File: | obj-scan-build/../kern/slab.c |
Location: | line 707, column 16 |
Description: | Assigned value is garbage or undefined |
1 | /* | |||
2 | * Copyright (c) 2011 Free Software Foundation. | |||
3 | * | |||
4 | * This program is free software; you can redistribute it and/or modify | |||
5 | * it under the terms of the GNU General Public License as published by | |||
6 | * the Free Software Foundation; either version 2 of the License, or | |||
7 | * (at your option) any later version. | |||
8 | * | |||
9 | * This program is distributed in the hope that it will be useful, | |||
10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |||
11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |||
12 | * GNU General Public License for more details. | |||
13 | * | |||
14 | * You should have received a copy of the GNU General Public License along | |||
15 | * with this program; if not, write to the Free Software Foundation, Inc., | |||
16 | * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | |||
17 | */ | |||
18 | ||||
19 | /* | |||
20 | * Copyright (c) 2010, 2011 Richard Braun. | |||
21 | * All rights reserved. | |||
22 | * | |||
23 | * Redistribution and use in source and binary forms, with or without | |||
24 | * modification, are permitted provided that the following conditions | |||
25 | * are met: | |||
26 | * 1. Redistributions of source code must retain the above copyright | |||
27 | * notice, this list of conditions and the following disclaimer. | |||
28 | * 2. Redistributions in binary form must reproduce the above copyright | |||
29 | * notice, this list of conditions and the following disclaimer in the | |||
30 | * documentation and/or other materials provided with the distribution. | |||
31 | * | |||
32 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR | |||
33 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES | |||
34 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. | |||
35 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, | |||
36 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | |||
37 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | |||
38 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | |||
39 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |||
40 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF | |||
41 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |||
42 | * | |||
43 | * | |||
44 | * Object caching and general purpose memory allocator. | |||
45 | * | |||
46 | * This allocator is based on the paper "The Slab Allocator: An Object-Caching | |||
47 | * Kernel Memory Allocator" by Jeff Bonwick. | |||
48 | * | |||
49 | * It allows the allocation of objects (i.e. fixed-size typed buffers) from | |||
50 | * caches and is efficient in both space and time. This implementation follows | |||
51 | * many of the indications from the paper mentioned. The most notable | |||
52 | * differences are outlined below. | |||
53 | * | |||
54 | * The per-cache self-scaling hash table for buffer-to-bufctl conversion, | |||
55 | * described in 3.2.3 "Slab Layout for Large Objects", has been replaced by | |||
56 | * a red-black tree storing slabs, sorted by address. The use of a | |||
57 | * self-balancing tree for buffer-to-slab conversions provides a few advantages | |||
58 | * over a hash table. Unlike a hash table, a BST provides a "lookup nearest" | |||
59 | * operation, so obtaining the slab data (whether it is embedded in the slab or | |||
60 | * off slab) from a buffer address simply consists of a "lookup nearest towards | |||
61 | * 0" tree search. Storing slabs instead of buffers also considerably reduces | |||
62 | * the number of elements to retain. Finally, a self-balancing tree is a true | |||
63 | * self-scaling data structure, whereas a hash table requires periodic | |||
64 | * maintenance and complete resizing, which is expensive. The only drawback is | |||
65 | * that releasing a buffer to the slab layer takes logarithmic time instead of | |||
66 | * constant time. But as the data set size is kept reasonable (because slabs | |||
67 | * are stored instead of buffers) and because the CPU pool layer services most | |||
68 | * requests, avoiding many accesses to the slab layer, it is considered an | |||
69 | * acceptable tradeoff. | |||
70 | * | |||
71 | * This implementation uses per-cpu pools of objects, which service most | |||
72 | * allocation requests. These pools act as caches (but are named differently | |||
73 | * to avoid confusion with CPU caches) that reduce contention on multiprocessor | |||
74 | * systems. When a pool is empty and cannot provide an object, it is filled by | |||
75 | * transferring multiple objects from the slab layer. The symmetric case is | |||
76 | * handled likewise. | |||
77 | */ | |||
78 | ||||
79 | #include <string.h> | |||
80 | #include <kern/assert.h> | |||
81 | #include <kern/mach_clock.h> | |||
82 | #include <kern/printf.h> | |||
83 | #include <kern/slab.h> | |||
84 | #include <kern/kalloc.h> | |||
85 | #include <kern/cpu_number.h> | |||
86 | #include <mach/vm_param.h> | |||
87 | #include <mach/machine/vm_types.h> | |||
88 | #include <vm/vm_kern.h> | |||
89 | #include <vm/vm_types.h> | |||
90 | #include <sys/types.h> | |||
91 | ||||
92 | #ifdef MACH_DEBUG1 | |||
93 | #include <mach_debug/slab_info.h> | |||
94 | #endif | |||
95 | ||||
96 | /* | |||
97 | * Utility macros. | |||
98 | */ | |||
99 | #define ARRAY_SIZE(x)(sizeof(x) / sizeof((x)[0])) (sizeof(x) / sizeof((x)[0])) | |||
100 | #define P2ALIGNED(x, a)(((x) & ((a) - 1)) == 0) (((x) & ((a) - 1)) == 0) | |||
101 | #define ISP2(x)(((x) & ((x) - 1)) == 0) P2ALIGNED(x, x)(((x) & ((x) - 1)) == 0) | |||
102 | #define P2ALIGN(x, a)((x) & -(a)) ((x) & -(a)) | |||
103 | #define P2ROUND(x, a)(-(-(x) & -(a))) (-(-(x) & -(a))) | |||
104 | #define P2END(x, a)(-(~(x) & -(a))) (-(~(x) & -(a))) | |||
105 | #define likely(expr)__builtin_expect(!!(expr), 1) __builtin_expect(!!(expr), 1) | |||
106 | #define unlikely(expr)__builtin_expect(!!(expr), 0) __builtin_expect(!!(expr), 0) | |||
107 | ||||
108 | /* | |||
109 | * Minimum required alignment. | |||
110 | */ | |||
111 | #define KMEM_ALIGN_MIN8 8 | |||
112 | ||||
113 | /* | |||
114 | * Minimum number of buffers per slab. | |||
115 | * | |||
116 | * This value is ignored when the slab size exceeds a threshold. | |||
117 | */ | |||
118 | #define KMEM_MIN_BUFS_PER_SLAB8 8 | |||
119 | ||||
120 | /* | |||
121 | * Special slab size beyond which the minimum number of buffers per slab is | |||
122 | * ignored when computing the slab size of a cache. | |||
123 | */ | |||
124 | #define KMEM_SLAB_SIZE_THRESHOLD(8 * (1 << 12)) (8 * PAGE_SIZE(1 << 12)) | |||
125 | ||||
126 | /* | |||
127 | * Special buffer size under which slab data is unconditionnally allocated | |||
128 | * from its associated slab. | |||
129 | */ | |||
130 | #define KMEM_BUF_SIZE_THRESHOLD((1 << 12) / 8) (PAGE_SIZE(1 << 12) / 8) | |||
131 | ||||
132 | /* | |||
133 | * Time (in ticks) between two garbage collection operations. | |||
134 | */ | |||
135 | #define KMEM_GC_INTERVAL(5 * hz) (5 * hz) | |||
136 | ||||
137 | /* | |||
138 | * The transfer size of a CPU pool is computed by dividing the pool size by | |||
139 | * this value. | |||
140 | */ | |||
141 | #define KMEM_CPU_POOL_TRANSFER_RATIO2 2 | |||
142 | ||||
143 | /* | |||
144 | * Redzone guard word. | |||
145 | */ | |||
146 | #ifdef __LP64__ | |||
147 | #if _HOST_BIG_ENDIAN | |||
148 | #define KMEM_REDZONE_WORD0xcefaedfeUL 0xfeedfacefeedfaceUL | |||
149 | #else /* _HOST_BIG_ENDIAN */ | |||
150 | #define KMEM_REDZONE_WORD0xcefaedfeUL 0xcefaedfecefaedfeUL | |||
151 | #endif /* _HOST_BIG_ENDIAN */ | |||
152 | #else /* __LP64__ */ | |||
153 | #if _HOST_BIG_ENDIAN | |||
154 | #define KMEM_REDZONE_WORD0xcefaedfeUL 0xfeedfaceUL | |||
155 | #else /* _HOST_BIG_ENDIAN */ | |||
156 | #define KMEM_REDZONE_WORD0xcefaedfeUL 0xcefaedfeUL | |||
157 | #endif /* _HOST_BIG_ENDIAN */ | |||
158 | #endif /* __LP64__ */ | |||
159 | ||||
160 | /* | |||
161 | * Redzone byte for padding. | |||
162 | */ | |||
163 | #define KMEM_REDZONE_BYTE0xbb 0xbb | |||
164 | ||||
165 | /* | |||
166 | * Size of the VM submap from which default backend functions allocate. | |||
167 | */ | |||
168 | #define KMEM_MAP_SIZE(128 * 1024 * 1024) (128 * 1024 * 1024) | |||
169 | ||||
170 | /* | |||
171 | * Shift for the first kalloc cache size. | |||
172 | */ | |||
173 | #define KALLOC_FIRST_SHIFT5 5 | |||
174 | ||||
175 | /* | |||
176 | * Number of caches backing general purpose allocations. | |||
177 | */ | |||
178 | #define KALLOC_NR_CACHES13 13 | |||
179 | ||||
180 | /* | |||
181 | * Values the buftag state member can take. | |||
182 | */ | |||
183 | #ifdef __LP64__ | |||
184 | #if _HOST_BIG_ENDIAN | |||
185 | #define KMEM_BUFTAG_ALLOC0xedc810a1UL 0xa110c8eda110c8edUL | |||
186 | #define KMEM_BUFTAG_FREE0x0cb1eef4UL 0xf4eeb10cf4eeb10cUL | |||
187 | #else /* _HOST_BIG_ENDIAN */ | |||
188 | #define KMEM_BUFTAG_ALLOC0xedc810a1UL 0xedc810a1edc810a1UL | |||
189 | #define KMEM_BUFTAG_FREE0x0cb1eef4UL 0x0cb1eef40cb1eef4UL | |||
190 | #endif /* _HOST_BIG_ENDIAN */ | |||
191 | #else /* __LP64__ */ | |||
192 | #if _HOST_BIG_ENDIAN | |||
193 | #define KMEM_BUFTAG_ALLOC0xedc810a1UL 0xa110c8edUL | |||
194 | #define KMEM_BUFTAG_FREE0x0cb1eef4UL 0xf4eeb10cUL | |||
195 | #else /* _HOST_BIG_ENDIAN */ | |||
196 | #define KMEM_BUFTAG_ALLOC0xedc810a1UL 0xedc810a1UL | |||
197 | #define KMEM_BUFTAG_FREE0x0cb1eef4UL 0x0cb1eef4UL | |||
198 | #endif /* _HOST_BIG_ENDIAN */ | |||
199 | #endif /* __LP64__ */ | |||
200 | ||||
201 | /* | |||
202 | * Free and uninitialized patterns. | |||
203 | * | |||
204 | * These values are unconditionnally 64-bit wide since buffers are at least | |||
205 | * 8-byte aligned. | |||
206 | */ | |||
207 | #if _HOST_BIG_ENDIAN | |||
208 | #define KMEM_FREE_PATTERN0xefbeaddeefbeaddeULL 0xdeadbeefdeadbeefULL | |||
209 | #define KMEM_UNINIT_PATTERN0xfecaddbafecaddbaULL 0xbaddcafebaddcafeULL | |||
210 | #else /* _HOST_BIG_ENDIAN */ | |||
211 | #define KMEM_FREE_PATTERN0xefbeaddeefbeaddeULL 0xefbeaddeefbeaddeULL | |||
212 | #define KMEM_UNINIT_PATTERN0xfecaddbafecaddbaULL 0xfecaddbafecaddbaULL | |||
213 | #endif /* _HOST_BIG_ENDIAN */ | |||
214 | ||||
215 | /* | |||
216 | * Cache flags. | |||
217 | * | |||
218 | * The flags don't change once set and can be tested without locking. | |||
219 | */ | |||
220 | #define KMEM_CF_NO_CPU_POOL0x01 0x01 /* CPU pool layer disabled */ | |||
221 | #define KMEM_CF_SLAB_EXTERNAL0x02 0x02 /* Slab data is off slab */ | |||
222 | #define KMEM_CF_NO_RECLAIM0x04 0x04 /* Slabs are not reclaimable */ | |||
223 | #define KMEM_CF_VERIFY0x08 0x08 /* Debugging facilities enabled */ | |||
224 | #define KMEM_CF_DIRECT0x10 0x10 /* No buf-to-slab tree lookup */ | |||
225 | ||||
226 | /* | |||
227 | * Options for kmem_cache_alloc_verify(). | |||
228 | */ | |||
229 | #define KMEM_AV_NOCONSTRUCT0 0 | |||
230 | #define KMEM_AV_CONSTRUCT1 1 | |||
231 | ||||
232 | /* | |||
233 | * Error codes for kmem_cache_error(). | |||
234 | */ | |||
235 | #define KMEM_ERR_INVALID0 0 /* Invalid address being freed */ | |||
236 | #define KMEM_ERR_DOUBLEFREE1 1 /* Freeing already free address */ | |||
237 | #define KMEM_ERR_BUFTAG2 2 /* Invalid buftag content */ | |||
238 | #define KMEM_ERR_MODIFIED3 3 /* Buffer modified while free */ | |||
239 | #define KMEM_ERR_REDZONE4 4 /* Redzone violation */ | |||
240 | ||||
241 | #if SLAB_USE_CPU_POOLS0 | |||
242 | /* | |||
243 | * Available CPU pool types. | |||
244 | * | |||
245 | * For each entry, the CPU pool size applies from the entry buf_size | |||
246 | * (excluded) up to (and including) the buf_size of the preceding entry. | |||
247 | * | |||
248 | * See struct kmem_cpu_pool_type for a description of the values. | |||
249 | */ | |||
250 | static struct kmem_cpu_pool_type kmem_cpu_pool_types[] = { | |||
251 | { 32768, 1, 0, NULL((void *) 0) }, | |||
252 | { 4096, 8, CPU_L1_SIZE, NULL((void *) 0) }, | |||
253 | { 256, 64, CPU_L1_SIZE, NULL((void *) 0) }, | |||
254 | { 0, 128, CPU_L1_SIZE, NULL((void *) 0) } | |||
255 | }; | |||
256 | ||||
257 | /* | |||
258 | * Caches where CPU pool arrays are allocated from. | |||
259 | */ | |||
260 | static struct kmem_cache kmem_cpu_array_caches[ARRAY_SIZE(kmem_cpu_pool_types)(sizeof(kmem_cpu_pool_types) / sizeof((kmem_cpu_pool_types)[0 ]))]; | |||
261 | #endif /* SLAB_USE_CPU_POOLS */ | |||
262 | ||||
263 | /* | |||
264 | * Cache for off slab data. | |||
265 | */ | |||
266 | static struct kmem_cache kmem_slab_cache; | |||
267 | ||||
268 | /* | |||
269 | * General purpose caches array. | |||
270 | */ | |||
271 | static struct kmem_cache kalloc_caches[KALLOC_NR_CACHES13]; | |||
272 | ||||
273 | /* | |||
274 | * List of all caches managed by the allocator. | |||
275 | */ | |||
276 | static struct list kmem_cache_list; | |||
277 | static unsigned int kmem_nr_caches; | |||
278 | static simple_lock_data_t __attribute__((used)) kmem_cache_list_lock; | |||
279 | ||||
280 | /* | |||
281 | * VM submap for slab caches. | |||
282 | */ | |||
283 | static struct vm_map kmem_map_store; | |||
284 | vm_map_t kmem_map = &kmem_map_store; | |||
285 | ||||
286 | /* | |||
287 | * Time of the last memory reclaim, in clock ticks. | |||
288 | */ | |||
289 | static unsigned long kmem_gc_last_tick; | |||
290 | ||||
291 | #define kmem_error(format, ...)printf("mem: error: %s(): " format "\n", __func__, ...) \ | |||
292 | printf("mem: error: %s(): " format "\n", __func__, \ | |||
293 | ## __VA_ARGS__) | |||
294 | ||||
295 | #define kmem_warn(format, ...)printf("mem: warning: %s(): " format "\n", __func__, ...) \ | |||
296 | printf("mem: warning: %s(): " format "\n", __func__, \ | |||
297 | ## __VA_ARGS__) | |||
298 | ||||
299 | #define kmem_print(format, ...)printf(format "\n", ...) \ | |||
300 | printf(format "\n", ## __VA_ARGS__) | |||
301 | ||||
302 | static void kmem_cache_error(struct kmem_cache *cache, void *buf, int error, | |||
303 | void *arg); | |||
304 | static void * kmem_cache_alloc_from_slab(struct kmem_cache *cache); | |||
305 | static void kmem_cache_free_to_slab(struct kmem_cache *cache, void *buf); | |||
306 | ||||
307 | static void * kmem_buf_verify_bytes(void *buf, void *pattern, size_t size) | |||
308 | { | |||
309 | char *ptr, *pattern_ptr, *end; | |||
310 | ||||
311 | end = buf + size; | |||
312 | ||||
313 | for (ptr = buf, pattern_ptr = pattern; ptr < end; ptr++, pattern_ptr++) | |||
314 | if (*ptr != *pattern_ptr) | |||
315 | return ptr; | |||
316 | ||||
317 | return NULL((void *) 0); | |||
318 | } | |||
319 | ||||
320 | static void * kmem_buf_verify(void *buf, uint64_t pattern, vm_size_t size) | |||
321 | { | |||
322 | uint64_t *ptr, *end; | |||
323 | ||||
324 | assert(P2ALIGNED((unsigned long)buf, sizeof(uint64_t)))({ if (!(((((unsigned long)buf) & ((sizeof(uint64_t)) - 1 )) == 0))) Assert("P2ALIGNED((unsigned long)buf, sizeof(uint64_t))" , "../kern/slab.c", 324); }); | |||
325 | assert(P2ALIGNED(size, sizeof(uint64_t)))({ if (!((((size) & ((sizeof(uint64_t)) - 1)) == 0))) Assert ("P2ALIGNED(size, sizeof(uint64_t))", "../kern/slab.c", 325); }); | |||
326 | ||||
327 | end = buf + size; | |||
328 | ||||
329 | for (ptr = buf; ptr < end; ptr++) | |||
330 | if (*ptr != pattern) | |||
331 | return kmem_buf_verify_bytes(ptr, &pattern, sizeof(pattern)); | |||
332 | ||||
333 | return NULL((void *) 0); | |||
334 | } | |||
335 | ||||
336 | static void kmem_buf_fill(void *buf, uint64_t pattern, size_t size) | |||
337 | { | |||
338 | uint64_t *ptr, *end; | |||
339 | ||||
340 | assert(P2ALIGNED((unsigned long)buf, sizeof(uint64_t)))({ if (!(((((unsigned long)buf) & ((sizeof(uint64_t)) - 1 )) == 0))) Assert("P2ALIGNED((unsigned long)buf, sizeof(uint64_t))" , "../kern/slab.c", 340); }); | |||
341 | assert(P2ALIGNED(size, sizeof(uint64_t)))({ if (!((((size) & ((sizeof(uint64_t)) - 1)) == 0))) Assert ("P2ALIGNED(size, sizeof(uint64_t))", "../kern/slab.c", 341); }); | |||
342 | ||||
343 | end = buf + size; | |||
344 | ||||
345 | for (ptr = buf; ptr < end; ptr++) | |||
346 | *ptr = pattern; | |||
347 | } | |||
348 | ||||
349 | static void * kmem_buf_verify_fill(void *buf, uint64_t old, uint64_t new, | |||
350 | size_t size) | |||
351 | { | |||
352 | uint64_t *ptr, *end; | |||
353 | ||||
354 | assert(P2ALIGNED((unsigned long)buf, sizeof(uint64_t)))({ if (!(((((unsigned long)buf) & ((sizeof(uint64_t)) - 1 )) == 0))) Assert("P2ALIGNED((unsigned long)buf, sizeof(uint64_t))" , "../kern/slab.c", 354); }); | |||
355 | assert(P2ALIGNED(size, sizeof(uint64_t)))({ if (!((((size) & ((sizeof(uint64_t)) - 1)) == 0))) Assert ("P2ALIGNED(size, sizeof(uint64_t))", "../kern/slab.c", 355); }); | |||
356 | ||||
357 | end = buf + size; | |||
358 | ||||
359 | for (ptr = buf; ptr < end; ptr++) { | |||
360 | if (*ptr != old) | |||
361 | return kmem_buf_verify_bytes(ptr, &old, sizeof(old)); | |||
362 | ||||
363 | *ptr = new; | |||
364 | } | |||
365 | ||||
366 | return NULL((void *) 0); | |||
367 | } | |||
368 | ||||
369 | static inline union kmem_bufctl * | |||
370 | kmem_buf_to_bufctl(void *buf, struct kmem_cache *cache) | |||
371 | { | |||
372 | return (union kmem_bufctl *)(buf + cache->bufctl_dist); | |||
373 | } | |||
374 | ||||
375 | static inline struct kmem_buftag * | |||
376 | kmem_buf_to_buftag(void *buf, struct kmem_cache *cache) | |||
377 | { | |||
378 | return (struct kmem_buftag *)(buf + cache->buftag_dist); | |||
379 | } | |||
380 | ||||
381 | static inline void * kmem_bufctl_to_buf(union kmem_bufctl *bufctl, | |||
382 | struct kmem_cache *cache) | |||
383 | { | |||
384 | return (void *)bufctl - cache->bufctl_dist; | |||
385 | } | |||
386 | ||||
387 | static vm_offset_t kmem_pagealloc(vm_size_t size) | |||
388 | { | |||
389 | vm_offset_t addr; | |||
390 | kern_return_t kr; | |||
391 | ||||
392 | kr = kmem_alloc_wired(kmem_map, &addr, size); | |||
393 | ||||
394 | if (kr != KERN_SUCCESS0) | |||
395 | return 0; | |||
396 | ||||
397 | return addr; | |||
398 | } | |||
399 | ||||
400 | static void kmem_pagefree(vm_offset_t ptr, vm_size_t size) | |||
401 | { | |||
402 | kmem_free(kmem_map, ptr, size); | |||
403 | } | |||
404 | ||||
405 | static void kmem_slab_create_verify(struct kmem_slab *slab, | |||
406 | struct kmem_cache *cache) | |||
407 | { | |||
408 | struct kmem_buftag *buftag; | |||
409 | size_t buf_size; | |||
410 | unsigned long buffers; | |||
411 | void *buf; | |||
412 | ||||
413 | buf_size = cache->buf_size; | |||
414 | buf = slab->addr; | |||
415 | buftag = kmem_buf_to_buftag(buf, cache); | |||
416 | ||||
417 | for (buffers = cache->bufs_per_slab; buffers != 0; buffers--) { | |||
418 | kmem_buf_fill(buf, KMEM_FREE_PATTERN0xefbeaddeefbeaddeULL, cache->bufctl_dist); | |||
419 | buftag->state = KMEM_BUFTAG_FREE0x0cb1eef4UL; | |||
420 | buf += buf_size; | |||
421 | buftag = kmem_buf_to_buftag(buf, cache); | |||
422 | } | |||
423 | } | |||
424 | ||||
425 | /* | |||
426 | * Create an empty slab for a cache. | |||
427 | * | |||
428 | * The caller must drop all locks before calling this function. | |||
429 | */ | |||
430 | static struct kmem_slab * kmem_slab_create(struct kmem_cache *cache, | |||
431 | size_t color) | |||
432 | { | |||
433 | struct kmem_slab *slab; | |||
434 | union kmem_bufctl *bufctl; | |||
435 | size_t buf_size; | |||
436 | unsigned long buffers; | |||
437 | void *slab_buf; | |||
438 | ||||
439 | if (cache->slab_alloc_fn == NULL((void *) 0)) | |||
440 | slab_buf = (void *)kmem_pagealloc(cache->slab_size); | |||
441 | else | |||
442 | slab_buf = (void *)cache->slab_alloc_fn(cache->slab_size); | |||
443 | ||||
444 | if (slab_buf == NULL((void *) 0)) | |||
445 | return NULL((void *) 0); | |||
446 | ||||
447 | if (cache->flags & KMEM_CF_SLAB_EXTERNAL0x02) { | |||
448 | assert(!(cache->flags & KMEM_CF_NO_RECLAIM))({ if (!(!(cache->flags & 0x04))) Assert("!(cache->flags & KMEM_CF_NO_RECLAIM)" , "../kern/slab.c", 448); }); | |||
449 | slab = (struct kmem_slab *)kmem_cache_alloc(&kmem_slab_cache); | |||
450 | ||||
451 | if (slab == NULL((void *) 0)) { | |||
452 | if (cache->slab_free_fn == NULL((void *) 0)) | |||
453 | kmem_pagefree((vm_offset_t)slab_buf, cache->slab_size); | |||
454 | else | |||
455 | cache->slab_free_fn((vm_offset_t)slab_buf, cache->slab_size); | |||
456 | ||||
457 | return NULL((void *) 0); | |||
458 | } | |||
459 | } else { | |||
460 | slab = (struct kmem_slab *)(slab_buf + cache->slab_size) - 1; | |||
461 | } | |||
462 | ||||
463 | list_node_init(&slab->list_node); | |||
464 | rbtree_node_init(&slab->tree_node); | |||
465 | slab->nr_refs = 0; | |||
466 | slab->first_free = NULL((void *) 0); | |||
467 | slab->addr = slab_buf + color; | |||
468 | ||||
469 | buf_size = cache->buf_size; | |||
470 | bufctl = kmem_buf_to_bufctl(slab->addr, cache); | |||
471 | ||||
472 | for (buffers = cache->bufs_per_slab; buffers != 0; buffers--) { | |||
473 | bufctl->next = slab->first_free; | |||
474 | slab->first_free = bufctl; | |||
475 | bufctl = (union kmem_bufctl *)((void *)bufctl + buf_size); | |||
476 | } | |||
477 | ||||
478 | if (cache->flags & KMEM_CF_VERIFY0x08) | |||
479 | kmem_slab_create_verify(slab, cache); | |||
480 | ||||
481 | return slab; | |||
482 | } | |||
483 | ||||
484 | static void kmem_slab_destroy_verify(struct kmem_slab *slab, | |||
485 | struct kmem_cache *cache) | |||
486 | { | |||
487 | struct kmem_buftag *buftag; | |||
488 | size_t buf_size; | |||
489 | unsigned long buffers; | |||
490 | void *buf, *addr; | |||
491 | ||||
492 | buf_size = cache->buf_size; | |||
493 | buf = slab->addr; | |||
494 | buftag = kmem_buf_to_buftag(buf, cache); | |||
495 | ||||
496 | for (buffers = cache->bufs_per_slab; buffers != 0; buffers--) { | |||
497 | if (buftag->state != KMEM_BUFTAG_FREE0x0cb1eef4UL) | |||
498 | kmem_cache_error(cache, buf, KMEM_ERR_BUFTAG2, buftag); | |||
499 | ||||
500 | addr = kmem_buf_verify(buf, KMEM_FREE_PATTERN0xefbeaddeefbeaddeULL, cache->bufctl_dist); | |||
501 | ||||
502 | if (addr != NULL((void *) 0)) | |||
503 | kmem_cache_error(cache, buf, KMEM_ERR_MODIFIED3, addr); | |||
504 | ||||
505 | buf += buf_size; | |||
506 | buftag = kmem_buf_to_buftag(buf, cache); | |||
507 | } | |||
508 | } | |||
509 | ||||
510 | /* | |||
511 | * Destroy a slab. | |||
512 | * | |||
513 | * The caller must drop all locks before calling this function. | |||
514 | */ | |||
515 | static void kmem_slab_destroy(struct kmem_slab *slab, struct kmem_cache *cache) | |||
516 | { | |||
517 | vm_offset_t slab_buf; | |||
518 | ||||
519 | assert(slab->nr_refs == 0)({ if (!(slab->nr_refs == 0)) Assert("slab->nr_refs == 0" , "../kern/slab.c", 519); }); | |||
520 | assert(slab->first_free != NULL)({ if (!(slab->first_free != ((void *) 0))) Assert("slab->first_free != NULL" , "../kern/slab.c", 520); }); | |||
521 | assert(!(cache->flags & KMEM_CF_NO_RECLAIM))({ if (!(!(cache->flags & 0x04))) Assert("!(cache->flags & KMEM_CF_NO_RECLAIM)" , "../kern/slab.c", 521); }); | |||
522 | ||||
523 | if (cache->flags & KMEM_CF_VERIFY0x08) | |||
524 | kmem_slab_destroy_verify(slab, cache); | |||
525 | ||||
526 | slab_buf = (vm_offset_t)P2ALIGN((unsigned long)slab->addr, PAGE_SIZE)(((unsigned long)slab->addr) & -((1 << 12))); | |||
527 | ||||
528 | if (cache->slab_free_fn == NULL((void *) 0)) | |||
529 | kmem_pagefree(slab_buf, cache->slab_size); | |||
530 | else | |||
531 | cache->slab_free_fn(slab_buf, cache->slab_size); | |||
532 | ||||
533 | if (cache->flags & KMEM_CF_SLAB_EXTERNAL0x02) | |||
534 | kmem_cache_free(&kmem_slab_cache, (vm_offset_t)slab); | |||
535 | } | |||
536 | ||||
537 | static inline int kmem_slab_use_tree(int flags) | |||
538 | { | |||
539 | return !(flags & KMEM_CF_DIRECT0x10) || (flags & KMEM_CF_VERIFY0x08); | |||
540 | } | |||
541 | ||||
542 | static inline int kmem_slab_cmp_lookup(const void *addr, | |||
543 | const struct rbtree_node *node) | |||
544 | { | |||
545 | struct kmem_slab *slab; | |||
546 | ||||
547 | slab = rbtree_entry(node, struct kmem_slab, tree_node)((struct kmem_slab *)((char *)node - __builtin_offsetof (struct kmem_slab, tree_node))); | |||
548 | ||||
549 | if (addr == slab->addr) | |||
550 | return 0; | |||
551 | else if (addr < slab->addr) | |||
552 | return -1; | |||
553 | else | |||
554 | return 1; | |||
555 | } | |||
556 | ||||
557 | static inline int kmem_slab_cmp_insert(const struct rbtree_node *a, | |||
558 | const struct rbtree_node *b) | |||
559 | { | |||
560 | struct kmem_slab *slab; | |||
561 | ||||
562 | slab = rbtree_entry(a, struct kmem_slab, tree_node)((struct kmem_slab *)((char *)a - __builtin_offsetof (struct kmem_slab , tree_node))); | |||
563 | return kmem_slab_cmp_lookup(slab->addr, b); | |||
564 | } | |||
565 | ||||
566 | #if SLAB_USE_CPU_POOLS0 | |||
567 | static void kmem_cpu_pool_init(struct kmem_cpu_pool *cpu_pool, | |||
568 | struct kmem_cache *cache) | |||
569 | { | |||
570 | simple_lock_init(&cpu_pool->lock); | |||
571 | cpu_pool->flags = cache->flags; | |||
572 | cpu_pool->size = 0; | |||
573 | cpu_pool->transfer_size = 0; | |||
574 | cpu_pool->nr_objs = 0; | |||
575 | cpu_pool->array = NULL((void *) 0); | |||
576 | } | |||
577 | ||||
578 | /* | |||
579 | * Return a CPU pool. | |||
580 | * | |||
581 | * This function will generally return the pool matching the CPU running the | |||
582 | * calling thread. Because of context switches and thread migration, the | |||
583 | * caller might be running on another processor after this function returns. | |||
584 | * Although not optimal, this should rarely happen, and it doesn't affect the | |||
585 | * allocator operations in any other way, as CPU pools are always valid, and | |||
586 | * their access is serialized by a lock. | |||
587 | */ | |||
588 | static inline struct kmem_cpu_pool * kmem_cpu_pool_get(struct kmem_cache *cache) | |||
589 | { | |||
590 | return &cache->cpu_pools[cpu_number()(0)]; | |||
591 | } | |||
592 | ||||
593 | static inline void kmem_cpu_pool_build(struct kmem_cpu_pool *cpu_pool, | |||
594 | struct kmem_cache *cache, void **array) | |||
595 | { | |||
596 | cpu_pool->size = cache->cpu_pool_type->array_size; | |||
597 | cpu_pool->transfer_size = (cpu_pool->size | |||
598 | + KMEM_CPU_POOL_TRANSFER_RATIO2 - 1) | |||
599 | / KMEM_CPU_POOL_TRANSFER_RATIO2; | |||
600 | cpu_pool->array = array; | |||
601 | } | |||
602 | ||||
603 | static inline void * kmem_cpu_pool_pop(struct kmem_cpu_pool *cpu_pool) | |||
604 | { | |||
605 | cpu_pool->nr_objs--; | |||
606 | return cpu_pool->array[cpu_pool->nr_objs]; | |||
607 | } | |||
608 | ||||
609 | static inline void kmem_cpu_pool_push(struct kmem_cpu_pool *cpu_pool, void *obj) | |||
610 | { | |||
611 | cpu_pool->array[cpu_pool->nr_objs] = obj; | |||
612 | cpu_pool->nr_objs++; | |||
613 | } | |||
614 | ||||
615 | static int kmem_cpu_pool_fill(struct kmem_cpu_pool *cpu_pool, | |||
616 | struct kmem_cache *cache) | |||
617 | { | |||
618 | kmem_cache_ctor_t ctor; | |||
619 | void *buf; | |||
620 | int i; | |||
621 | ||||
622 | ctor = (cpu_pool->flags & KMEM_CF_VERIFY0x08) ? NULL((void *) 0) : cache->ctor; | |||
623 | ||||
624 | simple_lock(&cache->lock); | |||
625 | ||||
626 | for (i = 0; i < cpu_pool->transfer_size; i++) { | |||
627 | buf = kmem_cache_alloc_from_slab(cache); | |||
628 | ||||
629 | if (buf == NULL((void *) 0)) | |||
630 | break; | |||
631 | ||||
632 | if (ctor != NULL((void *) 0)) | |||
633 | ctor(buf); | |||
634 | ||||
635 | kmem_cpu_pool_push(cpu_pool, buf); | |||
636 | } | |||
637 | ||||
638 | simple_unlock(&cache->lock); | |||
639 | ||||
640 | return i; | |||
641 | } | |||
642 | ||||
643 | static void kmem_cpu_pool_drain(struct kmem_cpu_pool *cpu_pool, | |||
644 | struct kmem_cache *cache) | |||
645 | { | |||
646 | void *obj; | |||
647 | int i; | |||
648 | ||||
649 | simple_lock(&cache->lock); | |||
650 | ||||
651 | for (i = cpu_pool->transfer_size; i > 0; i--) { | |||
652 | obj = kmem_cpu_pool_pop(cpu_pool); | |||
653 | kmem_cache_free_to_slab(cache, obj); | |||
654 | } | |||
655 | ||||
656 | simple_unlock(&cache->lock); | |||
657 | } | |||
658 | #endif /* SLAB_USE_CPU_POOLS */ | |||
659 | ||||
660 | static void kmem_cache_error(struct kmem_cache *cache, void *buf, int error, | |||
661 | void *arg) | |||
662 | { | |||
663 | struct kmem_buftag *buftag; | |||
664 | ||||
665 | kmem_error("cache: %s, buffer: %p", cache->name, (void *)buf)printf("mem: error: %s(): " "cache: %s, buffer: %p" "\n", __func__ , cache->name, (void *)buf); | |||
666 | ||||
667 | switch(error) { | |||
668 | case KMEM_ERR_INVALID0: | |||
669 | kmem_error("freeing invalid address")printf("mem: error: %s(): " "freeing invalid address" "\n", __func__ ); | |||
670 | break; | |||
671 | case KMEM_ERR_DOUBLEFREE1: | |||
672 | kmem_error("attempting to free the same address twice")printf("mem: error: %s(): " "attempting to free the same address twice" "\n", __func__); | |||
673 | break; | |||
674 | case KMEM_ERR_BUFTAG2: | |||
675 | buftag = arg; | |||
676 | kmem_error("invalid buftag content, buftag state: %p",printf("mem: error: %s(): " "invalid buftag content, buftag state: %p" "\n", __func__, (void *)buftag->state) | |||
677 | (void *)buftag->state)printf("mem: error: %s(): " "invalid buftag content, buftag state: %p" "\n", __func__, (void *)buftag->state); | |||
678 | break; | |||
679 | case KMEM_ERR_MODIFIED3: | |||
680 | kmem_error("free buffer modified, fault address: %p, "printf("mem: error: %s(): " "free buffer modified, fault address: %p, " "offset in buffer: %td" "\n", __func__, arg, arg - buf) | |||
681 | "offset in buffer: %td", arg, arg - buf)printf("mem: error: %s(): " "free buffer modified, fault address: %p, " "offset in buffer: %td" "\n", __func__, arg, arg - buf); | |||
682 | break; | |||
683 | case KMEM_ERR_REDZONE4: | |||
684 | kmem_error("write beyond end of buffer, fault address: %p, "printf("mem: error: %s(): " "write beyond end of buffer, fault address: %p, " "offset in buffer: %td" "\n", __func__, arg, arg - buf) | |||
685 | "offset in buffer: %td", arg, arg - buf)printf("mem: error: %s(): " "write beyond end of buffer, fault address: %p, " "offset in buffer: %td" "\n", __func__, arg, arg - buf); | |||
686 | break; | |||
687 | default: | |||
688 | kmem_error("unknown error")printf("mem: error: %s(): " "unknown error" "\n", __func__); | |||
689 | } | |||
690 | ||||
691 | /* | |||
692 | * Never reached. | |||
693 | */ | |||
694 | } | |||
695 | ||||
696 | /* | |||
697 | * Compute an appropriate slab size for the given cache. | |||
698 | * | |||
699 | * Once the slab size is known, this function sets the related properties | |||
700 | * (buffers per slab and maximum color). It can also set the KMEM_CF_DIRECT | |||
701 | * and/or KMEM_CF_SLAB_EXTERNAL flags depending on the resulting layout. | |||
702 | */ | |||
703 | static void kmem_cache_compute_sizes(struct kmem_cache *cache, int flags) | |||
704 | { | |||
705 | size_t i, buffers, buf_size, slab_size, free_slab_size, optimal_size; | |||
706 | size_t waste, waste_min; | |||
707 | int embed, optimal_embed = optimal_embed; | |||
| ||||
708 | ||||
709 | buf_size = cache->buf_size; | |||
710 | ||||
711 | if (buf_size < KMEM_BUF_SIZE_THRESHOLD((1 << 12) / 8)) | |||
712 | flags |= KMEM_CACHE_NOOFFSLAB0x2; | |||
713 | ||||
714 | i = 0; | |||
715 | waste_min = (size_t)-1; | |||
716 | ||||
717 | do { | |||
718 | i++; | |||
719 | slab_size = P2ROUND(i * buf_size, PAGE_SIZE)(-(-(i * buf_size) & -((1 << 12)))); | |||
720 | free_slab_size = slab_size; | |||
721 | ||||
722 | if (flags & KMEM_CACHE_NOOFFSLAB0x2) | |||
723 | free_slab_size -= sizeof(struct kmem_slab); | |||
724 | ||||
725 | buffers = free_slab_size / buf_size; | |||
726 | waste = free_slab_size % buf_size; | |||
727 | ||||
728 | if (buffers > i) | |||
729 | i = buffers; | |||
730 | ||||
731 | if (flags & KMEM_CACHE_NOOFFSLAB0x2) | |||
732 | embed = 1; | |||
733 | else if (sizeof(struct kmem_slab) <= waste) { | |||
734 | embed = 1; | |||
735 | waste -= sizeof(struct kmem_slab); | |||
736 | } else { | |||
737 | embed = 0; | |||
738 | } | |||
739 | ||||
740 | if (waste <= waste_min) { | |||
741 | waste_min = waste; | |||
742 | optimal_size = slab_size; | |||
743 | optimal_embed = embed; | |||
744 | } | |||
745 | } while ((buffers < KMEM_MIN_BUFS_PER_SLAB8) | |||
746 | && (slab_size < KMEM_SLAB_SIZE_THRESHOLD(8 * (1 << 12)))); | |||
747 | ||||
748 | assert(!(flags & KMEM_CACHE_NOOFFSLAB) || optimal_embed)({ if (!(!(flags & 0x2) || optimal_embed)) Assert("!(flags & KMEM_CACHE_NOOFFSLAB) || optimal_embed" , "../kern/slab.c", 748); }); | |||
749 | ||||
750 | cache->slab_size = optimal_size; | |||
751 | slab_size = cache->slab_size - (optimal_embed | |||
752 | ? sizeof(struct kmem_slab) | |||
753 | : 0); | |||
754 | cache->bufs_per_slab = slab_size / buf_size; | |||
755 | cache->color_max = slab_size % buf_size; | |||
756 | ||||
757 | if (cache->color_max >= PAGE_SIZE(1 << 12)) | |||
758 | cache->color_max = PAGE_SIZE(1 << 12) - 1; | |||
759 | ||||
760 | if (optimal_embed) { | |||
761 | if (cache->slab_size == PAGE_SIZE(1 << 12)) | |||
762 | cache->flags |= KMEM_CF_DIRECT0x10; | |||
763 | } else { | |||
764 | cache->flags |= KMEM_CF_SLAB_EXTERNAL0x02; | |||
765 | } | |||
766 | } | |||
767 | ||||
768 | void kmem_cache_init(struct kmem_cache *cache, const char *name, | |||
769 | size_t obj_size, size_t align, kmem_cache_ctor_t ctor, | |||
770 | kmem_slab_alloc_fn_t slab_alloc_fn, | |||
771 | kmem_slab_free_fn_t slab_free_fn, int flags) | |||
772 | { | |||
773 | #if SLAB_USE_CPU_POOLS0 | |||
774 | struct kmem_cpu_pool_type *cpu_pool_type; | |||
775 | size_t i; | |||
776 | #endif /* SLAB_USE_CPU_POOLS */ | |||
777 | size_t buf_size; | |||
778 | ||||
779 | #if SLAB_VERIFY0 | |||
780 | cache->flags = KMEM_CF_VERIFY0x08; | |||
781 | #else /* SLAB_VERIFY */ | |||
782 | cache->flags = 0; | |||
783 | #endif /* SLAB_VERIFY */ | |||
784 | ||||
785 | if (flags & KMEM_CACHE_NOCPUPOOL0x1) | |||
786 | cache->flags |= KMEM_CF_NO_CPU_POOL0x01; | |||
787 | ||||
788 | if (flags & KMEM_CACHE_NORECLAIM0x4) { | |||
789 | assert(slab_free_fn == NULL)({ if (!(slab_free_fn == ((void *) 0))) Assert("slab_free_fn == NULL" , "../kern/slab.c", 789); }); | |||
790 | flags |= KMEM_CACHE_NOOFFSLAB0x2; | |||
791 | cache->flags |= KMEM_CF_NO_RECLAIM0x04; | |||
792 | } | |||
793 | ||||
794 | if (flags & KMEM_CACHE_VERIFY0x8) | |||
795 | cache->flags |= KMEM_CF_VERIFY0x08; | |||
796 | ||||
797 | if (align < KMEM_ALIGN_MIN8) | |||
798 | align = KMEM_ALIGN_MIN8; | |||
799 | ||||
800 | assert(obj_size > 0)({ if (!(obj_size > 0)) Assert("obj_size > 0", "../kern/slab.c" , 800); }); | |||
801 | assert(ISP2(align))({ if (!((((align) & ((align) - 1)) == 0))) Assert("ISP2(align)" , "../kern/slab.c", 801); }); | |||
802 | assert(align < PAGE_SIZE)({ if (!(align < (1 << 12))) Assert("align < PAGE_SIZE" , "../kern/slab.c", 802); }); | |||
803 | ||||
804 | buf_size = P2ROUND(obj_size, align)(-(-(obj_size) & -(align))); | |||
805 | ||||
806 | simple_lock_init(&cache->lock); | |||
807 | list_node_init(&cache->node); | |||
808 | list_init(&cache->partial_slabs); | |||
809 | list_init(&cache->free_slabs); | |||
810 | rbtree_init(&cache->active_slabs); | |||
811 | cache->obj_size = obj_size; | |||
812 | cache->align = align; | |||
813 | cache->buf_size = buf_size; | |||
814 | cache->bufctl_dist = buf_size - sizeof(union kmem_bufctl); | |||
815 | cache->color = 0; | |||
816 | cache->nr_objs = 0; | |||
817 | cache->nr_bufs = 0; | |||
818 | cache->nr_slabs = 0; | |||
819 | cache->nr_free_slabs = 0; | |||
820 | cache->ctor = ctor; | |||
821 | cache->slab_alloc_fn = slab_alloc_fn; | |||
822 | cache->slab_free_fn = slab_free_fn; | |||
823 | strncpy(cache->name, name, sizeof(cache->name)); | |||
824 | cache->name[sizeof(cache->name) - 1] = '\0'; | |||
825 | cache->buftag_dist = 0; | |||
826 | cache->redzone_pad = 0; | |||
827 | ||||
828 | if (cache->flags & KMEM_CF_VERIFY0x08) { | |||
829 | cache->bufctl_dist = buf_size; | |||
830 | cache->buftag_dist = cache->bufctl_dist + sizeof(union kmem_bufctl); | |||
831 | cache->redzone_pad = cache->bufctl_dist - cache->obj_size; | |||
832 | buf_size += sizeof(union kmem_bufctl) + sizeof(struct kmem_buftag); | |||
833 | buf_size = P2ROUND(buf_size, align)(-(-(buf_size) & -(align))); | |||
834 | cache->buf_size = buf_size; | |||
835 | } | |||
836 | ||||
837 | kmem_cache_compute_sizes(cache, flags); | |||
838 | ||||
839 | #if SLAB_USE_CPU_POOLS0 | |||
840 | for (cpu_pool_type = kmem_cpu_pool_types; | |||
841 | buf_size <= cpu_pool_type->buf_size; | |||
842 | cpu_pool_type++); | |||
843 | ||||
844 | cache->cpu_pool_type = cpu_pool_type; | |||
845 | ||||
846 | for (i = 0; i < ARRAY_SIZE(cache->cpu_pools)(sizeof(cache->cpu_pools) / sizeof((cache->cpu_pools)[0 ])); i++) | |||
847 | kmem_cpu_pool_init(&cache->cpu_pools[i], cache); | |||
848 | #endif /* SLAB_USE_CPU_POOLS */ | |||
849 | ||||
850 | simple_lock(&kmem_cache_list_lock); | |||
851 | list_insert_tail(&kmem_cache_list, &cache->node); | |||
852 | kmem_nr_caches++; | |||
853 | simple_unlock(&kmem_cache_list_lock); | |||
854 | } | |||
855 | ||||
856 | static inline int kmem_cache_empty(struct kmem_cache *cache) | |||
857 | { | |||
858 | return cache->nr_objs == cache->nr_bufs; | |||
859 | } | |||
860 | ||||
861 | static int kmem_cache_grow(struct kmem_cache *cache) | |||
862 | { | |||
863 | struct kmem_slab *slab; | |||
864 | size_t color; | |||
865 | int empty; | |||
866 | ||||
867 | simple_lock(&cache->lock); | |||
868 | ||||
869 | if (!kmem_cache_empty(cache)) { | |||
870 | simple_unlock(&cache->lock); | |||
871 | return 1; | |||
872 | } | |||
873 | ||||
874 | color = cache->color; | |||
875 | cache->color += cache->align; | |||
876 | ||||
877 | if (cache->color > cache->color_max) | |||
878 | cache->color = 0; | |||
879 | ||||
880 | simple_unlock(&cache->lock); | |||
881 | ||||
882 | slab = kmem_slab_create(cache, color); | |||
883 | ||||
884 | simple_lock(&cache->lock); | |||
885 | ||||
886 | if (slab != NULL((void *) 0)) { | |||
887 | list_insert_head(&cache->free_slabs, &slab->list_node); | |||
888 | cache->nr_bufs += cache->bufs_per_slab; | |||
889 | cache->nr_slabs++; | |||
890 | cache->nr_free_slabs++; | |||
891 | } | |||
892 | ||||
893 | /* | |||
894 | * Even if our slab creation failed, another thread might have succeeded | |||
895 | * in growing the cache. | |||
896 | */ | |||
897 | empty = kmem_cache_empty(cache); | |||
898 | ||||
899 | simple_unlock(&cache->lock); | |||
900 | ||||
901 | return !empty; | |||
902 | } | |||
903 | ||||
904 | static void kmem_cache_reap(struct kmem_cache *cache) | |||
905 | { | |||
906 | struct kmem_slab *slab; | |||
907 | struct list dead_slabs; | |||
908 | unsigned long nr_free_slabs; | |||
909 | ||||
910 | if (cache->flags & KMEM_CF_NO_RECLAIM0x04) | |||
911 | return; | |||
912 | ||||
913 | simple_lock(&cache->lock); | |||
914 | list_set_head(&dead_slabs, &cache->free_slabs); | |||
915 | list_init(&cache->free_slabs); | |||
916 | nr_free_slabs = cache->nr_free_slabs; | |||
917 | cache->nr_bufs -= cache->bufs_per_slab * nr_free_slabs; | |||
918 | cache->nr_slabs -= nr_free_slabs; | |||
919 | cache->nr_free_slabs = 0; | |||
920 | simple_unlock(&cache->lock); | |||
921 | ||||
922 | while (!list_empty(&dead_slabs)) { | |||
923 | slab = list_first_entry(&dead_slabs, struct kmem_slab, list_node)((struct kmem_slab *)((char *)list_first(&dead_slabs) - __builtin_offsetof (struct kmem_slab, list_node))); | |||
924 | list_remove(&slab->list_node); | |||
925 | kmem_slab_destroy(slab, cache); | |||
926 | nr_free_slabs--; | |||
927 | } | |||
928 | ||||
929 | assert(nr_free_slabs == 0)({ if (!(nr_free_slabs == 0)) Assert("nr_free_slabs == 0", "../kern/slab.c" , 929); }); | |||
930 | } | |||
931 | ||||
932 | /* | |||
933 | * Allocate a raw (unconstructed) buffer from the slab layer of a cache. | |||
934 | * | |||
935 | * The cache must be locked before calling this function. | |||
936 | */ | |||
937 | static void * kmem_cache_alloc_from_slab(struct kmem_cache *cache) | |||
938 | { | |||
939 | struct kmem_slab *slab; | |||
940 | union kmem_bufctl *bufctl; | |||
941 | ||||
942 | if (!list_empty(&cache->partial_slabs)) | |||
943 | slab = list_first_entry(&cache->partial_slabs, struct kmem_slab,((struct kmem_slab *)((char *)list_first(&cache->partial_slabs ) - __builtin_offsetof (struct kmem_slab, list_node))) | |||
944 | list_node)((struct kmem_slab *)((char *)list_first(&cache->partial_slabs ) - __builtin_offsetof (struct kmem_slab, list_node))); | |||
945 | else if (!list_empty(&cache->free_slabs)) | |||
946 | slab = list_first_entry(&cache->free_slabs, struct kmem_slab,((struct kmem_slab *)((char *)list_first(&cache->free_slabs ) - __builtin_offsetof (struct kmem_slab, list_node))) | |||
947 | list_node)((struct kmem_slab *)((char *)list_first(&cache->free_slabs ) - __builtin_offsetof (struct kmem_slab, list_node))); | |||
948 | else | |||
949 | return NULL((void *) 0); | |||
950 | ||||
951 | bufctl = slab->first_free; | |||
952 | assert(bufctl != NULL)({ if (!(bufctl != ((void *) 0))) Assert("bufctl != NULL", "../kern/slab.c" , 952); }); | |||
953 | slab->first_free = bufctl->next; | |||
954 | slab->nr_refs++; | |||
955 | cache->nr_objs++; | |||
956 | ||||
957 | if (slab->nr_refs == cache->bufs_per_slab) { | |||
958 | /* The slab has become complete */ | |||
959 | list_remove(&slab->list_node); | |||
960 | ||||
961 | if (slab->nr_refs == 1) | |||
962 | cache->nr_free_slabs--; | |||
963 | } else if (slab->nr_refs == 1) { | |||
964 | /* | |||
965 | * The slab has become partial. Insert the new slab at the end of | |||
966 | * the list to reduce fragmentation. | |||
967 | */ | |||
968 | list_remove(&slab->list_node); | |||
969 | list_insert_tail(&cache->partial_slabs, &slab->list_node); | |||
970 | cache->nr_free_slabs--; | |||
971 | } | |||
972 | ||||
973 | if ((slab->nr_refs == 1) && kmem_slab_use_tree(cache->flags)) | |||
974 | rbtree_insert(&cache->active_slabs, &slab->tree_node,({ struct rbtree_node *___cur, *___prev; int ___diff, ___index ; ___prev = ((void *) 0); ___index = -1; ___cur = (&cache ->active_slabs)->root; while (___cur != ((void *) 0)) { ___diff = kmem_slab_cmp_insert(&slab->tree_node, ___cur ); ({ if (!(___diff != 0)) Assert("___diff != 0", "../kern/slab.c" , 975); }); ___prev = ___cur; ___index = rbtree_d2i(___diff); ___cur = ___cur->children[___index]; } rbtree_insert_rebalance (&cache->active_slabs, ___prev, ___index, &slab-> tree_node); }) | |||
975 | kmem_slab_cmp_insert)({ struct rbtree_node *___cur, *___prev; int ___diff, ___index ; ___prev = ((void *) 0); ___index = -1; ___cur = (&cache ->active_slabs)->root; while (___cur != ((void *) 0)) { ___diff = kmem_slab_cmp_insert(&slab->tree_node, ___cur ); ({ if (!(___diff != 0)) Assert("___diff != 0", "../kern/slab.c" , 975); }); ___prev = ___cur; ___index = rbtree_d2i(___diff); ___cur = ___cur->children[___index]; } rbtree_insert_rebalance (&cache->active_slabs, ___prev, ___index, &slab-> tree_node); }); | |||
976 | ||||
977 | return kmem_bufctl_to_buf(bufctl, cache); | |||
978 | } | |||
979 | ||||
980 | /* | |||
981 | * Release a buffer to the slab layer of a cache. | |||
982 | * | |||
983 | * The cache must be locked before calling this function. | |||
984 | */ | |||
985 | static void kmem_cache_free_to_slab(struct kmem_cache *cache, void *buf) | |||
986 | { | |||
987 | struct kmem_slab *slab; | |||
988 | union kmem_bufctl *bufctl; | |||
989 | ||||
990 | if (cache->flags & KMEM_CF_DIRECT0x10) { | |||
991 | assert(cache->slab_size == PAGE_SIZE)({ if (!(cache->slab_size == (1 << 12))) Assert("cache->slab_size == PAGE_SIZE" , "../kern/slab.c", 991); }); | |||
992 | slab = (struct kmem_slab *)P2END((unsigned long)buf, cache->slab_size)(-(~((unsigned long)buf) & -(cache->slab_size))) | |||
993 | - 1; | |||
994 | } else { | |||
995 | struct rbtree_node *node; | |||
996 | ||||
997 | node = rbtree_lookup_nearest(&cache->active_slabs, buf,({ struct rbtree_node *___cur, *___prev; int ___diff, ___index ; ___prev = ((void *) 0); ___index = -1; ___cur = (&cache ->active_slabs)->root; while (___cur != ((void *) 0)) { ___diff = kmem_slab_cmp_lookup(buf, ___cur); if (___diff == 0 ) break; ___prev = ___cur; ___index = rbtree_d2i(___diff); ___cur = ___cur->children[___index]; } if (___cur == ((void *) 0 )) ___cur = rbtree_nearest(___prev, ___index, 0); ___cur; }) | |||
998 | kmem_slab_cmp_lookup, RBTREE_LEFT)({ struct rbtree_node *___cur, *___prev; int ___diff, ___index ; ___prev = ((void *) 0); ___index = -1; ___cur = (&cache ->active_slabs)->root; while (___cur != ((void *) 0)) { ___diff = kmem_slab_cmp_lookup(buf, ___cur); if (___diff == 0 ) break; ___prev = ___cur; ___index = rbtree_d2i(___diff); ___cur = ___cur->children[___index]; } if (___cur == ((void *) 0 )) ___cur = rbtree_nearest(___prev, ___index, 0); ___cur; }); | |||
999 | assert(node != NULL)({ if (!(node != ((void *) 0))) Assert("node != NULL", "../kern/slab.c" , 999); }); | |||
1000 | slab = rbtree_entry(node, struct kmem_slab, tree_node)((struct kmem_slab *)((char *)node - __builtin_offsetof (struct kmem_slab, tree_node))); | |||
1001 | assert((unsigned long)buf < (P2ALIGN((unsigned long)slab->addr({ if (!((unsigned long)buf < ((((unsigned long)slab->addr + cache->slab_size) & -((1 << 12)))))) Assert("(unsigned long)buf < (P2ALIGN((unsigned long)slab->addr + cache->slab_size, PAGE_SIZE))" , "../kern/slab.c", 1002); }) | |||
1002 | + cache->slab_size, PAGE_SIZE)))({ if (!((unsigned long)buf < ((((unsigned long)slab->addr + cache->slab_size) & -((1 << 12)))))) Assert("(unsigned long)buf < (P2ALIGN((unsigned long)slab->addr + cache->slab_size, PAGE_SIZE))" , "../kern/slab.c", 1002); }); | |||
1003 | } | |||
1004 | ||||
1005 | assert(slab->nr_refs >= 1)({ if (!(slab->nr_refs >= 1)) Assert("slab->nr_refs >= 1" , "../kern/slab.c", 1005); }); | |||
1006 | assert(slab->nr_refs <= cache->bufs_per_slab)({ if (!(slab->nr_refs <= cache->bufs_per_slab)) Assert ("slab->nr_refs <= cache->bufs_per_slab", "../kern/slab.c" , 1006); }); | |||
1007 | bufctl = kmem_buf_to_bufctl(buf, cache); | |||
1008 | bufctl->next = slab->first_free; | |||
1009 | slab->first_free = bufctl; | |||
1010 | slab->nr_refs--; | |||
1011 | cache->nr_objs--; | |||
1012 | ||||
1013 | if (slab->nr_refs == 0) { | |||
1014 | /* The slab has become free */ | |||
1015 | ||||
1016 | if (kmem_slab_use_tree(cache->flags)) | |||
1017 | rbtree_remove(&cache->active_slabs, &slab->tree_node); | |||
1018 | ||||
1019 | if (cache->bufs_per_slab > 1) | |||
1020 | list_remove(&slab->list_node); | |||
1021 | ||||
1022 | list_insert_head(&cache->free_slabs, &slab->list_node); | |||
1023 | cache->nr_free_slabs++; | |||
1024 | } else if (slab->nr_refs == (cache->bufs_per_slab - 1)) { | |||
1025 | /* The slab has become partial */ | |||
1026 | list_insert_head(&cache->partial_slabs, &slab->list_node); | |||
1027 | } | |||
1028 | } | |||
1029 | ||||
1030 | static void kmem_cache_alloc_verify(struct kmem_cache *cache, void *buf, | |||
1031 | int construct) | |||
1032 | { | |||
1033 | struct kmem_buftag *buftag; | |||
1034 | union kmem_bufctl *bufctl; | |||
1035 | void *addr; | |||
1036 | ||||
1037 | buftag = kmem_buf_to_buftag(buf, cache); | |||
1038 | ||||
1039 | if (buftag->state != KMEM_BUFTAG_FREE0x0cb1eef4UL) | |||
1040 | kmem_cache_error(cache, buf, KMEM_ERR_BUFTAG2, buftag); | |||
1041 | ||||
1042 | addr = kmem_buf_verify_fill(buf, KMEM_FREE_PATTERN0xefbeaddeefbeaddeULL, KMEM_UNINIT_PATTERN0xfecaddbafecaddbaULL, | |||
1043 | cache->bufctl_dist); | |||
1044 | ||||
1045 | if (addr != NULL((void *) 0)) | |||
1046 | kmem_cache_error(cache, buf, KMEM_ERR_MODIFIED3, addr); | |||
1047 | ||||
1048 | addr = buf + cache->obj_size; | |||
1049 | memset(addr, KMEM_REDZONE_BYTE0xbb, cache->redzone_pad); | |||
1050 | ||||
1051 | bufctl = kmem_buf_to_bufctl(buf, cache); | |||
1052 | bufctl->redzone = KMEM_REDZONE_WORD0xcefaedfeUL; | |||
1053 | buftag->state = KMEM_BUFTAG_ALLOC0xedc810a1UL; | |||
1054 | ||||
1055 | if (construct && (cache->ctor != NULL((void *) 0))) | |||
1056 | cache->ctor(buf); | |||
1057 | } | |||
1058 | ||||
1059 | vm_offset_t kmem_cache_alloc(struct kmem_cache *cache) | |||
1060 | { | |||
1061 | int filled; | |||
1062 | void *buf; | |||
1063 | ||||
1064 | #if SLAB_USE_CPU_POOLS0 | |||
1065 | struct kmem_cpu_pool *cpu_pool; | |||
1066 | ||||
1067 | cpu_pool = kmem_cpu_pool_get(cache); | |||
1068 | ||||
1069 | if (cpu_pool->flags & KMEM_CF_NO_CPU_POOL0x01) | |||
1070 | goto slab_alloc; | |||
1071 | ||||
1072 | simple_lock(&cpu_pool->lock); | |||
1073 | ||||
1074 | fast_alloc: | |||
1075 | if (likely(cpu_pool->nr_objs > 0)__builtin_expect(!!(cpu_pool->nr_objs > 0), 1)) { | |||
1076 | buf = kmem_cpu_pool_pop(cpu_pool); | |||
1077 | simple_unlock(&cpu_pool->lock); | |||
1078 | ||||
1079 | if (cpu_pool->flags & KMEM_CF_VERIFY0x08) | |||
1080 | kmem_cache_alloc_verify(cache, buf, KMEM_AV_CONSTRUCT1); | |||
1081 | ||||
1082 | return (vm_offset_t)buf; | |||
1083 | } | |||
1084 | ||||
1085 | if (cpu_pool->array != NULL((void *) 0)) { | |||
1086 | filled = kmem_cpu_pool_fill(cpu_pool, cache); | |||
1087 | ||||
1088 | if (!filled) { | |||
1089 | simple_unlock(&cpu_pool->lock); | |||
1090 | ||||
1091 | filled = kmem_cache_grow(cache); | |||
1092 | ||||
1093 | if (!filled) | |||
1094 | return 0; | |||
1095 | ||||
1096 | simple_lock(&cpu_pool->lock); | |||
1097 | } | |||
1098 | ||||
1099 | goto fast_alloc; | |||
1100 | } | |||
1101 | ||||
1102 | simple_unlock(&cpu_pool->lock); | |||
1103 | #endif /* SLAB_USE_CPU_POOLS */ | |||
1104 | ||||
1105 | slab_alloc: | |||
1106 | simple_lock(&cache->lock); | |||
1107 | buf = kmem_cache_alloc_from_slab(cache); | |||
1108 | simple_unlock(&cache->lock); | |||
1109 | ||||
1110 | if (buf == NULL((void *) 0)) { | |||
1111 | filled = kmem_cache_grow(cache); | |||
1112 | ||||
1113 | if (!filled) | |||
1114 | return 0; | |||
1115 | ||||
1116 | goto slab_alloc; | |||
1117 | } | |||
1118 | ||||
1119 | if (cache->flags & KMEM_CF_VERIFY0x08) | |||
1120 | kmem_cache_alloc_verify(cache, buf, KMEM_AV_NOCONSTRUCT0); | |||
1121 | ||||
1122 | if (cache->ctor != NULL((void *) 0)) | |||
1123 | cache->ctor(buf); | |||
1124 | ||||
1125 | return (vm_offset_t)buf; | |||
1126 | } | |||
1127 | ||||
1128 | static void kmem_cache_free_verify(struct kmem_cache *cache, void *buf) | |||
1129 | { | |||
1130 | struct rbtree_node *node; | |||
1131 | struct kmem_buftag *buftag; | |||
1132 | struct kmem_slab *slab; | |||
1133 | union kmem_bufctl *bufctl; | |||
1134 | unsigned char *redzone_byte; | |||
1135 | unsigned long slabend; | |||
1136 | ||||
1137 | simple_lock(&cache->lock); | |||
1138 | node = rbtree_lookup_nearest(&cache->active_slabs, buf,({ struct rbtree_node *___cur, *___prev; int ___diff, ___index ; ___prev = ((void *) 0); ___index = -1; ___cur = (&cache ->active_slabs)->root; while (___cur != ((void *) 0)) { ___diff = kmem_slab_cmp_lookup(buf, ___cur); if (___diff == 0 ) break; ___prev = ___cur; ___index = rbtree_d2i(___diff); ___cur = ___cur->children[___index]; } if (___cur == ((void *) 0 )) ___cur = rbtree_nearest(___prev, ___index, 0); ___cur; }) | |||
1139 | kmem_slab_cmp_lookup, RBTREE_LEFT)({ struct rbtree_node *___cur, *___prev; int ___diff, ___index ; ___prev = ((void *) 0); ___index = -1; ___cur = (&cache ->active_slabs)->root; while (___cur != ((void *) 0)) { ___diff = kmem_slab_cmp_lookup(buf, ___cur); if (___diff == 0 ) break; ___prev = ___cur; ___index = rbtree_d2i(___diff); ___cur = ___cur->children[___index]; } if (___cur == ((void *) 0 )) ___cur = rbtree_nearest(___prev, ___index, 0); ___cur; }); | |||
1140 | simple_unlock(&cache->lock); | |||
1141 | ||||
1142 | if (node == NULL((void *) 0)) | |||
1143 | kmem_cache_error(cache, buf, KMEM_ERR_INVALID0, NULL((void *) 0)); | |||
1144 | ||||
1145 | slab = rbtree_entry(node, struct kmem_slab, tree_node)((struct kmem_slab *)((char *)node - __builtin_offsetof (struct kmem_slab, tree_node))); | |||
1146 | slabend = P2ALIGN((unsigned long)slab->addr + cache->slab_size, PAGE_SIZE)(((unsigned long)slab->addr + cache->slab_size) & - ((1 << 12))); | |||
1147 | ||||
1148 | if ((unsigned long)buf >= slabend) | |||
1149 | kmem_cache_error(cache, buf, KMEM_ERR_INVALID0, NULL((void *) 0)); | |||
1150 | ||||
1151 | if ((((unsigned long)buf - (unsigned long)slab->addr) % cache->buf_size) | |||
1152 | != 0) | |||
1153 | kmem_cache_error(cache, buf, KMEM_ERR_INVALID0, NULL((void *) 0)); | |||
1154 | ||||
1155 | /* | |||
1156 | * As the buffer address is valid, accessing its buftag is safe. | |||
1157 | */ | |||
1158 | buftag = kmem_buf_to_buftag(buf, cache); | |||
1159 | ||||
1160 | if (buftag->state != KMEM_BUFTAG_ALLOC0xedc810a1UL) { | |||
1161 | if (buftag->state == KMEM_BUFTAG_FREE0x0cb1eef4UL) | |||
1162 | kmem_cache_error(cache, buf, KMEM_ERR_DOUBLEFREE1, NULL((void *) 0)); | |||
1163 | else | |||
1164 | kmem_cache_error(cache, buf, KMEM_ERR_BUFTAG2, buftag); | |||
1165 | } | |||
1166 | ||||
1167 | redzone_byte = buf + cache->obj_size; | |||
1168 | bufctl = kmem_buf_to_bufctl(buf, cache); | |||
1169 | ||||
1170 | while (redzone_byte < (unsigned char *)bufctl) { | |||
1171 | if (*redzone_byte != KMEM_REDZONE_BYTE0xbb) | |||
1172 | kmem_cache_error(cache, buf, KMEM_ERR_REDZONE4, redzone_byte); | |||
1173 | ||||
1174 | redzone_byte++; | |||
1175 | } | |||
1176 | ||||
1177 | if (bufctl->redzone != KMEM_REDZONE_WORD0xcefaedfeUL) { | |||
1178 | unsigned long word; | |||
1179 | ||||
1180 | word = KMEM_REDZONE_WORD0xcefaedfeUL; | |||
1181 | redzone_byte = kmem_buf_verify_bytes(&bufctl->redzone, &word, | |||
1182 | sizeof(bufctl->redzone)); | |||
1183 | kmem_cache_error(cache, buf, KMEM_ERR_REDZONE4, redzone_byte); | |||
1184 | } | |||
1185 | ||||
1186 | kmem_buf_fill(buf, KMEM_FREE_PATTERN0xefbeaddeefbeaddeULL, cache->bufctl_dist); | |||
1187 | buftag->state = KMEM_BUFTAG_FREE0x0cb1eef4UL; | |||
1188 | } | |||
1189 | ||||
1190 | void kmem_cache_free(struct kmem_cache *cache, vm_offset_t obj) | |||
1191 | { | |||
1192 | #if SLAB_USE_CPU_POOLS0 | |||
1193 | struct kmem_cpu_pool *cpu_pool; | |||
1194 | void **array; | |||
1195 | ||||
1196 | cpu_pool = kmem_cpu_pool_get(cache); | |||
1197 | ||||
1198 | if (cpu_pool->flags & KMEM_CF_VERIFY0x08) { | |||
1199 | #else /* SLAB_USE_CPU_POOLS */ | |||
1200 | if (cache->flags & KMEM_CF_VERIFY0x08) { | |||
1201 | #endif /* SLAB_USE_CPU_POOLS */ | |||
1202 | kmem_cache_free_verify(cache, (void *)obj); | |||
1203 | } | |||
1204 | ||||
1205 | #if SLAB_USE_CPU_POOLS0 | |||
1206 | if (cpu_pool->flags & KMEM_CF_NO_CPU_POOL0x01) | |||
1207 | goto slab_free; | |||
1208 | ||||
1209 | simple_lock(&cpu_pool->lock); | |||
1210 | ||||
1211 | fast_free: | |||
1212 | if (likely(cpu_pool->nr_objs < cpu_pool->size)__builtin_expect(!!(cpu_pool->nr_objs < cpu_pool->size ), 1)) { | |||
1213 | kmem_cpu_pool_push(cpu_pool, (void *)obj); | |||
1214 | simple_unlock(&cpu_pool->lock); | |||
1215 | return; | |||
1216 | } | |||
1217 | ||||
1218 | if (cpu_pool->array != NULL((void *) 0)) { | |||
1219 | kmem_cpu_pool_drain(cpu_pool, cache); | |||
1220 | goto fast_free; | |||
1221 | } | |||
1222 | ||||
1223 | simple_unlock(&cpu_pool->lock); | |||
1224 | ||||
1225 | array = (void *)kmem_cache_alloc(cache->cpu_pool_type->array_cache); | |||
1226 | ||||
1227 | if (array != NULL((void *) 0)) { | |||
1228 | simple_lock(&cpu_pool->lock); | |||
1229 | ||||
1230 | /* | |||
1231 | * Another thread may have built the CPU pool while the lock was | |||
1232 | * dropped. | |||
1233 | */ | |||
1234 | if (cpu_pool->array != NULL((void *) 0)) { | |||
1235 | simple_unlock(&cpu_pool->lock); | |||
1236 | kmem_cache_free(cache->cpu_pool_type->array_cache, | |||
1237 | (vm_offset_t)array); | |||
1238 | simple_lock(&cpu_pool->lock); | |||
1239 | goto fast_free; | |||
1240 | } | |||
1241 | ||||
1242 | kmem_cpu_pool_build(cpu_pool, cache, array); | |||
1243 | goto fast_free; | |||
1244 | } | |||
1245 | ||||
1246 | slab_free: | |||
1247 | #endif /* SLAB_USE_CPU_POOLS */ | |||
1248 | ||||
1249 | simple_lock(&cache->lock); | |||
1250 | kmem_cache_free_to_slab(cache, (void *)obj); | |||
1251 | simple_unlock(&cache->lock); | |||
1252 | } | |||
1253 | ||||
1254 | void slab_collect(void) | |||
1255 | { | |||
1256 | struct kmem_cache *cache; | |||
1257 | ||||
1258 | if (elapsed_ticks <= (kmem_gc_last_tick + KMEM_GC_INTERVAL(5 * hz))) | |||
1259 | return; | |||
1260 | ||||
1261 | kmem_gc_last_tick = elapsed_ticks; | |||
1262 | ||||
1263 | simple_lock(&kmem_cache_list_lock); | |||
1264 | ||||
1265 | list_for_each_entry(&kmem_cache_list, cache, node)for (cache = ((typeof(*cache) *)((char *)list_first(&kmem_cache_list ) - __builtin_offsetof (typeof(*cache), node))); !list_end(& kmem_cache_list, &cache->node); cache = ((typeof(*cache ) *)((char *)list_next(&cache->node) - __builtin_offsetof (typeof(*cache), node)))) | |||
1266 | kmem_cache_reap(cache); | |||
1267 | ||||
1268 | simple_unlock(&kmem_cache_list_lock); | |||
1269 | } | |||
1270 | ||||
1271 | void slab_bootstrap(void) | |||
1272 | { | |||
1273 | /* Make sure a bufctl can always be stored in a buffer */ | |||
1274 | assert(sizeof(union kmem_bufctl) <= KMEM_ALIGN_MIN)({ if (!(sizeof(union kmem_bufctl) <= 8)) Assert("sizeof(union kmem_bufctl) <= KMEM_ALIGN_MIN" , "../kern/slab.c", 1274); }); | |||
1275 | ||||
1276 | list_init(&kmem_cache_list); | |||
1277 | simple_lock_init(&kmem_cache_list_lock); | |||
1278 | } | |||
1279 | ||||
1280 | void slab_init(void) | |||
1281 | { | |||
1282 | vm_offset_t min, max; | |||
1283 | ||||
1284 | #if SLAB_USE_CPU_POOLS0 | |||
1285 | struct kmem_cpu_pool_type *cpu_pool_type; | |||
1286 | char name[KMEM_CACHE_NAME_SIZE32]; | |||
1287 | size_t i, size; | |||
1288 | #endif /* SLAB_USE_CPU_POOLS */ | |||
1289 | ||||
1290 | kmem_submap(kmem_map, kernel_map, &min, &max, KMEM_MAP_SIZE(128 * 1024 * 1024), FALSE((boolean_t) 0)); | |||
1291 | ||||
1292 | #if SLAB_USE_CPU_POOLS0 | |||
1293 | for (i = 0; i < ARRAY_SIZE(kmem_cpu_pool_types)(sizeof(kmem_cpu_pool_types) / sizeof((kmem_cpu_pool_types)[0 ])); i++) { | |||
1294 | cpu_pool_type = &kmem_cpu_pool_types[i]; | |||
1295 | cpu_pool_type->array_cache = &kmem_cpu_array_caches[i]; | |||
1296 | sprintf(name, "kmem_cpu_array_%d", cpu_pool_type->array_size); | |||
1297 | size = sizeof(void *) * cpu_pool_type->array_size; | |||
1298 | kmem_cache_init(cpu_pool_type->array_cache, name, size, | |||
1299 | cpu_pool_type->array_align, NULL((void *) 0), NULL((void *) 0), NULL((void *) 0), 0); | |||
1300 | } | |||
1301 | #endif /* SLAB_USE_CPU_POOLS */ | |||
1302 | ||||
1303 | /* | |||
1304 | * Prevent off slab data for the slab cache to avoid infinite recursion. | |||
1305 | */ | |||
1306 | kmem_cache_init(&kmem_slab_cache, "kmem_slab", sizeof(struct kmem_slab), | |||
| ||||
1307 | 0, NULL((void *) 0), NULL((void *) 0), NULL((void *) 0), KMEM_CACHE_NOOFFSLAB0x2); | |||
1308 | } | |||
1309 | ||||
1310 | static vm_offset_t kalloc_pagealloc(vm_size_t size) | |||
1311 | { | |||
1312 | vm_offset_t addr; | |||
1313 | kern_return_t kr; | |||
1314 | ||||
1315 | kr = kmem_alloc_wired(kmem_map, &addr, size); | |||
1316 | ||||
1317 | if (kr != KERN_SUCCESS0) | |||
1318 | return 0; | |||
1319 | ||||
1320 | return addr; | |||
1321 | } | |||
1322 | ||||
1323 | static void kalloc_pagefree(vm_offset_t ptr, vm_size_t size) | |||
1324 | { | |||
1325 | kmem_free(kmem_map, ptr, size); | |||
1326 | } | |||
1327 | ||||
1328 | void kalloc_init(void) | |||
1329 | { | |||
1330 | char name[KMEM_CACHE_NAME_SIZE32]; | |||
1331 | size_t i, size; | |||
1332 | ||||
1333 | size = 1 << KALLOC_FIRST_SHIFT5; | |||
1334 | ||||
1335 | for (i = 0; i < ARRAY_SIZE(kalloc_caches)(sizeof(kalloc_caches) / sizeof((kalloc_caches)[0])); i++) { | |||
1336 | sprintf(name, "kalloc_%lu", size); | |||
1337 | kmem_cache_init(&kalloc_caches[i], name, size, 0, NULL((void *) 0), | |||
1338 | kalloc_pagealloc, kalloc_pagefree, 0); | |||
1339 | size <<= 1; | |||
1340 | } | |||
1341 | } | |||
1342 | ||||
1343 | /* | |||
1344 | * Return the kalloc cache index matching the given allocation size, which | |||
1345 | * must be strictly greater than 0. | |||
1346 | */ | |||
1347 | static inline size_t kalloc_get_index(unsigned long size) | |||
1348 | { | |||
1349 | assert(size != 0)({ if (!(size != 0)) Assert("size != 0", "../kern/slab.c", 1349 ); }); | |||
1350 | ||||
1351 | size = (size - 1) >> KALLOC_FIRST_SHIFT5; | |||
1352 | ||||
1353 | if (size == 0) | |||
1354 | return 0; | |||
1355 | else | |||
1356 | return (sizeof(long) * 8) - __builtin_clzl(size); | |||
1357 | } | |||
1358 | ||||
1359 | static void kalloc_verify(struct kmem_cache *cache, void *buf, size_t size) | |||
1360 | { | |||
1361 | size_t redzone_size; | |||
1362 | void *redzone; | |||
1363 | ||||
1364 | assert(size <= cache->obj_size)({ if (!(size <= cache->obj_size)) Assert("size <= cache->obj_size" , "../kern/slab.c", 1364); }); | |||
1365 | ||||
1366 | redzone = buf + size; | |||
1367 | redzone_size = cache->obj_size - size; | |||
1368 | memset(redzone, KMEM_REDZONE_BYTE0xbb, redzone_size); | |||
1369 | } | |||
1370 | ||||
1371 | vm_offset_t kalloc(vm_size_t size) | |||
1372 | { | |||
1373 | size_t index; | |||
1374 | void *buf; | |||
1375 | ||||
1376 | if (size == 0) | |||
1377 | return 0; | |||
1378 | ||||
1379 | index = kalloc_get_index(size); | |||
1380 | ||||
1381 | if (index < ARRAY_SIZE(kalloc_caches)(sizeof(kalloc_caches) / sizeof((kalloc_caches)[0]))) { | |||
1382 | struct kmem_cache *cache; | |||
1383 | ||||
1384 | cache = &kalloc_caches[index]; | |||
1385 | buf = (void *)kmem_cache_alloc(cache); | |||
1386 | ||||
1387 | if ((buf != 0) && (cache->flags & KMEM_CF_VERIFY0x08)) | |||
1388 | kalloc_verify(cache, buf, size); | |||
1389 | } else | |||
1390 | buf = (void *)kalloc_pagealloc(size); | |||
1391 | ||||
1392 | return (vm_offset_t)buf; | |||
1393 | } | |||
1394 | ||||
1395 | static void kfree_verify(struct kmem_cache *cache, void *buf, size_t size) | |||
1396 | { | |||
1397 | unsigned char *redzone_byte, *redzone_end; | |||
1398 | ||||
1399 | assert(size <= cache->obj_size)({ if (!(size <= cache->obj_size)) Assert("size <= cache->obj_size" , "../kern/slab.c", 1399); }); | |||
1400 | ||||
1401 | redzone_byte = buf + size; | |||
1402 | redzone_end = buf + cache->obj_size; | |||
1403 | ||||
1404 | while (redzone_byte < redzone_end) { | |||
1405 | if (*redzone_byte != KMEM_REDZONE_BYTE0xbb) | |||
1406 | kmem_cache_error(cache, buf, KMEM_ERR_REDZONE4, redzone_byte); | |||
1407 | ||||
1408 | redzone_byte++; | |||
1409 | } | |||
1410 | } | |||
1411 | ||||
1412 | void kfree(vm_offset_t data, vm_size_t size) | |||
1413 | { | |||
1414 | size_t index; | |||
1415 | ||||
1416 | if ((data == 0) || (size == 0)) | |||
1417 | return; | |||
1418 | ||||
1419 | index = kalloc_get_index(size); | |||
1420 | ||||
1421 | if (index < ARRAY_SIZE(kalloc_caches)(sizeof(kalloc_caches) / sizeof((kalloc_caches)[0]))) { | |||
1422 | struct kmem_cache *cache; | |||
1423 | ||||
1424 | cache = &kalloc_caches[index]; | |||
1425 | ||||
1426 | if (cache->flags & KMEM_CF_VERIFY0x08) | |||
1427 | kfree_verify(cache, (void *)data, size); | |||
1428 | ||||
1429 | kmem_cache_free(cache, data); | |||
1430 | } else { | |||
1431 | kalloc_pagefree(data, size); | |||
1432 | } | |||
1433 | } | |||
1434 | ||||
1435 | void slab_info(void) | |||
1436 | { | |||
1437 | struct kmem_cache *cache; | |||
1438 | vm_size_t mem_usage, mem_reclaimable; | |||
1439 | ||||
1440 | printf("cache obj slab bufs objs bufs " | |||
1441 | " total reclaimable\n" | |||
1442 | "name size size /slab usage count " | |||
1443 | " memory memory\n"); | |||
1444 | ||||
1445 | simple_lock(&kmem_cache_list_lock); | |||
1446 | ||||
1447 | list_for_each_entry(&kmem_cache_list, cache, node)for (cache = ((typeof(*cache) *)((char *)list_first(&kmem_cache_list ) - __builtin_offsetof (typeof(*cache), node))); !list_end(& kmem_cache_list, &cache->node); cache = ((typeof(*cache ) *)((char *)list_next(&cache->node) - __builtin_offsetof (typeof(*cache), node)))) { | |||
1448 | simple_lock(&cache->lock); | |||
1449 | ||||
1450 | mem_usage = (cache->nr_slabs * cache->slab_size) >> 10; | |||
1451 | mem_reclaimable = (cache->nr_free_slabs * cache->slab_size) >> 10; | |||
1452 | ||||
1453 | printf("%-19s %6lu %3luk %4lu %6lu %6lu %7uk %10uk\n", | |||
1454 | cache->name, cache->obj_size, cache->slab_size >> 10, | |||
1455 | cache->bufs_per_slab, cache->nr_objs, cache->nr_bufs, | |||
1456 | mem_usage, mem_reclaimable); | |||
1457 | ||||
1458 | simple_unlock(&cache->lock); | |||
1459 | } | |||
1460 | ||||
1461 | simple_unlock(&kmem_cache_list_lock); | |||
1462 | } | |||
1463 | ||||
1464 | #if MACH_DEBUG1 | |||
1465 | kern_return_t host_slab_info(host_t host, cache_info_array_t *infop, | |||
1466 | unsigned int *infoCntp) | |||
1467 | { | |||
1468 | struct kmem_cache *cache; | |||
1469 | cache_info_t *info; | |||
1470 | unsigned int i, nr_caches; | |||
1471 | vm_size_t info_size = info_size; | |||
1472 | kern_return_t kr; | |||
1473 | ||||
1474 | if (host == HOST_NULL((host_t)0)) | |||
1475 | return KERN_INVALID_HOST22; | |||
1476 | ||||
1477 | /* | |||
1478 | * Assume the cache list is unaltered once the kernel is ready. | |||
1479 | */ | |||
1480 | ||||
1481 | simple_lock(&kmem_cache_list_lock); | |||
1482 | nr_caches = kmem_nr_caches; | |||
1483 | simple_unlock(&kmem_cache_list_lock); | |||
1484 | ||||
1485 | if (nr_caches <= *infoCntp) | |||
1486 | info = *infop; | |||
1487 | else { | |||
1488 | vm_offset_t info_addr; | |||
1489 | ||||
1490 | info_size = round_page(nr_caches * sizeof(*info))((vm_offset_t)((((vm_offset_t)(nr_caches * sizeof(*info))) + ( (1 << 12)-1)) & ~((1 << 12)-1))); | |||
1491 | kr = kmem_alloc_pageable(ipc_kernel_map, &info_addr, info_size); | |||
1492 | ||||
1493 | if (kr != KERN_SUCCESS0) | |||
1494 | return kr; | |||
1495 | ||||
1496 | info = (cache_info_t *)info_addr; | |||
1497 | } | |||
1498 | ||||
1499 | if (info == NULL((void *) 0)) | |||
1500 | return KERN_RESOURCE_SHORTAGE6; | |||
1501 | ||||
1502 | i = 0; | |||
1503 | ||||
1504 | list_for_each_entry(&kmem_cache_list, cache, node)for (cache = ((typeof(*cache) *)((char *)list_first(&kmem_cache_list ) - __builtin_offsetof (typeof(*cache), node))); !list_end(& kmem_cache_list, &cache->node); cache = ((typeof(*cache ) *)((char *)list_next(&cache->node) - __builtin_offsetof (typeof(*cache), node)))) { | |||
1505 | simple_lock(&cache_lock); | |||
1506 | info[i].flags = ((cache->flags & KMEM_CF_NO_CPU_POOL0x01) | |||
1507 | ? CACHE_FLAGS_NO_CPU_POOL0x01 : 0) | |||
1508 | | ((cache->flags & KMEM_CF_SLAB_EXTERNAL0x02) | |||
1509 | ? CACHE_FLAGS_SLAB_EXTERNAL0x02 : 0) | |||
1510 | | ((cache->flags & KMEM_CF_NO_RECLAIM0x04) | |||
1511 | ? CACHE_FLAGS_NO_RECLAIM0x04 : 0) | |||
1512 | | ((cache->flags & KMEM_CF_VERIFY0x08) | |||
1513 | ? CACHE_FLAGS_VERIFY0x08 : 0) | |||
1514 | | ((cache->flags & KMEM_CF_DIRECT0x10) | |||
1515 | ? CACHE_FLAGS_DIRECT0x10 : 0); | |||
1516 | #if SLAB_USE_CPU_POOLS0 | |||
1517 | info[i].cpu_pool_size = cache->cpu_pool_type->array_size; | |||
1518 | #else /* SLAB_USE_CPU_POOLS */ | |||
1519 | info[i].cpu_pool_size = 0; | |||
1520 | #endif /* SLAB_USE_CPU_POOLS */ | |||
1521 | info[i].obj_size = cache->obj_size; | |||
1522 | info[i].align = cache->align; | |||
1523 | info[i].buf_size = cache->buf_size; | |||
1524 | info[i].slab_size = cache->slab_size; | |||
1525 | info[i].bufs_per_slab = cache->bufs_per_slab; | |||
1526 | info[i].nr_objs = cache->nr_objs; | |||
1527 | info[i].nr_bufs = cache->nr_bufs; | |||
1528 | info[i].nr_slabs = cache->nr_slabs; | |||
1529 | info[i].nr_free_slabs = cache->nr_free_slabs; | |||
1530 | strncpy(info[i].name, cache->name, sizeof(info[i].name)); | |||
1531 | info[i].name[sizeof(info[i].name) - 1] = '\0'; | |||
1532 | simple_unlock(&cache->lock); | |||
1533 | ||||
1534 | i++; | |||
1535 | } | |||
1536 | ||||
1537 | if (info != *infop) { | |||
1538 | vm_map_copy_t copy; | |||
1539 | vm_size_t used; | |||
1540 | ||||
1541 | used = nr_caches * sizeof(*info); | |||
1542 | ||||
1543 | if (used != info_size) | |||
1544 | memset((char *)info + used, 0, info_size - used); | |||
1545 | ||||
1546 | kr = vm_map_copyin(ipc_kernel_map, (vm_offset_t)info, used, TRUE((boolean_t) 1), | |||
1547 | ©); | |||
1548 | ||||
1549 | assert(kr == KERN_SUCCESS)({ if (!(kr == 0)) Assert("kr == KERN_SUCCESS", "../kern/slab.c" , 1549); }); | |||
1550 | *infop = (cache_info_t *)copy; | |||
1551 | } | |||
1552 | ||||
1553 | *infoCntp = nr_caches; | |||
1554 | ||||
1555 | return KERN_SUCCESS0; | |||
1556 | } | |||
1557 | #endif /* MACH_DEBUG */ |