File: | obj-scan-build/../vm/memory_object.c |
Location: | line 281, column 6 |
Description: | Dereference of null pointer |
1 | /* | |||||
2 | * Mach Operating System | |||||
3 | * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University. | |||||
4 | * Copyright (c) 1993,1994 The University of Utah and | |||||
5 | * the Computer Systems Laboratory (CSL). | |||||
6 | * All rights reserved. | |||||
7 | * | |||||
8 | * Permission to use, copy, modify and distribute this software and its | |||||
9 | * documentation is hereby granted, provided that both the copyright | |||||
10 | * notice and this permission notice appear in all copies of the | |||||
11 | * software, derivative works or modified versions, and any portions | |||||
12 | * thereof, and that both notices appear in supporting documentation. | |||||
13 | * | |||||
14 | * CARNEGIE MELLON, THE UNIVERSITY OF UTAH AND CSL ALLOW FREE USE OF | |||||
15 | * THIS SOFTWARE IN ITS "AS IS" CONDITION, AND DISCLAIM ANY LIABILITY | |||||
16 | * OF ANY KIND FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF | |||||
17 | * THIS SOFTWARE. | |||||
18 | * | |||||
19 | * Carnegie Mellon requests users of this software to return to | |||||
20 | * | |||||
21 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU | |||||
22 | * School of Computer Science | |||||
23 | * Carnegie Mellon University | |||||
24 | * Pittsburgh PA 15213-3890 | |||||
25 | * | |||||
26 | * any improvements or extensions that they make and grant Carnegie Mellon | |||||
27 | * the rights to redistribute these changes. | |||||
28 | */ | |||||
29 | /* | |||||
30 | * File: vm/memory_object.c | |||||
31 | * Author: Michael Wayne Young | |||||
32 | * | |||||
33 | * External memory management interface control functions. | |||||
34 | */ | |||||
35 | ||||||
36 | /* | |||||
37 | * Interface dependencies: | |||||
38 | */ | |||||
39 | ||||||
40 | #include <mach/std_types.h> /* For pointer_t */ | |||||
41 | #include <mach/mach_types.h> | |||||
42 | ||||||
43 | #include <mach/kern_return.h> | |||||
44 | #include <vm/vm_map.h> | |||||
45 | #include <vm/vm_object.h> | |||||
46 | #include <mach/memory_object.h> | |||||
47 | #include <mach/boolean.h> | |||||
48 | #include <mach/vm_prot.h> | |||||
49 | #include <mach/message.h> | |||||
50 | ||||||
51 | #include <vm/memory_object_user.user.h> | |||||
52 | #include <vm/memory_object_default.user.h> | |||||
53 | ||||||
54 | /* | |||||
55 | * Implementation dependencies: | |||||
56 | */ | |||||
57 | #include <vm/memory_object.h> | |||||
58 | #include <vm/vm_page.h> | |||||
59 | #include <vm/vm_pageout.h> | |||||
60 | #include <vm/pmap.h> /* For copy_to_phys, pmap_clear_modify */ | |||||
61 | #include <kern/debug.h> /* For panic() */ | |||||
62 | #include <kern/thread.h> /* For current_thread() */ | |||||
63 | #include <kern/host.h> | |||||
64 | #include <vm/vm_kern.h> /* For kernel_map, vm_move */ | |||||
65 | #include <vm/vm_map.h> /* For vm_map_pageable */ | |||||
66 | #include <ipc/ipc_port.h> | |||||
67 | ||||||
68 | #if MACH_PAGEMAP1 | |||||
69 | #include <vm/vm_external.h> | |||||
70 | #endif /* MACH_PAGEMAP */ | |||||
71 | ||||||
72 | typedef int memory_object_lock_result_t; /* moved from below */ | |||||
73 | ||||||
74 | ||||||
75 | ipc_port_t memory_manager_default = IP_NULL((ipc_port_t) ((ipc_object_t) 0)); | |||||
76 | decl_simple_lock_data(,memory_manager_default_lock) | |||||
77 | ||||||
78 | /* | |||||
79 | * Important note: | |||||
80 | * All of these routines gain a reference to the | |||||
81 | * object (first argument) as part of the automatic | |||||
82 | * argument conversion. Explicit deallocation is necessary. | |||||
83 | */ | |||||
84 | ||||||
85 | kern_return_t memory_object_data_supply(object, offset, data_copy, data_cnt, | |||||
86 | lock_value, precious, reply_to, reply_to_type) | |||||
87 | register | |||||
88 | vm_object_t object; | |||||
89 | register | |||||
90 | vm_offset_t offset; | |||||
91 | vm_map_copy_t data_copy; | |||||
92 | unsigned int data_cnt; | |||||
93 | vm_prot_t lock_value; | |||||
94 | boolean_t precious; | |||||
95 | ipc_port_t reply_to; | |||||
96 | mach_msg_type_name_t reply_to_type; | |||||
97 | { | |||||
98 | kern_return_t result = KERN_SUCCESS0; | |||||
99 | vm_offset_t error_offset = 0; | |||||
100 | register | |||||
101 | vm_page_t m; | |||||
102 | register | |||||
103 | vm_page_t data_m; | |||||
104 | vm_size_t original_length; | |||||
105 | vm_offset_t original_offset; | |||||
106 | vm_page_t *page_list; | |||||
107 | boolean_t was_absent; | |||||
108 | vm_map_copy_t orig_copy = data_copy; | |||||
109 | ||||||
110 | /* | |||||
111 | * Look for bogus arguments | |||||
112 | */ | |||||
113 | ||||||
114 | if (object == VM_OBJECT_NULL((vm_object_t) 0)) { | |||||
115 | return(KERN_INVALID_ARGUMENT4); | |||||
116 | } | |||||
117 | ||||||
118 | if (lock_value & ~VM_PROT_ALL(((vm_prot_t) 0x01)|((vm_prot_t) 0x02)|((vm_prot_t) 0x04))) { | |||||
119 | vm_object_deallocate(object); | |||||
120 | return(KERN_INVALID_ARGUMENT4); | |||||
121 | } | |||||
122 | ||||||
123 | if ((data_cnt % PAGE_SIZE(1 << 12)) != 0) { | |||||
124 | vm_object_deallocate(object); | |||||
125 | return(KERN_INVALID_ARGUMENT4); | |||||
126 | } | |||||
127 | ||||||
128 | /* | |||||
129 | * Adjust the offset from the memory object to the offset | |||||
130 | * within the vm_object. | |||||
131 | */ | |||||
132 | ||||||
133 | original_length = data_cnt; | |||||
134 | original_offset = offset; | |||||
135 | ||||||
136 | assert(data_copy->type == VM_MAP_COPY_PAGE_LIST)({ if (!(data_copy->type == 3)) Assert("data_copy->type == VM_MAP_COPY_PAGE_LIST" , "../vm/memory_object.c", 136); }); | |||||
137 | page_list = &data_copy->cpy_page_listc_u.c_p.page_list[0]; | |||||
138 | ||||||
139 | vm_object_lock(object); | |||||
140 | vm_object_paging_begin(object)((object)->paging_in_progress++); | |||||
141 | offset -= object->paging_offset; | |||||
142 | ||||||
143 | /* | |||||
144 | * Loop over copy stealing pages for pagein. | |||||
145 | */ | |||||
146 | ||||||
147 | for (; data_cnt > 0 ; data_cnt -= PAGE_SIZE(1 << 12), offset += PAGE_SIZE(1 << 12)) { | |||||
148 | ||||||
149 | assert(data_copy->cpy_npages > 0)({ if (!(data_copy->c_u.c_p.npages > 0)) Assert("data_copy->cpy_npages > 0" , "../vm/memory_object.c", 149); }); | |||||
150 | data_m = *page_list; | |||||
151 | ||||||
152 | if (data_m == VM_PAGE_NULL((vm_page_t) 0) || data_m->tabled || | |||||
153 | data_m->error || data_m->absent || data_m->fictitious) { | |||||
154 | ||||||
155 | panic("Data_supply: bad page"); | |||||
156 | } | |||||
157 | ||||||
158 | /* | |||||
159 | * Look up target page and check its state. | |||||
160 | */ | |||||
161 | ||||||
162 | retry_lookup: | |||||
163 | m = vm_page_lookup(object,offset); | |||||
164 | if (m == VM_PAGE_NULL((vm_page_t) 0)) { | |||||
165 | was_absent = FALSE((boolean_t) 0); | |||||
166 | } | |||||
167 | else { | |||||
168 | if (m->absent && m->busy) { | |||||
169 | ||||||
170 | /* | |||||
171 | * Page was requested. Free the busy | |||||
172 | * page waiting for it. Insertion | |||||
173 | * of new page happens below. | |||||
174 | */ | |||||
175 | ||||||
176 | VM_PAGE_FREE(m)({ ; vm_page_free(m); ; }); | |||||
177 | was_absent = TRUE((boolean_t) 1); | |||||
178 | } | |||||
179 | else { | |||||
180 | ||||||
181 | /* | |||||
182 | * Have to wait for page that is busy and | |||||
183 | * not absent. This is probably going to | |||||
184 | * be an error, but go back and check. | |||||
185 | */ | |||||
186 | if (m->busy) { | |||||
187 | PAGE_ASSERT_WAIT(m, FALSE)({ (m)->wanted = ((boolean_t) 1); assert_wait((event_t) (m ), (((boolean_t) 0))); }); | |||||
188 | vm_object_unlock(object); | |||||
189 | thread_block((void (*)()) 0); | |||||
190 | vm_object_lock(object); | |||||
191 | goto retry_lookup; | |||||
192 | } | |||||
193 | ||||||
194 | /* | |||||
195 | * Page already present; error. | |||||
196 | * This is an error if data is precious. | |||||
197 | */ | |||||
198 | result = KERN_MEMORY_PRESENT23; | |||||
199 | error_offset = offset + object->paging_offset; | |||||
200 | ||||||
201 | break; | |||||
202 | } | |||||
203 | } | |||||
204 | ||||||
205 | /* | |||||
206 | * Ok to pagein page. Target object now has no page | |||||
207 | * at offset. Set the page parameters, then drop | |||||
208 | * in new page and set up pageout state. Object is | |||||
209 | * still locked here. | |||||
210 | * | |||||
211 | * Must clear busy bit in page before inserting it. | |||||
212 | * Ok to skip wakeup logic because nobody else | |||||
213 | * can possibly know about this page. | |||||
214 | */ | |||||
215 | ||||||
216 | data_m->busy = FALSE((boolean_t) 0); | |||||
217 | data_m->dirty = FALSE((boolean_t) 0); | |||||
218 | pmap_clear_modify(data_m->phys_addr); | |||||
219 | ||||||
220 | data_m->page_lock = lock_value; | |||||
221 | data_m->unlock_request = VM_PROT_NONE((vm_prot_t) 0x00); | |||||
222 | data_m->precious = precious; | |||||
223 | ||||||
224 | vm_page_lock_queues(); | |||||
225 | vm_page_insert(data_m, object, offset); | |||||
226 | ||||||
227 | if (was_absent) | |||||
228 | vm_page_activate(data_m); | |||||
229 | else | |||||
230 | vm_page_deactivate(data_m); | |||||
231 | ||||||
232 | vm_page_unlock_queues(); | |||||
233 | ||||||
234 | /* | |||||
235 | * Null out this page list entry, and advance to next | |||||
236 | * page. | |||||
237 | */ | |||||
238 | ||||||
239 | *page_list++ = VM_PAGE_NULL((vm_page_t) 0); | |||||
240 | ||||||
241 | if (--(data_copy->cpy_npagesc_u.c_p.npages) == 0 && | |||||
242 | vm_map_copy_has_cont(data_copy)(((data_copy)->c_u.c_p.cont) != (kern_return_t (*)()) 0)) { | |||||
243 | vm_map_copy_t new_copy; | |||||
244 | ||||||
245 | vm_object_unlock(object); | |||||
246 | ||||||
247 | vm_map_copy_invoke_cont(data_copy, &new_copy, &result)({ vm_map_copy_page_discard(data_copy); *&result = (*((data_copy )->c_u.c_p.cont))((data_copy)->c_u.c_p.cont_args, & new_copy); (data_copy)->c_u.c_p.cont = (kern_return_t (*)( )) 0; }); | |||||
248 | ||||||
249 | if (result == KERN_SUCCESS0) { | |||||
250 | ||||||
251 | /* | |||||
252 | * Consume on success requires that | |||||
253 | * we keep the original vm_map_copy | |||||
254 | * around in case something fails. | |||||
255 | * Free the old copy if it's not the original | |||||
256 | */ | |||||
257 | if (data_copy != orig_copy) { | |||||
258 | vm_map_copy_discard(data_copy); | |||||
259 | } | |||||
260 | ||||||
261 | if ((data_copy = new_copy) != VM_MAP_COPY_NULL((vm_map_copy_t) 0)) | |||||
262 | page_list = &data_copy->cpy_page_listc_u.c_p.page_list[0]; | |||||
263 | ||||||
264 | vm_object_lock(object); | |||||
265 | } | |||||
266 | else { | |||||
267 | vm_object_lock(object); | |||||
268 | error_offset = offset + object->paging_offset + | |||||
269 | PAGE_SIZE(1 << 12); | |||||
270 | break; | |||||
271 | } | |||||
272 | } | |||||
273 | } | |||||
274 | ||||||
275 | /* | |||||
276 | * Send reply if one was requested. | |||||
277 | */ | |||||
278 | vm_object_paging_end(object)({ ({ if (!((object)->paging_in_progress != 0)) Assert("(object)->paging_in_progress != 0" , "../vm/memory_object.c", 278); }); if (--(object)->paging_in_progress == 0) { ({ if ((object)->all_wanted & (1 << (2) )) thread_wakeup_prim(((event_t)(((vm_offset_t) object) + (2) )), ((boolean_t) 0), 0); (object)->all_wanted &= ~(1 << (2)); }); } }); | |||||
279 | vm_object_unlock(object); | |||||
280 | ||||||
281 | if (vm_map_copy_has_cont(data_copy)(((data_copy)->c_u.c_p.cont) != (kern_return_t (*)()) 0)) | |||||
| ||||||
282 | vm_map_copy_abort_cont(data_copy)({ vm_map_copy_page_discard(data_copy); (*((data_copy)->c_u .c_p.cont))((data_copy)->c_u.c_p.cont_args, (vm_map_copy_t *) 0); (data_copy)->c_u.c_p.cont = (kern_return_t (*)()) 0 ; (data_copy)->c_u.c_p.cont_args = (char *) 0; }); | |||||
283 | ||||||
284 | if (IP_VALID(reply_to)(((&(reply_to)->ip_target.ipt_object) != ((ipc_object_t ) 0)) && ((&(reply_to)->ip_target.ipt_object) != ((ipc_object_t) -1)))) { | |||||
285 | memory_object_supply_completed( | |||||
286 | reply_to, reply_to_type, | |||||
287 | object->pager_request, | |||||
288 | original_offset, | |||||
289 | original_length, | |||||
290 | result, | |||||
291 | error_offset); | |||||
292 | } | |||||
293 | ||||||
294 | vm_object_deallocate(object); | |||||
295 | ||||||
296 | /* | |||||
297 | * Consume on success: The final data copy must be | |||||
298 | * be discarded if it is not the original. The original | |||||
299 | * gets discarded only if this routine succeeds. | |||||
300 | */ | |||||
301 | if (data_copy != orig_copy) | |||||
302 | vm_map_copy_discard(data_copy); | |||||
303 | if (result == KERN_SUCCESS0) | |||||
304 | vm_map_copy_discard(orig_copy); | |||||
305 | ||||||
306 | ||||||
307 | return(result); | |||||
308 | } | |||||
309 | ||||||
310 | ||||||
311 | /* | |||||
312 | * If successful, destroys the map copy object. | |||||
313 | */ | |||||
314 | kern_return_t memory_object_data_provided(object, offset, data, data_cnt, | |||||
315 | lock_value) | |||||
316 | vm_object_t object; | |||||
317 | vm_offset_t offset; | |||||
318 | pointer_t data; | |||||
319 | unsigned int data_cnt; | |||||
320 | vm_prot_t lock_value; | |||||
321 | { | |||||
322 | return memory_object_data_supply(object, offset, (vm_map_copy_t) data, | |||||
| ||||||
323 | data_cnt, lock_value, FALSE((boolean_t) 0), IP_NULL((ipc_port_t) ((ipc_object_t) 0)), | |||||
324 | 0); | |||||
325 | } | |||||
326 | ||||||
327 | ||||||
328 | kern_return_t memory_object_data_error(object, offset, size, error_value) | |||||
329 | vm_object_t object; | |||||
330 | vm_offset_t offset; | |||||
331 | vm_size_t size; | |||||
332 | kern_return_t error_value; | |||||
333 | { | |||||
334 | if (object == VM_OBJECT_NULL((vm_object_t) 0)) | |||||
335 | return(KERN_INVALID_ARGUMENT4); | |||||
336 | ||||||
337 | if (size != round_page(size)((vm_offset_t)((((vm_offset_t)(size)) + ((1 << 12)-1)) & ~((1 << 12)-1)))) | |||||
338 | return(KERN_INVALID_ARGUMENT4); | |||||
339 | ||||||
340 | vm_object_lock(object); | |||||
341 | offset -= object->paging_offset; | |||||
342 | ||||||
343 | while (size != 0) { | |||||
344 | register vm_page_t m; | |||||
345 | ||||||
346 | m = vm_page_lookup(object, offset); | |||||
347 | if ((m != VM_PAGE_NULL((vm_page_t) 0)) && m->busy && m->absent) { | |||||
348 | m->error = TRUE((boolean_t) 1); | |||||
349 | m->absent = FALSE((boolean_t) 0); | |||||
350 | vm_object_absent_release(object)({ (object)->absent_count--; ({ if (((object))->all_wanted & (1 << (3))) thread_wakeup_prim(((event_t)(((vm_offset_t ) (object)) + (3))), ((boolean_t) 0), 0); ((object))->all_wanted &= ~(1 << (3)); }); }); | |||||
351 | ||||||
352 | PAGE_WAKEUP_DONE(m)({ (m)->busy = ((boolean_t) 0); if ((m)->wanted) { (m)-> wanted = ((boolean_t) 0); thread_wakeup_prim((((event_t) m)), ((boolean_t) 0), 0); } }); | |||||
353 | ||||||
354 | vm_page_lock_queues(); | |||||
355 | vm_page_activate(m); | |||||
356 | vm_page_unlock_queues(); | |||||
357 | } | |||||
358 | ||||||
359 | size -= PAGE_SIZE(1 << 12); | |||||
360 | offset += PAGE_SIZE(1 << 12); | |||||
361 | } | |||||
362 | vm_object_unlock(object); | |||||
363 | ||||||
364 | vm_object_deallocate(object); | |||||
365 | return(KERN_SUCCESS0); | |||||
366 | } | |||||
367 | ||||||
368 | kern_return_t memory_object_data_unavailable(object, offset, size) | |||||
369 | vm_object_t object; | |||||
370 | vm_offset_t offset; | |||||
371 | vm_size_t size; | |||||
372 | { | |||||
373 | #if MACH_PAGEMAP1 | |||||
374 | vm_external_t existence_info = VM_EXTERNAL_NULL((vm_external_t) 0); | |||||
375 | #endif /* MACH_PAGEMAP */ | |||||
376 | ||||||
377 | if (object == VM_OBJECT_NULL((vm_object_t) 0)) | |||||
378 | return(KERN_INVALID_ARGUMENT4); | |||||
379 | ||||||
380 | if (size != round_page(size)((vm_offset_t)((((vm_offset_t)(size)) + ((1 << 12)-1)) & ~((1 << 12)-1)))) | |||||
381 | return(KERN_INVALID_ARGUMENT4); | |||||
382 | ||||||
383 | #if MACH_PAGEMAP1 | |||||
384 | if ((offset == 0) && (size > VM_EXTERNAL_LARGE_SIZE8192) && | |||||
385 | (object->existence_info == VM_EXTERNAL_NULL((vm_external_t) 0))) { | |||||
386 | existence_info = vm_external_create(VM_EXTERNAL_SMALL_SIZE128); | |||||
387 | } | |||||
388 | #endif /* MACH_PAGEMAP */ | |||||
389 | ||||||
390 | vm_object_lock(object); | |||||
391 | #if MACH_PAGEMAP1 | |||||
392 | if (existence_info != VM_EXTERNAL_NULL((vm_external_t) 0)) { | |||||
393 | object->existence_info = existence_info; | |||||
394 | } | |||||
395 | if ((offset == 0) && (size > VM_EXTERNAL_LARGE_SIZE8192)) { | |||||
396 | vm_object_unlock(object); | |||||
397 | vm_object_deallocate(object); | |||||
398 | return(KERN_SUCCESS0); | |||||
399 | } | |||||
400 | #endif /* MACH_PAGEMAP */ | |||||
401 | offset -= object->paging_offset; | |||||
402 | ||||||
403 | while (size != 0) { | |||||
404 | register vm_page_t m; | |||||
405 | ||||||
406 | /* | |||||
407 | * We're looking for pages that are both busy and | |||||
408 | * absent (waiting to be filled), converting them | |||||
409 | * to just absent. | |||||
410 | * | |||||
411 | * Pages that are just busy can be ignored entirely. | |||||
412 | */ | |||||
413 | ||||||
414 | m = vm_page_lookup(object, offset); | |||||
415 | if ((m != VM_PAGE_NULL((vm_page_t) 0)) && m->busy && m->absent) { | |||||
416 | PAGE_WAKEUP_DONE(m)({ (m)->busy = ((boolean_t) 0); if ((m)->wanted) { (m)-> wanted = ((boolean_t) 0); thread_wakeup_prim((((event_t) m)), ((boolean_t) 0), 0); } }); | |||||
417 | ||||||
418 | vm_page_lock_queues(); | |||||
419 | vm_page_activate(m); | |||||
420 | vm_page_unlock_queues(); | |||||
421 | } | |||||
422 | size -= PAGE_SIZE(1 << 12); | |||||
423 | offset += PAGE_SIZE(1 << 12); | |||||
424 | } | |||||
425 | ||||||
426 | vm_object_unlock(object); | |||||
427 | ||||||
428 | vm_object_deallocate(object); | |||||
429 | return(KERN_SUCCESS0); | |||||
430 | } | |||||
431 | ||||||
432 | /* | |||||
433 | * Routine: memory_object_lock_page | |||||
434 | * | |||||
435 | * Description: | |||||
436 | * Perform the appropriate lock operations on the | |||||
437 | * given page. See the description of | |||||
438 | * "memory_object_lock_request" for the meanings | |||||
439 | * of the arguments. | |||||
440 | * | |||||
441 | * Returns an indication that the operation | |||||
442 | * completed, blocked, or that the page must | |||||
443 | * be cleaned. | |||||
444 | */ | |||||
445 | ||||||
446 | #define MEMORY_OBJECT_LOCK_RESULT_DONE0 0 | |||||
447 | #define MEMORY_OBJECT_LOCK_RESULT_MUST_BLOCK1 1 | |||||
448 | #define MEMORY_OBJECT_LOCK_RESULT_MUST_CLEAN2 2 | |||||
449 | #define MEMORY_OBJECT_LOCK_RESULT_MUST_RETURN3 3 | |||||
450 | ||||||
451 | memory_object_lock_result_t memory_object_lock_page(m, should_return, | |||||
452 | should_flush, prot) | |||||
453 | vm_page_t m; | |||||
454 | memory_object_return_t should_return; | |||||
455 | boolean_t should_flush; | |||||
456 | vm_prot_t prot; | |||||
457 | { | |||||
458 | /* | |||||
459 | * Don't worry about pages for which the kernel | |||||
460 | * does not have any data. | |||||
461 | */ | |||||
462 | ||||||
463 | if (m->absent) | |||||
464 | return(MEMORY_OBJECT_LOCK_RESULT_DONE0); | |||||
465 | ||||||
466 | /* | |||||
467 | * If we cannot change access to the page, | |||||
468 | * either because a mapping is in progress | |||||
469 | * (busy page) or because a mapping has been | |||||
470 | * wired, then give up. | |||||
471 | */ | |||||
472 | ||||||
473 | if (m->busy) | |||||
474 | return(MEMORY_OBJECT_LOCK_RESULT_MUST_BLOCK1); | |||||
475 | ||||||
476 | assert(!m->fictitious)({ if (!(!m->fictitious)) Assert("!m->fictitious", "../vm/memory_object.c" , 476); }); | |||||
477 | ||||||
478 | if (m->wire_count != 0) { | |||||
479 | /* | |||||
480 | * If no change would take place | |||||
481 | * anyway, return successfully. | |||||
482 | * | |||||
483 | * No change means: | |||||
484 | * Not flushing AND | |||||
485 | * No change to page lock [2 checks] AND | |||||
486 | * Don't need to send page to manager | |||||
487 | * | |||||
488 | * Don't need to send page to manager means: | |||||
489 | * No clean or return request OR ( | |||||
490 | * Page is not dirty [2 checks] AND ( | |||||
491 | * Page is not precious OR | |||||
492 | * No request to return precious pages )) | |||||
493 | * | |||||
494 | * Now isn't that straightforward and obvious ?? ;-) | |||||
495 | * | |||||
496 | * XXX This doesn't handle sending a copy of a wired | |||||
497 | * XXX page to the pager, but that will require some | |||||
498 | * XXX significant surgery. | |||||
499 | */ | |||||
500 | ||||||
501 | if (!should_flush && | |||||
502 | ((m->page_lock == prot) || (prot == VM_PROT_NO_CHANGE((vm_prot_t) 0x08))) && | |||||
503 | ((should_return == MEMORY_OBJECT_RETURN_NONE0) || | |||||
504 | (!m->dirty && !pmap_is_modified(m->phys_addr) && | |||||
505 | (!m->precious || | |||||
506 | should_return != MEMORY_OBJECT_RETURN_ALL2)))) { | |||||
507 | /* | |||||
508 | * Restart page unlock requests, | |||||
509 | * even though no change took place. | |||||
510 | * [Memory managers may be expecting | |||||
511 | * to see new requests.] | |||||
512 | */ | |||||
513 | m->unlock_request = VM_PROT_NONE((vm_prot_t) 0x00); | |||||
514 | PAGE_WAKEUP(m)({ if ((m)->wanted) { (m)->wanted = ((boolean_t) 0); thread_wakeup_prim (((event_t) (m)), ((boolean_t) 0), 0); } }); | |||||
515 | ||||||
516 | return(MEMORY_OBJECT_LOCK_RESULT_DONE0); | |||||
517 | } | |||||
518 | ||||||
519 | return(MEMORY_OBJECT_LOCK_RESULT_MUST_BLOCK1); | |||||
520 | } | |||||
521 | ||||||
522 | /* | |||||
523 | * If the page is to be flushed, allow | |||||
524 | * that to be done as part of the protection. | |||||
525 | */ | |||||
526 | ||||||
527 | if (should_flush) | |||||
528 | prot = VM_PROT_ALL(((vm_prot_t) 0x01)|((vm_prot_t) 0x02)|((vm_prot_t) 0x04)); | |||||
529 | ||||||
530 | /* | |||||
531 | * Set the page lock. | |||||
532 | * | |||||
533 | * If we are decreasing permission, do it now; | |||||
534 | * let the fault handler take care of increases | |||||
535 | * (pmap_page_protect may not increase protection). | |||||
536 | */ | |||||
537 | ||||||
538 | if (prot != VM_PROT_NO_CHANGE((vm_prot_t) 0x08)) { | |||||
539 | if ((m->page_lock ^ prot) & prot) { | |||||
540 | pmap_page_protect(m->phys_addr, VM_PROT_ALL(((vm_prot_t) 0x01)|((vm_prot_t) 0x02)|((vm_prot_t) 0x04)) & ~prot); | |||||
541 | } | |||||
542 | m->page_lock = prot; | |||||
543 | ||||||
544 | /* | |||||
545 | * Restart any past unlock requests, even if no | |||||
546 | * change resulted. If the manager explicitly | |||||
547 | * requested no protection change, then it is assumed | |||||
548 | * to be remembering past requests. | |||||
549 | */ | |||||
550 | ||||||
551 | m->unlock_request = VM_PROT_NONE((vm_prot_t) 0x00); | |||||
552 | PAGE_WAKEUP(m)({ if ((m)->wanted) { (m)->wanted = ((boolean_t) 0); thread_wakeup_prim (((event_t) (m)), ((boolean_t) 0), 0); } }); | |||||
553 | } | |||||
554 | ||||||
555 | /* | |||||
556 | * Handle cleaning. | |||||
557 | */ | |||||
558 | ||||||
559 | if (should_return != MEMORY_OBJECT_RETURN_NONE0) { | |||||
560 | /* | |||||
561 | * Check whether the page is dirty. If | |||||
562 | * write permission has not been removed, | |||||
563 | * this may have unpredictable results. | |||||
564 | */ | |||||
565 | ||||||
566 | if (!m->dirty) | |||||
567 | m->dirty = pmap_is_modified(m->phys_addr); | |||||
568 | ||||||
569 | if (m->dirty || (m->precious && | |||||
570 | should_return == MEMORY_OBJECT_RETURN_ALL2)) { | |||||
571 | /* | |||||
572 | * If we weren't planning | |||||
573 | * to flush the page anyway, | |||||
574 | * we may need to remove the | |||||
575 | * page from the pageout | |||||
576 | * system and from physical | |||||
577 | * maps now. | |||||
578 | */ | |||||
579 | ||||||
580 | vm_page_lock_queues(); | |||||
581 | VM_PAGE_QUEUES_REMOVE(m)({ if (m->active) { { register queue_entry_t next, prev; next = (m)->pageq.next; prev = (m)->pageq.prev; if ((&vm_page_queue_active ) == next) (&vm_page_queue_active)->prev = prev; else ( (vm_page_t)next)->pageq.prev = prev; if ((&vm_page_queue_active ) == prev) (&vm_page_queue_active)->next = next; else ( (vm_page_t)prev)->pageq.next = next; }; m->active = ((boolean_t ) 0); vm_page_active_count--; } if (m->inactive) { { register queue_entry_t next, prev; next = (m)->pageq.next; prev = ( m)->pageq.prev; if ((&vm_page_queue_inactive) == next) (&vm_page_queue_inactive)->prev = prev; else ((vm_page_t )next)->pageq.prev = prev; if ((&vm_page_queue_inactive ) == prev) (&vm_page_queue_inactive)->next = next; else ((vm_page_t)prev)->pageq.next = next; }; m->inactive = ((boolean_t) 0); vm_page_inactive_count--; } }); | |||||
582 | vm_page_unlock_queues(); | |||||
583 | ||||||
584 | if (!should_flush) | |||||
585 | pmap_page_protect(m->phys_addr, | |||||
586 | VM_PROT_NONE((vm_prot_t) 0x00)); | |||||
587 | ||||||
588 | /* | |||||
589 | * Cleaning a page will cause | |||||
590 | * it to be flushed. | |||||
591 | */ | |||||
592 | ||||||
593 | if (m->dirty) | |||||
594 | return(MEMORY_OBJECT_LOCK_RESULT_MUST_CLEAN2); | |||||
595 | else | |||||
596 | return(MEMORY_OBJECT_LOCK_RESULT_MUST_RETURN3); | |||||
597 | } | |||||
598 | } | |||||
599 | ||||||
600 | /* | |||||
601 | * Handle flushing | |||||
602 | */ | |||||
603 | ||||||
604 | if (should_flush) { | |||||
605 | VM_PAGE_FREE(m)({ ; vm_page_free(m); ; }); | |||||
606 | } else { | |||||
607 | extern boolean_t vm_page_deactivate_hint; | |||||
608 | ||||||
609 | /* | |||||
610 | * XXX Make clean but not flush a paging hint, | |||||
611 | * and deactivate the pages. This is a hack | |||||
612 | * because it overloads flush/clean with | |||||
613 | * implementation-dependent meaning. This only | |||||
614 | * happens to pages that are already clean. | |||||
615 | */ | |||||
616 | ||||||
617 | if (vm_page_deactivate_hint && | |||||
618 | (should_return != MEMORY_OBJECT_RETURN_NONE0)) { | |||||
619 | vm_page_lock_queues(); | |||||
620 | vm_page_deactivate(m); | |||||
621 | vm_page_unlock_queues(); | |||||
622 | } | |||||
623 | } | |||||
624 | ||||||
625 | return(MEMORY_OBJECT_LOCK_RESULT_DONE0); | |||||
626 | } | |||||
627 | ||||||
628 | /* | |||||
629 | * Routine: memory_object_lock_request [user interface] | |||||
630 | * | |||||
631 | * Description: | |||||
632 | * Control use of the data associated with the given | |||||
633 | * memory object. For each page in the given range, | |||||
634 | * perform the following operations, in order: | |||||
635 | * 1) restrict access to the page (disallow | |||||
636 | * forms specified by "prot"); | |||||
637 | * 2) return data to the manager (if "should_return" | |||||
638 | * is RETURN_DIRTY and the page is dirty, or | |||||
639 | * "should_return" is RETURN_ALL and the page | |||||
640 | * is either dirty or precious); and, | |||||
641 | * 3) flush the cached copy (if "should_flush" | |||||
642 | * is asserted). | |||||
643 | * The set of pages is defined by a starting offset | |||||
644 | * ("offset") and size ("size"). Only pages with the | |||||
645 | * same page alignment as the starting offset are | |||||
646 | * considered. | |||||
647 | * | |||||
648 | * A single acknowledgement is sent (to the "reply_to" | |||||
649 | * port) when these actions are complete. If successful, | |||||
650 | * the naked send right for reply_to is consumed. | |||||
651 | */ | |||||
652 | ||||||
653 | kern_return_t | |||||
654 | memory_object_lock_request(object, offset, size, | |||||
655 | should_return, should_flush, prot, | |||||
656 | reply_to, reply_to_type) | |||||
657 | register vm_object_t object; | |||||
658 | register vm_offset_t offset; | |||||
659 | register vm_size_t size; | |||||
660 | memory_object_return_t should_return; | |||||
661 | boolean_t should_flush; | |||||
662 | vm_prot_t prot; | |||||
663 | ipc_port_t reply_to; | |||||
664 | mach_msg_type_name_t reply_to_type; | |||||
665 | { | |||||
666 | register vm_page_t m; | |||||
667 | vm_offset_t original_offset = offset; | |||||
668 | vm_size_t original_size = size; | |||||
669 | vm_offset_t paging_offset = 0; | |||||
670 | vm_object_t new_object = VM_OBJECT_NULL((vm_object_t) 0); | |||||
671 | vm_offset_t new_offset = 0; | |||||
672 | vm_offset_t last_offset = offset; | |||||
673 | int page_lock_result; | |||||
674 | int pageout_action = 0; /* '=0' to quiet lint */ | |||||
675 | ||||||
676 | #define DATA_WRITE_MAX32 32 | |||||
677 | vm_page_t holding_pages[DATA_WRITE_MAX32]; | |||||
678 | ||||||
679 | /* | |||||
680 | * Check for bogus arguments. | |||||
681 | */ | |||||
682 | if (object == VM_OBJECT_NULL((vm_object_t) 0) || | |||||
683 | ((prot & ~VM_PROT_ALL(((vm_prot_t) 0x01)|((vm_prot_t) 0x02)|((vm_prot_t) 0x04))) != 0 && prot != VM_PROT_NO_CHANGE((vm_prot_t) 0x08))) | |||||
684 | return (KERN_INVALID_ARGUMENT4); | |||||
685 | ||||||
686 | size = round_page(size)((vm_offset_t)((((vm_offset_t)(size)) + ((1 << 12)-1)) & ~((1 << 12)-1))); | |||||
687 | ||||||
688 | /* | |||||
689 | * Lock the object, and acquire a paging reference to | |||||
690 | * prevent the memory_object and control ports from | |||||
691 | * being destroyed. | |||||
692 | */ | |||||
693 | ||||||
694 | vm_object_lock(object); | |||||
695 | vm_object_paging_begin(object)((object)->paging_in_progress++); | |||||
696 | offset -= object->paging_offset; | |||||
697 | ||||||
698 | /* | |||||
699 | * To avoid blocking while scanning for pages, save | |||||
700 | * dirty pages to be cleaned all at once. | |||||
701 | * | |||||
702 | * XXXO A similar strategy could be used to limit the | |||||
703 | * number of times that a scan must be restarted for | |||||
704 | * other reasons. Those pages that would require blocking | |||||
705 | * could be temporarily collected in another list, or | |||||
706 | * their offsets could be recorded in a small array. | |||||
707 | */ | |||||
708 | ||||||
709 | /* | |||||
710 | * XXX NOTE: May want to consider converting this to a page list | |||||
711 | * XXX vm_map_copy interface. Need to understand object | |||||
712 | * XXX coalescing implications before doing so. | |||||
713 | */ | |||||
714 | ||||||
715 | #define PAGEOUT_PAGES({ vm_map_copy_t copy; register int i; register vm_page_t hp; ; (void) vm_map_copyin_object(new_object, 0, new_offset, & copy); if (object->use_old_pageout) { ({ if (!(pageout_action == 2)) Assert("pageout_action == MEMORY_OBJECT_LOCK_RESULT_MUST_CLEAN" , "../vm/memory_object.c", 715); }); (void) memory_object_data_write ( object->pager, object->pager_request, paging_offset, ( pointer_t) copy, new_offset); } else { (void) memory_object_data_return ( object->pager, object->pager_request, paging_offset, ( pointer_t) copy, new_offset, (pageout_action == 2), !should_flush ); } ; for (i = 0; i < (((vm_size_t)(new_offset)) >> 12); i++) { hp = holding_pages[i]; if (hp != ((vm_page_t) 0) ) ({ ; vm_page_free(hp); ; }); } new_object = ((vm_object_t) 0 ); }) \({ | |||||
716 | MACRO_BEGIN({ \ | |||||
717 | vm_map_copy_t copy; \ | |||||
718 | register int i; \ | |||||
719 | register vm_page_t hp; \ | |||||
720 | \ | |||||
721 | vm_object_unlock(object); \ | |||||
722 | \ | |||||
723 | (void) vm_map_copyin_object(new_object, 0, new_offset, ©); \ | |||||
724 | \ | |||||
725 | if (object->use_old_pageout) { \ | |||||
726 | assert(pageout_action == MEMORY_OBJECT_LOCK_RESULT_MUST_CLEAN)({ if (!(pageout_action == 2)) Assert("pageout_action == MEMORY_OBJECT_LOCK_RESULT_MUST_CLEAN" , "../vm/memory_object.c", 726); }); \ | |||||
727 | (void) memory_object_data_write( \ | |||||
728 | object->pager, \ | |||||
729 | object->pager_request, \ | |||||
730 | paging_offset, \ | |||||
731 | (pointer_t) copy, \ | |||||
732 | new_offset); \ | |||||
733 | } \ | |||||
734 | else { \ | |||||
735 | (void) memory_object_data_return( \ | |||||
736 | object->pager, \ | |||||
737 | object->pager_request, \ | |||||
738 | paging_offset, \ | |||||
739 | (pointer_t) copy, \ | |||||
740 | new_offset, \ | |||||
741 | (pageout_action == MEMORY_OBJECT_LOCK_RESULT_MUST_CLEAN2), \ | |||||
742 | !should_flush); \ | |||||
743 | } \ | |||||
744 | \ | |||||
745 | vm_object_lock(object); \ | |||||
746 | \ | |||||
747 | for (i = 0; i < atop(new_offset)(((vm_size_t)(new_offset)) >> 12); i++) { \ | |||||
748 | hp = holding_pages[i]; \ | |||||
749 | if (hp != VM_PAGE_NULL((vm_page_t) 0)) \ | |||||
750 | VM_PAGE_FREE(hp)({ ; vm_page_free(hp); ; }); \ | |||||
751 | } \ | |||||
752 | \ | |||||
753 | new_object = VM_OBJECT_NULL((vm_object_t) 0); \}) | |||||
754 | MACRO_END}) | |||||
755 | ||||||
756 | for (; | |||||
757 | size != 0; | |||||
758 | size -= PAGE_SIZE(1 << 12), offset += PAGE_SIZE(1 << 12)) | |||||
759 | { | |||||
760 | /* | |||||
761 | * Limit the number of pages to be cleaned at once. | |||||
762 | */ | |||||
763 | if (new_object != VM_OBJECT_NULL((vm_object_t) 0) && | |||||
764 | new_offset >= PAGE_SIZE(1 << 12) * DATA_WRITE_MAX32) | |||||
765 | { | |||||
766 | PAGEOUT_PAGES({ vm_map_copy_t copy; register int i; register vm_page_t hp; ; (void) vm_map_copyin_object(new_object, 0, new_offset, & copy); if (object->use_old_pageout) { ({ if (!(pageout_action == 2)) Assert("pageout_action == MEMORY_OBJECT_LOCK_RESULT_MUST_CLEAN" , "../vm/memory_object.c", 766); }); (void) memory_object_data_write ( object->pager, object->pager_request, paging_offset, ( pointer_t) copy, new_offset); } else { (void) memory_object_data_return ( object->pager, object->pager_request, paging_offset, ( pointer_t) copy, new_offset, (pageout_action == 2), !should_flush ); } ; for (i = 0; i < (((vm_size_t)(new_offset)) >> 12); i++) { hp = holding_pages[i]; if (hp != ((vm_page_t) 0) ) ({ ; vm_page_free(hp); ; }); } new_object = ((vm_object_t) 0 ); }); | |||||
767 | } | |||||
768 | ||||||
769 | while ((m = vm_page_lookup(object, offset)) != VM_PAGE_NULL((vm_page_t) 0)) { | |||||
770 | switch ((page_lock_result = memory_object_lock_page(m, | |||||
771 | should_return, | |||||
772 | should_flush, | |||||
773 | prot))) | |||||
774 | { | |||||
775 | case MEMORY_OBJECT_LOCK_RESULT_DONE0: | |||||
776 | /* | |||||
777 | * End of a cluster of dirty pages. | |||||
778 | */ | |||||
779 | if (new_object != VM_OBJECT_NULL((vm_object_t) 0)) { | |||||
780 | PAGEOUT_PAGES({ vm_map_copy_t copy; register int i; register vm_page_t hp; ; (void) vm_map_copyin_object(new_object, 0, new_offset, & copy); if (object->use_old_pageout) { ({ if (!(pageout_action == 2)) Assert("pageout_action == MEMORY_OBJECT_LOCK_RESULT_MUST_CLEAN" , "../vm/memory_object.c", 780); }); (void) memory_object_data_write ( object->pager, object->pager_request, paging_offset, ( pointer_t) copy, new_offset); } else { (void) memory_object_data_return ( object->pager, object->pager_request, paging_offset, ( pointer_t) copy, new_offset, (pageout_action == 2), !should_flush ); } ; for (i = 0; i < (((vm_size_t)(new_offset)) >> 12); i++) { hp = holding_pages[i]; if (hp != ((vm_page_t) 0) ) ({ ; vm_page_free(hp); ; }); } new_object = ((vm_object_t) 0 ); }); | |||||
781 | continue; | |||||
782 | } | |||||
783 | break; | |||||
784 | ||||||
785 | case MEMORY_OBJECT_LOCK_RESULT_MUST_BLOCK1: | |||||
786 | /* | |||||
787 | * Since it is necessary to block, | |||||
788 | * clean any dirty pages now. | |||||
789 | */ | |||||
790 | if (new_object != VM_OBJECT_NULL((vm_object_t) 0)) { | |||||
791 | PAGEOUT_PAGES({ vm_map_copy_t copy; register int i; register vm_page_t hp; ; (void) vm_map_copyin_object(new_object, 0, new_offset, & copy); if (object->use_old_pageout) { ({ if (!(pageout_action == 2)) Assert("pageout_action == MEMORY_OBJECT_LOCK_RESULT_MUST_CLEAN" , "../vm/memory_object.c", 791); }); (void) memory_object_data_write ( object->pager, object->pager_request, paging_offset, ( pointer_t) copy, new_offset); } else { (void) memory_object_data_return ( object->pager, object->pager_request, paging_offset, ( pointer_t) copy, new_offset, (pageout_action == 2), !should_flush ); } ; for (i = 0; i < (((vm_size_t)(new_offset)) >> 12); i++) { hp = holding_pages[i]; if (hp != ((vm_page_t) 0) ) ({ ; vm_page_free(hp); ; }); } new_object = ((vm_object_t) 0 ); }); | |||||
792 | continue; | |||||
793 | } | |||||
794 | ||||||
795 | PAGE_ASSERT_WAIT(m, FALSE)({ (m)->wanted = ((boolean_t) 1); assert_wait((event_t) (m ), (((boolean_t) 0))); }); | |||||
796 | vm_object_unlock(object); | |||||
797 | thread_block((void (*)()) 0); | |||||
798 | vm_object_lock(object); | |||||
799 | continue; | |||||
800 | ||||||
801 | case MEMORY_OBJECT_LOCK_RESULT_MUST_CLEAN2: | |||||
802 | case MEMORY_OBJECT_LOCK_RESULT_MUST_RETURN3: | |||||
803 | /* | |||||
804 | * The clean and return cases are similar. | |||||
805 | * | |||||
806 | * Mark the page busy since we unlock the | |||||
807 | * object below. | |||||
808 | */ | |||||
809 | m->busy = TRUE((boolean_t) 1); | |||||
810 | ||||||
811 | /* | |||||
812 | * if this would form a discontiguous block, | |||||
813 | * clean the old pages and start anew. | |||||
814 | * | |||||
815 | * NOTE: The first time through here, new_object | |||||
816 | * is null, hiding the fact that pageout_action | |||||
817 | * is not initialized. | |||||
818 | */ | |||||
819 | if (new_object != VM_OBJECT_NULL((vm_object_t) 0) && | |||||
820 | (last_offset != offset || | |||||
821 | pageout_action != page_lock_result)) { | |||||
822 | PAGEOUT_PAGES({ vm_map_copy_t copy; register int i; register vm_page_t hp; ; (void) vm_map_copyin_object(new_object, 0, new_offset, & copy); if (object->use_old_pageout) { ({ if (!(pageout_action == 2)) Assert("pageout_action == MEMORY_OBJECT_LOCK_RESULT_MUST_CLEAN" , "../vm/memory_object.c", 822); }); (void) memory_object_data_write ( object->pager, object->pager_request, paging_offset, ( pointer_t) copy, new_offset); } else { (void) memory_object_data_return ( object->pager, object->pager_request, paging_offset, ( pointer_t) copy, new_offset, (pageout_action == 2), !should_flush ); } ; for (i = 0; i < (((vm_size_t)(new_offset)) >> 12); i++) { hp = holding_pages[i]; if (hp != ((vm_page_t) 0) ) ({ ; vm_page_free(hp); ; }); } new_object = ((vm_object_t) 0 ); }); | |||||
823 | } | |||||
824 | ||||||
825 | vm_object_unlock(object); | |||||
826 | ||||||
827 | /* | |||||
828 | * If we have not already allocated an object | |||||
829 | * for a range of pages to be written, do so | |||||
830 | * now. | |||||
831 | */ | |||||
832 | if (new_object == VM_OBJECT_NULL((vm_object_t) 0)) { | |||||
833 | new_object = vm_object_allocate(original_size); | |||||
834 | new_offset = 0; | |||||
835 | paging_offset = m->offset + | |||||
836 | object->paging_offset; | |||||
837 | pageout_action = page_lock_result; | |||||
838 | } | |||||
839 | ||||||
840 | /* | |||||
841 | * Move or copy the dirty page into the | |||||
842 | * new object. | |||||
843 | */ | |||||
844 | m = vm_pageout_setup(m, | |||||
845 | m->offset + object->paging_offset, | |||||
846 | new_object, | |||||
847 | new_offset, | |||||
848 | should_flush); | |||||
849 | ||||||
850 | /* | |||||
851 | * Save the holding page if there is one. | |||||
852 | */ | |||||
853 | holding_pages[atop(new_offset)(((vm_size_t)(new_offset)) >> 12)] = m; | |||||
854 | new_offset += PAGE_SIZE(1 << 12); | |||||
855 | last_offset = offset + PAGE_SIZE(1 << 12); | |||||
856 | ||||||
857 | vm_object_lock(object); | |||||
858 | break; | |||||
859 | } | |||||
860 | break; | |||||
861 | } | |||||
862 | } | |||||
863 | ||||||
864 | /* | |||||
865 | * We have completed the scan for applicable pages. | |||||
866 | * Clean any pages that have been saved. | |||||
867 | */ | |||||
868 | if (new_object != VM_OBJECT_NULL((vm_object_t) 0)) { | |||||
869 | PAGEOUT_PAGES({ vm_map_copy_t copy; register int i; register vm_page_t hp; ; (void) vm_map_copyin_object(new_object, 0, new_offset, & copy); if (object->use_old_pageout) { ({ if (!(pageout_action == 2)) Assert("pageout_action == MEMORY_OBJECT_LOCK_RESULT_MUST_CLEAN" , "../vm/memory_object.c", 869); }); (void) memory_object_data_write ( object->pager, object->pager_request, paging_offset, ( pointer_t) copy, new_offset); } else { (void) memory_object_data_return ( object->pager, object->pager_request, paging_offset, ( pointer_t) copy, new_offset, (pageout_action == 2), !should_flush ); } ; for (i = 0; i < (((vm_size_t)(new_offset)) >> 12); i++) { hp = holding_pages[i]; if (hp != ((vm_page_t) 0) ) ({ ; vm_page_free(hp); ; }); } new_object = ((vm_object_t) 0 ); }); | |||||
870 | } | |||||
871 | ||||||
872 | if (IP_VALID(reply_to)(((&(reply_to)->ip_target.ipt_object) != ((ipc_object_t ) 0)) && ((&(reply_to)->ip_target.ipt_object) != ((ipc_object_t) -1)))) { | |||||
873 | vm_object_unlock(object); | |||||
874 | ||||||
875 | /* consumes our naked send-once/send right for reply_to */ | |||||
876 | (void) memory_object_lock_completed(reply_to, reply_to_type, | |||||
877 | object->pager_request, original_offset, original_size); | |||||
878 | ||||||
879 | vm_object_lock(object); | |||||
880 | } | |||||
881 | ||||||
882 | vm_object_paging_end(object)({ ({ if (!((object)->paging_in_progress != 0)) Assert("(object)->paging_in_progress != 0" , "../vm/memory_object.c", 882); }); if (--(object)->paging_in_progress == 0) { ({ if ((object)->all_wanted & (1 << (2) )) thread_wakeup_prim(((event_t)(((vm_offset_t) object) + (2) )), ((boolean_t) 0), 0); (object)->all_wanted &= ~(1 << (2)); }); } }); | |||||
883 | vm_object_unlock(object); | |||||
884 | vm_object_deallocate(object); | |||||
885 | ||||||
886 | return (KERN_SUCCESS0); | |||||
887 | } | |||||
888 | ||||||
889 | kern_return_t | |||||
890 | memory_object_set_attributes_common(object, object_ready, may_cache, | |||||
891 | copy_strategy, use_old_pageout) | |||||
892 | vm_object_t object; | |||||
893 | boolean_t object_ready; | |||||
894 | boolean_t may_cache; | |||||
895 | memory_object_copy_strategy_t copy_strategy; | |||||
896 | boolean_t use_old_pageout; | |||||
897 | { | |||||
898 | if (object == VM_OBJECT_NULL((vm_object_t) 0)) | |||||
899 | return(KERN_INVALID_ARGUMENT4); | |||||
900 | ||||||
901 | /* | |||||
902 | * Verify the attributes of importance | |||||
903 | */ | |||||
904 | ||||||
905 | switch(copy_strategy) { | |||||
906 | case MEMORY_OBJECT_COPY_NONE0: | |||||
907 | case MEMORY_OBJECT_COPY_CALL1: | |||||
908 | case MEMORY_OBJECT_COPY_DELAY2: | |||||
909 | case MEMORY_OBJECT_COPY_TEMPORARY3: | |||||
910 | break; | |||||
911 | default: | |||||
912 | vm_object_deallocate(object); | |||||
913 | return(KERN_INVALID_ARGUMENT4); | |||||
914 | } | |||||
915 | ||||||
916 | if (object_ready) | |||||
917 | object_ready = TRUE((boolean_t) 1); | |||||
918 | if (may_cache) | |||||
919 | may_cache = TRUE((boolean_t) 1); | |||||
920 | ||||||
921 | vm_object_lock(object); | |||||
922 | ||||||
923 | /* | |||||
924 | * Wake up anyone waiting for the ready attribute | |||||
925 | * to become asserted. | |||||
926 | */ | |||||
927 | ||||||
928 | if (object_ready && !object->pager_ready) { | |||||
929 | object->use_old_pageout = use_old_pageout; | |||||
930 | vm_object_wakeup(object, VM_OBJECT_EVENT_PAGER_READY)({ if ((object)->all_wanted & (1 << (1))) thread_wakeup_prim (((event_t)(((vm_offset_t) object) + (1))), ((boolean_t) 0), 0 ); (object)->all_wanted &= ~(1 << (1)); }); | |||||
931 | } | |||||
932 | ||||||
933 | /* | |||||
934 | * Copy the attributes | |||||
935 | */ | |||||
936 | ||||||
937 | object->can_persist = may_cache; | |||||
938 | object->pager_ready = object_ready; | |||||
939 | if (copy_strategy == MEMORY_OBJECT_COPY_TEMPORARY3) { | |||||
940 | object->temporary = TRUE((boolean_t) 1); | |||||
941 | } else { | |||||
942 | object->copy_strategy = copy_strategy; | |||||
943 | } | |||||
944 | ||||||
945 | vm_object_unlock(object); | |||||
946 | ||||||
947 | vm_object_deallocate(object); | |||||
948 | ||||||
949 | return(KERN_SUCCESS0); | |||||
950 | } | |||||
951 | ||||||
952 | /* | |||||
953 | * XXX rpd claims that reply_to could be obviated in favor of a client | |||||
954 | * XXX stub that made change_attributes an RPC. Need investigation. | |||||
955 | */ | |||||
956 | ||||||
957 | kern_return_t memory_object_change_attributes(object, may_cache, | |||||
958 | copy_strategy, reply_to, reply_to_type) | |||||
959 | vm_object_t object; | |||||
960 | boolean_t may_cache; | |||||
961 | memory_object_copy_strategy_t copy_strategy; | |||||
962 | ipc_port_t reply_to; | |||||
963 | mach_msg_type_name_t reply_to_type; | |||||
964 | { | |||||
965 | kern_return_t result; | |||||
966 | ||||||
967 | /* | |||||
968 | * Do the work and throw away our object reference. It | |||||
969 | * is important that the object reference be deallocated | |||||
970 | * BEFORE sending the reply. The whole point of the reply | |||||
971 | * is that it shows up after the terminate message that | |||||
972 | * may be generated by setting the object uncacheable. | |||||
973 | * | |||||
974 | * XXX may_cache may become a tri-valued variable to handle | |||||
975 | * XXX uncache if not in use. | |||||
976 | */ | |||||
977 | result = memory_object_set_attributes_common(object, TRUE((boolean_t) 1), | |||||
978 | may_cache, copy_strategy, | |||||
979 | FALSE((boolean_t) 0)); | |||||
980 | ||||||
981 | if (IP_VALID(reply_to)(((&(reply_to)->ip_target.ipt_object) != ((ipc_object_t ) 0)) && ((&(reply_to)->ip_target.ipt_object) != ((ipc_object_t) -1)))) { | |||||
982 | ||||||
983 | /* consumes our naked send-once/send right for reply_to */ | |||||
984 | (void) memory_object_change_completed(reply_to, reply_to_type, | |||||
985 | may_cache, copy_strategy); | |||||
986 | ||||||
987 | } | |||||
988 | ||||||
989 | return(result); | |||||
990 | } | |||||
991 | ||||||
992 | kern_return_t | |||||
993 | memory_object_set_attributes(object, object_ready, may_cache, copy_strategy) | |||||
994 | vm_object_t object; | |||||
995 | boolean_t object_ready; | |||||
996 | boolean_t may_cache; | |||||
997 | memory_object_copy_strategy_t copy_strategy; | |||||
998 | { | |||||
999 | return memory_object_set_attributes_common(object, object_ready, | |||||
1000 | may_cache, copy_strategy, | |||||
1001 | TRUE((boolean_t) 1)); | |||||
1002 | } | |||||
1003 | ||||||
1004 | kern_return_t memory_object_ready(object, may_cache, copy_strategy) | |||||
1005 | vm_object_t object; | |||||
1006 | boolean_t may_cache; | |||||
1007 | memory_object_copy_strategy_t copy_strategy; | |||||
1008 | { | |||||
1009 | return memory_object_set_attributes_common(object, TRUE((boolean_t) 1), | |||||
1010 | may_cache, copy_strategy, | |||||
1011 | FALSE((boolean_t) 0)); | |||||
1012 | } | |||||
1013 | ||||||
1014 | kern_return_t memory_object_get_attributes(object, object_ready, | |||||
1015 | may_cache, copy_strategy) | |||||
1016 | vm_object_t object; | |||||
1017 | boolean_t *object_ready; | |||||
1018 | boolean_t *may_cache; | |||||
1019 | memory_object_copy_strategy_t *copy_strategy; | |||||
1020 | { | |||||
1021 | if (object == VM_OBJECT_NULL((vm_object_t) 0)) | |||||
1022 | return(KERN_INVALID_ARGUMENT4); | |||||
1023 | ||||||
1024 | vm_object_lock(object); | |||||
1025 | *may_cache = object->can_persist; | |||||
1026 | *object_ready = object->pager_ready; | |||||
1027 | *copy_strategy = object->copy_strategy; | |||||
1028 | vm_object_unlock(object); | |||||
1029 | ||||||
1030 | vm_object_deallocate(object); | |||||
1031 | ||||||
1032 | return(KERN_SUCCESS0); | |||||
1033 | } | |||||
1034 | ||||||
1035 | /* | |||||
1036 | * If successful, consumes the supplied naked send right. | |||||
1037 | */ | |||||
1038 | kern_return_t vm_set_default_memory_manager(host, default_manager) | |||||
1039 | host_t host; | |||||
1040 | ipc_port_t *default_manager; | |||||
1041 | { | |||||
1042 | ipc_port_t current_manager; | |||||
1043 | ipc_port_t new_manager; | |||||
1044 | ipc_port_t returned_manager; | |||||
1045 | ||||||
1046 | if (host == HOST_NULL((host_t)0)) | |||||
1047 | return(KERN_INVALID_HOST22); | |||||
1048 | ||||||
1049 | new_manager = *default_manager; | |||||
1050 | simple_lock(&memory_manager_default_lock); | |||||
1051 | current_manager = memory_manager_default; | |||||
1052 | ||||||
1053 | if (new_manager == IP_NULL((ipc_port_t) ((ipc_object_t) 0))) { | |||||
1054 | /* | |||||
1055 | * Retrieve the current value. | |||||
1056 | */ | |||||
1057 | ||||||
1058 | returned_manager = ipc_port_copy_send(current_manager); | |||||
1059 | } else { | |||||
1060 | /* | |||||
1061 | * Retrieve the current value, | |||||
1062 | * and replace it with the supplied value. | |||||
1063 | * We consume the supplied naked send right. | |||||
1064 | */ | |||||
1065 | ||||||
1066 | returned_manager = current_manager; | |||||
1067 | memory_manager_default = new_manager; | |||||
1068 | ||||||
1069 | /* | |||||
1070 | * In case anyone's been waiting for a memory | |||||
1071 | * manager to be established, wake them up. | |||||
1072 | */ | |||||
1073 | ||||||
1074 | thread_wakeup((event_t) &memory_manager_default)thread_wakeup_prim(((event_t) &memory_manager_default), ( (boolean_t) 0), 0); | |||||
1075 | } | |||||
1076 | ||||||
1077 | simple_unlock(&memory_manager_default_lock); | |||||
1078 | ||||||
1079 | *default_manager = returned_manager; | |||||
1080 | return(KERN_SUCCESS0); | |||||
1081 | } | |||||
1082 | ||||||
1083 | /* | |||||
1084 | * Routine: memory_manager_default_reference | |||||
1085 | * Purpose: | |||||
1086 | * Returns a naked send right for the default | |||||
1087 | * memory manager. The returned right is always | |||||
1088 | * valid (not IP_NULL or IP_DEAD). | |||||
1089 | */ | |||||
1090 | ||||||
1091 | ipc_port_t memory_manager_default_reference(void) | |||||
1092 | { | |||||
1093 | ipc_port_t current_manager; | |||||
1094 | ||||||
1095 | simple_lock(&memory_manager_default_lock); | |||||
1096 | ||||||
1097 | while (current_manager = ipc_port_copy_send(memory_manager_default), | |||||
1098 | !IP_VALID(current_manager)(((&(current_manager)->ip_target.ipt_object) != ((ipc_object_t ) 0)) && ((&(current_manager)->ip_target.ipt_object ) != ((ipc_object_t) -1)))) { | |||||
1099 | thread_sleep((event_t) &memory_manager_default, | |||||
1100 | simple_lock_addr(memory_manager_default_lock)((simple_lock_t)0), | |||||
1101 | FALSE((boolean_t) 0)); | |||||
1102 | simple_lock(&memory_manager_default_lock); | |||||
1103 | } | |||||
1104 | ||||||
1105 | simple_unlock(&memory_manager_default_lock); | |||||
1106 | ||||||
1107 | return current_manager; | |||||
1108 | } | |||||
1109 | ||||||
1110 | /* | |||||
1111 | * Routine: memory_manager_default_port | |||||
1112 | * Purpose: | |||||
1113 | * Returns true if the receiver for the port | |||||
1114 | * is the default memory manager. | |||||
1115 | * | |||||
1116 | * This is a hack to let ds_read_done | |||||
1117 | * know when it should keep memory wired. | |||||
1118 | */ | |||||
1119 | ||||||
1120 | boolean_t memory_manager_default_port(port) | |||||
1121 | ipc_port_t port; | |||||
1122 | { | |||||
1123 | ipc_port_t current; | |||||
1124 | boolean_t result; | |||||
1125 | ||||||
1126 | simple_lock(&memory_manager_default_lock); | |||||
1127 | current = memory_manager_default; | |||||
1128 | if (IP_VALID(current)(((&(current)->ip_target.ipt_object) != ((ipc_object_t ) 0)) && ((&(current)->ip_target.ipt_object) != ((ipc_object_t) -1)))) { | |||||
1129 | /* | |||||
1130 | * There is no point in bothering to lock | |||||
1131 | * both ports, which would be painful to do. | |||||
1132 | * If the receive rights are moving around, | |||||
1133 | * we might be inaccurate. | |||||
1134 | */ | |||||
1135 | ||||||
1136 | result = port->ip_receiverdata.receiver == current->ip_receiverdata.receiver; | |||||
1137 | } else | |||||
1138 | result = FALSE((boolean_t) 0); | |||||
1139 | simple_unlock(&memory_manager_default_lock); | |||||
1140 | ||||||
1141 | return result; | |||||
1142 | } | |||||
1143 | ||||||
1144 | void memory_manager_default_init(void) | |||||
1145 | { | |||||
1146 | memory_manager_default = IP_NULL((ipc_port_t) ((ipc_object_t) 0)); | |||||
1147 | simple_lock_init(&memory_manager_default_lock); | |||||
1148 | } |