ ({ if (!((object)->paging_in_progress != 0)) Assert("(object)->paging_in_progress != 0" , "../vm/vm_fault.c", 750); }); if (--(object)->paging_in_progress == 0) { ({ if ((object)->all_wanted & (1 << (2) )) thread_wakeup_prim(((event_t)(((vm_offset_t) object) + (2) )), ((boolean_t) 0), 0); (object)->all_wanted &= ~(1 << (2)); }); } }); |
751 | vm_object_unlock(object); |
752 | object = next_object; |
753 | vm_object_paging_begin(object)((object)->paging_in_progress++); |
754 | } |
755 | } |
756 | |
757 | /* |
758 | * PAGE HAS BEEN FOUND. |
759 | * |
760 | * This page (m) is: |
761 | * busy, so that we can play with it; |
762 | * not absent, so that nobody else will fill it; |
763 | * possibly eligible for pageout; |
764 | * |
765 | * The top-level page (first_m) is: |
766 | * VM_PAGE_NULL if the page was found in the |
767 | * top-level object; |
768 | * busy, not absent, and ineligible for pageout. |
769 | * |
770 | * The current object (object) is locked. A paging |
771 | * reference is held for the current and top-level |
772 | * objects. |
773 | */ |
774 | |
775 | #if EXTRA_ASSERTIONS |
776 | assert(m->busy && !m->absent)({ if (!(m->busy && !m->absent)) Assert("m->busy && !m->absent" , "../vm/vm_fault.c", 776); }); |
777 | assert((first_m == VM_PAGE_NULL) ||({ if (!((first_m == ((vm_page_t) 0)) || (first_m->busy && !first_m->absent && !first_m->active && !first_m->inactive))) Assert("(first_m == VM_PAGE_NULL) || (first_m->busy && !first_m->absent && !first_m->active && !first_m->inactive)" , "../vm/vm_fault.c", 779); }) |
778 | (first_m->busy && !first_m->absent &&({ if (!((first_m == ((vm_page_t) 0)) || (first_m->busy && !first_m->absent && !first_m->active && !first_m->inactive))) Assert("(first_m == VM_PAGE_NULL) || (first_m->busy && !first_m->absent && !first_m->active && !first_m->inactive)" , "../vm/vm_fault.c", 779); }) |
779 | !first_m->active && !first_m->inactive))({ if (!((first_m == ((vm_page_t) 0)) || (first_m->busy && !first_m->absent && !first_m->active && !first_m->inactive))) Assert("(first_m == VM_PAGE_NULL) || (first_m->busy && !first_m->absent && !first_m->active && !first_m->inactive)" , "../vm/vm_fault.c", 779); }); |
780 | #endif /* EXTRA_ASSERTIONS */ |
781 | |
782 | /* |
783 | * If the page is being written, but isn't |
784 | * already owned by the top-level object, |
785 | * we have to copy it into a new page owned |
786 | * by the top-level object. |
787 | */ |
788 | |
789 | if (object != first_object) { |
790 | /* |
791 | * We only really need to copy if we |
792 | * want to write it. |
793 | */ |
794 | |
795 | if (fault_type & VM_PROT_WRITE((vm_prot_t) 0x02)) { |
796 | vm_page_t copy_m; |
797 | |
798 | assert(!must_be_resident)({ if (!(!must_be_resident)) Assert("!must_be_resident", "../vm/vm_fault.c" , 798); }); |
799 | |
800 | /* |
801 | * If we try to collapse first_object at this |
802 | * point, we may deadlock when we try to get |
803 | * the lock on an intermediate object (since we |
804 | * have the bottom object locked). We can't |
805 | * unlock the bottom object, because the page |
806 | * we found may move (by collapse) if we do. |
807 | * |
808 | * Instead, we first copy the page. Then, when |
809 | * we have no more use for the bottom object, |
810 | * we unlock it and try to collapse. |
811 | * |
812 | * Note that we copy the page even if we didn't |
813 | * need to... that's the breaks. |
814 | */ |
815 | |
816 | /* |
817 | * Allocate a page for the copy |
818 | */ |
819 | copy_m = vm_page_grab(!first_object->internal); |
820 | if (copy_m == VM_PAGE_NULL((vm_page_t) 0)) { |
821 | RELEASE_PAGE(m){ ({ (m)->busy = ((boolean_t) 0); if ((m)->wanted) { (m )->wanted = ((boolean_t) 0); thread_wakeup_prim((((event_t ) m)), ((boolean_t) 0), 0); } }); ; vm_page_unwire(m); ; }; |
822 | vm_fault_cleanup(object, first_m); |
823 | return(VM_FAULT_MEMORY_SHORTAGE3); |
824 | } |
825 | |
826 | vm_object_unlock(object); |
827 | vm_page_copy(m, copy_m); |
828 | vm_object_lock(object); |
829 | |
830 | /* |
831 | * If another map is truly sharing this |
832 | * page with us, we have to flush all |
833 | * uses of the original page, since we |
834 | * can't distinguish those which want the |
835 | * original from those which need the |
836 | * new copy. |
837 | * |
838 | * XXXO If we know that only one map has |
839 | * access to this page, then we could |
840 | * avoid the pmap_page_protect() call. |
841 | */ |
842 | |
843 | vm_page_lock_queues(); |
844 | vm_page_deactivate(m); |
845 | pmap_page_protect(m->phys_addr, VM_PROT_NONE((vm_prot_t) 0x00)); |
846 | vm_page_unlock_queues(); |
847 | |
848 | /* |
849 | * We no longer need the old page or object. |
850 | */ |
851 | |
852 | PAGE_WAKEUP_DONE(m)({ (m)->busy = ((boolean_t) 0); if ((m)->wanted) { (m)-> wanted = ((boolean_t) 0); thread_wakeup_prim((((event_t) m)), ((boolean_t) 0), 0); } }); |
853 | vm_object_paging_end(object)({ ({ if (!((object)->paging_in_progress != 0)) Assert("(object)->paging_in_progress != 0" , "../vm/vm_fault.c", 853); }); if (--(object)->paging_in_progress == 0) { ({ if ((object)->all_wanted & (1 << (2) )) thread_wakeup_prim(((event_t)(((vm_offset_t) object) + (2) )), ((boolean_t) 0), 0); (object)->all_wanted &= ~(1 << (2)); }); } }); |
854 | vm_object_unlock(object); |
855 | |
856 | vm_stat.cow_faults++; |
857 | vm_stat_sample(SAMPLED_PC_VM_COW_FAULTS)({ thread_t _thread_ = (active_threads[(0)]); if (_thread_ != ((thread_t) 0)) ({ task_t task; if ((_thread_)->pc_sample .sampletypes & ((0x80))) take_pc_sample((_thread_), & (_thread_)->pc_sample, ((0x80))); task = (_thread_)->task ; if (task->pc_sample.sampletypes & ((0x80))) take_pc_sample ((_thread_), &task->pc_sample, ((0x80))); }); }); |
858 | current_task()((active_threads[(0)])->task)->cow_faults++; |
859 | object = first_object; |
860 | offset = first_offset; |
861 | |
862 | vm_object_lock(object); |
863 | VM_PAGE_FREE(first_m)({ ; vm_page_free(first_m); ; }); |
864 | first_m = VM_PAGE_NULL((vm_page_t) 0); |
865 | assert(copy_m->busy)({ if (!(copy_m->busy)) Assert("copy_m->busy", "../vm/vm_fault.c" , 865); }); |
866 | vm_page_lock_queues(); |
867 | vm_page_insert(copy_m, object, offset); |
868 | vm_page_unlock_queues(); |
869 | m = copy_m; |
870 | |
871 | /* |
872 | * Now that we've gotten the copy out of the |
873 | * way, let's try to collapse the top object. |
874 | * But we have to play ugly games with |
875 | * paging_in_progress to do that... |
876 | */ |
877 | |
878 | vm_object_paging_end(object)({ ({ if (!((object)->paging_in_progress != 0)) Assert("(object)->paging_in_progress != 0" , "../vm/vm_fault.c", 878); }); if (--(object)->paging_in_progress == 0) { ({ if ((object)->all_wanted & (1 << (2) )) thread_wakeup_prim(((event_t)(((vm_offset_t) object) + (2) )), ((boolean_t) 0), 0); (object)->all_wanted &= ~(1 << (2)); }); } }); |
879 | vm_object_collapse(object); |
880 | vm_object_paging_begin(object)((object)->paging_in_progress++); |
881 | } |
882 | else { |
883 | *protection &= (~VM_PROT_WRITE((vm_prot_t) 0x02)); |
884 | } |
885 | } |
886 | |
887 | /* |
888 | * Now check whether the page needs to be pushed into the |
889 | * copy object. The use of asymmetric copy on write for |
890 | * shared temporary objects means that we may do two copies to |
891 | * satisfy the fault; one above to get the page from a |
892 | * shadowed object, and one here to push it into the copy. |
893 | */ |
894 | |
895 | while ((copy_object = first_object->copy) != VM_OBJECT_NULL((vm_object_t) 0)) { |
896 | vm_offset_t copy_offset; |
897 | vm_page_t copy_m; |
898 | |
899 | /* |
900 | * If the page is being written, but hasn't been |
901 | * copied to the copy-object, we have to copy it there. |
902 | */ |
903 | |
904 | if ((fault_type & VM_PROT_WRITE((vm_prot_t) 0x02)) == 0) { |
905 | *protection &= ~VM_PROT_WRITE((vm_prot_t) 0x02); |
906 | break; |
907 | } |
908 | |
909 | /* |
910 | * If the page was guaranteed to be resident, |
911 | * we must have already performed the copy. |
912 | */ |
913 | |
914 | if (must_be_resident) |
915 | break; |
916 | |
917 | /* |
918 | * Try to get the lock on the copy_object. |
919 | */ |
920 | if (!vm_object_lock_try(copy_object)(((boolean_t) 1))) { |
921 | vm_object_unlock(object); |
922 | |
923 | simple_lock_pause(); /* wait a bit */ |
924 | |
925 | vm_object_lock(object); |
926 | continue; |
927 | } |
928 | |
929 | /* |
930 | * Make another reference to the copy-object, |
931 | * to keep it from disappearing during the |
932 | * copy. |
933 | */ |
934 | assert(copy_object->ref_count > 0)({ if (!(copy_object->ref_count > 0)) Assert("copy_object->ref_count > 0" , "../vm/vm_fault.c", 934); }); |
935 | copy_object->ref_count++; |
936 | |
937 | /* |
938 | * Does the page exist in the copy? |
939 | */ |
940 | copy_offset = first_offset - copy_object->shadow_offset; |
941 | copy_m = vm_page_lookup(copy_object, copy_offset); |
942 | if (copy_m != VM_PAGE_NULL((vm_page_t) 0)) { |
943 | if (copy_m->busy) { |
944 | /* |
945 | * If the page is being brought |
946 | * in, wait for it and then retry. |
947 | */ |
948 | PAGE_ASSERT_WAIT(copy_m, interruptible)({ (copy_m)->wanted = ((boolean_t) 1); assert_wait((event_t ) (copy_m), (interruptible)); }); |
949 | RELEASE_PAGE(m){ ({ (m)->busy = ((boolean_t) 0); if ((m)->wanted) { (m )->wanted = ((boolean_t) 0); thread_wakeup_prim((((event_t ) m)), ((boolean_t) 0), 0); } }); ; vm_page_unwire(m); ; }; |
950 | copy_object->ref_count--; |
951 | assert(copy_object->ref_count > 0)({ if (!(copy_object->ref_count > 0)) Assert("copy_object->ref_count > 0" , "../vm/vm_fault.c", 951); }); |
952 | vm_object_unlock(copy_object); |
953 | goto block_and_backoff; |
954 | } |
955 | } |
956 | else { |
957 | /* |
958 | * Allocate a page for the copy |
959 | */ |
960 | copy_m = vm_page_alloc(copy_object, copy_offset); |
961 | if (copy_m == VM_PAGE_NULL((vm_page_t) 0)) { |
962 | RELEASE_PAGE(m){ ({ (m)->busy = ((boolean_t) 0); if ((m)->wanted) { (m )->wanted = ((boolean_t) 0); thread_wakeup_prim((((event_t ) m)), ((boolean_t) 0), 0); } }); ; vm_page_unwire(m); ; }; |
963 | copy_object->ref_count--; |
964 | assert(copy_object->ref_count > 0)({ if (!(copy_object->ref_count > 0)) Assert("copy_object->ref_count > 0" , "../vm/vm_fault.c", 964); }); |
965 | vm_object_unlock(copy_object); |
966 | vm_fault_cleanup(object, first_m); |
967 | return(VM_FAULT_MEMORY_SHORTAGE3); |
968 | } |
969 | |
970 | /* |
971 | * Must copy page into copy-object. |
972 | */ |
973 | |
974 | vm_page_copy(m, copy_m); |
975 | |
976 | /* |
977 | * If the old page was in use by any users |
978 | * of the copy-object, it must be removed |
979 | * from all pmaps. (We can't know which |
980 | * pmaps use it.) |
981 | */ |
982 | |
983 | vm_page_lock_queues(); |
984 | pmap_page_protect(m->phys_addr, VM_PROT_NONE((vm_prot_t) 0x00)); |
985 | copy_m->dirty = TRUE((boolean_t) 1); |
986 | vm_page_unlock_queues(); |
987 | |
988 | /* |
989 | * If there's a pager, then immediately |
990 | * page out this page, using the "initialize" |
991 | * option. Else, we use the copy. |
992 | */ |
993 | |
994 | if (!copy_object->pager_created) { |
995 | vm_page_lock_queues(); |
996 | vm_page_activate(copy_m); |
997 | vm_page_unlock_queues(); |
998 | PAGE_WAKEUP_DONE(copy_m)({ (copy_m)->busy = ((boolean_t) 0); if ((copy_m)->wanted ) { (copy_m)->wanted = ((boolean_t) 0); thread_wakeup_prim ((((event_t) copy_m)), ((boolean_t) 0), 0); } }); |
999 | } else { |
1000 | /* |
1001 | * The page is already ready for pageout: |
1002 | * not on pageout queues and busy. |
1003 | * Unlock everything except the |
1004 | * copy_object itself. |
1005 | */ |
1006 | |
1007 | vm_object_unlock(object); |
1008 | |
1009 | /* |
1010 | * Write the page to the copy-object, |
1011 | * flushing it from the kernel. |
1012 | */ |
1013 | |
1014 | vm_pageout_page(copy_m, TRUE((boolean_t) 1), TRUE((boolean_t) 1)); |
1015 | |
1016 | /* |
1017 | * Since the pageout may have |
1018 | * temporarily dropped the |
1019 | * copy_object's lock, we |
1020 | * check whether we'll have |
1021 | * to deallocate the hard way. |
1022 | */ |
1023 | |
1024 | if ((copy_object->shadow != object) || |
1025 | (copy_object->ref_count == 1)) { |
1026 | vm_object_unlock(copy_object); |
1027 | vm_object_deallocate(copy_object); |
1028 | vm_object_lock(object); |
1029 | continue; |
1030 | } |
1031 | |
1032 | /* |
1033 | * Pick back up the old object's |
1034 | * lock. [It is safe to do so, |
1035 | * since it must be deeper in the |
1036 | * object tree.] |
1037 | */ |
1038 | |
1039 | vm_object_lock(object); |
1040 | } |
1041 | |
1042 | /* |
1043 | * Because we're pushing a page upward |
1044 | * in the object tree, we must restart |
1045 | * any faults that are waiting here. |
1046 | * [Note that this is an expansion of |
1047 | * PAGE_WAKEUP that uses the THREAD_RESTART |
1048 | * wait result]. Can't turn off the page's |
1049 | * busy bit because we're not done with it. |
1050 | */ |
1051 | |
1052 | if (m->wanted) { |
1053 | m->wanted = FALSE((boolean_t) 0); |
1054 | thread_wakeup_with_result((event_t) m,thread_wakeup_prim(((event_t) m), ((boolean_t) 0), (3)) |
1055 | THREAD_RESTART)thread_wakeup_prim(((event_t) m), ((boolean_t) 0), (3)); |
1056 | } |
1057 | } |
1058 | |
1059 | /* |
1060 | * The reference count on copy_object must be |
1061 | * at least 2: one for our extra reference, |
1062 | * and at least one from the outside world |
1063 | * (we checked that when we last locked |
1064 | * copy_object). |
1065 | */ |
1066 | copy_object->ref_count--; |
1067 | assert(copy_object->ref_count > 0)({ if (!(copy_object->ref_count > 0)) Assert("copy_object->ref_count > 0" , "../vm/vm_fault.c", 1067); }); |
1068 | vm_object_unlock(copy_object); |
1069 | |
1070 | break; |
1071 | } |
1072 | |
1073 | *result_page = m; |
1074 | *top_page = first_m; |
1075 | |
1076 | /* |
1077 | * If the page can be written, assume that it will be. |
1078 | * [Earlier, we restrict the permission to allow write |
1079 | * access only if the fault so required, so we don't |
1080 | * mark read-only data as dirty.] |
1081 | */ |
1082 | |
1083 | if (vm_fault_dirty_handling && (*protection & VM_PROT_WRITE((vm_prot_t) 0x02))) |
1084 | m->dirty = TRUE((boolean_t) 1); |
1085 | |
1086 | return(VM_FAULT_SUCCESS0); |
1087 | |
1088 | block_and_backoff: |
1089 | vm_fault_cleanup(object, first_m); |
1090 | |
1091 | if (continuation != (void (*)()) 0) { |
1092 | vm_fault_state_t *state = |
1093 | (vm_fault_state_t *) current_thread()(active_threads[(0)])->ith_othersaved.other; |
1094 | |
1095 | /* |
1096 | * Save variables in case we must restart. |
1097 | */ |
1098 | |
1099 | state->vmfp_backoff = TRUE((boolean_t) 1); |
1100 | state->vmf_prot = *protection; |
1101 | |
1102 | counter(c_vm_fault_page_block_backoff_user++); |
1103 | thread_block(continuation); |
1104 | } else |
1105 | { |
1106 | counter(c_vm_fault_page_block_backoff_kernel++); |
1107 | thread_block((void (*)()) 0); |
1108 | } |
1109 | after_block_and_backoff: |
1110 | if (current_thread()(active_threads[(0)])->wait_result == THREAD_AWAKENED0) |
1111 | return VM_FAULT_RETRY1; |
1112 | else |
1113 | return VM_FAULT_INTERRUPTED2; |
1114 | |
1115 | #undef RELEASE_PAGE |
1116 | } |
1117 | |
1118 | /* |
1119 | * Routine: vm_fault |
1120 | * Purpose: |
1121 | * Handle page faults, including pseudo-faults |
1122 | * used to change the wiring status of pages. |
1123 | * Returns: |
1124 | * If an explicit (expression) continuation is supplied, |
1125 | * then we call the continuation instead of returning. |
1126 | * Implementation: |
1127 | * Explicit continuations make this a little icky, |
1128 | * because it hasn't been rewritten to embrace CPS. |
1129 | * Instead, we have resume arguments for vm_fault and |
1130 | * vm_fault_page, to let continue the fault computation. |
1131 | * |
1132 | * vm_fault and vm_fault_page save mucho state |
1133 | * in the moral equivalent of a closure. The state |
1134 | * structure is allocated when first entering vm_fault |
1135 | * and deallocated when leaving vm_fault. |
1136 | */ |
1137 | |
1138 | void |
1139 | vm_fault_continue() |
1140 | { |
1141 | vm_fault_state_t *state = |
1142 | (vm_fault_state_t *) current_thread()(active_threads[(0)])->ith_othersaved.other; |
1143 | |
1144 | (void) vm_fault(state->vmf_map, |
1145 | state->vmf_vaddr, |
1146 | state->vmf_fault_type, |
1147 | state->vmf_change_wiring, |
1148 | TRUE((boolean_t) 1), state->vmf_continuation); |
1149 | /*NOTREACHED*/ |
1150 | } |
1151 | |
1152 | kern_return_t vm_fault(map, vaddr, fault_type, change_wiring, |
1153 | resume, continuation) |
1154 | vm_map_t map; |
1155 | vm_offset_t vaddr; |
1156 | vm_prot_t fault_type; |
1157 | boolean_t change_wiring; |
1158 | boolean_t resume; |
1159 | void (*continuation)(); |
1160 | { |
1161 | vm_map_version_t version; /* Map version for verificiation */ |
1162 | boolean_t wired; /* Should mapping be wired down? */ |
1163 | vm_object_t object; /* Top-level object */ |
1164 | vm_offset_t offset; /* Top-level offset */ |
1165 | vm_prot_t prot; /* Protection for mapping */ |
1166 | vm_object_t old_copy_object; /* Saved copy object */ |
1167 | vm_page_t result_page; /* Result of vm_fault_page */ |
1168 | vm_page_t top_page; /* Placeholder page */ |
1169 | kern_return_t kr; |
1170 | |
1171 | vm_page_t m; /* Fast access to result_page */ |
1172 | |
1173 | if (resume) { |
1174 | vm_fault_state_t *state = |
1175 | (vm_fault_state_t *) current_thread()(active_threads[(0)])->ith_othersaved.other; |
1176 | |
1177 | /* |
1178 | * Retrieve cached variables and |
1179 | * continue vm_fault_page. |
1180 | */ |
1181 | |
1182 | object = state->vmf_object; |
1183 | if (object == VM_OBJECT_NULL((vm_object_t) 0)) |
1184 | goto RetryFault; |
1185 | version = state->vmf_version; |
1186 | wired = state->vmf_wired; |
1187 | offset = state->vmf_offset; |
1188 | prot = state->vmf_prot; |
1189 | |
1190 | kr = vm_fault_page(object, offset, fault_type, |
1191 | (change_wiring && !wired), !change_wiring, |
1192 | &prot, &result_page, &top_page, |
1193 | TRUE((boolean_t) 1), vm_fault_continue); |
1194 | goto after_vm_fault_page; |
1195 | } |
1196 | |
1197 | if (continuation != (void (*)()) 0) { |
1198 | /* |
1199 | * We will probably need to save state. |
1200 | */ |
1201 | |
1202 | char * state; |
1203 | |
1204 | /* |
1205 | * if this assignment stmt is written as |
1206 | * 'active_threads[cpu_number()] = kmem_cache_alloc()', |
1207 | * cpu_number may be evaluated before kmem_cache_alloc; |
1208 | * if kmem_cache_alloc blocks, cpu_number will be wrong |
1209 | */ |
1210 | |
1211 | state = (char *) kmem_cache_alloc(&vm_fault_state_cache); |
1212 | current_thread()(active_threads[(0)])->ith_othersaved.other = state; |
1213 | |
1214 | } |
1215 | |
1216 | RetryFault: ; |
1217 | |
1218 | /* |
1219 | * Find the backing store object and offset into |
1220 | * it to begin the search. |
1221 | */ |
1222 | |
1223 | if ((kr = vm_map_lookup(&map, vaddr, fault_type, &version, |
1224 | &object, &offset, |
1225 | &prot, &wired)) != KERN_SUCCESS0) { |
1226 | goto done; |
1227 | } |
1228 | |
1229 | /* |
1230 | * If the page is wired, we must fault for the current protection |
1231 | * value, to avoid further faults. |
1232 | */ |
1233 | |
1234 | if (wired) |
1235 | fault_type = prot; |
1236 | |
1237 | /* |
1238 | * Make a reference to this object to |
1239 | * prevent its disposal while we are messing with |
1240 | * it. Once we have the reference, the map is free |
1241 | * to be diddled. Since objects reference their |
1242 | * shadows (and copies), they will stay around as well. |
1243 | */ |
1244 | |
1245 | assert(object->ref_count > 0)({ if (!(object->ref_count > 0)) Assert("object->ref_count > 0" , "../vm/vm_fault.c", 1245); }); |
1246 | object->ref_count++; |
1247 | vm_object_paging_begin(object)((object)->paging_in_progress++); |
1248 | |
1249 | if (continuation != (void (*)()) 0) { |
1250 | vm_fault_state_t *state = |
1251 | (vm_fault_state_t *) current_thread()(active_threads[(0)])->ith_othersaved.other; |
1252 | |
1253 | /* |
1254 | * Save variables, in case vm_fault_page discards |
1255 | * our kernel stack and we have to restart. |
1256 | */ |
1257 | |
1258 | state->vmf_map = map; |
1259 | state->vmf_vaddr = vaddr; |
1260 | state->vmf_fault_type = fault_type; |
1261 | state->vmf_change_wiring = change_wiring; |
1262 | state->vmf_continuation = continuation; |
1263 | |
1264 | state->vmf_version = version; |
1265 | state->vmf_wired = wired; |
1266 | state->vmf_object = object; |
1267 | state->vmf_offset = offset; |
1268 | state->vmf_prot = prot; |
1269 | |
1270 | kr = vm_fault_page(object, offset, fault_type, |
1271 | (change_wiring && !wired), !change_wiring, |
1272 | &prot, &result_page, &top_page, |
1273 | FALSE((boolean_t) 0), vm_fault_continue); |
1274 | } else |
1275 | { |
1276 | kr = vm_fault_page(object, offset, fault_type, |
1277 | (change_wiring && !wired), !change_wiring, |
1278 | &prot, &result_page, &top_page, |
1279 | FALSE((boolean_t) 0), (void (*)()) 0); |
1280 | } |
1281 | after_vm_fault_page: |
1282 | |
1283 | /* |
1284 | * If we didn't succeed, lose the object reference immediately. |
1285 | */ |
1286 | |
1287 | if (kr != VM_FAULT_SUCCESS0) |
1288 | vm_object_deallocate(object); |
1289 | |
1290 | /* |
1291 | * See why we failed, and take corrective action. |
1292 | */ |
1293 | |
1294 | switch (kr) { |
1295 | case VM_FAULT_SUCCESS0: |
1296 | break; |
1297 | case VM_FAULT_RETRY1: |
1298 | goto RetryFault; |
1299 | case VM_FAULT_INTERRUPTED2: |
1300 | kr = KERN_SUCCESS0; |
1301 | goto done; |
1302 | case VM_FAULT_MEMORY_SHORTAGE3: |
1303 | if (continuation != (void (*)()) 0) { |
1304 | register vm_fault_state_t *state = |
1305 | (vm_fault_state_t *) current_thread()(active_threads[(0)])->ith_othersaved.other; |
1306 | |
1307 | /* |
1308 | * Save variables in case VM_PAGE_WAIT |
1309 | * discards our kernel stack. |
1310 | */ |
1311 | |
1312 | state->vmf_map = map; |
1313 | state->vmf_vaddr = vaddr; |
1314 | state->vmf_fault_type = fault_type; |
1315 | state->vmf_change_wiring = change_wiring; |
1316 | state->vmf_continuation = continuation; |
1317 | state->vmf_object = VM_OBJECT_NULL((vm_object_t) 0); |
1318 | |
1319 | VM_PAGE_WAIT(vm_fault_continue)vm_page_wait(vm_fault_continue); |
1320 | } else |
1321 | VM_PAGE_WAIT((void (*)()) 0)vm_page_wait((void (*)()) 0); |
1322 | goto RetryFault; |
1323 | case VM_FAULT_FICTITIOUS_SHORTAGE4: |
1324 | vm_page_more_fictitious(); |
1325 | goto RetryFault; |
1326 | case VM_FAULT_MEMORY_ERROR5: |
1327 | kr = KERN_MEMORY_ERROR10; |
1328 | goto done; |
1329 | } |
1330 | |
1331 | m = result_page; |
1332 | |
1333 | assert((change_wiring && !wired) ?({ if (!((change_wiring && !wired) ? (top_page == ((vm_page_t ) 0)) : ((top_page == ((vm_page_t) 0)) == (m->object == object )))) Assert("(change_wiring && !wired) ? (top_page == VM_PAGE_NULL) : ((top_page == VM_PAGE_NULL) == (m->object == object))" , "../vm/vm_fault.c", 1335); }) |
1334 | (top_page == VM_PAGE_NULL) :({ if (!((change_wiring && !wired) ? (top_page == ((vm_page_t ) 0)) : ((top_page == ((vm_page_t) 0)) == (m->object == object )))) Assert("(change_wiring && !wired) ? (top_page == VM_PAGE_NULL) : ((top_page == VM_PAGE_NULL) == (m->object == object))" , "../vm/vm_fault.c", 1335); }) |
1335 | ((top_page == VM_PAGE_NULL) == (m->object == object)))({ if (!((change_wiring && !wired) ? (top_page == ((vm_page_t ) 0)) : ((top_page == ((vm_page_t) 0)) == (m->object == object )))) Assert("(change_wiring && !wired) ? (top_page == VM_PAGE_NULL) : ((top_page == VM_PAGE_NULL) == (m->object == object))" , "../vm/vm_fault.c", 1335); }); |
1336 | |
1337 | /* |
1338 | * How to clean up the result of vm_fault_page. This |
1339 | * happens whether the mapping is entered or not. |
1340 | */ |
1341 | |
1342 | #define UNLOCK_AND_DEALLOCATE{ { object->paging_in_progress--; ; }; vm_object_deallocate (object); } \ |
1343 | MACRO_BEGIN({ \ |
1344 | vm_fault_cleanup(m->object, top_page); \ |
1345 | vm_object_deallocate(object); \ |
1346 | MACRO_END}) |
1347 | |
1348 | /* |
1349 | * What to do with the resulting page from vm_fault_page |
1350 | * if it doesn't get entered into the physical map: |
1351 | */ |
1352 | |
1353 | #define RELEASE_PAGE(m){ ({ (m)->busy = ((boolean_t) 0); if ((m)->wanted) { (m )->wanted = ((boolean_t) 0); thread_wakeup_prim((((event_t ) m)), ((boolean_t) 0), 0); } }); ; vm_page_unwire(m); ; } \ |
1354 | MACRO_BEGIN({ \ |
1355 | PAGE_WAKEUP_DONE(m)({ (m)->busy = ((boolean_t) 0); if ((m)->wanted) { (m)-> wanted = ((boolean_t) 0); thread_wakeup_prim((((event_t) m)), ((boolean_t) 0), 0); } }); \ |
1356 | vm_page_lock_queues(); \ |
1357 | if (!m->active && !m->inactive) \ |
1358 | vm_page_activate(m); \ |
1359 | vm_page_unlock_queues(); \ |
1360 | MACRO_END}) |
1361 | |
1362 | /* |
1363 | * We must verify that the maps have not changed |
1364 | * since our last lookup. |
1365 | */ |
1366 | |
1367 | old_copy_object = m->object->copy; |
1368 | |
1369 | vm_object_unlock(m->object); |
1370 | while (!vm_map_verify(map, &version)) { |
1371 | vm_object_t retry_object; |
1372 | vm_offset_t retry_offset; |
1373 | vm_prot_t retry_prot; |
1374 | |
1375 | /* |
1376 | * To avoid trying to write_lock the map while another |
1377 | * thread has it read_locked (in vm_map_pageable), we |
1378 | * do not try for write permission. If the page is |
1379 | * still writable, we will get write permission. If it |
1380 | * is not, or has been marked needs_copy, we enter the |
1381 | * mapping without write permission, and will merely |
1382 | * take another fault. |
1383 | */ |
1384 | kr = vm_map_lookup(&map, vaddr, |
1385 | fault_type & ~VM_PROT_WRITE((vm_prot_t) 0x02), &version, |
1386 | &retry_object, &retry_offset, &retry_prot, |
1387 | &wired); |
1388 | |
1389 | if (kr != KERN_SUCCESS0) { |
1390 | vm_object_lock(m->object); |
1391 | RELEASE_PAGE(m){ ({ (m)->busy = ((boolean_t) 0); if ((m)->wanted) { (m )->wanted = ((boolean_t) 0); thread_wakeup_prim((((event_t ) m)), ((boolean_t) 0), 0); } }); ; vm_page_unwire(m); ; }; |
1392 | UNLOCK_AND_DEALLOCATE{ { object->paging_in_progress--; ; }; vm_object_deallocate (object); }; |
1393 | goto done; |
1394 | } |
1395 | |
1396 | vm_object_unlock(retry_object); |
1397 | vm_object_lock(m->object); |
1398 | |
1399 | if ((retry_object != object) || |
1400 | (retry_offset != offset)) { |
1401 | RELEASE_PAGE(m){ ({ (m)->busy = ((boolean_t) 0); if ((m)->wanted) { (m )->wanted = ((boolean_t) 0); thread_wakeup_prim((((event_t ) m)), ((boolean_t) 0), 0); } }); ; vm_page_unwire(m); ; }; |
1402 | UNLOCK_AND_DEALLOCATE{ { object->paging_in_progress--; ; }; vm_object_deallocate (object); }; |
1403 | goto RetryFault; |
1404 | } |
1405 | |
1406 | /* |
1407 | * Check whether the protection has changed or the object |
1408 | * has been copied while we left the map unlocked. |
1409 | */ |
1410 | prot &= retry_prot; |
1411 | vm_object_unlock(m->object); |
1412 | } |
1413 | vm_object_lock(m->object); |
1414 | |
1415 | /* |
1416 | * If the copy object changed while the top-level object |
1417 | * was unlocked, then we must take away write permission. |
1418 | */ |
1419 | |
1420 | if (m->object->copy != old_copy_object) |
1421 | prot &= ~VM_PROT_WRITE((vm_prot_t) 0x02); |
1422 | |
1423 | /* |
1424 | * If we want to wire down this page, but no longer have |
1425 | * adequate permissions, we must start all over. |
1426 | */ |
1427 | |
1428 | if (wired && (prot != fault_type)) { |
1429 | vm_map_verify_done(map, &version)(lock_done(&(map)->lock)); |
1430 | RELEASE_PAGE(m){ ({ (m)->busy = ((boolean_t) 0); if ((m)->wanted) { (m )->wanted = ((boolean_t) 0); thread_wakeup_prim((((event_t ) m)), ((boolean_t) 0), 0); } }); ; vm_page_unwire(m); ; }; |
1431 | UNLOCK_AND_DEALLOCATE{ { object->paging_in_progress--; ; }; vm_object_deallocate (object); }; |
1432 | goto RetryFault; |
1433 | } |
1434 | |
1435 | /* |
1436 | * It's critically important that a wired-down page be faulted |
1437 | * only once in each map for which it is wired. |
1438 | */ |
1439 | |
1440 | vm_object_unlock(m->object); |
1441 | |
1442 | /* |
1443 | * Put this page into the physical map. |
1444 | * We had to do the unlock above because pmap_enter |
1445 | * may cause other faults. The page may be on |
1446 | * the pageout queues. If the pageout daemon comes |
1447 | * across the page, it will remove it from the queues. |
1448 | */ |
1449 | |
1450 | PMAP_ENTER(map->pmap, vaddr, m, prot, wired)({ pmap_enter( (map->pmap), (vaddr), (m)->phys_addr, (prot ) & ~(m)->page_lock, (wired) ); }); |
1451 | |
1452 | /* |
1453 | * If the page is not wired down and isn't already |
1454 | * on a pageout queue, then put it where the |
1455 | * pageout daemon can find it. |
1456 | */ |
1457 | vm_object_lock(m->object); |
1458 | vm_page_lock_queues(); |
1459 | if (change_wiring) { |
1460 | if (wired) |
1461 | vm_page_wire(m); |
1462 | else |
1463 | vm_page_unwire(m); |
1464 | } else if (software_reference_bits) { |
1465 | if (!m->active && !m->inactive) |
1466 | vm_page_activate(m); |
1467 | m->reference = TRUE((boolean_t) 1); |
1468 | } else { |
1469 | vm_page_activate(m); |
1470 | } |
1471 | vm_page_unlock_queues(); |
1472 | |
1473 | /* |
1474 | * Unlock everything, and return |
1475 | */ |
1476 | |
1477 | vm_map_verify_done(map, &version)(lock_done(&(map)->lock)); |
1478 | PAGE_WAKEUP_DONE(m)({ (m)->busy = ((boolean_t) 0); if ((m)->wanted) { (m)-> wanted = ((boolean_t) 0); thread_wakeup_prim((((event_t) m)), ((boolean_t) 0), 0); } }); |
1479 | kr = KERN_SUCCESS0; |
1480 | UNLOCK_AND_DEALLOCATE{ { object->paging_in_progress--; ; }; vm_object_deallocate (object); }; |
1481 | |
1482 | #undef UNLOCK_AND_DEALLOCATE{ { object->paging_in_progress--; ; }; vm_object_deallocate (object); } |
1483 | #undef RELEASE_PAGE |
1484 | |
1485 | done: |
1486 | if (continuation != (void (*)()) 0) { |
1487 | vm_fault_state_t *state = |
1488 | (vm_fault_state_t *) current_thread()(active_threads[(0)])->ith_othersaved.other; |
1489 | |
1490 | kmem_cache_free(&vm_fault_state_cache, (vm_offset_t) state); |
1491 | (*continuation)(kr); |
1492 | /*NOTREACHED*/ |
1493 | } |
1494 | |
1495 | return(kr); |
1496 | } |
1497 | |
1498 | kern_return_t vm_fault_wire_fast(); |
1499 | |
1500 | /* |
1501 | * vm_fault_wire: |
1502 | * |
1503 | * Wire down a range of virtual addresses in a map. |
1504 | */ |
1505 | void vm_fault_wire(map, entry) |
1506 | vm_map_t map; |
1507 | vm_map_entry_t entry; |
1508 | { |
1509 | |
1510 | vm_offset_t va; |
1511 | pmap_t pmap; |
1512 | vm_offset_t end_addr = entry->vme_endlinks.end; |
1513 | |
1514 | pmap = vm_map_pmap(map)((map)->pmap); |
1515 | |
1516 | /* |
1517 | * Inform the physical mapping system that the |
1518 | * range of addresses may not fault, so that |
1519 | * page tables and such can be locked down as well. |
1520 | */ |
1521 | |
1522 | pmap_pageable(pmap, entry->vme_startlinks.start, end_addr, FALSE((boolean_t) 0)); |
1523 | |
1524 | /* |
1525 | * We simulate a fault to get the page and enter it |
1526 | * in the physical map. |
1527 | */ |
1528 | |
1529 | for (va = entry->vme_startlinks.start; va < end_addr; va += PAGE_SIZE(1 << 12)) { |
1530 | if (vm_fault_wire_fast(map, va, entry) != KERN_SUCCESS0) |
1531 | (void) vm_fault(map, va, VM_PROT_NONE((vm_prot_t) 0x00), TRUE((boolean_t) 1), |
1532 | FALSE((boolean_t) 0), (void (*)()) 0); |
1533 | } |
1534 | } |
1535 | |
1536 | /* |
1537 | * vm_fault_unwire: |
1538 | * |
1539 | * Unwire a range of virtual addresses in a map. |
1540 | */ |
1541 | void vm_fault_unwire(map, entry) |
1542 | vm_map_t map; |
1543 | vm_map_entry_t entry; |
1544 | { |
1545 | vm_offset_t va; |
1546 | pmap_t pmap; |
1547 | vm_offset_t end_addr = entry->vme_endlinks.end; |
1548 | vm_object_t object; |
1549 | |
1550 | pmap = vm_map_pmap(map)((map)->pmap); |
1551 | |
1552 | object = (entry->is_sub_map) |
1553 | ? VM_OBJECT_NULL((vm_object_t) 0) : entry->object.vm_object; |
1554 | |
1555 | /* |
1556 | * Since the pages are wired down, we must be able to |
1557 | * get their mappings from the physical map system. |
1558 | */ |
1559 | |
1560 | for (va = entry->vme_startlinks.start; va < end_addr; va += PAGE_SIZE(1 << 12)) { |
1561 | pmap_change_wiring(pmap, va, FALSE((boolean_t) 0)); |
1562 | |
1563 | if (object == VM_OBJECT_NULL((vm_object_t) 0)) { |
1564 | vm_map_lock_set_recursive(map)lock_set_recursive(&(map)->lock); |
1565 | (void) vm_fault(map, va, VM_PROT_NONE((vm_prot_t) 0x00), TRUE((boolean_t) 1), |
1566 | FALSE((boolean_t) 0), (void (*)()) 0); |
1567 | vm_map_lock_clear_recursive(map)lock_clear_recursive(&(map)->lock); |
1568 | } else { |
1569 | vm_prot_t prot; |
1570 | vm_page_t result_page; |
1571 | vm_page_t top_page; |
1572 | vm_fault_return_t result; |
1573 | |
1574 | do { |
1575 | prot = VM_PROT_NONE((vm_prot_t) 0x00); |
1576 | |
1577 | vm_object_lock(object); |
1578 | vm_object_paging_begin(object)((object)->paging_in_progress++); |
1579 | result = vm_fault_page(object, |
1580 | entry->offset + |
1581 | (va - entry->vme_startlinks.start), |
1582 | VM_PROT_NONE((vm_prot_t) 0x00), TRUE((boolean_t) 1), |
1583 | FALSE((boolean_t) 0), &prot, |
1584 | &result_page, |
1585 | &top_page, |
1586 | FALSE((boolean_t) 0), (void (*)()) 0); |
1587 | } while (result == VM_FAULT_RETRY1); |
1588 | |
1589 | if (result != VM_FAULT_SUCCESS0) |
1590 | panic("vm_fault_unwire: failure"); |
1591 | |
1592 | vm_page_lock_queues(); |
1593 | vm_page_unwire(result_page); |
1594 | vm_page_unlock_queues(); |
1595 | PAGE_WAKEUP_DONE(result_page)({ (result_page)->busy = ((boolean_t) 0); if ((result_page )->wanted) { (result_page)->wanted = ((boolean_t) 0); thread_wakeup_prim ((((event_t) result_page)), ((boolean_t) 0), 0); } }); |
1596 | |
1597 | vm_fault_cleanup(result_page->object, top_page); |
1598 | } |
1599 | } |
1600 | |
1601 | /* |
1602 | * Inform the physical mapping system that the range |
1603 | * of addresses may fault, so that page tables and |
1604 | * such may be unwired themselves. |
1605 | */ |
1606 | |
1607 | pmap_pageable(pmap, entry->vme_startlinks.start, end_addr, TRUE((boolean_t) 1)); |
1608 | } |
1609 | |
1610 | /* |
1611 | * vm_fault_wire_fast: |
1612 | * |
1613 | * Handle common case of a wire down page fault at the given address. |
1614 | * If successful, the page is inserted into the associated physical map. |
1615 | * The map entry is passed in to avoid the overhead of a map lookup. |
1616 | * |
1617 | * NOTE: the given address should be truncated to the |
1618 | * proper page address. |
1619 | * |
1620 | * KERN_SUCCESS is returned if the page fault is handled; otherwise, |
1621 | * a standard error specifying why the fault is fatal is returned. |
1622 | * |
1623 | * The map in question must be referenced, and remains so. |
1624 | * Caller has a read lock on the map. |
1625 | * |
1626 | * This is a stripped version of vm_fault() for wiring pages. Anything |
1627 | * other than the common case will return KERN_FAILURE, and the caller |
1628 | * is expected to call vm_fault(). |
1629 | */ |
1630 | kern_return_t vm_fault_wire_fast(map, va, entry) |
1631 | vm_map_t map; |
1632 | vm_offset_t va; |
1633 | vm_map_entry_t entry; |
1634 | { |
1635 | vm_object_t object; |
1636 | vm_offset_t offset; |
1637 | vm_page_t m; |
1638 | vm_prot_t prot; |
1639 | |
1640 | vm_stat.faults++; /* needs lock XXX */ |
1641 | current_task()((active_threads[(0)])->task)->faults++; |
1642 | /* |
1643 | * Recovery actions |
1644 | */ |
1645 | |
1646 | #undef RELEASE_PAGE |
1647 | #define RELEASE_PAGE(m){ ({ (m)->busy = ((boolean_t) 0); if ((m)->wanted) { (m )->wanted = ((boolean_t) 0); thread_wakeup_prim((((event_t ) m)), ((boolean_t) 0), 0); } }); ; vm_page_unwire(m); ; } { \ |
1648 | PAGE_WAKEUP_DONE(m)({ (m)->busy = ((boolean_t) 0); if ((m)->wanted) { (m)-> wanted = ((boolean_t) 0); thread_wakeup_prim((((event_t) m)), ((boolean_t) 0), 0); } }); \ |
1649 | vm_page_lock_queues(); \ |
1650 | vm_page_unwire(m); \ |
1651 | vm_page_unlock_queues(); \ |
1652 | } |
1653 | |
1654 | |
1655 | #undef UNLOCK_THINGS{ object->paging_in_progress--; ; } |
1656 | #define UNLOCK_THINGS{ object->paging_in_progress--; ; } { \ |
1657 | object->paging_in_progress--; \ |
1658 | vm_object_unlock(object); \ |
1659 | } |
1660 | |
1661 | #undef UNLOCK_AND_DEALLOCATE{ { object->paging_in_progress--; ; }; vm_object_deallocate (object); } |
1662 | #define UNLOCK_AND_DEALLOCATE{ { object->paging_in_progress--; ; }; vm_object_deallocate (object); } { \ |
1663 | UNLOCK_THINGS{ object->paging_in_progress--; ; }; \ |
1664 | vm_object_deallocate(object); \ |
1665 | } |
1666 | /* |
1667 | * Give up and have caller do things the hard way. |
1668 | */ |
1669 | |
1670 | #define GIVE_UP{ { { object->paging_in_progress--; ; }; vm_object_deallocate (object); }; return(5); } { \ |
1671 | UNLOCK_AND_DEALLOCATE{ { object->paging_in_progress--; ; }; vm_object_deallocate (object); }; \ |
1672 | return(KERN_FAILURE5); \ |
1673 | } |
1674 | |
1675 | |
1676 | /* |
1677 | * If this entry is not directly to a vm_object, bail out. |
1678 | */ |
1679 | if (entry->is_sub_map) |
1680 | return(KERN_FAILURE5); |
1681 | |
1682 | /* |
1683 | * Find the backing store object and offset into it. |
1684 | */ |
1685 | |
1686 | object = entry->object.vm_object; |
1687 | offset = (va - entry->vme_startlinks.start) + entry->offset; |
1688 | prot = entry->protection; |
1689 | |
1690 | /* |
1691 | * Make a reference to this object to prevent its |
1692 | * disposal while we are messing with it. |
1693 | */ |
1694 | |
1695 | vm_object_lock(object); |
1696 | assert(object->ref_count > 0)({ if (!(object->ref_count > 0)) Assert("object->ref_count > 0" , "../vm/vm_fault.c", 1696); }); |
1697 | object->ref_count++; |
1698 | object->paging_in_progress++; |
1699 | |
1700 | /* |
1701 | * INVARIANTS (through entire routine): |
1702 | * |
1703 | * 1) At all times, we must either have the object |
1704 | * lock or a busy page in some object to prevent |
1705 | * some other thread from trying to bring in |
1706 | * the same page. |
1707 | * |
1708 | * 2) Once we have a busy page, we must remove it from |
1709 | * the pageout queues, so that the pageout daemon |
1710 | * will not grab it away. |
1711 | * |
1712 | */ |
1713 | |
1714 | /* |
1715 | * Look for page in top-level object. If it's not there or |
1716 | * there's something going on, give up. |
1717 | */ |
1718 | m = vm_page_lookup(object, offset); |
1719 | if ((m == VM_PAGE_NULL((vm_page_t) 0)) || (m->error) || |
1720 | (m->busy) || (m->absent) || (prot & m->page_lock)) { |
1721 | GIVE_UP{ { { object->paging_in_progress--; ; }; vm_object_deallocate (object); }; return(5); }; |
1722 | } |
1723 | |
1724 | /* |
1725 | * Wire the page down now. All bail outs beyond this |
1726 | * point must unwire the page. |
1727 | */ |
1728 | |
1729 | vm_page_lock_queues(); |
1730 | vm_page_wire(m); |
1731 | vm_page_unlock_queues(); |
1732 | |
1733 | /* |
1734 | * Mark page busy for other threads. |
1735 | */ |
1736 | assert(!m->busy)({ if (!(!m->busy)) Assert("!m->busy", "../vm/vm_fault.c" , 1736); }); |
1737 | m->busy = TRUE((boolean_t) 1); |
1738 | assert(!m->absent)({ if (!(!m->absent)) Assert("!m->absent", "../vm/vm_fault.c" , 1738); }); |
1739 | |
1740 | /* |
1741 | * Give up if the page is being written and there's a copy object |
1742 | */ |
1743 | if ((object->copy != VM_OBJECT_NULL((vm_object_t) 0)) && (prot & VM_PROT_WRITE((vm_prot_t) 0x02))) { |
1744 | RELEASE_PAGE(m){ ({ (m)->busy = ((boolean_t) 0); if ((m)->wanted) { (m )->wanted = ((boolean_t) 0); thread_wakeup_prim((((event_t ) m)), ((boolean_t) 0), 0); } }); ; vm_page_unwire(m); ; }; |
1745 | GIVE_UP{ { { object->paging_in_progress--; ; }; vm_object_deallocate (object); }; return(5); }; |
1746 | } |
1747 | |
1748 | /* |
1749 | * Put this page into the physical map. |
1750 | * We have to unlock the object because pmap_enter |
1751 | * may cause other faults. |
1752 | */ |
1753 | vm_object_unlock(object); |
1754 | |
1755 | PMAP_ENTER(map->pmap, va, m, prot, TRUE)({ pmap_enter( (map->pmap), (va), (m)->phys_addr, (prot ) & ~(m)->page_lock, (((boolean_t) 1)) ); }); |
1756 | |
1757 | /* |
1758 | * Must relock object so that paging_in_progress can be cleared. |
1759 | */ |
1760 | vm_object_lock(object); |
1761 | |
1762 | /* |
1763 | * Unlock everything, and return |
1764 | */ |
1765 | |
1766 | PAGE_WAKEUP_DONE(m)({ (m)->busy = ((boolean_t) 0); if ((m)->wanted) { (m)-> wanted = ((boolean_t) 0); thread_wakeup_prim((((event_t) m)), ((boolean_t) 0), 0); } }); |
1767 | UNLOCK_AND_DEALLOCATE{ { object->paging_in_progress--; ; }; vm_object_deallocate (object); }; |
1768 | |
1769 | return(KERN_SUCCESS0); |
1770 | |
1771 | } |
1772 | |
1773 | /* |
1774 | * Routine: vm_fault_copy_cleanup |
1775 | * Purpose: |
1776 | * Release a page used by vm_fault_copy. |
1777 | */ |
1778 | |
1779 | void vm_fault_copy_cleanup(page, top_page) |
1780 | vm_page_t page; |
1781 | vm_page_t top_page; |
1782 | { |
1783 | vm_object_t object = page->object; |
1784 | |
1785 | vm_object_lock(object); |
1786 | PAGE_WAKEUP_DONE(page)({ (page)->busy = ((boolean_t) 0); if ((page)->wanted) { (page)->wanted = ((boolean_t) 0); thread_wakeup_prim((((event_t ) page)), ((boolean_t) 0), 0); } }); |
1787 | vm_page_lock_queues(); |
1788 | if (!page->active && !page->inactive) |
1789 | vm_page_activate(page); |
1790 | vm_page_unlock_queues(); |
1791 | vm_fault_cleanup(object, top_page); |
1792 | } |
1793 | |
1794 | /* |
1795 | * Routine: vm_fault_copy |
1796 | * |
1797 | * Purpose: |
1798 | * Copy pages from one virtual memory object to another -- |
1799 | * neither the source nor destination pages need be resident. |
1800 | * |
1801 | * Before actually copying a page, the version associated with |
1802 | * the destination address map wil be verified. |
1803 | * |
1804 | * In/out conditions: |
1805 | * The caller must hold a reference, but not a lock, to |
1806 | * each of the source and destination objects and to the |
1807 | * destination map. |
1808 | * |
1809 | * Results: |
1810 | * Returns KERN_SUCCESS if no errors were encountered in |
1811 | * reading or writing the data. Returns KERN_INTERRUPTED if |
1812 | * the operation was interrupted (only possible if the |
1813 | * "interruptible" argument is asserted). Other return values |
1814 | * indicate a permanent error in copying the data. |
1815 | * |
1816 | * The actual amount of data copied will be returned in the |
1817 | * "copy_size" argument. In the event that the destination map |
1818 | * verification failed, this amount may be less than the amount |
1819 | * requested. |
1820 | */ |
1821 | kern_return_t vm_fault_copy( |
1822 | src_object, |
1823 | src_offset, |
1824 | src_size, |
1825 | dst_object, |
1826 | dst_offset, |
1827 | dst_map, |
1828 | dst_version, |
1829 | interruptible |
1830 | ) |
1831 | vm_object_t src_object; |
1832 | vm_offset_t src_offset; |
1833 | vm_size_t *src_size; /* INOUT */ |
1834 | vm_object_t dst_object; |
1835 | vm_offset_t dst_offset; |
1836 | vm_map_t dst_map; |
1837 | vm_map_version_t *dst_version; |
1838 | boolean_t interruptible; |
1839 | { |
1840 | vm_page_t result_page; |
1841 | vm_prot_t prot; |
1842 | |
1843 | vm_page_t src_page; |
1844 | vm_page_t src_top_page; |
1845 | |
1846 | vm_page_t dst_page; |
1847 | vm_page_t dst_top_page; |
1848 | |
1849 | vm_size_t amount_done; |
1850 | vm_object_t old_copy_object; |
1851 | |
1852 | #define RETURN(x) \ |
1853 | MACRO_BEGIN({ \ |
1854 | *src_size = amount_done; \ |
1855 | MACRO_RETURNif (((boolean_t) 1)) return(x); \ |
1856 | MACRO_END}) |
1857 | |
1858 | amount_done = 0; |
1859 | do { /* while (amount_done != *src_size) */ |
1860 | |
1861 | RetrySourceFault: ; |
1862 | |
1863 | if (src_object == VM_OBJECT_NULL((vm_object_t) 0)) { |
1864 | /* |
1865 | * No source object. We will just |
1866 | * zero-fill the page in dst_object. |
1867 | */ |
1868 | |
1869 | src_page = VM_PAGE_NULL((vm_page_t) 0); |
1870 | } else { |
1871 | prot = VM_PROT_READ((vm_prot_t) 0x01); |
1872 | |
1873 | vm_object_lock(src_object); |
1874 | vm_object_paging_begin(src_object)((src_object)->paging_in_progress++); |
1875 | |
1876 | switch (vm_fault_page(src_object, src_offset, |
1877 | VM_PROT_READ((vm_prot_t) 0x01), FALSE((boolean_t) 0), interruptible, |
1878 | &prot, &result_page, &src_top_page, |
1879 | FALSE((boolean_t) 0), (void (*)()) 0)) { |
1880 | |
1881 | case VM_FAULT_SUCCESS0: |
1882 | break; |
1883 | case VM_FAULT_RETRY1: |
1884 | goto RetrySourceFault; |
1885 | case VM_FAULT_INTERRUPTED2: |
1886 | RETURN(MACH_SEND_INTERRUPTED0x10000007); |
1887 | case VM_FAULT_MEMORY_SHORTAGE3: |
1888 | VM_PAGE_WAIT((void (*)()) 0)vm_page_wait((void (*)()) 0); |
1889 | goto RetrySourceFault; |
1890 | case VM_FAULT_FICTITIOUS_SHORTAGE4: |
1891 | vm_page_more_fictitious(); |
1892 | goto RetrySourceFault; |
1893 | case VM_FAULT_MEMORY_ERROR5: |
1894 | return(KERN_MEMORY_ERROR10); |
1895 | } |
1896 | |
1897 | src_page = result_page; |
1898 | |
1899 | assert((src_top_page == VM_PAGE_NULL) ==({ if (!((src_top_page == ((vm_page_t) 0)) == (src_page->object == src_object))) Assert("(src_top_page == VM_PAGE_NULL) == (src_page->object == src_object)" , "../vm/vm_fault.c", 1900); }) |
1900 | (src_page->object == src_object))({ if (!((src_top_page == ((vm_page_t) 0)) == (src_page->object == src_object))) Assert("(src_top_page == VM_PAGE_NULL) == (src_page->object == src_object)" , "../vm/vm_fault.c", 1900); }); |
1901 | |
1902 | assert ((prot & VM_PROT_READ) != VM_PROT_NONE)({ if (!((prot & ((vm_prot_t) 0x01)) != ((vm_prot_t) 0x00 ))) Assert("(prot & VM_PROT_READ) != VM_PROT_NONE", "../vm/vm_fault.c" , 1902); }); |
1903 | |
1904 | vm_object_unlock(src_page->object); |
1905 | } |
1906 | |
1907 | RetryDestinationFault: ; |
1908 | |
1909 | prot = VM_PROT_WRITE((vm_prot_t) 0x02); |
1910 | |
1911 | vm_object_lock(dst_object); |
1912 | vm_object_paging_begin(dst_object)((dst_object)->paging_in_progress++); |
1913 | |
1914 | switch (vm_fault_page(dst_object, dst_offset, VM_PROT_WRITE((vm_prot_t) 0x02), |
1915 | FALSE((boolean_t) 0), FALSE((boolean_t) 0) /* interruptible */, |
1916 | &prot, &result_page, &dst_top_page, |
1917 | FALSE((boolean_t) 0), (void (*)()) 0)) { |
1918 | |
1919 | case VM_FAULT_SUCCESS0: |
1920 | break; |
1921 | case VM_FAULT_RETRY1: |
1922 | goto RetryDestinationFault; |
1923 | case VM_FAULT_INTERRUPTED2: |
1924 | if (src_page != VM_PAGE_NULL((vm_page_t) 0)) |
1925 | vm_fault_copy_cleanup(src_page, |
1926 | src_top_page); |
1927 | RETURN(MACH_SEND_INTERRUPTED0x10000007); |
1928 | case VM_FAULT_MEMORY_SHORTAGE3: |
1929 | VM_PAGE_WAIT((void (*)()) 0)vm_page_wait((void (*)()) 0); |
1930 | goto RetryDestinationFault; |
1931 | case VM_FAULT_FICTITIOUS_SHORTAGE4: |
1932 | vm_page_more_fictitious(); |
1933 | goto RetryDestinationFault; |
1934 | case VM_FAULT_MEMORY_ERROR5: |
1935 | if (src_page != VM_PAGE_NULL((vm_page_t) 0)) |
1936 | vm_fault_copy_cleanup(src_page, |
1937 | src_top_page); |
1938 | return(KERN_MEMORY_ERROR10); |
1939 | } |
1940 | assert ((prot & VM_PROT_WRITE) != VM_PROT_NONE)({ if (!((prot & ((vm_prot_t) 0x02)) != ((vm_prot_t) 0x00 ))) Assert("(prot & VM_PROT_WRITE) != VM_PROT_NONE", "../vm/vm_fault.c" , 1940); }); |
1941 | |
1942 | dst_page = result_page; |
1943 | |
1944 | old_copy_object = dst_page->object->copy; |
1945 | |
1946 | vm_object_unlock(dst_page->object); |
1947 | |
1948 | if (!vm_map_verify(dst_map, dst_version)) { |
1949 | |
1950 | BailOut: ; |
1951 | |
1952 | if (src_page != VM_PAGE_NULL((vm_page_t) 0)) |
1953 | vm_fault_copy_cleanup(src_page, src_top_page); |
1954 | vm_fault_copy_cleanup(dst_page, dst_top_page); |
1955 | break; |
1956 | } |
1957 | |
1958 | |
1959 | vm_object_lock(dst_page->object); |
1960 | if (dst_page->object->copy != old_copy_object) { |
1961 | vm_object_unlock(dst_page->object); |
1962 | vm_map_verify_done(dst_map, dst_version)(lock_done(&(dst_map)->lock)); |
1963 | goto BailOut; |
1964 | } |
1965 | vm_object_unlock(dst_page->object); |
1966 | |
1967 | /* |
1968 | * Copy the page, and note that it is dirty |
1969 | * immediately. |
1970 | */ |
1971 | |
1972 | if (src_page == VM_PAGE_NULL((vm_page_t) 0)) |
1973 | vm_page_zero_fill(dst_page); |
1974 | else |
1975 | vm_page_copy(src_page, dst_page); |
1976 | dst_page->dirty = TRUE((boolean_t) 1); |
1977 | |
1978 | /* |
1979 | * Unlock everything, and return |
1980 | */ |
1981 | |
1982 | vm_map_verify_done(dst_map, dst_version)(lock_done(&(dst_map)->lock)); |
1983 | |
1984 | if (src_page != VM_PAGE_NULL((vm_page_t) 0)) |
1985 | vm_fault_copy_cleanup(src_page, src_top_page); |
1986 | vm_fault_copy_cleanup(dst_page, dst_top_page); |
1987 | |
1988 | amount_done += PAGE_SIZE(1 << 12); |
1989 | src_offset += PAGE_SIZE(1 << 12); |
1990 | dst_offset += PAGE_SIZE(1 << 12); |
1991 | |
1992 | } while (amount_done != *src_size); |
1993 | |
1994 | RETURN(KERN_SUCCESS0); |
1995 | #undef RETURN |
1996 | |
1997 | /*NOTREACHED*/ |
1998 | } |
1999 | |
2000 | |
2001 | |
2002 | |
2003 | |
2004 | #ifdef notdef |
2005 | |
2006 | /* |
2007 | * Routine: vm_fault_page_overwrite |
2008 | * |
2009 | * Description: |
2010 | * A form of vm_fault_page that assumes that the |
2011 | * resulting page will be overwritten in its entirety, |
2012 | * making it unnecessary to obtain the correct *contents* |
2013 | * of the page. |
2014 | * |
2015 | * Implementation: |
2016 | * XXX Untested. Also unused. Eventually, this technology |
2017 | * could be used in vm_fault_copy() to advantage. |
2018 | */ |
2019 | vm_fault_return_t vm_fault_page_overwrite(dst_object, dst_offset, result_page) |
2020 | vm_object_t dst_object; |
2021 | vm_offset_t dst_offset; |
2022 | vm_page_t *result_page; /* OUT */ |
2023 | { |
2024 | vm_page_t dst_page; |
2025 | |
2026 | #define interruptible FALSE((boolean_t) 0) /* XXX */ |
2027 | |
2028 | while (TRUE((boolean_t) 1)) { |
2029 | /* |
2030 | * Look for a page at this offset |
2031 | */ |
2032 | |
2033 | while ((dst_page = vm_page_lookup(dst_object, dst_offset)) |
2034 | == VM_PAGE_NULL((vm_page_t) 0)) { |
2035 | /* |
2036 | * No page, no problem... just allocate one. |
2037 | */ |
2038 | |
2039 | dst_page = vm_page_alloc(dst_object, dst_offset); |
2040 | if (dst_page == VM_PAGE_NULL((vm_page_t) 0)) { |
2041 | vm_object_unlock(dst_object); |
2042 | VM_PAGE_WAIT((void (*)()) 0)vm_page_wait((void (*)()) 0); |
2043 | vm_object_lock(dst_object); |
2044 | continue; |
2045 | } |
2046 | |
2047 | /* |
2048 | * Pretend that the memory manager |
2049 | * write-protected the page. |
2050 | * |
2051 | * Note that we will be asking for write |
2052 | * permission without asking for the data |
2053 | * first. |
2054 | */ |
2055 | |
2056 | dst_page->overwriting = TRUE((boolean_t) 1); |
2057 | dst_page->page_lock = VM_PROT_WRITE((vm_prot_t) 0x02); |
2058 | dst_page->absent = TRUE((boolean_t) 1); |
2059 | dst_object->absent_count++; |
2060 | |
2061 | break; |
2062 | |
2063 | /* |
2064 | * When we bail out, we might have to throw |
2065 | * away the page created here. |
2066 | */ |
2067 | |
2068 | #define DISCARD_PAGE \ |
2069 | MACRO_BEGIN({ \ |
2070 | vm_object_lock(dst_object); \ |
2071 | dst_page = vm_page_lookup(dst_object, dst_offset); \ |
2072 | if ((dst_page != VM_PAGE_NULL((vm_page_t) 0)) && dst_page->overwriting) \ |
2073 | VM_PAGE_FREE(dst_page)({ ; vm_page_free(dst_page); ; }); \ |
2074 | vm_object_unlock(dst_object); \ |
2075 | MACRO_END}) |
2076 | } |
2077 | |
2078 | /* |
2079 | * If the page is write-protected... |
2080 | */ |
2081 | |
2082 | if (dst_page->page_lock & VM_PROT_WRITE((vm_prot_t) 0x02)) { |
2083 | /* |
2084 | * ... and an unlock request hasn't been sent |
2085 | */ |
2086 | |
2087 | if ( ! (dst_page->unlock_request & VM_PROT_WRITE((vm_prot_t) 0x02))) { |
2088 | vm_prot_t u; |
2089 | kern_return_t rc; |
2090 | |
2091 | /* |
2092 | * ... then send one now. |
2093 | */ |
2094 | |
2095 | if (!dst_object->pager_ready) { |
2096 | vm_object_assert_wait(dst_object,({ (dst_object)->all_wanted |= 1 << (1); assert_wait ((event_t)(((vm_offset_t) dst_object) + (1)), (interruptible) ); }) |
2097 | VM_OBJECT_EVENT_PAGER_READY,({ (dst_object)->all_wanted |= 1 << (1); assert_wait ((event_t)(((vm_offset_t) dst_object) + (1)), (interruptible) ); }) |
2098 | interruptible)({ (dst_object)->all_wanted |= 1 << (1); assert_wait ((event_t)(((vm_offset_t) dst_object) + (1)), (interruptible) ); }); |
2099 | vm_object_unlock(dst_object); |
2100 | thread_block((void (*)()) 0); |
2101 | if (current_thread()(active_threads[(0)])->wait_result != |
2102 | THREAD_AWAKENED0) { |
2103 | DISCARD_PAGE; |
2104 | return(VM_FAULT_INTERRUPTED2); |
2105 | } |
2106 | continue; |
2107 | } |
2108 | |
2109 | u = dst_page->unlock_request |= VM_PROT_WRITE((vm_prot_t) 0x02); |
2110 | vm_object_unlock(dst_object); |
2111 | |
2112 | if ((rc = memory_object_data_unlock( |
2113 | dst_object->pager, |
2114 | dst_object->pager_request, |
2115 | dst_offset + dst_object->paging_offset, |
2116 | PAGE_SIZE(1 << 12), |
2117 | u)) != KERN_SUCCESS0) { |
2118 | printf("vm_object_overwrite: memory_object_data_unlock failed\n"); |
2119 | DISCARD_PAGE; |
2120 | return((rc == MACH_SEND_INTERRUPTED0x10000007) ? |
2121 | VM_FAULT_INTERRUPTED2 : |
2122 | VM_FAULT_MEMORY_ERROR5); |
2123 | } |
2124 | vm_object_lock(dst_object); |
2125 | continue; |
2126 | } |
2127 | |
2128 | /* ... fall through to wait below */ |
2129 | } else { |
2130 | /* |
2131 | * If the page isn't being used for other |
2132 | * purposes, then we're done. |
2133 | */ |
2134 | if ( ! (dst_page->busy || dst_page->absent || dst_page->error) ) |
2135 | break; |
2136 | } |
2137 | |
2138 | PAGE_ASSERT_WAIT(dst_page, interruptible)({ (dst_page)->wanted = ((boolean_t) 1); assert_wait((event_t ) (dst_page), (interruptible)); }); |
2139 | vm_object_unlock(dst_object); |
2140 | thread_block((void (*)()) 0); |
2141 | if (current_thread()(active_threads[(0)])->wait_result != THREAD_AWAKENED0) { |
2142 | DISCARD_PAGE; |
2143 | return(VM_FAULT_INTERRUPTED2); |
2144 | } |
2145 | } |
2146 | |
2147 | *result_page = dst_page; |
2148 | return(VM_FAULT_SUCCESS0); |
2149 | |
2150 | #undef interruptible |
2151 | #undef DISCARD_PAGE |
2152 | } |
2153 | |
2154 | #endif /* notdef */ |