File: | obj-scan-build/../i386/intel/pmap.c |
Location: | line 1570, column 11 |
Description: | Dereference of null pointer (loaded from variable 'pte') |
1 | /* | |||
2 | * Mach Operating System | |||
3 | * Copyright (c) 1991,1990,1989,1988 Carnegie Mellon University | |||
4 | * All Rights Reserved. | |||
5 | * | |||
6 | * Permission to use, copy, modify and distribute this software and its | |||
7 | * documentation is hereby granted, provided that both the copyright | |||
8 | * notice and this permission notice appear in all copies of the | |||
9 | * software, derivative works or modified versions, and any portions | |||
10 | * thereof, and that both notices appear in supporting documentation. | |||
11 | * | |||
12 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" | |||
13 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR | |||
14 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. | |||
15 | * | |||
16 | * Carnegie Mellon requests users of this software to return to | |||
17 | * | |||
18 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU | |||
19 | * School of Computer Science | |||
20 | * Carnegie Mellon University | |||
21 | * Pittsburgh PA 15213-3890 | |||
22 | * | |||
23 | * any improvements or extensions that they make and grant Carnegie Mellon | |||
24 | * the rights to redistribute these changes. | |||
25 | */ | |||
26 | /* | |||
27 | * File: pmap.c | |||
28 | * Author: Avadis Tevanian, Jr., Michael Wayne Young | |||
29 | * (These guys wrote the Vax version) | |||
30 | * | |||
31 | * Physical Map management code for Intel i386, and i486. | |||
32 | * | |||
33 | * Manages physical address maps. | |||
34 | * | |||
35 | * In addition to hardware address maps, this | |||
36 | * module is called upon to provide software-use-only | |||
37 | * maps which may or may not be stored in the same | |||
38 | * form as hardware maps. These pseudo-maps are | |||
39 | * used to store intermediate results from copy | |||
40 | * operations to and from address spaces. | |||
41 | * | |||
42 | * Since the information managed by this module is | |||
43 | * also stored by the logical address mapping module, | |||
44 | * this module may throw away valid virtual-to-physical | |||
45 | * mappings at almost any time. However, invalidations | |||
46 | * of virtual-to-physical mappings must be done as | |||
47 | * requested. | |||
48 | * | |||
49 | * In order to cope with hardware architectures which | |||
50 | * make virtual-to-physical map invalidates expensive, | |||
51 | * this module may delay invalidate or reduced protection | |||
52 | * operations until such time as they are actually | |||
53 | * necessary. This module is given full information as | |||
54 | * to which processors are currently using which maps, | |||
55 | * and to when physical maps must be made correct. | |||
56 | */ | |||
57 | ||||
58 | #include <string.h> | |||
59 | ||||
60 | #include <mach/machine/vm_types.h> | |||
61 | ||||
62 | #include <mach/boolean.h> | |||
63 | #include <kern/debug.h> | |||
64 | #include <kern/printf.h> | |||
65 | #include <kern/thread.h> | |||
66 | #include <kern/slab.h> | |||
67 | ||||
68 | #include <kern/lock.h> | |||
69 | ||||
70 | #include <vm/pmap.h> | |||
71 | #include <vm/vm_map.h> | |||
72 | #include <vm/vm_kern.h> | |||
73 | #include <i3861/vm_param.h> | |||
74 | #include <mach/vm_prot.h> | |||
75 | #include <vm/vm_object.h> | |||
76 | #include <vm/vm_page.h> | |||
77 | #include <vm/vm_user.h> | |||
78 | ||||
79 | #include <mach/machine/vm_param.h> | |||
80 | #include <mach/xen.h> | |||
81 | #include <machine/thread.h> | |||
82 | #include <i3861/cpu_number.h> | |||
83 | #include <i3861/proc_reg.h> | |||
84 | #include <i3861/locore.h> | |||
85 | #include <i3861/model_dep.h> | |||
86 | ||||
87 | #ifdef MACH_PSEUDO_PHYS | |||
88 | #define WRITE_PTE(pte_p, pte_entry)*(pte_p) = (pte_entry); *(pte_p) = pte_entry?pa_to_ma(pte_entry):0; | |||
89 | #else /* MACH_PSEUDO_PHYS */ | |||
90 | #define WRITE_PTE(pte_p, pte_entry)*(pte_p) = (pte_entry); *(pte_p) = (pte_entry); | |||
91 | #endif /* MACH_PSEUDO_PHYS */ | |||
92 | ||||
93 | /* | |||
94 | * Private data structures. | |||
95 | */ | |||
96 | ||||
97 | /* | |||
98 | * For each vm_page_t, there is a list of all currently | |||
99 | * valid virtual mappings of that page. An entry is | |||
100 | * a pv_entry_t; the list is the pv_table. | |||
101 | */ | |||
102 | ||||
103 | typedef struct pv_entry { | |||
104 | struct pv_entry *next; /* next pv_entry */ | |||
105 | pmap_t pmap; /* pmap where mapping lies */ | |||
106 | vm_offset_t va; /* virtual address for mapping */ | |||
107 | } *pv_entry_t; | |||
108 | ||||
109 | #define PV_ENTRY_NULL((pv_entry_t) 0) ((pv_entry_t) 0) | |||
110 | ||||
111 | pv_entry_t pv_head_table; /* array of entries, one per page */ | |||
112 | ||||
113 | /* | |||
114 | * pv_list entries are kept on a list that can only be accessed | |||
115 | * with the pmap system locked (at SPLVM, not in the cpus_active set). | |||
116 | * The list is refilled from the pv_list_cache if it becomes empty. | |||
117 | */ | |||
118 | pv_entry_t pv_free_list; /* free list at SPLVM */ | |||
119 | decl_simple_lock_data(, pv_free_list_lock) | |||
120 | ||||
121 | #define PV_ALLOC(pv_e){ ; if ((pv_e = pv_free_list) != 0) { pv_free_list = pv_e-> next; } ; } { \ | |||
122 | simple_lock(&pv_free_list_lock); \ | |||
123 | if ((pv_e = pv_free_list) != 0) { \ | |||
124 | pv_free_list = pv_e->next; \ | |||
125 | } \ | |||
126 | simple_unlock(&pv_free_list_lock); \ | |||
127 | } | |||
128 | ||||
129 | #define PV_FREE(pv_e){ ; pv_e->next = pv_free_list; pv_free_list = pv_e; ; } { \ | |||
130 | simple_lock(&pv_free_list_lock); \ | |||
131 | pv_e->next = pv_free_list; \ | |||
132 | pv_free_list = pv_e; \ | |||
133 | simple_unlock(&pv_free_list_lock); \ | |||
134 | } | |||
135 | ||||
136 | struct kmem_cache pv_list_cache; /* cache of pv_entry structures */ | |||
137 | ||||
138 | /* | |||
139 | * Each entry in the pv_head_table is locked by a bit in the | |||
140 | * pv_lock_table. The lock bits are accessed by the physical | |||
141 | * address of the page they lock. | |||
142 | */ | |||
143 | ||||
144 | char *pv_lock_table; /* pointer to array of bits */ | |||
145 | #define pv_lock_table_size(n)(((n)+8 -1)/8) (((n)+BYTE_SIZE8-1)/BYTE_SIZE8) | |||
146 | ||||
147 | /* Has pmap_init completed? */ | |||
148 | boolean_t pmap_initialized = FALSE((boolean_t) 0); | |||
149 | ||||
150 | /* | |||
151 | * Range of kernel virtual addresses available for kernel memory mapping. | |||
152 | * Does not include the virtual addresses used to map physical memory 1-1. | |||
153 | * Initialized by pmap_bootstrap. | |||
154 | */ | |||
155 | vm_offset_t kernel_virtual_start; | |||
156 | vm_offset_t kernel_virtual_end; | |||
157 | ||||
158 | /* | |||
159 | * Index into pv_head table, its lock bits, and the modify/reference | |||
160 | * bits starting at phys_first_addr. | |||
161 | */ | |||
162 | #define pa_index(pa)((((vm_size_t)(pa - phys_first_addr)) >> 12)) (atop(pa - phys_first_addr)(((vm_size_t)(pa - phys_first_addr)) >> 12)) | |||
163 | ||||
164 | #define pai_to_pvh(pai)(&pv_head_table[pai]) (&pv_head_table[pai]) | |||
165 | #define lock_pvh_pai(pai)(bit_lock(pai, pv_lock_table)) (bit_lock(pai, pv_lock_table)) | |||
166 | #define unlock_pvh_pai(pai)(bit_unlock(pai, pv_lock_table)) (bit_unlock(pai, pv_lock_table)) | |||
167 | ||||
168 | /* | |||
169 | * Array of physical page attribites for managed pages. | |||
170 | * One byte per physical page. | |||
171 | */ | |||
172 | char *pmap_phys_attributes; | |||
173 | ||||
174 | /* | |||
175 | * Physical page attributes. Copy bits from PTE definition. | |||
176 | */ | |||
177 | #define PHYS_MODIFIED0x00000040 INTEL_PTE_MOD0x00000040 /* page modified */ | |||
178 | #define PHYS_REFERENCED0x00000020 INTEL_PTE_REF0x00000020 /* page referenced */ | |||
179 | ||||
180 | /* | |||
181 | * Amount of virtual memory mapped by one | |||
182 | * page-directory entry. | |||
183 | */ | |||
184 | #define PDE_MAPPED_SIZE(((vm_offset_t)(1) << 22)) (pdenum2lin(1)((vm_offset_t)(1) << 22)) | |||
185 | ||||
186 | /* | |||
187 | * We allocate page table pages directly from the VM system | |||
188 | * through this object. It maps physical memory. | |||
189 | */ | |||
190 | vm_object_t pmap_object = VM_OBJECT_NULL((vm_object_t) 0); | |||
191 | ||||
192 | /* | |||
193 | * Locking and TLB invalidation | |||
194 | */ | |||
195 | ||||
196 | /* | |||
197 | * Locking Protocols: | |||
198 | * | |||
199 | * There are two structures in the pmap module that need locking: | |||
200 | * the pmaps themselves, and the per-page pv_lists (which are locked | |||
201 | * by locking the pv_lock_table entry that corresponds to the pv_head | |||
202 | * for the list in question.) Most routines want to lock a pmap and | |||
203 | * then do operations in it that require pv_list locking -- however | |||
204 | * pmap_remove_all and pmap_copy_on_write operate on a physical page | |||
205 | * basis and want to do the locking in the reverse order, i.e. lock | |||
206 | * a pv_list and then go through all the pmaps referenced by that list. | |||
207 | * To protect against deadlock between these two cases, the pmap_lock | |||
208 | * is used. There are three different locking protocols as a result: | |||
209 | * | |||
210 | * 1. pmap operations only (pmap_extract, pmap_access, ...) Lock only | |||
211 | * the pmap. | |||
212 | * | |||
213 | * 2. pmap-based operations (pmap_enter, pmap_remove, ...) Get a read | |||
214 | * lock on the pmap_lock (shared read), then lock the pmap | |||
215 | * and finally the pv_lists as needed [i.e. pmap lock before | |||
216 | * pv_list lock.] | |||
217 | * | |||
218 | * 3. pv_list-based operations (pmap_remove_all, pmap_copy_on_write, ...) | |||
219 | * Get a write lock on the pmap_lock (exclusive write); this | |||
220 | * also guaranteees exclusive access to the pv_lists. Lock the | |||
221 | * pmaps as needed. | |||
222 | * | |||
223 | * At no time may any routine hold more than one pmap lock or more than | |||
224 | * one pv_list lock. Because interrupt level routines can allocate | |||
225 | * mbufs and cause pmap_enter's, the pmap_lock and the lock on the | |||
226 | * kernel_pmap can only be held at splvm. | |||
227 | */ | |||
228 | ||||
229 | #if NCPUS1 > 1 | |||
230 | /* | |||
231 | * We raise the interrupt level to splvm, to block interprocessor | |||
232 | * interrupts during pmap operations. We must take the CPU out of | |||
233 | * the cpus_active set while interrupts are blocked. | |||
234 | */ | |||
235 | #define SPLVM(spl)((void)(spl)) { \ | |||
236 | spl = splvm(); \ | |||
237 | i_bit_clear(cpu_number()(0), &cpus_active); \ | |||
238 | } | |||
239 | ||||
240 | #define SPLX(spl)((void)(spl)) { \ | |||
241 | i_bit_set(cpu_number()(0), &cpus_active); \ | |||
242 | splx(spl); \ | |||
243 | } | |||
244 | ||||
245 | /* | |||
246 | * Lock on pmap system | |||
247 | */ | |||
248 | lock_data_t pmap_system_lock; | |||
249 | ||||
250 | #define PMAP_READ_LOCK(pmap, spl)((void)(spl)) { \ | |||
251 | SPLVM(spl)((void)(spl)); \ | |||
252 | lock_read(&pmap_system_lock); \ | |||
253 | simple_lock(&(pmap)->lock); \ | |||
254 | } | |||
255 | ||||
256 | #define PMAP_WRITE_LOCK(spl)((void)(spl)) { \ | |||
257 | SPLVM(spl)((void)(spl)); \ | |||
258 | lock_write(&pmap_system_lock); \ | |||
259 | } | |||
260 | ||||
261 | #define PMAP_READ_UNLOCK(pmap, spl)((void)(spl)) { \ | |||
262 | simple_unlock(&(pmap)->lock); \ | |||
263 | lock_read_done(&pmap_system_lock)lock_done(&pmap_system_lock); \ | |||
264 | SPLX(spl)((void)(spl)); \ | |||
265 | } | |||
266 | ||||
267 | #define PMAP_WRITE_UNLOCK(spl)((void)(spl)) { \ | |||
268 | lock_write_done(&pmap_system_lock)lock_done(&pmap_system_lock); \ | |||
269 | SPLX(spl)((void)(spl)); \ | |||
270 | } | |||
271 | ||||
272 | #define PMAP_WRITE_TO_READ_LOCK(pmap) { \ | |||
273 | simple_lock(&(pmap)->lock); \ | |||
274 | lock_write_to_read(&pmap_system_lock); \ | |||
275 | } | |||
276 | ||||
277 | #define LOCK_PVH(index) (lock_pvh_pai(index)(bit_lock(index, pv_lock_table))) | |||
278 | ||||
279 | #define UNLOCK_PVH(index) (unlock_pvh_pai(index)(bit_unlock(index, pv_lock_table))) | |||
280 | ||||
281 | #define PMAP_UPDATE_TLBS(pmap, s, e){ if ((pmap)->cpus_using) { { (void) ((pmap)); (void) ((s) ); (void) ((e)); ({ register unsigned long _temp__ = (({ register unsigned long _temp__; asm volatile("mov %%cr3, %0" : "=r" ( _temp__)); _temp__; })); asm volatile("mov %0, %%cr3" : : "r" (_temp__) : "memory"); }); }; } } \ | |||
282 | { \ | |||
283 | cpu_set cpu_mask = 1 << cpu_number()(0); \ | |||
284 | cpu_set users; \ | |||
285 | \ | |||
286 | /* Since the pmap is locked, other updates are locked */ \ | |||
287 | /* out, and any pmap_activate has finished. */ \ | |||
288 | \ | |||
289 | /* find other cpus using the pmap */ \ | |||
290 | users = (pmap)->cpus_using & ~cpu_mask; \ | |||
291 | if (users) { \ | |||
292 | /* signal them, and wait for them to finish */ \ | |||
293 | /* using the pmap */ \ | |||
294 | signal_cpus(users, (pmap), (s), (e)); \ | |||
295 | while ((pmap)->cpus_using & cpus_active & ~cpu_mask) \ | |||
296 | continue; \ | |||
297 | } \ | |||
298 | \ | |||
299 | /* invalidate our own TLB if pmap is in use */ \ | |||
300 | if ((pmap)->cpus_using & cpu_mask) { \ | |||
301 | INVALIDATE_TLB((pmap), (s), (e)){ (void) ((pmap)); (void) ((s)); (void) ((e)); ({ register unsigned long _temp__ = (({ register unsigned long _temp__; asm volatile ("mov %%cr3, %0" : "=r" (_temp__)); _temp__; })); asm volatile ("mov %0, %%cr3" : : "r" (_temp__) : "memory"); }); }; \ | |||
302 | } \ | |||
303 | } | |||
304 | ||||
305 | #else /* NCPUS > 1 */ | |||
306 | ||||
307 | #define SPLVM(spl)((void)(spl)) ((void)(spl)) | |||
308 | #define SPLX(spl)((void)(spl)) ((void)(spl)) | |||
309 | ||||
310 | #define PMAP_READ_LOCK(pmap, spl)((void)(spl)) SPLVM(spl)((void)(spl)) | |||
311 | #define PMAP_WRITE_LOCK(spl)((void)(spl)) SPLVM(spl)((void)(spl)) | |||
312 | #define PMAP_READ_UNLOCK(pmap, spl)((void)(spl)) SPLX(spl)((void)(spl)) | |||
313 | #define PMAP_WRITE_UNLOCK(spl)((void)(spl)) SPLX(spl)((void)(spl)) | |||
314 | #define PMAP_WRITE_TO_READ_LOCK(pmap) | |||
315 | ||||
316 | #define LOCK_PVH(index) | |||
317 | #define UNLOCK_PVH(index) | |||
318 | ||||
319 | #define PMAP_UPDATE_TLBS(pmap, s, e){ if ((pmap)->cpus_using) { { (void) ((pmap)); (void) ((s) ); (void) ((e)); ({ register unsigned long _temp__ = (({ register unsigned long _temp__; asm volatile("mov %%cr3, %0" : "=r" ( _temp__)); _temp__; })); asm volatile("mov %0, %%cr3" : : "r" (_temp__) : "memory"); }); }; } } { \ | |||
320 | /* invalidate our own TLB if pmap is in use */ \ | |||
321 | if ((pmap)->cpus_using) { \ | |||
322 | INVALIDATE_TLB((pmap), (s), (e)){ (void) ((pmap)); (void) ((s)); (void) ((e)); ({ register unsigned long _temp__ = (({ register unsigned long _temp__; asm volatile ("mov %%cr3, %0" : "=r" (_temp__)); _temp__; })); asm volatile ("mov %0, %%cr3" : : "r" (_temp__) : "memory"); }); }; \ | |||
323 | } \ | |||
324 | } | |||
325 | ||||
326 | #endif /* NCPUS > 1 */ | |||
327 | ||||
328 | #define MAX_TBIS_SIZE32 32 /* > this -> TBIA */ /* XXX */ | |||
329 | ||||
330 | #ifdef MACH_PV_PAGETABLES | |||
331 | #if 1 | |||
332 | #define INVALIDATE_TLB(pmap, s, e){ (void) (pmap); (void) (s); (void) (e); ({ register unsigned long _temp__ = (({ register unsigned long _temp__; asm volatile ("mov %%cr3, %0" : "=r" (_temp__)); _temp__; })); asm volatile ("mov %0, %%cr3" : : "r" (_temp__) : "memory"); }); } hyp_mmuext_op_void(MMUEXT_TLB_FLUSH_LOCAL) | |||
333 | #else | |||
334 | #define INVALIDATE_TLB(pmap, s, e){ (void) (pmap); (void) (s); (void) (e); ({ register unsigned long _temp__ = (({ register unsigned long _temp__; asm volatile ("mov %%cr3, %0" : "=r" (_temp__)); _temp__; })); asm volatile ("mov %0, %%cr3" : : "r" (_temp__) : "memory"); }); } do { \ | |||
335 | if (__builtin_constant_p((e) - (s)) \ | |||
336 | && (e) - (s) == PAGE_SIZE(1 << 12)) \ | |||
337 | hyp_invlpg((pmap) == kernel_pmap ? kvtolin(s)((vm_offset_t)(s) - 0xC0000000UL + ((0xc0000000UL))) : (s)); \ | |||
338 | else \ | |||
339 | hyp_mmuext_op_void(MMUEXT_TLB_FLUSH_LOCAL); \ | |||
340 | } while(0) | |||
341 | #endif | |||
342 | #else /* MACH_PV_PAGETABLES */ | |||
343 | #if 0 | |||
344 | /* It is hard to know when a TLB flush becomes less expensive than a bunch of | |||
345 | * invlpgs. But it surely is more expensive than just one invlpg. */ | |||
346 | #define INVALIDATE_TLB(pmap, s, e){ (void) (pmap); (void) (s); (void) (e); ({ register unsigned long _temp__ = (({ register unsigned long _temp__; asm volatile ("mov %%cr3, %0" : "=r" (_temp__)); _temp__; })); asm volatile ("mov %0, %%cr3" : : "r" (_temp__) : "memory"); }); } { \ | |||
347 | if (__builtin_constant_p((e) - (s)) \ | |||
348 | && (e) - (s) == PAGE_SIZE(1 << 12)) \ | |||
349 | invlpg_linear(s)({ asm volatile( "movw %w1,%%es\n" "\tinvlpg %%es:(%0)\n" "\tmovw %w2,%%es" :: "r" (s), "q" (0x38), "q" ((0x10 | 0))); }); \ | |||
350 | else \ | |||
351 | flush_tlb()({ register unsigned long _temp__ = (({ register unsigned long _temp__; asm volatile("mov %%cr3, %0" : "=r" (_temp__)); _temp__ ; })); asm volatile("mov %0, %%cr3" : : "r" (_temp__) : "memory" ); }); \ | |||
352 | } | |||
353 | #else | |||
354 | #define INVALIDATE_TLB(pmap, s, e){ (void) (pmap); (void) (s); (void) (e); ({ register unsigned long _temp__ = (({ register unsigned long _temp__; asm volatile ("mov %%cr3, %0" : "=r" (_temp__)); _temp__; })); asm volatile ("mov %0, %%cr3" : : "r" (_temp__) : "memory"); }); } { \ | |||
355 | (void) (pmap); \ | |||
356 | (void) (s); \ | |||
357 | (void) (e); \ | |||
358 | flush_tlb()({ register unsigned long _temp__ = (({ register unsigned long _temp__; asm volatile("mov %%cr3, %0" : "=r" (_temp__)); _temp__ ; })); asm volatile("mov %0, %%cr3" : : "r" (_temp__) : "memory" ); }); \ | |||
359 | } | |||
360 | #endif | |||
361 | #endif /* MACH_PV_PAGETABLES */ | |||
362 | ||||
363 | ||||
364 | #if NCPUS1 > 1 | |||
365 | /* | |||
366 | * Structures to keep track of pending TLB invalidations | |||
367 | */ | |||
368 | ||||
369 | #define UPDATE_LIST_SIZE 4 | |||
370 | ||||
371 | struct pmap_update_item { | |||
372 | pmap_t pmap; /* pmap to invalidate */ | |||
373 | vm_offset_t start; /* start address to invalidate */ | |||
374 | vm_offset_t end; /* end address to invalidate */ | |||
375 | } ; | |||
376 | ||||
377 | typedef struct pmap_update_item *pmap_update_item_t; | |||
378 | ||||
379 | /* | |||
380 | * List of pmap updates. If the list overflows, | |||
381 | * the last entry is changed to invalidate all. | |||
382 | */ | |||
383 | struct pmap_update_list { | |||
384 | decl_simple_lock_data(, lock) | |||
385 | int count; | |||
386 | struct pmap_update_item item[UPDATE_LIST_SIZE]; | |||
387 | } ; | |||
388 | typedef struct pmap_update_list *pmap_update_list_t; | |||
389 | ||||
390 | struct pmap_update_list cpu_update_list[NCPUS1]; | |||
391 | ||||
392 | #endif /* NCPUS > 1 */ | |||
393 | ||||
394 | /* | |||
395 | * Other useful macros. | |||
396 | */ | |||
397 | #define current_pmap()((((active_threads[(0)])->task->map)->pmap)) (vm_map_pmap(current_thread()->task->map)(((active_threads[(0)])->task->map)->pmap)) | |||
398 | #define pmap_in_use(pmap, cpu)(((pmap)->cpus_using & (1 << (cpu))) != 0) (((pmap)->cpus_using & (1 << (cpu))) != 0) | |||
399 | ||||
400 | struct pmap kernel_pmap_store; | |||
401 | pmap_t kernel_pmap; | |||
402 | ||||
403 | struct kmem_cache pmap_cache; /* cache of pmap structures */ | |||
404 | ||||
405 | int pmap_debug = 0; /* flag for debugging prints */ | |||
406 | ||||
407 | #if 0 | |||
408 | int ptes_per_vm_page1; /* number of hardware ptes needed | |||
409 | to map one VM page. */ | |||
410 | #else | |||
411 | #define ptes_per_vm_page1 1 | |||
412 | #endif | |||
413 | ||||
414 | unsigned int inuse_ptepages_count = 0; /* debugging */ | |||
415 | ||||
416 | extern char end; | |||
417 | ||||
418 | /* | |||
419 | * Pointer to the basic page directory for the kernel. | |||
420 | * Initialized by pmap_bootstrap(). | |||
421 | */ | |||
422 | pt_entry_t *kernel_page_dir; | |||
423 | ||||
424 | void pmap_remove_range(); /* forward */ | |||
425 | #if NCPUS1 > 1 | |||
426 | void signal_cpus(); /* forward */ | |||
427 | #endif /* NCPUS > 1 */ | |||
428 | ||||
429 | static inline pt_entry_t * | |||
430 | pmap_pde(pmap_t pmap, vm_offset_t addr) | |||
431 | { | |||
432 | if (pmap == kernel_pmap) | |||
433 | addr = kvtolin(addr)((vm_offset_t)(addr) - 0xC0000000UL + ((0xc0000000UL))); | |||
434 | return &pmap->dirbase[lin2pdenum(addr)(((addr) >> 22) & 0x3ff)]; | |||
435 | } | |||
436 | ||||
437 | /* | |||
438 | * Given an offset and a map, compute the address of the | |||
439 | * pte. If the address is invalid with respect to the map | |||
440 | * then PT_ENTRY_NULL is returned (and the map may need to grow). | |||
441 | * | |||
442 | * This is only used internally. | |||
443 | */ | |||
444 | pt_entry_t * | |||
445 | pmap_pte(pmap_t pmap, vm_offset_t addr) | |||
446 | { | |||
447 | pt_entry_t *ptp; | |||
448 | pt_entry_t pte; | |||
449 | ||||
450 | if (pmap->dirbase == 0) | |||
451 | return(PT_ENTRY_NULL((pt_entry_t *) 0)); | |||
452 | pte = *pmap_pde(pmap, addr); | |||
453 | if ((pte & INTEL_PTE_VALID0x00000001) == 0) | |||
454 | return(PT_ENTRY_NULL((pt_entry_t *) 0)); | |||
455 | ptp = (pt_entry_t *)ptetokv(pte)(((vm_offset_t)(((pte) & 0xfffff000)) + 0xC0000000UL)); | |||
456 | return(&ptp[ptenum(addr)(((addr) >> 12) & 0x3ff)]); | |||
457 | } | |||
458 | ||||
459 | #define DEBUG_PTE_PAGE0 0 | |||
460 | ||||
461 | #if DEBUG_PTE_PAGE0 | |||
462 | void ptep_check(ptep) | |||
463 | ptep_t ptep; | |||
464 | { | |||
465 | register pt_entry_t *pte, *epte; | |||
466 | int ctu, ctw; | |||
467 | ||||
468 | /* check the use and wired counts */ | |||
469 | if (ptep == PTE_PAGE_NULL) | |||
470 | return; | |||
471 | pte = pmap_pte(ptep->pmap, ptep->va); | |||
472 | epte = pte + INTEL_PGBYTES4096/sizeof(pt_entry_t); | |||
473 | ctu = 0; | |||
474 | ctw = 0; | |||
475 | while (pte < epte) { | |||
476 | if (pte->pfn != 0) { | |||
477 | ctu++; | |||
478 | if (pte->wired) | |||
479 | ctw++; | |||
480 | } | |||
481 | pte += ptes_per_vm_page1; | |||
482 | } | |||
483 | ||||
484 | if (ctu != ptep->use_count || ctw != ptep->wired_count) { | |||
485 | printf("use %d wired %d - actual use %d wired %d\n", | |||
486 | ptep->use_count, ptep->wired_count, ctu, ctw); | |||
487 | panic("pte count"); | |||
488 | } | |||
489 | } | |||
490 | #endif /* DEBUG_PTE_PAGE */ | |||
491 | ||||
492 | /* | |||
493 | * Map memory at initialization. The physical addresses being | |||
494 | * mapped are not managed and are never unmapped. | |||
495 | * | |||
496 | * For now, VM is already on, we only need to map the | |||
497 | * specified memory. | |||
498 | */ | |||
499 | vm_offset_t pmap_map(virt, start, end, prot) | |||
500 | register vm_offset_t virt; | |||
501 | register vm_offset_t start; | |||
502 | register vm_offset_t end; | |||
503 | register int prot; | |||
504 | { | |||
505 | register int ps; | |||
506 | ||||
507 | ps = PAGE_SIZE(1 << 12); | |||
508 | while (start < end) { | |||
509 | pmap_enter(kernel_pmap, virt, start, prot, FALSE((boolean_t) 0)); | |||
510 | virt += ps; | |||
511 | start += ps; | |||
512 | } | |||
513 | return(virt); | |||
514 | } | |||
515 | ||||
516 | /* | |||
517 | * Back-door routine for mapping kernel VM at initialization. | |||
518 | * Useful for mapping memory outside the range | |||
519 | * [phys_first_addr, phys_last_addr) (i.e., devices). | |||
520 | * Otherwise like pmap_map. | |||
521 | */ | |||
522 | vm_offset_t pmap_map_bd(virt, start, end, prot) | |||
523 | register vm_offset_t virt; | |||
524 | register vm_offset_t start; | |||
525 | register vm_offset_t end; | |||
526 | vm_prot_t prot; | |||
527 | { | |||
528 | register pt_entry_t template; | |||
529 | register pt_entry_t *pte; | |||
530 | int spl; | |||
531 | #ifdef MACH_PV_PAGETABLES | |||
532 | int n, i = 0; | |||
533 | struct mmu_update update[HYP_BATCH_MMU_UPDATES]; | |||
534 | #endif /* MACH_PV_PAGETABLES */ | |||
535 | ||||
536 | template = pa_to_pte(start)((start) & 0xfffff000) | |||
537 | | INTEL_PTE_NCACHE0x00000010|INTEL_PTE_WTHRU0x00000008 | |||
538 | | INTEL_PTE_VALID0x00000001; | |||
539 | if (CPU_HAS_FEATURE(CPU_FEATURE_PGE)(cpu_features[(13) / 32] & (1 << ((13) % 32)))) | |||
540 | template |= INTEL_PTE_GLOBAL0x00000100; | |||
541 | if (prot & VM_PROT_WRITE((vm_prot_t) 0x02)) | |||
542 | template |= INTEL_PTE_WRITE0x00000002; | |||
543 | ||||
544 | PMAP_READ_LOCK(pmap, spl)((void)(spl)); | |||
545 | while (start < end) { | |||
546 | pte = pmap_pte(kernel_pmap, virt); | |||
547 | if (pte == PT_ENTRY_NULL((pt_entry_t *) 0)) | |||
548 | panic("pmap_map_bd: Invalid kernel address\n"); | |||
549 | #ifdef MACH_PV_PAGETABLES | |||
550 | update[i].ptr = kv_to_ma(pte); | |||
551 | update[i].val = pa_to_ma(template); | |||
552 | i++; | |||
553 | if (i == HYP_BATCH_MMU_UPDATES) { | |||
554 | hyp_mmu_update(kvtolin(&update)((vm_offset_t)(&update) - 0xC0000000UL + ((0xc0000000UL)) ), i, kvtolin(&n)((vm_offset_t)(&n) - 0xC0000000UL + ((0xc0000000UL))), DOMID_SELF); | |||
555 | if (n != i) | |||
556 | panic("couldn't pmap_map_bd\n"); | |||
557 | i = 0; | |||
558 | } | |||
559 | #else /* MACH_PV_PAGETABLES */ | |||
560 | WRITE_PTE(pte, template)*(pte) = (template); | |||
561 | #endif /* MACH_PV_PAGETABLES */ | |||
562 | pte_increment_pa(template)((template) += 0xfff +1); | |||
563 | virt += PAGE_SIZE(1 << 12); | |||
564 | start += PAGE_SIZE(1 << 12); | |||
565 | } | |||
566 | #ifdef MACH_PV_PAGETABLES | |||
567 | if (i > HYP_BATCH_MMU_UPDATES) | |||
568 | panic("overflowed array in pmap_map_bd"); | |||
569 | hyp_mmu_update(kvtolin(&update)((vm_offset_t)(&update) - 0xC0000000UL + ((0xc0000000UL)) ), i, kvtolin(&n)((vm_offset_t)(&n) - 0xC0000000UL + ((0xc0000000UL))), DOMID_SELF); | |||
570 | if (n != i) | |||
571 | panic("couldn't pmap_map_bd\n"); | |||
572 | #endif /* MACH_PV_PAGETABLES */ | |||
573 | PMAP_READ_UNLOCK(pmap, spl)((void)(spl)); | |||
574 | return(virt); | |||
575 | } | |||
576 | ||||
577 | /* | |||
578 | * Bootstrap the system enough to run with virtual memory. | |||
579 | * Allocate the kernel page directory and page tables, | |||
580 | * and direct-map all physical memory. | |||
581 | * Called with mapping off. | |||
582 | */ | |||
583 | void pmap_bootstrap() | |||
584 | { | |||
585 | /* | |||
586 | * Mapping is turned off; we must reference only physical addresses. | |||
587 | * The load image of the system is to be mapped 1-1 physical = virtual. | |||
588 | */ | |||
589 | ||||
590 | /* | |||
591 | * Set ptes_per_vm_page for general use. | |||
592 | */ | |||
593 | #if 0 | |||
594 | ptes_per_vm_page1 = PAGE_SIZE(1 << 12) / INTEL_PGBYTES4096; | |||
595 | #endif | |||
596 | ||||
597 | /* | |||
598 | * The kernel's pmap is statically allocated so we don't | |||
599 | * have to use pmap_create, which is unlikely to work | |||
600 | * correctly at this part of the boot sequence. | |||
601 | */ | |||
602 | ||||
603 | kernel_pmap = &kernel_pmap_store; | |||
604 | ||||
605 | #if NCPUS1 > 1 | |||
606 | lock_init(&pmap_system_lock, FALSE((boolean_t) 0)); /* NOT a sleep lock */ | |||
607 | #endif /* NCPUS > 1 */ | |||
608 | ||||
609 | simple_lock_init(&kernel_pmap->lock); | |||
610 | ||||
611 | kernel_pmap->ref_count = 1; | |||
612 | ||||
613 | /* | |||
614 | * Determine the kernel virtual address range. | |||
615 | * It starts at the end of the physical memory | |||
616 | * mapped into the kernel address space, | |||
617 | * and extends to a stupid arbitrary limit beyond that. | |||
618 | */ | |||
619 | kernel_virtual_start = phystokv(phys_last_addr)((vm_offset_t)(phys_last_addr) + 0xC0000000UL); | |||
620 | kernel_virtual_end = phystokv(phys_last_addr)((vm_offset_t)(phys_last_addr) + 0xC0000000UL) + VM_KERNEL_MAP_SIZE(192 * 1024 * 1024); | |||
621 | ||||
622 | if (kernel_virtual_end < kernel_virtual_start | |||
623 | || kernel_virtual_end > VM_MAX_KERNEL_ADDRESS((0xffffffffUL) - ((0xc0000000UL)) + 0xC0000000UL)) | |||
624 | kernel_virtual_end = VM_MAX_KERNEL_ADDRESS((0xffffffffUL) - ((0xc0000000UL)) + 0xC0000000UL); | |||
625 | ||||
626 | /* | |||
627 | * Allocate and clear a kernel page directory. | |||
628 | */ | |||
629 | /* Note: initial Xen mapping holds at least 512kB free mapped page. | |||
630 | * We use that for directly building our linear mapping. */ | |||
631 | #if PAE | |||
632 | { | |||
633 | vm_offset_t addr; | |||
634 | init_alloc_aligned(PDPNUM1 * INTEL_PGBYTES4096, &addr); | |||
635 | kernel_pmap->dirbase = kernel_page_dir = (pt_entry_t*)phystokv(addr)((vm_offset_t)(addr) + 0xC0000000UL); | |||
636 | } | |||
637 | kernel_pmap->pdpbase = (pt_entry_t*)phystokv(pmap_grab_page())((vm_offset_t)(pmap_grab_page()) + 0xC0000000UL); | |||
638 | { | |||
639 | int i; | |||
640 | for (i = 0; i < PDPNUM1; i++) | |||
641 | WRITE_PTE(&kernel_pmap->pdpbase[i], pa_to_pte(_kvtophys((void *) kernel_pmap->dirbase + i * INTEL_PGBYTES)) | INTEL_PTE_VALID)*(&kernel_pmap->pdpbase[i]) = (((((vm_offset_t)((void * ) kernel_pmap->dirbase + i * 4096) - 0xC0000000UL)) & 0xfffff000 ) | 0x00000001);; | |||
642 | } | |||
643 | #else /* PAE */ | |||
644 | kernel_pmap->dirbase = kernel_page_dir = (pt_entry_t*)phystokv(pmap_grab_page())((vm_offset_t)(pmap_grab_page()) + 0xC0000000UL); | |||
645 | #endif /* PAE */ | |||
646 | { | |||
647 | int i; | |||
648 | for (i = 0; i < NPDES(1 * ((((unsigned long)(1)) << 12)/sizeof(pt_entry_t))); i++) | |||
649 | kernel_pmap->dirbase[i] = 0; | |||
650 | } | |||
651 | ||||
652 | #ifdef MACH_PV_PAGETABLES | |||
653 | /* We don't actually deal with the CR3 register content at all */ | |||
654 | hyp_vm_assist(VMASST_CMD_enable, VMASST_TYPE_pae_extended_cr3); | |||
655 | /* | |||
656 | * Xen may only provide as few as 512KB extra bootstrap linear memory, | |||
657 | * which is far from enough to map all available memory, so we need to | |||
658 | * map more bootstrap linear memory. We here map 1 (resp. 4 for PAE) | |||
659 | * other L1 table(s), thus 4MiB extra memory (resp. 8MiB), which is | |||
660 | * enough for a pagetable mapping 4GiB. | |||
661 | */ | |||
662 | #ifdef PAE | |||
663 | #define NSUP_L1 4 | |||
664 | #else | |||
665 | #define NSUP_L1 1 | |||
666 | #endif | |||
667 | pt_entry_t *l1_map[NSUP_L1]; | |||
668 | { | |||
669 | pt_entry_t *base = (pt_entry_t*) boot_info.pt_base; | |||
670 | vm_offset_t la; | |||
671 | int n_l1map; | |||
672 | for (n_l1map = 0, la = VM_MIN_KERNEL_ADDRESS0xC0000000UL; la >= VM_MIN_KERNEL_ADDRESS0xC0000000UL; la += NPTES((((unsigned long)(1)) << 12)/sizeof(pt_entry_t)) * PAGE_SIZE(1 << 12)) { | |||
673 | #ifdef PAE | |||
674 | pt_entry_t *l2_map = (pt_entry_t*) ptetokv(base[lin2pdpnum(la)])(((vm_offset_t)(((base[lin2pdpnum(la)]) & 0xfffff000)) + 0xC0000000UL )); | |||
675 | #else /* PAE */ | |||
676 | pt_entry_t *l2_map = base; | |||
677 | #endif /* PAE */ | |||
678 | /* Like lin2pdenum, but works with non-contiguous boot L3 */ | |||
679 | l2_map += (la >> PDESHIFT22) & PDEMASK0x3ff; | |||
680 | if (!(*l2_map & INTEL_PTE_VALID0x00000001)) { | |||
681 | struct mmu_update update; | |||
682 | int j, n; | |||
683 | ||||
684 | l1_map[n_l1map] = (pt_entry_t*) phystokv(pmap_grab_page())((vm_offset_t)(pmap_grab_page()) + 0xC0000000UL); | |||
685 | for (j = 0; j < NPTES((((unsigned long)(1)) << 12)/sizeof(pt_entry_t)); j++) | |||
686 | l1_map[n_l1map][j] = (((pt_entry_t)pfn_to_mfn(lin2pdenum(la - VM_MIN_KERNEL_ADDRESS)(((la - 0xC0000000UL) >> 22) & 0x3ff) * NPTES((((unsigned long)(1)) << 12)/sizeof(pt_entry_t)) + j)) << PAGE_SHIFT12) | INTEL_PTE_VALID0x00000001 | INTEL_PTE_WRITE0x00000002; | |||
687 | pmap_set_page_readonly_init(l1_map[n_l1map]); | |||
688 | if (!hyp_mmuext_op_mfn (MMUEXT_PIN_L1_TABLE, kv_to_mfn (l1_map[n_l1map]))) | |||
689 | panic("couldn't pin page %p(%p)", l1_map[n_l1map], (vm_offset_t) kv_to_ma (l1_map[n_l1map])); | |||
690 | update.ptr = kv_to_ma(l2_map); | |||
691 | update.val = kv_to_ma(l1_map[n_l1map]) | INTEL_PTE_VALID0x00000001 | INTEL_PTE_WRITE0x00000002; | |||
692 | hyp_mmu_update(kv_to_la(&update), 1, kv_to_la(&n), DOMID_SELF); | |||
693 | if (n != 1) | |||
694 | panic("couldn't complete bootstrap map"); | |||
695 | /* added the last L1 table, can stop */ | |||
696 | if (++n_l1map >= NSUP_L1) | |||
697 | break; | |||
698 | } | |||
699 | } | |||
700 | } | |||
701 | #endif /* MACH_PV_PAGETABLES */ | |||
702 | ||||
703 | /* | |||
704 | * Allocate and set up the kernel page tables. | |||
705 | */ | |||
706 | { | |||
707 | vm_offset_t va; | |||
708 | pt_entry_t global = CPU_HAS_FEATURE(CPU_FEATURE_PGE)(cpu_features[(13) / 32] & (1 << ((13) % 32))) ? INTEL_PTE_GLOBAL0x00000100 : 0; | |||
709 | ||||
710 | /* | |||
711 | * Map virtual memory for all known physical memory, 1-1, | |||
712 | * from phys_first_addr to phys_last_addr. | |||
713 | * Make any mappings completely in the kernel's text segment read-only. | |||
714 | * | |||
715 | * Also allocate some additional all-null page tables afterwards | |||
716 | * for kernel virtual memory allocation, | |||
717 | * because this PMAP module is too stupid | |||
718 | * to allocate new kernel page tables later. | |||
719 | * XX fix this | |||
720 | */ | |||
721 | for (va = phystokv(phys_first_addr)((vm_offset_t)(phys_first_addr) + 0xC0000000UL); va >= phystokv(phys_first_addr)((vm_offset_t)(phys_first_addr) + 0xC0000000UL) && va < kernel_virtual_end; ) | |||
722 | { | |||
723 | pt_entry_t *pde = kernel_page_dir + lin2pdenum(kvtolin(va))(((((vm_offset_t)(va) - 0xC0000000UL + ((0xc0000000UL)))) >> 22) & 0x3ff); | |||
724 | pt_entry_t *ptable = (pt_entry_t*)phystokv(pmap_grab_page())((vm_offset_t)(pmap_grab_page()) + 0xC0000000UL); | |||
725 | pt_entry_t *pte; | |||
726 | ||||
727 | /* Initialize the page directory entry. */ | |||
728 | WRITE_PTE(pde, pa_to_pte((vm_offset_t)_kvtophys(ptable))*(pde) = ((((vm_offset_t)((vm_offset_t)(ptable) - 0xC0000000UL )) & 0xfffff000) | 0x00000001 | 0x00000002); | |||
729 | | INTEL_PTE_VALID | INTEL_PTE_WRITE)*(pde) = ((((vm_offset_t)((vm_offset_t)(ptable) - 0xC0000000UL )) & 0xfffff000) | 0x00000001 | 0x00000002);; | |||
730 | ||||
731 | /* Initialize the page table. */ | |||
732 | for (pte = ptable; (va < phystokv(phys_last_addr)((vm_offset_t)(phys_last_addr) + 0xC0000000UL)) && (pte < ptable+NPTES((((unsigned long)(1)) << 12)/sizeof(pt_entry_t))); pte++) | |||
733 | { | |||
734 | if ((pte - ptable) < ptenum(va)(((va) >> 12) & 0x3ff)) | |||
735 | { | |||
736 | WRITE_PTE(pte, 0)*(pte) = (0);; | |||
737 | } | |||
738 | else | |||
739 | #ifdef MACH_PV_PAGETABLES | |||
740 | if (va == (vm_offset_t) &hyp_shared_info) | |||
741 | { | |||
742 | *pte = boot_info.shared_info | INTEL_PTE_VALID0x00000001 | INTEL_PTE_WRITE0x00000002; | |||
743 | va += INTEL_PGBYTES4096; | |||
744 | } | |||
745 | else | |||
746 | #endif /* MACH_PV_PAGETABLES */ | |||
747 | { | |||
748 | extern char _start[], etext[]; | |||
749 | ||||
750 | if (((va >= (vm_offset_t) _start) | |||
751 | && (va + INTEL_PGBYTES4096 <= (vm_offset_t)etext)) | |||
752 | #ifdef MACH_PV_PAGETABLES | |||
753 | || (va >= (vm_offset_t) boot_info.pt_base | |||
754 | && (va + INTEL_PGBYTES4096 <= | |||
755 | (vm_offset_t) ptable + INTEL_PGBYTES4096)) | |||
756 | #endif /* MACH_PV_PAGETABLES */ | |||
757 | ) | |||
758 | { | |||
759 | WRITE_PTE(pte, pa_to_pte(_kvtophys(va))*(pte) = (((((vm_offset_t)(va) - 0xC0000000UL)) & 0xfffff000 ) | 0x00000001 | global); | |||
760 | | INTEL_PTE_VALID | global)*(pte) = (((((vm_offset_t)(va) - 0xC0000000UL)) & 0xfffff000 ) | 0x00000001 | global);; | |||
761 | } | |||
762 | else | |||
763 | { | |||
764 | #ifdef MACH_PV_PAGETABLES | |||
765 | /* Keep supplementary L1 pages read-only */ | |||
766 | int i; | |||
767 | for (i = 0; i < NSUP_L1; i++) | |||
768 | if (va == (vm_offset_t) l1_map[i]) { | |||
769 | WRITE_PTE(pte, pa_to_pte(_kvtophys(va))*(pte) = (((((vm_offset_t)(va) - 0xC0000000UL)) & 0xfffff000 ) | 0x00000001 | global); | |||
770 | | INTEL_PTE_VALID | global)*(pte) = (((((vm_offset_t)(va) - 0xC0000000UL)) & 0xfffff000 ) | 0x00000001 | global);; | |||
771 | break; | |||
772 | } | |||
773 | if (i == NSUP_L1) | |||
774 | #endif /* MACH_PV_PAGETABLES */ | |||
775 | WRITE_PTE(pte, pa_to_pte(_kvtophys(va))*(pte) = (((((vm_offset_t)(va) - 0xC0000000UL)) & 0xfffff000 ) | 0x00000001 | 0x00000002 | global); | |||
776 | | INTEL_PTE_VALID | INTEL_PTE_WRITE | global)*(pte) = (((((vm_offset_t)(va) - 0xC0000000UL)) & 0xfffff000 ) | 0x00000001 | 0x00000002 | global); | |||
777 | ||||
778 | } | |||
779 | va += INTEL_PGBYTES4096; | |||
780 | } | |||
781 | } | |||
782 | for (; pte < ptable+NPTES((((unsigned long)(1)) << 12)/sizeof(pt_entry_t)); pte++) | |||
783 | { | |||
784 | WRITE_PTE(pte, 0)*(pte) = (0);; | |||
785 | va += INTEL_PGBYTES4096; | |||
786 | } | |||
787 | #ifdef MACH_PV_PAGETABLES | |||
788 | pmap_set_page_readonly_init(ptable); | |||
789 | if (!hyp_mmuext_op_mfn (MMUEXT_PIN_L1_TABLE, kv_to_mfn (ptable))) | |||
790 | panic("couldn't pin page %p(%p)\n", ptable, (vm_offset_t) kv_to_ma (ptable)); | |||
791 | #endif /* MACH_PV_PAGETABLES */ | |||
792 | } | |||
793 | } | |||
794 | ||||
795 | /* Architecture-specific code will turn on paging | |||
796 | soon after we return from here. */ | |||
797 | } | |||
798 | ||||
799 | #ifdef MACH_PV_PAGETABLES | |||
800 | /* These are only required because of Xen security policies */ | |||
801 | ||||
802 | /* Set back a page read write */ | |||
803 | void pmap_set_page_readwrite(void *_vaddr) { | |||
804 | vm_offset_t vaddr = (vm_offset_t) _vaddr; | |||
805 | vm_offset_t paddr = kvtophys(vaddr); | |||
806 | vm_offset_t canon_vaddr = phystokv(paddr)((vm_offset_t)(paddr) + 0xC0000000UL); | |||
807 | if (hyp_do_update_va_mapping (kvtolin(vaddr)((vm_offset_t)(vaddr) - 0xC0000000UL + ((0xc0000000UL))), pa_to_pte (pa_to_ma(paddr))((pa_to_ma(paddr)) & 0xfffff000) | INTEL_PTE_VALID0x00000001 | INTEL_PTE_WRITE0x00000002, UVMF_NONE)) | |||
808 | panic("couldn't set hiMMU readwrite for addr %p(%p)\n", vaddr, (vm_offset_t) pa_to_ma (paddr)); | |||
809 | if (canon_vaddr != vaddr) | |||
810 | if (hyp_do_update_va_mapping (kvtolin(canon_vaddr)((vm_offset_t)(canon_vaddr) - 0xC0000000UL + ((0xc0000000UL)) ), pa_to_pte (pa_to_ma(paddr))((pa_to_ma(paddr)) & 0xfffff000) | INTEL_PTE_VALID0x00000001 | INTEL_PTE_WRITE0x00000002, UVMF_NONE)) | |||
811 | panic("couldn't set hiMMU readwrite for paddr %p(%p)\n", canon_vaddr, (vm_offset_t) pa_to_ma (paddr)); | |||
812 | } | |||
813 | ||||
814 | /* Set a page read only (so as to pin it for instance) */ | |||
815 | void pmap_set_page_readonly(void *_vaddr) { | |||
816 | vm_offset_t vaddr = (vm_offset_t) _vaddr; | |||
817 | vm_offset_t paddr = kvtophys(vaddr); | |||
818 | vm_offset_t canon_vaddr = phystokv(paddr)((vm_offset_t)(paddr) + 0xC0000000UL); | |||
819 | if (*pmap_pde(kernel_pmap, vaddr) & INTEL_PTE_VALID0x00000001) { | |||
820 | if (hyp_do_update_va_mapping (kvtolin(vaddr)((vm_offset_t)(vaddr) - 0xC0000000UL + ((0xc0000000UL))), pa_to_pte (pa_to_ma(paddr))((pa_to_ma(paddr)) & 0xfffff000) | INTEL_PTE_VALID0x00000001, UVMF_NONE)) | |||
821 | panic("couldn't set hiMMU readonly for vaddr %p(%p)\n", vaddr, (vm_offset_t) pa_to_ma (paddr)); | |||
822 | } | |||
823 | if (canon_vaddr != vaddr && | |||
824 | *pmap_pde(kernel_pmap, canon_vaddr) & INTEL_PTE_VALID0x00000001) { | |||
825 | if (hyp_do_update_va_mapping (kvtolin(canon_vaddr)((vm_offset_t)(canon_vaddr) - 0xC0000000UL + ((0xc0000000UL)) ), pa_to_pte (pa_to_ma(paddr))((pa_to_ma(paddr)) & 0xfffff000) | INTEL_PTE_VALID0x00000001, UVMF_NONE)) | |||
826 | panic("couldn't set hiMMU readonly for vaddr %p canon_vaddr %p paddr %p (%p)\n", vaddr, canon_vaddr, paddr, (vm_offset_t) pa_to_ma (paddr)); | |||
827 | } | |||
828 | } | |||
829 | ||||
830 | /* This needs to be called instead of pmap_set_page_readonly as long as RC3 | |||
831 | * still points to the bootstrap dirbase, to also fix the bootstrap table. */ | |||
832 | void pmap_set_page_readonly_init(void *_vaddr) { | |||
833 | vm_offset_t vaddr = (vm_offset_t) _vaddr; | |||
834 | #if PAE | |||
835 | pt_entry_t *pdpbase = (void*) boot_info.pt_base; | |||
836 | /* The bootstrap table does not necessarily use contiguous pages for the pde tables */ | |||
837 | pt_entry_t *dirbase = (void*) ptetokv(pdpbase[lin2pdpnum(vaddr)])(((vm_offset_t)(((pdpbase[lin2pdpnum(vaddr)]) & 0xfffff000 )) + 0xC0000000UL)); | |||
838 | #else | |||
839 | pt_entry_t *dirbase = (void*) boot_info.pt_base; | |||
840 | #endif | |||
841 | pt_entry_t *pte = &dirbase[lin2pdenum(vaddr)(((vaddr) >> 22) & 0x3ff) & PTEMASK0x3ff]; | |||
842 | /* Modify our future kernel map (can't use update_va_mapping for this)... */ | |||
843 | if (*pmap_pde(kernel_pmap, vaddr) & INTEL_PTE_VALID0x00000001) { | |||
844 | if (!hyp_mmu_update_la (kvtolin(vaddr)((vm_offset_t)(vaddr) - 0xC0000000UL + ((0xc0000000UL))), pa_to_pte (kv_to_ma(vaddr))((kv_to_ma(vaddr)) & 0xfffff000) | INTEL_PTE_VALID0x00000001)) | |||
845 | panic("couldn't set hiMMU readonly for vaddr %p(%p)\n", vaddr, (vm_offset_t) kv_to_ma (vaddr)); | |||
846 | } | |||
847 | /* ... and the bootstrap map. */ | |||
848 | if (*pte & INTEL_PTE_VALID0x00000001) { | |||
849 | if (hyp_do_update_va_mapping (vaddr, pa_to_pte (kv_to_ma(vaddr))((kv_to_ma(vaddr)) & 0xfffff000) | INTEL_PTE_VALID0x00000001, UVMF_NONE)) | |||
850 | panic("couldn't set MMU readonly for vaddr %p(%p)\n", vaddr, (vm_offset_t) kv_to_ma (vaddr)); | |||
851 | } | |||
852 | } | |||
853 | ||||
854 | void pmap_clear_bootstrap_pagetable(pt_entry_t *base) { | |||
855 | int i; | |||
856 | pt_entry_t *dir; | |||
857 | vm_offset_t va = 0; | |||
858 | #if PAE | |||
859 | int j; | |||
860 | #endif /* PAE */ | |||
861 | if (!hyp_mmuext_op_mfn (MMUEXT_UNPIN_TABLE, kv_to_mfn(base))) | |||
862 | panic("pmap_clear_bootstrap_pagetable: couldn't unpin page %p(%p)\n", base, (vm_offset_t) kv_to_ma(base)); | |||
863 | #if PAE | |||
864 | for (j = 0; j < PDPNUM1; j++) | |||
865 | { | |||
866 | pt_entry_t pdpe = base[j]; | |||
867 | if (pdpe & INTEL_PTE_VALID0x00000001) { | |||
868 | dir = (pt_entry_t *) ptetokv(pdpe)(((vm_offset_t)(((pdpe) & 0xfffff000)) + 0xC0000000UL)); | |||
869 | #else /* PAE */ | |||
870 | dir = base; | |||
871 | #endif /* PAE */ | |||
872 | for (i = 0; i < NPTES((((unsigned long)(1)) << 12)/sizeof(pt_entry_t)); i++) { | |||
873 | pt_entry_t pde = dir[i]; | |||
874 | unsigned long pfn = atop(pte_to_pa(pde))(((vm_size_t)(((pde) & 0xfffff000))) >> 12); | |||
875 | void *pgt = (void*) phystokv(ptoa(pfn))((vm_offset_t)(((vm_offset_t)((pfn) << 12))) + 0xC0000000UL ); | |||
876 | if (pde & INTEL_PTE_VALID0x00000001) | |||
877 | hyp_free_page(pfn, pgt); | |||
878 | va += NPTES((((unsigned long)(1)) << 12)/sizeof(pt_entry_t)) * INTEL_PGBYTES4096; | |||
879 | if (va >= HYP_VIRT_START) | |||
880 | break; | |||
881 | } | |||
882 | #if PAE | |||
883 | hyp_free_page(atop(_kvtophys(dir))(((vm_size_t)(((vm_offset_t)(dir) - 0xC0000000UL))) >> 12 ), dir); | |||
884 | } else | |||
885 | va += NPTES((((unsigned long)(1)) << 12)/sizeof(pt_entry_t)) * NPTES((((unsigned long)(1)) << 12)/sizeof(pt_entry_t)) * INTEL_PGBYTES4096; | |||
886 | if (va >= HYP_VIRT_START) | |||
887 | break; | |||
888 | } | |||
889 | #endif /* PAE */ | |||
890 | hyp_free_page(atop(_kvtophys(base))(((vm_size_t)(((vm_offset_t)(base) - 0xC0000000UL))) >> 12), base); | |||
891 | } | |||
892 | #endif /* MACH_PV_PAGETABLES */ | |||
893 | ||||
894 | void pmap_virtual_space(startp, endp) | |||
895 | vm_offset_t *startp; | |||
896 | vm_offset_t *endp; | |||
897 | { | |||
898 | *startp = kernel_virtual_start; | |||
899 | *endp = kernel_virtual_end; | |||
900 | } | |||
901 | ||||
902 | /* | |||
903 | * Initialize the pmap module. | |||
904 | * Called by vm_init, to initialize any structures that the pmap | |||
905 | * system needs to map virtual memory. | |||
906 | */ | |||
907 | void pmap_init() | |||
908 | { | |||
909 | register long npages; | |||
910 | vm_offset_t addr; | |||
911 | register vm_size_t s; | |||
912 | #if NCPUS1 > 1 | |||
913 | int i; | |||
914 | #endif /* NCPUS > 1 */ | |||
915 | ||||
916 | /* | |||
917 | * Allocate memory for the pv_head_table and its lock bits, | |||
918 | * the modify bit array, and the pte_page table. | |||
919 | */ | |||
920 | ||||
921 | npages = atop(phys_last_addr - phys_first_addr)(((vm_size_t)(phys_last_addr - phys_first_addr)) >> 12); | |||
922 | s = (vm_size_t) (sizeof(struct pv_entry) * npages | |||
923 | + pv_lock_table_size(npages)(((npages)+8 -1)/8) | |||
924 | + npages); | |||
925 | ||||
926 | s = round_page(s)((vm_offset_t)((((vm_offset_t)(s)) + ((1 << 12)-1)) & ~((1 << 12)-1))); | |||
927 | if (kmem_alloc_wired(kernel_map, &addr, s) != KERN_SUCCESS0) | |||
928 | panic("pmap_init"); | |||
929 | memset((char *) addr, 0, s); | |||
930 | ||||
931 | /* | |||
932 | * Allocate the structures first to preserve word-alignment. | |||
933 | */ | |||
934 | pv_head_table = (pv_entry_t) addr; | |||
935 | addr = (vm_offset_t) (pv_head_table + npages); | |||
936 | ||||
937 | pv_lock_table = (char *) addr; | |||
938 | addr = (vm_offset_t) (pv_lock_table + pv_lock_table_size(npages)(((npages)+8 -1)/8)); | |||
939 | ||||
940 | pmap_phys_attributes = (char *) addr; | |||
941 | ||||
942 | /* | |||
943 | * Create the cache of physical maps, | |||
944 | * and of the physical-to-virtual entries. | |||
945 | */ | |||
946 | s = (vm_size_t) sizeof(struct pmap); | |||
947 | kmem_cache_init(&pmap_cache, "pmap", s, 0, NULL((void *) 0), NULL((void *) 0), NULL((void *) 0), 0); | |||
948 | s = (vm_size_t) sizeof(struct pv_entry); | |||
949 | kmem_cache_init(&pv_list_cache, "pv_entry", s, 0, NULL((void *) 0), NULL((void *) 0), NULL((void *) 0), 0); | |||
950 | ||||
951 | #if NCPUS1 > 1 | |||
952 | /* | |||
953 | * Set up the pmap request lists | |||
954 | */ | |||
955 | for (i = 0; i < NCPUS1; i++) { | |||
956 | pmap_update_list_t up = &cpu_update_list[i]; | |||
957 | ||||
958 | simple_lock_init(&up->lock); | |||
959 | up->count = 0; | |||
960 | } | |||
961 | #endif /* NCPUS > 1 */ | |||
962 | ||||
963 | /* | |||
964 | * Indicate that the PMAP module is now fully initialized. | |||
965 | */ | |||
966 | pmap_initialized = TRUE((boolean_t) 1); | |||
967 | } | |||
968 | ||||
969 | #define valid_page(x)(pmap_initialized && pmap_valid_page(x)) (pmap_initialized && pmap_valid_page(x)) | |||
970 | ||||
971 | boolean_t pmap_verify_free(phys) | |||
972 | vm_offset_t phys; | |||
973 | { | |||
974 | pv_entry_t pv_h; | |||
975 | int pai; | |||
976 | int spl; | |||
977 | boolean_t result; | |||
978 | ||||
979 | assert(phys != vm_page_fictitious_addr)({ if (!(phys != vm_page_fictitious_addr)) Assert("phys != vm_page_fictitious_addr" , "../i386/intel/pmap.c", 979); }); | |||
980 | if (!pmap_initialized) | |||
981 | return(TRUE((boolean_t) 1)); | |||
982 | ||||
983 | if (!pmap_valid_page(phys)) | |||
984 | return(FALSE((boolean_t) 0)); | |||
985 | ||||
986 | PMAP_WRITE_LOCK(spl)((void)(spl)); | |||
987 | ||||
988 | pai = pa_index(phys)((((vm_size_t)(phys - phys_first_addr)) >> 12)); | |||
989 | pv_h = pai_to_pvh(pai)(&pv_head_table[pai]); | |||
990 | ||||
991 | result = (pv_h->pmap == PMAP_NULL((pmap_t) 0)); | |||
992 | PMAP_WRITE_UNLOCK(spl)((void)(spl)); | |||
993 | ||||
994 | return(result); | |||
995 | } | |||
996 | ||||
997 | /* | |||
998 | * Routine: pmap_page_table_page_alloc | |||
999 | * | |||
1000 | * Allocates a new physical page to be used as a page-table page. | |||
1001 | * | |||
1002 | * Must be called with the pmap system and the pmap unlocked, | |||
1003 | * since these must be unlocked to use vm_page_grab. | |||
1004 | */ | |||
1005 | vm_offset_t | |||
1006 | pmap_page_table_page_alloc() | |||
1007 | { | |||
1008 | register vm_page_t m; | |||
1009 | register vm_offset_t pa; | |||
1010 | ||||
1011 | check_simple_locks(); | |||
1012 | ||||
1013 | /* | |||
1014 | * We cannot allocate the pmap_object in pmap_init, | |||
1015 | * because it is called before the cache package is up. | |||
1016 | * Allocate it now if it is missing. | |||
1017 | */ | |||
1018 | if (pmap_object == VM_OBJECT_NULL((vm_object_t) 0)) | |||
1019 | pmap_object = vm_object_allocate(phys_last_addr - phys_first_addr); | |||
1020 | ||||
1021 | /* | |||
1022 | * Allocate a VM page for the level 2 page table entries. | |||
1023 | */ | |||
1024 | while ((m = vm_page_grab(FALSE((boolean_t) 0))) == VM_PAGE_NULL((vm_page_t) 0)) | |||
1025 | VM_PAGE_WAIT((void (*)()) 0)vm_page_wait((void (*)()) 0); | |||
1026 | ||||
1027 | /* | |||
1028 | * Map the page to its physical address so that it | |||
1029 | * can be found later. | |||
1030 | */ | |||
1031 | pa = m->phys_addr; | |||
1032 | vm_object_lock(pmap_object); | |||
1033 | vm_page_insert(m, pmap_object, pa); | |||
1034 | vm_page_lock_queues(); | |||
1035 | vm_page_wire(m); | |||
1036 | inuse_ptepages_count++; | |||
1037 | vm_page_unlock_queues(); | |||
1038 | vm_object_unlock(pmap_object); | |||
1039 | ||||
1040 | /* | |||
1041 | * Zero the page. | |||
1042 | */ | |||
1043 | memset((void *)phystokv(pa)((vm_offset_t)(pa) + 0xC0000000UL), 0, PAGE_SIZE(1 << 12)); | |||
1044 | ||||
1045 | return pa; | |||
1046 | } | |||
1047 | ||||
1048 | #ifdef MACH_XEN | |||
1049 | void pmap_map_mfn(void *_addr, unsigned long mfn) { | |||
1050 | vm_offset_t addr = (vm_offset_t) _addr; | |||
1051 | pt_entry_t *pte, *pdp; | |||
1052 | vm_offset_t ptp; | |||
1053 | pt_entry_t ma = ((pt_entry_t) mfn) << PAGE_SHIFT12; | |||
1054 | ||||
1055 | /* Add a ptp if none exist yet for this pte */ | |||
1056 | if ((pte = pmap_pte(kernel_pmap, addr)) == PT_ENTRY_NULL((pt_entry_t *) 0)) { | |||
1057 | ptp = phystokv(pmap_page_table_page_alloc())((vm_offset_t)(pmap_page_table_page_alloc()) + 0xC0000000UL); | |||
1058 | #ifdef MACH_PV_PAGETABLES | |||
1059 | pmap_set_page_readonly((void*) ptp); | |||
1060 | if (!hyp_mmuext_op_mfn (MMUEXT_PIN_L1_TABLE, pa_to_mfn(ptp))) | |||
1061 | panic("couldn't pin page %p(%p)\n",ptp,(vm_offset_t) kv_to_ma(ptp)); | |||
1062 | #endif /* MACH_PV_PAGETABLES */ | |||
1063 | pdp = pmap_pde(kernel_pmap, addr); | |||
1064 | ||||
1065 | #ifdef MACH_PV_PAGETABLES | |||
1066 | if (!hyp_mmu_update_pte(kv_to_ma(pdp), | |||
1067 | pa_to_pte(kv_to_ma(ptp))((kv_to_ma(ptp)) & 0xfffff000) | INTEL_PTE_VALID0x00000001 | |||
1068 | | INTEL_PTE_USER0x00000004 | |||
1069 | | INTEL_PTE_WRITE0x00000002)) | |||
1070 | panic("%s:%d could not set pde %p(%p) to %p(%p)\n",__FILE__"../i386/intel/pmap.c",__LINE__1070,kvtophys((vm_offset_t)pdp),(vm_offset_t) kv_to_ma(pdp), ptp, (vm_offset_t) pa_to_ma(ptp)); | |||
1071 | #else /* MACH_PV_PAGETABLES */ | |||
1072 | *pdp = pa_to_pte(kvtophys(ptp))((kvtophys(ptp)) & 0xfffff000) | INTEL_PTE_VALID0x00000001 | |||
1073 | | INTEL_PTE_USER0x00000004 | |||
1074 | | INTEL_PTE_WRITE0x00000002; | |||
1075 | #endif /* MACH_PV_PAGETABLES */ | |||
1076 | pte = pmap_pte(kernel_pmap, addr); | |||
1077 | } | |||
1078 | ||||
1079 | #ifdef MACH_PV_PAGETABLES | |||
1080 | if (!hyp_mmu_update_pte(kv_to_ma(pte), ma | INTEL_PTE_VALID0x00000001 | INTEL_PTE_WRITE0x00000002)) | |||
1081 | panic("%s:%d could not set pte %p(%p) to %p(%p)\n",__FILE__"../i386/intel/pmap.c",__LINE__1081,pte,(vm_offset_t) kv_to_ma(pte), ma, ma_to_pa(ma)); | |||
1082 | #else /* MACH_PV_PAGETABLES */ | |||
1083 | /* Note: in this case, mfn is actually a pfn. */ | |||
1084 | WRITE_PTE(pte, ma | INTEL_PTE_VALID | INTEL_PTE_WRITE)*(pte) = (ma | 0x00000001 | 0x00000002);; | |||
1085 | #endif /* MACH_PV_PAGETABLES */ | |||
1086 | } | |||
1087 | #endif /* MACH_XEN */ | |||
1088 | ||||
1089 | /* | |||
1090 | * Deallocate a page-table page. | |||
1091 | * The page-table page must have all mappings removed, | |||
1092 | * and be removed from its page directory. | |||
1093 | */ | |||
1094 | void | |||
1095 | pmap_page_table_page_dealloc(pa) | |||
1096 | vm_offset_t pa; | |||
1097 | { | |||
1098 | vm_page_t m; | |||
1099 | ||||
1100 | vm_object_lock(pmap_object); | |||
1101 | m = vm_page_lookup(pmap_object, pa); | |||
1102 | vm_page_lock_queues(); | |||
1103 | vm_page_free(m); | |||
1104 | inuse_ptepages_count--; | |||
1105 | vm_page_unlock_queues(); | |||
1106 | vm_object_unlock(pmap_object); | |||
1107 | } | |||
1108 | ||||
1109 | /* | |||
1110 | * Create and return a physical map. | |||
1111 | * | |||
1112 | * If the size specified for the map | |||
1113 | * is zero, the map is an actual physical | |||
1114 | * map, and may be referenced by the | |||
1115 | * hardware. | |||
1116 | * | |||
1117 | * If the size specified is non-zero, | |||
1118 | * the map will be used in software only, and | |||
1119 | * is bounded by that size. | |||
1120 | */ | |||
1121 | pmap_t pmap_create(size) | |||
1122 | vm_size_t size; | |||
1123 | { | |||
1124 | register pmap_t p; | |||
1125 | register pmap_statistics_t stats; | |||
1126 | ||||
1127 | /* | |||
1128 | * A software use-only map doesn't even need a map. | |||
1129 | */ | |||
1130 | ||||
1131 | if (size != 0) { | |||
1132 | return(PMAP_NULL((pmap_t) 0)); | |||
1133 | } | |||
1134 | ||||
1135 | /* | |||
1136 | * Allocate a pmap struct from the pmap_cache. Then allocate | |||
1137 | * the page descriptor table. | |||
1138 | */ | |||
1139 | ||||
1140 | p = (pmap_t) kmem_cache_alloc(&pmap_cache); | |||
1141 | if (p == PMAP_NULL((pmap_t) 0)) | |||
1142 | panic("pmap_create"); | |||
1143 | ||||
1144 | if (kmem_alloc_wired(kernel_map, | |||
1145 | (vm_offset_t *)&p->dirbase, PDPNUM1 * INTEL_PGBYTES4096) | |||
1146 | != KERN_SUCCESS0) | |||
1147 | panic("pmap_create"); | |||
1148 | ||||
1149 | memcpy(p->dirbase, kernel_page_dir, PDPNUM1 * INTEL_PGBYTES4096); | |||
1150 | #ifdef LINUX_DEV | |||
1151 | #if VM_MIN_KERNEL_ADDRESS0xC0000000UL != 0 | |||
1152 | /* Do not map BIOS in user tasks */ | |||
1153 | p->dirbase[lin2pdenum(LINEAR_MIN_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS)(((((0xc0000000UL)) - 0xC0000000UL) >> 22) & 0x3ff)] = 0; | |||
1154 | #endif | |||
1155 | #endif | |||
1156 | #ifdef MACH_PV_PAGETABLES | |||
1157 | { | |||
1158 | int i; | |||
1159 | for (i = 0; i < PDPNUM1; i++) | |||
1160 | pmap_set_page_readonly((void*) p->dirbase + i * INTEL_PGBYTES4096); | |||
1161 | } | |||
1162 | #endif /* MACH_PV_PAGETABLES */ | |||
1163 | ||||
1164 | #if PAE | |||
1165 | if (kmem_alloc_wired(kernel_map, | |||
1166 | (vm_offset_t *)&p->pdpbase, INTEL_PGBYTES4096) | |||
1167 | != KERN_SUCCESS0) | |||
1168 | panic("pmap_create"); | |||
1169 | { | |||
1170 | int i; | |||
1171 | for (i = 0; i < PDPNUM1; i++) | |||
1172 | WRITE_PTE(&p->pdpbase[i], pa_to_pte(kvtophys((vm_offset_t) p->dirbase + i * INTEL_PGBYTES)) | INTEL_PTE_VALID)*(&p->pdpbase[i]) = (((kvtophys((vm_offset_t) p->dirbase + i * 4096)) & 0xfffff000) | 0x00000001);; | |||
1173 | } | |||
1174 | #ifdef MACH_PV_PAGETABLES | |||
1175 | pmap_set_page_readonly(p->pdpbase); | |||
1176 | #endif /* MACH_PV_PAGETABLES */ | |||
1177 | #endif /* PAE */ | |||
1178 | ||||
1179 | p->ref_count = 1; | |||
1180 | ||||
1181 | simple_lock_init(&p->lock); | |||
1182 | p->cpus_using = 0; | |||
1183 | ||||
1184 | /* | |||
1185 | * Initialize statistics. | |||
1186 | */ | |||
1187 | ||||
1188 | stats = &p->stats; | |||
1189 | stats->resident_count = 0; | |||
1190 | stats->wired_count = 0; | |||
1191 | ||||
1192 | return(p); | |||
1193 | } | |||
1194 | ||||
1195 | /* | |||
1196 | * Retire the given physical map from service. | |||
1197 | * Should only be called if the map contains | |||
1198 | * no valid mappings. | |||
1199 | */ | |||
1200 | ||||
1201 | void pmap_destroy(p) | |||
1202 | register pmap_t p; | |||
1203 | { | |||
1204 | register pt_entry_t *pdep; | |||
1205 | register vm_offset_t pa; | |||
1206 | register int c, s; | |||
1207 | register vm_page_t m; | |||
1208 | ||||
1209 | if (p == PMAP_NULL((pmap_t) 0)) | |||
1210 | return; | |||
1211 | ||||
1212 | SPLVM(s)((void)(s)); | |||
1213 | simple_lock(&p->lock); | |||
1214 | c = --p->ref_count; | |||
1215 | simple_unlock(&p->lock); | |||
1216 | SPLX(s)((void)(s)); | |||
1217 | ||||
1218 | if (c != 0) { | |||
1219 | return; /* still in use */ | |||
1220 | } | |||
1221 | ||||
1222 | /* | |||
1223 | * Free the memory maps, then the | |||
1224 | * pmap structure. | |||
1225 | */ | |||
1226 | for (pdep = p->dirbase; | |||
1227 | pdep < &p->dirbase[lin2pdenum(LINEAR_MIN_KERNEL_ADDRESS)(((((0xc0000000UL))) >> 22) & 0x3ff)]; | |||
1228 | pdep += ptes_per_vm_page1) { | |||
1229 | if (*pdep & INTEL_PTE_VALID0x00000001) { | |||
1230 | pa = pte_to_pa(*pdep)((*pdep) & 0xfffff000); | |||
1231 | vm_object_lock(pmap_object); | |||
1232 | m = vm_page_lookup(pmap_object, pa); | |||
1233 | if (m == VM_PAGE_NULL((vm_page_t) 0)) | |||
1234 | panic("pmap_destroy: pte page not in object"); | |||
1235 | vm_page_lock_queues(); | |||
1236 | #ifdef MACH_PV_PAGETABLES | |||
1237 | if (!hyp_mmuext_op_mfn (MMUEXT_UNPIN_TABLE, pa_to_mfn(pa))) | |||
1238 | panic("pmap_destroy: couldn't unpin page %p(%p)\n", pa, (vm_offset_t) kv_to_ma(pa)); | |||
1239 | pmap_set_page_readwrite((void*) phystokv(pa)((vm_offset_t)(pa) + 0xC0000000UL)); | |||
1240 | #endif /* MACH_PV_PAGETABLES */ | |||
1241 | vm_page_free(m); | |||
1242 | inuse_ptepages_count--; | |||
1243 | vm_page_unlock_queues(); | |||
1244 | vm_object_unlock(pmap_object); | |||
1245 | } | |||
1246 | } | |||
1247 | #ifdef MACH_PV_PAGETABLES | |||
1248 | { | |||
1249 | int i; | |||
1250 | for (i = 0; i < PDPNUM1; i++) | |||
1251 | pmap_set_page_readwrite((void*) p->dirbase + i * INTEL_PGBYTES4096); | |||
1252 | } | |||
1253 | #endif /* MACH_PV_PAGETABLES */ | |||
1254 | kmem_free(kernel_map, (vm_offset_t)p->dirbase, PDPNUM1 * INTEL_PGBYTES4096); | |||
1255 | #if PAE | |||
1256 | #ifdef MACH_PV_PAGETABLES | |||
1257 | pmap_set_page_readwrite(p->pdpbase); | |||
1258 | #endif /* MACH_PV_PAGETABLES */ | |||
1259 | kmem_free(kernel_map, (vm_offset_t)p->pdpbase, INTEL_PGBYTES4096); | |||
1260 | #endif /* PAE */ | |||
1261 | kmem_cache_free(&pmap_cache, (vm_offset_t) p); | |||
1262 | } | |||
1263 | ||||
1264 | /* | |||
1265 | * Add a reference to the specified pmap. | |||
1266 | */ | |||
1267 | ||||
1268 | void pmap_reference(p) | |||
1269 | register pmap_t p; | |||
1270 | { | |||
1271 | int s; | |||
1272 | if (p != PMAP_NULL((pmap_t) 0)) { | |||
1273 | SPLVM(s)((void)(s)); | |||
1274 | simple_lock(&p->lock); | |||
1275 | p->ref_count++; | |||
1276 | simple_unlock(&p->lock); | |||
1277 | SPLX(s)((void)(s)); | |||
1278 | } | |||
1279 | } | |||
1280 | ||||
1281 | /* | |||
1282 | * Remove a range of hardware page-table entries. | |||
1283 | * The entries given are the first (inclusive) | |||
1284 | * and last (exclusive) entries for the VM pages. | |||
1285 | * The virtual address is the va for the first pte. | |||
1286 | * | |||
1287 | * The pmap must be locked. | |||
1288 | * If the pmap is not the kernel pmap, the range must lie | |||
1289 | * entirely within one pte-page. This is NOT checked. | |||
1290 | * Assumes that the pte-page exists. | |||
1291 | */ | |||
1292 | ||||
1293 | /* static */ | |||
1294 | void pmap_remove_range(pmap, va, spte, epte) | |||
1295 | pmap_t pmap; | |||
1296 | vm_offset_t va; | |||
1297 | pt_entry_t *spte; | |||
1298 | pt_entry_t *epte; | |||
1299 | { | |||
1300 | register pt_entry_t *cpte; | |||
1301 | int num_removed, num_unwired; | |||
1302 | int pai; | |||
1303 | vm_offset_t pa; | |||
1304 | #ifdef MACH_PV_PAGETABLES | |||
1305 | int n, ii = 0; | |||
1306 | struct mmu_update update[HYP_BATCH_MMU_UPDATES]; | |||
1307 | #endif /* MACH_PV_PAGETABLES */ | |||
1308 | ||||
1309 | #if DEBUG_PTE_PAGE0 | |||
1310 | if (pmap != kernel_pmap) | |||
1311 | ptep_check(get_pte_page(spte)); | |||
1312 | #endif /* DEBUG_PTE_PAGE */ | |||
1313 | num_removed = 0; | |||
1314 | num_unwired = 0; | |||
1315 | ||||
1316 | for (cpte = spte; cpte < epte; | |||
1317 | cpte += ptes_per_vm_page1, va += PAGE_SIZE(1 << 12)) { | |||
1318 | ||||
1319 | if (*cpte == 0) | |||
1320 | continue; | |||
1321 | pa = pte_to_pa(*cpte)((*cpte) & 0xfffff000); | |||
1322 | ||||
1323 | num_removed++; | |||
1324 | if (*cpte & INTEL_PTE_WIRED0x00000200) | |||
1325 | num_unwired++; | |||
1326 | ||||
1327 | if (!valid_page(pa)(pmap_initialized && pmap_valid_page(pa))) { | |||
1328 | ||||
1329 | /* | |||
1330 | * Outside range of managed physical memory. | |||
1331 | * Just remove the mappings. | |||
1332 | */ | |||
1333 | register int i = ptes_per_vm_page1; | |||
1334 | register pt_entry_t *lpte = cpte; | |||
1335 | do { | |||
1336 | #ifdef MACH_PV_PAGETABLES | |||
1337 | update[ii].ptr = kv_to_ma(lpte); | |||
1338 | update[ii].val = 0; | |||
1339 | ii++; | |||
1340 | if (ii == HYP_BATCH_MMU_UPDATES) { | |||
1341 | hyp_mmu_update(kvtolin(&update)((vm_offset_t)(&update) - 0xC0000000UL + ((0xc0000000UL)) ), ii, kvtolin(&n)((vm_offset_t)(&n) - 0xC0000000UL + ((0xc0000000UL))), DOMID_SELF); | |||
1342 | if (n != ii) | |||
1343 | panic("couldn't pmap_remove_range\n"); | |||
1344 | ii = 0; | |||
1345 | } | |||
1346 | #else /* MACH_PV_PAGETABLES */ | |||
1347 | *lpte = 0; | |||
1348 | #endif /* MACH_PV_PAGETABLES */ | |||
1349 | lpte++; | |||
1350 | } while (--i > 0); | |||
1351 | continue; | |||
1352 | } | |||
1353 | ||||
1354 | pai = pa_index(pa)((((vm_size_t)(pa - phys_first_addr)) >> 12)); | |||
1355 | LOCK_PVH(pai); | |||
1356 | ||||
1357 | /* | |||
1358 | * Get the modify and reference bits. | |||
1359 | */ | |||
1360 | { | |||
1361 | register int i; | |||
1362 | register pt_entry_t *lpte; | |||
1363 | ||||
1364 | i = ptes_per_vm_page1; | |||
1365 | lpte = cpte; | |||
1366 | do { | |||
1367 | pmap_phys_attributes[pai] |= | |||
1368 | *lpte & (PHYS_MODIFIED0x00000040|PHYS_REFERENCED0x00000020); | |||
1369 | #ifdef MACH_PV_PAGETABLES | |||
1370 | update[ii].ptr = kv_to_ma(lpte); | |||
1371 | update[ii].val = 0; | |||
1372 | ii++; | |||
1373 | if (ii == HYP_BATCH_MMU_UPDATES) { | |||
1374 | hyp_mmu_update(kvtolin(&update)((vm_offset_t)(&update) - 0xC0000000UL + ((0xc0000000UL)) ), ii, kvtolin(&n)((vm_offset_t)(&n) - 0xC0000000UL + ((0xc0000000UL))), DOMID_SELF); | |||
1375 | if (n != ii) | |||
1376 | panic("couldn't pmap_remove_range\n"); | |||
1377 | ii = 0; | |||
1378 | } | |||
1379 | #else /* MACH_PV_PAGETABLES */ | |||
1380 | *lpte = 0; | |||
1381 | #endif /* MACH_PV_PAGETABLES */ | |||
1382 | lpte++; | |||
1383 | } while (--i > 0); | |||
1384 | } | |||
1385 | ||||
1386 | /* | |||
1387 | * Remove the mapping from the pvlist for | |||
1388 | * this physical page. | |||
1389 | */ | |||
1390 | { | |||
1391 | register pv_entry_t pv_h, prev, cur; | |||
1392 | ||||
1393 | pv_h = pai_to_pvh(pai)(&pv_head_table[pai]); | |||
1394 | if (pv_h->pmap == PMAP_NULL((pmap_t) 0)) { | |||
1395 | panic("pmap_remove: null pv_list!"); | |||
1396 | } | |||
1397 | if (pv_h->va == va && pv_h->pmap == pmap) { | |||
1398 | /* | |||
1399 | * Header is the pv_entry. Copy the next one | |||
1400 | * to header and free the next one (we cannot | |||
1401 | * free the header) | |||
1402 | */ | |||
1403 | cur = pv_h->next; | |||
1404 | if (cur != PV_ENTRY_NULL((pv_entry_t) 0)) { | |||
1405 | *pv_h = *cur; | |||
1406 | PV_FREE(cur){ ; cur->next = pv_free_list; pv_free_list = cur; ; }; | |||
1407 | } | |||
1408 | else { | |||
1409 | pv_h->pmap = PMAP_NULL((pmap_t) 0); | |||
1410 | } | |||
1411 | } | |||
1412 | else { | |||
1413 | cur = pv_h; | |||
1414 | do { | |||
1415 | prev = cur; | |||
1416 | if ((cur = prev->next) == PV_ENTRY_NULL((pv_entry_t) 0)) { | |||
1417 | panic("pmap-remove: mapping not in pv_list!"); | |||
1418 | } | |||
1419 | } while (cur->va != va || cur->pmap != pmap); | |||
1420 | prev->next = cur->next; | |||
1421 | PV_FREE(cur){ ; cur->next = pv_free_list; pv_free_list = cur; ; }; | |||
1422 | } | |||
1423 | UNLOCK_PVH(pai); | |||
1424 | } | |||
1425 | } | |||
1426 | ||||
1427 | #ifdef MACH_PV_PAGETABLES | |||
1428 | if (ii > HYP_BATCH_MMU_UPDATES) | |||
1429 | panic("overflowed array in pmap_remove_range"); | |||
1430 | hyp_mmu_update(kvtolin(&update)((vm_offset_t)(&update) - 0xC0000000UL + ((0xc0000000UL)) ), ii, kvtolin(&n)((vm_offset_t)(&n) - 0xC0000000UL + ((0xc0000000UL))), DOMID_SELF); | |||
1431 | if (n != ii) | |||
1432 | panic("couldn't pmap_remove_range\n"); | |||
1433 | #endif /* MACH_PV_PAGETABLES */ | |||
1434 | ||||
1435 | /* | |||
1436 | * Update the counts | |||
1437 | */ | |||
1438 | pmap->stats.resident_count -= num_removed; | |||
1439 | pmap->stats.wired_count -= num_unwired; | |||
1440 | } | |||
1441 | ||||
1442 | /* | |||
1443 | * Remove the given range of addresses | |||
1444 | * from the specified map. | |||
1445 | * | |||
1446 | * It is assumed that the start and end are properly | |||
1447 | * rounded to the hardware page size. | |||
1448 | */ | |||
1449 | ||||
1450 | void pmap_remove(map, s, e) | |||
1451 | pmap_t map; | |||
1452 | vm_offset_t s, e; | |||
1453 | { | |||
1454 | int spl; | |||
1455 | register pt_entry_t *pde; | |||
1456 | register pt_entry_t *spte, *epte; | |||
1457 | vm_offset_t l; | |||
1458 | vm_offset_t _s = s; | |||
1459 | ||||
1460 | if (map == PMAP_NULL((pmap_t) 0)) | |||
1461 | return; | |||
1462 | ||||
1463 | PMAP_READ_LOCK(map, spl)((void)(spl)); | |||
1464 | ||||
1465 | pde = pmap_pde(map, s); | |||
1466 | while (s < e) { | |||
1467 | l = (s + PDE_MAPPED_SIZE(((vm_offset_t)(1) << 22))) & ~(PDE_MAPPED_SIZE(((vm_offset_t)(1) << 22))-1); | |||
1468 | if (l > e) | |||
1469 | l = e; | |||
1470 | if (*pde & INTEL_PTE_VALID0x00000001) { | |||
1471 | spte = (pt_entry_t *)ptetokv(*pde)(((vm_offset_t)(((*pde) & 0xfffff000)) + 0xC0000000UL)); | |||
1472 | spte = &spte[ptenum(s)(((s) >> 12) & 0x3ff)]; | |||
1473 | epte = &spte[intel_btop(l-s)(((unsigned long)(l-s)) >> 12)]; | |||
1474 | pmap_remove_range(map, s, spte, epte); | |||
1475 | } | |||
1476 | s = l; | |||
1477 | pde++; | |||
1478 | } | |||
1479 | PMAP_UPDATE_TLBS(map, _s, e){ if ((map)->cpus_using) { { (void) ((map)); (void) ((_s)) ; (void) ((e)); ({ register unsigned long _temp__ = (({ register unsigned long _temp__; asm volatile("mov %%cr3, %0" : "=r" ( _temp__)); _temp__; })); asm volatile("mov %0, %%cr3" : : "r" (_temp__) : "memory"); }); }; } }; | |||
1480 | ||||
1481 | PMAP_READ_UNLOCK(map, spl)((void)(spl)); | |||
1482 | } | |||
1483 | ||||
1484 | /* | |||
1485 | * Routine: pmap_page_protect | |||
1486 | * | |||
1487 | * Function: | |||
1488 | * Lower the permission for all mappings to a given | |||
1489 | * page. | |||
1490 | */ | |||
1491 | void pmap_page_protect(phys, prot) | |||
1492 | vm_offset_t phys; | |||
1493 | vm_prot_t prot; | |||
1494 | { | |||
1495 | pv_entry_t pv_h, prev; | |||
1496 | register pv_entry_t pv_e; | |||
1497 | register pt_entry_t *pte; | |||
1498 | int pai; | |||
1499 | register pmap_t pmap; | |||
1500 | int spl; | |||
1501 | boolean_t remove; | |||
1502 | ||||
1503 | assert(phys != vm_page_fictitious_addr)({ if (!(phys != vm_page_fictitious_addr)) Assert("phys != vm_page_fictitious_addr" , "../i386/intel/pmap.c", 1503); }); | |||
1504 | if (!valid_page(phys)(pmap_initialized && pmap_valid_page(phys))) { | |||
| ||||
1505 | /* | |||
1506 | * Not a managed page. | |||
1507 | */ | |||
1508 | return; | |||
1509 | } | |||
1510 | ||||
1511 | /* | |||
1512 | * Determine the new protection. | |||
1513 | */ | |||
1514 | switch (prot) { | |||
1515 | case VM_PROT_READ((vm_prot_t) 0x01): | |||
1516 | case VM_PROT_READ((vm_prot_t) 0x01)|VM_PROT_EXECUTE((vm_prot_t) 0x04): | |||
1517 | remove = FALSE((boolean_t) 0); | |||
1518 | break; | |||
1519 | case VM_PROT_ALL(((vm_prot_t) 0x01)|((vm_prot_t) 0x02)|((vm_prot_t) 0x04)): | |||
1520 | return; /* nothing to do */ | |||
1521 | default: | |||
1522 | remove = TRUE((boolean_t) 1); | |||
1523 | break; | |||
1524 | } | |||
1525 | ||||
1526 | /* | |||
1527 | * Lock the pmap system first, since we will be changing | |||
1528 | * several pmaps. | |||
1529 | */ | |||
1530 | ||||
1531 | PMAP_WRITE_LOCK(spl)((void)(spl)); | |||
1532 | ||||
1533 | pai = pa_index(phys)((((vm_size_t)(phys - phys_first_addr)) >> 12)); | |||
1534 | pv_h = pai_to_pvh(pai)(&pv_head_table[pai]); | |||
1535 | ||||
1536 | /* | |||
1537 | * Walk down PV list, changing or removing all mappings. | |||
1538 | * We do not have to lock the pv_list because we have | |||
1539 | * the entire pmap system locked. | |||
1540 | */ | |||
1541 | if (pv_h->pmap != PMAP_NULL((pmap_t) 0)) { | |||
1542 | ||||
1543 | prev = pv_e = pv_h; | |||
1544 | do { | |||
1545 | register vm_offset_t va; | |||
1546 | ||||
1547 | pmap = pv_e->pmap; | |||
1548 | /* | |||
1549 | * Lock the pmap to block pmap_extract and similar routines. | |||
1550 | */ | |||
1551 | simple_lock(&pmap->lock); | |||
1552 | ||||
1553 | va = pv_e->va; | |||
1554 | pte = pmap_pte(pmap, va); | |||
1555 | ||||
1556 | /* | |||
1557 | * Consistency checks. | |||
1558 | */ | |||
1559 | /* assert(*pte & INTEL_PTE_VALID); XXX */ | |||
1560 | /* assert(pte_to_phys(*pte) == phys); */ | |||
1561 | ||||
1562 | /* | |||
1563 | * Remove the mapping if new protection is NONE | |||
1564 | * or if write-protecting a kernel mapping. | |||
1565 | */ | |||
1566 | if (remove || pmap == kernel_pmap) { | |||
1567 | /* | |||
1568 | * Remove the mapping, collecting any modify bits. | |||
1569 | */ | |||
1570 | if (*pte & INTEL_PTE_WIRED0x00000200) | |||
| ||||
1571 | panic("pmap_remove_all removing a wired page"); | |||
1572 | ||||
1573 | { | |||
1574 | register int i = ptes_per_vm_page1; | |||
1575 | ||||
1576 | do { | |||
1577 | pmap_phys_attributes[pai] |= | |||
1578 | *pte & (PHYS_MODIFIED0x00000040|PHYS_REFERENCED0x00000020); | |||
1579 | #ifdef MACH_PV_PAGETABLES | |||
1580 | if (!hyp_mmu_update_pte(kv_to_ma(pte++), 0)) | |||
1581 | panic("%s:%d could not clear pte %p\n",__FILE__"../i386/intel/pmap.c",__LINE__1581,pte-1); | |||
1582 | #else /* MACH_PV_PAGETABLES */ | |||
1583 | *pte++ = 0; | |||
1584 | #endif /* MACH_PV_PAGETABLES */ | |||
1585 | } while (--i > 0); | |||
1586 | } | |||
1587 | ||||
1588 | pmap->stats.resident_count--; | |||
1589 | ||||
1590 | /* | |||
1591 | * Remove the pv_entry. | |||
1592 | */ | |||
1593 | if (pv_e == pv_h) { | |||
1594 | /* | |||
1595 | * Fix up head later. | |||
1596 | */ | |||
1597 | pv_h->pmap = PMAP_NULL((pmap_t) 0); | |||
1598 | } | |||
1599 | else { | |||
1600 | /* | |||
1601 | * Delete this entry. | |||
1602 | */ | |||
1603 | prev->next = pv_e->next; | |||
1604 | PV_FREE(pv_e){ ; pv_e->next = pv_free_list; pv_free_list = pv_e; ; }; | |||
1605 | } | |||
1606 | } | |||
1607 | else { | |||
1608 | /* | |||
1609 | * Write-protect. | |||
1610 | */ | |||
1611 | register int i = ptes_per_vm_page1; | |||
1612 | ||||
1613 | do { | |||
1614 | #ifdef MACH_PV_PAGETABLES | |||
1615 | if (!hyp_mmu_update_pte(kv_to_ma(pte), *pte & ~INTEL_PTE_WRITE0x00000002)) | |||
1616 | panic("%s:%d could not disable write on pte %p\n",__FILE__"../i386/intel/pmap.c",__LINE__1616,pte); | |||
1617 | #else /* MACH_PV_PAGETABLES */ | |||
1618 | *pte &= ~INTEL_PTE_WRITE0x00000002; | |||
1619 | #endif /* MACH_PV_PAGETABLES */ | |||
1620 | pte++; | |||
1621 | } while (--i > 0); | |||
1622 | ||||
1623 | /* | |||
1624 | * Advance prev. | |||
1625 | */ | |||
1626 | prev = pv_e; | |||
1627 | } | |||
1628 | PMAP_UPDATE_TLBS(pmap, va, va + PAGE_SIZE){ if ((pmap)->cpus_using) { { (void) ((pmap)); (void) ((va )); (void) ((va + (1 << 12))); ({ register unsigned long _temp__ = (({ register unsigned long _temp__; asm volatile("mov %%cr3, %0" : "=r" (_temp__)); _temp__; })); asm volatile("mov %0, %%cr3" : : "r" (_temp__) : "memory"); }); }; } }; | |||
1629 | ||||
1630 | simple_unlock(&pmap->lock); | |||
1631 | ||||
1632 | } while ((pv_e = prev->next) != PV_ENTRY_NULL((pv_entry_t) 0)); | |||
1633 | ||||
1634 | /* | |||
1635 | * If pv_head mapping was removed, fix it up. | |||
1636 | */ | |||
1637 | if (pv_h->pmap == PMAP_NULL((pmap_t) 0)) { | |||
1638 | pv_e = pv_h->next; | |||
1639 | if (pv_e != PV_ENTRY_NULL((pv_entry_t) 0)) { | |||
1640 | *pv_h = *pv_e; | |||
1641 | PV_FREE(pv_e){ ; pv_e->next = pv_free_list; pv_free_list = pv_e; ; }; | |||
1642 | } | |||
1643 | } | |||
1644 | } | |||
1645 | ||||
1646 | PMAP_WRITE_UNLOCK(spl)((void)(spl)); | |||
1647 | } | |||
1648 | ||||
1649 | /* | |||
1650 | * Set the physical protection on the | |||
1651 | * specified range of this map as requested. | |||
1652 | * Will not increase permissions. | |||
1653 | */ | |||
1654 | void pmap_protect(map, s, e, prot) | |||
1655 | pmap_t map; | |||
1656 | vm_offset_t s, e; | |||
1657 | vm_prot_t prot; | |||
1658 | { | |||
1659 | register pt_entry_t *pde; | |||
1660 | register pt_entry_t *spte, *epte; | |||
1661 | vm_offset_t l; | |||
1662 | int spl; | |||
1663 | vm_offset_t _s = s; | |||
1664 | ||||
1665 | if (map == PMAP_NULL((pmap_t) 0)) | |||
1666 | return; | |||
1667 | ||||
1668 | /* | |||
1669 | * Determine the new protection. | |||
1670 | */ | |||
1671 | switch (prot) { | |||
1672 | case VM_PROT_READ((vm_prot_t) 0x01): | |||
1673 | case VM_PROT_READ((vm_prot_t) 0x01)|VM_PROT_EXECUTE((vm_prot_t) 0x04): | |||
1674 | break; | |||
1675 | case VM_PROT_READ((vm_prot_t) 0x01)|VM_PROT_WRITE((vm_prot_t) 0x02): | |||
1676 | case VM_PROT_ALL(((vm_prot_t) 0x01)|((vm_prot_t) 0x02)|((vm_prot_t) 0x04)): | |||
1677 | return; /* nothing to do */ | |||
1678 | default: | |||
1679 | pmap_remove(map, s, e); | |||
1680 | return; | |||
1681 | } | |||
1682 | ||||
1683 | /* | |||
1684 | * If write-protecting in the kernel pmap, | |||
1685 | * remove the mappings; the i386 ignores | |||
1686 | * the write-permission bit in kernel mode. | |||
1687 | * | |||
1688 | * XXX should be #if'd for i386 | |||
1689 | */ | |||
1690 | if (map == kernel_pmap) { | |||
1691 | pmap_remove(map, s, e); | |||
1692 | return; | |||
1693 | } | |||
1694 | ||||
1695 | SPLVM(spl)((void)(spl)); | |||
1696 | simple_lock(&map->lock); | |||
1697 | ||||
1698 | pde = pmap_pde(map, s); | |||
1699 | while (s < e) { | |||
1700 | l = (s + PDE_MAPPED_SIZE(((vm_offset_t)(1) << 22))) & ~(PDE_MAPPED_SIZE(((vm_offset_t)(1) << 22))-1); | |||
1701 | if (l > e) | |||
1702 | l = e; | |||
1703 | if (*pde & INTEL_PTE_VALID0x00000001) { | |||
1704 | spte = (pt_entry_t *)ptetokv(*pde)(((vm_offset_t)(((*pde) & 0xfffff000)) + 0xC0000000UL)); | |||
1705 | spte = &spte[ptenum(s)(((s) >> 12) & 0x3ff)]; | |||
1706 | epte = &spte[intel_btop(l-s)(((unsigned long)(l-s)) >> 12)]; | |||
1707 | ||||
1708 | #ifdef MACH_PV_PAGETABLES | |||
1709 | int n, i = 0; | |||
1710 | struct mmu_update update[HYP_BATCH_MMU_UPDATES]; | |||
1711 | #endif /* MACH_PV_PAGETABLES */ | |||
1712 | ||||
1713 | while (spte < epte) { | |||
1714 | if (*spte & INTEL_PTE_VALID0x00000001) { | |||
1715 | #ifdef MACH_PV_PAGETABLES | |||
1716 | update[i].ptr = kv_to_ma(spte); | |||
1717 | update[i].val = *spte & ~INTEL_PTE_WRITE0x00000002; | |||
1718 | i++; | |||
1719 | if (i == HYP_BATCH_MMU_UPDATES) { | |||
1720 | hyp_mmu_update(kvtolin(&update)((vm_offset_t)(&update) - 0xC0000000UL + ((0xc0000000UL)) ), i, kvtolin(&n)((vm_offset_t)(&n) - 0xC0000000UL + ((0xc0000000UL))), DOMID_SELF); | |||
1721 | if (n != i) | |||
1722 | panic("couldn't pmap_protect\n"); | |||
1723 | i = 0; | |||
1724 | } | |||
1725 | #else /* MACH_PV_PAGETABLES */ | |||
1726 | *spte &= ~INTEL_PTE_WRITE0x00000002; | |||
1727 | #endif /* MACH_PV_PAGETABLES */ | |||
1728 | } | |||
1729 | spte++; | |||
1730 | } | |||
1731 | #ifdef MACH_PV_PAGETABLES | |||
1732 | if (i > HYP_BATCH_MMU_UPDATES) | |||
1733 | panic("overflowed array in pmap_protect"); | |||
1734 | hyp_mmu_update(kvtolin(&update)((vm_offset_t)(&update) - 0xC0000000UL + ((0xc0000000UL)) ), i, kvtolin(&n)((vm_offset_t)(&n) - 0xC0000000UL + ((0xc0000000UL))), DOMID_SELF); | |||
1735 | if (n != i) | |||
1736 | panic("couldn't pmap_protect\n"); | |||
1737 | #endif /* MACH_PV_PAGETABLES */ | |||
1738 | } | |||
1739 | s = l; | |||
1740 | pde++; | |||
1741 | } | |||
1742 | PMAP_UPDATE_TLBS(map, _s, e){ if ((map)->cpus_using) { { (void) ((map)); (void) ((_s)) ; (void) ((e)); ({ register unsigned long _temp__ = (({ register unsigned long _temp__; asm volatile("mov %%cr3, %0" : "=r" ( _temp__)); _temp__; })); asm volatile("mov %0, %%cr3" : : "r" (_temp__) : "memory"); }); }; } }; | |||
1743 | ||||
1744 | simple_unlock(&map->lock); | |||
1745 | SPLX(spl)((void)(spl)); | |||
1746 | } | |||
1747 | ||||
1748 | /* | |||
1749 | * Insert the given physical page (p) at | |||
1750 | * the specified virtual address (v) in the | |||
1751 | * target physical map with the protection requested. | |||
1752 | * | |||
1753 | * If specified, the page will be wired down, meaning | |||
1754 | * that the related pte can not be reclaimed. | |||
1755 | * | |||
1756 | * NB: This is the only routine which MAY NOT lazy-evaluate | |||
1757 | * or lose information. That is, this routine must actually | |||
1758 | * insert this page into the given map NOW. | |||
1759 | */ | |||
1760 | void pmap_enter(pmap, v, pa, prot, wired) | |||
1761 | register pmap_t pmap; | |||
1762 | vm_offset_t v; | |||
1763 | register vm_offset_t pa; | |||
1764 | vm_prot_t prot; | |||
1765 | boolean_t wired; | |||
1766 | { | |||
1767 | register pt_entry_t *pte; | |||
1768 | register pv_entry_t pv_h; | |||
1769 | register int i, pai; | |||
1770 | pv_entry_t pv_e; | |||
1771 | pt_entry_t template; | |||
1772 | int spl; | |||
1773 | vm_offset_t old_pa; | |||
1774 | ||||
1775 | assert(pa != vm_page_fictitious_addr)({ if (!(pa != vm_page_fictitious_addr)) Assert("pa != vm_page_fictitious_addr" , "../i386/intel/pmap.c", 1775); }); | |||
1776 | if (pmap_debug) printf("pmap(%lx, %lx)\n", v, pa); | |||
1777 | if (pmap == PMAP_NULL((pmap_t) 0)) | |||
1778 | return; | |||
1779 | ||||
1780 | #if !MACH_KDB0 | |||
1781 | if (pmap == kernel_pmap && (v < kernel_virtual_start || v >= kernel_virtual_end)) | |||
1782 | panic("pmap_enter(%p, %p) falls in physical memory area!\n", v, pa); | |||
1783 | #endif | |||
1784 | if (pmap == kernel_pmap && (prot & VM_PROT_WRITE((vm_prot_t) 0x02)) == 0 | |||
1785 | && !wired /* hack for io_wire */ ) { | |||
1786 | /* | |||
1787 | * Because the 386 ignores write protection in kernel mode, | |||
1788 | * we cannot enter a read-only kernel mapping, and must | |||
1789 | * remove an existing mapping if changing it. | |||
1790 | * | |||
1791 | * XXX should be #if'd for i386 | |||
1792 | */ | |||
1793 | PMAP_READ_LOCK(pmap, spl)((void)(spl)); | |||
1794 | ||||
1795 | pte = pmap_pte(pmap, v); | |||
1796 | if (pte != PT_ENTRY_NULL((pt_entry_t *) 0) && *pte != 0) { | |||
1797 | /* | |||
1798 | * Invalidate the translation buffer, | |||
1799 | * then remove the mapping. | |||
1800 | */ | |||
1801 | pmap_remove_range(pmap, v, pte, | |||
1802 | pte + ptes_per_vm_page1); | |||
1803 | PMAP_UPDATE_TLBS(pmap, v, v + PAGE_SIZE){ if ((pmap)->cpus_using) { { (void) ((pmap)); (void) ((v) ); (void) ((v + (1 << 12))); ({ register unsigned long _temp__ = (({ register unsigned long _temp__; asm volatile("mov %%cr3, %0" : "=r" (_temp__)); _temp__; })); asm volatile("mov %0, %%cr3" : : "r" (_temp__) : "memory"); }); }; } }; | |||
1804 | } | |||
1805 | PMAP_READ_UNLOCK(pmap, spl)((void)(spl)); | |||
1806 | return; | |||
1807 | } | |||
1808 | ||||
1809 | /* | |||
1810 | * Must allocate a new pvlist entry while we're unlocked; | |||
1811 | * Allocating may cause pageout (which will lock the pmap system). | |||
1812 | * If we determine we need a pvlist entry, we will unlock | |||
1813 | * and allocate one. Then we will retry, throughing away | |||
1814 | * the allocated entry later (if we no longer need it). | |||
1815 | */ | |||
1816 | pv_e = PV_ENTRY_NULL((pv_entry_t) 0); | |||
1817 | Retry: | |||
1818 | PMAP_READ_LOCK(pmap, spl)((void)(spl)); | |||
1819 | ||||
1820 | /* | |||
1821 | * Expand pmap to include this pte. Assume that | |||
1822 | * pmap is always expanded to include enough hardware | |||
1823 | * pages to map one VM page. | |||
1824 | */ | |||
1825 | ||||
1826 | while ((pte = pmap_pte(pmap, v)) == PT_ENTRY_NULL((pt_entry_t *) 0)) { | |||
1827 | /* | |||
1828 | * Need to allocate a new page-table page. | |||
1829 | */ | |||
1830 | vm_offset_t ptp; | |||
1831 | pt_entry_t *pdp; | |||
1832 | int i; | |||
1833 | ||||
1834 | if (pmap == kernel_pmap) { | |||
1835 | /* | |||
1836 | * Would have to enter the new page-table page in | |||
1837 | * EVERY pmap. | |||
1838 | */ | |||
1839 | panic("pmap_expand kernel pmap to %#x", v); | |||
1840 | } | |||
1841 | ||||
1842 | /* | |||
1843 | * Unlock the pmap and allocate a new page-table page. | |||
1844 | */ | |||
1845 | PMAP_READ_UNLOCK(pmap, spl)((void)(spl)); | |||
1846 | ||||
1847 | ptp = phystokv(pmap_page_table_page_alloc())((vm_offset_t)(pmap_page_table_page_alloc()) + 0xC0000000UL); | |||
1848 | ||||
1849 | /* | |||
1850 | * Re-lock the pmap and check that another thread has | |||
1851 | * not already allocated the page-table page. If it | |||
1852 | * has, discard the new page-table page (and try | |||
1853 | * again to make sure). | |||
1854 | */ | |||
1855 | PMAP_READ_LOCK(pmap, spl)((void)(spl)); | |||
1856 | ||||
1857 | if (pmap_pte(pmap, v) != PT_ENTRY_NULL((pt_entry_t *) 0)) { | |||
1858 | /* | |||
1859 | * Oops... | |||
1860 | */ | |||
1861 | PMAP_READ_UNLOCK(pmap, spl)((void)(spl)); | |||
1862 | pmap_page_table_page_dealloc(kvtophys(ptp)); | |||
1863 | PMAP_READ_LOCK(pmap, spl)((void)(spl)); | |||
1864 | continue; | |||
1865 | } | |||
1866 | ||||
1867 | /* | |||
1868 | * Enter the new page table page in the page directory. | |||
1869 | */ | |||
1870 | i = ptes_per_vm_page1; | |||
1871 | /*XX pdp = &pmap->dirbase[pdenum(v) & ~(i-1)];*/ | |||
1872 | pdp = pmap_pde(pmap, v); | |||
1873 | do { | |||
1874 | #ifdef MACH_PV_PAGETABLES | |||
1875 | pmap_set_page_readonly((void *) ptp); | |||
1876 | if (!hyp_mmuext_op_mfn (MMUEXT_PIN_L1_TABLE, kv_to_mfn(ptp))) | |||
1877 | panic("couldn't pin page %p(%p)\n",ptp,(vm_offset_t) kv_to_ma(ptp)); | |||
1878 | if (!hyp_mmu_update_pte(pa_to_ma(kvtophys((vm_offset_t)pdp)), | |||
1879 | pa_to_pte(pa_to_ma(kvtophys(ptp)))((pa_to_ma(kvtophys(ptp))) & 0xfffff000) | INTEL_PTE_VALID0x00000001 | |||
1880 | | INTEL_PTE_USER0x00000004 | |||
1881 | | INTEL_PTE_WRITE0x00000002)) | |||
1882 | panic("%s:%d could not set pde %p(%p,%p) to %p(%p,%p) %p\n",__FILE__"../i386/intel/pmap.c",__LINE__1882, pdp, kvtophys((vm_offset_t)pdp), (vm_offset_t) pa_to_ma(kvtophys((vm_offset_t)pdp)), ptp, kvtophys(ptp), (vm_offset_t) pa_to_ma(kvtophys(ptp)), (vm_offset_t) pa_to_pte(kv_to_ma(ptp))((kv_to_ma(ptp)) & 0xfffff000)); | |||
1883 | #else /* MACH_PV_PAGETABLES */ | |||
1884 | *pdp = pa_to_pte(kvtophys(ptp))((kvtophys(ptp)) & 0xfffff000) | INTEL_PTE_VALID0x00000001 | |||
1885 | | INTEL_PTE_USER0x00000004 | |||
1886 | | INTEL_PTE_WRITE0x00000002; | |||
1887 | #endif /* MACH_PV_PAGETABLES */ | |||
1888 | pdp++; | |||
1889 | ptp += INTEL_PGBYTES4096; | |||
1890 | } while (--i > 0); | |||
1891 | ||||
1892 | /* | |||
1893 | * Now, get the address of the page-table entry. | |||
1894 | */ | |||
1895 | continue; | |||
1896 | } | |||
1897 | ||||
1898 | /* | |||
1899 | * Special case if the physical page is already mapped | |||
1900 | * at this address. | |||
1901 | */ | |||
1902 | old_pa = pte_to_pa(*pte)((*pte) & 0xfffff000); | |||
1903 | if (*pte && old_pa == pa) { | |||
1904 | /* | |||
1905 | * May be changing its wired attribute or protection | |||
1906 | */ | |||
1907 | ||||
1908 | if (wired && !(*pte & INTEL_PTE_WIRED0x00000200)) | |||
1909 | pmap->stats.wired_count++; | |||
1910 | else if (!wired && (*pte & INTEL_PTE_WIRED0x00000200)) | |||
1911 | pmap->stats.wired_count--; | |||
1912 | ||||
1913 | template = pa_to_pte(pa)((pa) & 0xfffff000) | INTEL_PTE_VALID0x00000001; | |||
1914 | if (pmap != kernel_pmap) | |||
1915 | template |= INTEL_PTE_USER0x00000004; | |||
1916 | if (prot & VM_PROT_WRITE((vm_prot_t) 0x02)) | |||
1917 | template |= INTEL_PTE_WRITE0x00000002; | |||
1918 | if (machine_slot[cpu_number()(0)].cpu_type >= CPU_TYPE_I486((cpu_type_t) 17) | |||
1919 | && pa >= phys_last_addr) | |||
1920 | template |= INTEL_PTE_NCACHE0x00000010|INTEL_PTE_WTHRU0x00000008; | |||
1921 | if (wired) | |||
1922 | template |= INTEL_PTE_WIRED0x00000200; | |||
1923 | i = ptes_per_vm_page1; | |||
1924 | do { | |||
1925 | if (*pte & INTEL_PTE_MOD0x00000040) | |||
1926 | template |= INTEL_PTE_MOD0x00000040; | |||
1927 | #ifdef MACH_PV_PAGETABLES | |||
1928 | if (!hyp_mmu_update_pte(kv_to_ma(pte), pa_to_ma(template))) | |||
1929 | panic("%s:%d could not set pte %p to %p\n",__FILE__"../i386/intel/pmap.c",__LINE__1929,pte,template); | |||
1930 | #else /* MACH_PV_PAGETABLES */ | |||
1931 | WRITE_PTE(pte, template)*(pte) = (template); | |||
1932 | #endif /* MACH_PV_PAGETABLES */ | |||
1933 | pte++; | |||
1934 | pte_increment_pa(template)((template) += 0xfff +1); | |||
1935 | } while (--i > 0); | |||
1936 | PMAP_UPDATE_TLBS(pmap, v, v + PAGE_SIZE){ if ((pmap)->cpus_using) { { (void) ((pmap)); (void) ((v) ); (void) ((v + (1 << 12))); ({ register unsigned long _temp__ = (({ register unsigned long _temp__; asm volatile("mov %%cr3, %0" : "=r" (_temp__)); _temp__; })); asm volatile("mov %0, %%cr3" : : "r" (_temp__) : "memory"); }); }; } }; | |||
1937 | } | |||
1938 | else { | |||
1939 | ||||
1940 | /* | |||
1941 | * Remove old mapping from the PV list if necessary. | |||
1942 | */ | |||
1943 | if (*pte) { | |||
1944 | /* | |||
1945 | * Don't free the pte page if removing last | |||
1946 | * mapping - we will immediately replace it. | |||
1947 | */ | |||
1948 | pmap_remove_range(pmap, v, pte, | |||
1949 | pte + ptes_per_vm_page1); | |||
1950 | PMAP_UPDATE_TLBS(pmap, v, v + PAGE_SIZE){ if ((pmap)->cpus_using) { { (void) ((pmap)); (void) ((v) ); (void) ((v + (1 << 12))); ({ register unsigned long _temp__ = (({ register unsigned long _temp__; asm volatile("mov %%cr3, %0" : "=r" (_temp__)); _temp__; })); asm volatile("mov %0, %%cr3" : : "r" (_temp__) : "memory"); }); }; } }; | |||
1951 | } | |||
1952 | ||||
1953 | if (valid_page(pa)(pmap_initialized && pmap_valid_page(pa))) { | |||
1954 | ||||
1955 | /* | |||
1956 | * Enter the mapping in the PV list for this | |||
1957 | * physical page. | |||
1958 | */ | |||
1959 | ||||
1960 | pai = pa_index(pa)((((vm_size_t)(pa - phys_first_addr)) >> 12)); | |||
1961 | LOCK_PVH(pai); | |||
1962 | pv_h = pai_to_pvh(pai)(&pv_head_table[pai]); | |||
1963 | ||||
1964 | if (pv_h->pmap == PMAP_NULL((pmap_t) 0)) { | |||
1965 | /* | |||
1966 | * No mappings yet | |||
1967 | */ | |||
1968 | pv_h->va = v; | |||
1969 | pv_h->pmap = pmap; | |||
1970 | pv_h->next = PV_ENTRY_NULL((pv_entry_t) 0); | |||
1971 | } | |||
1972 | else { | |||
1973 | #if DEBUG | |||
1974 | { | |||
1975 | /* check that this mapping is not already there */ | |||
1976 | pv_entry_t e = pv_h; | |||
1977 | while (e != PV_ENTRY_NULL((pv_entry_t) 0)) { | |||
1978 | if (e->pmap == pmap && e->va == v) | |||
1979 | panic("pmap_enter: already in pv_list"); | |||
1980 | e = e->next; | |||
1981 | } | |||
1982 | } | |||
1983 | #endif /* DEBUG */ | |||
1984 | ||||
1985 | /* | |||
1986 | * Add new pv_entry after header. | |||
1987 | */ | |||
1988 | if (pv_e == PV_ENTRY_NULL((pv_entry_t) 0)) { | |||
1989 | PV_ALLOC(pv_e){ ; if ((pv_e = pv_free_list) != 0) { pv_free_list = pv_e-> next; } ; }; | |||
1990 | if (pv_e == PV_ENTRY_NULL((pv_entry_t) 0)) { | |||
1991 | UNLOCK_PVH(pai); | |||
1992 | PMAP_READ_UNLOCK(pmap, spl)((void)(spl)); | |||
1993 | ||||
1994 | /* | |||
1995 | * Refill from cache. | |||
1996 | */ | |||
1997 | pv_e = (pv_entry_t) kmem_cache_alloc(&pv_list_cache); | |||
1998 | goto Retry; | |||
1999 | } | |||
2000 | } | |||
2001 | pv_e->va = v; | |||
2002 | pv_e->pmap = pmap; | |||
2003 | pv_e->next = pv_h->next; | |||
2004 | pv_h->next = pv_e; | |||
2005 | /* | |||
2006 | * Remember that we used the pvlist entry. | |||
2007 | */ | |||
2008 | pv_e = PV_ENTRY_NULL((pv_entry_t) 0); | |||
2009 | } | |||
2010 | UNLOCK_PVH(pai); | |||
2011 | } | |||
2012 | ||||
2013 | /* | |||
2014 | * And count the mapping. | |||
2015 | */ | |||
2016 | ||||
2017 | pmap->stats.resident_count++; | |||
2018 | if (wired) | |||
2019 | pmap->stats.wired_count++; | |||
2020 | ||||
2021 | /* | |||
2022 | * Build a template to speed up entering - | |||
2023 | * only the pfn changes. | |||
2024 | */ | |||
2025 | template = pa_to_pte(pa)((pa) & 0xfffff000) | INTEL_PTE_VALID0x00000001; | |||
2026 | if (pmap != kernel_pmap) | |||
2027 | template |= INTEL_PTE_USER0x00000004; | |||
2028 | if (prot & VM_PROT_WRITE((vm_prot_t) 0x02)) | |||
2029 | template |= INTEL_PTE_WRITE0x00000002; | |||
2030 | if (machine_slot[cpu_number()(0)].cpu_type >= CPU_TYPE_I486((cpu_type_t) 17) | |||
2031 | && pa >= phys_last_addr) | |||
2032 | template |= INTEL_PTE_NCACHE0x00000010|INTEL_PTE_WTHRU0x00000008; | |||
2033 | if (wired) | |||
2034 | template |= INTEL_PTE_WIRED0x00000200; | |||
2035 | i = ptes_per_vm_page1; | |||
2036 | do { | |||
2037 | #ifdef MACH_PV_PAGETABLES | |||
2038 | if (!(hyp_mmu_update_pte(kv_to_ma(pte), pa_to_ma(template)))) | |||
2039 | panic("%s:%d could not set pte %p to %p\n",__FILE__"../i386/intel/pmap.c",__LINE__2039,pte,template); | |||
2040 | #else /* MACH_PV_PAGETABLES */ | |||
2041 | WRITE_PTE(pte, template)*(pte) = (template); | |||
2042 | #endif /* MACH_PV_PAGETABLES */ | |||
2043 | pte++; | |||
2044 | pte_increment_pa(template)((template) += 0xfff +1); | |||
2045 | } while (--i > 0); | |||
2046 | } | |||
2047 | ||||
2048 | if (pv_e != PV_ENTRY_NULL((pv_entry_t) 0)) { | |||
2049 | PV_FREE(pv_e){ ; pv_e->next = pv_free_list; pv_free_list = pv_e; ; }; | |||
2050 | } | |||
2051 | ||||
2052 | PMAP_READ_UNLOCK(pmap, spl)((void)(spl)); | |||
2053 | } | |||
2054 | ||||
2055 | /* | |||
2056 | * Routine: pmap_change_wiring | |||
2057 | * Function: Change the wiring attribute for a map/virtual-address | |||
2058 | * pair. | |||
2059 | * In/out conditions: | |||
2060 | * The mapping must already exist in the pmap. | |||
2061 | */ | |||
2062 | void pmap_change_wiring(map, v, wired) | |||
2063 | register pmap_t map; | |||
2064 | vm_offset_t v; | |||
2065 | boolean_t wired; | |||
2066 | { | |||
2067 | register pt_entry_t *pte; | |||
2068 | register int i; | |||
2069 | int spl; | |||
2070 | ||||
2071 | /* | |||
2072 | * We must grab the pmap system lock because we may | |||
2073 | * change a pte_page queue. | |||
2074 | */ | |||
2075 | PMAP_READ_LOCK(map, spl)((void)(spl)); | |||
2076 | ||||
2077 | if ((pte = pmap_pte(map, v)) == PT_ENTRY_NULL((pt_entry_t *) 0)) | |||
2078 | panic("pmap_change_wiring: pte missing"); | |||
2079 | ||||
2080 | if (wired && !(*pte & INTEL_PTE_WIRED0x00000200)) { | |||
2081 | /* | |||
2082 | * wiring down mapping | |||
2083 | */ | |||
2084 | map->stats.wired_count++; | |||
2085 | i = ptes_per_vm_page1; | |||
2086 | do { | |||
2087 | *pte++ |= INTEL_PTE_WIRED0x00000200; | |||
2088 | } while (--i > 0); | |||
2089 | } | |||
2090 | else if (!wired && (*pte & INTEL_PTE_WIRED0x00000200)) { | |||
2091 | /* | |||
2092 | * unwiring mapping | |||
2093 | */ | |||
2094 | map->stats.wired_count--; | |||
2095 | i = ptes_per_vm_page1; | |||
2096 | do { | |||
2097 | #ifdef MACH_PV_PAGETABLES | |||
2098 | if (!(hyp_mmu_update_pte(kv_to_ma(pte), *pte & ~INTEL_PTE_WIRED0x00000200))) | |||
2099 | panic("%s:%d could not wire down pte %p\n",__FILE__"../i386/intel/pmap.c",__LINE__2099,pte); | |||
2100 | #else /* MACH_PV_PAGETABLES */ | |||
2101 | *pte &= ~INTEL_PTE_WIRED0x00000200; | |||
2102 | #endif /* MACH_PV_PAGETABLES */ | |||
2103 | pte++; | |||
2104 | } while (--i > 0); | |||
2105 | } | |||
2106 | ||||
2107 | PMAP_READ_UNLOCK(map, spl)((void)(spl)); | |||
2108 | } | |||
2109 | ||||
2110 | /* | |||
2111 | * Routine: pmap_extract | |||
2112 | * Function: | |||
2113 | * Extract the physical page address associated | |||
2114 | * with the given map/virtual_address pair. | |||
2115 | */ | |||
2116 | ||||
2117 | vm_offset_t pmap_extract(pmap, va) | |||
2118 | register pmap_t pmap; | |||
2119 | vm_offset_t va; | |||
2120 | { | |||
2121 | register pt_entry_t *pte; | |||
2122 | register vm_offset_t pa; | |||
2123 | int spl; | |||
2124 | ||||
2125 | SPLVM(spl)((void)(spl)); | |||
2126 | simple_lock(&pmap->lock); | |||
2127 | if ((pte = pmap_pte(pmap, va)) == PT_ENTRY_NULL((pt_entry_t *) 0)) | |||
2128 | pa = (vm_offset_t) 0; | |||
2129 | else if (!(*pte & INTEL_PTE_VALID0x00000001)) | |||
2130 | pa = (vm_offset_t) 0; | |||
2131 | else | |||
2132 | pa = pte_to_pa(*pte)((*pte) & 0xfffff000) + (va & INTEL_OFFMASK0xfff); | |||
2133 | simple_unlock(&pmap->lock); | |||
2134 | SPLX(spl)((void)(spl)); | |||
2135 | return(pa); | |||
2136 | } | |||
2137 | ||||
2138 | /* | |||
2139 | * Copy the range specified by src_addr/len | |||
2140 | * from the source map to the range dst_addr/len | |||
2141 | * in the destination map. | |||
2142 | * | |||
2143 | * This routine is only advisory and need not do anything. | |||
2144 | */ | |||
2145 | #if 0 | |||
2146 | void pmap_copy(dst_pmap, src_pmap, dst_addr, len, src_addr) | |||
2147 | pmap_t dst_pmap; | |||
2148 | pmap_t src_pmap; | |||
2149 | vm_offset_t dst_addr; | |||
2150 | vm_size_t len; | |||
2151 | vm_offset_t src_addr; | |||
2152 | { | |||
2153 | } | |||
2154 | #endif /* 0 */ | |||
2155 | ||||
2156 | /* | |||
2157 | * Routine: pmap_collect | |||
2158 | * Function: | |||
2159 | * Garbage collects the physical map system for | |||
2160 | * pages which are no longer used. | |||
2161 | * Success need not be guaranteed -- that is, there | |||
2162 | * may well be pages which are not referenced, but | |||
2163 | * others may be collected. | |||
2164 | * Usage: | |||
2165 | * Called by the pageout daemon when pages are scarce. | |||
2166 | */ | |||
2167 | void pmap_collect(p) | |||
2168 | pmap_t p; | |||
2169 | { | |||
2170 | register pt_entry_t *pdp, *ptp; | |||
2171 | pt_entry_t *eptp; | |||
2172 | vm_offset_t pa; | |||
2173 | int spl, wired; | |||
2174 | ||||
2175 | if (p == PMAP_NULL((pmap_t) 0)) | |||
2176 | return; | |||
2177 | ||||
2178 | if (p == kernel_pmap) | |||
2179 | return; | |||
2180 | ||||
2181 | /* | |||
2182 | * Garbage collect map. | |||
2183 | */ | |||
2184 | PMAP_READ_LOCK(p, spl)((void)(spl)); | |||
2185 | for (pdp = p->dirbase; | |||
2186 | pdp < &p->dirbase[lin2pdenum(LINEAR_MIN_KERNEL_ADDRESS)(((((0xc0000000UL))) >> 22) & 0x3ff)]; | |||
2187 | pdp += ptes_per_vm_page1) | |||
2188 | { | |||
2189 | if (*pdp & INTEL_PTE_VALID0x00000001) { | |||
2190 | ||||
2191 | pa = pte_to_pa(*pdp)((*pdp) & 0xfffff000); | |||
2192 | ptp = (pt_entry_t *)phystokv(pa)((vm_offset_t)(pa) + 0xC0000000UL); | |||
2193 | eptp = ptp + NPTES((((unsigned long)(1)) << 12)/sizeof(pt_entry_t))*ptes_per_vm_page1; | |||
2194 | ||||
2195 | /* | |||
2196 | * If the pte page has any wired mappings, we cannot | |||
2197 | * free it. | |||
2198 | */ | |||
2199 | wired = 0; | |||
2200 | { | |||
2201 | register pt_entry_t *ptep; | |||
2202 | for (ptep = ptp; ptep < eptp; ptep++) { | |||
2203 | if (*ptep & INTEL_PTE_WIRED0x00000200) { | |||
2204 | wired = 1; | |||
2205 | break; | |||
2206 | } | |||
2207 | } | |||
2208 | } | |||
2209 | if (!wired) { | |||
2210 | /* | |||
2211 | * Remove the virtual addresses mapped by this pte page. | |||
2212 | */ | |||
2213 | { /*XXX big hack*/ | |||
2214 | vm_offset_t va = pdenum2lin(pdp - p->dirbase)((vm_offset_t)(pdp - p->dirbase) << 22); | |||
2215 | if (p == kernel_pmap) | |||
2216 | va = lintokv(va)((vm_offset_t)(va) - ((0xc0000000UL)) + 0xC0000000UL); | |||
2217 | pmap_remove_range(p, | |||
2218 | va, | |||
2219 | ptp, | |||
2220 | eptp); | |||
2221 | } | |||
2222 | ||||
2223 | /* | |||
2224 | * Invalidate the page directory pointer. | |||
2225 | */ | |||
2226 | { | |||
2227 | register int i = ptes_per_vm_page1; | |||
2228 | register pt_entry_t *pdep = pdp; | |||
2229 | do { | |||
2230 | #ifdef MACH_PV_PAGETABLES | |||
2231 | unsigned long pte = *pdep; | |||
2232 | void *ptable = (void*) ptetokv(pte)(((vm_offset_t)(((pte) & 0xfffff000)) + 0xC0000000UL)); | |||
2233 | if (!(hyp_mmu_update_pte(pa_to_ma(kvtophys((vm_offset_t)pdep++)), 0))) | |||
2234 | panic("%s:%d could not clear pde %p\n",__FILE__"../i386/intel/pmap.c",__LINE__2234,pdep-1); | |||
2235 | if (!hyp_mmuext_op_mfn (MMUEXT_UNPIN_TABLE, kv_to_mfn(ptable))) | |||
2236 | panic("couldn't unpin page %p(%p)\n", ptable, (vm_offset_t) pa_to_ma(kvtophys((vm_offset_t)ptable))); | |||
2237 | pmap_set_page_readwrite(ptable); | |||
2238 | #else /* MACH_PV_PAGETABLES */ | |||
2239 | *pdep++ = 0; | |||
2240 | #endif /* MACH_PV_PAGETABLES */ | |||
2241 | } while (--i > 0); | |||
2242 | } | |||
2243 | ||||
2244 | PMAP_READ_UNLOCK(p, spl)((void)(spl)); | |||
2245 | ||||
2246 | /* | |||
2247 | * And free the pte page itself. | |||
2248 | */ | |||
2249 | { | |||
2250 | register vm_page_t m; | |||
2251 | ||||
2252 | vm_object_lock(pmap_object); | |||
2253 | m = vm_page_lookup(pmap_object, pa); | |||
2254 | if (m == VM_PAGE_NULL((vm_page_t) 0)) | |||
2255 | panic("pmap_collect: pte page not in object"); | |||
2256 | vm_page_lock_queues(); | |||
2257 | vm_page_free(m); | |||
2258 | inuse_ptepages_count--; | |||
2259 | vm_page_unlock_queues(); | |||
2260 | vm_object_unlock(pmap_object); | |||
2261 | } | |||
2262 | ||||
2263 | PMAP_READ_LOCK(p, spl)((void)(spl)); | |||
2264 | } | |||
2265 | } | |||
2266 | } | |||
2267 | PMAP_UPDATE_TLBS(p, VM_MIN_ADDRESS, VM_MAX_ADDRESS){ if ((p)->cpus_using) { { (void) ((p)); (void) (((0))); ( void) (((0xc0000000UL))); ({ register unsigned long _temp__ = (({ register unsigned long _temp__; asm volatile("mov %%cr3, %0" : "=r" (_temp__)); _temp__; })); asm volatile("mov %0, %%cr3" : : "r" (_temp__) : "memory"); }); }; } }; | |||
2268 | ||||
2269 | PMAP_READ_UNLOCK(p, spl)((void)(spl)); | |||
2270 | return; | |||
2271 | ||||
2272 | } | |||
2273 | ||||
2274 | /* | |||
2275 | * Routine: pmap_activate | |||
2276 | * Function: | |||
2277 | * Binds the given physical map to the given | |||
2278 | * processor, and returns a hardware map description. | |||
2279 | */ | |||
2280 | #if 0 | |||
2281 | void pmap_activate(my_pmap, th, my_cpu) | |||
2282 | register pmap_t my_pmap; | |||
2283 | thread_t th; | |||
2284 | int my_cpu; | |||
2285 | { | |||
2286 | PMAP_ACTIVATE(my_pmap, th, my_cpu); | |||
2287 | } | |||
2288 | #endif /* 0 */ | |||
2289 | ||||
2290 | /* | |||
2291 | * Routine: pmap_deactivate | |||
2292 | * Function: | |||
2293 | * Indicates that the given physical map is no longer | |||
2294 | * in use on the specified processor. (This is a macro | |||
2295 | * in pmap.h) | |||
2296 | */ | |||
2297 | #if 0 | |||
2298 | void pmap_deactivate(pmap, th, which_cpu) | |||
2299 | pmap_t pmap; | |||
2300 | thread_t th; | |||
2301 | int which_cpu; | |||
2302 | { | |||
2303 | PMAP_DEACTIVATE(pmap, th, which_cpu); | |||
2304 | } | |||
2305 | #endif /* 0 */ | |||
2306 | ||||
2307 | /* | |||
2308 | * Routine: pmap_kernel | |||
2309 | * Function: | |||
2310 | * Returns the physical map handle for the kernel. | |||
2311 | */ | |||
2312 | #if 0 | |||
2313 | pmap_t pmap_kernel()(kernel_pmap) | |||
2314 | { | |||
2315 | return (kernel_pmap); | |||
2316 | } | |||
2317 | #endif /* 0 */ | |||
2318 | ||||
2319 | /* | |||
2320 | * pmap_zero_page zeros the specified (machine independent) page. | |||
2321 | * See machine/phys.c or machine/phys.s for implementation. | |||
2322 | */ | |||
2323 | #if 0 | |||
2324 | pmap_zero_page(phys) | |||
2325 | register vm_offset_t phys; | |||
2326 | { | |||
2327 | register int i; | |||
2328 | ||||
2329 | assert(phys != vm_page_fictitious_addr)({ if (!(phys != vm_page_fictitious_addr)) Assert("phys != vm_page_fictitious_addr" , "../i386/intel/pmap.c", 2329); }); | |||
2330 | i = PAGE_SIZE(1 << 12) / INTEL_PGBYTES4096; | |||
2331 | phys = intel_pfn(phys); | |||
2332 | ||||
2333 | while (i--) | |||
2334 | zero_phys(phys++); | |||
2335 | } | |||
2336 | #endif /* 0 */ | |||
2337 | ||||
2338 | /* | |||
2339 | * pmap_copy_page copies the specified (machine independent) page. | |||
2340 | * See machine/phys.c or machine/phys.s for implementation. | |||
2341 | */ | |||
2342 | #if 0 | |||
2343 | pmap_copy_page(src, dst) | |||
2344 | vm_offset_t src, dst; | |||
2345 | { | |||
2346 | int i; | |||
2347 | ||||
2348 | assert(src != vm_page_fictitious_addr)({ if (!(src != vm_page_fictitious_addr)) Assert("src != vm_page_fictitious_addr" , "../i386/intel/pmap.c", 2348); }); | |||
2349 | assert(dst != vm_page_fictitious_addr)({ if (!(dst != vm_page_fictitious_addr)) Assert("dst != vm_page_fictitious_addr" , "../i386/intel/pmap.c", 2349); }); | |||
2350 | i = PAGE_SIZE(1 << 12) / INTEL_PGBYTES4096; | |||
2351 | ||||
2352 | while (i--) { | |||
2353 | copy_phys(intel_pfn(src), intel_pfn(dst)); | |||
2354 | src += INTEL_PGBYTES4096; | |||
2355 | dst += INTEL_PGBYTES4096; | |||
2356 | } | |||
2357 | } | |||
2358 | #endif /* 0 */ | |||
2359 | ||||
2360 | /* | |||
2361 | * Routine: pmap_pageable | |||
2362 | * Function: | |||
2363 | * Make the specified pages (by pmap, offset) | |||
2364 | * pageable (or not) as requested. | |||
2365 | * | |||
2366 | * A page which is not pageable may not take | |||
2367 | * a fault; therefore, its page table entry | |||
2368 | * must remain valid for the duration. | |||
2369 | * | |||
2370 | * This routine is merely advisory; pmap_enter | |||
2371 | * will specify that these pages are to be wired | |||
2372 | * down (or not) as appropriate. | |||
2373 | */ | |||
2374 | void | |||
2375 | pmap_pageable(pmap, start, end, pageable) | |||
2376 | pmap_t pmap; | |||
2377 | vm_offset_t start; | |||
2378 | vm_offset_t end; | |||
2379 | boolean_t pageable; | |||
2380 | { | |||
2381 | } | |||
2382 | ||||
2383 | /* | |||
2384 | * Clear specified attribute bits. | |||
2385 | */ | |||
2386 | void | |||
2387 | phys_attribute_clear(phys, bits) | |||
2388 | vm_offset_t phys; | |||
2389 | int bits; | |||
2390 | { | |||
2391 | pv_entry_t pv_h; | |||
2392 | register pv_entry_t pv_e; | |||
2393 | register pt_entry_t *pte; | |||
2394 | int pai; | |||
2395 | register pmap_t pmap; | |||
2396 | int spl; | |||
2397 | ||||
2398 | assert(phys != vm_page_fictitious_addr)({ if (!(phys != vm_page_fictitious_addr)) Assert("phys != vm_page_fictitious_addr" , "../i386/intel/pmap.c", 2398); }); | |||
2399 | if (!valid_page(phys)(pmap_initialized && pmap_valid_page(phys))) { | |||
2400 | /* | |||
2401 | * Not a managed page. | |||
2402 | */ | |||
2403 | return; | |||
2404 | } | |||
2405 | ||||
2406 | /* | |||
2407 | * Lock the pmap system first, since we will be changing | |||
2408 | * several pmaps. | |||
2409 | */ | |||
2410 | ||||
2411 | PMAP_WRITE_LOCK(spl)((void)(spl)); | |||
2412 | ||||
2413 | pai = pa_index(phys)((((vm_size_t)(phys - phys_first_addr)) >> 12)); | |||
2414 | pv_h = pai_to_pvh(pai)(&pv_head_table[pai]); | |||
2415 | ||||
2416 | /* | |||
2417 | * Walk down PV list, clearing all modify or reference bits. | |||
2418 | * We do not have to lock the pv_list because we have | |||
2419 | * the entire pmap system locked. | |||
2420 | */ | |||
2421 | if (pv_h->pmap != PMAP_NULL((pmap_t) 0)) { | |||
2422 | /* | |||
2423 | * There are some mappings. | |||
2424 | */ | |||
2425 | for (pv_e = pv_h; pv_e != PV_ENTRY_NULL((pv_entry_t) 0); pv_e = pv_e->next) { | |||
2426 | register vm_offset_t va; | |||
2427 | ||||
2428 | pmap = pv_e->pmap; | |||
2429 | /* | |||
2430 | * Lock the pmap to block pmap_extract and similar routines. | |||
2431 | */ | |||
2432 | simple_lock(&pmap->lock); | |||
2433 | ||||
2434 | va = pv_e->va; | |||
2435 | pte = pmap_pte(pmap, va); | |||
2436 | ||||
2437 | #if 0 | |||
2438 | /* | |||
2439 | * Consistency checks. | |||
2440 | */ | |||
2441 | assert(*pte & INTEL_PTE_VALID)({ if (!(*pte & 0x00000001)) Assert("*pte & INTEL_PTE_VALID" , "../i386/intel/pmap.c", 2441); }); | |||
2442 | /* assert(pte_to_phys(*pte) == phys); */ | |||
2443 | #endif | |||
2444 | ||||
2445 | /* | |||
2446 | * Clear modify or reference bits. | |||
2447 | */ | |||
2448 | { | |||
2449 | register int i = ptes_per_vm_page1; | |||
2450 | do { | |||
2451 | #ifdef MACH_PV_PAGETABLES | |||
2452 | if (!(hyp_mmu_update_pte(kv_to_ma(pte), *pte & ~bits))) | |||
2453 | panic("%s:%d could not clear bits %lx from pte %p\n",__FILE__"../i386/intel/pmap.c",__LINE__2453,bits,pte); | |||
2454 | #else /* MACH_PV_PAGETABLES */ | |||
2455 | *pte &= ~bits; | |||
2456 | #endif /* MACH_PV_PAGETABLES */ | |||
2457 | } while (--i > 0); | |||
2458 | } | |||
2459 | PMAP_UPDATE_TLBS(pmap, va, va + PAGE_SIZE){ if ((pmap)->cpus_using) { { (void) ((pmap)); (void) ((va )); (void) ((va + (1 << 12))); ({ register unsigned long _temp__ = (({ register unsigned long _temp__; asm volatile("mov %%cr3, %0" : "=r" (_temp__)); _temp__; })); asm volatile("mov %0, %%cr3" : : "r" (_temp__) : "memory"); }); }; } }; | |||
2460 | simple_unlock(&pmap->lock); | |||
2461 | } | |||
2462 | } | |||
2463 | ||||
2464 | pmap_phys_attributes[pai] &= ~bits; | |||
2465 | ||||
2466 | PMAP_WRITE_UNLOCK(spl)((void)(spl)); | |||
2467 | } | |||
2468 | ||||
2469 | /* | |||
2470 | * Check specified attribute bits. | |||
2471 | */ | |||
2472 | boolean_t | |||
2473 | phys_attribute_test(phys, bits) | |||
2474 | vm_offset_t phys; | |||
2475 | int bits; | |||
2476 | { | |||
2477 | pv_entry_t pv_h; | |||
2478 | register pv_entry_t pv_e; | |||
2479 | register pt_entry_t *pte; | |||
2480 | int pai; | |||
2481 | register pmap_t pmap; | |||
2482 | int spl; | |||
2483 | ||||
2484 | assert(phys != vm_page_fictitious_addr)({ if (!(phys != vm_page_fictitious_addr)) Assert("phys != vm_page_fictitious_addr" , "../i386/intel/pmap.c", 2484); }); | |||
2485 | if (!valid_page(phys)(pmap_initialized && pmap_valid_page(phys))) { | |||
2486 | /* | |||
2487 | * Not a managed page. | |||
2488 | */ | |||
2489 | return (FALSE((boolean_t) 0)); | |||
2490 | } | |||
2491 | ||||
2492 | /* | |||
2493 | * Lock the pmap system first, since we will be checking | |||
2494 | * several pmaps. | |||
2495 | */ | |||
2496 | ||||
2497 | PMAP_WRITE_LOCK(spl)((void)(spl)); | |||
2498 | ||||
2499 | pai = pa_index(phys)((((vm_size_t)(phys - phys_first_addr)) >> 12)); | |||
2500 | pv_h = pai_to_pvh(pai)(&pv_head_table[pai]); | |||
2501 | ||||
2502 | if (pmap_phys_attributes[pai] & bits) { | |||
2503 | PMAP_WRITE_UNLOCK(spl)((void)(spl)); | |||
2504 | return (TRUE((boolean_t) 1)); | |||
2505 | } | |||
2506 | ||||
2507 | /* | |||
2508 | * Walk down PV list, checking all mappings. | |||
2509 | * We do not have to lock the pv_list because we have | |||
2510 | * the entire pmap system locked. | |||
2511 | */ | |||
2512 | if (pv_h->pmap != PMAP_NULL((pmap_t) 0)) { | |||
2513 | /* | |||
2514 | * There are some mappings. | |||
2515 | */ | |||
2516 | for (pv_e = pv_h; pv_e != PV_ENTRY_NULL((pv_entry_t) 0); pv_e = pv_e->next) { | |||
2517 | ||||
2518 | pmap = pv_e->pmap; | |||
2519 | /* | |||
2520 | * Lock the pmap to block pmap_extract and similar routines. | |||
2521 | */ | |||
2522 | simple_lock(&pmap->lock); | |||
2523 | ||||
2524 | { | |||
2525 | register vm_offset_t va; | |||
2526 | ||||
2527 | va = pv_e->va; | |||
2528 | pte = pmap_pte(pmap, va); | |||
2529 | ||||
2530 | #if 0 | |||
2531 | /* | |||
2532 | * Consistency checks. | |||
2533 | */ | |||
2534 | assert(*pte & INTEL_PTE_VALID)({ if (!(*pte & 0x00000001)) Assert("*pte & INTEL_PTE_VALID" , "../i386/intel/pmap.c", 2534); }); | |||
2535 | /* assert(pte_to_phys(*pte) == phys); */ | |||
2536 | #endif | |||
2537 | } | |||
2538 | ||||
2539 | /* | |||
2540 | * Check modify or reference bits. | |||
2541 | */ | |||
2542 | { | |||
2543 | register int i = ptes_per_vm_page1; | |||
2544 | ||||
2545 | do { | |||
2546 | if (*pte & bits) { | |||
2547 | simple_unlock(&pmap->lock); | |||
2548 | PMAP_WRITE_UNLOCK(spl)((void)(spl)); | |||
2549 | return (TRUE((boolean_t) 1)); | |||
2550 | } | |||
2551 | } while (--i > 0); | |||
2552 | } | |||
2553 | simple_unlock(&pmap->lock); | |||
2554 | } | |||
2555 | } | |||
2556 | PMAP_WRITE_UNLOCK(spl)((void)(spl)); | |||
2557 | return (FALSE((boolean_t) 0)); | |||
2558 | } | |||
2559 | ||||
2560 | /* | |||
2561 | * Clear the modify bits on the specified physical page. | |||
2562 | */ | |||
2563 | ||||
2564 | void pmap_clear_modify(phys) | |||
2565 | register vm_offset_t phys; | |||
2566 | { | |||
2567 | phys_attribute_clear(phys, PHYS_MODIFIED0x00000040); | |||
2568 | } | |||
2569 | ||||
2570 | /* | |||
2571 | * pmap_is_modified: | |||
2572 | * | |||
2573 | * Return whether or not the specified physical page is modified | |||
2574 | * by any physical maps. | |||
2575 | */ | |||
2576 | ||||
2577 | boolean_t pmap_is_modified(phys) | |||
2578 | register vm_offset_t phys; | |||
2579 | { | |||
2580 | return (phys_attribute_test(phys, PHYS_MODIFIED0x00000040)); | |||
2581 | } | |||
2582 | ||||
2583 | /* | |||
2584 | * pmap_clear_reference: | |||
2585 | * | |||
2586 | * Clear the reference bit on the specified physical page. | |||
2587 | */ | |||
2588 | ||||
2589 | void pmap_clear_reference(phys) | |||
2590 | vm_offset_t phys; | |||
2591 | { | |||
2592 | phys_attribute_clear(phys, PHYS_REFERENCED0x00000020); | |||
2593 | } | |||
2594 | ||||
2595 | /* | |||
2596 | * pmap_is_referenced: | |||
2597 | * | |||
2598 | * Return whether or not the specified physical page is referenced | |||
2599 | * by any physical maps. | |||
2600 | */ | |||
2601 | ||||
2602 | boolean_t pmap_is_referenced(phys) | |||
2603 | vm_offset_t phys; | |||
2604 | { | |||
2605 | return (phys_attribute_test(phys, PHYS_REFERENCED0x00000020)); | |||
2606 | } | |||
2607 | ||||
2608 | #if NCPUS1 > 1 | |||
2609 | /* | |||
2610 | * TLB Coherence Code (TLB "shootdown" code) | |||
2611 | * | |||
2612 | * Threads that belong to the same task share the same address space and | |||
2613 | * hence share a pmap. However, they may run on distinct cpus and thus | |||
2614 | * have distinct TLBs that cache page table entries. In order to guarantee | |||
2615 | * the TLBs are consistent, whenever a pmap is changed, all threads that | |||
2616 | * are active in that pmap must have their TLB updated. To keep track of | |||
2617 | * this information, the set of cpus that are currently using a pmap is | |||
2618 | * maintained within each pmap structure (cpus_using). Pmap_activate() and | |||
2619 | * pmap_deactivate add and remove, respectively, a cpu from this set. | |||
2620 | * Since the TLBs are not addressable over the bus, each processor must | |||
2621 | * flush its own TLB; a processor that needs to invalidate another TLB | |||
2622 | * needs to interrupt the processor that owns that TLB to signal the | |||
2623 | * update. | |||
2624 | * | |||
2625 | * Whenever a pmap is updated, the lock on that pmap is locked, and all | |||
2626 | * cpus using the pmap are signaled to invalidate. All threads that need | |||
2627 | * to activate a pmap must wait for the lock to clear to await any updates | |||
2628 | * in progress before using the pmap. They must ACQUIRE the lock to add | |||
2629 | * their cpu to the cpus_using set. An implicit assumption made | |||
2630 | * throughout the TLB code is that all kernel code that runs at or higher | |||
2631 | * than splvm blocks out update interrupts, and that such code does not | |||
2632 | * touch pageable pages. | |||
2633 | * | |||
2634 | * A shootdown interrupt serves another function besides signaling a | |||
2635 | * processor to invalidate. The interrupt routine (pmap_update_interrupt) | |||
2636 | * waits for the both the pmap lock (and the kernel pmap lock) to clear, | |||
2637 | * preventing user code from making implicit pmap updates while the | |||
2638 | * sending processor is performing its update. (This could happen via a | |||
2639 | * user data write reference that turns on the modify bit in the page | |||
2640 | * table). It must wait for any kernel updates that may have started | |||
2641 | * concurrently with a user pmap update because the IPC code | |||
2642 | * changes mappings. | |||
2643 | * Spinning on the VALUES of the locks is sufficient (rather than | |||
2644 | * having to acquire the locks) because any updates that occur subsequent | |||
2645 | * to finding the lock unlocked will be signaled via another interrupt. | |||
2646 | * (This assumes the interrupt is cleared before the low level interrupt code | |||
2647 | * calls pmap_update_interrupt()). | |||
2648 | * | |||
2649 | * The signaling processor must wait for any implicit updates in progress | |||
2650 | * to terminate before continuing with its update. Thus it must wait for an | |||
2651 | * acknowledgement of the interrupt from each processor for which such | |||
2652 | * references could be made. For maintaining this information, a set | |||
2653 | * cpus_active is used. A cpu is in this set if and only if it can | |||
2654 | * use a pmap. When pmap_update_interrupt() is entered, a cpu is removed from | |||
2655 | * this set; when all such cpus are removed, it is safe to update. | |||
2656 | * | |||
2657 | * Before attempting to acquire the update lock on a pmap, a cpu (A) must | |||
2658 | * be at least at the priority of the interprocessor interrupt | |||
2659 | * (splip<=splvm). Otherwise, A could grab a lock and be interrupted by a | |||
2660 | * kernel update; it would spin forever in pmap_update_interrupt() trying | |||
2661 | * to acquire the user pmap lock it had already acquired. Furthermore A | |||
2662 | * must remove itself from cpus_active. Otherwise, another cpu holding | |||
2663 | * the lock (B) could be in the process of sending an update signal to A, | |||
2664 | * and thus be waiting for A to remove itself from cpus_active. If A is | |||
2665 | * spinning on the lock at priority this will never happen and a deadlock | |||
2666 | * will result. | |||
2667 | */ | |||
2668 | ||||
2669 | /* | |||
2670 | * Signal another CPU that it must flush its TLB | |||
2671 | */ | |||
2672 | void signal_cpus(use_list, pmap, start, end) | |||
2673 | cpu_set use_list; | |||
2674 | pmap_t pmap; | |||
2675 | vm_offset_t start, end; | |||
2676 | { | |||
2677 | register int which_cpu, j; | |||
2678 | register pmap_update_list_t update_list_p; | |||
2679 | ||||
2680 | while ((which_cpu = ffs(use_list)) != 0) { | |||
2681 | which_cpu -= 1; /* convert to 0 origin */ | |||
2682 | ||||
2683 | update_list_p = &cpu_update_list[which_cpu]; | |||
2684 | simple_lock(&update_list_p->lock); | |||
2685 | ||||
2686 | j = update_list_p->count; | |||
2687 | if (j >= UPDATE_LIST_SIZE) { | |||
2688 | /* | |||
2689 | * list overflowed. Change last item to | |||
2690 | * indicate overflow. | |||
2691 | */ | |||
2692 | update_list_p->item[UPDATE_LIST_SIZE-1].pmap = kernel_pmap; | |||
2693 | update_list_p->item[UPDATE_LIST_SIZE-1].start = VM_MIN_ADDRESS(0); | |||
2694 | update_list_p->item[UPDATE_LIST_SIZE-1].end = VM_MAX_KERNEL_ADDRESS((0xffffffffUL) - ((0xc0000000UL)) + 0xC0000000UL); | |||
2695 | } | |||
2696 | else { | |||
2697 | update_list_p->item[j].pmap = pmap; | |||
2698 | update_list_p->item[j].start = start; | |||
2699 | update_list_p->item[j].end = end; | |||
2700 | update_list_p->count = j+1; | |||
2701 | } | |||
2702 | cpu_update_needed[which_cpu] = TRUE((boolean_t) 1); | |||
2703 | simple_unlock(&update_list_p->lock); | |||
2704 | ||||
2705 | if ((cpus_idle & (1 << which_cpu)) == 0) | |||
2706 | interrupt_processor(which_cpu); | |||
2707 | use_list &= ~(1 << which_cpu); | |||
2708 | } | |||
2709 | } | |||
2710 | ||||
2711 | void process_pmap_updates(my_pmap) | |||
2712 | register pmap_t my_pmap; | |||
2713 | { | |||
2714 | register int my_cpu = cpu_number()(0); | |||
2715 | register pmap_update_list_t update_list_p; | |||
2716 | register int j; | |||
2717 | register pmap_t pmap; | |||
2718 | ||||
2719 | update_list_p = &cpu_update_list[my_cpu]; | |||
2720 | simple_lock(&update_list_p->lock); | |||
2721 | ||||
2722 | for (j = 0; j < update_list_p->count; j++) { | |||
2723 | pmap = update_list_p->item[j].pmap; | |||
2724 | if (pmap == my_pmap || | |||
2725 | pmap == kernel_pmap) { | |||
2726 | ||||
2727 | INVALIDATE_TLB(pmap,{ (void) (pmap); (void) (update_list_p->item[j].start); (void ) (update_list_p->item[j].end); ({ register unsigned long _temp__ = (({ register unsigned long _temp__; asm volatile("mov %%cr3, %0" : "=r" (_temp__)); _temp__; })); asm volatile("mov %0, %%cr3" : : "r" (_temp__) : "memory"); }); } | |||
2728 | update_list_p->item[j].start,{ (void) (pmap); (void) (update_list_p->item[j].start); (void ) (update_list_p->item[j].end); ({ register unsigned long _temp__ = (({ register unsigned long _temp__; asm volatile("mov %%cr3, %0" : "=r" (_temp__)); _temp__; })); asm volatile("mov %0, %%cr3" : : "r" (_temp__) : "memory"); }); } | |||
2729 | update_list_p->item[j].end){ (void) (pmap); (void) (update_list_p->item[j].start); (void ) (update_list_p->item[j].end); ({ register unsigned long _temp__ = (({ register unsigned long _temp__; asm volatile("mov %%cr3, %0" : "=r" (_temp__)); _temp__; })); asm volatile("mov %0, %%cr3" : : "r" (_temp__) : "memory"); }); }; | |||
2730 | } | |||
2731 | } | |||
2732 | update_list_p->count = 0; | |||
2733 | cpu_update_needed[my_cpu] = FALSE((boolean_t) 0); | |||
2734 | simple_unlock(&update_list_p->lock); | |||
2735 | } | |||
2736 | ||||
2737 | /* | |||
2738 | * Interrupt routine for TBIA requested from other processor. | |||
2739 | */ | |||
2740 | void pmap_update_interrupt(void) | |||
2741 | { | |||
2742 | register int my_cpu; | |||
2743 | register pmap_t my_pmap; | |||
2744 | int s; | |||
2745 | ||||
2746 | my_cpu = cpu_number()(0); | |||
2747 | ||||
2748 | /* | |||
2749 | * Exit now if we're idle. We'll pick up the update request | |||
2750 | * when we go active, and we must not put ourselves back in | |||
2751 | * the active set because we'll never process the interrupt | |||
2752 | * while we're idle (thus hanging the system). | |||
2753 | */ | |||
2754 | if (cpus_idle & (1 << my_cpu)) | |||
2755 | return; | |||
2756 | ||||
2757 | if (current_thread()(active_threads[(0)]) == THREAD_NULL((thread_t) 0)) | |||
2758 | my_pmap = kernel_pmap; | |||
2759 | else { | |||
2760 | my_pmap = current_pmap()((((active_threads[(0)])->task->map)->pmap)); | |||
2761 | if (!pmap_in_use(my_pmap, my_cpu)(((my_pmap)->cpus_using & (1 << (my_cpu))) != 0)) | |||
2762 | my_pmap = kernel_pmap; | |||
2763 | } | |||
2764 | ||||
2765 | /* | |||
2766 | * Raise spl to splvm (above splip) to block out pmap_extract | |||
2767 | * from IO code (which would put this cpu back in the active | |||
2768 | * set). | |||
2769 | */ | |||
2770 | s = splvm(); | |||
2771 | ||||
2772 | do { | |||
2773 | ||||
2774 | /* | |||
2775 | * Indicate that we're not using either user or kernel | |||
2776 | * pmap. | |||
2777 | */ | |||
2778 | i_bit_clear(my_cpu, &cpus_active); | |||
2779 | ||||
2780 | /* | |||
2781 | * Wait for any pmap updates in progress, on either user | |||
2782 | * or kernel pmap. | |||
2783 | */ | |||
2784 | while (*(volatile int *)&my_pmap->lock.lock_data || | |||
2785 | *(volatile int *)&kernel_pmap->lock.lock_data) | |||
2786 | continue; | |||
2787 | ||||
2788 | process_pmap_updates(my_pmap); | |||
2789 | ||||
2790 | i_bit_set(my_cpu, &cpus_active); | |||
2791 | ||||
2792 | } while (cpu_update_needed[my_cpu]); | |||
2793 | ||||
2794 | splx(s); | |||
2795 | } | |||
2796 | #else /* NCPUS > 1 */ | |||
2797 | /* | |||
2798 | * Dummy routine to satisfy external reference. | |||
2799 | */ | |||
2800 | void pmap_update_interrupt() | |||
2801 | { | |||
2802 | /* should never be called. */ | |||
2803 | } | |||
2804 | #endif /* NCPUS > 1 */ | |||
2805 | ||||
2806 | #if defined(__i386__1) | |||
2807 | /* Unmap page 0 to trap NULL references. */ | |||
2808 | void | |||
2809 | pmap_unmap_page_zero () | |||
2810 | { | |||
2811 | int *pte; | |||
2812 | ||||
2813 | pte = (int *) pmap_pte (kernel_pmap, 0); | |||
2814 | if (!pte) | |||
2815 | return; | |||
2816 | assert (pte)({ if (!(pte)) Assert("pte", "../i386/intel/pmap.c", 2816); } ); | |||
2817 | #ifdef MACH_PV_PAGETABLES | |||
2818 | if (!hyp_mmu_update_pte(kv_to_ma(pte), 0)) | |||
2819 | printf("couldn't unmap page 0\n"); | |||
2820 | #else /* MACH_PV_PAGETABLES */ | |||
2821 | *pte = 0; | |||
2822 | INVALIDATE_TLB(kernel_pmap, 0, PAGE_SIZE){ (void) (kernel_pmap); (void) (0); (void) ((1 << 12)); ({ register unsigned long _temp__ = (({ register unsigned long _temp__; asm volatile("mov %%cr3, %0" : "=r" (_temp__)); _temp__ ; })); asm volatile("mov %0, %%cr3" : : "r" (_temp__) : "memory" ); }); }; | |||
2823 | #endif /* MACH_PV_PAGETABLES */ | |||
2824 | } | |||
2825 | #endif /* __i386__ */ |