File: | obj-scan-build/../vm/vm_fault.c |
Location: | line 252, column 2 |
Description: | Access to field 'task' results in a dereference of a null pointer |
1 | /* | |||||
2 | * Mach Operating System | |||||
3 | * Copyright (c) 1994,1990,1989,1988,1987 Carnegie Mellon University. | |||||
4 | * Copyright (c) 1993,1994 The University of Utah and | |||||
5 | * the Computer Systems Laboratory (CSL). | |||||
6 | * All rights reserved. | |||||
7 | * | |||||
8 | * Permission to use, copy, modify and distribute this software and its | |||||
9 | * documentation is hereby granted, provided that both the copyright | |||||
10 | * notice and this permission notice appear in all copies of the | |||||
11 | * software, derivative works or modified versions, and any portions | |||||
12 | * thereof, and that both notices appear in supporting documentation. | |||||
13 | * | |||||
14 | * CARNEGIE MELLON, THE UNIVERSITY OF UTAH AND CSL ALLOW FREE USE OF | |||||
15 | * THIS SOFTWARE IN ITS "AS IS" CONDITION, AND DISCLAIM ANY LIABILITY | |||||
16 | * OF ANY KIND FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF | |||||
17 | * THIS SOFTWARE. | |||||
18 | * | |||||
19 | * Carnegie Mellon requests users of this software to return to | |||||
20 | * | |||||
21 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU | |||||
22 | * School of Computer Science | |||||
23 | * Carnegie Mellon University | |||||
24 | * Pittsburgh PA 15213-3890 | |||||
25 | * | |||||
26 | * any improvements or extensions that they make and grant Carnegie Mellon | |||||
27 | * the rights to redistribute these changes. | |||||
28 | */ | |||||
29 | /* | |||||
30 | * File: vm_fault.c | |||||
31 | * Author: Avadis Tevanian, Jr., Michael Wayne Young | |||||
32 | * | |||||
33 | * Page fault handling module. | |||||
34 | */ | |||||
35 | ||||||
36 | #include <kern/printf.h> | |||||
37 | #include <vm/vm_fault.h> | |||||
38 | #include <mach/kern_return.h> | |||||
39 | #include <mach/message.h> /* for error codes */ | |||||
40 | #include <kern/counters.h> | |||||
41 | #include <kern/debug.h> | |||||
42 | #include <kern/thread.h> | |||||
43 | #include <kern/sched_prim.h> | |||||
44 | #include <vm/vm_map.h> | |||||
45 | #include <vm/vm_object.h> | |||||
46 | #include <vm/vm_page.h> | |||||
47 | #include <vm/pmap.h> | |||||
48 | #include <mach/vm_statistics.h> | |||||
49 | #include <vm/vm_pageout.h> | |||||
50 | #include <mach/vm_param.h> | |||||
51 | #include <mach/memory_object.h> | |||||
52 | #include <vm/memory_object_user.user.h> | |||||
53 | /* For memory_object_data_{request,unlock} */ | |||||
54 | #include <kern/macro_help.h> | |||||
55 | #include <kern/slab.h> | |||||
56 | ||||||
57 | #if MACH_PCSAMPLE1 | |||||
58 | #include <kern/pc_sample.h> | |||||
59 | #endif | |||||
60 | ||||||
61 | ||||||
62 | ||||||
63 | /* | |||||
64 | * State needed by vm_fault_continue. | |||||
65 | * This is a little hefty to drop directly | |||||
66 | * into the thread structure. | |||||
67 | */ | |||||
68 | typedef struct vm_fault_state { | |||||
69 | struct vm_map *vmf_map; | |||||
70 | vm_offset_t vmf_vaddr; | |||||
71 | vm_prot_t vmf_fault_type; | |||||
72 | boolean_t vmf_change_wiring; | |||||
73 | void (*vmf_continuation)(); | |||||
74 | vm_map_version_t vmf_version; | |||||
75 | boolean_t vmf_wired; | |||||
76 | struct vm_object *vmf_object; | |||||
77 | vm_offset_t vmf_offset; | |||||
78 | vm_prot_t vmf_prot; | |||||
79 | ||||||
80 | boolean_t vmfp_backoff; | |||||
81 | struct vm_object *vmfp_object; | |||||
82 | vm_offset_t vmfp_offset; | |||||
83 | struct vm_page *vmfp_first_m; | |||||
84 | vm_prot_t vmfp_access; | |||||
85 | } vm_fault_state_t; | |||||
86 | ||||||
87 | struct kmem_cache vm_fault_state_cache; | |||||
88 | ||||||
89 | int vm_object_absent_max = 50; | |||||
90 | ||||||
91 | boolean_t vm_fault_dirty_handling = FALSE((boolean_t) 0); | |||||
92 | boolean_t vm_fault_interruptible = TRUE((boolean_t) 1); | |||||
93 | ||||||
94 | boolean_t software_reference_bits = TRUE((boolean_t) 1); | |||||
95 | ||||||
96 | #if MACH_KDB0 | |||||
97 | extern struct db_watchpoint *db_watchpoint_list; | |||||
98 | #endif /* MACH_KDB */ | |||||
99 | ||||||
100 | /* | |||||
101 | * Routine: vm_fault_init | |||||
102 | * Purpose: | |||||
103 | * Initialize our private data structures. | |||||
104 | */ | |||||
105 | void vm_fault_init(void) | |||||
106 | { | |||||
107 | kmem_cache_init(&vm_fault_state_cache, "vm_fault_state", | |||||
108 | sizeof(vm_fault_state_t), 0, NULL((void *) 0), NULL((void *) 0), NULL((void *) 0), 0); | |||||
109 | } | |||||
110 | ||||||
111 | /* | |||||
112 | * Routine: vm_fault_cleanup | |||||
113 | * Purpose: | |||||
114 | * Clean up the result of vm_fault_page. | |||||
115 | * Results: | |||||
116 | * The paging reference for "object" is released. | |||||
117 | * "object" is unlocked. | |||||
118 | * If "top_page" is not null, "top_page" is | |||||
119 | * freed and the paging reference for the object | |||||
120 | * containing it is released. | |||||
121 | * | |||||
122 | * In/out conditions: | |||||
123 | * "object" must be locked. | |||||
124 | */ | |||||
125 | void | |||||
126 | vm_fault_cleanup(object, top_page) | |||||
127 | vm_object_t object; | |||||
128 | vm_page_t top_page; | |||||
129 | { | |||||
130 | vm_object_paging_end(object)({ ({ if (!((object)->paging_in_progress != 0)) Assert("(object)->paging_in_progress != 0" , "../vm/vm_fault.c", 130); }); if (--(object)->paging_in_progress == 0) { ({ if ((object)->all_wanted & (1 << (2) )) thread_wakeup_prim(((event_t)(((vm_offset_t) object) + (2) )), ((boolean_t) 0), 0); (object)->all_wanted &= ~(1 << (2)); }); } }); | |||||
131 | vm_object_unlock(object); | |||||
132 | ||||||
133 | if (top_page != VM_PAGE_NULL((vm_page_t) 0)) { | |||||
134 | object = top_page->object; | |||||
135 | vm_object_lock(object); | |||||
136 | VM_PAGE_FREE(top_page)({ ; vm_page_free(top_page); ; }); | |||||
137 | vm_object_paging_end(object)({ ({ if (!((object)->paging_in_progress != 0)) Assert("(object)->paging_in_progress != 0" , "../vm/vm_fault.c", 137); }); if (--(object)->paging_in_progress == 0) { ({ if ((object)->all_wanted & (1 << (2) )) thread_wakeup_prim(((event_t)(((vm_offset_t) object) + (2) )), ((boolean_t) 0), 0); (object)->all_wanted &= ~(1 << (2)); }); } }); | |||||
138 | vm_object_unlock(object); | |||||
139 | } | |||||
140 | } | |||||
141 | ||||||
142 | ||||||
143 | #if MACH_PCSAMPLE1 | |||||
144 | /* | |||||
145 | * Do PC sampling on current thread, assuming | |||||
146 | * that it is the thread taking this page fault. | |||||
147 | * | |||||
148 | * Must check for THREAD_NULL, since faults | |||||
149 | * can occur before threads are running. | |||||
150 | */ | |||||
151 | ||||||
152 | #define vm_stat_sample(flavor)({ thread_t _thread_ = (active_threads[(0)]); if (_thread_ != ((thread_t) 0)) ({ task_t task; if ((_thread_)->pc_sample .sampletypes & ((flavor))) take_pc_sample((_thread_), & (_thread_)->pc_sample, ((flavor))); task = (_thread_)-> task; if (task->pc_sample.sampletypes & ((flavor))) take_pc_sample ((_thread_), &task->pc_sample, ((flavor))); }); }) \ | |||||
153 | MACRO_BEGIN({ \ | |||||
154 | thread_t _thread_ = current_thread()(active_threads[(0)]); \ | |||||
155 | \ | |||||
156 | if (_thread_ != THREAD_NULL((thread_t) 0)) \ | |||||
157 | take_pc_sample_macro(_thread_, (flavor))({ task_t task; if ((_thread_)->pc_sample.sampletypes & ((flavor))) take_pc_sample((_thread_), &(_thread_)->pc_sample , ((flavor))); task = (_thread_)->task; if (task->pc_sample .sampletypes & ((flavor))) take_pc_sample((_thread_), & task->pc_sample, ((flavor))); }); \ | |||||
158 | MACRO_END}) | |||||
159 | ||||||
160 | #else | |||||
161 | #define vm_stat_sample(x)({ thread_t _thread_ = (active_threads[(0)]); if (_thread_ != ((thread_t) 0)) ({ task_t task; if ((_thread_)->pc_sample .sampletypes & ((x))) take_pc_sample((_thread_), &(_thread_ )->pc_sample, ((x))); task = (_thread_)->task; if (task ->pc_sample.sampletypes & ((x))) take_pc_sample((_thread_ ), &task->pc_sample, ((x))); }); }) | |||||
162 | #endif /* MACH_PCSAMPLE */ | |||||
163 | ||||||
164 | ||||||
165 | ||||||
166 | /* | |||||
167 | * Routine: vm_fault_page | |||||
168 | * Purpose: | |||||
169 | * Find the resident page for the virtual memory | |||||
170 | * specified by the given virtual memory object | |||||
171 | * and offset. | |||||
172 | * Additional arguments: | |||||
173 | * The required permissions for the page is given | |||||
174 | * in "fault_type". Desired permissions are included | |||||
175 | * in "protection". | |||||
176 | * | |||||
177 | * If the desired page is known to be resident (for | |||||
178 | * example, because it was previously wired down), asserting | |||||
179 | * the "unwiring" parameter will speed the search. | |||||
180 | * | |||||
181 | * If the operation can be interrupted (by thread_abort | |||||
182 | * or thread_terminate), then the "interruptible" | |||||
183 | * parameter should be asserted. | |||||
184 | * | |||||
185 | * Results: | |||||
186 | * The page containing the proper data is returned | |||||
187 | * in "result_page". | |||||
188 | * | |||||
189 | * In/out conditions: | |||||
190 | * The source object must be locked and referenced, | |||||
191 | * and must donate one paging reference. The reference | |||||
192 | * is not affected. The paging reference and lock are | |||||
193 | * consumed. | |||||
194 | * | |||||
195 | * If the call succeeds, the object in which "result_page" | |||||
196 | * resides is left locked and holding a paging reference. | |||||
197 | * If this is not the original object, a busy page in the | |||||
198 | * original object is returned in "top_page", to prevent other | |||||
199 | * callers from pursuing this same data, along with a paging | |||||
200 | * reference for the original object. The "top_page" should | |||||
201 | * be destroyed when this guarantee is no longer required. | |||||
202 | * The "result_page" is also left busy. It is not removed | |||||
203 | * from the pageout queues. | |||||
204 | */ | |||||
205 | vm_fault_return_t vm_fault_page(first_object, first_offset, | |||||
206 | fault_type, must_be_resident, interruptible, | |||||
207 | protection, | |||||
208 | result_page, top_page, | |||||
209 | resume, continuation) | |||||
210 | /* Arguments: */ | |||||
211 | vm_object_t first_object; /* Object to begin search */ | |||||
212 | vm_offset_t first_offset; /* Offset into object */ | |||||
213 | vm_prot_t fault_type; /* What access is requested */ | |||||
214 | boolean_t must_be_resident;/* Must page be resident? */ | |||||
215 | boolean_t interruptible; /* May fault be interrupted? */ | |||||
216 | /* Modifies in place: */ | |||||
217 | vm_prot_t *protection; /* Protection for mapping */ | |||||
218 | /* Returns: */ | |||||
219 | vm_page_t *result_page; /* Page found, if successful */ | |||||
220 | vm_page_t *top_page; /* Page in top object, if | |||||
221 | * not result_page. | |||||
222 | */ | |||||
223 | /* More arguments: */ | |||||
224 | boolean_t resume; /* We are restarting. */ | |||||
225 | void (*continuation)(); /* Continuation for blocking. */ | |||||
226 | { | |||||
227 | vm_page_t m; | |||||
228 | vm_object_t object; | |||||
229 | vm_offset_t offset; | |||||
230 | vm_page_t first_m; | |||||
231 | vm_object_t next_object; | |||||
232 | vm_object_t copy_object; | |||||
233 | boolean_t look_for_page; | |||||
234 | vm_prot_t access_required; | |||||
235 | ||||||
236 | if (resume) { | |||||
| ||||||
237 | vm_fault_state_t *state = | |||||
238 | (vm_fault_state_t *) current_thread()(active_threads[(0)])->ith_othersaved.other; | |||||
239 | ||||||
240 | if (state->vmfp_backoff) | |||||
241 | goto after_block_and_backoff; | |||||
242 | ||||||
243 | object = state->vmfp_object; | |||||
244 | offset = state->vmfp_offset; | |||||
245 | first_m = state->vmfp_first_m; | |||||
246 | access_required = state->vmfp_access; | |||||
247 | goto after_thread_block; | |||||
248 | } | |||||
249 | ||||||
250 | vm_stat_sample(SAMPLED_PC_VM_FAULTS_ANY)({ thread_t _thread_ = (active_threads[(0)]); if (_thread_ != ((thread_t) 0)) ({ task_t task; if ((_thread_)->pc_sample .sampletypes & ((0x100))) take_pc_sample((_thread_), & (_thread_)->pc_sample, ((0x100))); task = (_thread_)->task ; if (task->pc_sample.sampletypes & ((0x100))) take_pc_sample ((_thread_), &task->pc_sample, ((0x100))); }); }); | |||||
251 | vm_stat.faults++; /* needs lock XXX */ | |||||
252 | current_task()((active_threads[(0)])->task)->faults++; | |||||
| ||||||
253 | ||||||
254 | /* | |||||
255 | * Recovery actions | |||||
256 | */ | |||||
257 | #define RELEASE_PAGE(m){ ({ (m)->busy = ((boolean_t) 0); if ((m)->wanted) { (m )->wanted = ((boolean_t) 0); thread_wakeup_prim((((event_t ) m)), ((boolean_t) 0), 0); } }); ; vm_page_unwire(m); ; } \ | |||||
258 | MACRO_BEGIN({ \ | |||||
259 | PAGE_WAKEUP_DONE(m)({ (m)->busy = ((boolean_t) 0); if ((m)->wanted) { (m)-> wanted = ((boolean_t) 0); thread_wakeup_prim((((event_t) m)), ((boolean_t) 0), 0); } }); \ | |||||
260 | vm_page_lock_queues(); \ | |||||
261 | if (!m->active && !m->inactive) \ | |||||
262 | vm_page_activate(m); \ | |||||
263 | vm_page_unlock_queues(); \ | |||||
264 | MACRO_END}) | |||||
265 | ||||||
266 | if (vm_fault_dirty_handling | |||||
267 | #if MACH_KDB0 | |||||
268 | /* | |||||
269 | * If there are watchpoints set, then | |||||
270 | * we don't want to give away write permission | |||||
271 | * on a read fault. Make the task write fault, | |||||
272 | * so that the watchpoint code notices the access. | |||||
273 | */ | |||||
274 | || db_watchpoint_list | |||||
275 | #endif /* MACH_KDB */ | |||||
276 | ) { | |||||
277 | /* | |||||
278 | * If we aren't asking for write permission, | |||||
279 | * then don't give it away. We're using write | |||||
280 | * faults to set the dirty bit. | |||||
281 | */ | |||||
282 | if (!(fault_type & VM_PROT_WRITE((vm_prot_t) 0x02))) | |||||
283 | *protection &= ~VM_PROT_WRITE((vm_prot_t) 0x02); | |||||
284 | } | |||||
285 | ||||||
286 | if (!vm_fault_interruptible) | |||||
287 | interruptible = FALSE((boolean_t) 0); | |||||
288 | ||||||
289 | /* | |||||
290 | * INVARIANTS (through entire routine): | |||||
291 | * | |||||
292 | * 1) At all times, we must either have the object | |||||
293 | * lock or a busy page in some object to prevent | |||||
294 | * some other thread from trying to bring in | |||||
295 | * the same page. | |||||
296 | * | |||||
297 | * Note that we cannot hold any locks during the | |||||
298 | * pager access or when waiting for memory, so | |||||
299 | * we use a busy page then. | |||||
300 | * | |||||
301 | * Note also that we aren't as concerned about more than | |||||
302 | * one thread attempting to memory_object_data_unlock | |||||
303 | * the same page at once, so we don't hold the page | |||||
304 | * as busy then, but do record the highest unlock | |||||
305 | * value so far. [Unlock requests may also be delivered | |||||
306 | * out of order.] | |||||
307 | * | |||||
308 | * 2) To prevent another thread from racing us down the | |||||
309 | * shadow chain and entering a new page in the top | |||||
310 | * object before we do, we must keep a busy page in | |||||
311 | * the top object while following the shadow chain. | |||||
312 | * | |||||
313 | * 3) We must increment paging_in_progress on any object | |||||
314 | * for which we have a busy page, to prevent | |||||
315 | * vm_object_collapse from removing the busy page | |||||
316 | * without our noticing. | |||||
317 | * | |||||
318 | * 4) We leave busy pages on the pageout queues. | |||||
319 | * If the pageout daemon comes across a busy page, | |||||
320 | * it will remove the page from the pageout queues. | |||||
321 | */ | |||||
322 | ||||||
323 | /* | |||||
324 | * Search for the page at object/offset. | |||||
325 | */ | |||||
326 | ||||||
327 | object = first_object; | |||||
328 | offset = first_offset; | |||||
329 | first_m = VM_PAGE_NULL((vm_page_t) 0); | |||||
330 | access_required = fault_type; | |||||
331 | ||||||
332 | /* | |||||
333 | * See whether this page is resident | |||||
334 | */ | |||||
335 | ||||||
336 | while (TRUE((boolean_t) 1)) { | |||||
337 | m = vm_page_lookup(object, offset); | |||||
338 | if (m != VM_PAGE_NULL((vm_page_t) 0)) { | |||||
339 | /* | |||||
340 | * If the page is being brought in, | |||||
341 | * wait for it and then retry. | |||||
342 | * | |||||
343 | * A possible optimization: if the page | |||||
344 | * is known to be resident, we can ignore | |||||
345 | * pages that are absent (regardless of | |||||
346 | * whether they're busy). | |||||
347 | */ | |||||
348 | ||||||
349 | if (m->busy) { | |||||
350 | kern_return_t wait_result; | |||||
351 | ||||||
352 | PAGE_ASSERT_WAIT(m, interruptible)({ (m)->wanted = ((boolean_t) 1); assert_wait((event_t) (m ), (interruptible)); }); | |||||
353 | vm_object_unlock(object); | |||||
354 | if (continuation != (void (*)()) 0) { | |||||
355 | vm_fault_state_t *state = | |||||
356 | (vm_fault_state_t *) current_thread()(active_threads[(0)])->ith_othersaved.other; | |||||
357 | ||||||
358 | /* | |||||
359 | * Save variables in case | |||||
360 | * thread_block discards | |||||
361 | * our kernel stack. | |||||
362 | */ | |||||
363 | ||||||
364 | state->vmfp_backoff = FALSE((boolean_t) 0); | |||||
365 | state->vmfp_object = object; | |||||
366 | state->vmfp_offset = offset; | |||||
367 | state->vmfp_first_m = first_m; | |||||
368 | state->vmfp_access = | |||||
369 | access_required; | |||||
370 | state->vmf_prot = *protection; | |||||
371 | ||||||
372 | counter(c_vm_fault_page_block_busy_user++); | |||||
373 | thread_block(continuation); | |||||
374 | } else | |||||
375 | { | |||||
376 | counter(c_vm_fault_page_block_busy_kernel++); | |||||
377 | thread_block((void (*)()) 0); | |||||
378 | } | |||||
379 | after_thread_block: | |||||
380 | wait_result = current_thread()(active_threads[(0)])->wait_result; | |||||
381 | vm_object_lock(object); | |||||
382 | if (wait_result != THREAD_AWAKENED0) { | |||||
383 | vm_fault_cleanup(object, first_m); | |||||
384 | if (wait_result == THREAD_RESTART3) | |||||
385 | return(VM_FAULT_RETRY1); | |||||
386 | else | |||||
387 | return(VM_FAULT_INTERRUPTED2); | |||||
388 | } | |||||
389 | continue; | |||||
390 | } | |||||
391 | ||||||
392 | /* | |||||
393 | * If the page is in error, give up now. | |||||
394 | */ | |||||
395 | ||||||
396 | if (m->error) { | |||||
397 | VM_PAGE_FREE(m)({ ; vm_page_free(m); ; }); | |||||
398 | vm_fault_cleanup(object, first_m); | |||||
399 | return(VM_FAULT_MEMORY_ERROR5); | |||||
400 | } | |||||
401 | ||||||
402 | /* | |||||
403 | * If the page isn't busy, but is absent, | |||||
404 | * then it was deemed "unavailable". | |||||
405 | */ | |||||
406 | ||||||
407 | if (m->absent) { | |||||
408 | /* | |||||
409 | * Remove the non-existent page (unless it's | |||||
410 | * in the top object) and move on down to the | |||||
411 | * next object (if there is one). | |||||
412 | */ | |||||
413 | ||||||
414 | offset += object->shadow_offset; | |||||
415 | access_required = VM_PROT_READ((vm_prot_t) 0x01); | |||||
416 | next_object = object->shadow; | |||||
417 | if (next_object == VM_OBJECT_NULL((vm_object_t) 0)) { | |||||
418 | vm_page_t real_m; | |||||
419 | ||||||
420 | assert(!must_be_resident)({ if (!(!must_be_resident)) Assert("!must_be_resident", "../vm/vm_fault.c" , 420); }); | |||||
421 | ||||||
422 | /* | |||||
423 | * Absent page at bottom of shadow | |||||
424 | * chain; zero fill the page we left | |||||
425 | * busy in the first object, and flush | |||||
426 | * the absent page. But first we | |||||
427 | * need to allocate a real page. | |||||
428 | */ | |||||
429 | ||||||
430 | real_m = vm_page_grab(!object->internal); | |||||
431 | if (real_m == VM_PAGE_NULL((vm_page_t) 0)) { | |||||
432 | vm_fault_cleanup(object, first_m); | |||||
433 | return(VM_FAULT_MEMORY_SHORTAGE3); | |||||
434 | } | |||||
435 | ||||||
436 | if (object != first_object) { | |||||
437 | VM_PAGE_FREE(m)({ ; vm_page_free(m); ; }); | |||||
438 | vm_object_paging_end(object)({ ({ if (!((object)->paging_in_progress != 0)) Assert("(object)->paging_in_progress != 0" , "../vm/vm_fault.c", 438); }); if (--(object)->paging_in_progress == 0) { ({ if ((object)->all_wanted & (1 << (2) )) thread_wakeup_prim(((event_t)(((vm_offset_t) object) + (2) )), ((boolean_t) 0), 0); (object)->all_wanted &= ~(1 << (2)); }); } }); | |||||
439 | vm_object_unlock(object); | |||||
440 | object = first_object; | |||||
441 | offset = first_offset; | |||||
442 | m = first_m; | |||||
443 | first_m = VM_PAGE_NULL((vm_page_t) 0); | |||||
444 | vm_object_lock(object); | |||||
445 | } | |||||
446 | ||||||
447 | VM_PAGE_FREE(m)({ ; vm_page_free(m); ; }); | |||||
448 | assert(real_m->busy)({ if (!(real_m->busy)) Assert("real_m->busy", "../vm/vm_fault.c" , 448); }); | |||||
449 | vm_page_lock_queues(); | |||||
450 | vm_page_insert(real_m, object, offset); | |||||
451 | vm_page_unlock_queues(); | |||||
452 | m = real_m; | |||||
453 | ||||||
454 | /* | |||||
455 | * Drop the lock while zero filling | |||||
456 | * page. Then break because this | |||||
457 | * is the page we wanted. Checking | |||||
458 | * the page lock is a waste of time; | |||||
459 | * this page was either absent or | |||||
460 | * newly allocated -- in both cases | |||||
461 | * it can't be page locked by a pager. | |||||
462 | */ | |||||
463 | vm_object_unlock(object); | |||||
464 | ||||||
465 | vm_page_zero_fill(m); | |||||
466 | ||||||
467 | vm_stat_sample(SAMPLED_PC_VM_ZFILL_FAULTS)({ thread_t _thread_ = (active_threads[(0)]); if (_thread_ != ((thread_t) 0)) ({ task_t task; if ((_thread_)->pc_sample .sampletypes & ((0x10))) take_pc_sample((_thread_), & (_thread_)->pc_sample, ((0x10))); task = (_thread_)->task ; if (task->pc_sample.sampletypes & ((0x10))) take_pc_sample ((_thread_), &task->pc_sample, ((0x10))); }); }); | |||||
468 | ||||||
469 | vm_stat.zero_fill_count++; | |||||
470 | current_task()((active_threads[(0)])->task)->zero_fills++; | |||||
471 | vm_object_lock(object); | |||||
472 | pmap_clear_modify(m->phys_addr); | |||||
473 | break; | |||||
474 | } else { | |||||
475 | if (must_be_resident) { | |||||
476 | vm_object_paging_end(object)({ ({ if (!((object)->paging_in_progress != 0)) Assert("(object)->paging_in_progress != 0" , "../vm/vm_fault.c", 476); }); if (--(object)->paging_in_progress == 0) { ({ if ((object)->all_wanted & (1 << (2) )) thread_wakeup_prim(((event_t)(((vm_offset_t) object) + (2) )), ((boolean_t) 0), 0); (object)->all_wanted &= ~(1 << (2)); }); } }); | |||||
477 | } else if (object != first_object) { | |||||
478 | vm_object_paging_end(object)({ ({ if (!((object)->paging_in_progress != 0)) Assert("(object)->paging_in_progress != 0" , "../vm/vm_fault.c", 478); }); if (--(object)->paging_in_progress == 0) { ({ if ((object)->all_wanted & (1 << (2) )) thread_wakeup_prim(((event_t)(((vm_offset_t) object) + (2) )), ((boolean_t) 0), 0); (object)->all_wanted &= ~(1 << (2)); }); } }); | |||||
479 | VM_PAGE_FREE(m)({ ; vm_page_free(m); ; }); | |||||
480 | } else { | |||||
481 | first_m = m; | |||||
482 | m->absent = FALSE((boolean_t) 0); | |||||
483 | vm_object_absent_release(object)({ (object)->absent_count--; ({ if (((object))->all_wanted & (1 << (3))) thread_wakeup_prim(((event_t)(((vm_offset_t ) (object)) + (3))), ((boolean_t) 0), 0); ((object))->all_wanted &= ~(1 << (3)); }); }); | |||||
484 | m->busy = TRUE((boolean_t) 1); | |||||
485 | ||||||
486 | vm_page_lock_queues(); | |||||
487 | VM_PAGE_QUEUES_REMOVE(m)({ if (m->active) { { queue_entry_t next, prev; next = (m) ->pageq.next; prev = (m)->pageq.prev; if ((&vm_page_queue_active ) == next) (&vm_page_queue_active)->prev = prev; else ( (vm_page_t)next)->pageq.prev = prev; if ((&vm_page_queue_active ) == prev) (&vm_page_queue_active)->next = next; else ( (vm_page_t)prev)->pageq.next = next; }; m->active = ((boolean_t ) 0); vm_page_active_count--; } if (m->inactive) { { queue_entry_t next, prev; next = (m)->pageq.next; prev = (m)->pageq. prev; if ((&vm_page_queue_inactive) == next) (&vm_page_queue_inactive )->prev = prev; else ((vm_page_t)next)->pageq.prev = prev ; if ((&vm_page_queue_inactive) == prev) (&vm_page_queue_inactive )->next = next; else ((vm_page_t)prev)->pageq.next = next ; }; m->inactive = ((boolean_t) 0); vm_page_inactive_count --; } }); | |||||
488 | vm_page_unlock_queues(); | |||||
489 | } | |||||
490 | vm_object_lock(next_object); | |||||
491 | vm_object_unlock(object); | |||||
492 | object = next_object; | |||||
493 | vm_object_paging_begin(object)((object)->paging_in_progress++); | |||||
494 | continue; | |||||
495 | } | |||||
496 | } | |||||
497 | ||||||
498 | /* | |||||
499 | * If the desired access to this page has | |||||
500 | * been locked out, request that it be unlocked. | |||||
501 | */ | |||||
502 | ||||||
503 | if (access_required & m->page_lock) { | |||||
504 | if ((access_required & m->unlock_request) != access_required) { | |||||
505 | vm_prot_t new_unlock_request; | |||||
506 | kern_return_t rc; | |||||
507 | ||||||
508 | if (!object->pager_ready) { | |||||
509 | vm_object_assert_wait(object,({ (object)->all_wanted |= 1 << (1); assert_wait((event_t )(((vm_offset_t) object) + (1)), (interruptible)); }) | |||||
510 | VM_OBJECT_EVENT_PAGER_READY,({ (object)->all_wanted |= 1 << (1); assert_wait((event_t )(((vm_offset_t) object) + (1)), (interruptible)); }) | |||||
511 | interruptible)({ (object)->all_wanted |= 1 << (1); assert_wait((event_t )(((vm_offset_t) object) + (1)), (interruptible)); }); | |||||
512 | goto block_and_backoff; | |||||
513 | } | |||||
514 | ||||||
515 | new_unlock_request = m->unlock_request = | |||||
516 | (access_required | m->unlock_request); | |||||
517 | vm_object_unlock(object); | |||||
518 | if ((rc = memory_object_data_unlock( | |||||
519 | object->pager, | |||||
520 | object->pager_request, | |||||
521 | offset + object->paging_offset, | |||||
522 | PAGE_SIZE(1 << 12), | |||||
523 | new_unlock_request)) | |||||
524 | != KERN_SUCCESS0) { | |||||
525 | printf("vm_fault: memory_object_data_unlock failed\n"); | |||||
526 | vm_object_lock(object); | |||||
527 | vm_fault_cleanup(object, first_m); | |||||
528 | return((rc == MACH_SEND_INTERRUPTED0x10000007) ? | |||||
529 | VM_FAULT_INTERRUPTED2 : | |||||
530 | VM_FAULT_MEMORY_ERROR5); | |||||
531 | } | |||||
532 | vm_object_lock(object); | |||||
533 | continue; | |||||
534 | } | |||||
535 | ||||||
536 | PAGE_ASSERT_WAIT(m, interruptible)({ (m)->wanted = ((boolean_t) 1); assert_wait((event_t) (m ), (interruptible)); }); | |||||
537 | goto block_and_backoff; | |||||
538 | } | |||||
539 | ||||||
540 | /* | |||||
541 | * We mark the page busy and leave it on | |||||
542 | * the pageout queues. If the pageout | |||||
543 | * deamon comes across it, then it will | |||||
544 | * remove the page. | |||||
545 | */ | |||||
546 | ||||||
547 | if (!software_reference_bits) { | |||||
548 | vm_page_lock_queues(); | |||||
549 | if (m->inactive) { | |||||
550 | vm_stat_sample(SAMPLED_PC_VM_REACTIVATION_FAULTS)({ thread_t _thread_ = (active_threads[(0)]); if (_thread_ != ((thread_t) 0)) ({ task_t task; if ((_thread_)->pc_sample .sampletypes & ((0x20))) take_pc_sample((_thread_), & (_thread_)->pc_sample, ((0x20))); task = (_thread_)->task ; if (task->pc_sample.sampletypes & ((0x20))) take_pc_sample ((_thread_), &task->pc_sample, ((0x20))); }); }); | |||||
551 | vm_stat.reactivations++; | |||||
552 | current_task()((active_threads[(0)])->task)->reactivations++; | |||||
553 | } | |||||
554 | ||||||
555 | VM_PAGE_QUEUES_REMOVE(m)({ if (m->active) { { queue_entry_t next, prev; next = (m) ->pageq.next; prev = (m)->pageq.prev; if ((&vm_page_queue_active ) == next) (&vm_page_queue_active)->prev = prev; else ( (vm_page_t)next)->pageq.prev = prev; if ((&vm_page_queue_active ) == prev) (&vm_page_queue_active)->next = next; else ( (vm_page_t)prev)->pageq.next = next; }; m->active = ((boolean_t ) 0); vm_page_active_count--; } if (m->inactive) { { queue_entry_t next, prev; next = (m)->pageq.next; prev = (m)->pageq. prev; if ((&vm_page_queue_inactive) == next) (&vm_page_queue_inactive )->prev = prev; else ((vm_page_t)next)->pageq.prev = prev ; if ((&vm_page_queue_inactive) == prev) (&vm_page_queue_inactive )->next = next; else ((vm_page_t)prev)->pageq.next = next ; }; m->inactive = ((boolean_t) 0); vm_page_inactive_count --; } }); | |||||
556 | vm_page_unlock_queues(); | |||||
557 | } | |||||
558 | ||||||
559 | assert(!m->busy)({ if (!(!m->busy)) Assert("!m->busy", "../vm/vm_fault.c" , 559); }); | |||||
560 | m->busy = TRUE((boolean_t) 1); | |||||
561 | assert(!m->absent)({ if (!(!m->absent)) Assert("!m->absent", "../vm/vm_fault.c" , 561); }); | |||||
562 | break; | |||||
563 | } | |||||
564 | ||||||
565 | look_for_page = | |||||
566 | (object->pager_created) | |||||
567 | #if MACH_PAGEMAP1 | |||||
568 | && (vm_external_state_get(object->existence_info, offset + object->paging_offset)(((object->existence_info) != ((vm_external_t) 0)) ? _vm_external_state_get (object->existence_info, offset + object->paging_offset ) : 2) != | |||||
569 | VM_EXTERNAL_STATE_ABSENT3) | |||||
570 | #endif /* MACH_PAGEMAP */ | |||||
571 | ; | |||||
572 | ||||||
573 | if ((look_for_page || (object == first_object)) | |||||
574 | && !must_be_resident) { | |||||
575 | /* | |||||
576 | * Allocate a new page for this object/offset | |||||
577 | * pair. | |||||
578 | */ | |||||
579 | ||||||
580 | m = vm_page_grab_fictitious(); | |||||
581 | if (m == VM_PAGE_NULL((vm_page_t) 0)) { | |||||
582 | vm_fault_cleanup(object, first_m); | |||||
583 | return(VM_FAULT_FICTITIOUS_SHORTAGE4); | |||||
584 | } | |||||
585 | ||||||
586 | vm_page_lock_queues(); | |||||
587 | vm_page_insert(m, object, offset); | |||||
588 | vm_page_unlock_queues(); | |||||
589 | } | |||||
590 | ||||||
591 | if (look_for_page && !must_be_resident) { | |||||
592 | kern_return_t rc; | |||||
593 | ||||||
594 | /* | |||||
595 | * If the memory manager is not ready, we | |||||
596 | * cannot make requests. | |||||
597 | */ | |||||
598 | if (!object->pager_ready) { | |||||
599 | vm_object_assert_wait(object,({ (object)->all_wanted |= 1 << (1); assert_wait((event_t )(((vm_offset_t) object) + (1)), (interruptible)); }) | |||||
600 | VM_OBJECT_EVENT_PAGER_READY,({ (object)->all_wanted |= 1 << (1); assert_wait((event_t )(((vm_offset_t) object) + (1)), (interruptible)); }) | |||||
601 | interruptible)({ (object)->all_wanted |= 1 << (1); assert_wait((event_t )(((vm_offset_t) object) + (1)), (interruptible)); }); | |||||
602 | VM_PAGE_FREE(m)({ ; vm_page_free(m); ; }); | |||||
603 | goto block_and_backoff; | |||||
604 | } | |||||
605 | ||||||
606 | if (object->internal) { | |||||
607 | /* | |||||
608 | * Requests to the default pager | |||||
609 | * must reserve a real page in advance, | |||||
610 | * because the pager's data-provided | |||||
611 | * won't block for pages. | |||||
612 | */ | |||||
613 | ||||||
614 | if (m->fictitious && !vm_page_convert(m, FALSE((boolean_t) 0))) { | |||||
615 | VM_PAGE_FREE(m)({ ; vm_page_free(m); ; }); | |||||
616 | vm_fault_cleanup(object, first_m); | |||||
617 | return(VM_FAULT_MEMORY_SHORTAGE3); | |||||
618 | } | |||||
619 | } else if (object->absent_count > | |||||
620 | vm_object_absent_max) { | |||||
621 | /* | |||||
622 | * If there are too many outstanding page | |||||
623 | * requests pending on this object, we | |||||
624 | * wait for them to be resolved now. | |||||
625 | */ | |||||
626 | ||||||
627 | vm_object_absent_assert_wait(object, interruptible)({ ({ ((object))->all_wanted |= 1 << (3); assert_wait ((event_t)(((vm_offset_t) (object)) + (3)), ((interruptible)) ); }); }); | |||||
628 | VM_PAGE_FREE(m)({ ; vm_page_free(m); ; }); | |||||
629 | goto block_and_backoff; | |||||
630 | } | |||||
631 | ||||||
632 | /* | |||||
633 | * Indicate that the page is waiting for data | |||||
634 | * from the memory manager. | |||||
635 | */ | |||||
636 | ||||||
637 | m->absent = TRUE((boolean_t) 1); | |||||
638 | object->absent_count++; | |||||
639 | ||||||
640 | /* | |||||
641 | * We have a busy page, so we can | |||||
642 | * release the object lock. | |||||
643 | */ | |||||
644 | vm_object_unlock(object); | |||||
645 | ||||||
646 | /* | |||||
647 | * Call the memory manager to retrieve the data. | |||||
648 | */ | |||||
649 | ||||||
650 | vm_stat.pageins++; | |||||
651 | vm_stat_sample(SAMPLED_PC_VM_PAGEIN_FAULTS)({ thread_t _thread_ = (active_threads[(0)]); if (_thread_ != ((thread_t) 0)) ({ task_t task; if ((_thread_)->pc_sample .sampletypes & ((0x40))) take_pc_sample((_thread_), & (_thread_)->pc_sample, ((0x40))); task = (_thread_)->task ; if (task->pc_sample.sampletypes & ((0x40))) take_pc_sample ((_thread_), &task->pc_sample, ((0x40))); }); }); | |||||
652 | current_task()((active_threads[(0)])->task)->pageins++; | |||||
653 | ||||||
654 | if ((rc = memory_object_data_request(object->pager, | |||||
655 | object->pager_request, | |||||
656 | m->offset + object->paging_offset, | |||||
657 | PAGE_SIZE(1 << 12), access_required)) != KERN_SUCCESS0) { | |||||
658 | if (rc != MACH_SEND_INTERRUPTED0x10000007) | |||||
659 | printf("%s(0x%p, 0x%p, 0x%lx, 0x%x, 0x%x) failed, %x\n", | |||||
660 | "memory_object_data_request", | |||||
661 | object->pager, | |||||
662 | object->pager_request, | |||||
663 | m->offset + object->paging_offset, | |||||
664 | PAGE_SIZE(1 << 12), access_required, rc); | |||||
665 | /* | |||||
666 | * Don't want to leave a busy page around, | |||||
667 | * but the data request may have blocked, | |||||
668 | * so check if it's still there and busy. | |||||
669 | */ | |||||
670 | vm_object_lock(object); | |||||
671 | if (m == vm_page_lookup(object,offset) && | |||||
672 | m->absent && m->busy) | |||||
673 | VM_PAGE_FREE(m)({ ; vm_page_free(m); ; }); | |||||
674 | vm_fault_cleanup(object, first_m); | |||||
675 | return((rc == MACH_SEND_INTERRUPTED0x10000007) ? | |||||
676 | VM_FAULT_INTERRUPTED2 : | |||||
677 | VM_FAULT_MEMORY_ERROR5); | |||||
678 | } | |||||
679 | ||||||
680 | /* | |||||
681 | * Retry with same object/offset, since new data may | |||||
682 | * be in a different page (i.e., m is meaningless at | |||||
683 | * this point). | |||||
684 | */ | |||||
685 | vm_object_lock(object); | |||||
686 | continue; | |||||
687 | } | |||||
688 | ||||||
689 | /* | |||||
690 | * For the XP system, the only case in which we get here is if | |||||
691 | * object has no pager (or unwiring). If the pager doesn't | |||||
692 | * have the page this is handled in the m->absent case above | |||||
693 | * (and if you change things here you should look above). | |||||
694 | */ | |||||
695 | if (object == first_object) | |||||
696 | first_m = m; | |||||
697 | else | |||||
698 | { | |||||
699 | assert(m == VM_PAGE_NULL)({ if (!(m == ((vm_page_t) 0))) Assert("m == VM_PAGE_NULL", "../vm/vm_fault.c" , 699); }); | |||||
700 | } | |||||
701 | ||||||
702 | /* | |||||
703 | * Move on to the next object. Lock the next | |||||
704 | * object before unlocking the current one. | |||||
705 | */ | |||||
706 | access_required = VM_PROT_READ((vm_prot_t) 0x01); | |||||
707 | ||||||
708 | offset += object->shadow_offset; | |||||
709 | next_object = object->shadow; | |||||
710 | if (next_object == VM_OBJECT_NULL((vm_object_t) 0)) { | |||||
711 | assert(!must_be_resident)({ if (!(!must_be_resident)) Assert("!must_be_resident", "../vm/vm_fault.c" , 711); }); | |||||
712 | ||||||
713 | /* | |||||
714 | * If there's no object left, fill the page | |||||
715 | * in the top object with zeros. But first we | |||||
716 | * need to allocate a real page. | |||||
717 | */ | |||||
718 | ||||||
719 | if (object != first_object) { | |||||
720 | vm_object_paging_end(object)({ ({ if (!((object)->paging_in_progress != 0)) Assert("(object)->paging_in_progress != 0" , "../vm/vm_fault.c", 720); }); if (--(object)->paging_in_progress == 0) { ({ if ((object)->all_wanted & (1 << (2) )) thread_wakeup_prim(((event_t)(((vm_offset_t) object) + (2) )), ((boolean_t) 0), 0); (object)->all_wanted &= ~(1 << (2)); }); } }); | |||||
721 | vm_object_unlock(object); | |||||
722 | ||||||
723 | object = first_object; | |||||
724 | offset = first_offset; | |||||
725 | vm_object_lock(object); | |||||
726 | } | |||||
727 | ||||||
728 | m = first_m; | |||||
729 | assert(m->object == object)({ if (!(m->object == object)) Assert("m->object == object" , "../vm/vm_fault.c", 729); }); | |||||
730 | first_m = VM_PAGE_NULL((vm_page_t) 0); | |||||
731 | ||||||
732 | if (m->fictitious && !vm_page_convert(m, !object->internal)) { | |||||
733 | VM_PAGE_FREE(m)({ ; vm_page_free(m); ; }); | |||||
734 | vm_fault_cleanup(object, VM_PAGE_NULL((vm_page_t) 0)); | |||||
735 | return(VM_FAULT_MEMORY_SHORTAGE3); | |||||
736 | } | |||||
737 | ||||||
738 | vm_object_unlock(object); | |||||
739 | vm_page_zero_fill(m); | |||||
740 | vm_stat_sample(SAMPLED_PC_VM_ZFILL_FAULTS)({ thread_t _thread_ = (active_threads[(0)]); if (_thread_ != ((thread_t) 0)) ({ task_t task; if ((_thread_)->pc_sample .sampletypes & ((0x10))) take_pc_sample((_thread_), & (_thread_)->pc_sample, ((0x10))); task = (_thread_)->task ; if (task->pc_sample.sampletypes & ((0x10))) take_pc_sample ((_thread_), &task->pc_sample, ((0x10))); }); }); | |||||
741 | vm_stat.zero_fill_count++; | |||||
742 | current_task()((active_threads[(0)])->task)->zero_fills++; | |||||
743 | vm_object_lock(object); | |||||
744 | pmap_clear_modify(m->phys_addr); | |||||
745 | break; | |||||
746 | } | |||||
747 | else { | |||||
748 | vm_object_lock(next_object); | |||||
749 | if ((object != first_object) || must_be_resident) | |||||
750 | vm_object_paging_end(object)({ ({ if (!((object)->paging_in_progress != 0)) Assert("(object)->paging_in_progress != 0" , "../vm/vm_fault.c", 750); }); if (--(object)->paging_in_progress == 0) { ({ if ((object)->all_wanted & (1 << (2) )) thread_wakeup_prim(((event_t)(((vm_offset_t) object) + (2) )), ((boolean_t) 0), 0); (object)->all_wanted &= ~(1 << (2)); }); } }); | |||||
751 | vm_object_unlock(object); | |||||
752 | object = next_object; | |||||
753 | vm_object_paging_begin(object)((object)->paging_in_progress++); | |||||
754 | } | |||||
755 | } | |||||
756 | ||||||
757 | /* | |||||
758 | * PAGE HAS BEEN FOUND. | |||||
759 | * | |||||
760 | * This page (m) is: | |||||
761 | * busy, so that we can play with it; | |||||
762 | * not absent, so that nobody else will fill it; | |||||
763 | * possibly eligible for pageout; | |||||
764 | * | |||||
765 | * The top-level page (first_m) is: | |||||
766 | * VM_PAGE_NULL if the page was found in the | |||||
767 | * top-level object; | |||||
768 | * busy, not absent, and ineligible for pageout. | |||||
769 | * | |||||
770 | * The current object (object) is locked. A paging | |||||
771 | * reference is held for the current and top-level | |||||
772 | * objects. | |||||
773 | */ | |||||
774 | ||||||
775 | #if EXTRA_ASSERTIONS | |||||
776 | assert(m->busy && !m->absent)({ if (!(m->busy && !m->absent)) Assert("m->busy && !m->absent" , "../vm/vm_fault.c", 776); }); | |||||
777 | assert((first_m == VM_PAGE_NULL) ||({ if (!((first_m == ((vm_page_t) 0)) || (first_m->busy && !first_m->absent && !first_m->active && !first_m->inactive))) Assert("(first_m == VM_PAGE_NULL) || (first_m->busy && !first_m->absent && !first_m->active && !first_m->inactive)" , "../vm/vm_fault.c", 779); }) | |||||
778 | (first_m->busy && !first_m->absent &&({ if (!((first_m == ((vm_page_t) 0)) || (first_m->busy && !first_m->absent && !first_m->active && !first_m->inactive))) Assert("(first_m == VM_PAGE_NULL) || (first_m->busy && !first_m->absent && !first_m->active && !first_m->inactive)" , "../vm/vm_fault.c", 779); }) | |||||
779 | !first_m->active && !first_m->inactive))({ if (!((first_m == ((vm_page_t) 0)) || (first_m->busy && !first_m->absent && !first_m->active && !first_m->inactive))) Assert("(first_m == VM_PAGE_NULL) || (first_m->busy && !first_m->absent && !first_m->active && !first_m->inactive)" , "../vm/vm_fault.c", 779); }); | |||||
780 | #endif /* EXTRA_ASSERTIONS */ | |||||
781 | ||||||
782 | /* | |||||
783 | * If the page is being written, but isn't | |||||
784 | * already owned by the top-level object, | |||||
785 | * we have to copy it into a new page owned | |||||
786 | * by the top-level object. | |||||
787 | */ | |||||
788 | ||||||
789 | if (object != first_object) { | |||||
790 | /* | |||||
791 | * We only really need to copy if we | |||||
792 | * want to write it. | |||||
793 | */ | |||||
794 | ||||||
795 | if (fault_type & VM_PROT_WRITE((vm_prot_t) 0x02)) { | |||||
796 | vm_page_t copy_m; | |||||
797 | ||||||
798 | assert(!must_be_resident)({ if (!(!must_be_resident)) Assert("!must_be_resident", "../vm/vm_fault.c" , 798); }); | |||||
799 | ||||||
800 | /* | |||||
801 | * If we try to collapse first_object at this | |||||
802 | * point, we may deadlock when we try to get | |||||
803 | * the lock on an intermediate object (since we | |||||
804 | * have the bottom object locked). We can't | |||||
805 | * unlock the bottom object, because the page | |||||
806 | * we found may move (by collapse) if we do. | |||||
807 | * | |||||
808 | * Instead, we first copy the page. Then, when | |||||
809 | * we have no more use for the bottom object, | |||||
810 | * we unlock it and try to collapse. | |||||
811 | * | |||||
812 | * Note that we copy the page even if we didn't | |||||
813 | * need to... that's the breaks. | |||||
814 | */ | |||||
815 | ||||||
816 | /* | |||||
817 | * Allocate a page for the copy | |||||
818 | */ | |||||
819 | copy_m = vm_page_grab(!first_object->internal); | |||||
820 | if (copy_m == VM_PAGE_NULL((vm_page_t) 0)) { | |||||
821 | RELEASE_PAGE(m){ ({ (m)->busy = ((boolean_t) 0); if ((m)->wanted) { (m )->wanted = ((boolean_t) 0); thread_wakeup_prim((((event_t ) m)), ((boolean_t) 0), 0); } }); ; vm_page_unwire(m); ; }; | |||||
822 | vm_fault_cleanup(object, first_m); | |||||
823 | return(VM_FAULT_MEMORY_SHORTAGE3); | |||||
824 | } | |||||
825 | ||||||
826 | vm_object_unlock(object); | |||||
827 | vm_page_copy(m, copy_m); | |||||
828 | vm_object_lock(object); | |||||
829 | ||||||
830 | /* | |||||
831 | * If another map is truly sharing this | |||||
832 | * page with us, we have to flush all | |||||
833 | * uses of the original page, since we | |||||
834 | * can't distinguish those which want the | |||||
835 | * original from those which need the | |||||
836 | * new copy. | |||||
837 | * | |||||
838 | * XXXO If we know that only one map has | |||||
839 | * access to this page, then we could | |||||
840 | * avoid the pmap_page_protect() call. | |||||
841 | */ | |||||
842 | ||||||
843 | vm_page_lock_queues(); | |||||
844 | vm_page_deactivate(m); | |||||
845 | pmap_page_protect(m->phys_addr, VM_PROT_NONE((vm_prot_t) 0x00)); | |||||
846 | vm_page_unlock_queues(); | |||||
847 | ||||||
848 | /* | |||||
849 | * We no longer need the old page or object. | |||||
850 | */ | |||||
851 | ||||||
852 | PAGE_WAKEUP_DONE(m)({ (m)->busy = ((boolean_t) 0); if ((m)->wanted) { (m)-> wanted = ((boolean_t) 0); thread_wakeup_prim((((event_t) m)), ((boolean_t) 0), 0); } }); | |||||
853 | vm_object_paging_end(object)({ ({ if (!((object)->paging_in_progress != 0)) Assert("(object)->paging_in_progress != 0" , "../vm/vm_fault.c", 853); }); if (--(object)->paging_in_progress == 0) { ({ if ((object)->all_wanted & (1 << (2) )) thread_wakeup_prim(((event_t)(((vm_offset_t) object) + (2) )), ((boolean_t) 0), 0); (object)->all_wanted &= ~(1 << (2)); }); } }); | |||||
854 | vm_object_unlock(object); | |||||
855 | ||||||
856 | vm_stat.cow_faults++; | |||||
857 | vm_stat_sample(SAMPLED_PC_VM_COW_FAULTS)({ thread_t _thread_ = (active_threads[(0)]); if (_thread_ != ((thread_t) 0)) ({ task_t task; if ((_thread_)->pc_sample .sampletypes & ((0x80))) take_pc_sample((_thread_), & (_thread_)->pc_sample, ((0x80))); task = (_thread_)->task ; if (task->pc_sample.sampletypes & ((0x80))) take_pc_sample ((_thread_), &task->pc_sample, ((0x80))); }); }); | |||||
858 | current_task()((active_threads[(0)])->task)->cow_faults++; | |||||
859 | object = first_object; | |||||
860 | offset = first_offset; | |||||
861 | ||||||
862 | vm_object_lock(object); | |||||
863 | VM_PAGE_FREE(first_m)({ ; vm_page_free(first_m); ; }); | |||||
864 | first_m = VM_PAGE_NULL((vm_page_t) 0); | |||||
865 | assert(copy_m->busy)({ if (!(copy_m->busy)) Assert("copy_m->busy", "../vm/vm_fault.c" , 865); }); | |||||
866 | vm_page_lock_queues(); | |||||
867 | vm_page_insert(copy_m, object, offset); | |||||
868 | vm_page_unlock_queues(); | |||||
869 | m = copy_m; | |||||
870 | ||||||
871 | /* | |||||
872 | * Now that we've gotten the copy out of the | |||||
873 | * way, let's try to collapse the top object. | |||||
874 | * But we have to play ugly games with | |||||
875 | * paging_in_progress to do that... | |||||
876 | */ | |||||
877 | ||||||
878 | vm_object_paging_end(object)({ ({ if (!((object)->paging_in_progress != 0)) Assert("(object)->paging_in_progress != 0" , "../vm/vm_fault.c", 878); }); if (--(object)->paging_in_progress == 0) { ({ if ((object)->all_wanted & (1 << (2) )) thread_wakeup_prim(((event_t)(((vm_offset_t) object) + (2) )), ((boolean_t) 0), 0); (object)->all_wanted &= ~(1 << (2)); }); } }); | |||||
879 | vm_object_collapse(object); | |||||
880 | vm_object_paging_begin(object)((object)->paging_in_progress++); | |||||
881 | } | |||||
882 | else { | |||||
883 | *protection &= (~VM_PROT_WRITE((vm_prot_t) 0x02)); | |||||
884 | } | |||||
885 | } | |||||
886 | ||||||
887 | /* | |||||
888 | * Now check whether the page needs to be pushed into the | |||||
889 | * copy object. The use of asymmetric copy on write for | |||||
890 | * shared temporary objects means that we may do two copies to | |||||
891 | * satisfy the fault; one above to get the page from a | |||||
892 | * shadowed object, and one here to push it into the copy. | |||||
893 | */ | |||||
894 | ||||||
895 | while ((copy_object = first_object->copy) != VM_OBJECT_NULL((vm_object_t) 0)) { | |||||
896 | vm_offset_t copy_offset; | |||||
897 | vm_page_t copy_m; | |||||
898 | ||||||
899 | /* | |||||
900 | * If the page is being written, but hasn't been | |||||
901 | * copied to the copy-object, we have to copy it there. | |||||
902 | */ | |||||
903 | ||||||
904 | if ((fault_type & VM_PROT_WRITE((vm_prot_t) 0x02)) == 0) { | |||||
905 | *protection &= ~VM_PROT_WRITE((vm_prot_t) 0x02); | |||||
906 | break; | |||||
907 | } | |||||
908 | ||||||
909 | /* | |||||
910 | * If the page was guaranteed to be resident, | |||||
911 | * we must have already performed the copy. | |||||
912 | */ | |||||
913 | ||||||
914 | if (must_be_resident) | |||||
915 | break; | |||||
916 | ||||||
917 | /* | |||||
918 | * Try to get the lock on the copy_object. | |||||
919 | */ | |||||
920 | if (!vm_object_lock_try(copy_object)(((boolean_t) 1))) { | |||||
921 | vm_object_unlock(object); | |||||
922 | ||||||
923 | simple_lock_pause(); /* wait a bit */ | |||||
924 | ||||||
925 | vm_object_lock(object); | |||||
926 | continue; | |||||
927 | } | |||||
928 | ||||||
929 | /* | |||||
930 | * Make another reference to the copy-object, | |||||
931 | * to keep it from disappearing during the | |||||
932 | * copy. | |||||
933 | */ | |||||
934 | assert(copy_object->ref_count > 0)({ if (!(copy_object->ref_count > 0)) Assert("copy_object->ref_count > 0" , "../vm/vm_fault.c", 934); }); | |||||
935 | copy_object->ref_count++; | |||||
936 | ||||||
937 | /* | |||||
938 | * Does the page exist in the copy? | |||||
939 | */ | |||||
940 | copy_offset = first_offset - copy_object->shadow_offset; | |||||
941 | copy_m = vm_page_lookup(copy_object, copy_offset); | |||||
942 | if (copy_m != VM_PAGE_NULL((vm_page_t) 0)) { | |||||
943 | if (copy_m->busy) { | |||||
944 | /* | |||||
945 | * If the page is being brought | |||||
946 | * in, wait for it and then retry. | |||||
947 | */ | |||||
948 | PAGE_ASSERT_WAIT(copy_m, interruptible)({ (copy_m)->wanted = ((boolean_t) 1); assert_wait((event_t ) (copy_m), (interruptible)); }); | |||||
949 | RELEASE_PAGE(m){ ({ (m)->busy = ((boolean_t) 0); if ((m)->wanted) { (m )->wanted = ((boolean_t) 0); thread_wakeup_prim((((event_t ) m)), ((boolean_t) 0), 0); } }); ; vm_page_unwire(m); ; }; | |||||
950 | copy_object->ref_count--; | |||||
951 | assert(copy_object->ref_count > 0)({ if (!(copy_object->ref_count > 0)) Assert("copy_object->ref_count > 0" , "../vm/vm_fault.c", 951); }); | |||||
952 | vm_object_unlock(copy_object); | |||||
953 | goto block_and_backoff; | |||||
954 | } | |||||
955 | } | |||||
956 | else { | |||||
957 | /* | |||||
958 | * Allocate a page for the copy | |||||
959 | */ | |||||
960 | copy_m = vm_page_alloc(copy_object, copy_offset); | |||||
961 | if (copy_m == VM_PAGE_NULL((vm_page_t) 0)) { | |||||
962 | RELEASE_PAGE(m){ ({ (m)->busy = ((boolean_t) 0); if ((m)->wanted) { (m )->wanted = ((boolean_t) 0); thread_wakeup_prim((((event_t ) m)), ((boolean_t) 0), 0); } }); ; vm_page_unwire(m); ; }; | |||||
963 | copy_object->ref_count--; | |||||
964 | assert(copy_object->ref_count > 0)({ if (!(copy_object->ref_count > 0)) Assert("copy_object->ref_count > 0" , "../vm/vm_fault.c", 964); }); | |||||
965 | vm_object_unlock(copy_object); | |||||
966 | vm_fault_cleanup(object, first_m); | |||||
967 | return(VM_FAULT_MEMORY_SHORTAGE3); | |||||
968 | } | |||||
969 | ||||||
970 | /* | |||||
971 | * Must copy page into copy-object. | |||||
972 | */ | |||||
973 | ||||||
974 | vm_page_copy(m, copy_m); | |||||
975 | ||||||
976 | /* | |||||
977 | * If the old page was in use by any users | |||||
978 | * of the copy-object, it must be removed | |||||
979 | * from all pmaps. (We can't know which | |||||
980 | * pmaps use it.) | |||||
981 | */ | |||||
982 | ||||||
983 | vm_page_lock_queues(); | |||||
984 | pmap_page_protect(m->phys_addr, VM_PROT_NONE((vm_prot_t) 0x00)); | |||||
985 | copy_m->dirty = TRUE((boolean_t) 1); | |||||
986 | vm_page_unlock_queues(); | |||||
987 | ||||||
988 | /* | |||||
989 | * If there's a pager, then immediately | |||||
990 | * page out this page, using the "initialize" | |||||
991 | * option. Else, we use the copy. | |||||
992 | */ | |||||
993 | ||||||
994 | if (!copy_object->pager_created) { | |||||
995 | vm_page_lock_queues(); | |||||
996 | vm_page_activate(copy_m); | |||||
997 | vm_page_unlock_queues(); | |||||
998 | PAGE_WAKEUP_DONE(copy_m)({ (copy_m)->busy = ((boolean_t) 0); if ((copy_m)->wanted ) { (copy_m)->wanted = ((boolean_t) 0); thread_wakeup_prim ((((event_t) copy_m)), ((boolean_t) 0), 0); } }); | |||||
999 | } else { | |||||
1000 | /* | |||||
1001 | * The page is already ready for pageout: | |||||
1002 | * not on pageout queues and busy. | |||||
1003 | * Unlock everything except the | |||||
1004 | * copy_object itself. | |||||
1005 | */ | |||||
1006 | ||||||
1007 | vm_object_unlock(object); | |||||
1008 | ||||||
1009 | /* | |||||
1010 | * Write the page to the copy-object, | |||||
1011 | * flushing it from the kernel. | |||||
1012 | */ | |||||
1013 | ||||||
1014 | vm_pageout_page(copy_m, TRUE((boolean_t) 1), TRUE((boolean_t) 1)); | |||||
1015 | ||||||
1016 | /* | |||||
1017 | * Since the pageout may have | |||||
1018 | * temporarily dropped the | |||||
1019 | * copy_object's lock, we | |||||
1020 | * check whether we'll have | |||||
1021 | * to deallocate the hard way. | |||||
1022 | */ | |||||
1023 | ||||||
1024 | if ((copy_object->shadow != object) || | |||||
1025 | (copy_object->ref_count == 1)) { | |||||
1026 | vm_object_unlock(copy_object); | |||||
1027 | vm_object_deallocate(copy_object); | |||||
1028 | vm_object_lock(object); | |||||
1029 | continue; | |||||
1030 | } | |||||
1031 | ||||||
1032 | /* | |||||
1033 | * Pick back up the old object's | |||||
1034 | * lock. [It is safe to do so, | |||||
1035 | * since it must be deeper in the | |||||
1036 | * object tree.] | |||||
1037 | */ | |||||
1038 | ||||||
1039 | vm_object_lock(object); | |||||
1040 | } | |||||
1041 | ||||||
1042 | /* | |||||
1043 | * Because we're pushing a page upward | |||||
1044 | * in the object tree, we must restart | |||||
1045 | * any faults that are waiting here. | |||||
1046 | * [Note that this is an expansion of | |||||
1047 | * PAGE_WAKEUP that uses the THREAD_RESTART | |||||
1048 | * wait result]. Can't turn off the page's | |||||
1049 | * busy bit because we're not done with it. | |||||
1050 | */ | |||||
1051 | ||||||
1052 | if (m->wanted) { | |||||
1053 | m->wanted = FALSE((boolean_t) 0); | |||||
1054 | thread_wakeup_with_result((event_t) m,thread_wakeup_prim(((event_t) m), ((boolean_t) 0), (3)) | |||||
1055 | THREAD_RESTART)thread_wakeup_prim(((event_t) m), ((boolean_t) 0), (3)); | |||||
1056 | } | |||||
1057 | } | |||||
1058 | ||||||
1059 | /* | |||||
1060 | * The reference count on copy_object must be | |||||
1061 | * at least 2: one for our extra reference, | |||||
1062 | * and at least one from the outside world | |||||
1063 | * (we checked that when we last locked | |||||
1064 | * copy_object). | |||||
1065 | */ | |||||
1066 | copy_object->ref_count--; | |||||
1067 | assert(copy_object->ref_count > 0)({ if (!(copy_object->ref_count > 0)) Assert("copy_object->ref_count > 0" , "../vm/vm_fault.c", 1067); }); | |||||
1068 | vm_object_unlock(copy_object); | |||||
1069 | ||||||
1070 | break; | |||||
1071 | } | |||||
1072 | ||||||
1073 | *result_page = m; | |||||
1074 | *top_page = first_m; | |||||
1075 | ||||||
1076 | /* | |||||
1077 | * If the page can be written, assume that it will be. | |||||
1078 | * [Earlier, we restrict the permission to allow write | |||||
1079 |