| File: | obj-scan-build/../vm/vm_map.c |
| Location: | line 3404, column 4 |
| Description: | Value stored to 'src_size' is never read |
| 1 | /* |
| 2 | * Mach Operating System |
| 3 | * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University. |
| 4 | * Copyright (c) 1993,1994 The University of Utah and |
| 5 | * the Computer Systems Laboratory (CSL). |
| 6 | * All rights reserved. |
| 7 | * |
| 8 | * Permission to use, copy, modify and distribute this software and its |
| 9 | * documentation is hereby granted, provided that both the copyright |
| 10 | * notice and this permission notice appear in all copies of the |
| 11 | * software, derivative works or modified versions, and any portions |
| 12 | * thereof, and that both notices appear in supporting documentation. |
| 13 | * |
| 14 | * CARNEGIE MELLON, THE UNIVERSITY OF UTAH AND CSL ALLOW FREE USE OF |
| 15 | * THIS SOFTWARE IN ITS "AS IS" CONDITION, AND DISCLAIM ANY LIABILITY |
| 16 | * OF ANY KIND FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF |
| 17 | * THIS SOFTWARE. |
| 18 | * |
| 19 | * Carnegie Mellon requests users of this software to return to |
| 20 | * |
| 21 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU |
| 22 | * School of Computer Science |
| 23 | * Carnegie Mellon University |
| 24 | * Pittsburgh PA 15213-3890 |
| 25 | * |
| 26 | * any improvements or extensions that they make and grant Carnegie Mellon |
| 27 | * the rights to redistribute these changes. |
| 28 | */ |
| 29 | /* |
| 30 | * File: vm/vm_map.c |
| 31 | * Author: Avadis Tevanian, Jr., Michael Wayne Young |
| 32 | * Date: 1985 |
| 33 | * |
| 34 | * Virtual memory mapping module. |
| 35 | */ |
| 36 | |
| 37 | #include <kern/printf.h> |
| 38 | #include <mach/kern_return.h> |
| 39 | #include <mach/port.h> |
| 40 | #include <mach/vm_attributes.h> |
| 41 | #include <mach/vm_param.h> |
| 42 | #include <kern/assert.h> |
| 43 | #include <kern/debug.h> |
| 44 | #include <kern/kalloc.h> |
| 45 | #include <kern/rbtree.h> |
| 46 | #include <kern/slab.h> |
| 47 | #include <vm/pmap.h> |
| 48 | #include <vm/vm_fault.h> |
| 49 | #include <vm/vm_map.h> |
| 50 | #include <vm/vm_object.h> |
| 51 | #include <vm/vm_page.h> |
| 52 | #include <vm/vm_resident.h> |
| 53 | #include <vm/vm_kern.h> |
| 54 | #include <ipc/ipc_port.h> |
| 55 | |
| 56 | #if MACH_KDB0 |
| 57 | #include <ddb/db_output.h> |
| 58 | #include <vm/vm_print.h> |
| 59 | #endif /* MACH_KDB */ |
| 60 | |
| 61 | |
| 62 | /* Forward declarations */ |
| 63 | kern_return_t vm_map_delete( |
| 64 | vm_map_t map, |
| 65 | vm_offset_t start, |
| 66 | vm_offset_t end); |
| 67 | |
| 68 | kern_return_t vm_map_copyout_page_list( |
| 69 | vm_map_t dst_map, |
| 70 | vm_offset_t *dst_addr, /* OUT */ |
| 71 | vm_map_copy_t copy); |
| 72 | |
| 73 | void vm_map_copy_page_discard (vm_map_copy_t copy); |
| 74 | |
| 75 | /* |
| 76 | * Macros to copy a vm_map_entry. We must be careful to correctly |
| 77 | * manage the wired page count. vm_map_entry_copy() creates a new |
| 78 | * map entry to the same memory - the wired count in the new entry |
| 79 | * must be set to zero. vm_map_entry_copy_full() creates a new |
| 80 | * entry that is identical to the old entry. This preserves the |
| 81 | * wire count; it's used for map splitting and cache changing in |
| 82 | * vm_map_copyout. |
| 83 | */ |
| 84 | #define vm_map_entry_copy(NEW,OLD)({ *(NEW) = *(OLD); (NEW)->is_shared = ((boolean_t) 0); (NEW )->needs_wakeup = ((boolean_t) 0); (NEW)->in_transition = ((boolean_t) 0); (NEW)->wired_count = 0; (NEW)->user_wired_count = 0; }) \({ |
| 85 | MACRO_BEGIN({ \ |
| 86 | *(NEW) = *(OLD); \ |
| 87 | (NEW)->is_shared = FALSE((boolean_t) 0); \ |
| 88 | (NEW)->needs_wakeup = FALSE((boolean_t) 0); \ |
| 89 | (NEW)->in_transition = FALSE((boolean_t) 0); \ |
| 90 | (NEW)->wired_count = 0; \ |
| 91 | (NEW)->user_wired_count = 0; \}) |
| 92 | MACRO_END}) |
| 93 | |
| 94 | #define vm_map_entry_copy_full(NEW,OLD)(*(NEW) = *(OLD)) (*(NEW) = *(OLD)) |
| 95 | |
| 96 | /* |
| 97 | * Virtual memory maps provide for the mapping, protection, |
| 98 | * and sharing of virtual memory objects. In addition, |
| 99 | * this module provides for an efficient virtual copy of |
| 100 | * memory from one map to another. |
| 101 | * |
| 102 | * Synchronization is required prior to most operations. |
| 103 | * |
| 104 | * Maps consist of an ordered doubly-linked list of simple |
| 105 | * entries; a hint and a red-black tree are used to speed up lookups. |
| 106 | * |
| 107 | * Sharing maps have been deleted from this version of Mach. |
| 108 | * All shared objects are now mapped directly into the respective |
| 109 | * maps. This requires a change in the copy on write strategy; |
| 110 | * the asymmetric (delayed) strategy is used for shared temporary |
| 111 | * objects instead of the symmetric (shadow) strategy. This is |
| 112 | * selected by the (new) use_shared_copy bit in the object. See |
| 113 | * vm_object_copy_temporary in vm_object.c for details. All maps |
| 114 | * are now "top level" maps (either task map, kernel map or submap |
| 115 | * of the kernel map). |
| 116 | * |
| 117 | * Since portions of maps are specified by start/end addreses, |
| 118 | * which may not align with existing map entries, all |
| 119 | * routines merely "clip" entries to these start/end values. |
| 120 | * [That is, an entry is split into two, bordering at a |
| 121 | * start or end value.] Note that these clippings may not |
| 122 | * always be necessary (as the two resulting entries are then |
| 123 | * not changed); however, the clipping is done for convenience. |
| 124 | * No attempt is currently made to "glue back together" two |
| 125 | * abutting entries. |
| 126 | * |
| 127 | * The symmetric (shadow) copy strategy implements virtual copy |
| 128 | * by copying VM object references from one map to |
| 129 | * another, and then marking both regions as copy-on-write. |
| 130 | * It is important to note that only one writeable reference |
| 131 | * to a VM object region exists in any map when this strategy |
| 132 | * is used -- this means that shadow object creation can be |
| 133 | * delayed until a write operation occurs. The asymmetric (delayed) |
| 134 | * strategy allows multiple maps to have writeable references to |
| 135 | * the same region of a vm object, and hence cannot delay creating |
| 136 | * its copy objects. See vm_object_copy_temporary() in vm_object.c. |
| 137 | * Copying of permanent objects is completely different; see |
| 138 | * vm_object_copy_strategically() in vm_object.c. |
| 139 | */ |
| 140 | |
| 141 | struct kmem_cache vm_map_cache; /* cache for vm_map structures */ |
| 142 | struct kmem_cache vm_map_entry_cache; /* cache for vm_map_entry structures */ |
| 143 | struct kmem_cache vm_map_kentry_cache; /* cache for kernel entry structures */ |
| 144 | struct kmem_cache vm_map_copy_cache; /* cache for vm_map_copy structures */ |
| 145 | |
| 146 | boolean_t vm_map_lookup_entry(); /* forward declaration */ |
| 147 | |
| 148 | /* |
| 149 | * Placeholder object for submap operations. This object is dropped |
| 150 | * into the range by a call to vm_map_find, and removed when |
| 151 | * vm_map_submap creates the submap. |
| 152 | */ |
| 153 | |
| 154 | static struct vm_object vm_submap_object_store; |
| 155 | vm_object_t vm_submap_object = &vm_submap_object_store; |
| 156 | |
| 157 | /* |
| 158 | * vm_map_init: |
| 159 | * |
| 160 | * Initialize the vm_map module. Must be called before |
| 161 | * any other vm_map routines. |
| 162 | * |
| 163 | * Map and entry structures are allocated from caches -- we must |
| 164 | * initialize those caches. |
| 165 | * |
| 166 | * There are three caches of interest: |
| 167 | * |
| 168 | * vm_map_cache: used to allocate maps. |
| 169 | * vm_map_entry_cache: used to allocate map entries. |
| 170 | * vm_map_kentry_cache: used to allocate map entries for the kernel. |
| 171 | * |
| 172 | * Kernel map entries are allocated from a special cache, using a custom |
| 173 | * page allocation function to avoid recursion. It would be difficult |
| 174 | * (perhaps impossible) for the kernel to allocate more memory to an entry |
| 175 | * cache when it became empty since the very act of allocating memory |
| 176 | * implies the creation of a new entry. |
| 177 | */ |
| 178 | |
| 179 | vm_offset_t kentry_data; |
| 180 | vm_size_t kentry_data_size = KENTRY_DATA_SIZE(256*(1 << 12)); |
| 181 | |
| 182 | static vm_offset_t kentry_pagealloc(vm_size_t size) |
| 183 | { |
| 184 | vm_offset_t result; |
| 185 | |
| 186 | if (size > kentry_data_size) |
| 187 | panic("vm_map: kentry memory exhausted"); |
| 188 | |
| 189 | result = kentry_data; |
| 190 | kentry_data += size; |
| 191 | kentry_data_size -= size; |
| 192 | return result; |
| 193 | } |
| 194 | |
| 195 | void vm_map_init(void) |
| 196 | { |
| 197 | kmem_cache_init(&vm_map_cache, "vm_map", sizeof(struct vm_map), 0, |
| 198 | NULL((void *) 0), NULL((void *) 0), NULL((void *) 0), 0); |
| 199 | kmem_cache_init(&vm_map_entry_cache, "vm_map_entry", |
| 200 | sizeof(struct vm_map_entry), 0, NULL((void *) 0), NULL((void *) 0), NULL((void *) 0), 0); |
| 201 | kmem_cache_init(&vm_map_kentry_cache, "vm_map_kentry", |
| 202 | sizeof(struct vm_map_entry), 0, NULL((void *) 0), kentry_pagealloc, |
| 203 | NULL((void *) 0), KMEM_CACHE_NOCPUPOOL0x1 | KMEM_CACHE_NOOFFSLAB0x2 |
| 204 | | KMEM_CACHE_NORECLAIM0x4); |
| 205 | kmem_cache_init(&vm_map_copy_cache, "vm_map_copy", |
| 206 | sizeof(struct vm_map_copy), 0, NULL((void *) 0), NULL((void *) 0), NULL((void *) 0), 0); |
| 207 | |
| 208 | /* |
| 209 | * Submap object is initialized by vm_object_init. |
| 210 | */ |
| 211 | } |
| 212 | |
| 213 | void vm_map_setup(map, pmap, min, max, pageable) |
| 214 | vm_map_t map; |
| 215 | pmap_t pmap; |
| 216 | vm_offset_t min, max; |
| 217 | boolean_t pageable; |
| 218 | { |
| 219 | vm_map_first_entry(map)((map)->hdr.links.next) = vm_map_to_entry(map)((struct vm_map_entry *) &(map)->hdr.links); |
| 220 | vm_map_last_entry(map)((map)->hdr.links.prev) = vm_map_to_entry(map)((struct vm_map_entry *) &(map)->hdr.links); |
| 221 | map->hdr.nentries = 0; |
| 222 | map->hdr.entries_pageable = pageable; |
| 223 | rbtree_init(&map->hdr.tree); |
| 224 | |
| 225 | map->size = 0; |
| 226 | map->ref_count = 1; |
| 227 | map->pmap = pmap; |
| 228 | map->min_offsethdr.links.start = min; |
| 229 | map->max_offsethdr.links.end = max; |
| 230 | map->wiring_required = FALSE((boolean_t) 0); |
| 231 | map->wait_for_space = FALSE((boolean_t) 0); |
| 232 | map->first_free = vm_map_to_entry(map)((struct vm_map_entry *) &(map)->hdr.links); |
| 233 | map->hint = vm_map_to_entry(map)((struct vm_map_entry *) &(map)->hdr.links); |
| 234 | vm_map_lock_init(map)({ lock_init(&(map)->lock, ((boolean_t) 1)); (map)-> timestamp = 0; }); |
| 235 | simple_lock_init(&map->ref_lock); |
| 236 | simple_lock_init(&map->hint_lock); |
| 237 | } |
| 238 | |
| 239 | /* |
| 240 | * vm_map_create: |
| 241 | * |
| 242 | * Creates and returns a new empty VM map with |
| 243 | * the given physical map structure, and having |
| 244 | * the given lower and upper address bounds. |
| 245 | */ |
| 246 | vm_map_t vm_map_create(pmap, min, max, pageable) |
| 247 | pmap_t pmap; |
| 248 | vm_offset_t min, max; |
| 249 | boolean_t pageable; |
| 250 | { |
| 251 | register vm_map_t result; |
| 252 | |
| 253 | result = (vm_map_t) kmem_cache_alloc(&vm_map_cache); |
| 254 | if (result == VM_MAP_NULL((vm_map_t) 0)) |
| 255 | panic("vm_map_create"); |
| 256 | |
| 257 | vm_map_setup(result, pmap, min, max, pageable); |
| 258 | |
| 259 | return(result); |
| 260 | } |
| 261 | |
| 262 | /* |
| 263 | * vm_map_entry_create: [ internal use only ] |
| 264 | * |
| 265 | * Allocates a VM map entry for insertion in the |
| 266 | * given map (or map copy). No fields are filled. |
| 267 | */ |
| 268 | #define vm_map_entry_create(map)_vm_map_entry_create(&(map)->hdr) \ |
| 269 | _vm_map_entry_create(&(map)->hdr) |
| 270 | |
| 271 | #define vm_map_copy_entry_create(copy)_vm_map_entry_create(&(copy)->c_u.hdr) \ |
| 272 | _vm_map_entry_create(&(copy)->cpy_hdrc_u.hdr) |
| 273 | |
| 274 | vm_map_entry_t _vm_map_entry_create(map_header) |
| 275 | register struct vm_map_header *map_header; |
| 276 | { |
| 277 | register kmem_cache_t cache; |
| 278 | register vm_map_entry_t entry; |
| 279 | |
| 280 | if (map_header->entries_pageable) |
| 281 | cache = &vm_map_entry_cache; |
| 282 | else |
| 283 | cache = &vm_map_kentry_cache; |
| 284 | |
| 285 | entry = (vm_map_entry_t) kmem_cache_alloc(cache); |
| 286 | if (entry == VM_MAP_ENTRY_NULL((vm_map_entry_t) 0)) |
| 287 | panic("vm_map_entry_create"); |
| 288 | |
| 289 | return(entry); |
| 290 | } |
| 291 | |
| 292 | /* |
| 293 | * vm_map_entry_dispose: [ internal use only ] |
| 294 | * |
| 295 | * Inverse of vm_map_entry_create. |
| 296 | */ |
| 297 | #define vm_map_entry_dispose(map, entry)_vm_map_entry_dispose(&(map)->hdr, (entry)) \ |
| 298 | _vm_map_entry_dispose(&(map)->hdr, (entry)) |
| 299 | |
| 300 | #define vm_map_copy_entry_dispose(map, entry)_vm_map_entry_dispose(&(copy)->c_u.hdr, (entry)) \ |
| 301 | _vm_map_entry_dispose(&(copy)->cpy_hdrc_u.hdr, (entry)) |
| 302 | |
| 303 | void _vm_map_entry_dispose(map_header, entry) |
| 304 | register struct vm_map_header *map_header; |
| 305 | register vm_map_entry_t entry; |
| 306 | { |
| 307 | register kmem_cache_t cache; |
| 308 | |
| 309 | if (map_header->entries_pageable) |
| 310 | cache = &vm_map_entry_cache; |
| 311 | else |
| 312 | cache = &vm_map_kentry_cache; |
| 313 | |
| 314 | kmem_cache_free(cache, (vm_offset_t) entry); |
| 315 | } |
| 316 | |
| 317 | /* |
| 318 | * Red-black tree lookup/insert comparison functions |
| 319 | */ |
| 320 | static inline int vm_map_entry_cmp_lookup(vm_offset_t addr, |
| 321 | const struct rbtree_node *node) |
| 322 | { |
| 323 | struct vm_map_entry *entry; |
| 324 | |
| 325 | entry = rbtree_entry(node, struct vm_map_entry, tree_node)((struct vm_map_entry *)((char *)node - __builtin_offsetof (struct vm_map_entry, tree_node))); |
| 326 | |
| 327 | if (addr < entry->vme_startlinks.start) |
| 328 | return -1; |
| 329 | else if (addr < entry->vme_endlinks.end) |
| 330 | return 0; |
| 331 | else |
| 332 | return 1; |
| 333 | } |
| 334 | |
| 335 | static inline int vm_map_entry_cmp_insert(const struct rbtree_node *a, |
| 336 | const struct rbtree_node *b) |
| 337 | { |
| 338 | struct vm_map_entry *entry; |
| 339 | |
| 340 | entry = rbtree_entry(a, struct vm_map_entry, tree_node)((struct vm_map_entry *)((char *)a - __builtin_offsetof (struct vm_map_entry, tree_node))); |
| 341 | return vm_map_entry_cmp_lookup(entry->vme_startlinks.start, b); |
| 342 | } |
| 343 | |
| 344 | /* |
| 345 | * vm_map_entry_{un,}link: |
| 346 | * |
| 347 | * Insert/remove entries from maps (or map copies). |
| 348 | * |
| 349 | * The start and end addresses of the entries must be properly set |
| 350 | * before using these macros. |
| 351 | */ |
| 352 | #define vm_map_entry_link(map, after_where, entry)({ (&(map)->hdr)->nentries++; (entry)->links.prev = (after_where); (entry)->links.next = (after_where)-> links.next; (entry)->links.prev->links.next = (entry)-> links.next->links.prev = (entry); ({ struct rbtree_node *___cur , *___prev; int ___diff, ___index; ___prev = ((void *) 0); ___index = -1; ___cur = (&(&(map)->hdr)->tree)->root ; while (___cur != ((void *) 0)) { ___diff = vm_map_entry_cmp_insert (&(entry)->tree_node, ___cur); ({ if (!(___diff != 0)) Assert("___diff != 0", "../vm/vm_map.c", 352); }); ___prev = ___cur; ___index = rbtree_d2i(___diff); ___cur = ___cur-> children[___index]; } rbtree_insert_rebalance(&(&(map )->hdr)->tree, ___prev, ___index, &(entry)->tree_node ); }); }) \ |
| 353 | _vm_map_entry_link(&(map)->hdr, after_where, entry)({ (&(map)->hdr)->nentries++; (entry)->links.prev = (after_where); (entry)->links.next = (after_where)-> links.next; (entry)->links.prev->links.next = (entry)-> links.next->links.prev = (entry); ({ struct rbtree_node *___cur , *___prev; int ___diff, ___index; ___prev = ((void *) 0); ___index = -1; ___cur = (&(&(map)->hdr)->tree)->root ; while (___cur != ((void *) 0)) { ___diff = vm_map_entry_cmp_insert (&(entry)->tree_node, ___cur); ({ if (!(___diff != 0)) Assert("___diff != 0", "../vm/vm_map.c", 353); }); ___prev = ___cur; ___index = rbtree_d2i(___diff); ___cur = ___cur-> children[___index]; } rbtree_insert_rebalance(&(&(map )->hdr)->tree, ___prev, ___index, &(entry)->tree_node ); }); }) |
| 354 | |
| 355 | #define vm_map_copy_entry_link(copy, after_where, entry)({ (&(copy)->c_u.hdr)->nentries++; (entry)->links .prev = (after_where); (entry)->links.next = (after_where) ->links.next; (entry)->links.prev->links.next = (entry )->links.next->links.prev = (entry); ({ struct rbtree_node *___cur, *___prev; int ___diff, ___index; ___prev = ((void * ) 0); ___index = -1; ___cur = (&(&(copy)->c_u.hdr) ->tree)->root; while (___cur != ((void *) 0)) { ___diff = vm_map_entry_cmp_insert(&(entry)->tree_node, ___cur ); ({ if (!(___diff != 0)) Assert("___diff != 0", "../vm/vm_map.c" , 355); }); ___prev = ___cur; ___index = rbtree_d2i(___diff); ___cur = ___cur->children[___index]; } rbtree_insert_rebalance (&(&(copy)->c_u.hdr)->tree, ___prev, ___index, & (entry)->tree_node); }); }) \ |
| 356 | _vm_map_entry_link(&(copy)->cpy_hdr, after_where, entry)({ (&(copy)->c_u.hdr)->nentries++; (entry)->links .prev = (after_where); (entry)->links.next = (after_where) ->links.next; (entry)->links.prev->links.next = (entry )->links.next->links.prev = (entry); ({ struct rbtree_node *___cur, *___prev; int ___diff, ___index; ___prev = ((void * ) 0); ___index = -1; ___cur = (&(&(copy)->c_u.hdr) ->tree)->root; while (___cur != ((void *) 0)) { ___diff = vm_map_entry_cmp_insert(&(entry)->tree_node, ___cur ); ({ if (!(___diff != 0)) Assert("___diff != 0", "../vm/vm_map.c" , 356); }); ___prev = ___cur; ___index = rbtree_d2i(___diff); ___cur = ___cur->children[___index]; } rbtree_insert_rebalance (&(&(copy)->c_u.hdr)->tree, ___prev, ___index, & (entry)->tree_node); }); }) |
| 357 | |
| 358 | #define _vm_map_entry_link(hdr, after_where, entry)({ (hdr)->nentries++; (entry)->links.prev = (after_where ); (entry)->links.next = (after_where)->links.next; (entry )->links.prev->links.next = (entry)->links.next-> links.prev = (entry); ({ struct rbtree_node *___cur, *___prev ; int ___diff, ___index; ___prev = ((void *) 0); ___index = - 1; ___cur = (&(hdr)->tree)->root; while (___cur != ( (void *) 0)) { ___diff = vm_map_entry_cmp_insert(&(entry) ->tree_node, ___cur); ({ if (!(___diff != 0)) Assert("___diff != 0" , "../vm/vm_map.c", 358); }); ___prev = ___cur; ___index = rbtree_d2i (___diff); ___cur = ___cur->children[___index]; } rbtree_insert_rebalance (&(hdr)->tree, ___prev, ___index, &(entry)->tree_node ); }); }) \ |
| 359 | MACRO_BEGIN({ \ |
| 360 | (hdr)->nentries++; \ |
| 361 | (entry)->vme_prevlinks.prev = (after_where); \ |
| 362 | (entry)->vme_nextlinks.next = (after_where)->vme_nextlinks.next; \ |
| 363 | (entry)->vme_prevlinks.prev->vme_nextlinks.next = \ |
| 364 | (entry)->vme_nextlinks.next->vme_prevlinks.prev = (entry); \ |
| 365 | rbtree_insert(&(hdr)->tree, &(entry)->tree_node, \({ struct rbtree_node *___cur, *___prev; int ___diff, ___index ; ___prev = ((void *) 0); ___index = -1; ___cur = (&(hdr) ->tree)->root; while (___cur != ((void *) 0)) { ___diff = vm_map_entry_cmp_insert(&(entry)->tree_node, ___cur ); ({ if (!(___diff != 0)) Assert("___diff != 0", "../vm/vm_map.c" , 366); }); ___prev = ___cur; ___index = rbtree_d2i(___diff); ___cur = ___cur->children[___index]; } rbtree_insert_rebalance (&(hdr)->tree, ___prev, ___index, &(entry)->tree_node ); }) |
| 366 | vm_map_entry_cmp_insert)({ struct rbtree_node *___cur, *___prev; int ___diff, ___index ; ___prev = ((void *) 0); ___index = -1; ___cur = (&(hdr) ->tree)->root; while (___cur != ((void *) 0)) { ___diff = vm_map_entry_cmp_insert(&(entry)->tree_node, ___cur ); ({ if (!(___diff != 0)) Assert("___diff != 0", "../vm/vm_map.c" , 366); }); ___prev = ___cur; ___index = rbtree_d2i(___diff); ___cur = ___cur->children[___index]; } rbtree_insert_rebalance (&(hdr)->tree, ___prev, ___index, &(entry)->tree_node ); }); \ |
| 367 | MACRO_END}) |
| 368 | |
| 369 | #define vm_map_entry_unlink(map, entry)({ (&(map)->hdr)->nentries--; (entry)->links.next ->links.prev = (entry)->links.prev; (entry)->links.prev ->links.next = (entry)->links.next; rbtree_remove(& (&(map)->hdr)->tree, &(entry)->tree_node); } ) \ |
| 370 | _vm_map_entry_unlink(&(map)->hdr, entry)({ (&(map)->hdr)->nentries--; (entry)->links.next ->links.prev = (entry)->links.prev; (entry)->links.prev ->links.next = (entry)->links.next; rbtree_remove(& (&(map)->hdr)->tree, &(entry)->tree_node); } ) |
| 371 | |
| 372 | #define vm_map_copy_entry_unlink(copy, entry)({ (&(copy)->c_u.hdr)->nentries--; (entry)->links .next->links.prev = (entry)->links.prev; (entry)->links .prev->links.next = (entry)->links.next; rbtree_remove( &(&(copy)->c_u.hdr)->tree, &(entry)->tree_node ); }) \ |
| 373 | _vm_map_entry_unlink(&(copy)->cpy_hdr, entry)({ (&(copy)->c_u.hdr)->nentries--; (entry)->links .next->links.prev = (entry)->links.prev; (entry)->links .prev->links.next = (entry)->links.next; rbtree_remove( &(&(copy)->c_u.hdr)->tree, &(entry)->tree_node ); }) |
| 374 | |
| 375 | #define _vm_map_entry_unlink(hdr, entry)({ (hdr)->nentries--; (entry)->links.next->links.prev = (entry)->links.prev; (entry)->links.prev->links.next = (entry)->links.next; rbtree_remove(&(hdr)->tree, &(entry)->tree_node); }) \ |
| 376 | MACRO_BEGIN({ \ |
| 377 | (hdr)->nentries--; \ |
| 378 | (entry)->vme_nextlinks.next->vme_prevlinks.prev = (entry)->vme_prevlinks.prev; \ |
| 379 | (entry)->vme_prevlinks.prev->vme_nextlinks.next = (entry)->vme_nextlinks.next; \ |
| 380 | rbtree_remove(&(hdr)->tree, &(entry)->tree_node); \ |
| 381 | MACRO_END}) |
| 382 | |
| 383 | /* |
| 384 | * vm_map_reference: |
| 385 | * |
| 386 | * Creates another valid reference to the given map. |
| 387 | * |
| 388 | */ |
| 389 | void vm_map_reference(map) |
| 390 | register vm_map_t map; |
| 391 | { |
| 392 | if (map == VM_MAP_NULL((vm_map_t) 0)) |
| 393 | return; |
| 394 | |
| 395 | simple_lock(&map->ref_lock); |
| 396 | map->ref_count++; |
| 397 | simple_unlock(&map->ref_lock); |
| 398 | } |
| 399 | |
| 400 | /* |
| 401 | * vm_map_deallocate: |
| 402 | * |
| 403 | * Removes a reference from the specified map, |
| 404 | * destroying it if no references remain. |
| 405 | * The map should not be locked. |
| 406 | */ |
| 407 | void vm_map_deallocate(map) |
| 408 | register vm_map_t map; |
| 409 | { |
| 410 | register int c; |
| 411 | |
| 412 | if (map == VM_MAP_NULL((vm_map_t) 0)) |
| 413 | return; |
| 414 | |
| 415 | simple_lock(&map->ref_lock); |
| 416 | c = --map->ref_count; |
| 417 | simple_unlock(&map->ref_lock); |
| 418 | |
| 419 | if (c > 0) { |
| 420 | return; |
| 421 | } |
| 422 | |
| 423 | projected_buffer_collect(map); |
| 424 | (void) vm_map_delete(map, map->min_offsethdr.links.start, map->max_offsethdr.links.end); |
| 425 | |
| 426 | pmap_destroy(map->pmap); |
| 427 | |
| 428 | kmem_cache_free(&vm_map_cache, (vm_offset_t) map); |
| 429 | } |
| 430 | |
| 431 | /* |
| 432 | * SAVE_HINT: |
| 433 | * |
| 434 | * Saves the specified entry as the hint for |
| 435 | * future lookups. Performs necessary interlocks. |
| 436 | */ |
| 437 | #define SAVE_HINT(map,value); (map)->hint = (value); ; \ |
| 438 | simple_lock(&(map)->hint_lock); \ |
| 439 | (map)->hint = (value); \ |
| 440 | simple_unlock(&(map)->hint_lock); |
| 441 | |
| 442 | /* |
| 443 | * vm_map_lookup_entry: [ internal use only ] |
| 444 | * |
| 445 | * Finds the map entry containing (or |
| 446 | * immediately preceding) the specified address |
| 447 | * in the given map; the entry is returned |
| 448 | * in the "entry" parameter. The boolean |
| 449 | * result indicates whether the address is |
| 450 | * actually contained in the map. |
| 451 | */ |
| 452 | boolean_t vm_map_lookup_entry(map, address, entry) |
| 453 | register vm_map_t map; |
| 454 | register vm_offset_t address; |
| 455 | vm_map_entry_t *entry; /* OUT */ |
| 456 | { |
| 457 | register struct rbtree_node *node; |
| 458 | register vm_map_entry_t hint; |
| 459 | |
| 460 | /* |
| 461 | * First, make a quick check to see if we are already |
| 462 | * looking at the entry we want (which is often the case). |
| 463 | */ |
| 464 | |
| 465 | simple_lock(&map->hint_lock); |
| 466 | hint = map->hint; |
| 467 | simple_unlock(&map->hint_lock); |
| 468 | |
| 469 | if ((hint != vm_map_to_entry(map)((struct vm_map_entry *) &(map)->hdr.links)) && (address >= hint->vme_startlinks.start)) { |
| 470 | if (address < hint->vme_endlinks.end) { |
| 471 | *entry = hint; |
| 472 | return(TRUE((boolean_t) 1)); |
| 473 | } else { |
| 474 | vm_map_entry_t next = hint->vme_nextlinks.next; |
| 475 | |
| 476 | if ((next == vm_map_to_entry(map)((struct vm_map_entry *) &(map)->hdr.links)) |
| 477 | || (address < next->vme_startlinks.start)) { |
| 478 | *entry = hint; |
| 479 | return(FALSE((boolean_t) 0)); |
| 480 | } |
| 481 | } |
| 482 | } |
| 483 | |
| 484 | /* |
| 485 | * If the hint didn't help, use the red-black tree. |
| 486 | */ |
| 487 | |
| 488 | node = rbtree_lookup_nearest(&map->hdr.tree, address,({ struct rbtree_node *___cur, *___prev; int ___diff, ___index ; ___prev = ((void *) 0); ___index = -1; ___cur = (&map-> hdr.tree)->root; while (___cur != ((void *) 0)) { ___diff = vm_map_entry_cmp_lookup(address, ___cur); if (___diff == 0) break ; ___prev = ___cur; ___index = rbtree_d2i(___diff); ___cur = ___cur ->children[___index]; } if (___cur == ((void *) 0)) ___cur = rbtree_nearest(___prev, ___index, 0); ___cur; }) |
| 489 | vm_map_entry_cmp_lookup, RBTREE_LEFT)({ struct rbtree_node *___cur, *___prev; int ___diff, ___index ; ___prev = ((void *) 0); ___index = -1; ___cur = (&map-> hdr.tree)->root; while (___cur != ((void *) 0)) { ___diff = vm_map_entry_cmp_lookup(address, ___cur); if (___diff == 0) break ; ___prev = ___cur; ___index = rbtree_d2i(___diff); ___cur = ___cur ->children[___index]; } if (___cur == ((void *) 0)) ___cur = rbtree_nearest(___prev, ___index, 0); ___cur; }); |
| 490 | |
| 491 | if (node == NULL((void *) 0)) { |
| 492 | *entry = vm_map_to_entry(map)((struct vm_map_entry *) &(map)->hdr.links); |
| 493 | SAVE_HINT(map, *entry); (map)->hint = (*entry); ;; |
| 494 | return(FALSE((boolean_t) 0)); |
| 495 | } else { |
| 496 | *entry = rbtree_entry(node, struct vm_map_entry, tree_node)((struct vm_map_entry *)((char *)node - __builtin_offsetof (struct vm_map_entry, tree_node))); |
| 497 | SAVE_HINT(map, *entry); (map)->hint = (*entry); ;; |
| 498 | return((address < (*entry)->vme_endlinks.end) ? TRUE((boolean_t) 1) : FALSE((boolean_t) 0)); |
| 499 | } |
| 500 | } |
| 501 | |
| 502 | /* |
| 503 | * Routine: invalid_user_access |
| 504 | * |
| 505 | * Verifies whether user access is valid. |
| 506 | */ |
| 507 | |
| 508 | boolean_t |
| 509 | invalid_user_access(map, start, end, prot) |
| 510 | vm_map_t map; |
| 511 | vm_offset_t start, end; |
| 512 | vm_prot_t prot; |
| 513 | { |
| 514 | vm_map_entry_t entry; |
| 515 | |
| 516 | return (map == VM_MAP_NULL((vm_map_t) 0) || map == kernel_map || |
| 517 | !vm_map_lookup_entry(map, start, &entry) || |
| 518 | entry->vme_endlinks.end < end || |
| 519 | (prot & ~(entry->protection))); |
| 520 | } |
| 521 | |
| 522 | |
| 523 | /* |
| 524 | * Routine: vm_map_find_entry |
| 525 | * Purpose: |
| 526 | * Allocate a range in the specified virtual address map, |
| 527 | * returning the entry allocated for that range. |
| 528 | * Used by kmem_alloc, etc. Returns wired entries. |
| 529 | * |
| 530 | * The map must be locked. |
| 531 | * |
| 532 | * If an entry is allocated, the object/offset fields |
| 533 | * are initialized to zero. If an object is supplied, |
| 534 | * then an existing entry may be extended. |
| 535 | */ |
| 536 | kern_return_t vm_map_find_entry(map, address, size, mask, object, o_entry) |
| 537 | register vm_map_t map; |
| 538 | vm_offset_t *address; /* OUT */ |
| 539 | vm_size_t size; |
| 540 | vm_offset_t mask; |
| 541 | vm_object_t object; |
| 542 | vm_map_entry_t *o_entry; /* OUT */ |
| 543 | { |
| 544 | register vm_map_entry_t entry, new_entry; |
| 545 | register vm_offset_t start; |
| 546 | register vm_offset_t end; |
| 547 | |
| 548 | /* |
| 549 | * Look for the first possible address; |
| 550 | * if there's already something at this |
| 551 | * address, we have to start after it. |
| 552 | */ |
| 553 | |
| 554 | if ((entry = map->first_free) == vm_map_to_entry(map)((struct vm_map_entry *) &(map)->hdr.links)) |
| 555 | start = map->min_offsethdr.links.start; |
| 556 | else |
| 557 | start = entry->vme_endlinks.end; |
| 558 | |
| 559 | /* |
| 560 | * In any case, the "entry" always precedes |
| 561 | * the proposed new region throughout the loop: |
| 562 | */ |
| 563 | |
| 564 | while (TRUE((boolean_t) 1)) { |
| 565 | register vm_map_entry_t next; |
| 566 | |
| 567 | /* |
| 568 | * Find the end of the proposed new region. |
| 569 | * Be sure we didn't go beyond the end, or |
| 570 | * wrap around the address. |
| 571 | */ |
| 572 | |
| 573 | if (((start + mask) & ~mask) < start) { |
| 574 | printf_once("no more room for vm_map_find_entry in %p\n", map)({ static int __once = 0; if (!__once) { printf("no more room for vm_map_find_entry in %p\n" , map); __once = 1; } }); |
| 575 | return(KERN_NO_SPACE3); |
| 576 | } |
| 577 | start = ((start + mask) & ~mask); |
| 578 | end = start + size; |
| 579 | |
| 580 | if ((end > map->max_offsethdr.links.end) || (end < start)) { |
| 581 | printf_once("no more room for vm_map_find_entry in %p\n", map)({ static int __once = 0; if (!__once) { printf("no more room for vm_map_find_entry in %p\n" , map); __once = 1; } }); |
| 582 | return(KERN_NO_SPACE3); |
| 583 | } |
| 584 | |
| 585 | /* |
| 586 | * If there are no more entries, we must win. |
| 587 | */ |
| 588 | |
| 589 | next = entry->vme_nextlinks.next; |
| 590 | if (next == vm_map_to_entry(map)((struct vm_map_entry *) &(map)->hdr.links)) |
| 591 | break; |
| 592 | |
| 593 | /* |
| 594 | * If there is another entry, it must be |
| 595 | * after the end of the potential new region. |
| 596 | */ |
| 597 | |
| 598 | if (next->vme_startlinks.start >= end) |
| 599 | break; |
| 600 | |
| 601 | /* |
| 602 | * Didn't fit -- move to the next entry. |
| 603 | */ |
| 604 | |
| 605 | entry = next; |
| 606 | start = entry->vme_endlinks.end; |
| 607 | } |
| 608 | |
| 609 | /* |
| 610 | * At this point, |
| 611 | * "start" and "end" should define the endpoints of the |
| 612 | * available new range, and |
| 613 | * "entry" should refer to the region before the new |
| 614 | * range, and |
| 615 | * |
| 616 | * the map should be locked. |
| 617 | */ |
| 618 | |
| 619 | *address = start; |
| 620 | |
| 621 | /* |
| 622 | * See whether we can avoid creating a new entry by |
| 623 | * extending one of our neighbors. [So far, we only attempt to |
| 624 | * extend from below.] |
| 625 | */ |
| 626 | |
| 627 | if ((object != VM_OBJECT_NULL((vm_object_t) 0)) && |
| 628 | (entry != vm_map_to_entry(map)((struct vm_map_entry *) &(map)->hdr.links)) && |
| 629 | (entry->vme_endlinks.end == start) && |
| 630 | (!entry->is_shared) && |
| 631 | (!entry->is_sub_map) && |
| 632 | (entry->object.vm_object == object) && |
| 633 | (entry->needs_copy == FALSE((boolean_t) 0)) && |
| 634 | (entry->inheritance == VM_INHERIT_DEFAULT((vm_inherit_t) 1)) && |
| 635 | (entry->protection == VM_PROT_DEFAULT(((vm_prot_t) 0x01)|((vm_prot_t) 0x02))) && |
| 636 | (entry->max_protection == VM_PROT_ALL(((vm_prot_t) 0x01)|((vm_prot_t) 0x02)|((vm_prot_t) 0x04))) && |
| 637 | (entry->wired_count == 1) && |
| 638 | (entry->user_wired_count == 0) && |
| 639 | (entry->projected_on == 0)) { |
| 640 | /* |
| 641 | * Because this is a special case, |
| 642 | * we don't need to use vm_object_coalesce. |
| 643 | */ |
| 644 | |
| 645 | entry->vme_endlinks.end = end; |
| 646 | new_entry = entry; |
| 647 | } else { |
| 648 | new_entry = vm_map_entry_create(map)_vm_map_entry_create(&(map)->hdr); |
| 649 | |
| 650 | new_entry->vme_startlinks.start = start; |
| 651 | new_entry->vme_endlinks.end = end; |
| 652 | |
| 653 | new_entry->is_shared = FALSE((boolean_t) 0); |
| 654 | new_entry->is_sub_map = FALSE((boolean_t) 0); |
| 655 | new_entry->object.vm_object = VM_OBJECT_NULL((vm_object_t) 0); |
| 656 | new_entry->offset = (vm_offset_t) 0; |
| 657 | |
| 658 | new_entry->needs_copy = FALSE((boolean_t) 0); |
| 659 | |
| 660 | new_entry->inheritance = VM_INHERIT_DEFAULT((vm_inherit_t) 1); |
| 661 | new_entry->protection = VM_PROT_DEFAULT(((vm_prot_t) 0x01)|((vm_prot_t) 0x02)); |
| 662 | new_entry->max_protection = VM_PROT_ALL(((vm_prot_t) 0x01)|((vm_prot_t) 0x02)|((vm_prot_t) 0x04)); |
| 663 | new_entry->wired_count = 1; |
| 664 | new_entry->user_wired_count = 0; |
| 665 | |
| 666 | new_entry->in_transition = FALSE((boolean_t) 0); |
| 667 | new_entry->needs_wakeup = FALSE((boolean_t) 0); |
| 668 | new_entry->projected_on = 0; |
| 669 | |
| 670 | /* |
| 671 | * Insert the new entry into the list |
| 672 | */ |
| 673 | |
| 674 | vm_map_entry_link(map, entry, new_entry)({ (&(map)->hdr)->nentries++; (new_entry)->links .prev = (entry); (new_entry)->links.next = (entry)->links .next; (new_entry)->links.prev->links.next = (new_entry )->links.next->links.prev = (new_entry); ({ struct rbtree_node *___cur, *___prev; int ___diff, ___index; ___prev = ((void * ) 0); ___index = -1; ___cur = (&(&(map)->hdr)-> tree)->root; while (___cur != ((void *) 0)) { ___diff = vm_map_entry_cmp_insert (&(new_entry)->tree_node, ___cur); ({ if (!(___diff != 0)) Assert("___diff != 0", "../vm/vm_map.c", 674); }); ___prev = ___cur; ___index = rbtree_d2i(___diff); ___cur = ___cur-> children[___index]; } rbtree_insert_rebalance(&(&(map )->hdr)->tree, ___prev, ___index, &(new_entry)-> tree_node); }); }); |
| 675 | } |
| 676 | |
| 677 | map->size += size; |
| 678 | |
| 679 | /* |
| 680 | * Update the free space hint and the lookup hint |
| 681 | */ |
| 682 | |
| 683 | map->first_free = new_entry; |
| 684 | SAVE_HINT(map, new_entry); (map)->hint = (new_entry); ;; |
| 685 | |
| 686 | *o_entry = new_entry; |
| 687 | return(KERN_SUCCESS0); |
| 688 | } |
| 689 | |
| 690 | int vm_map_pmap_enter_print = FALSE((boolean_t) 0); |
| 691 | int vm_map_pmap_enter_enable = FALSE((boolean_t) 0); |
| 692 | |
| 693 | /* |
| 694 | * Routine: vm_map_pmap_enter |
| 695 | * |
| 696 | * Description: |
| 697 | * Force pages from the specified object to be entered into |
| 698 | * the pmap at the specified address if they are present. |
| 699 | * As soon as a page not found in the object the scan ends. |
| 700 | * |
| 701 | * Returns: |
| 702 | * Nothing. |
| 703 | * |
| 704 | * In/out conditions: |
| 705 | * The source map should not be locked on entry. |
| 706 | */ |
| 707 | void |
| 708 | vm_map_pmap_enter(map, addr, end_addr, object, offset, protection) |
| 709 | vm_map_t map; |
| 710 | register |
| 711 | vm_offset_t addr; |
| 712 | register |
| 713 | vm_offset_t end_addr; |
| 714 | register |
| 715 | vm_object_t object; |
| 716 | vm_offset_t offset; |
| 717 | vm_prot_t protection; |
| 718 | { |
| 719 | while (addr < end_addr) { |
| 720 | register vm_page_t m; |
| 721 | |
| 722 | vm_object_lock(object); |
| 723 | vm_object_paging_begin(object)((object)->paging_in_progress++); |
| 724 | |
| 725 | m = vm_page_lookup(object, offset); |
| 726 | if (m == VM_PAGE_NULL((vm_page_t) 0) || m->absent) { |
| 727 | vm_object_paging_end(object)({ ({ if (!((object)->paging_in_progress != 0)) Assert("(object)->paging_in_progress != 0" , "../vm/vm_map.c", 727); }); if (--(object)->paging_in_progress == 0) { ({ if ((object)->all_wanted & (1 << (2) )) thread_wakeup_prim(((event_t)(((vm_offset_t) object) + (2) )), ((boolean_t) 0), 0); (object)->all_wanted &= ~(1 << (2)); }); } }); |
| 728 | vm_object_unlock(object); |
| 729 | return; |
| 730 | } |
| 731 | |
| 732 | if (vm_map_pmap_enter_print) { |
| 733 | printf("vm_map_pmap_enter:"); |
| 734 | printf("map: %p, addr: %lx, object: %p, offset: %lx\n", |
| 735 | map, addr, object, offset); |
| 736 | } |
| 737 | |
| 738 | m->busy = TRUE((boolean_t) 1); |
| 739 | vm_object_unlock(object); |
| 740 | |
| 741 | PMAP_ENTER(map->pmap, addr, m,({ pmap_enter( (map->pmap), (addr), (m)->phys_addr, (protection ) & ~(m)->page_lock, (((boolean_t) 0)) ); }) |
| 742 | protection, FALSE)({ pmap_enter( (map->pmap), (addr), (m)->phys_addr, (protection ) & ~(m)->page_lock, (((boolean_t) 0)) ); }); |
| 743 | |
| 744 | vm_object_lock(object); |
| 745 | PAGE_WAKEUP_DONE(m)({ (m)->busy = ((boolean_t) 0); if ((m)->wanted) { (m)-> wanted = ((boolean_t) 0); thread_wakeup_prim((((event_t) m)), ((boolean_t) 0), 0); } }); |
| 746 | vm_page_lock_queues(); |
| 747 | if (!m->active && !m->inactive) |
| 748 | vm_page_activate(m); |
| 749 | vm_page_unlock_queues(); |
| 750 | vm_object_paging_end(object)({ ({ if (!((object)->paging_in_progress != 0)) Assert("(object)->paging_in_progress != 0" , "../vm/vm_map.c", 750); }); if (--(object)->paging_in_progress == 0) { ({ if ((object)->all_wanted & (1 << (2) )) thread_wakeup_prim(((event_t)(((vm_offset_t) object) + (2) )), ((boolean_t) 0), 0); (object)->all_wanted &= ~(1 << (2)); }); } }); |
| 751 | vm_object_unlock(object); |
| 752 | |
| 753 | offset += PAGE_SIZE(1 << 12); |
| 754 | addr += PAGE_SIZE(1 << 12); |
| 755 | } |
| 756 | } |
| 757 | |
| 758 | /* |
| 759 | * Routine: vm_map_enter |
| 760 | * |
| 761 | * Description: |
| 762 | * Allocate a range in the specified virtual address map. |
| 763 | * The resulting range will refer to memory defined by |
| 764 | * the given memory object and offset into that object. |
| 765 | * |
| 766 | * Arguments are as defined in the vm_map call. |
| 767 | */ |
| 768 | kern_return_t vm_map_enter( |
| 769 | map, |
| 770 | address, size, mask, anywhere, |
| 771 | object, offset, needs_copy, |
| 772 | cur_protection, max_protection, inheritance) |
| 773 | register |
| 774 | vm_map_t map; |
| 775 | vm_offset_t *address; /* IN/OUT */ |
| 776 | vm_size_t size; |
| 777 | vm_offset_t mask; |
| 778 | boolean_t anywhere; |
| 779 | vm_object_t object; |
| 780 | vm_offset_t offset; |
| 781 | boolean_t needs_copy; |
| 782 | vm_prot_t cur_protection; |
| 783 | vm_prot_t max_protection; |
| 784 | vm_inherit_t inheritance; |
| 785 | { |
| 786 | register vm_map_entry_t entry; |
| 787 | register vm_offset_t start; |
| 788 | register vm_offset_t end; |
| 789 | kern_return_t result = KERN_SUCCESS0; |
| 790 | |
| 791 | #define RETURN(value) { result = value; goto BailOut; } |
| 792 | |
| 793 | if (size == 0) |
| 794 | return KERN_INVALID_ARGUMENT4; |
| 795 | |
| 796 | StartAgain: ; |
| 797 | |
| 798 | start = *address; |
| 799 | |
| 800 | if (anywhere) { |
| 801 | vm_map_lock(map)({ lock_write(&(map)->lock); (map)->timestamp++; }); |
| 802 | |
| 803 | /* |
| 804 | * Calculate the first possible address. |
| 805 | */ |
| 806 | |
| 807 | if (start < map->min_offsethdr.links.start) |
| 808 | start = map->min_offsethdr.links.start; |
| 809 | if (start > map->max_offsethdr.links.end) |
| 810 | RETURN(KERN_NO_SPACE3); |
| 811 | |
| 812 | /* |
| 813 | * Look for the first possible address; |
| 814 | * if there's already something at this |
| 815 | * address, we have to start after it. |
| 816 | */ |
| 817 | |
| 818 | if (start == map->min_offsethdr.links.start) { |
| 819 | if ((entry = map->first_free) != vm_map_to_entry(map)((struct vm_map_entry *) &(map)->hdr.links)) |
| 820 | start = entry->vme_endlinks.end; |
| 821 | } else { |
| 822 | vm_map_entry_t tmp_entry; |
| 823 | if (vm_map_lookup_entry(map, start, &tmp_entry)) |
| 824 | start = tmp_entry->vme_endlinks.end; |
| 825 | entry = tmp_entry; |
| 826 | } |
| 827 | |
| 828 | /* |
| 829 | * In any case, the "entry" always precedes |
| 830 | * the proposed new region throughout the |
| 831 | * loop: |
| 832 | */ |
| 833 | |
| 834 | while (TRUE((boolean_t) 1)) { |
| 835 | register vm_map_entry_t next; |
| 836 | |
| 837 | /* |
| 838 | * Find the end of the proposed new region. |
| 839 | * Be sure we didn't go beyond the end, or |
| 840 | * wrap around the address. |
| 841 | */ |
| 842 | |
| 843 | if (((start + mask) & ~mask) < start) { |
| 844 | printf_once("no more room for vm_map_enter in %p\n", map)({ static int __once = 0; if (!__once) { printf("no more room for vm_map_enter in %p\n" , map); __once = 1; } }); |
| 845 | RETURN(KERN_NO_SPACE3); |
| 846 | } |
| 847 | start = ((start + mask) & ~mask); |
| 848 | end = start + size; |
| 849 | |
| 850 | if ((end > map->max_offsethdr.links.end) || (end < start)) { |
| 851 | if (map->wait_for_space) { |
| 852 | if (size <= (map->max_offsethdr.links.end - |
| 853 | map->min_offsethdr.links.start)) { |
| 854 | assert_wait((event_t) map, TRUE((boolean_t) 1)); |
| 855 | vm_map_unlock(map)lock_done(&(map)->lock); |
| 856 | thread_block((void (*)()) 0); |
| 857 | goto StartAgain; |
| 858 | } |
| 859 | } |
| 860 | |
| 861 | printf_once("no more room for vm_map_enter in %p\n", map)({ static int __once = 0; if (!__once) { printf("no more room for vm_map_enter in %p\n" , map); __once = 1; } }); |
| 862 | RETURN(KERN_NO_SPACE3); |
| 863 | } |
| 864 | |
| 865 | /* |
| 866 | * If there are no more entries, we must win. |
| 867 | */ |
| 868 | |
| 869 | next = entry->vme_nextlinks.next; |
| 870 | if (next == vm_map_to_entry(map)((struct vm_map_entry *) &(map)->hdr.links)) |
| 871 | break; |
| 872 | |
| 873 | /* |
| 874 | * If there is another entry, it must be |
| 875 | * after the end of the potential new region. |
| 876 | */ |
| 877 | |
| 878 | if (next->vme_startlinks.start >= end) |
| 879 | break; |
| 880 | |
| 881 | /* |
| 882 | * Didn't fit -- move to the next entry. |
| 883 | */ |
| 884 | |
| 885 | entry = next; |
| 886 | start = entry->vme_endlinks.end; |
| 887 | } |
| 888 | *address = start; |
| 889 | } else { |
| 890 | vm_map_entry_t temp_entry; |
| 891 | |
| 892 | /* |
| 893 | * Verify that: |
| 894 | * the address doesn't itself violate |
| 895 | * the mask requirement. |
| 896 | */ |
| 897 | |
| 898 | if ((start & mask) != 0) |
| 899 | return(KERN_NO_SPACE3); |
| 900 | |
| 901 | vm_map_lock(map)({ lock_write(&(map)->lock); (map)->timestamp++; }); |
| 902 | |
| 903 | /* |
| 904 | * ... the address is within bounds |
| 905 | */ |
| 906 | |
| 907 | end = start + size; |
| 908 | |
| 909 | if ((start < map->min_offsethdr.links.start) || |
| 910 | (end > map->max_offsethdr.links.end) || |
| 911 | (start >= end)) { |
| 912 | RETURN(KERN_INVALID_ADDRESS1); |
| 913 | } |
| 914 | |
| 915 | /* |
| 916 | * ... the starting address isn't allocated |
| 917 | */ |
| 918 | |
| 919 | if (vm_map_lookup_entry(map, start, &temp_entry)) |
| 920 | RETURN(KERN_NO_SPACE3); |
| 921 | |
| 922 | entry = temp_entry; |
| 923 | |
| 924 | /* |
| 925 | * ... the next region doesn't overlap the |
| 926 | * end point. |
| 927 | */ |
| 928 | |
| 929 | if ((entry->vme_nextlinks.next != vm_map_to_entry(map)((struct vm_map_entry *) &(map)->hdr.links)) && |
| 930 | (entry->vme_nextlinks.next->vme_startlinks.start < end)) |
| 931 | RETURN(KERN_NO_SPACE3); |
| 932 | } |
| 933 | |
| 934 | /* |
| 935 | * At this point, |
| 936 | * "start" and "end" should define the endpoints of the |
| 937 | * available new range, and |
| 938 | * "entry" should refer to the region before the new |
| 939 | * range, and |
| 940 | * |
| 941 | * the map should be locked. |
| 942 | */ |
| 943 | |
| 944 | /* |
| 945 | * See whether we can avoid creating a new entry (and object) by |
| 946 | * extending one of our neighbors. [So far, we only attempt to |
| 947 | * extend from below.] |
| 948 | */ |
| 949 | |
| 950 | if ((object == VM_OBJECT_NULL((vm_object_t) 0)) && |
| 951 | (entry != vm_map_to_entry(map)((struct vm_map_entry *) &(map)->hdr.links)) && |
| 952 | (entry->vme_endlinks.end == start) && |
| 953 | (!entry->is_shared) && |
| 954 | (!entry->is_sub_map) && |
| 955 | (entry->inheritance == inheritance) && |
| 956 | (entry->protection == cur_protection) && |
| 957 | (entry->max_protection == max_protection) && |
| 958 | (entry->wired_count == 0) && /* implies user_wired_count == 0 */ |
| 959 | (entry->projected_on == 0)) { |
| 960 | if (vm_object_coalesce(entry->object.vm_object, |
| 961 | VM_OBJECT_NULL((vm_object_t) 0), |
| 962 | entry->offset, |
| 963 | (vm_offset_t) 0, |
| 964 | (vm_size_t)(entry->vme_endlinks.end - entry->vme_startlinks.start), |
| 965 | (vm_size_t)(end - entry->vme_endlinks.end))) { |
| 966 | |
| 967 | /* |
| 968 | * Coalesced the two objects - can extend |
| 969 | * the previous map entry to include the |
| 970 | * new range. |
| 971 | */ |
| 972 | map->size += (end - entry->vme_endlinks.end); |
| 973 | entry->vme_endlinks.end = end; |
| 974 | RETURN(KERN_SUCCESS0); |
| 975 | } |
| 976 | } |
| 977 | |
| 978 | /* |
| 979 | * Create a new entry |
| 980 | */ |
| 981 | |
| 982 | /**/ { |
| 983 | register vm_map_entry_t new_entry; |
| 984 | |
| 985 | new_entry = vm_map_entry_create(map)_vm_map_entry_create(&(map)->hdr); |
| 986 | |
| 987 | new_entry->vme_startlinks.start = start; |
| 988 | new_entry->vme_endlinks.end = end; |
| 989 | |
| 990 | new_entry->is_shared = FALSE((boolean_t) 0); |
| 991 | new_entry->is_sub_map = FALSE((boolean_t) 0); |
| 992 | new_entry->object.vm_object = object; |
| 993 | new_entry->offset = offset; |
| 994 | |
| 995 | new_entry->needs_copy = needs_copy; |
| 996 | |
| 997 | new_entry->inheritance = inheritance; |
| 998 | new_entry->protection = cur_protection; |
| 999 | new_entry->max_protection = max_protection; |
| 1000 | new_entry->wired_count = 0; |
| 1001 | new_entry->user_wired_count = 0; |
| 1002 | |
| 1003 | new_entry->in_transition = FALSE((boolean_t) 0); |
| 1004 | new_entry->needs_wakeup = FALSE((boolean_t) 0); |
| 1005 | new_entry->projected_on = 0; |
| 1006 | |
| 1007 | /* |
| 1008 | * Insert the new entry into the list |
| 1009 | */ |
| 1010 | |
| 1011 | vm_map_entry_link(map, entry, new_entry)({ (&(map)->hdr)->nentries++; (new_entry)->links .prev = (entry); (new_entry)->links.next = (entry)->links .next; (new_entry)->links.prev->links.next = (new_entry )->links.next->links.prev = (new_entry); ({ struct rbtree_node *___cur, *___prev; int ___diff, ___index; ___prev = ((void * ) 0); ___index = -1; ___cur = (&(&(map)->hdr)-> tree)->root; while (___cur != ((void *) 0)) { ___diff = vm_map_entry_cmp_insert (&(new_entry)->tree_node, ___cur); ({ if (!(___diff != 0)) Assert("___diff != 0", "../vm/vm_map.c", 1011); }); ___prev = ___cur; ___index = rbtree_d2i(___diff); ___cur = ___cur-> children[___index]; } rbtree_insert_rebalance(&(&(map )->hdr)->tree, ___prev, ___index, &(new_entry)-> tree_node); }); }); |
| 1012 | map->size += size; |
| 1013 | |
| 1014 | /* |
| 1015 | * Update the free space hint and the lookup hint |
| 1016 | */ |
| 1017 | |
| 1018 | if ((map->first_free == entry) && |
| 1019 | ((entry == vm_map_to_entry(map)((struct vm_map_entry *) &(map)->hdr.links) ? map->min_offsethdr.links.start : entry->vme_endlinks.end) |
| 1020 | >= new_entry->vme_startlinks.start)) |
| 1021 | map->first_free = new_entry; |
| 1022 | |
| 1023 | SAVE_HINT(map, new_entry); (map)->hint = (new_entry); ;; |
| 1024 | |
| 1025 | vm_map_unlock(map)lock_done(&(map)->lock); |
| 1026 | |
| 1027 | if ((object != VM_OBJECT_NULL((vm_object_t) 0)) && |
| 1028 | (vm_map_pmap_enter_enable) && |
| 1029 | (!anywhere) && |
| 1030 | (!needs_copy) && |
| 1031 | (size < (128*1024))) { |
| 1032 | vm_map_pmap_enter(map, start, end, |
| 1033 | object, offset, cur_protection); |
| 1034 | } |
| 1035 | |
| 1036 | return(result); |
| 1037 | /**/ } |
| 1038 | |
| 1039 | BailOut: ; |
| 1040 | |
| 1041 | vm_map_unlock(map)lock_done(&(map)->lock); |
| 1042 | return(result); |
| 1043 | |
| 1044 | #undef RETURN |
| 1045 | } |
| 1046 | |
| 1047 | /* |
| 1048 | * vm_map_clip_start: [ internal use only ] |
| 1049 | * |
| 1050 | * Asserts that the given entry begins at or after |
| 1051 | * the specified address; if necessary, |
| 1052 | * it splits the entry into two. |
| 1053 | */ |
| 1054 | void _vm_map_clip_start(); |
| 1055 | #define vm_map_clip_start(map, entry, startaddr)({ if ((startaddr) > (entry)->links.start) _vm_map_clip_start (&(map)->hdr,(entry),(startaddr)); }) \ |
| 1056 | MACRO_BEGIN({ \ |
| 1057 | if ((startaddr) > (entry)->vme_startlinks.start) \ |
| 1058 | _vm_map_clip_start(&(map)->hdr,(entry),(startaddr)); \ |
| 1059 | MACRO_END}) |
| 1060 | |
| 1061 | void _vm_map_copy_clip_start(); |
| 1062 | #define vm_map_copy_clip_start(copy, entry, startaddr)({ if ((startaddr) > (entry)->links.start) _vm_map_clip_start (&(copy)->c_u.hdr,(entry),(startaddr)); }) \ |
| 1063 | MACRO_BEGIN({ \ |
| 1064 | if ((startaddr) > (entry)->vme_startlinks.start) \ |
| 1065 | _vm_map_clip_start(&(copy)->cpy_hdrc_u.hdr,(entry),(startaddr)); \ |
| 1066 | MACRO_END}) |
| 1067 | |
| 1068 | /* |
| 1069 | * This routine is called only when it is known that |
| 1070 | * the entry must be split. |
| 1071 | */ |
| 1072 | void _vm_map_clip_start(map_header, entry, start) |
| 1073 | register struct vm_map_header *map_header; |
| 1074 | register vm_map_entry_t entry; |
| 1075 | register vm_offset_t start; |
| 1076 | { |
| 1077 | register vm_map_entry_t new_entry; |
| 1078 | |
| 1079 | /* |
| 1080 | * Split off the front portion -- |
| 1081 | * note that we must insert the new |
| 1082 | * entry BEFORE this one, so that |
| 1083 | * this entry has the specified starting |
| 1084 | * address. |
| 1085 | */ |
| 1086 | |
| 1087 | new_entry = _vm_map_entry_create(map_header); |
| 1088 | vm_map_entry_copy_full(new_entry, entry)(*(new_entry) = *(entry)); |
| 1089 | |
| 1090 | new_entry->vme_endlinks.end = start; |
| 1091 | entry->offset += (start - entry->vme_startlinks.start); |
| 1092 | entry->vme_startlinks.start = start; |
| 1093 | |
| 1094 | _vm_map_entry_link(map_header, entry->vme_prev, new_entry)({ (map_header)->nentries++; (new_entry)->links.prev = ( entry->links.prev); (new_entry)->links.next = (entry-> links.prev)->links.next; (new_entry)->links.prev->links .next = (new_entry)->links.next->links.prev = (new_entry ); ({ struct rbtree_node *___cur, *___prev; int ___diff, ___index ; ___prev = ((void *) 0); ___index = -1; ___cur = (&(map_header )->tree)->root; while (___cur != ((void *) 0)) { ___diff = vm_map_entry_cmp_insert(&(new_entry)->tree_node, ___cur ); ({ if (!(___diff != 0)) Assert("___diff != 0", "../vm/vm_map.c" , 1094); }); ___prev = ___cur; ___index = rbtree_d2i(___diff) ; ___cur = ___cur->children[___index]; } rbtree_insert_rebalance (&(map_header)->tree, ___prev, ___index, &(new_entry )->tree_node); }); }); |
| 1095 | |
| 1096 | if (entry->is_sub_map) |
| 1097 | vm_map_reference(new_entry->object.sub_map); |
| 1098 | else |
| 1099 | vm_object_reference(new_entry->object.vm_object); |
| 1100 | } |
| 1101 | |
| 1102 | /* |
| 1103 | * vm_map_clip_end: [ internal use only ] |
| 1104 | * |
| 1105 | * Asserts that the given entry ends at or before |
| 1106 | * the specified address; if necessary, |
| 1107 | * it splits the entry into two. |
| 1108 | */ |
| 1109 | void _vm_map_clip_end(); |
| 1110 | #define vm_map_clip_end(map, entry, endaddr)({ if ((endaddr) < (entry)->links.end) _vm_map_clip_end (&(map)->hdr,(entry),(endaddr)); }) \ |
| 1111 | MACRO_BEGIN({ \ |
| 1112 | if ((endaddr) < (entry)->vme_endlinks.end) \ |
| 1113 | _vm_map_clip_end(&(map)->hdr,(entry),(endaddr)); \ |
| 1114 | MACRO_END}) |
| 1115 | |
| 1116 | void _vm_map_copy_clip_end(); |
| 1117 | #define vm_map_copy_clip_end(copy, entry, endaddr)({ if ((endaddr) < (entry)->links.end) _vm_map_clip_end (&(copy)->c_u.hdr,(entry),(endaddr)); }) \ |
| 1118 | MACRO_BEGIN({ \ |
| 1119 | if ((endaddr) < (entry)->vme_endlinks.end) \ |
| 1120 | _vm_map_clip_end(&(copy)->cpy_hdrc_u.hdr,(entry),(endaddr)); \ |
| 1121 | MACRO_END}) |
| 1122 | |
| 1123 | /* |
| 1124 | * This routine is called only when it is known that |
| 1125 | * the entry must be split. |
| 1126 | */ |
| 1127 | void _vm_map_clip_end(map_header, entry, end) |
| 1128 | register struct vm_map_header *map_header; |
| 1129 | register vm_map_entry_t entry; |
| 1130 | register vm_offset_t end; |
| 1131 | { |
| 1132 | register vm_map_entry_t new_entry; |
| 1133 | |
| 1134 | /* |
| 1135 | * Create a new entry and insert it |
| 1136 | * AFTER the specified entry |
| 1137 | */ |
| 1138 | |
| 1139 | new_entry = _vm_map_entry_create(map_header); |
| 1140 | vm_map_entry_copy_full(new_entry, entry)(*(new_entry) = *(entry)); |
| 1141 | |
| 1142 | new_entry->vme_startlinks.start = entry->vme_endlinks.end = end; |
| 1143 | new_entry->offset += (end - entry->vme_startlinks.start); |
| 1144 | |
| 1145 | _vm_map_entry_link(map_header, entry, new_entry)({ (map_header)->nentries++; (new_entry)->links.prev = ( entry); (new_entry)->links.next = (entry)->links.next; ( new_entry)->links.prev->links.next = (new_entry)->links .next->links.prev = (new_entry); ({ struct rbtree_node *___cur , *___prev; int ___diff, ___index; ___prev = ((void *) 0); ___index = -1; ___cur = (&(map_header)->tree)->root; while ( ___cur != ((void *) 0)) { ___diff = vm_map_entry_cmp_insert(& (new_entry)->tree_node, ___cur); ({ if (!(___diff != 0)) Assert ("___diff != 0", "../vm/vm_map.c", 1145); }); ___prev = ___cur ; ___index = rbtree_d2i(___diff); ___cur = ___cur->children [___index]; } rbtree_insert_rebalance(&(map_header)->tree , ___prev, ___index, &(new_entry)->tree_node); }); }); |
| 1146 | |
| 1147 | if (entry->is_sub_map) |
| 1148 | vm_map_reference(new_entry->object.sub_map); |
| 1149 | else |
| 1150 | vm_object_reference(new_entry->object.vm_object); |
| 1151 | } |
| 1152 | |
| 1153 | /* |
| 1154 | * VM_MAP_RANGE_CHECK: [ internal use only ] |
| 1155 | * |
| 1156 | * Asserts that the starting and ending region |
| 1157 | * addresses fall within the valid range of the map. |
| 1158 | */ |
| 1159 | #define VM_MAP_RANGE_CHECK(map, start, end){ if (start < ((map)->hdr.links.start)) start = ((map)-> hdr.links.start); if (end > ((map)->hdr.links.end)) end = ((map)->hdr.links.end); if (start > end) start = end ; } \ |
| 1160 | { \ |
| 1161 | if (start < vm_map_min(map)((map)->hdr.links.start)) \ |
| 1162 | start = vm_map_min(map)((map)->hdr.links.start); \ |
| 1163 | if (end > vm_map_max(map)((map)->hdr.links.end)) \ |
| 1164 | end = vm_map_max(map)((map)->hdr.links.end); \ |
| 1165 | if (start > end) \ |
| 1166 | start = end; \ |
| 1167 | } |
| 1168 | |
| 1169 | /* |
| 1170 | * vm_map_submap: [ kernel use only ] |
| 1171 | * |
| 1172 | * Mark the given range as handled by a subordinate map. |
| 1173 | * |
| 1174 | * This range must have been created with vm_map_find using |
| 1175 | * the vm_submap_object, and no other operations may have been |
| 1176 | * performed on this range prior to calling vm_map_submap. |
| 1177 | * |
| 1178 | * Only a limited number of operations can be performed |
| 1179 | * within this rage after calling vm_map_submap: |
| 1180 | * vm_fault |
| 1181 | * [Don't try vm_map_copyin!] |
| 1182 | * |
| 1183 | * To remove a submapping, one must first remove the |
| 1184 | * range from the superior map, and then destroy the |
| 1185 | * submap (if desired). [Better yet, don't try it.] |
| 1186 | */ |
| 1187 | kern_return_t vm_map_submap(map, start, end, submap) |
| 1188 | register vm_map_t map; |
| 1189 | register vm_offset_t start; |
| 1190 | register vm_offset_t end; |
| 1191 | vm_map_t submap; |
| 1192 | { |
| 1193 | vm_map_entry_t entry; |
| 1194 | register kern_return_t result = KERN_INVALID_ARGUMENT4; |
| 1195 | register vm_object_t object; |
| 1196 | |
| 1197 | vm_map_lock(map)({ lock_write(&(map)->lock); (map)->timestamp++; }); |
| 1198 | |
| 1199 | VM_MAP_RANGE_CHECK(map, start, end){ if (start < ((map)->hdr.links.start)) start = ((map)-> hdr.links.start); if (end > ((map)->hdr.links.end)) end = ((map)->hdr.links.end); if (start > end) start = end ; }; |
| 1200 | |
| 1201 | if (vm_map_lookup_entry(map, start, &entry)) { |
| 1202 | vm_map_clip_start(map, entry, start)({ if ((start) > (entry)->links.start) _vm_map_clip_start (&(map)->hdr,(entry),(start)); }); |
| 1203 | } |
| 1204 | else |
| 1205 | entry = entry->vme_nextlinks.next; |
| 1206 | |
| 1207 | vm_map_clip_end(map, entry, end)({ if ((end) < (entry)->links.end) _vm_map_clip_end(& (map)->hdr,(entry),(end)); }); |
| 1208 | |
| 1209 | if ((entry->vme_startlinks.start == start) && (entry->vme_endlinks.end == end) && |
| 1210 | (!entry->is_sub_map) && |
| 1211 | ((object = entry->object.vm_object) == vm_submap_object) && |
| 1212 | (object->resident_page_count == 0) && |
| 1213 | (object->copy == VM_OBJECT_NULL((vm_object_t) 0)) && |
| 1214 | (object->shadow == VM_OBJECT_NULL((vm_object_t) 0)) && |
| 1215 | (!object->pager_created)) { |
| 1216 | entry->object.vm_object = VM_OBJECT_NULL((vm_object_t) 0); |
| 1217 | vm_object_deallocate(object); |
| 1218 | entry->is_sub_map = TRUE((boolean_t) 1); |
| 1219 | vm_map_reference(entry->object.sub_map = submap); |
| 1220 | result = KERN_SUCCESS0; |
| 1221 | } |
| 1222 | vm_map_unlock(map)lock_done(&(map)->lock); |
| 1223 | |
| 1224 | return(result); |
| 1225 | } |
| 1226 | |
| 1227 | /* |
| 1228 | * vm_map_protect: |
| 1229 | * |
| 1230 | * Sets the protection of the specified address |
| 1231 | * region in the target map. If "set_max" is |
| 1232 | * specified, the maximum protection is to be set; |
| 1233 | * otherwise, only the current protection is affected. |
| 1234 | */ |
| 1235 | kern_return_t vm_map_protect(map, start, end, new_prot, set_max) |
| 1236 | register vm_map_t map; |
| 1237 | register vm_offset_t start; |
| 1238 | register vm_offset_t end; |
| 1239 | register vm_prot_t new_prot; |
| 1240 | register boolean_t set_max; |
| 1241 | { |
| 1242 | register vm_map_entry_t current; |
| 1243 | vm_map_entry_t entry; |
| 1244 | |
| 1245 | vm_map_lock(map)({ lock_write(&(map)->lock); (map)->timestamp++; }); |
| 1246 | |
| 1247 | VM_MAP_RANGE_CHECK(map, start, end){ if (start < ((map)->hdr.links.start)) start = ((map)-> hdr.links.start); if (end > ((map)->hdr.links.end)) end = ((map)->hdr.links.end); if (start > end) start = end ; }; |
| 1248 | |
| 1249 | if (vm_map_lookup_entry(map, start, &entry)) { |
| 1250 | vm_map_clip_start(map, entry, start)({ if ((start) > (entry)->links.start) _vm_map_clip_start (&(map)->hdr,(entry),(start)); }); |
| 1251 | } |
| 1252 | else |
| 1253 | entry = entry->vme_nextlinks.next; |
| 1254 | |
| 1255 | /* |
| 1256 | * Make a first pass to check for protection |
| 1257 | * violations. |
| 1258 | */ |
| 1259 | |
| 1260 | current = entry; |
| 1261 | while ((current != vm_map_to_entry(map)((struct vm_map_entry *) &(map)->hdr.links)) && |
| 1262 | (current->vme_startlinks.start < end)) { |
| 1263 | |
| 1264 | if (current->is_sub_map) { |
| 1265 | vm_map_unlock(map)lock_done(&(map)->lock); |
| 1266 | return(KERN_INVALID_ARGUMENT4); |
| 1267 | } |
| 1268 | if ((new_prot & (VM_PROT_NOTIFY((vm_prot_t) 0x10) | current->max_protection)) |
| 1269 | != new_prot) { |
| 1270 | vm_map_unlock(map)lock_done(&(map)->lock); |
| 1271 | return(KERN_PROTECTION_FAILURE2); |
| 1272 | } |
| 1273 | |
| 1274 | current = current->vme_nextlinks.next; |
| 1275 | } |
| 1276 | |
| 1277 | /* |
| 1278 | * Go back and fix up protections. |
| 1279 | * [Note that clipping is not necessary the second time.] |
| 1280 | */ |
| 1281 | |
| 1282 | current = entry; |
| 1283 | |
| 1284 | while ((current != vm_map_to_entry(map)((struct vm_map_entry *) &(map)->hdr.links)) && |
| 1285 | (current->vme_startlinks.start < end)) { |
| 1286 | |
| 1287 | vm_prot_t old_prot; |
| 1288 | |
| 1289 | vm_map_clip_end(map, current, end)({ if ((end) < (current)->links.end) _vm_map_clip_end(& (map)->hdr,(current),(end)); }); |
| 1290 | |
| 1291 | old_prot = current->protection; |
| 1292 | if (set_max) |
| 1293 | current->protection = |
| 1294 | (current->max_protection = new_prot) & |
| 1295 | old_prot; |
| 1296 | else |
| 1297 | current->protection = new_prot; |
| 1298 | |
| 1299 | /* |
| 1300 | * Update physical map if necessary. |
| 1301 | */ |
| 1302 | |
| 1303 | if (current->protection != old_prot) { |
| 1304 | pmap_protect(map->pmap, current->vme_startlinks.start, |
| 1305 | current->vme_endlinks.end, |
| 1306 | current->protection); |
| 1307 | } |
| 1308 | current = current->vme_nextlinks.next; |
| 1309 | } |
| 1310 | |
| 1311 | vm_map_unlock(map)lock_done(&(map)->lock); |
| 1312 | return(KERN_SUCCESS0); |
| 1313 | } |
| 1314 | |
| 1315 | /* |
| 1316 | * vm_map_inherit: |
| 1317 | * |
| 1318 | * Sets the inheritance of the specified address |
| 1319 | * range in the target map. Inheritance |
| 1320 | * affects how the map will be shared with |
| 1321 | * child maps at the time of vm_map_fork. |
| 1322 | */ |
| 1323 | kern_return_t vm_map_inherit(map, start, end, new_inheritance) |
| 1324 | register vm_map_t map; |
| 1325 | register vm_offset_t start; |
| 1326 | register vm_offset_t end; |
| 1327 | register vm_inherit_t new_inheritance; |
| 1328 | { |
| 1329 | register vm_map_entry_t entry; |
| 1330 | vm_map_entry_t temp_entry; |
| 1331 | |
| 1332 | vm_map_lock(map)({ lock_write(&(map)->lock); (map)->timestamp++; }); |
| 1333 | |
| 1334 | VM_MAP_RANGE_CHECK(map, start, end){ if (start < ((map)->hdr.links.start)) start = ((map)-> hdr.links.start); if (end > ((map)->hdr.links.end)) end = ((map)->hdr.links.end); if (start > end) start = end ; }; |
| 1335 | |
| 1336 | if (vm_map_lookup_entry(map, start, &temp_entry)) { |
| 1337 | entry = temp_entry; |
| 1338 | vm_map_clip_start(map, entry, start)({ if ((start) > (entry)->links.start) _vm_map_clip_start (&(map)->hdr,(entry),(start)); }); |
| 1339 | } |
| 1340 | else |
| 1341 | entry = temp_entry->vme_nextlinks.next; |
| 1342 | |
| 1343 | while ((entry != vm_map_to_entry(map)((struct vm_map_entry *) &(map)->hdr.links)) && (entry->vme_startlinks.start < end)) { |
| 1344 | vm_map_clip_end(map, entry, end)({ if ((end) < (entry)->links.end) _vm_map_clip_end(& (map)->hdr,(entry),(end)); }); |
| 1345 | |
| 1346 | entry->inheritance = new_inheritance; |
| 1347 | |
| 1348 | entry = entry->vme_nextlinks.next; |
| 1349 | } |
| 1350 | |
| 1351 | vm_map_unlock(map)lock_done(&(map)->lock); |
| 1352 | return(KERN_SUCCESS0); |
| 1353 | } |
| 1354 | |
| 1355 | /* |
| 1356 | * vm_map_pageable_common: |
| 1357 | * |
| 1358 | * Sets the pageability of the specified address |
| 1359 | * range in the target map. Regions specified |
| 1360 | * as not pageable require locked-down physical |
| 1361 | * memory and physical page maps. access_type indicates |
| 1362 | * types of accesses that must not generate page faults. |
| 1363 | * This is checked against protection of memory being locked-down. |
| 1364 | * access_type of VM_PROT_NONE makes memory pageable. |
| 1365 | * |
| 1366 | * The map must not be locked, but a reference |
| 1367 | * must remain to the map throughout the call. |
| 1368 | * |
| 1369 | * Callers should use macros in vm/vm_map.h (i.e. vm_map_pageable, |
| 1370 | * or vm_map_pageable_user); don't call vm_map_pageable directly. |
| 1371 | */ |
| 1372 | kern_return_t vm_map_pageable_common(map, start, end, access_type, user_wire) |
| 1373 | register vm_map_t map; |
| 1374 | register vm_offset_t start; |
| 1375 | register vm_offset_t end; |
| 1376 | register vm_prot_t access_type; |
| 1377 | boolean_t user_wire; |
| 1378 | { |
| 1379 | register vm_map_entry_t entry; |
| 1380 | vm_map_entry_t start_entry; |
| 1381 | |
| 1382 | vm_map_lock(map)({ lock_write(&(map)->lock); (map)->timestamp++; }); |
| 1383 | |
| 1384 | VM_MAP_RANGE_CHECK(map, start, end){ if (start < ((map)->hdr.links.start)) start = ((map)-> hdr.links.start); if (end > ((map)->hdr.links.end)) end = ((map)->hdr.links.end); if (start > end) start = end ; }; |
| 1385 | |
| 1386 | if (vm_map_lookup_entry(map, start, &start_entry)) { |
| 1387 | entry = start_entry; |
| 1388 | /* |
| 1389 | * vm_map_clip_start will be done later. |
| 1390 | */ |
| 1391 | } |
| 1392 | else { |
| 1393 | /* |
| 1394 | * Start address is not in map; this is fatal. |
| 1395 | */ |
| 1396 | vm_map_unlock(map)lock_done(&(map)->lock); |
| 1397 | return(KERN_FAILURE5); |
| 1398 | } |
| 1399 | |
| 1400 | /* |
| 1401 | * Actions are rather different for wiring and unwiring, |
| 1402 | * so we have two separate cases. |
| 1403 | */ |
| 1404 | |
| 1405 | if (access_type == VM_PROT_NONE((vm_prot_t) 0x00)) { |
| 1406 | |
| 1407 | vm_map_clip_start(map, entry, start)({ if ((start) > (entry)->links.start) _vm_map_clip_start (&(map)->hdr,(entry),(start)); }); |
| 1408 | |
| 1409 | /* |
| 1410 | * Unwiring. First ensure that the range to be |
| 1411 | * unwired is really wired down. |
| 1412 | */ |
| 1413 | while ((entry != vm_map_to_entry(map)((struct vm_map_entry *) &(map)->hdr.links)) && |
| 1414 | (entry->vme_startlinks.start < end)) { |
| 1415 | |
| 1416 | if ((entry->wired_count == 0) || |
| 1417 | ((entry->vme_endlinks.end < end) && |
| 1418 | ((entry->vme_nextlinks.next == vm_map_to_entry(map)((struct vm_map_entry *) &(map)->hdr.links)) || |
| 1419 | (entry->vme_nextlinks.next->vme_startlinks.start > entry->vme_endlinks.end))) || |
| 1420 | (user_wire && (entry->user_wired_count == 0))) { |
| 1421 | vm_map_unlock(map)lock_done(&(map)->lock); |
| 1422 | return(KERN_INVALID_ARGUMENT4); |
| 1423 | } |
| 1424 | entry = entry->vme_nextlinks.next; |
| 1425 | } |
| 1426 | |
| 1427 | /* |
| 1428 | * Now decrement the wiring count for each region. |
| 1429 | * If a region becomes completely unwired, |
| 1430 | * unwire its physical pages and mappings. |
| 1431 | */ |
| 1432 | entry = start_entry; |
| 1433 | while ((entry != vm_map_to_entry(map)((struct vm_map_entry *) &(map)->hdr.links)) && |
| 1434 | (entry->vme_startlinks.start < end)) { |
| 1435 | vm_map_clip_end(map, entry, end)({ if ((end) < (entry)->links.end) _vm_map_clip_end(& (map)->hdr,(entry),(end)); }); |
| 1436 | |
| 1437 | if (user_wire) { |
| 1438 | if (--(entry->user_wired_count) == 0) |
| 1439 | entry->wired_count--; |
| 1440 | } |
| 1441 | else { |
| 1442 | entry->wired_count--; |
| 1443 | } |
| 1444 | |
| 1445 | if (entry->wired_count == 0) |
| 1446 | vm_fault_unwire(map, entry); |
| 1447 | |
| 1448 | entry = entry->vme_nextlinks.next; |
| 1449 | } |
| 1450 | } |
| 1451 | |
| 1452 | else { |
| 1453 | /* |
| 1454 | * Wiring. We must do this in two passes: |
| 1455 | * |
| 1456 | * 1. Holding the write lock, we create any shadow |
| 1457 | * or zero-fill objects that need to be created. |
| 1458 | * Then we clip each map entry to the region to be |
| 1459 | * wired and increment its wiring count. We |
| 1460 | * create objects before clipping the map entries |
| 1461 | * to avoid object proliferation. |
| 1462 | * |
| 1463 | * 2. We downgrade to a read lock, and call |
| 1464 | * vm_fault_wire to fault in the pages for any |
| 1465 | * newly wired area (wired_count is 1). |
| 1466 | * |
| 1467 | * Downgrading to a read lock for vm_fault_wire avoids |
| 1468 | * a possible deadlock with another thread that may have |
| 1469 | * faulted on one of the pages to be wired (it would mark |
| 1470 | * the page busy, blocking us, then in turn block on the |
| 1471 | * map lock that we hold). Because of problems in the |
| 1472 | * recursive lock package, we cannot upgrade to a write |
| 1473 | * lock in vm_map_lookup. Thus, any actions that require |
| 1474 | * the write lock must be done beforehand. Because we |
| 1475 | * keep the read lock on the map, the copy-on-write |
| 1476 | * status of the entries we modify here cannot change. |
| 1477 | */ |
| 1478 | |
| 1479 | /* |
| 1480 | * Pass 1. |
| 1481 | */ |
| 1482 | while ((entry != vm_map_to_entry(map)((struct vm_map_entry *) &(map)->hdr.links)) && |
| 1483 | (entry->vme_startlinks.start < end)) { |
| 1484 | vm_map_clip_end(map, entry, end)({ if ((end) < (entry)->links.end) _vm_map_clip_end(& (map)->hdr,(entry),(end)); }); |
| 1485 | |
| 1486 | if (entry->wired_count == 0) { |
| 1487 | |
| 1488 | /* |
| 1489 | * Perform actions of vm_map_lookup that need |
| 1490 | * the write lock on the map: create a shadow |
| 1491 | * object for a copy-on-write region, or an |
| 1492 | * object for a zero-fill region. |
| 1493 | */ |
| 1494 | if (entry->needs_copy && |
| 1495 | ((entry->protection & VM_PROT_WRITE((vm_prot_t) 0x02)) != 0)) { |
| 1496 | |
| 1497 | vm_object_shadow(&entry->object.vm_object, |
| 1498 | &entry->offset, |
| 1499 | (vm_size_t)(entry->vme_endlinks.end |
| 1500 | - entry->vme_startlinks.start)); |
| 1501 | entry->needs_copy = FALSE((boolean_t) 0); |
| 1502 | } |
| 1503 | if (entry->object.vm_object == VM_OBJECT_NULL((vm_object_t) 0)) { |
| 1504 | entry->object.vm_object = |
| 1505 | vm_object_allocate( |
| 1506 | (vm_size_t)(entry->vme_endlinks.end |
| 1507 | - entry->vme_startlinks.start)); |
| 1508 | entry->offset = (vm_offset_t)0; |
| 1509 | } |
| 1510 | } |
| 1511 | vm_map_clip_start(map, entry, start)({ if ((start) > (entry)->links.start) _vm_map_clip_start (&(map)->hdr,(entry),(start)); }); |
| 1512 | vm_map_clip_end(map, entry, end)({ if ((end) < (entry)->links.end) _vm_map_clip_end(& (map)->hdr,(entry),(end)); }); |
| 1513 | |
| 1514 | if (user_wire) { |
| 1515 | if ((entry->user_wired_count)++ == 0) |
| 1516 | entry->wired_count++; |
| 1517 | } |
| 1518 | else { |
| 1519 | entry->wired_count++; |
| 1520 | } |
| 1521 | |
| 1522 | /* |
| 1523 | * Check for holes and protection mismatch. |
| 1524 | * Holes: Next entry should be contiguous unless |
| 1525 | * this is the end of the region. |
| 1526 | * Protection: Access requested must be allowed. |
| 1527 | */ |
| 1528 | if (((entry->vme_endlinks.end < end) && |
| 1529 | ((entry->vme_nextlinks.next == vm_map_to_entry(map)((struct vm_map_entry *) &(map)->hdr.links)) || |
| 1530 | (entry->vme_nextlinks.next->vme_startlinks.start > entry->vme_endlinks.end))) || |
| 1531 | ((entry->protection & access_type) != access_type)) { |
| 1532 | /* |
| 1533 | * Found a hole or protection problem. |
| 1534 | * Object creation actions |
| 1535 | * do not need to be undone, but the |
| 1536 | * wired counts need to be restored. |
| 1537 | */ |
| 1538 | while ((entry != vm_map_to_entry(map)((struct vm_map_entry *) &(map)->hdr.links)) && |
| 1539 | (entry->vme_endlinks.end > start)) { |
| 1540 | if (user_wire) { |
| 1541 | if (--(entry->user_wired_count) == 0) |
| 1542 | entry->wired_count--; |
| 1543 | } |
| 1544 | else { |
| 1545 | entry->wired_count--; |
| 1546 | } |
| 1547 | |
| 1548 | entry = entry->vme_prevlinks.prev; |
| 1549 | } |
| 1550 | |
| 1551 | vm_map_unlock(map)lock_done(&(map)->lock); |
| 1552 | return(KERN_FAILURE5); |
| 1553 | } |
| 1554 | entry = entry->vme_nextlinks.next; |
| 1555 | } |
| 1556 | |
| 1557 | /* |
| 1558 | * Pass 2. |
| 1559 | */ |
| 1560 | |
| 1561 | /* |
| 1562 | * HACK HACK HACK HACK |
| 1563 | * |
| 1564 | * If we are wiring in the kernel map or a submap of it, |
| 1565 | * unlock the map to avoid deadlocks. We trust that the |
| 1566 | * kernel threads are well-behaved, and therefore will |
| 1567 | * not do anything destructive to this region of the map |
| 1568 | * while we have it unlocked. We cannot trust user threads |
| 1569 | * to do the same. |
| 1570 | * |
| 1571 | * HACK HACK HACK HACK |
| 1572 | */ |
| 1573 | if (vm_map_pmap(map)((map)->pmap) == kernel_pmap) { |
| 1574 | vm_map_unlock(map)lock_done(&(map)->lock); /* trust me ... */ |
| 1575 | } |
| 1576 | else { |
| 1577 | vm_map_lock_set_recursive(map)lock_set_recursive(&(map)->lock); |
| 1578 | vm_map_lock_write_to_read(map)lock_write_to_read(&(map)->lock); |
| 1579 | } |
| 1580 | |
| 1581 | entry = start_entry; |
| 1582 | while (entry != vm_map_to_entry(map)((struct vm_map_entry *) &(map)->hdr.links) && |
| 1583 | entry->vme_startlinks.start < end) { |
| 1584 | /* |
| 1585 | * Wiring cases: |
| 1586 | * Kernel: wired == 1 && user_wired == 0 |
| 1587 | * User: wired == 1 && user_wired == 1 |
| 1588 | * |
| 1589 | * Don't need to wire if either is > 1. wired = 0 && |
| 1590 | * user_wired == 1 can't happen. |
| 1591 | */ |
| 1592 | |
| 1593 | /* |
| 1594 | * XXX This assumes that the faults always succeed. |
| 1595 | */ |
| 1596 | if ((entry->wired_count == 1) && |
| 1597 | (entry->user_wired_count <= 1)) { |
| 1598 | vm_fault_wire(map, entry); |
| 1599 | } |
| 1600 | entry = entry->vme_nextlinks.next; |
| 1601 | } |
| 1602 | |
| 1603 | if (vm_map_pmap(map)((map)->pmap) == kernel_pmap) { |
| 1604 | vm_map_lock(map)({ lock_write(&(map)->lock); (map)->timestamp++; }); |
| 1605 | } |
| 1606 | else { |
| 1607 | vm_map_lock_clear_recursive(map)lock_clear_recursive(&(map)->lock); |
| 1608 | } |
| 1609 | } |
| 1610 | |
| 1611 | vm_map_unlock(map)lock_done(&(map)->lock); |
| 1612 | |
| 1613 | return(KERN_SUCCESS0); |
| 1614 | } |
| 1615 | |
| 1616 | /* |
| 1617 | * vm_map_entry_delete: [ internal use only ] |
| 1618 | * |
| 1619 | * Deallocate the given entry from the target map. |
| 1620 | */ |
| 1621 | void vm_map_entry_delete(map, entry) |
| 1622 | register vm_map_t map; |
| 1623 | register vm_map_entry_t entry; |
| 1624 | { |
| 1625 | register vm_offset_t s, e; |
| 1626 | register vm_object_t object; |
| 1627 | extern vm_object_t kernel_object; |
| 1628 | |
| 1629 | s = entry->vme_startlinks.start; |
| 1630 | e = entry->vme_endlinks.end; |
| 1631 | |
| 1632 | /*Check if projected buffer*/ |
| 1633 | if (map != kernel_map && entry->projected_on != 0) { |
| 1634 | /*Check if projected kernel entry is persistent; |
| 1635 | may only manipulate directly if it is*/ |
| 1636 | if (entry->projected_on->projected_on == 0) |
| 1637 | entry->wired_count = 0; /*Avoid unwire fault*/ |
| 1638 | else |
| 1639 | return; |
| 1640 | } |
| 1641 | |
| 1642 | /* |
| 1643 | * Get the object. Null objects cannot have pmap entries. |
| 1644 | */ |
| 1645 | |
| 1646 | if ((object = entry->object.vm_object) != VM_OBJECT_NULL((vm_object_t) 0)) { |
| 1647 | |
| 1648 | /* |
| 1649 | * Unwire before removing addresses from the pmap; |
| 1650 | * otherwise, unwiring will put the entries back in |
| 1651 | * the pmap. |
| 1652 | */ |
| 1653 | |
| 1654 | if (entry->wired_count != 0) { |
| 1655 | vm_fault_unwire(map, entry); |
| 1656 | entry->wired_count = 0; |
| 1657 | entry->user_wired_count = 0; |
| 1658 | } |
| 1659 | |
| 1660 | /* |
| 1661 | * If the object is shared, we must remove |
| 1662 | * *all* references to this data, since we can't |
| 1663 | * find all of the physical maps which are sharing |
| 1664 | * it. |
| 1665 | */ |
| 1666 | |
| 1667 | if (object == kernel_object) { |
| 1668 | vm_object_lock(object); |
| 1669 | vm_object_page_remove(object, entry->offset, |
| 1670 | entry->offset + (e - s)); |
| 1671 | vm_object_unlock(object); |
| 1672 | } else if (entry->is_shared) { |
| 1673 | vm_object_pmap_remove(object, |
| 1674 | entry->offset, |
| 1675 | entry->offset + (e - s)); |
| 1676 | } |
| 1677 | else { |
| 1678 | pmap_remove(map->pmap, s, e); |
| 1679 | } |
| 1680 | } |
| 1681 | |
| 1682 | /* |
| 1683 | * Deallocate the object only after removing all |
| 1684 | * pmap entries pointing to its pages. |
| 1685 | */ |
| 1686 | |
| 1687 | if (entry->is_sub_map) |
| 1688 | vm_map_deallocate(entry->object.sub_map); |
| 1689 | else |
| 1690 | vm_object_deallocate(entry->object.vm_object); |
| 1691 | |
| 1692 | vm_map_entry_unlink(map, entry)({ (&(map)->hdr)->nentries--; (entry)->links.next ->links.prev = (entry)->links.prev; (entry)->links.prev ->links.next = (entry)->links.next; rbtree_remove(& (&(map)->hdr)->tree, &(entry)->tree_node); } ); |
| 1693 | map->size -= e - s; |
| 1694 | |
| 1695 | vm_map_entry_dispose(map, entry)_vm_map_entry_dispose(&(map)->hdr, (entry)); |
| 1696 | } |
| 1697 | |
| 1698 | /* |
| 1699 | * vm_map_delete: [ internal use only ] |
| 1700 | * |
| 1701 | * Deallocates the given address range from the target |
| 1702 | * map. |
| 1703 | */ |
| 1704 | |
| 1705 | kern_return_t vm_map_delete(map, start, end) |
| 1706 | register vm_map_t map; |
| 1707 | register vm_offset_t start; |
| 1708 | register vm_offset_t end; |
| 1709 | { |
| 1710 | vm_map_entry_t entry; |
| 1711 | vm_map_entry_t first_entry; |
| 1712 | |
| 1713 | /* |
| 1714 | * Find the start of the region, and clip it |
| 1715 | */ |
| 1716 | |
| 1717 | if (!vm_map_lookup_entry(map, start, &first_entry)) |
| 1718 | entry = first_entry->vme_nextlinks.next; |
| 1719 | else { |
| 1720 | entry = first_entry; |
| 1721 | vm_map_clip_start(map, entry, start)({ if ((start) > (entry)->links.start) _vm_map_clip_start (&(map)->hdr,(entry),(start)); }); |
| 1722 | |
| 1723 | /* |
| 1724 | * Fix the lookup hint now, rather than each |
| 1725 | * time though the loop. |
| 1726 | */ |
| 1727 | |
| 1728 | SAVE_HINT(map, entry->vme_prev); (map)->hint = (entry->links.prev); ;; |
| 1729 | } |
| 1730 | |
| 1731 | /* |
| 1732 | * Save the free space hint |
| 1733 | */ |
| 1734 | |
| 1735 | if (map->first_free->vme_startlinks.start >= start) |
| 1736 | map->first_free = entry->vme_prevlinks.prev; |
| 1737 | |
| 1738 | /* |
| 1739 | * Step through all entries in this region |
| 1740 | */ |
| 1741 | |
| 1742 | while ((entry != vm_map_to_entry(map)((struct vm_map_entry *) &(map)->hdr.links)) && (entry->vme_startlinks.start < end)) { |
| 1743 | vm_map_entry_t next; |
| 1744 | |
| 1745 | vm_map_clip_end(map, entry, end)({ if ((end) < (entry)->links.end) _vm_map_clip_end(& (map)->hdr,(entry),(end)); }); |
| 1746 | |
| 1747 | /* |
| 1748 | * If the entry is in transition, we must wait |
| 1749 | * for it to exit that state. It could be clipped |
| 1750 | * while we leave the map unlocked. |
| 1751 | */ |
| 1752 | if(entry->in_transition) { |
| 1753 | /* |
| 1754 | * Say that we are waiting, and wait for entry. |
| 1755 | */ |
| 1756 | entry->needs_wakeup = TRUE((boolean_t) 1); |
| 1757 | vm_map_entry_wait(map, FALSE)({ assert_wait((event_t)&(map)->hdr, ((boolean_t) 0)); lock_done(&(map)->lock); thread_block((void (*)()) 0) ; }); |
| 1758 | vm_map_lock(map)({ lock_write(&(map)->lock); (map)->timestamp++; }); |
| 1759 | |
| 1760 | /* |
| 1761 | * The entry could have been clipped or it |
| 1762 | * may not exist anymore. look it up again. |
| 1763 | */ |
| 1764 | if(!vm_map_lookup_entry(map, start, &entry)) { |
| 1765 | entry = entry->vme_nextlinks.next; |
| 1766 | } |
| 1767 | continue; |
| 1768 | } |
| 1769 | |
| 1770 | next = entry->vme_nextlinks.next; |
| 1771 | |
| 1772 | vm_map_entry_delete(map, entry); |
| 1773 | entry = next; |
| 1774 | } |
| 1775 | |
| 1776 | if (map->wait_for_space) |
| 1777 | thread_wakeup((event_t) map)thread_wakeup_prim(((event_t) map), ((boolean_t) 0), 0); |
| 1778 | |
| 1779 | return(KERN_SUCCESS0); |
| 1780 | } |
| 1781 | |
| 1782 | /* |
| 1783 | * vm_map_remove: |
| 1784 | * |
| 1785 | * Remove the given address range from the target map. |
| 1786 | * This is the exported form of vm_map_delete. |
| 1787 | */ |
| 1788 | kern_return_t vm_map_remove(map, start, end) |
| 1789 | register vm_map_t map; |
| 1790 | register vm_offset_t start; |
| 1791 | register vm_offset_t end; |
| 1792 | { |
| 1793 | register kern_return_t result; |
| 1794 | |
| 1795 | vm_map_lock(map)({ lock_write(&(map)->lock); (map)->timestamp++; }); |
| 1796 | VM_MAP_RANGE_CHECK(map, start, end){ if (start < ((map)->hdr.links.start)) start = ((map)-> hdr.links.start); if (end > ((map)->hdr.links.end)) end = ((map)->hdr.links.end); if (start > end) start = end ; }; |
| 1797 | result = vm_map_delete(map, start, end); |
| 1798 | vm_map_unlock(map)lock_done(&(map)->lock); |
| 1799 | |
| 1800 | return(result); |
| 1801 | } |
| 1802 | |
| 1803 | |
| 1804 | /* |
| 1805 | * vm_map_copy_steal_pages: |
| 1806 | * |
| 1807 | * Steal all the pages from a vm_map_copy page_list by copying ones |
| 1808 | * that have not already been stolen. |
| 1809 | */ |
| 1810 | void |
| 1811 | vm_map_copy_steal_pages(copy) |
| 1812 | vm_map_copy_t copy; |
| 1813 | { |
| 1814 | register vm_page_t m, new_m; |
| 1815 | register int i; |
| 1816 | vm_object_t object; |
| 1817 | |
| 1818 | for (i = 0; i < copy->cpy_npagesc_u.c_p.npages; i++) { |
| 1819 | |
| 1820 | /* |
| 1821 | * If the page is not tabled, then it's already stolen. |
| 1822 | */ |
| 1823 | m = copy->cpy_page_listc_u.c_p.page_list[i]; |
| 1824 | if (!m->tabled) |
| 1825 | continue; |
| 1826 | |
| 1827 | /* |
| 1828 | * Page was not stolen, get a new |
| 1829 | * one and do the copy now. |
| 1830 | */ |
| 1831 | while ((new_m = vm_page_grab(FALSE((boolean_t) 0))) == VM_PAGE_NULL((vm_page_t) 0)) { |
| 1832 | VM_PAGE_WAIT((void(*)()) 0)vm_page_wait((void(*)()) 0); |
| 1833 | } |
| 1834 | |
| 1835 | vm_page_copy(m, new_m); |
| 1836 | |
| 1837 | object = m->object; |
| 1838 | vm_object_lock(object); |
| 1839 | vm_page_lock_queues(); |
| 1840 | if (!m->active && !m->inactive) |
| 1841 | vm_page_activate(m); |
| 1842 | vm_page_unlock_queues(); |
| 1843 | PAGE_WAKEUP_DONE(m)({ (m)->busy = ((boolean_t) 0); if ((m)->wanted) { (m)-> wanted = ((boolean_t) 0); thread_wakeup_prim((((event_t) m)), ((boolean_t) 0), 0); } }); |
| 1844 | vm_object_paging_end(object)({ ({ if (!((object)->paging_in_progress != 0)) Assert("(object)->paging_in_progress != 0" , "../vm/vm_map.c", 1844); }); if (--(object)->paging_in_progress == 0) { ({ if ((object)->all_wanted & (1 << (2) )) thread_wakeup_prim(((event_t)(((vm_offset_t) object) + (2) )), ((boolean_t) 0), 0); (object)->all_wanted &= ~(1 << (2)); }); } }); |
| 1845 | vm_object_unlock(object); |
| 1846 | |
| 1847 | copy->cpy_page_listc_u.c_p.page_list[i] = new_m; |
| 1848 | } |
| 1849 | } |
| 1850 | |
| 1851 | /* |
| 1852 | * vm_map_copy_page_discard: |
| 1853 | * |
| 1854 | * Get rid of the pages in a page_list copy. If the pages are |
| 1855 | * stolen, they are freed. If the pages are not stolen, they |
| 1856 | * are unbusied, and associated state is cleaned up. |
| 1857 | */ |
| 1858 | void vm_map_copy_page_discard(copy) |
| 1859 | vm_map_copy_t copy; |
| 1860 | { |
| 1861 | while (copy->cpy_npagesc_u.c_p.npages > 0) { |
| 1862 | vm_page_t m; |
| 1863 | |
| 1864 | if((m = copy->cpy_page_listc_u.c_p.page_list[--(copy->cpy_npagesc_u.c_p.npages)]) != |
| 1865 | VM_PAGE_NULL((vm_page_t) 0)) { |
| 1866 | |
| 1867 | /* |
| 1868 | * If it's not in the table, then it's |
| 1869 | * a stolen page that goes back |
| 1870 | * to the free list. Else it belongs |
| 1871 | * to some object, and we hold a |
| 1872 | * paging reference on that object. |
| 1873 | */ |
| 1874 | if (!m->tabled) { |
| 1875 | VM_PAGE_FREE(m)({ ; vm_page_free(m); ; }); |
| 1876 | } |
| 1877 | else { |
| 1878 | vm_object_t object; |
| 1879 | |
| 1880 | object = m->object; |
| 1881 | |
| 1882 | vm_object_lock(object); |
| 1883 | vm_page_lock_queues(); |
| 1884 | if (!m->active && !m->inactive) |
| 1885 | vm_page_activate(m); |
| 1886 | vm_page_unlock_queues(); |
| 1887 | |
| 1888 | PAGE_WAKEUP_DONE(m)({ (m)->busy = ((boolean_t) 0); if ((m)->wanted) { (m)-> wanted = ((boolean_t) 0); thread_wakeup_prim((((event_t) m)), ((boolean_t) 0), 0); } }); |
| 1889 | vm_object_paging_end(object)({ ({ if (!((object)->paging_in_progress != 0)) Assert("(object)->paging_in_progress != 0" , "../vm/vm_map.c", 1889); }); if (--(object)->paging_in_progress == 0) { ({ if ((object)->all_wanted & (1 << (2) )) thread_wakeup_prim(((event_t)(((vm_offset_t) object) + (2) )), ((boolean_t) 0), 0); (object)->all_wanted &= ~(1 << (2)); }); } }); |
| 1890 | vm_object_unlock(object); |
| 1891 | } |
| 1892 | } |
| 1893 | } |
| 1894 | } |
| 1895 | |
| 1896 | /* |
| 1897 | * Routine: vm_map_copy_discard |
| 1898 | * |
| 1899 | * Description: |
| 1900 | * Dispose of a map copy object (returned by |
| 1901 | * vm_map_copyin). |
| 1902 | */ |
| 1903 | void |
| 1904 | vm_map_copy_discard(copy) |
| 1905 | vm_map_copy_t copy; |
| 1906 | { |
| 1907 | free_next_copy: |
| 1908 | if (copy == VM_MAP_COPY_NULL((vm_map_copy_t) 0)) |
| 1909 | return; |
| 1910 | |
| 1911 | switch (copy->type) { |
| 1912 | case VM_MAP_COPY_ENTRY_LIST1: |
| 1913 | while (vm_map_copy_first_entry(copy)((copy)->c_u.hdr.links.next) != |
| 1914 | vm_map_copy_to_entry(copy)((struct vm_map_entry *) &(copy)->c_u.hdr.links)) { |
| 1915 | vm_map_entry_t entry = vm_map_copy_first_entry(copy)((copy)->c_u.hdr.links.next); |
| 1916 | |
| 1917 | vm_map_copy_entry_unlink(copy, entry)({ (&(copy)->c_u.hdr)->nentries--; (entry)->links .next->links.prev = (entry)->links.prev; (entry)->links .prev->links.next = (entry)->links.next; rbtree_remove( &(&(copy)->c_u.hdr)->tree, &(entry)->tree_node ); }); |
| 1918 | vm_object_deallocate(entry->object.vm_object); |
| 1919 | vm_map_copy_entry_dispose(copy, entry)_vm_map_entry_dispose(&(copy)->c_u.hdr, (entry)); |
| 1920 | } |
| 1921 | break; |
| 1922 | case VM_MAP_COPY_OBJECT2: |
| 1923 | vm_object_deallocate(copy->cpy_objectc_u.c_o.object); |
| 1924 | break; |
| 1925 | case VM_MAP_COPY_PAGE_LIST3: |
| 1926 | |
| 1927 | /* |
| 1928 | * To clean this up, we have to unbusy all the pages |
| 1929 | * and release the paging references in their objects. |
| 1930 | */ |
| 1931 | if (copy->cpy_npagesc_u.c_p.npages > 0) |
| 1932 | vm_map_copy_page_discard(copy); |
| 1933 | |
| 1934 | /* |
| 1935 | * If there's a continuation, abort it. The |
| 1936 | * abort routine releases any storage. |
| 1937 | */ |
| 1938 | if (vm_map_copy_has_cont(copy)(((copy)->c_u.c_p.cont) != (kern_return_t (*)()) 0)) { |
| 1939 | |
| 1940 | /* |
| 1941 | * Special case: recognize |
| 1942 | * vm_map_copy_discard_cont and optimize |
| 1943 | * here to avoid tail recursion. |
| 1944 | */ |
| 1945 | if (copy->cpy_contc_u.c_p.cont == vm_map_copy_discard_cont) { |
| 1946 | register vm_map_copy_t new_copy; |
| 1947 | |
| 1948 | new_copy = (vm_map_copy_t) copy->cpy_cont_argsc_u.c_p.cont_args; |
| 1949 | kmem_cache_free(&vm_map_copy_cache, (vm_offset_t) copy); |
| 1950 | copy = new_copy; |
| 1951 | goto free_next_copy; |
| 1952 | } |
| 1953 | else { |
| 1954 | vm_map_copy_abort_cont(copy)({ vm_map_copy_page_discard(copy); (*((copy)->c_u.c_p.cont ))((copy)->c_u.c_p.cont_args, (vm_map_copy_t *) 0); (copy) ->c_u.c_p.cont = (kern_return_t (*)()) 0; (copy)->c_u.c_p .cont_args = (char *) 0; }); |
| 1955 | } |
| 1956 | } |
| 1957 | |
| 1958 | break; |
| 1959 | } |
| 1960 | kmem_cache_free(&vm_map_copy_cache, (vm_offset_t) copy); |
| 1961 | } |
| 1962 | |
| 1963 | /* |
| 1964 | * Routine: vm_map_copy_copy |
| 1965 | * |
| 1966 | * Description: |
| 1967 | * Move the information in a map copy object to |
| 1968 | * a new map copy object, leaving the old one |
| 1969 | * empty. |
| 1970 | * |
| 1971 | * This is used by kernel routines that need |
| 1972 | * to look at out-of-line data (in copyin form) |
| 1973 | * before deciding whether to return SUCCESS. |
| 1974 | * If the routine returns FAILURE, the original |
| 1975 | * copy object will be deallocated; therefore, |
| 1976 | * these routines must make a copy of the copy |
| 1977 | * object and leave the original empty so that |
| 1978 | * deallocation will not fail. |
| 1979 | */ |
| 1980 | vm_map_copy_t |
| 1981 | vm_map_copy_copy(copy) |
| 1982 | vm_map_copy_t copy; |
| 1983 | { |
| 1984 | vm_map_copy_t new_copy; |
| 1985 | |
| 1986 | if (copy == VM_MAP_COPY_NULL((vm_map_copy_t) 0)) |
| 1987 | return VM_MAP_COPY_NULL((vm_map_copy_t) 0); |
| 1988 | |
| 1989 | /* |
| 1990 | * Allocate a new copy object, and copy the information |
| 1991 | * from the old one into it. |
| 1992 | */ |
| 1993 | |
| 1994 | new_copy = (vm_map_copy_t) kmem_cache_alloc(&vm_map_copy_cache); |
| 1995 | *new_copy = *copy; |
| 1996 | |
| 1997 | if (copy->type == VM_MAP_COPY_ENTRY_LIST1) { |
| 1998 | /* |
| 1999 | * The links in the entry chain must be |
| 2000 | * changed to point to the new copy object. |
| 2001 | */ |
| 2002 | vm_map_copy_first_entry(copy)((copy)->c_u.hdr.links.next)->vme_prevlinks.prev |
| 2003 | = vm_map_copy_to_entry(new_copy)((struct vm_map_entry *) &(new_copy)->c_u.hdr.links); |
| 2004 | vm_map_copy_last_entry(copy)((copy)->c_u.hdr.links.prev)->vme_nextlinks.next |
| 2005 | = vm_map_copy_to_entry(new_copy)((struct vm_map_entry *) &(new_copy)->c_u.hdr.links); |
| 2006 | } |
| 2007 | |
| 2008 | /* |
| 2009 | * Change the old copy object into one that contains |
| 2010 | * nothing to be deallocated. |
| 2011 | */ |
| 2012 | copy->type = VM_MAP_COPY_OBJECT2; |
| 2013 | copy->cpy_objectc_u.c_o.object = VM_OBJECT_NULL((vm_object_t) 0); |
| 2014 | |
| 2015 | /* |
| 2016 | * Return the new object. |
| 2017 | */ |
| 2018 | return new_copy; |
| 2019 | } |
| 2020 | |
| 2021 | /* |
| 2022 | * Routine: vm_map_copy_discard_cont |
| 2023 | * |
| 2024 | * Description: |
| 2025 | * A version of vm_map_copy_discard that can be called |
| 2026 | * as a continuation from a vm_map_copy page list. |
| 2027 | */ |
| 2028 | kern_return_t vm_map_copy_discard_cont(cont_args, copy_result) |
| 2029 | vm_map_copyin_args_t cont_args; |
| 2030 | vm_map_copy_t *copy_result; /* OUT */ |
| 2031 | { |
| 2032 | vm_map_copy_discard((vm_map_copy_t) cont_args); |
| 2033 | if (copy_result != (vm_map_copy_t *)0) |
| 2034 | *copy_result = VM_MAP_COPY_NULL((vm_map_copy_t) 0); |
| 2035 | return(KERN_SUCCESS0); |
| 2036 | } |
| 2037 | |
| 2038 | /* |
| 2039 | * Routine: vm_map_copy_overwrite |
| 2040 | * |
| 2041 | * Description: |
| 2042 | * Copy the memory described by the map copy |
| 2043 | * object (copy; returned by vm_map_copyin) onto |
| 2044 | * the specified destination region (dst_map, dst_addr). |
| 2045 | * The destination must be writeable. |
| 2046 | * |
| 2047 | * Unlike vm_map_copyout, this routine actually |
| 2048 | * writes over previously-mapped memory. If the |
| 2049 | * previous mapping was to a permanent (user-supplied) |
| 2050 | * memory object, it is preserved. |
| 2051 | * |
| 2052 | * The attributes (protection and inheritance) of the |
| 2053 | * destination region are preserved. |
| 2054 | * |
| 2055 | * If successful, consumes the copy object. |
| 2056 | * Otherwise, the caller is responsible for it. |
| 2057 | * |
| 2058 | * Implementation notes: |
| 2059 | * To overwrite temporary virtual memory, it is |
| 2060 | * sufficient to remove the previous mapping and insert |
| 2061 | * the new copy. This replacement is done either on |
| 2062 | * the whole region (if no permanent virtual memory |
| 2063 | * objects are embedded in the destination region) or |
| 2064 | * in individual map entries. |
| 2065 | * |
| 2066 | * To overwrite permanent virtual memory, it is |
| 2067 | * necessary to copy each page, as the external |
| 2068 | * memory management interface currently does not |
| 2069 | * provide any optimizations. |
| 2070 | * |
| 2071 | * Once a page of permanent memory has been overwritten, |
| 2072 | * it is impossible to interrupt this function; otherwise, |
| 2073 | * the call would be neither atomic nor location-independent. |
| 2074 | * The kernel-state portion of a user thread must be |
| 2075 | * interruptible. |
| 2076 | * |
| 2077 | * It may be expensive to forward all requests that might |
| 2078 | * overwrite permanent memory (vm_write, vm_copy) to |
| 2079 | * uninterruptible kernel threads. This routine may be |
| 2080 | * called by interruptible threads; however, success is |
| 2081 | * not guaranteed -- if the request cannot be performed |
| 2082 | * atomically and interruptibly, an error indication is |
| 2083 | * returned. |
| 2084 | */ |
| 2085 | kern_return_t vm_map_copy_overwrite(dst_map, dst_addr, copy, interruptible) |
| 2086 | vm_map_t dst_map; |
| 2087 | vm_offset_t dst_addr; |
| 2088 | vm_map_copy_t copy; |
| 2089 | boolean_t interruptible; |
| 2090 | { |
| 2091 | vm_size_t size; |
| 2092 | vm_offset_t start; |
| 2093 | vm_map_entry_t tmp_entry; |
| 2094 | vm_map_entry_t entry; |
| 2095 | |
| 2096 | boolean_t contains_permanent_objects = FALSE((boolean_t) 0); |
| 2097 | |
| 2098 | interruptible = FALSE((boolean_t) 0); /* XXX */ |
| 2099 | |
| 2100 | /* |
| 2101 | * Check for null copy object. |
| 2102 | */ |
| 2103 | |
| 2104 | if (copy == VM_MAP_COPY_NULL((vm_map_copy_t) 0)) |
| 2105 | return(KERN_SUCCESS0); |
| 2106 | |
| 2107 | /* |
| 2108 | * Only works for entry lists at the moment. Will |
| 2109 | * support page lists LATER. |
| 2110 | */ |
| 2111 | |
| 2112 | assert(copy->type == VM_MAP_COPY_ENTRY_LIST)({ if (!(copy->type == 1)) Assert("copy->type == VM_MAP_COPY_ENTRY_LIST" , "../vm/vm_map.c", 2112); }); |
| 2113 | |
| 2114 | /* |
| 2115 | * Currently this routine only handles page-aligned |
| 2116 | * regions. Eventually, it should handle misalignments |
| 2117 | * by actually copying pages. |
| 2118 | */ |
| 2119 | |
| 2120 | if (!page_aligned(copy->offset)((((vm_offset_t) (copy->offset)) & ((1 << 12)-1) ) == 0) || |
| 2121 | !page_aligned(copy->size)((((vm_offset_t) (copy->size)) & ((1 << 12)-1)) == 0) || |
| 2122 | !page_aligned(dst_addr)((((vm_offset_t) (dst_addr)) & ((1 << 12)-1)) == 0)) |
| 2123 | return(KERN_INVALID_ARGUMENT4); |
| 2124 | |
| 2125 | size = copy->size; |
| 2126 | |
| 2127 | if (size == 0) { |
| 2128 | vm_map_copy_discard(copy); |
| 2129 | return(KERN_SUCCESS0); |
| 2130 | } |
| 2131 | |
| 2132 | /* |
| 2133 | * Verify that the destination is all writeable |
| 2134 | * initially. |
| 2135 | */ |
| 2136 | start_pass_1: |
| 2137 | vm_map_lock(dst_map)({ lock_write(&(dst_map)->lock); (dst_map)->timestamp ++; }); |
| 2138 | if (!vm_map_lookup_entry(dst_map, dst_addr, &tmp_entry)) { |
| 2139 | vm_map_unlock(dst_map)lock_done(&(dst_map)->lock); |
| 2140 | return(KERN_INVALID_ADDRESS1); |
| 2141 | } |
| 2142 | vm_map_clip_start(dst_map, tmp_entry, dst_addr)({ if ((dst_addr) > (tmp_entry)->links.start) _vm_map_clip_start (&(dst_map)->hdr,(tmp_entry),(dst_addr)); }); |
| 2143 | for (entry = tmp_entry;;) { |
| 2144 | vm_size_t sub_size = (entry->vme_endlinks.end - entry->vme_startlinks.start); |
| 2145 | vm_map_entry_t next = entry->vme_nextlinks.next; |
| 2146 | |
| 2147 | if ( ! (entry->protection & VM_PROT_WRITE((vm_prot_t) 0x02))) { |
| 2148 | vm_map_unlock(dst_map)lock_done(&(dst_map)->lock); |
| 2149 | return(KERN_PROTECTION_FAILURE2); |
| 2150 | } |
| 2151 | |
| 2152 | /* |
| 2153 | * If the entry is in transition, we must wait |
| 2154 | * for it to exit that state. Anything could happen |
| 2155 | * when we unlock the map, so start over. |
| 2156 | */ |
| 2157 | if (entry->in_transition) { |
| 2158 | |
| 2159 | /* |
| 2160 | * Say that we are waiting, and wait for entry. |
| 2161 | */ |
| 2162 | entry->needs_wakeup = TRUE((boolean_t) 1); |
| 2163 | vm_map_entry_wait(dst_map, FALSE)({ assert_wait((event_t)&(dst_map)->hdr, ((boolean_t) 0 )); lock_done(&(dst_map)->lock); thread_block((void (* )()) 0); }); |
| 2164 | |
| 2165 | goto start_pass_1; |
| 2166 | } |
| 2167 | |
| 2168 | if (size <= sub_size) |
| 2169 | break; |
| 2170 | |
| 2171 | if ((next == vm_map_to_entry(dst_map)((struct vm_map_entry *) &(dst_map)->hdr.links)) || |
| 2172 | (next->vme_startlinks.start != entry->vme_endlinks.end)) { |
| 2173 | vm_map_unlock(dst_map)lock_done(&(dst_map)->lock); |
| 2174 | return(KERN_INVALID_ADDRESS1); |
| 2175 | } |
| 2176 | |
| 2177 | |
| 2178 | /* |
| 2179 | * Check for permanent objects in the destination. |
| 2180 | */ |
| 2181 | |
| 2182 | if ((entry->object.vm_object != VM_OBJECT_NULL((vm_object_t) 0)) && |
| 2183 | !entry->object.vm_object->temporary) |
| 2184 | contains_permanent_objects = TRUE((boolean_t) 1); |
| 2185 | |
| 2186 | size -= sub_size; |
| 2187 | entry = next; |
| 2188 | } |
| 2189 | |
| 2190 | /* |
| 2191 | * If there are permanent objects in the destination, then |
| 2192 | * the copy cannot be interrupted. |
| 2193 | */ |
| 2194 | |
| 2195 | if (interruptible && contains_permanent_objects) { |
| 2196 | vm_map_unlock(dst_map)lock_done(&(dst_map)->lock); |
| 2197 | return(KERN_FAILURE5); /* XXX */ |
| 2198 | } |
| 2199 | |
| 2200 | /* |
| 2201 | * XXXO If there are no permanent objects in the destination, |
| 2202 | * XXXO and the source and destination map entry caches match, |
| 2203 | * XXXO and the destination map entry is not shared, |
| 2204 | * XXXO then the map entries can be deleted and replaced |
| 2205 | * XXXO with those from the copy. The following code is the |
| 2206 | * XXXO basic idea of what to do, but there are lots of annoying |
| 2207 | * XXXO little details about getting protection and inheritance |
| 2208 | * XXXO right. Should add protection, inheritance, and sharing checks |
| 2209 | * XXXO to the above pass and make sure that no wiring is involved. |
| 2210 | */ |
| 2211 | /* |
| 2212 | * if (!contains_permanent_objects && |
| 2213 | * copy->cpy_hdr.entries_pageable == dst_map->hdr.entries_pageable) { |
| 2214 | * |
| 2215 | * * |
| 2216 | * * Run over copy and adjust entries. Steal code |
| 2217 | * * from vm_map_copyout() to do this. |
| 2218 | * * |
| 2219 | * |
| 2220 | * tmp_entry = tmp_entry->vme_prev; |
| 2221 | * vm_map_delete(dst_map, dst_addr, dst_addr + copy->size); |
| 2222 | * vm_map_copy_insert(dst_map, tmp_entry, copy); |
| 2223 | * |
| 2224 | * vm_map_unlock(dst_map); |
| 2225 | * vm_map_copy_discard(copy); |
| 2226 | * } |
| 2227 | */ |
| 2228 | /* |
| 2229 | * |
| 2230 | * Make a second pass, overwriting the data |
| 2231 | * At the beginning of each loop iteration, |
| 2232 | * the next entry to be overwritten is "tmp_entry" |
| 2233 | * (initially, the value returned from the lookup above), |
| 2234 | * and the starting address expected in that entry |
| 2235 | * is "start". |
| 2236 | */ |
| 2237 | |
| 2238 | start = dst_addr; |
| 2239 | |
| 2240 | while (vm_map_copy_first_entry(copy)((copy)->c_u.hdr.links.next) != vm_map_copy_to_entry(copy)((struct vm_map_entry *) &(copy)->c_u.hdr.links)) { |
| 2241 | vm_map_entry_t copy_entry = vm_map_copy_first_entry(copy)((copy)->c_u.hdr.links.next); |
| 2242 | vm_size_t copy_size = (copy_entry->vme_endlinks.end - copy_entry->vme_startlinks.start); |
| 2243 | vm_object_t object; |
| 2244 | |
| 2245 | entry = tmp_entry; |
| 2246 | size = (entry->vme_endlinks.end - entry->vme_startlinks.start); |
| 2247 | /* |
| 2248 | * Make sure that no holes popped up in the |
| 2249 | * address map, and that the protection is |
| 2250 | * still valid, in case the map was unlocked |
| 2251 | * earlier. |
| 2252 | */ |
| 2253 | |
| 2254 | if (entry->vme_startlinks.start != start) { |
| 2255 | vm_map_unlock(dst_map)lock_done(&(dst_map)->lock); |
| 2256 | return(KERN_INVALID_ADDRESS1); |
| 2257 | } |
| 2258 | assert(entry != vm_map_to_entry(dst_map))({ if (!(entry != ((struct vm_map_entry *) &(dst_map)-> hdr.links))) Assert("entry != vm_map_to_entry(dst_map)", "../vm/vm_map.c" , 2258); }); |
| 2259 | |
| 2260 | /* |
| 2261 | * Check protection again |
| 2262 | */ |
| 2263 | |
| 2264 | if ( ! (entry->protection & VM_PROT_WRITE((vm_prot_t) 0x02))) { |
| 2265 | vm_map_unlock(dst_map)lock_done(&(dst_map)->lock); |
| 2266 | return(KERN_PROTECTION_FAILURE2); |
| 2267 | } |
| 2268 | |
| 2269 | /* |
| 2270 | * Adjust to source size first |
| 2271 | */ |
| 2272 | |
| 2273 | if (copy_size < size) { |
| 2274 | vm_map_clip_end(dst_map, entry, entry->vme_start + copy_size)({ if ((entry->links.start + copy_size) < (entry)->links .end) _vm_map_clip_end(&(dst_map)->hdr,(entry),(entry-> links.start + copy_size)); }); |
| 2275 | size = copy_size; |
| 2276 | } |
| 2277 | |
| 2278 | /* |
| 2279 | * Adjust to destination size |
| 2280 | */ |
| 2281 | |
| 2282 | if (size < copy_size) { |
| 2283 | vm_map_copy_clip_end(copy, copy_entry,({ if ((copy_entry->links.start + size) < (copy_entry)-> links.end) _vm_map_clip_end(&(copy)->c_u.hdr,(copy_entry ),(copy_entry->links.start + size)); }) |
| 2284 | copy_entry->vme_start + size)({ if ((copy_entry->links.start + size) < (copy_entry)-> links.end) _vm_map_clip_end(&(copy)->c_u.hdr,(copy_entry ),(copy_entry->links.start + size)); }); |
| 2285 | copy_size = size; |
| 2286 | } |
| 2287 | |
| 2288 | assert((entry->vme_end - entry->vme_start) == size)({ if (!((entry->links.end - entry->links.start) == size )) Assert("(entry->vme_end - entry->vme_start) == size" , "../vm/vm_map.c", 2288); }); |
| 2289 | assert((tmp_entry->vme_end - tmp_entry->vme_start) == size)({ if (!((tmp_entry->links.end - tmp_entry->links.start ) == size)) Assert("(tmp_entry->vme_end - tmp_entry->vme_start) == size" , "../vm/vm_map.c", 2289); }); |
| 2290 | assert((copy_entry->vme_end - copy_entry->vme_start) == size)({ if (!((copy_entry->links.end - copy_entry->links.start ) == size)) Assert("(copy_entry->vme_end - copy_entry->vme_start) == size" , "../vm/vm_map.c", 2290); }); |
| 2291 | |
| 2292 | /* |
| 2293 | * If the destination contains temporary unshared memory, |
| 2294 | * we can perform the copy by throwing it away and |
| 2295 | * installing the source data. |
| 2296 | */ |
| 2297 | |
| 2298 | object = entry->object.vm_object; |
| 2299 | if (!entry->is_shared && |
| 2300 | ((object == VM_OBJECT_NULL((vm_object_t) 0)) || object->temporary)) { |
| 2301 | vm_object_t old_object = entry->object.vm_object; |
| 2302 | vm_offset_t old_offset = entry->offset; |
| 2303 | |
| 2304 | entry->object = copy_entry->object; |
| 2305 | entry->offset = copy_entry->offset; |
| 2306 | entry->needs_copy = copy_entry->needs_copy; |
| 2307 | entry->wired_count = 0; |
| 2308 | entry->user_wired_count = 0; |
| 2309 | |
| 2310 | vm_map_copy_entry_unlink(copy, copy_entry)({ (&(copy)->c_u.hdr)->nentries--; (copy_entry)-> links.next->links.prev = (copy_entry)->links.prev; (copy_entry )->links.prev->links.next = (copy_entry)->links.next ; rbtree_remove(&(&(copy)->c_u.hdr)->tree, & (copy_entry)->tree_node); }); |
| 2311 | vm_map_copy_entry_dispose(copy, copy_entry)_vm_map_entry_dispose(&(copy)->c_u.hdr, (copy_entry)); |
| 2312 | |
| 2313 | vm_object_pmap_protect( |
| 2314 | old_object, |
| 2315 | old_offset, |
| 2316 | size, |
| 2317 | dst_map->pmap, |
| 2318 | tmp_entry->vme_startlinks.start, |
| 2319 | VM_PROT_NONE((vm_prot_t) 0x00)); |
| 2320 | |
| 2321 | vm_object_deallocate(old_object); |
| 2322 | |
| 2323 | /* |
| 2324 | * Set up for the next iteration. The map |
| 2325 | * has not been unlocked, so the next |
| 2326 | * address should be at the end of this |
| 2327 | * entry, and the next map entry should be |
| 2328 | * the one following it. |
| 2329 | */ |
| 2330 | |
| 2331 | start = tmp_entry->vme_endlinks.end; |
| 2332 | tmp_entry = tmp_entry->vme_nextlinks.next; |
| 2333 | } else { |
| 2334 | vm_map_version_t version; |
| 2335 | vm_object_t dst_object = entry->object.vm_object; |
| 2336 | vm_offset_t dst_offset = entry->offset; |
| 2337 | kern_return_t r; |
| 2338 | |
| 2339 | /* |
| 2340 | * Take an object reference, and record |
| 2341 | * the map version information so that the |
| 2342 | * map can be safely unlocked. |
| 2343 | */ |
| 2344 | |
| 2345 | vm_object_reference(dst_object); |
| 2346 | |
| 2347 | version.main_timestamp = dst_map->timestamp; |
| 2348 | |
| 2349 | vm_map_unlock(dst_map)lock_done(&(dst_map)->lock); |
| 2350 | |
| 2351 | /* |
| 2352 | * Copy as much as possible in one pass |
| 2353 | */ |
| 2354 | |
| 2355 | copy_size = size; |
| 2356 | r = vm_fault_copy( |
| 2357 | copy_entry->object.vm_object, |
| 2358 | copy_entry->offset, |
| 2359 | ©_size, |
| 2360 | dst_object, |
| 2361 | dst_offset, |
| 2362 | dst_map, |
| 2363 | &version, |
| 2364 | FALSE((boolean_t) 0) /* XXX interruptible */ ); |
| 2365 | |
| 2366 | /* |
| 2367 | * Release the object reference |
| 2368 | */ |
| 2369 | |
| 2370 | vm_object_deallocate(dst_object); |
| 2371 | |
| 2372 | /* |
| 2373 | * If a hard error occurred, return it now |
| 2374 | */ |
| 2375 | |
| 2376 | if (r != KERN_SUCCESS0) |
| 2377 | return(r); |
| 2378 | |
| 2379 | if (copy_size != 0) { |
| 2380 | /* |
| 2381 | * Dispose of the copied region |
| 2382 | */ |
| 2383 | |
| 2384 | vm_map_copy_clip_end(copy, copy_entry,({ if ((copy_entry->links.start + copy_size) < (copy_entry )->links.end) _vm_map_clip_end(&(copy)->c_u.hdr,(copy_entry ),(copy_entry->links.start + copy_size)); }) |
| 2385 | copy_entry->vme_start + copy_size)({ if ((copy_entry->links.start + copy_size) < (copy_entry )->links.end) _vm_map_clip_end(&(copy)->c_u.hdr,(copy_entry ),(copy_entry->links.start + copy_size)); }); |
| 2386 | vm_map_copy_entry_unlink(copy, copy_entry)({ (&(copy)->c_u.hdr)->nentries--; (copy_entry)-> links.next->links.prev = (copy_entry)->links.prev; (copy_entry )->links.prev->links.next = (copy_entry)->links.next ; rbtree_remove(&(&(copy)->c_u.hdr)->tree, & (copy_entry)->tree_node); }); |
| 2387 | vm_object_deallocate(copy_entry->object.vm_object); |
| 2388 | vm_map_copy_entry_dispose(copy, copy_entry)_vm_map_entry_dispose(&(copy)->c_u.hdr, (copy_entry)); |
| 2389 | } |
| 2390 | |
| 2391 | /* |
| 2392 | * Pick up in the destination map where we left off. |
| 2393 | * |
| 2394 | * Use the version information to avoid a lookup |
| 2395 | * in the normal case. |
| 2396 | */ |
| 2397 | |
| 2398 | start += copy_size; |
| 2399 | vm_map_lock(dst_map)({ lock_write(&(dst_map)->lock); (dst_map)->timestamp ++; }); |
| 2400 | if ((version.main_timestamp + 1) == dst_map->timestamp) { |
| 2401 | /* We can safely use saved tmp_entry value */ |
| 2402 | |
| 2403 | vm_map_clip_end(dst_map, tmp_entry, start)({ if ((start) < (tmp_entry)->links.end) _vm_map_clip_end (&(dst_map)->hdr,(tmp_entry),(start)); }); |
| 2404 | tmp_entry = tmp_entry->vme_nextlinks.next; |
| 2405 | } else { |
| 2406 | /* Must do lookup of tmp_entry */ |
| 2407 | |
| 2408 | if (!vm_map_lookup_entry(dst_map, start, &tmp_entry)) { |
| 2409 | vm_map_unlock(dst_map)lock_done(&(dst_map)->lock); |
| 2410 | return(KERN_INVALID_ADDRESS1); |
| 2411 | } |
| 2412 | vm_map_clip_start(dst_map, tmp_entry, start)({ if ((start) > (tmp_entry)->links.start) _vm_map_clip_start (&(dst_map)->hdr,(tmp_entry),(start)); }); |
| 2413 | } |
| 2414 | } |
| 2415 | |
| 2416 | } |
| 2417 | vm_map_unlock(dst_map)lock_done(&(dst_map)->lock); |
| 2418 | |
| 2419 | /* |
| 2420 | * Throw away the vm_map_copy object |
| 2421 | */ |
| 2422 | vm_map_copy_discard(copy); |
| 2423 | |
| 2424 | return(KERN_SUCCESS0); |
| 2425 | } |
| 2426 | |
| 2427 | /* |
| 2428 | * Macro: vm_map_copy_insert |
| 2429 | * |
| 2430 | * Description: |
| 2431 | * Link a copy chain ("copy") into a map at the |
| 2432 | * specified location (after "where"). |
| 2433 | * Side effects: |
| 2434 | * The copy chain is destroyed. |
| 2435 | * Warning: |
| 2436 | * The arguments are evaluated multiple times. |
| 2437 | */ |
| 2438 | #define vm_map_copy_insert(map, where, copy)({ struct rbtree_node *node, *tmp; for (node = rbtree_postwalk_deepest (&(copy)->c_u.hdr.tree), tmp = rbtree_postwalk_unlink( node); node != ((void *) 0); node = tmp, tmp = rbtree_postwalk_unlink (node)) ({ struct rbtree_node *___cur, *___prev; int ___diff, ___index; ___prev = ((void *) 0); ___index = -1; ___cur = (& (map)->hdr.tree)->root; while (___cur != ((void *) 0)) { ___diff = vm_map_entry_cmp_insert(node, ___cur); ({ if (!(___diff != 0)) Assert("___diff != 0", "../vm/vm_map.c", 2438); }); ___prev = ___cur; ___index = rbtree_d2i(___diff); ___cur = ___cur-> children[___index]; } rbtree_insert_rebalance(&(map)-> hdr.tree, ___prev, ___index, node); }); (((where)->links.next )->links.prev = ((copy)->c_u.hdr.links.prev)) ->links .next = ((where)->links.next); ((where)->links.next = ( (copy)->c_u.hdr.links.next)) ->links.prev = (where); (map )->hdr.nentries += (copy)->c_u.hdr.nentries; kmem_cache_free (&vm_map_copy_cache, (vm_offset_t) copy); }) \ |
| 2439 | MACRO_BEGIN({ \ |
| 2440 | struct rbtree_node *node, *tmp; \ |
| 2441 | rbtree_for_each_remove(&(copy)->cpy_hdr.tree, node, tmp)for (node = rbtree_postwalk_deepest(&(copy)->c_u.hdr.tree ), tmp = rbtree_postwalk_unlink(node); node != ((void *) 0); node = tmp, tmp = rbtree_postwalk_unlink(node)) \ |
| 2442 | rbtree_insert(&(map)->hdr.tree, node, \({ struct rbtree_node *___cur, *___prev; int ___diff, ___index ; ___prev = ((void *) 0); ___index = -1; ___cur = (&(map) ->hdr.tree)->root; while (___cur != ((void *) 0)) { ___diff = vm_map_entry_cmp_insert(node, ___cur); ({ if (!(___diff != 0)) Assert("___diff != 0", "../vm/vm_map.c", 2443); }); ___prev = ___cur; ___index = rbtree_d2i(___diff); ___cur = ___cur-> children[___index]; } rbtree_insert_rebalance(&(map)-> hdr.tree, ___prev, ___index, node); }) |
| 2443 | vm_map_entry_cmp_insert)({ struct rbtree_node *___cur, *___prev; int ___diff, ___index ; ___prev = ((void *) 0); ___index = -1; ___cur = (&(map) ->hdr.tree)->root; while (___cur != ((void *) 0)) { ___diff = vm_map_entry_cmp_insert(node, ___cur); ({ if (!(___diff != 0)) Assert("___diff != 0", "../vm/vm_map.c", 2443); }); ___prev = ___cur; ___index = rbtree_d2i(___diff); ___cur = ___cur-> children[___index]; } rbtree_insert_rebalance(&(map)-> hdr.tree, ___prev, ___index, node); }); \ |
| 2444 | (((where)->vme_nextlinks.next)->vme_prevlinks.prev = vm_map_copy_last_entry(copy)((copy)->c_u.hdr.links.prev)) \ |
| 2445 | ->vme_nextlinks.next = ((where)->vme_nextlinks.next); \ |
| 2446 | ((where)->vme_nextlinks.next = vm_map_copy_first_entry(copy)((copy)->c_u.hdr.links.next)) \ |
| 2447 | ->vme_prevlinks.prev = (where); \ |
| 2448 | (map)->hdr.nentries += (copy)->cpy_hdrc_u.hdr.nentries; \ |
| 2449 | kmem_cache_free(&vm_map_copy_cache, (vm_offset_t) copy); \ |
| 2450 | MACRO_END}) |
| 2451 | |
| 2452 | /* |
| 2453 | * Routine: vm_map_copyout |
| 2454 | * |
| 2455 | * Description: |
| 2456 | * Copy out a copy chain ("copy") into newly-allocated |
| 2457 | * space in the destination map. |
| 2458 | * |
| 2459 | * If successful, consumes the copy object. |
| 2460 | * Otherwise, the caller is responsible for it. |
| 2461 | */ |
| 2462 | kern_return_t vm_map_copyout(dst_map, dst_addr, copy) |
| 2463 | register |
| 2464 | vm_map_t dst_map; |
| 2465 | vm_offset_t *dst_addr; /* OUT */ |
| 2466 | register |
| 2467 | vm_map_copy_t copy; |
| 2468 | { |
| 2469 | vm_size_t size; |
| 2470 | vm_size_t adjustment; |
| 2471 | vm_offset_t start; |
| 2472 | vm_offset_t vm_copy_start; |
| 2473 | vm_map_entry_t last; |
| 2474 | register |
| 2475 | vm_map_entry_t entry; |
| 2476 | |
| 2477 | /* |
| 2478 | * Check for null copy object. |
| 2479 | */ |
| 2480 | |
| 2481 | if (copy == VM_MAP_COPY_NULL((vm_map_copy_t) 0)) { |
| 2482 | *dst_addr = 0; |
| 2483 | return(KERN_SUCCESS0); |
| 2484 | } |
| 2485 | |
| 2486 | /* |
| 2487 | * Check for special copy object, created |
| 2488 | * by vm_map_copyin_object. |
| 2489 | */ |
| 2490 | |
| 2491 | if (copy->type == VM_MAP_COPY_OBJECT2) { |
| 2492 | vm_object_t object = copy->cpy_objectc_u.c_o.object; |
| 2493 | vm_size_t offset = copy->offset; |
| 2494 | vm_size_t tmp_size = copy->size; |
| 2495 | kern_return_t kr; |
| 2496 | |
| 2497 | *dst_addr = 0; |
| 2498 | kr = vm_map_enter(dst_map, dst_addr, tmp_size, |
| 2499 | (vm_offset_t) 0, TRUE((boolean_t) 1), |
| 2500 | object, offset, FALSE((boolean_t) 0), |
| 2501 | VM_PROT_DEFAULT(((vm_prot_t) 0x01)|((vm_prot_t) 0x02)), VM_PROT_ALL(((vm_prot_t) 0x01)|((vm_prot_t) 0x02)|((vm_prot_t) 0x04)), |
| 2502 | VM_INHERIT_DEFAULT((vm_inherit_t) 1)); |
| 2503 | if (kr != KERN_SUCCESS0) |
| 2504 | return(kr); |
| 2505 | kmem_cache_free(&vm_map_copy_cache, (vm_offset_t) copy); |
| 2506 | return(KERN_SUCCESS0); |
| 2507 | } |
| 2508 | |
| 2509 | if (copy->type == VM_MAP_COPY_PAGE_LIST3) |
| 2510 | return(vm_map_copyout_page_list(dst_map, dst_addr, copy)); |
| 2511 | |
| 2512 | /* |
| 2513 | * Find space for the data |
| 2514 | */ |
| 2515 | |
| 2516 | vm_copy_start = trunc_page(copy->offset)((vm_offset_t)(((vm_offset_t)(copy->offset)) & ~((1 << 12)-1))); |
| 2517 | size = round_page(copy->offset + copy->size)((vm_offset_t)((((vm_offset_t)(copy->offset + copy->size )) + ((1 << 12)-1)) & ~((1 << 12)-1))) - vm_copy_start; |
| 2518 | |
| 2519 | StartAgain: ; |
| 2520 | |
| 2521 | vm_map_lock(dst_map)({ lock_write(&(dst_map)->lock); (dst_map)->timestamp ++; }); |
| 2522 | start = ((last = dst_map->first_free) == vm_map_to_entry(dst_map)((struct vm_map_entry *) &(dst_map)->hdr.links)) ? |
| 2523 | vm_map_min(dst_map)((dst_map)->hdr.links.start) : last->vme_endlinks.end; |
| 2524 | |
| 2525 | while (TRUE((boolean_t) 1)) { |
| 2526 | vm_map_entry_t next = last->vme_nextlinks.next; |
| 2527 | vm_offset_t end = start + size; |
| 2528 | |
| 2529 | if ((end > dst_map->max_offsethdr.links.end) || (end < start)) { |
| 2530 | if (dst_map->wait_for_space) { |
| 2531 | if (size <= (dst_map->max_offsethdr.links.end - dst_map->min_offsethdr.links.start)) { |
| 2532 | assert_wait((event_t) dst_map, TRUE((boolean_t) 1)); |
| 2533 | vm_map_unlock(dst_map)lock_done(&(dst_map)->lock); |
| 2534 | thread_block((void (*)()) 0); |
| 2535 | goto StartAgain; |
| 2536 | } |
| 2537 | } |
| 2538 | vm_map_unlock(dst_map)lock_done(&(dst_map)->lock); |
| 2539 | printf_once("no more room for vm_map_copyout in %p\n", dst_map)({ static int __once = 0; if (!__once) { printf("no more room for vm_map_copyout in %p\n" , dst_map); __once = 1; } }); |
| 2540 | return(KERN_NO_SPACE3); |
| 2541 | } |
| 2542 | |
| 2543 | if ((next == vm_map_to_entry(dst_map)((struct vm_map_entry *) &(dst_map)->hdr.links)) || |
| 2544 | (next->vme_startlinks.start >= end)) |
| 2545 | break; |
| 2546 | |
| 2547 | last = next; |
| 2548 | start = last->vme_endlinks.end; |
| 2549 | } |
| 2550 | |
| 2551 | /* |
| 2552 | * Since we're going to just drop the map |
| 2553 | * entries from the copy into the destination |
| 2554 | * map, they must come from the same pool. |
| 2555 | */ |
| 2556 | |
| 2557 | if (copy->cpy_hdrc_u.hdr.entries_pageable != dst_map->hdr.entries_pageable) { |
| 2558 | /* |
| 2559 | * Mismatches occur when dealing with the default |
| 2560 | * pager. |
| 2561 | */ |
| 2562 | kmem_cache_t old_cache; |
| 2563 | vm_map_entry_t next, new; |
| 2564 | |
| 2565 | /* |
| 2566 | * Find the cache that the copies were allocated from |
| 2567 | */ |
| 2568 | old_cache = (copy->cpy_hdrc_u.hdr.entries_pageable) |
| 2569 | ? &vm_map_entry_cache |
| 2570 | : &vm_map_kentry_cache; |
| 2571 | entry = vm_map_copy_first_entry(copy)((copy)->c_u.hdr.links.next); |
| 2572 | |
| 2573 | /* |
| 2574 | * Reinitialize the copy so that vm_map_copy_entry_link |
| 2575 | * will work. |
| 2576 | */ |
| 2577 | copy->cpy_hdrc_u.hdr.nentries = 0; |
| 2578 | copy->cpy_hdrc_u.hdr.entries_pageable = dst_map->hdr.entries_pageable; |
| 2579 | vm_map_copy_first_entry(copy)((copy)->c_u.hdr.links.next) = |
| 2580 | vm_map_copy_last_entry(copy)((copy)->c_u.hdr.links.prev) = |
| 2581 | vm_map_copy_to_entry(copy)((struct vm_map_entry *) &(copy)->c_u.hdr.links); |
| 2582 | |
| 2583 | /* |
| 2584 | * Copy each entry. |
| 2585 | */ |
| 2586 | while (entry != vm_map_copy_to_entry(copy)((struct vm_map_entry *) &(copy)->c_u.hdr.links)) { |
| 2587 | new = vm_map_copy_entry_create(copy)_vm_map_entry_create(&(copy)->c_u.hdr); |
| 2588 | vm_map_entry_copy_full(new, entry)(*(new) = *(entry)); |
| 2589 | vm_map_copy_entry_link(copy,({ (&(copy)->c_u.hdr)->nentries++; (new)->links. prev = (((copy)->c_u.hdr.links.prev)); (new)->links.next = (((copy)->c_u.hdr.links.prev))->links.next; (new)-> links.prev->links.next = (new)->links.next->links.prev = (new); ({ struct rbtree_node *___cur, *___prev; int ___diff , ___index; ___prev = ((void *) 0); ___index = -1; ___cur = ( &(&(copy)->c_u.hdr)->tree)->root; while (___cur != ((void *) 0)) { ___diff = vm_map_entry_cmp_insert(&(new )->tree_node, ___cur); ({ if (!(___diff != 0)) Assert("___diff != 0" , "../vm/vm_map.c", 2591); }); ___prev = ___cur; ___index = rbtree_d2i (___diff); ___cur = ___cur->children[___index]; } rbtree_insert_rebalance (&(&(copy)->c_u.hdr)->tree, ___prev, ___index, & (new)->tree_node); }); }) |
| 2590 | vm_map_copy_last_entry(copy),({ (&(copy)->c_u.hdr)->nentries++; (new)->links. prev = (((copy)->c_u.hdr.links.prev)); (new)->links.next = (((copy)->c_u.hdr.links.prev))->links.next; (new)-> links.prev->links.next = (new)->links.next->links.prev = (new); ({ struct rbtree_node *___cur, *___prev; int ___diff , ___index; ___prev = ((void *) 0); ___index = -1; ___cur = ( &(&(copy)->c_u.hdr)->tree)->root; while (___cur != ((void *) 0)) { ___diff = vm_map_entry_cmp_insert(&(new )->tree_node, ___cur); ({ if (!(___diff != 0)) Assert("___diff != 0" , "../vm/vm_map.c", 2591); }); ___prev = ___cur; ___index = rbtree_d2i (___diff); ___cur = ___cur->children[___index]; } rbtree_insert_rebalance (&(&(copy)->c_u.hdr)->tree, ___prev, ___index, & (new)->tree_node); }); }) |
| 2591 | new)({ (&(copy)->c_u.hdr)->nentries++; (new)->links. prev = (((copy)->c_u.hdr.links.prev)); (new)->links.next = (((copy)->c_u.hdr.links.prev))->links.next; (new)-> links.prev->links.next = (new)->links.next->links.prev = (new); ({ struct rbtree_node *___cur, *___prev; int ___diff , ___index; ___prev = ((void *) 0); ___index = -1; ___cur = ( &(&(copy)->c_u.hdr)->tree)->root; while (___cur != ((void *) 0)) { ___diff = vm_map_entry_cmp_insert(&(new )->tree_node, ___cur); ({ if (!(___diff != 0)) Assert("___diff != 0" , "../vm/vm_map.c", 2591); }); ___prev = ___cur; ___index = rbtree_d2i (___diff); ___cur = ___cur->children[___index]; } rbtree_insert_rebalance (&(&(copy)->c_u.hdr)->tree, ___prev, ___index, & (new)->tree_node); }); }); |
| 2592 | next = entry->vme_nextlinks.next; |
| 2593 | kmem_cache_free(old_cache, (vm_offset_t) entry); |
| 2594 | entry = next; |
| 2595 | } |
| 2596 | } |
| 2597 | |
| 2598 | /* |
| 2599 | * Adjust the addresses in the copy chain, and |
| 2600 | * reset the region attributes. |
| 2601 | */ |
| 2602 | |
| 2603 | adjustment = start - vm_copy_start; |
| 2604 | for (entry = vm_map_copy_first_entry(copy)((copy)->c_u.hdr.links.next); |
| 2605 | entry != vm_map_copy_to_entry(copy)((struct vm_map_entry *) &(copy)->c_u.hdr.links); |
| 2606 | entry = entry->vme_nextlinks.next) { |
| 2607 | entry->vme_startlinks.start += adjustment; |
| 2608 | entry->vme_endlinks.end += adjustment; |
| 2609 | |
| 2610 | entry->inheritance = VM_INHERIT_DEFAULT((vm_inherit_t) 1); |
| 2611 | entry->protection = VM_PROT_DEFAULT(((vm_prot_t) 0x01)|((vm_prot_t) 0x02)); |
| 2612 | entry->max_protection = VM_PROT_ALL(((vm_prot_t) 0x01)|((vm_prot_t) 0x02)|((vm_prot_t) 0x04)); |
| 2613 | entry->projected_on = 0; |
| 2614 | |
| 2615 | /* |
| 2616 | * If the entry is now wired, |
| 2617 | * map the pages into the destination map. |
| 2618 | */ |
| 2619 | if (entry->wired_count != 0) { |
| 2620 | register vm_offset_t va; |
| 2621 | vm_offset_t offset; |
| 2622 | register vm_object_t object; |
| 2623 | |
| 2624 | object = entry->object.vm_object; |
| 2625 | offset = entry->offset; |
| 2626 | va = entry->vme_startlinks.start; |
| 2627 | |
| 2628 | pmap_pageable(dst_map->pmap, |
| 2629 | entry->vme_startlinks.start, |
| 2630 | entry->vme_endlinks.end, |
| 2631 | TRUE((boolean_t) 1)); |
| 2632 | |
| 2633 | while (va < entry->vme_endlinks.end) { |
| 2634 | register vm_page_t m; |
| 2635 | |
| 2636 | /* |
| 2637 | * Look up the page in the object. |
| 2638 | * Assert that the page will be found in the |
| 2639 | * top object: |
| 2640 | * either |
| 2641 | * the object was newly created by |
| 2642 | * vm_object_copy_slowly, and has |
| 2643 | * copies of all of the pages from |
| 2644 | * the source object |
| 2645 | * or |
| 2646 | * the object was moved from the old |
| 2647 | * map entry; because the old map |
| 2648 | * entry was wired, all of the pages |
| 2649 | * were in the top-level object. |
| 2650 | * (XXX not true if we wire pages for |
| 2651 | * reading) |
| 2652 | */ |
| 2653 | vm_object_lock(object); |
| 2654 | vm_object_paging_begin(object)((object)->paging_in_progress++); |
| 2655 | |
| 2656 | m = vm_page_lookup(object, offset); |
| 2657 | if (m == VM_PAGE_NULL((vm_page_t) 0) || m->wire_count == 0 || |
| 2658 | m->absent) |
| 2659 | panic("vm_map_copyout: wiring 0x%x", m); |
| 2660 | |
| 2661 | m->busy = TRUE((boolean_t) 1); |
| 2662 | vm_object_unlock(object); |
| 2663 | |
| 2664 | PMAP_ENTER(dst_map->pmap, va, m,({ pmap_enter( (dst_map->pmap), (va), (m)->phys_addr, ( entry->protection) & ~(m)->page_lock, (((boolean_t) 1)) ); }) |
| 2665 | entry->protection, TRUE)({ pmap_enter( (dst_map->pmap), (va), (m)->phys_addr, ( entry->protection) & ~(m)->page_lock, (((boolean_t) 1)) ); }); |
| 2666 | |
| 2667 | vm_object_lock(object); |
| 2668 | PAGE_WAKEUP_DONE(m)({ (m)->busy = ((boolean_t) 0); if ((m)->wanted) { (m)-> wanted = ((boolean_t) 0); thread_wakeup_prim((((event_t) m)), ((boolean_t) 0), 0); } }); |
| 2669 | /* the page is wired, so we don't have to activate */ |
| 2670 | vm_object_paging_end(object)({ ({ if (!((object)->paging_in_progress != 0)) Assert("(object)->paging_in_progress != 0" , "../vm/vm_map.c", 2670); }); if (--(object)->paging_in_progress == 0) { ({ if ((object)->all_wanted & (1 << (2) )) thread_wakeup_prim(((event_t)(((vm_offset_t) object) + (2) )), ((boolean_t) 0), 0); (object)->all_wanted &= ~(1 << (2)); }); } }); |
| 2671 | vm_object_unlock(object); |
| 2672 | |
| 2673 | offset += PAGE_SIZE(1 << 12); |
| 2674 | va += PAGE_SIZE(1 << 12); |
| 2675 | } |
| 2676 | } |
| 2677 | |
| 2678 | |
| 2679 | } |
| 2680 | |
| 2681 | /* |
| 2682 | * Correct the page alignment for the result |
| 2683 | */ |
| 2684 | |
| 2685 | *dst_addr = start + (copy->offset - vm_copy_start); |
| 2686 | |
| 2687 | /* |
| 2688 | * Update the hints and the map size |
| 2689 | */ |
| 2690 | |
| 2691 | if (dst_map->first_free == last) |
| 2692 | dst_map->first_free = vm_map_copy_last_entry(copy)((copy)->c_u.hdr.links.prev); |
| 2693 | SAVE_HINT(dst_map, vm_map_copy_last_entry(copy)); (dst_map)->hint = (((copy)->c_u.hdr.links.prev)); ;; |
| 2694 | |
| 2695 | dst_map->size += size; |
| 2696 | |
| 2697 | /* |
| 2698 | * Link in the copy |
| 2699 | */ |
| 2700 | |
| 2701 | vm_map_copy_insert(dst_map, last, copy)({ struct rbtree_node *node, *tmp; for (node = rbtree_postwalk_deepest (&(copy)->c_u.hdr.tree), tmp = rbtree_postwalk_unlink( node); node != ((void *) 0); node = tmp, tmp = rbtree_postwalk_unlink (node)) ({ struct rbtree_node *___cur, *___prev; int ___diff, ___index; ___prev = ((void *) 0); ___index = -1; ___cur = (& (dst_map)->hdr.tree)->root; while (___cur != ((void *) 0 )) { ___diff = vm_map_entry_cmp_insert(node, ___cur); ({ if ( !(___diff != 0)) Assert("___diff != 0", "../vm/vm_map.c", 2701 ); }); ___prev = ___cur; ___index = rbtree_d2i(___diff); ___cur = ___cur->children[___index]; } rbtree_insert_rebalance(& (dst_map)->hdr.tree, ___prev, ___index, node); }); (((last )->links.next)->links.prev = ((copy)->c_u.hdr.links. prev)) ->links.next = ((last)->links.next); ((last)-> links.next = ((copy)->c_u.hdr.links.next)) ->links.prev = (last); (dst_map)->hdr.nentries += (copy)->c_u.hdr.nentries ; kmem_cache_free(&vm_map_copy_cache, (vm_offset_t) copy) ; }); |
| 2702 | |
| 2703 | vm_map_unlock(dst_map)lock_done(&(dst_map)->lock); |
| 2704 | |
| 2705 | /* |
| 2706 | * XXX If wiring_required, call vm_map_pageable |
| 2707 | */ |
| 2708 | |
| 2709 | return(KERN_SUCCESS0); |
| 2710 | } |
| 2711 | |
| 2712 | /* |
| 2713 | * |
| 2714 | * vm_map_copyout_page_list: |
| 2715 | * |
| 2716 | * Version of vm_map_copyout() for page list vm map copies. |
| 2717 | * |
| 2718 | */ |
| 2719 | kern_return_t vm_map_copyout_page_list(dst_map, dst_addr, copy) |
| 2720 | register |
| 2721 | vm_map_t dst_map; |
| 2722 | vm_offset_t *dst_addr; /* OUT */ |
| 2723 | register |
| 2724 | vm_map_copy_t copy; |
| 2725 | { |
| 2726 | vm_size_t size; |
| 2727 | vm_offset_t start; |
| 2728 | vm_offset_t end; |
| 2729 | vm_offset_t offset; |
| 2730 | vm_map_entry_t last; |
| 2731 | register |
| 2732 | vm_object_t object; |
| 2733 | vm_page_t *page_list, m; |
| 2734 | vm_map_entry_t entry; |
| 2735 | vm_offset_t old_last_offset; |
| 2736 | boolean_t cont_invoked, needs_wakeup = FALSE((boolean_t) 0); |
| 2737 | kern_return_t result = KERN_SUCCESS0; |
| 2738 | vm_map_copy_t orig_copy; |
| 2739 | vm_offset_t dst_offset; |
| 2740 | boolean_t must_wire; |
| 2741 | |
| 2742 | /* |
| 2743 | * Make sure the pages are stolen, because we are |
| 2744 | * going to put them in a new object. Assume that |
| 2745 | * all pages are identical to first in this regard. |
| 2746 | */ |
| 2747 | |
| 2748 | page_list = ©->cpy_page_listc_u.c_p.page_list[0]; |
| 2749 | if ((*page_list)->tabled) |
| 2750 | vm_map_copy_steal_pages(copy); |
| 2751 | |
| 2752 | /* |
| 2753 | * Find space for the data |
| 2754 | */ |
| 2755 | |
| 2756 | size = round_page(copy->offset + copy->size)((vm_offset_t)((((vm_offset_t)(copy->offset + copy->size )) + ((1 << 12)-1)) & ~((1 << 12)-1))) - |
| 2757 | trunc_page(copy->offset)((vm_offset_t)(((vm_offset_t)(copy->offset)) & ~((1 << 12)-1))); |
| 2758 | StartAgain: |
| 2759 | vm_map_lock(dst_map)({ lock_write(&(dst_map)->lock); (dst_map)->timestamp ++; }); |
| 2760 | must_wire = dst_map->wiring_required; |
| 2761 | |
| 2762 | last = dst_map->first_free; |
| 2763 | if (last == vm_map_to_entry(dst_map)((struct vm_map_entry *) &(dst_map)->hdr.links)) { |
| 2764 | start = vm_map_min(dst_map)((dst_map)->hdr.links.start); |
| 2765 | } else { |
| 2766 | start = last->vme_endlinks.end; |
| 2767 | } |
| 2768 | |
| 2769 | while (TRUE((boolean_t) 1)) { |
| 2770 | vm_map_entry_t next = last->vme_nextlinks.next; |
| 2771 | end = start + size; |
| 2772 | |
| 2773 | if ((end > dst_map->max_offsethdr.links.end) || (end < start)) { |
| 2774 | if (dst_map->wait_for_space) { |
| 2775 | if (size <= (dst_map->max_offsethdr.links.end - |
| 2776 | dst_map->min_offsethdr.links.start)) { |
| 2777 | assert_wait((event_t) dst_map, TRUE((boolean_t) 1)); |
| 2778 | vm_map_unlock(dst_map)lock_done(&(dst_map)->lock); |
| 2779 | thread_block((void (*)()) 0); |
| 2780 | goto StartAgain; |
| 2781 | } |
| 2782 | } |
| 2783 | vm_map_unlock(dst_map)lock_done(&(dst_map)->lock); |
| 2784 | printf_once("no more room for vm_map_copyout_page_list in %p\n", dst_map)({ static int __once = 0; if (!__once) { printf("no more room for vm_map_copyout_page_list in %p\n" , dst_map); __once = 1; } }); |
| 2785 | return(KERN_NO_SPACE3); |
| 2786 | } |
| 2787 | |
| 2788 | if ((next == vm_map_to_entry(dst_map)((struct vm_map_entry *) &(dst_map)->hdr.links)) || |
| 2789 | (next->vme_startlinks.start >= end)) { |
| 2790 | break; |
| 2791 | } |
| 2792 | |
| 2793 | last = next; |
| 2794 | start = last->vme_endlinks.end; |
| 2795 | } |
| 2796 | |
| 2797 | /* |
| 2798 | * See whether we can avoid creating a new entry (and object) by |
| 2799 | * extending one of our neighbors. [So far, we only attempt to |
| 2800 | * extend from below.] |
| 2801 | * |
| 2802 | * The code path below here is a bit twisted. If any of the |
| 2803 | * extension checks fails, we branch to create_object. If |
| 2804 | * it all works, we fall out the bottom and goto insert_pages. |
| 2805 | */ |
| 2806 | if (last == vm_map_to_entry(dst_map)((struct vm_map_entry *) &(dst_map)->hdr.links) || |
| 2807 | last->vme_endlinks.end != start || |
| 2808 | last->is_shared != FALSE((boolean_t) 0) || |
| 2809 | last->is_sub_map != FALSE((boolean_t) 0) || |
| 2810 | last->inheritance != VM_INHERIT_DEFAULT((vm_inherit_t) 1) || |
| 2811 | last->protection != VM_PROT_DEFAULT(((vm_prot_t) 0x01)|((vm_prot_t) 0x02)) || |
| 2812 | last->max_protection != VM_PROT_ALL(((vm_prot_t) 0x01)|((vm_prot_t) 0x02)|((vm_prot_t) 0x04)) || |
| 2813 | (must_wire ? (last->wired_count != 1 || |
| 2814 | last->user_wired_count != 1) : |
| 2815 | (last->wired_count != 0))) { |
| 2816 | goto create_object; |
| 2817 | } |
| 2818 | |
| 2819 | /* |
| 2820 | * If this entry needs an object, make one. |
| 2821 | */ |
| 2822 | if (last->object.vm_object == VM_OBJECT_NULL((vm_object_t) 0)) { |
| 2823 | object = vm_object_allocate( |
| 2824 | (vm_size_t)(last->vme_endlinks.end - last->vme_startlinks.start + size)); |
| 2825 | last->object.vm_object = object; |
| 2826 | last->offset = 0; |
| 2827 | vm_object_lock(object); |
| 2828 | } |
| 2829 | else { |
| 2830 | vm_offset_t prev_offset = last->offset; |
| 2831 | vm_size_t prev_size = start - last->vme_startlinks.start; |
| 2832 | vm_size_t new_size; |
| 2833 | |
| 2834 | /* |
| 2835 | * This is basically vm_object_coalesce. |
| 2836 | */ |
| 2837 | |
| 2838 | object = last->object.vm_object; |
| 2839 | vm_object_lock(object); |
| 2840 | |
| 2841 | /* |
| 2842 | * Try to collapse the object first |
| 2843 | */ |
| 2844 | vm_object_collapse(object); |
| 2845 | |
| 2846 | /* |
| 2847 | * Can't coalesce if pages not mapped to |
| 2848 | * last may be in use anyway: |
| 2849 | * . more than one reference |
| 2850 | * . paged out |
| 2851 | * . shadows another object |
| 2852 | * . has a copy elsewhere |
| 2853 | * . paging references (pages might be in page-list) |
| 2854 | */ |
| 2855 | |
| 2856 | if ((object->ref_count > 1) || |
| 2857 | object->pager_created || |
| 2858 | (object->shadow != VM_OBJECT_NULL((vm_object_t) 0)) || |
| 2859 | (object->copy != VM_OBJECT_NULL((vm_object_t) 0)) || |
| 2860 | (object->paging_in_progress != 0)) { |
| 2861 | vm_object_unlock(object); |
| 2862 | goto create_object; |
| 2863 | } |
| 2864 | |
| 2865 | /* |
| 2866 | * Extend the object if necessary. Don't have to call |
| 2867 | * vm_object_page_remove because the pages aren't mapped, |
| 2868 | * and vm_page_replace will free up any old ones it encounters. |
| 2869 | */ |
| 2870 | new_size = prev_offset + prev_size + size; |
| 2871 | if (new_size > object->size) |
| 2872 | object->size = new_size; |
| 2873 | } |
| 2874 | |
| 2875 | /* |
| 2876 | * Coalesced the two objects - can extend |
| 2877 | * the previous map entry to include the |
| 2878 | * new range. |
| 2879 | */ |
| 2880 | dst_map->size += size; |
| 2881 | last->vme_endlinks.end = end; |
| 2882 | |
| 2883 | SAVE_HINT(dst_map, last); (dst_map)->hint = (last); ;; |
| 2884 | |
| 2885 | goto insert_pages; |
| 2886 | |
| 2887 | create_object: |
| 2888 | |
| 2889 | /* |
| 2890 | * Create object |
| 2891 | */ |
| 2892 | object = vm_object_allocate(size); |
| 2893 | |
| 2894 | /* |
| 2895 | * Create entry |
| 2896 | */ |
| 2897 | |
| 2898 | entry = vm_map_entry_create(dst_map)_vm_map_entry_create(&(dst_map)->hdr); |
| 2899 | |
| 2900 | entry->object.vm_object = object; |
| 2901 | entry->offset = 0; |
| 2902 | |
| 2903 | entry->is_shared = FALSE((boolean_t) 0); |
| 2904 | entry->is_sub_map = FALSE((boolean_t) 0); |
| 2905 | entry->needs_copy = FALSE((boolean_t) 0); |
| 2906 | |
| 2907 | if (must_wire) { |
| 2908 | entry->wired_count = 1; |
| 2909 | entry->user_wired_count = 1; |
| 2910 | } else { |
| 2911 | entry->wired_count = 0; |
| 2912 | entry->user_wired_count = 0; |
| 2913 | } |
| 2914 | |
| 2915 | entry->in_transition = TRUE((boolean_t) 1); |
| 2916 | entry->needs_wakeup = FALSE((boolean_t) 0); |
| 2917 | |
| 2918 | entry->vme_startlinks.start = start; |
| 2919 | entry->vme_endlinks.end = start + size; |
| 2920 | |
| 2921 | entry->inheritance = VM_INHERIT_DEFAULT((vm_inherit_t) 1); |
| 2922 | entry->protection = VM_PROT_DEFAULT(((vm_prot_t) 0x01)|((vm_prot_t) 0x02)); |
| 2923 | entry->max_protection = VM_PROT_ALL(((vm_prot_t) 0x01)|((vm_prot_t) 0x02)|((vm_prot_t) 0x04)); |
| 2924 | entry->projected_on = 0; |
| 2925 | |
| 2926 | vm_object_lock(object); |
| 2927 | |
| 2928 | /* |
| 2929 | * Update the hints and the map size |
| 2930 | */ |
| 2931 | if (dst_map->first_free == last) { |
| 2932 | dst_map->first_free = entry; |
| 2933 | } |
| 2934 | SAVE_HINT(dst_map, entry); (dst_map)->hint = (entry); ;; |
| 2935 | dst_map->size += size; |
| 2936 | |
| 2937 | /* |
| 2938 | * Link in the entry |
| 2939 | */ |
| 2940 | vm_map_entry_link(dst_map, last, entry)({ (&(dst_map)->hdr)->nentries++; (entry)->links .prev = (last); (entry)->links.next = (last)->links.next ; (entry)->links.prev->links.next = (entry)->links.next ->links.prev = (entry); ({ struct rbtree_node *___cur, *___prev ; int ___diff, ___index; ___prev = ((void *) 0); ___index = - 1; ___cur = (&(&(dst_map)->hdr)->tree)->root ; while (___cur != ((void *) 0)) { ___diff = vm_map_entry_cmp_insert (&(entry)->tree_node, ___cur); ({ if (!(___diff != 0)) Assert("___diff != 0", "../vm/vm_map.c", 2940); }); ___prev = ___cur; ___index = rbtree_d2i(___diff); ___cur = ___cur-> children[___index]; } rbtree_insert_rebalance(&(&(dst_map )->hdr)->tree, ___prev, ___index, &(entry)->tree_node ); }); }); |
| 2941 | last = entry; |
| 2942 | |
| 2943 | /* |
| 2944 | * Transfer pages into new object. |
| 2945 | * Scan page list in vm_map_copy. |
| 2946 | */ |
| 2947 | insert_pages: |
| 2948 | dst_offset = copy->offset & PAGE_MASK((1 << 12)-1); |
| 2949 | cont_invoked = FALSE((boolean_t) 0); |
| 2950 | orig_copy = copy; |
| 2951 | last->in_transition = TRUE((boolean_t) 1); |
| 2952 | old_last_offset = last->offset |
| 2953 | + (start - last->vme_startlinks.start); |
| 2954 | |
| 2955 | vm_page_lock_queues(); |
| 2956 | |
| 2957 | for (offset = 0; offset < size; offset += PAGE_SIZE(1 << 12)) { |
| 2958 | m = *page_list; |
| 2959 | assert(m && !m->tabled)({ if (!(m && !m->tabled)) Assert("m && !m->tabled" , "../vm/vm_map.c", 2959); }); |
| 2960 | |
| 2961 | /* |
| 2962 | * Must clear busy bit in page before inserting it. |
| 2963 | * Ok to skip wakeup logic because nobody else |
| 2964 | * can possibly know about this page. |
| 2965 | * The page is dirty in its new object. |
| 2966 | */ |
| 2967 | |
| 2968 | assert(!m->wanted)({ if (!(!m->wanted)) Assert("!m->wanted", "../vm/vm_map.c" , 2968); }); |
| 2969 | |
| 2970 | m->busy = FALSE((boolean_t) 0); |
| 2971 | m->dirty = TRUE((boolean_t) 1); |
| 2972 | vm_page_replace(m, object, old_last_offset + offset); |
| 2973 | if (must_wire) { |
| 2974 | vm_page_wire(m); |
| 2975 | PMAP_ENTER(dst_map->pmap,({ pmap_enter( (dst_map->pmap), (last->links.start + m-> offset - last->offset), (m)->phys_addr, (last->protection ) & ~(m)->page_lock, (((boolean_t) 1)) ); }) |
| 2976 | last->vme_start + m->offset - last->offset,({ pmap_enter( (dst_map->pmap), (last->links.start + m-> offset - last->offset), (m)->phys_addr, (last->protection ) & ~(m)->page_lock, (((boolean_t) 1)) ); }) |
| 2977 | m, last->protection, TRUE)({ pmap_enter( (dst_map->pmap), (last->links.start + m-> offset - last->offset), (m)->phys_addr, (last->protection ) & ~(m)->page_lock, (((boolean_t) 1)) ); }); |
| 2978 | } else { |
| 2979 | vm_page_activate(m); |
| 2980 | } |
| 2981 | |
| 2982 | *page_list++ = VM_PAGE_NULL((vm_page_t) 0); |
| 2983 | if (--(copy->cpy_npagesc_u.c_p.npages) == 0 && |
| 2984 | vm_map_copy_has_cont(copy)(((copy)->c_u.c_p.cont) != (kern_return_t (*)()) 0)) { |
| 2985 | vm_map_copy_t new_copy; |
| 2986 | |
| 2987 | /* |
| 2988 | * Ok to unlock map because entry is |
| 2989 | * marked in_transition. |
| 2990 | */ |
| 2991 | cont_invoked = TRUE((boolean_t) 1); |
| 2992 | vm_page_unlock_queues(); |
| 2993 | vm_object_unlock(object); |
| 2994 | vm_map_unlock(dst_map)lock_done(&(dst_map)->lock); |
| 2995 | vm_map_copy_invoke_cont(copy, &new_copy, &result)({ vm_map_copy_page_discard(copy); *&result = (*((copy)-> c_u.c_p.cont))((copy)->c_u.c_p.cont_args, &new_copy); ( copy)->c_u.c_p.cont = (kern_return_t (*)()) 0; }); |
| 2996 | |
| 2997 | if (result == KERN_SUCCESS0) { |
| 2998 | |
| 2999 | /* |
| 3000 | * If we got back a copy with real pages, |
| 3001 | * steal them now. Either all of the |
| 3002 | * pages in the list are tabled or none |
| 3003 | * of them are; mixtures are not possible. |
| 3004 | * |
| 3005 | * Save original copy for consume on |
| 3006 | * success logic at end of routine. |
| 3007 | */ |
| 3008 | if (copy != orig_copy) |
| 3009 | vm_map_copy_discard(copy); |
| 3010 | |
| 3011 | if ((copy = new_copy) != VM_MAP_COPY_NULL((vm_map_copy_t) 0)) { |
| 3012 | page_list = ©->cpy_page_listc_u.c_p.page_list[0]; |
| 3013 | if ((*page_list)->tabled) |
| 3014 | vm_map_copy_steal_pages(copy); |
| 3015 | } |
| 3016 | } |
| 3017 | else { |
| 3018 | /* |
| 3019 | * Continuation failed. |
| 3020 | */ |
| 3021 | vm_map_lock(dst_map)({ lock_write(&(dst_map)->lock); (dst_map)->timestamp ++; }); |
| 3022 | goto error; |
| 3023 | } |
| 3024 | |
| 3025 | vm_map_lock(dst_map)({ lock_write(&(dst_map)->lock); (dst_map)->timestamp ++; }); |
| 3026 | vm_object_lock(object); |
| 3027 | vm_page_lock_queues(); |
| 3028 | } |
| 3029 | } |
| 3030 | |
| 3031 | vm_page_unlock_queues(); |
| 3032 | vm_object_unlock(object); |
| 3033 | |
| 3034 | *dst_addr = start + dst_offset; |
| 3035 | |
| 3036 | /* |
| 3037 | * Clear the in transition bits. This is easy if we |
| 3038 | * didn't have a continuation. |
| 3039 | */ |
| 3040 | error: |
| 3041 | if (!cont_invoked) { |
| 3042 | /* |
| 3043 | * We didn't unlock the map, so nobody could |
| 3044 | * be waiting. |
| 3045 | */ |
| 3046 | last->in_transition = FALSE((boolean_t) 0); |
| 3047 | assert(!last->needs_wakeup)({ if (!(!last->needs_wakeup)) Assert("!last->needs_wakeup" , "../vm/vm_map.c", 3047); }); |
| 3048 | needs_wakeup = FALSE((boolean_t) 0); |
| 3049 | } |
| 3050 | else { |
| 3051 | if (!vm_map_lookup_entry(dst_map, start, &entry)) |
| 3052 | panic("vm_map_copyout_page_list: missing entry"); |
| 3053 | |
| 3054 | /* |
| 3055 | * Clear transition bit for all constituent entries that |
| 3056 | * were in the original entry. Also check for waiters. |
| 3057 | */ |
| 3058 | while((entry != vm_map_to_entry(dst_map)((struct vm_map_entry *) &(dst_map)->hdr.links)) && |
| 3059 | (entry->vme_startlinks.start < end)) { |
| 3060 | assert(entry->in_transition)({ if (!(entry->in_transition)) Assert("entry->in_transition" , "../vm/vm_map.c", 3060); }); |
| 3061 | entry->in_transition = FALSE((boolean_t) 0); |
| 3062 | if(entry->needs_wakeup) { |
| 3063 | entry->needs_wakeup = FALSE((boolean_t) 0); |
| 3064 | needs_wakeup = TRUE((boolean_t) 1); |
| 3065 | } |
| 3066 | entry = entry->vme_nextlinks.next; |
| 3067 | } |
| 3068 | } |
| 3069 | |
| 3070 | if (result != KERN_SUCCESS0) |
| 3071 | vm_map_delete(dst_map, start, end); |
| 3072 | |
| 3073 | vm_map_unlock(dst_map)lock_done(&(dst_map)->lock); |
| 3074 | |
| 3075 | if (needs_wakeup) |
| 3076 | vm_map_entry_wakeup(dst_map)thread_wakeup_prim(((event_t)&(dst_map)->hdr), ((boolean_t ) 0), 0); |
| 3077 | |
| 3078 | /* |
| 3079 | * Consume on success logic. |
| 3080 | */ |
| 3081 | if (copy != orig_copy) { |
| 3082 | kmem_cache_free(&vm_map_copy_cache, (vm_offset_t) copy); |
| 3083 | } |
| 3084 | if (result == KERN_SUCCESS0) { |
| 3085 | kmem_cache_free(&vm_map_copy_cache, (vm_offset_t) orig_copy); |
| 3086 | } |
| 3087 | |
| 3088 | return(result); |
| 3089 | } |
| 3090 | |
| 3091 | /* |
| 3092 | * Routine: vm_map_copyin |
| 3093 | * |
| 3094 | * Description: |
| 3095 | * Copy the specified region (src_addr, len) from the |
| 3096 | * source address space (src_map), possibly removing |
| 3097 | * the region from the source address space (src_destroy). |
| 3098 | * |
| 3099 | * Returns: |
| 3100 | * A vm_map_copy_t object (copy_result), suitable for |
| 3101 | * insertion into another address space (using vm_map_copyout), |
| 3102 | * copying over another address space region (using |
| 3103 | * vm_map_copy_overwrite). If the copy is unused, it |
| 3104 | * should be destroyed (using vm_map_copy_discard). |
| 3105 | * |
| 3106 | * In/out conditions: |
| 3107 | * The source map should not be locked on entry. |
| 3108 | */ |
| 3109 | kern_return_t vm_map_copyin(src_map, src_addr, len, src_destroy, copy_result) |
| 3110 | vm_map_t src_map; |
| 3111 | vm_offset_t src_addr; |
| 3112 | vm_size_t len; |
| 3113 | boolean_t src_destroy; |
| 3114 | vm_map_copy_t *copy_result; /* OUT */ |
| 3115 | { |
| 3116 | vm_map_entry_t tmp_entry; /* Result of last map lookup -- |
| 3117 | * in multi-level lookup, this |
| 3118 | * entry contains the actual |
| 3119 | * vm_object/offset. |
| 3120 | */ |
| 3121 | |
| 3122 | vm_offset_t src_start; /* Start of current entry -- |
| 3123 | * where copy is taking place now |
| 3124 | */ |
| 3125 | vm_offset_t src_end; /* End of entire region to be |
| 3126 | * copied */ |
| 3127 | |
| 3128 | register |
| 3129 | vm_map_copy_t copy; /* Resulting copy */ |
| 3130 | |
| 3131 | /* |
| 3132 | * Check for copies of zero bytes. |
| 3133 | */ |
| 3134 | |
| 3135 | if (len == 0) { |
| 3136 | *copy_result = VM_MAP_COPY_NULL((vm_map_copy_t) 0); |
| 3137 | return(KERN_SUCCESS0); |
| 3138 | } |
| 3139 | |
| 3140 | /* |
| 3141 | * Compute start and end of region |
| 3142 | */ |
| 3143 | |
| 3144 | src_start = trunc_page(src_addr)((vm_offset_t)(((vm_offset_t)(src_addr)) & ~((1 << 12 )-1))); |
| 3145 | src_end = round_page(src_addr + len)((vm_offset_t)((((vm_offset_t)(src_addr + len)) + ((1 << 12)-1)) & ~((1 << 12)-1))); |
| 3146 | |
| 3147 | /* |
| 3148 | * Check that the end address doesn't overflow |
| 3149 | */ |
| 3150 | |
| 3151 | if (src_end <= src_start) |
| 3152 | if ((src_end < src_start) || (src_start != 0)) |
| 3153 | return(KERN_INVALID_ADDRESS1); |
| 3154 | |
| 3155 | /* |
| 3156 | * Allocate a header element for the list. |
| 3157 | * |
| 3158 | * Use the start and end in the header to |
| 3159 | * remember the endpoints prior to rounding. |
| 3160 | */ |
| 3161 | |
| 3162 | copy = (vm_map_copy_t) kmem_cache_alloc(&vm_map_copy_cache); |
| 3163 | vm_map_copy_first_entry(copy)((copy)->c_u.hdr.links.next) = |
| 3164 | vm_map_copy_last_entry(copy)((copy)->c_u.hdr.links.prev) = vm_map_copy_to_entry(copy)((struct vm_map_entry *) &(copy)->c_u.hdr.links); |
| 3165 | copy->type = VM_MAP_COPY_ENTRY_LIST1; |
| 3166 | copy->cpy_hdrc_u.hdr.nentries = 0; |
| 3167 | copy->cpy_hdrc_u.hdr.entries_pageable = TRUE((boolean_t) 1); |
| 3168 | rbtree_init(©->cpy_hdrc_u.hdr.tree); |
| 3169 | |
| 3170 | copy->offset = src_addr; |
| 3171 | copy->size = len; |
| 3172 | |
| 3173 | #define RETURN(x) \ |
| 3174 | MACRO_BEGIN({ \ |
| 3175 | vm_map_unlock(src_map)lock_done(&(src_map)->lock); \ |
| 3176 | vm_map_copy_discard(copy); \ |
| 3177 | MACRO_RETURNif (((boolean_t) 1)) return(x); \ |
| 3178 | MACRO_END}) |
| 3179 | |
| 3180 | /* |
| 3181 | * Find the beginning of the region. |
| 3182 | */ |
| 3183 | |
| 3184 | vm_map_lock(src_map)({ lock_write(&(src_map)->lock); (src_map)->timestamp ++; }); |
| 3185 | |
| 3186 | if (!vm_map_lookup_entry(src_map, src_start, &tmp_entry)) |
| 3187 | RETURN(KERN_INVALID_ADDRESS1); |
| 3188 | vm_map_clip_start(src_map, tmp_entry, src_start)({ if ((src_start) > (tmp_entry)->links.start) _vm_map_clip_start (&(src_map)->hdr,(tmp_entry),(src_start)); }); |
| 3189 | |
| 3190 | /* |
| 3191 | * Go through entries until we get to the end. |
| 3192 | */ |
| 3193 | |
| 3194 | while (TRUE((boolean_t) 1)) { |
| 3195 | register |
| 3196 | vm_map_entry_t src_entry = tmp_entry; /* Top-level entry */ |
| 3197 | vm_size_t src_size; /* Size of source |
| 3198 | * map entry (in both |
| 3199 | * maps) |
| 3200 | */ |
| 3201 | |
| 3202 | register |
| 3203 | vm_object_t src_object; /* Object to copy */ |
| 3204 | vm_offset_t src_offset; |
| 3205 | |
| 3206 | boolean_t src_needs_copy; /* Should source map |
| 3207 | * be made read-only |
| 3208 | * for copy-on-write? |
| 3209 | */ |
| 3210 | |
| 3211 | register |
| 3212 | vm_map_entry_t new_entry; /* Map entry for copy */ |
| 3213 | boolean_t new_entry_needs_copy; /* Will new entry be COW? */ |
| 3214 | |
| 3215 | boolean_t was_wired; /* Was source wired? */ |
| 3216 | vm_map_version_t version; /* Version before locks |
| 3217 | * dropped to make copy |
| 3218 | */ |
| 3219 | |
| 3220 | /* |
| 3221 | * Verify that the region can be read. |
| 3222 | */ |
| 3223 | |
| 3224 | if (! (src_entry->protection & VM_PROT_READ((vm_prot_t) 0x01))) |
| 3225 | RETURN(KERN_PROTECTION_FAILURE2); |
| 3226 | |
| 3227 | /* |
| 3228 | * Clip against the endpoints of the entire region. |
| 3229 | */ |
| 3230 | |
| 3231 | vm_map_clip_end(src_map, src_entry, src_end)({ if ((src_end) < (src_entry)->links.end) _vm_map_clip_end (&(src_map)->hdr,(src_entry),(src_end)); }); |
| 3232 | |
| 3233 | src_size = src_entry->vme_endlinks.end - src_start; |
| 3234 | src_object = src_entry->object.vm_object; |
| 3235 | src_offset = src_entry->offset; |
| 3236 | was_wired = (src_entry->wired_count != 0); |
| 3237 | |
| 3238 | /* |
| 3239 | * Create a new address map entry to |
| 3240 | * hold the result. Fill in the fields from |
| 3241 | * the appropriate source entries. |
| 3242 | */ |
| 3243 | |
| 3244 | new_entry = vm_map_copy_entry_create(copy)_vm_map_entry_create(&(copy)->c_u.hdr); |
| 3245 | vm_map_entry_copy(new_entry, src_entry)({ *(new_entry) = *(src_entry); (new_entry)->is_shared = ( (boolean_t) 0); (new_entry)->needs_wakeup = ((boolean_t) 0 ); (new_entry)->in_transition = ((boolean_t) 0); (new_entry )->wired_count = 0; (new_entry)->user_wired_count = 0; } ); |
| 3246 | |
| 3247 | /* |
| 3248 | * Attempt non-blocking copy-on-write optimizations. |
| 3249 | */ |
| 3250 | |
| 3251 | if (src_destroy && |
| 3252 | (src_object == VM_OBJECT_NULL((vm_object_t) 0) || |
| 3253 | (src_object->temporary && !src_object->use_shared_copy))) |
| 3254 | { |
| 3255 | /* |
| 3256 | * If we are destroying the source, and the object |
| 3257 | * is temporary, and not shared writable, |
| 3258 | * we can move the object reference |
| 3259 | * from the source to the copy. The copy is |
| 3260 | * copy-on-write only if the source is. |
| 3261 | * We make another reference to the object, because |
| 3262 | * destroying the source entry will deallocate it. |
| 3263 | */ |
| 3264 | vm_object_reference(src_object); |
| 3265 | |
| 3266 | /* |
| 3267 | * Copy is always unwired. vm_map_copy_entry |
| 3268 | * set its wired count to zero. |
| 3269 | */ |
| 3270 | |
| 3271 | goto CopySuccessful; |
| 3272 | } |
| 3273 | |
| 3274 | if (!was_wired && |
| 3275 | vm_object_copy_temporary( |
| 3276 | &new_entry->object.vm_object, |
| 3277 | &new_entry->offset, |
| 3278 | &src_needs_copy, |
| 3279 | &new_entry_needs_copy)) { |
| 3280 | |
| 3281 | new_entry->needs_copy = new_entry_needs_copy; |
| 3282 | |
| 3283 | /* |
| 3284 | * Handle copy-on-write obligations |
| 3285 | */ |
| 3286 | |
| 3287 | if (src_needs_copy && !tmp_entry->needs_copy) { |
| 3288 | vm_object_pmap_protect( |
| 3289 | src_object, |
| 3290 | src_offset, |
| 3291 | src_size, |
| 3292 | (src_entry->is_shared ? PMAP_NULL((pmap_t) 0) |
| 3293 | : src_map->pmap), |
| 3294 | src_entry->vme_startlinks.start, |
| 3295 | src_entry->protection & |
| 3296 | ~VM_PROT_WRITE((vm_prot_t) 0x02)); |
| 3297 | |
| 3298 | tmp_entry->needs_copy = TRUE((boolean_t) 1); |
| 3299 | } |
| 3300 | |
| 3301 | /* |
| 3302 | * The map has never been unlocked, so it's safe to |
| 3303 | * move to the next entry rather than doing another |
| 3304 | * lookup. |
| 3305 | */ |
| 3306 | |
| 3307 | goto CopySuccessful; |
| 3308 | } |
| 3309 | |
| 3310 | new_entry->needs_copy = FALSE((boolean_t) 0); |
| 3311 | |
| 3312 | /* |
| 3313 | * Take an object reference, so that we may |
| 3314 | * release the map lock(s). |
| 3315 | */ |
| 3316 | |
| 3317 | assert(src_object != VM_OBJECT_NULL)({ if (!(src_object != ((vm_object_t) 0))) Assert("src_object != VM_OBJECT_NULL" , "../vm/vm_map.c", 3317); }); |
| 3318 | vm_object_reference(src_object); |
| 3319 | |
| 3320 | /* |
| 3321 | * Record the timestamp for later verification. |
| 3322 | * Unlock the map. |
| 3323 | */ |
| 3324 | |
| 3325 | version.main_timestamp = src_map->timestamp; |
| 3326 | vm_map_unlock(src_map)lock_done(&(src_map)->lock); |
| 3327 | |
| 3328 | /* |
| 3329 | * Perform the copy |
| 3330 | */ |
| 3331 | |
| 3332 | if (was_wired) { |
| 3333 | vm_object_lock(src_object); |
| 3334 | (void) vm_object_copy_slowly( |
| 3335 | src_object, |
| 3336 | src_offset, |
| 3337 | src_size, |
| 3338 | FALSE((boolean_t) 0), |
| 3339 | &new_entry->object.vm_object); |
| 3340 | new_entry->offset = 0; |
| 3341 | new_entry->needs_copy = FALSE((boolean_t) 0); |
| 3342 | } else { |
| 3343 | kern_return_t result; |
| 3344 | |
| 3345 | result = vm_object_copy_strategically(src_object, |
| 3346 | src_offset, |
| 3347 | src_size, |
| 3348 | &new_entry->object.vm_object, |
| 3349 | &new_entry->offset, |
| 3350 | &new_entry_needs_copy); |
| 3351 | |
| 3352 | new_entry->needs_copy = new_entry_needs_copy; |
| 3353 | |
| 3354 | |
| 3355 | if (result != KERN_SUCCESS0) { |
| 3356 | vm_map_copy_entry_dispose(copy, new_entry)_vm_map_entry_dispose(&(copy)->c_u.hdr, (new_entry)); |
| 3357 | |
| 3358 | vm_map_lock(src_map)({ lock_write(&(src_map)->lock); (src_map)->timestamp ++; }); |
| 3359 | RETURN(result); |
| 3360 | } |
| 3361 | |
| 3362 | } |
| 3363 | |
| 3364 | /* |
| 3365 | * Throw away the extra reference |
| 3366 | */ |
| 3367 | |
| 3368 | vm_object_deallocate(src_object); |
| 3369 | |
| 3370 | /* |
| 3371 | * Verify that the map has not substantially |
| 3372 | * changed while the copy was being made. |
| 3373 | */ |
| 3374 | |
| 3375 | vm_map_lock(src_map)({ lock_write(&(src_map)->lock); (src_map)->timestamp ++; }); /* Increments timestamp once! */ |
| 3376 | |
| 3377 | if ((version.main_timestamp + 1) == src_map->timestamp) |
| 3378 | goto CopySuccessful; |
| 3379 | |
| 3380 | /* |
| 3381 | * Simple version comparison failed. |
| 3382 | * |
| 3383 | * Retry the lookup and verify that the |
| 3384 | * same object/offset are still present. |
| 3385 | * |
| 3386 | * [Note: a memory manager that colludes with |
| 3387 | * the calling task can detect that we have |
| 3388 | * cheated. While the map was unlocked, the |
| 3389 | * mapping could have been changed and restored.] |
| 3390 | */ |
| 3391 | |
| 3392 | if (!vm_map_lookup_entry(src_map, src_start, &tmp_entry)) { |
| 3393 | vm_map_copy_entry_dispose(copy, new_entry)_vm_map_entry_dispose(&(copy)->c_u.hdr, (new_entry)); |
| 3394 | RETURN(KERN_INVALID_ADDRESS1); |
| 3395 | } |
| 3396 | |
| 3397 | src_entry = tmp_entry; |
| 3398 | vm_map_clip_start(src_map, src_entry, src_start)({ if ((src_start) > (src_entry)->links.start) _vm_map_clip_start (&(src_map)->hdr,(src_entry),(src_start)); }); |
| 3399 | |
| 3400 | if ((src_entry->protection & VM_PROT_READ((vm_prot_t) 0x01)) == VM_PROT_NONE((vm_prot_t) 0x00)) |
| 3401 | goto VerificationFailed; |
| 3402 | |
| 3403 | if (src_entry->vme_endlinks.end < new_entry->vme_endlinks.end) |
| 3404 | src_size = (new_entry->vme_endlinks.end = src_entry->vme_endlinks.end) - src_start; |
Value stored to 'src_size' is never read | |
| 3405 | |
| 3406 | if ((src_entry->object.vm_object != src_object) || |
| 3407 | (src_entry->offset != src_offset) ) { |
| 3408 | |
| 3409 | /* |
| 3410 | * Verification failed. |
| 3411 | * |
| 3412 | * Start over with this top-level entry. |
| 3413 | */ |
| 3414 | |
| 3415 | VerificationFailed: ; |
| 3416 | |
| 3417 | vm_object_deallocate(new_entry->object.vm_object); |
| 3418 | vm_map_copy_entry_dispose(copy, new_entry)_vm_map_entry_dispose(&(copy)->c_u.hdr, (new_entry)); |
| 3419 | tmp_entry = src_entry; |
| 3420 | continue; |
| 3421 | } |
| 3422 | |
| 3423 | /* |
| 3424 | * Verification succeeded. |
| 3425 | */ |
| 3426 | |
| 3427 | CopySuccessful: ; |
| 3428 | |
| 3429 | /* |
| 3430 | * Link in the new copy entry. |
| 3431 | */ |
| 3432 | |
| 3433 | vm_map_copy_entry_link(copy, vm_map_copy_last_entry(copy),({ (&(copy)->c_u.hdr)->nentries++; (new_entry)-> links.prev = (((copy)->c_u.hdr.links.prev)); (new_entry)-> links.next = (((copy)->c_u.hdr.links.prev))->links.next ; (new_entry)->links.prev->links.next = (new_entry)-> links.next->links.prev = (new_entry); ({ struct rbtree_node *___cur, *___prev; int ___diff, ___index; ___prev = ((void * ) 0); ___index = -1; ___cur = (&(&(copy)->c_u.hdr) ->tree)->root; while (___cur != ((void *) 0)) { ___diff = vm_map_entry_cmp_insert(&(new_entry)->tree_node, ___cur ); ({ if (!(___diff != 0)) Assert("___diff != 0", "../vm/vm_map.c" , 3434); }); ___prev = ___cur; ___index = rbtree_d2i(___diff) ; ___cur = ___cur->children[___index]; } rbtree_insert_rebalance (&(&(copy)->c_u.hdr)->tree, ___prev, ___index, & (new_entry)->tree_node); }); }) |
| 3434 | new_entry)({ (&(copy)->c_u.hdr)->nentries++; (new_entry)-> links.prev = (((copy)->c_u.hdr.links.prev)); (new_entry)-> links.next = (((copy)->c_u.hdr.links.prev))->links.next ; (new_entry)->links.prev->links.next = (new_entry)-> links.next->links.prev = (new_entry); ({ struct rbtree_node *___cur, *___prev; int ___diff, ___index; ___prev = ((void * ) 0); ___index = -1; ___cur = (&(&(copy)->c_u.hdr) ->tree)->root; while (___cur != ((void *) 0)) { ___diff = vm_map_entry_cmp_insert(&(new_entry)->tree_node, ___cur ); ({ if (!(___diff != 0)) Assert("___diff != 0", "../vm/vm_map.c" , 3434); }); ___prev = ___cur; ___index = rbtree_d2i(___diff) ; ___cur = ___cur->children[___index]; } rbtree_insert_rebalance (&(&(copy)->c_u.hdr)->tree, ___prev, ___index, & (new_entry)->tree_node); }); }); |
| 3435 | |
| 3436 | /* |
| 3437 | * Determine whether the entire region |
| 3438 | * has been copied. |
| 3439 | */ |
| 3440 | src_start = new_entry->vme_endlinks.end; |
| 3441 | if ((src_start >= src_end) && (src_end != 0)) |
| 3442 | break; |
| 3443 | |
| 3444 | /* |
| 3445 | * Verify that there are no gaps in the region |
| 3446 | */ |
| 3447 | |
| 3448 | tmp_entry = src_entry->vme_nextlinks.next; |
| 3449 | if (tmp_entry->vme_startlinks.start != src_start) |
| 3450 | RETURN(KERN_INVALID_ADDRESS1); |
| 3451 | } |
| 3452 | |
| 3453 | /* |
| 3454 | * If the source should be destroyed, do it now, since the |
| 3455 | * copy was successful. |
| 3456 | */ |
| 3457 | if (src_destroy) |
| 3458 | (void) vm_map_delete(src_map, trunc_page(src_addr)((vm_offset_t)(((vm_offset_t)(src_addr)) & ~((1 << 12 )-1))), src_end); |
| 3459 | |
| 3460 | vm_map_unlock(src_map)lock_done(&(src_map)->lock); |
| 3461 | |
| 3462 | *copy_result = copy; |
| 3463 | return(KERN_SUCCESS0); |
| 3464 | |
| 3465 | #undef RETURN |
| 3466 | } |
| 3467 | |
| 3468 | /* |
| 3469 | * vm_map_copyin_object: |
| 3470 | * |
| 3471 | * Create a copy object from an object. |
| 3472 | * Our caller donates an object reference. |
| 3473 | */ |
| 3474 | |
| 3475 | kern_return_t vm_map_copyin_object(object, offset, size, copy_result) |
| 3476 | vm_object_t object; |
| 3477 | vm_offset_t offset; /* offset of region in object */ |
| 3478 | vm_size_t size; /* size of region in object */ |
| 3479 | vm_map_copy_t *copy_result; /* OUT */ |
| 3480 | { |
| 3481 | vm_map_copy_t copy; /* Resulting copy */ |
| 3482 | |
| 3483 | /* |
| 3484 | * We drop the object into a special copy object |
| 3485 | * that contains the object directly. These copy objects |
| 3486 | * are distinguished by entries_pageable == FALSE |
| 3487 | * and null links. |
| 3488 | */ |
| 3489 | |
| 3490 | copy = (vm_map_copy_t) kmem_cache_alloc(&vm_map_copy_cache); |
| 3491 | vm_map_copy_first_entry(copy)((copy)->c_u.hdr.links.next) = |
| 3492 | vm_map_copy_last_entry(copy)((copy)->c_u.hdr.links.prev) = VM_MAP_ENTRY_NULL((vm_map_entry_t) 0); |
| 3493 | copy->type = VM_MAP_COPY_OBJECT2; |
| 3494 | copy->cpy_objectc_u.c_o.object = object; |
| 3495 | copy->offset = offset; |
| 3496 | copy->size = size; |
| 3497 | |
| 3498 | *copy_result = copy; |
| 3499 | return(KERN_SUCCESS0); |
| 3500 | } |
| 3501 | |
| 3502 | /* |
| 3503 | * vm_map_copyin_page_list_cont: |
| 3504 | * |
| 3505 | * Continuation routine for vm_map_copyin_page_list. |
| 3506 | * |
| 3507 | * If vm_map_copyin_page_list can't fit the entire vm range |
| 3508 | * into a single page list object, it creates a continuation. |
| 3509 | * When the target of the operation has used the pages in the |
| 3510 | * initial page list, it invokes the continuation, which calls |
| 3511 | * this routine. If an error happens, the continuation is aborted |
| 3512 | * (abort arg to this routine is TRUE). To avoid deadlocks, the |
| 3513 | * pages are discarded from the initial page list before invoking |
| 3514 | * the continuation. |
| 3515 | * |
| 3516 | * NOTE: This is not the same sort of continuation used by |
| 3517 | * the scheduler. |
| 3518 | */ |
| 3519 | |
| 3520 | kern_return_t vm_map_copyin_page_list_cont(cont_args, copy_result) |
| 3521 | vm_map_copyin_args_t cont_args; |
| 3522 | vm_map_copy_t *copy_result; /* OUT */ |
| 3523 | { |
| 3524 | kern_return_t result = 0; /* '=0' to quiet gcc warnings */ |
| 3525 | register boolean_t do_abort, src_destroy, src_destroy_only; |
| 3526 | |
| 3527 | /* |
| 3528 | * Check for cases that only require memory destruction. |
| 3529 | */ |
| 3530 | do_abort = (copy_result == (vm_map_copy_t *) 0); |
| 3531 | src_destroy = (cont_args->destroy_len != (vm_size_t) 0); |
| 3532 | src_destroy_only = (cont_args->src_len == (vm_size_t) 0); |
| 3533 | |
| 3534 | if (do_abort || src_destroy_only) { |
| 3535 | if (src_destroy) |
| 3536 | result = vm_map_remove(cont_args->map, |
| 3537 | cont_args->destroy_addr, |
| 3538 | cont_args->destroy_addr + cont_args->destroy_len); |
| 3539 | if (!do_abort) |
| 3540 | *copy_result = VM_MAP_COPY_NULL((vm_map_copy_t) 0); |
| 3541 | } |
| 3542 | else { |
| 3543 | result = vm_map_copyin_page_list(cont_args->map, |
| 3544 | cont_args->src_addr, cont_args->src_len, src_destroy, |
| 3545 | cont_args->steal_pages, copy_result, TRUE((boolean_t) 1)); |
| 3546 | |
| 3547 | if (src_destroy && !cont_args->steal_pages && |
| 3548 | vm_map_copy_has_cont(*copy_result)(((*copy_result)->c_u.c_p.cont) != (kern_return_t (*)()) 0 )) { |
| 3549 | vm_map_copyin_args_t new_args; |
| 3550 | /* |
| 3551 | * Transfer old destroy info. |
| 3552 | */ |
| 3553 | new_args = (vm_map_copyin_args_t) |
| 3554 | (*copy_result)->cpy_cont_argsc_u.c_p.cont_args; |
| 3555 | new_args->destroy_addr = cont_args->destroy_addr; |
| 3556 | new_args->destroy_len = cont_args->destroy_len; |
| 3557 | } |
| 3558 | } |
| 3559 | |
| 3560 | vm_map_deallocate(cont_args->map); |
| 3561 | kfree((vm_offset_t)cont_args, sizeof(vm_map_copyin_args_data_t)); |
| 3562 | |
| 3563 | return(result); |
| 3564 | } |
| 3565 | |
| 3566 | /* |
| 3567 | * vm_map_copyin_page_list: |
| 3568 | * |
| 3569 | * This is a variant of vm_map_copyin that copies in a list of pages. |
| 3570 | * If steal_pages is TRUE, the pages are only in the returned list. |
| 3571 | * If steal_pages is FALSE, the pages are busy and still in their |
| 3572 | * objects. A continuation may be returned if not all the pages fit: |
| 3573 | * the recipient of this copy_result must be prepared to deal with it. |
| 3574 | */ |
| 3575 | |
| 3576 | kern_return_t vm_map_copyin_page_list(src_map, src_addr, len, src_destroy, |
| 3577 | steal_pages, copy_result, is_cont) |
| 3578 | vm_map_t src_map; |
| 3579 | vm_offset_t src_addr; |
| 3580 | vm_size_t len; |
| 3581 | boolean_t src_destroy; |
| 3582 | boolean_t steal_pages; |
| 3583 | vm_map_copy_t *copy_result; /* OUT */ |
| 3584 | boolean_t is_cont; |
| 3585 | { |
| 3586 | vm_map_entry_t src_entry; |
| 3587 | vm_page_t m; |
| 3588 | vm_offset_t src_start; |
| 3589 | vm_offset_t src_end; |
| 3590 | vm_size_t src_size; |
| 3591 | register |
| 3592 | vm_object_t src_object; |
| 3593 | register |
| 3594 | vm_offset_t src_offset; |
| 3595 | vm_offset_t src_last_offset; |
| 3596 | register |
| 3597 | vm_map_copy_t copy; /* Resulting copy */ |
| 3598 | kern_return_t result = KERN_SUCCESS0; |
| 3599 | boolean_t need_map_lookup; |
| 3600 | vm_map_copyin_args_t cont_args; |
| 3601 | |
| 3602 | /* |
| 3603 | * If steal_pages is FALSE, this leaves busy pages in |
| 3604 | * the object. A continuation must be used if src_destroy |
| 3605 | * is true in this case (!steal_pages && src_destroy). |
| 3606 | * |
| 3607 | * XXX Still have a more general problem of what happens |
| 3608 | * XXX if the same page occurs twice in a list. Deadlock |
| 3609 | * XXX can happen if vm_fault_page was called. A |
| 3610 | * XXX possible solution is to use a continuation if vm_fault_page |
| 3611 | * XXX is called and we cross a map entry boundary. |
| 3612 | */ |
| 3613 | |
| 3614 | /* |
| 3615 | * Check for copies of zero bytes. |
| 3616 | */ |
| 3617 | |
| 3618 | if (len == 0) { |
| 3619 | *copy_result = VM_MAP_COPY_NULL((vm_map_copy_t) 0); |
| 3620 | return(KERN_SUCCESS0); |
| 3621 | } |
| 3622 | |
| 3623 | /* |
| 3624 | * Compute start and end of region |
| 3625 | */ |
| 3626 | |
| 3627 | src_start = trunc_page(src_addr)((vm_offset_t)(((vm_offset_t)(src_addr)) & ~((1 << 12 )-1))); |
| 3628 | src_end = round_page(src_addr + len)((vm_offset_t)((((vm_offset_t)(src_addr + len)) + ((1 << 12)-1)) & ~((1 << 12)-1))); |
| 3629 | |
| 3630 | /* |
| 3631 | * Check that the end address doesn't overflow |
| 3632 | */ |
| 3633 | |
| 3634 | if (src_end <= src_start && (src_end < src_start || src_start != 0)) { |
| 3635 | return KERN_INVALID_ADDRESS1; |
| 3636 | } |
| 3637 | |
| 3638 | /* |
| 3639 | * Allocate a header element for the page list. |
| 3640 | * |
| 3641 | * Record original offset and size, as caller may not |
| 3642 | * be page-aligned. |
| 3643 | */ |
| 3644 | |
| 3645 | copy = (vm_map_copy_t) kmem_cache_alloc(&vm_map_copy_cache); |
| 3646 | copy->type = VM_MAP_COPY_PAGE_LIST3; |
| 3647 | copy->cpy_npagesc_u.c_p.npages = 0; |
| 3648 | copy->offset = src_addr; |
| 3649 | copy->size = len; |
| 3650 | copy->cpy_contc_u.c_p.cont = ((kern_return_t (*)()) 0); |
| 3651 | copy->cpy_cont_argsc_u.c_p.cont_args = (char *) VM_MAP_COPYIN_ARGS_NULL((vm_map_copyin_args_t) 0); |
| 3652 | |
| 3653 | /* |
| 3654 | * Find the beginning of the region. |
| 3655 | */ |
| 3656 | |
| 3657 | do_map_lookup: |
| 3658 | |
| 3659 | vm_map_lock(src_map)({ lock_write(&(src_map)->lock); (src_map)->timestamp ++; }); |
| 3660 | |
| 3661 | if (!vm_map_lookup_entry(src_map, src_start, &src_entry)) { |
| 3662 | result = KERN_INVALID_ADDRESS1; |
| 3663 | goto error; |
| 3664 | } |
| 3665 | need_map_lookup = FALSE((boolean_t) 0); |
| 3666 | |
| 3667 | /* |
| 3668 | * Go through entries until we get to the end. |
| 3669 | */ |
| 3670 | |
| 3671 | while (TRUE((boolean_t) 1)) { |
| 3672 | |
| 3673 | if (! (src_entry->protection & VM_PROT_READ((vm_prot_t) 0x01))) { |
| 3674 | result = KERN_PROTECTION_FAILURE2; |
| 3675 | goto error; |
| 3676 | } |
| 3677 | |
| 3678 | if (src_end > src_entry->vme_endlinks.end) |
| 3679 | src_size = src_entry->vme_endlinks.end - src_start; |
| 3680 | else |
| 3681 | src_size = src_end - src_start; |
| 3682 | |
| 3683 | src_object = src_entry->object.vm_object; |
| 3684 | src_offset = src_entry->offset + |
| 3685 | (src_start - src_entry->vme_startlinks.start); |
| 3686 | |
| 3687 | /* |
| 3688 | * If src_object is NULL, allocate it now; |
| 3689 | * we're going to fault on it shortly. |
| 3690 | */ |
| 3691 | if (src_object == VM_OBJECT_NULL((vm_object_t) 0)) { |
| 3692 | src_object = vm_object_allocate((vm_size_t) |
| 3693 | src_entry->vme_endlinks.end - |
| 3694 | src_entry->vme_startlinks.start); |
| 3695 | src_entry->object.vm_object = src_object; |
| 3696 | } |
| 3697 | |
| 3698 | /* |
| 3699 | * Iterate over pages. Fault in ones that aren't present. |
| 3700 | */ |
| 3701 | src_last_offset = src_offset + src_size; |
| 3702 | for (; (src_offset < src_last_offset && !need_map_lookup); |
| 3703 | src_offset += PAGE_SIZE(1 << 12), src_start += PAGE_SIZE(1 << 12)) { |
| 3704 | |
| 3705 | if (copy->cpy_npagesc_u.c_p.npages == VM_MAP_COPY_PAGE_LIST_MAX64) { |
| 3706 | make_continuation: |
| 3707 | /* |
| 3708 | * At this point we have the max number of |
| 3709 | * pages busy for this thread that we're |
| 3710 | * willing to allow. Stop here and record |
| 3711 | * arguments for the remainder. Note: |
| 3712 | * this means that this routine isn't atomic, |
| 3713 | * but that's the breaks. Note that only |
| 3714 | * the first vm_map_copy_t that comes back |
| 3715 | * from this routine has the right offset |
| 3716 | * and size; those from continuations are |
| 3717 | * page rounded, and short by the amount |
| 3718 | * already done. |
| 3719 | * |
| 3720 | * Reset src_end so the src_destroy |
| 3721 | * code at the bottom doesn't do |
| 3722 | * something stupid. |
| 3723 | */ |
| 3724 | |
| 3725 | cont_args = (vm_map_copyin_args_t) |
| 3726 | kalloc(sizeof(vm_map_copyin_args_data_t)); |
| 3727 | cont_args->map = src_map; |
| 3728 | vm_map_reference(src_map); |
| 3729 | cont_args->src_addr = src_start; |
| 3730 | cont_args->src_len = len - (src_start - src_addr); |
| 3731 | if (src_destroy) { |
| 3732 | cont_args->destroy_addr = cont_args->src_addr; |
| 3733 | cont_args->destroy_len = cont_args->src_len; |
| 3734 | } |
| 3735 | else { |
| 3736 | cont_args->destroy_addr = (vm_offset_t) 0; |
| 3737 | cont_args->destroy_len = (vm_offset_t) 0; |
| 3738 | } |
| 3739 | cont_args->steal_pages = steal_pages; |
| 3740 | |
| 3741 | copy->cpy_cont_argsc_u.c_p.cont_args = (char *) cont_args; |
| 3742 | copy->cpy_contc_u.c_p.cont = vm_map_copyin_page_list_cont; |
| 3743 | |
| 3744 | src_end = src_start; |
| 3745 | vm_map_clip_end(src_map, src_entry, src_end)({ if ((src_end) < (src_entry)->links.end) _vm_map_clip_end (&(src_map)->hdr,(src_entry),(src_end)); }); |
| 3746 | break; |
| 3747 | } |
| 3748 | |
| 3749 | /* |
| 3750 | * Try to find the page of data. |
| 3751 | */ |
| 3752 | vm_object_lock(src_object); |
| 3753 | vm_object_paging_begin(src_object)((src_object)->paging_in_progress++); |
| 3754 | if (((m = vm_page_lookup(src_object, src_offset)) != |
| 3755 | VM_PAGE_NULL((vm_page_t) 0)) && !m->busy && !m->fictitious && |
| 3756 | !m->absent && !m->error) { |
| 3757 | |
| 3758 | /* |
| 3759 | * This is the page. Mark it busy |
| 3760 | * and keep the paging reference on |
| 3761 | * the object whilst we do our thing. |
| 3762 | */ |
| 3763 | m->busy = TRUE((boolean_t) 1); |
| 3764 | |
| 3765 | /* |
| 3766 | * Also write-protect the page, so |
| 3767 | * that the map`s owner cannot change |
| 3768 | * the data. The busy bit will prevent |
| 3769 | * faults on the page from succeeding |
| 3770 | * until the copy is released; after |
| 3771 | * that, the page can be re-entered |
| 3772 | * as writable, since we didn`t alter |
| 3773 | * the map entry. This scheme is a |
| 3774 | * cheap copy-on-write. |
| 3775 | * |
| 3776 | * Don`t forget the protection and |
| 3777 | * the page_lock value! |
| 3778 | * |
| 3779 | * If the source is being destroyed |
| 3780 | * AND not shared writable, we don`t |
| 3781 | * have to protect the page, since |
| 3782 | * we will destroy the (only) |
| 3783 | * writable mapping later. |
| 3784 | */ |
| 3785 | if (!src_destroy || |
| 3786 | src_object->use_shared_copy) |
| 3787 | { |
| 3788 | pmap_page_protect(m->phys_addr, |
| 3789 | src_entry->protection |
| 3790 | & ~m->page_lock |
| 3791 | & ~VM_PROT_WRITE((vm_prot_t) 0x02)); |
| 3792 | } |
| 3793 | |
| 3794 | } |
| 3795 | else { |
| 3796 | vm_prot_t result_prot; |
| 3797 | vm_page_t top_page; |
| 3798 | kern_return_t kr; |
| 3799 | |
| 3800 | /* |
| 3801 | * Have to fault the page in; must |
| 3802 | * unlock the map to do so. While |
| 3803 | * the map is unlocked, anything |
| 3804 | * can happen, we must lookup the |
| 3805 | * map entry before continuing. |
| 3806 | */ |
| 3807 | vm_map_unlock(src_map)lock_done(&(src_map)->lock); |
| 3808 | need_map_lookup = TRUE((boolean_t) 1); |
| 3809 | retry: |
| 3810 | result_prot = VM_PROT_READ((vm_prot_t) 0x01); |
| 3811 | |
| 3812 | kr = vm_fault_page(src_object, src_offset, |
| 3813 | VM_PROT_READ((vm_prot_t) 0x01), FALSE((boolean_t) 0), FALSE((boolean_t) 0), |
| 3814 | &result_prot, &m, &top_page, |
| 3815 | FALSE((boolean_t) 0), (void (*)()) 0); |
| 3816 | /* |
| 3817 | * Cope with what happened. |
| 3818 | */ |
| 3819 | switch (kr) { |
| 3820 | case VM_FAULT_SUCCESS0: |
| 3821 | break; |
| 3822 | case VM_FAULT_INTERRUPTED2: /* ??? */ |
| 3823 | case VM_FAULT_RETRY1: |
| 3824 | vm_object_lock(src_object); |
| 3825 | vm_object_paging_begin(src_object)((src_object)->paging_in_progress++); |
| 3826 | goto retry; |
| 3827 | case VM_FAULT_MEMORY_SHORTAGE3: |
| 3828 | VM_PAGE_WAIT((void (*)()) 0)vm_page_wait((void (*)()) 0); |
| 3829 | vm_object_lock(src_object); |
| 3830 | vm_object_paging_begin(src_object)((src_object)->paging_in_progress++); |
| 3831 | goto retry; |
| 3832 | case VM_FAULT_FICTITIOUS_SHORTAGE4: |
| 3833 | vm_page_more_fictitious(); |
| 3834 | vm_object_lock(src_object); |
| 3835 | vm_object_paging_begin(src_object)((src_object)->paging_in_progress++); |
| 3836 | goto retry; |
| 3837 | case VM_FAULT_MEMORY_ERROR5: |
| 3838 | /* |
| 3839 | * Something broke. If this |
| 3840 | * is a continuation, return |
| 3841 | * a partial result if possible, |
| 3842 | * else fail the whole thing. |
| 3843 | * In the continuation case, the |
| 3844 | * next continuation call will |
| 3845 | * get this error if it persists. |
| 3846 | */ |
| 3847 | vm_map_lock(src_map)({ lock_write(&(src_map)->lock); (src_map)->timestamp ++; }); |
| 3848 | if (is_cont && |
| 3849 | copy->cpy_npagesc_u.c_p.npages != 0) |
| 3850 | goto make_continuation; |
| 3851 | |
| 3852 | result = KERN_MEMORY_ERROR10; |
| 3853 | goto error; |
| 3854 | } |
| 3855 | |
| 3856 | if (top_page != VM_PAGE_NULL((vm_page_t) 0)) { |
| 3857 | vm_object_lock(src_object); |
| 3858 | VM_PAGE_FREE(top_page)({ ; vm_page_free(top_page); ; }); |
| 3859 | vm_object_paging_end(src_object)({ ({ if (!((src_object)->paging_in_progress != 0)) Assert ("(src_object)->paging_in_progress != 0", "../vm/vm_map.c" , 3859); }); if (--(src_object)->paging_in_progress == 0) { ({ if ((src_object)->all_wanted & (1 << (2))) thread_wakeup_prim (((event_t)(((vm_offset_t) src_object) + (2))), ((boolean_t) 0 ), 0); (src_object)->all_wanted &= ~(1 << (2)); } ); } }); |
| 3860 | vm_object_unlock(src_object); |
| 3861 | } |
| 3862 | |
| 3863 | /* |
| 3864 | * We do not need to write-protect |
| 3865 | * the page, since it cannot have |
| 3866 | * been in the pmap (and we did not |
| 3867 | * enter it above). The busy bit |
| 3868 | * will protect the page from being |
| 3869 | * entered as writable until it is |
| 3870 | * unlocked. |
| 3871 | */ |
| 3872 | |
| 3873 | } |
| 3874 | |
| 3875 | /* |
| 3876 | * The page is busy, its object is locked, and |
| 3877 | * we have a paging reference on it. Either |
| 3878 | * the map is locked, or need_map_lookup is |
| 3879 | * TRUE. |
| 3880 | * |
| 3881 | * Put the page in the page list. |
| 3882 | */ |
| 3883 | copy->cpy_page_listc_u.c_p.page_list[copy->cpy_npagesc_u.c_p.npages++] = m; |
| 3884 | vm_object_unlock(m->object); |
| 3885 | } |
| 3886 | |
| 3887 | /* |
| 3888 | * DETERMINE whether the entire region |
| 3889 | * has been copied. |
| 3890 | */ |
| 3891 | if (src_start >= src_end && src_end != 0) { |
| 3892 | if (need_map_lookup) |
| 3893 | vm_map_lock(src_map)({ lock_write(&(src_map)->lock); (src_map)->timestamp ++; }); |
| 3894 | break; |
| 3895 | } |
| 3896 | |
| 3897 | /* |
| 3898 | * If need_map_lookup is TRUE, have to start over with |
| 3899 | * another map lookup. Note that we dropped the map |
| 3900 | * lock (to call vm_fault_page) above only in this case. |
| 3901 | */ |
| 3902 | if (need_map_lookup) |
| 3903 | goto do_map_lookup; |
| 3904 | |
| 3905 | /* |
| 3906 | * Verify that there are no gaps in the region |
| 3907 | */ |
| 3908 | |
| 3909 | src_start = src_entry->vme_endlinks.end; |
| 3910 | src_entry = src_entry->vme_nextlinks.next; |
| 3911 | if (src_entry->vme_startlinks.start != src_start) { |
| 3912 | result = KERN_INVALID_ADDRESS1; |
| 3913 | goto error; |
| 3914 | } |
| 3915 | } |
| 3916 | |
| 3917 | /* |
| 3918 | * If steal_pages is true, make sure all |
| 3919 | * pages in the copy are not in any object |
| 3920 | * We try to remove them from the original |
| 3921 | * object, but we may have to copy them. |
| 3922 | * |
| 3923 | * At this point every page in the list is busy |
| 3924 | * and holds a paging reference to its object. |
| 3925 | * When we're done stealing, every page is busy, |
| 3926 | * and in no object (m->tabled == FALSE). |
| 3927 | */ |
| 3928 | src_start = trunc_page(src_addr)((vm_offset_t)(((vm_offset_t)(src_addr)) & ~((1 << 12 )-1))); |
| 3929 | if (steal_pages) { |
| 3930 | register int i; |
| 3931 | vm_offset_t unwire_end; |
| 3932 | |
| 3933 | unwire_end = src_start; |
| 3934 | for (i = 0; i < copy->cpy_npagesc_u.c_p.npages; i++) { |
| 3935 | |
| 3936 | /* |
| 3937 | * Remove the page from its object if it |
| 3938 | * can be stolen. It can be stolen if: |
| 3939 | * |
| 3940 | * (1) The source is being destroyed, |
| 3941 | * the object is temporary, and |
| 3942 | * not shared. |
| 3943 | * (2) The page is not precious. |
| 3944 | * |
| 3945 | * The not shared check consists of two |
| 3946 | * parts: (a) there are no objects that |
| 3947 | * shadow this object. (b) it is not the |
| 3948 | * object in any shared map entries (i.e., |
| 3949 | * use_shared_copy is not set). |
| 3950 | * |
| 3951 | * The first check (a) means that we can't |
| 3952 | * steal pages from objects that are not |
| 3953 | * at the top of their shadow chains. This |
| 3954 | * should not be a frequent occurrence. |
| 3955 | * |
| 3956 | * Stealing wired pages requires telling the |
| 3957 | * pmap module to let go of them. |
| 3958 | * |
| 3959 | * NOTE: stealing clean pages from objects |
| 3960 | * whose mappings survive requires a call to |
| 3961 | * the pmap module. Maybe later. |
| 3962 | */ |
| 3963 | m = copy->cpy_page_listc_u.c_p.page_list[i]; |
| 3964 | src_object = m->object; |
| 3965 | vm_object_lock(src_object); |
| 3966 | |
| 3967 | if (src_destroy && |
| 3968 | src_object->temporary && |
| 3969 | (!src_object->shadowed) && |
| 3970 | (!src_object->use_shared_copy) && |
| 3971 | !m->precious) { |
| 3972 | vm_offset_t page_vaddr; |
| 3973 | |
| 3974 | page_vaddr = src_start + (i * PAGE_SIZE(1 << 12)); |
| 3975 | if (m->wire_count > 0) { |
| 3976 | |
| 3977 | assert(m->wire_count == 1)({ if (!(m->wire_count == 1)) Assert("m->wire_count == 1" , "../vm/vm_map.c", 3977); }); |
| 3978 | /* |
| 3979 | * In order to steal a wired |
| 3980 | * page, we have to unwire it |
| 3981 | * first. We do this inline |
| 3982 | * here because we have the page. |
| 3983 | * |
| 3984 | * Step 1: Unwire the map entry. |
| 3985 | * Also tell the pmap module |
| 3986 | * that this piece of the |
| 3987 | * pmap is pageable. |
| 3988 | */ |
| 3989 | vm_object_unlock(src_object); |
| 3990 | if (page_vaddr >= unwire_end) { |
| 3991 | if (!vm_map_lookup_entry(src_map, |
| 3992 | page_vaddr, &src_entry)) |
| 3993 | panic("vm_map_copyin_page_list: missing wired map entry"); |
| 3994 | |
| 3995 | vm_map_clip_start(src_map, src_entry,({ if ((page_vaddr) > (src_entry)->links.start) _vm_map_clip_start (&(src_map)->hdr,(src_entry),(page_vaddr)); }) |
| 3996 | page_vaddr)({ if ((page_vaddr) > (src_entry)->links.start) _vm_map_clip_start (&(src_map)->hdr,(src_entry),(page_vaddr)); }); |
| 3997 | vm_map_clip_end(src_map, src_entry,({ if ((src_start + src_size) < (src_entry)->links.end) _vm_map_clip_end(&(src_map)->hdr,(src_entry),(src_start + src_size)); }) |
| 3998 | src_start + src_size)({ if ((src_start + src_size) < (src_entry)->links.end) _vm_map_clip_end(&(src_map)->hdr,(src_entry),(src_start + src_size)); }); |
| 3999 | |
| 4000 | assert(src_entry->wired_count > 0)({ if (!(src_entry->wired_count > 0)) Assert("src_entry->wired_count > 0" , "../vm/vm_map.c", 4000); }); |
| 4001 | src_entry->wired_count = 0; |
| 4002 | src_entry->user_wired_count = 0; |
| 4003 | unwire_end = src_entry->vme_endlinks.end; |
| 4004 | pmap_pageable(vm_map_pmap(src_map)((src_map)->pmap), |
| 4005 | page_vaddr, unwire_end, TRUE((boolean_t) 1)); |
| 4006 | } |
| 4007 | |
| 4008 | /* |
| 4009 | * Step 2: Unwire the page. |
| 4010 | * pmap_remove handles this for us. |
| 4011 | */ |
| 4012 | vm_object_lock(src_object); |
| 4013 | } |
| 4014 | |
| 4015 | /* |
| 4016 | * Don't need to remove the mapping; |
| 4017 | * vm_map_delete will handle it. |
| 4018 | * |
| 4019 | * Steal the page. Setting the wire count |
| 4020 | * to zero is vm_page_unwire without |
| 4021 | * activating the page. |
| 4022 | */ |
| 4023 | vm_page_lock_queues(); |
| 4024 | vm_page_remove(m); |
| 4025 | if (m->wire_count > 0) { |
| 4026 | m->wire_count = 0; |
| 4027 | vm_page_wire_count--; |
| 4028 | } else { |
| 4029 | VM_PAGE_QUEUES_REMOVE(m)({ if (m->active) { { register queue_entry_t next, prev; next = (m)->pageq.next; prev = (m)->pageq.prev; if ((&vm_page_queue_active ) == next) (&vm_page_queue_active)->prev = prev; else ( (vm_page_t)next)->pageq.prev = prev; if ((&vm_page_queue_active ) == prev) (&vm_page_queue_active)->next = next; else ( (vm_page_t)prev)->pageq.next = next; }; m->active = ((boolean_t ) 0); vm_page_active_count--; } if (m->inactive) { { register queue_entry_t next, prev; next = (m)->pageq.next; prev = ( m)->pageq.prev; if ((&vm_page_queue_inactive) == next) (&vm_page_queue_inactive)->prev = prev; else ((vm_page_t )next)->pageq.prev = prev; if ((&vm_page_queue_inactive ) == prev) (&vm_page_queue_inactive)->next = next; else ((vm_page_t)prev)->pageq.next = next; }; m->inactive = ((boolean_t) 0); vm_page_inactive_count--; } }); |
| 4030 | } |
| 4031 | vm_page_unlock_queues(); |
| 4032 | } |
| 4033 | else { |
| 4034 | /* |
| 4035 | * Have to copy this page. Have to |
| 4036 | * unlock the map while copying, |
| 4037 | * hence no further page stealing. |
| 4038 | * Hence just copy all the pages. |
| 4039 | * Unlock the map while copying; |
| 4040 | * This means no further page stealing. |
| 4041 | */ |
| 4042 | vm_object_unlock(src_object); |
| 4043 | vm_map_unlock(src_map)lock_done(&(src_map)->lock); |
| 4044 | |
| 4045 | vm_map_copy_steal_pages(copy); |
| 4046 | |
| 4047 | vm_map_lock(src_map)({ lock_write(&(src_map)->lock); (src_map)->timestamp ++; }); |
| 4048 | break; |
| 4049 | } |
| 4050 | |
| 4051 | vm_object_paging_end(src_object)({ ({ if (!((src_object)->paging_in_progress != 0)) Assert ("(src_object)->paging_in_progress != 0", "../vm/vm_map.c" , 4051); }); if (--(src_object)->paging_in_progress == 0) { ({ if ((src_object)->all_wanted & (1 << (2))) thread_wakeup_prim (((event_t)(((vm_offset_t) src_object) + (2))), ((boolean_t) 0 ), 0); (src_object)->all_wanted &= ~(1 << (2)); } ); } }); |
| 4052 | vm_object_unlock(src_object); |
| 4053 | } |
| 4054 | |
| 4055 | /* |
| 4056 | * If the source should be destroyed, do it now, since the |
| 4057 | * copy was successful. |
| 4058 | */ |
| 4059 | |
| 4060 | if (src_destroy) { |
| 4061 | (void) vm_map_delete(src_map, src_start, src_end); |
| 4062 | } |
| 4063 | } |
| 4064 | else { |
| 4065 | /* |
| 4066 | * !steal_pages leaves busy pages in the map. |
| 4067 | * This will cause src_destroy to hang. Use |
| 4068 | * a continuation to prevent this. |
| 4069 | */ |
| 4070 | if (src_destroy && !vm_map_copy_has_cont(copy)(((copy)->c_u.c_p.cont) != (kern_return_t (*)()) 0)) { |
| 4071 | cont_args = (vm_map_copyin_args_t) |
| 4072 | kalloc(sizeof(vm_map_copyin_args_data_t)); |
| 4073 | vm_map_reference(src_map); |
| 4074 | cont_args->map = src_map; |
| 4075 | cont_args->src_addr = (vm_offset_t) 0; |
| 4076 | cont_args->src_len = (vm_size_t) 0; |
| 4077 | cont_args->destroy_addr = src_start; |
| 4078 | cont_args->destroy_len = src_end - src_start; |
| 4079 | cont_args->steal_pages = FALSE((boolean_t) 0); |
| 4080 | |
| 4081 | copy->cpy_cont_argsc_u.c_p.cont_args = (char *) cont_args; |
| 4082 | copy->cpy_contc_u.c_p.cont = vm_map_copyin_page_list_cont; |
| 4083 | } |
| 4084 | |
| 4085 | } |
| 4086 | |
| 4087 | vm_map_unlock(src_map)lock_done(&(src_map)->lock); |
| 4088 | |
| 4089 | *copy_result = copy; |
| 4090 | return(result); |
| 4091 | |
| 4092 | error: |
| 4093 | vm_map_unlock(src_map)lock_done(&(src_map)->lock); |
| 4094 | vm_map_copy_discard(copy); |
| 4095 | return(result); |
| 4096 | } |
| 4097 | |
| 4098 | /* |
| 4099 | * vm_map_fork: |
| 4100 | * |
| 4101 | * Create and return a new map based on the old |
| 4102 | * map, according to the inheritance values on the |
| 4103 | * regions in that map. |
| 4104 | * |
| 4105 | * The source map must not be locked. |
| 4106 | */ |
| 4107 | vm_map_t vm_map_fork(old_map) |
| 4108 | vm_map_t old_map; |
| 4109 | { |
| 4110 | vm_map_t new_map; |
| 4111 | register |
| 4112 | vm_map_entry_t old_entry; |
| 4113 | register |
| 4114 | vm_map_entry_t new_entry; |
| 4115 | pmap_t new_pmap = pmap_create((vm_size_t) 0); |
| 4116 | vm_size_t new_size = 0; |
| 4117 | vm_size_t entry_size; |
| 4118 | register |
| 4119 | vm_object_t object; |
| 4120 | |
| 4121 | vm_map_lock(old_map)({ lock_write(&(old_map)->lock); (old_map)->timestamp ++; }); |
| 4122 | |
| 4123 | new_map = vm_map_create(new_pmap, |
| 4124 | old_map->min_offsethdr.links.start, |
| 4125 | old_map->max_offsethdr.links.end, |
| 4126 | old_map->hdr.entries_pageable); |
| 4127 | |
| 4128 | for ( |
| 4129 | old_entry = vm_map_first_entry(old_map)((old_map)->hdr.links.next); |
| 4130 | old_entry != vm_map_to_entry(old_map)((struct vm_map_entry *) &(old_map)->hdr.links); |
| 4131 | ) { |
| 4132 | if (old_entry->is_sub_map) |
| 4133 | panic("vm_map_fork: encountered a submap"); |
| 4134 | |
| 4135 | entry_size = (old_entry->vme_endlinks.end - old_entry->vme_startlinks.start); |
| 4136 | |
| 4137 | switch (old_entry->inheritance) { |
| 4138 | case VM_INHERIT_NONE((vm_inherit_t) 2): |
| 4139 | break; |
| 4140 | |
| 4141 | case VM_INHERIT_SHARE((vm_inherit_t) 0): |
| 4142 | /* |
| 4143 | * New sharing code. New map entry |
| 4144 | * references original object. Temporary |
| 4145 | * objects use asynchronous copy algorithm for |
| 4146 | * future copies. First make sure we have |
| 4147 | * the right object. If we need a shadow, |
| 4148 | * or someone else already has one, then |
| 4149 | * make a new shadow and share it. |
| 4150 | */ |
| 4151 | |
| 4152 | object = old_entry->object.vm_object; |
| 4153 | if (object == VM_OBJECT_NULL((vm_object_t) 0)) { |
| 4154 | object = vm_object_allocate( |
| 4155 | (vm_size_t)(old_entry->vme_endlinks.end - |
| 4156 | old_entry->vme_startlinks.start)); |
| 4157 | old_entry->offset = 0; |
| 4158 | old_entry->object.vm_object = object; |
| 4159 | assert(!old_entry->needs_copy)({ if (!(!old_entry->needs_copy)) Assert("!old_entry->needs_copy" , "../vm/vm_map.c", 4159); }); |
| 4160 | } |
| 4161 | else if (old_entry->needs_copy || object->shadowed || |
| 4162 | (object->temporary && !old_entry->is_shared && |
| 4163 | object->size > (vm_size_t)(old_entry->vme_endlinks.end - |
| 4164 | old_entry->vme_startlinks.start))) { |
| 4165 | |
| 4166 | assert(object->temporary)({ if (!(object->temporary)) Assert("object->temporary" , "../vm/vm_map.c", 4166); }); |
| 4167 | assert(!(object->shadowed && old_entry->is_shared))({ if (!(!(object->shadowed && old_entry->is_shared ))) Assert("!(object->shadowed && old_entry->is_shared)" , "../vm/vm_map.c", 4167); }); |
| 4168 | vm_object_shadow( |
| 4169 | &old_entry->object.vm_object, |
| 4170 | &old_entry->offset, |
| 4171 | (vm_size_t) (old_entry->vme_endlinks.end - |
| 4172 | old_entry->vme_startlinks.start)); |
| 4173 | |
| 4174 | /* |
| 4175 | * If we're making a shadow for other than |
| 4176 | * copy on write reasons, then we have |
| 4177 | * to remove write permission. |
| 4178 | */ |
| 4179 | |
| 4180 | if (!old_entry->needs_copy && |
| 4181 | (old_entry->protection & VM_PROT_WRITE((vm_prot_t) 0x02))) { |
| 4182 | pmap_protect(vm_map_pmap(old_map)((old_map)->pmap), |
| 4183 | old_entry->vme_startlinks.start, |
| 4184 | old_entry->vme_endlinks.end, |
| 4185 | old_entry->protection & |
| 4186 | ~VM_PROT_WRITE((vm_prot_t) 0x02)); |
| 4187 | } |
| 4188 | old_entry->needs_copy = FALSE((boolean_t) 0); |
| 4189 | object = old_entry->object.vm_object; |
| 4190 | } |
| 4191 | |
| 4192 | /* |
| 4193 | * Set use_shared_copy to indicate that |
| 4194 | * object must use shared (delayed) copy-on |
| 4195 | * write. This is ignored for permanent objects. |
| 4196 | * Bump the reference count for the new entry |
| 4197 | */ |
| 4198 | |
| 4199 | vm_object_lock(object); |
| 4200 | object->use_shared_copy = TRUE((boolean_t) 1); |
| 4201 | object->ref_count++; |
| 4202 | vm_object_unlock(object); |
| 4203 | |
| 4204 | new_entry = vm_map_entry_create(new_map)_vm_map_entry_create(&(new_map)->hdr); |
| 4205 | |
| 4206 | if (old_entry->projected_on != 0) { |
| 4207 | /* |
| 4208 | * If entry is projected buffer, clone the |
| 4209 | * entry exactly. |
| 4210 | */ |
| 4211 | |
| 4212 | vm_map_entry_copy_full(new_entry, old_entry)(*(new_entry) = *(old_entry)); |
| 4213 | |
| 4214 | } else { |
| 4215 | /* |
| 4216 | * Clone the entry, using object ref from above. |
| 4217 | * Mark both entries as shared. |
| 4218 | */ |
| 4219 | |
| 4220 | vm_map_entry_copy(new_entry, old_entry)({ *(new_entry) = *(old_entry); (new_entry)->is_shared = ( (boolean_t) 0); (new_entry)->needs_wakeup = ((boolean_t) 0 ); (new_entry)->in_transition = ((boolean_t) 0); (new_entry )->wired_count = 0; (new_entry)->user_wired_count = 0; } ); |
| 4221 | old_entry->is_shared = TRUE((boolean_t) 1); |
| 4222 | new_entry->is_shared = TRUE((boolean_t) 1); |
| 4223 | } |
| 4224 | |
| 4225 | /* |
| 4226 | * Insert the entry into the new map -- we |
| 4227 | * know we're inserting at the end of the new |
| 4228 | * map. |
| 4229 | */ |
| 4230 | |
| 4231 | vm_map_entry_link(({ (&(new_map)->hdr)->nentries++; (new_entry)->links .prev = (((new_map)->hdr.links.prev)); (new_entry)->links .next = (((new_map)->hdr.links.prev))->links.next; (new_entry )->links.prev->links.next = (new_entry)->links.next-> links.prev = (new_entry); ({ struct rbtree_node *___cur, *___prev ; int ___diff, ___index; ___prev = ((void *) 0); ___index = - 1; ___cur = (&(&(new_map)->hdr)->tree)->root ; while (___cur != ((void *) 0)) { ___diff = vm_map_entry_cmp_insert (&(new_entry)->tree_node, ___cur); ({ if (!(___diff != 0)) Assert("___diff != 0", "../vm/vm_map.c", 4234); }); ___prev = ___cur; ___index = rbtree_d2i(___diff); ___cur = ___cur-> children[___index]; } rbtree_insert_rebalance(&(&(new_map )->hdr)->tree, ___prev, ___index, &(new_entry)-> tree_node); }); }) |
| 4232 | new_map,({ (&(new_map)->hdr)->nentries++; (new_entry)->links .prev = (((new_map)->hdr.links.prev)); (new_entry)->links .next = (((new_map)->hdr.links.prev))->links.next; (new_entry )->links.prev->links.next = (new_entry)->links.next-> links.prev = (new_entry); ({ struct rbtree_node *___cur, *___prev ; int ___diff, ___index; ___prev = ((void *) 0); ___index = - 1; ___cur = (&(&(new_map)->hdr)->tree)->root ; while (___cur != ((void *) 0)) { ___diff = vm_map_entry_cmp_insert (&(new_entry)->tree_node, ___cur); ({ if (!(___diff != 0)) Assert("___diff != 0", "../vm/vm_map.c", 4234); }); ___prev = ___cur; ___index = rbtree_d2i(___diff); ___cur = ___cur-> children[___index]; } rbtree_insert_rebalance(&(&(new_map )->hdr)->tree, ___prev, ___index, &(new_entry)-> tree_node); }); }) |
| 4233 | vm_map_last_entry(new_map),({ (&(new_map)->hdr)->nentries++; (new_entry)->links .prev = (((new_map)->hdr.links.prev)); (new_entry)->links .next = (((new_map)->hdr.links.prev))->links.next; (new_entry )->links.prev->links.next = (new_entry)->links.next-> links.prev = (new_entry); ({ struct rbtree_node *___cur, *___prev ; int ___diff, ___index; ___prev = ((void *) 0); ___index = - 1; ___cur = (&(&(new_map)->hdr)->tree)->root ; while (___cur != ((void *) 0)) { ___diff = vm_map_entry_cmp_insert (&(new_entry)->tree_node, ___cur); ({ if (!(___diff != 0)) Assert("___diff != 0", "../vm/vm_map.c", 4234); }); ___prev = ___cur; ___index = rbtree_d2i(___diff); ___cur = ___cur-> children[___index]; } rbtree_insert_rebalance(&(&(new_map )->hdr)->tree, ___prev, ___index, &(new_entry)-> tree_node); }); }) |
| 4234 | new_entry)({ (&(new_map)->hdr)->nentries++; (new_entry)->links .prev = (((new_map)->hdr.links.prev)); (new_entry)->links .next = (((new_map)->hdr.links.prev))->links.next; (new_entry )->links.prev->links.next = (new_entry)->links.next-> links.prev = (new_entry); ({ struct rbtree_node *___cur, *___prev ; int ___diff, ___index; ___prev = ((void *) 0); ___index = - 1; ___cur = (&(&(new_map)->hdr)->tree)->root ; while (___cur != ((void *) 0)) { ___diff = vm_map_entry_cmp_insert (&(new_entry)->tree_node, ___cur); ({ if (!(___diff != 0)) Assert("___diff != 0", "../vm/vm_map.c", 4234); }); ___prev = ___cur; ___index = rbtree_d2i(___diff); ___cur = ___cur-> children[___index]; } rbtree_insert_rebalance(&(&(new_map )->hdr)->tree, ___prev, ___index, &(new_entry)-> tree_node); }); }); |
| 4235 | |
| 4236 | /* |
| 4237 | * Update the physical map |
| 4238 | */ |
| 4239 | |
| 4240 | pmap_copy(new_map->pmap, old_map->pmap, |
| 4241 | new_entry->vme_start, |
| 4242 | entry_size, |
| 4243 | old_entry->vme_start); |
| 4244 | |
| 4245 | new_size += entry_size; |
| 4246 | break; |
| 4247 | |
| 4248 | case VM_INHERIT_COPY((vm_inherit_t) 1): |
| 4249 | if (old_entry->wired_count == 0) { |
| 4250 | boolean_t src_needs_copy; |
| 4251 | boolean_t new_entry_needs_copy; |
| 4252 | |
| 4253 | new_entry = vm_map_entry_create(new_map)_vm_map_entry_create(&(new_map)->hdr); |
| 4254 | vm_map_entry_copy(new_entry, old_entry)({ *(new_entry) = *(old_entry); (new_entry)->is_shared = ( (boolean_t) 0); (new_entry)->needs_wakeup = ((boolean_t) 0 ); (new_entry)->in_transition = ((boolean_t) 0); (new_entry )->wired_count = 0; (new_entry)->user_wired_count = 0; } ); |
| 4255 | |
| 4256 | if (vm_object_copy_temporary( |
| 4257 | &new_entry->object.vm_object, |
| 4258 | &new_entry->offset, |
| 4259 | &src_needs_copy, |
| 4260 | &new_entry_needs_copy)) { |
| 4261 | |
| 4262 | /* |
| 4263 | * Handle copy-on-write obligations |
| 4264 | */ |
| 4265 | |
| 4266 | if (src_needs_copy && !old_entry->needs_copy) { |
| 4267 | vm_object_pmap_protect( |
| 4268 | old_entry->object.vm_object, |
| 4269 | old_entry->offset, |
| 4270 | entry_size, |
| 4271 | (old_entry->is_shared ? |
| 4272 | PMAP_NULL((pmap_t) 0) : |
| 4273 | old_map->pmap), |
| 4274 | old_entry->vme_startlinks.start, |
| 4275 | old_entry->protection & |
| 4276 | ~VM_PROT_WRITE((vm_prot_t) 0x02)); |
| 4277 | |
| 4278 | old_entry->needs_copy = TRUE((boolean_t) 1); |
| 4279 | } |
| 4280 | |
| 4281 | new_entry->needs_copy = new_entry_needs_copy; |
| 4282 | |
| 4283 | /* |
| 4284 | * Insert the entry at the end |
| 4285 | * of the map. |
| 4286 | */ |
| 4287 | |
| 4288 | vm_map_entry_link(new_map,({ (&(new_map)->hdr)->nentries++; (new_entry)->links .prev = (((new_map)->hdr.links.prev)); (new_entry)->links .next = (((new_map)->hdr.links.prev))->links.next; (new_entry )->links.prev->links.next = (new_entry)->links.next-> links.prev = (new_entry); ({ struct rbtree_node *___cur, *___prev ; int ___diff, ___index; ___prev = ((void *) 0); ___index = - 1; ___cur = (&(&(new_map)->hdr)->tree)->root ; while (___cur != ((void *) 0)) { ___diff = vm_map_entry_cmp_insert (&(new_entry)->tree_node, ___cur); ({ if (!(___diff != 0)) Assert("___diff != 0", "../vm/vm_map.c", 4290); }); ___prev = ___cur; ___index = rbtree_d2i(___diff); ___cur = ___cur-> children[___index]; } rbtree_insert_rebalance(&(&(new_map )->hdr)->tree, ___prev, ___index, &(new_entry)-> tree_node); }); }) |
| 4289 | vm_map_last_entry(new_map),({ (&(new_map)->hdr)->nentries++; (new_entry)->links .prev = (((new_map)->hdr.links.prev)); (new_entry)->links .next = (((new_map)->hdr.links.prev))->links.next; (new_entry )->links.prev->links.next = (new_entry)->links.next-> links.prev = (new_entry); ({ struct rbtree_node *___cur, *___prev ; int ___diff, ___index; ___prev = ((void *) 0); ___index = - 1; ___cur = (&(&(new_map)->hdr)->tree)->root ; while (___cur != ((void *) 0)) { ___diff = vm_map_entry_cmp_insert (&(new_entry)->tree_node, ___cur); ({ if (!(___diff != 0)) Assert("___diff != 0", "../vm/vm_map.c", 4290); }); ___prev = ___cur; ___index = rbtree_d2i(___diff); ___cur = ___cur-> children[___index]; } rbtree_insert_rebalance(&(&(new_map )->hdr)->tree, ___prev, ___index, &(new_entry)-> tree_node); }); }) |
| 4290 | new_entry)({ (&(new_map)->hdr)->nentries++; (new_entry)->links .prev = (((new_map)->hdr.links.prev)); (new_entry)->links .next = (((new_map)->hdr.links.prev))->links.next; (new_entry )->links.prev->links.next = (new_entry)->links.next-> links.prev = (new_entry); ({ struct rbtree_node *___cur, *___prev ; int ___diff, ___index; ___prev = ((void *) 0); ___index = - 1; ___cur = (&(&(new_map)->hdr)->tree)->root ; while (___cur != ((void *) 0)) { ___diff = vm_map_entry_cmp_insert (&(new_entry)->tree_node, ___cur); ({ if (!(___diff != 0)) Assert("___diff != 0", "../vm/vm_map.c", 4290); }); ___prev = ___cur; ___index = rbtree_d2i(___diff); ___cur = ___cur-> children[___index]; } rbtree_insert_rebalance(&(&(new_map )->hdr)->tree, ___prev, ___index, &(new_entry)-> tree_node); }); }); |
| 4291 | |
| 4292 | |
| 4293 | new_size += entry_size; |
| 4294 | break; |
| 4295 | } |
| 4296 | |
| 4297 | vm_map_entry_dispose(new_map, new_entry)_vm_map_entry_dispose(&(new_map)->hdr, (new_entry)); |
| 4298 | } |
| 4299 | |
| 4300 | /* INNER BLOCK (copy cannot be optimized) */ { |
| 4301 | |
| 4302 | vm_offset_t start = old_entry->vme_startlinks.start; |
| 4303 | vm_map_copy_t copy; |
| 4304 | vm_map_entry_t last = vm_map_last_entry(new_map)((new_map)->hdr.links.prev); |
| 4305 | |
| 4306 | vm_map_unlock(old_map)lock_done(&(old_map)->lock); |
| 4307 | if (vm_map_copyin(old_map, |
| 4308 | start, |
| 4309 | entry_size, |
| 4310 | FALSE((boolean_t) 0), |
| 4311 | ©) |
| 4312 | != KERN_SUCCESS0) { |
| 4313 | vm_map_lock(old_map)({ lock_write(&(old_map)->lock); (old_map)->timestamp ++; }); |
| 4314 | if (!vm_map_lookup_entry(old_map, start, &last)) |
| 4315 | last = last->vme_nextlinks.next; |
| 4316 | old_entry = last; |
| 4317 | /* |
| 4318 | * For some error returns, want to |
| 4319 | * skip to the next element. |
| 4320 | */ |
| 4321 | |
| 4322 | continue; |
| 4323 | } |
| 4324 | |
| 4325 | /* |
| 4326 | * Insert the copy into the new map |
| 4327 | */ |
| 4328 | |
| 4329 | vm_map_copy_insert(new_map, last, copy)({ struct rbtree_node *node, *tmp; for (node = rbtree_postwalk_deepest (&(copy)->c_u.hdr.tree), tmp = rbtree_postwalk_unlink( node); node != ((void *) 0); node = tmp, tmp = rbtree_postwalk_unlink (node)) ({ struct rbtree_node *___cur, *___prev; int ___diff, ___index; ___prev = ((void *) 0); ___index = -1; ___cur = (& (new_map)->hdr.tree)->root; while (___cur != ((void *) 0 )) { ___diff = vm_map_entry_cmp_insert(node, ___cur); ({ if ( !(___diff != 0)) Assert("___diff != 0", "../vm/vm_map.c", 4329 ); }); ___prev = ___cur; ___index = rbtree_d2i(___diff); ___cur = ___cur->children[___index]; } rbtree_insert_rebalance(& (new_map)->hdr.tree, ___prev, ___index, node); }); (((last )->links.next)->links.prev = ((copy)->c_u.hdr.links. prev)) ->links.next = ((last)->links.next); ((last)-> links.next = ((copy)->c_u.hdr.links.next)) ->links.prev = (last); (new_map)->hdr.nentries += (copy)->c_u.hdr.nentries ; kmem_cache_free(&vm_map_copy_cache, (vm_offset_t) copy) ; }); |
| 4330 | new_size += entry_size; |
| 4331 | |
| 4332 | /* |
| 4333 | * Pick up the traversal at the end of |
| 4334 | * the copied region. |
| 4335 | */ |
| 4336 | |
| 4337 | vm_map_lock(old_map)({ lock_write(&(old_map)->lock); (old_map)->timestamp ++; }); |
| 4338 | start += entry_size; |
| 4339 | if (!vm_map_lookup_entry(old_map, start, &last)) |
| 4340 | last = last->vme_nextlinks.next; |
| 4341 | else |
| 4342 | vm_map_clip_start(old_map, last, start)({ if ((start) > (last)->links.start) _vm_map_clip_start (&(old_map)->hdr,(last),(start)); }); |
| 4343 | old_entry = last; |
| 4344 | |
| 4345 | continue; |
| 4346 | /* INNER BLOCK (copy cannot be optimized) */ } |
| 4347 | } |
| 4348 | old_entry = old_entry->vme_nextlinks.next; |
| 4349 | } |
| 4350 | |
| 4351 | new_map->size = new_size; |
| 4352 | vm_map_unlock(old_map)lock_done(&(old_map)->lock); |
| 4353 | |
| 4354 | return(new_map); |
| 4355 | } |
| 4356 | |
| 4357 | /* |
| 4358 | * vm_map_lookup: |
| 4359 | * |
| 4360 | * Finds the VM object, offset, and |
| 4361 | * protection for a given virtual address in the |
| 4362 | * specified map, assuming a page fault of the |
| 4363 | * type specified. |
| 4364 | * |
| 4365 | * Returns the (object, offset, protection) for |
| 4366 | * this address, whether it is wired down, and whether |
| 4367 | * this map has the only reference to the data in question. |
| 4368 | * In order to later verify this lookup, a "version" |
| 4369 | * is returned. |
| 4370 | * |
| 4371 | * The map should not be locked; it will not be |
| 4372 | * locked on exit. In order to guarantee the |
| 4373 | * existence of the returned object, it is returned |
| 4374 | * locked. |
| 4375 | * |
| 4376 | * If a lookup is requested with "write protection" |
| 4377 | * specified, the map may be changed to perform virtual |
| 4378 | * copying operations, although the data referenced will |
| 4379 | * remain the same. |
| 4380 | */ |
| 4381 | kern_return_t vm_map_lookup(var_map, vaddr, fault_type, out_version, |
| 4382 | object, offset, out_prot, wired) |
| 4383 | vm_map_t *var_map; /* IN/OUT */ |
| 4384 | register vm_offset_t vaddr; |
| 4385 | register vm_prot_t fault_type; |
| 4386 | |
| 4387 | vm_map_version_t *out_version; /* OUT */ |
| 4388 | vm_object_t *object; /* OUT */ |
| 4389 | vm_offset_t *offset; /* OUT */ |
| 4390 | vm_prot_t *out_prot; /* OUT */ |
| 4391 | boolean_t *wired; /* OUT */ |
| 4392 | { |
| 4393 | register vm_map_entry_t entry; |
| 4394 | register vm_map_t map = *var_map; |
| 4395 | register vm_prot_t prot; |
| 4396 | |
| 4397 | RetryLookup: ; |
| 4398 | |
| 4399 | /* |
| 4400 | * Lookup the faulting address. |
| 4401 | */ |
| 4402 | |
| 4403 | vm_map_lock_read(map)lock_read(&(map)->lock); |
| 4404 | |
| 4405 | #define RETURN(why) \ |
| 4406 | { \ |
| 4407 | vm_map_unlock_read(map)lock_done(&(map)->lock); \ |
| 4408 | return(why); \ |
| 4409 | } |
| 4410 | |
| 4411 | /* |
| 4412 | * If the map has an interesting hint, try it before calling |
| 4413 | * full blown lookup routine. |
| 4414 | */ |
| 4415 | |
| 4416 | simple_lock(&map->hint_lock); |
| 4417 | entry = map->hint; |
| 4418 | simple_unlock(&map->hint_lock); |
| 4419 | |
| 4420 | if ((entry == vm_map_to_entry(map)((struct vm_map_entry *) &(map)->hdr.links)) || |
| 4421 | (vaddr < entry->vme_startlinks.start) || (vaddr >= entry->vme_endlinks.end)) { |
| 4422 | vm_map_entry_t tmp_entry; |
| 4423 | |
| 4424 | /* |
| 4425 | * Entry was either not a valid hint, or the vaddr |
| 4426 | * was not contained in the entry, so do a full lookup. |
| 4427 | */ |
| 4428 | if (!vm_map_lookup_entry(map, vaddr, &tmp_entry)) |
| 4429 | RETURN(KERN_INVALID_ADDRESS1); |
| 4430 | |
| 4431 | entry = tmp_entry; |
| 4432 | } |
| 4433 | |
| 4434 | /* |
| 4435 | * Handle submaps. |
| 4436 | */ |
| 4437 | |
| 4438 | if (entry->is_sub_map) { |
| 4439 | vm_map_t old_map = map; |
| 4440 | |
| 4441 | *var_map = map = entry->object.sub_map; |
| 4442 | vm_map_unlock_read(old_map)lock_done(&(old_map)->lock); |
| 4443 | goto RetryLookup; |
| 4444 | } |
| 4445 | |
| 4446 | /* |
| 4447 | * Check whether this task is allowed to have |
| 4448 | * this page. |
| 4449 | */ |
| 4450 | |
| 4451 | prot = entry->protection; |
| 4452 | |
| 4453 | if ((fault_type & (prot)) != fault_type) { |
| 4454 | if ((prot & VM_PROT_NOTIFY((vm_prot_t) 0x10)) && (fault_type & VM_PROT_WRITE((vm_prot_t) 0x02))) { |
| 4455 | RETURN(KERN_WRITE_PROTECTION_FAILURE24); |
| 4456 | } else { |
| 4457 | RETURN(KERN_PROTECTION_FAILURE2); |
| 4458 | } |
| 4459 | } |
| 4460 | |
| 4461 | /* |
| 4462 | * If this page is not pageable, we have to get |
| 4463 | * it for all possible accesses. |
| 4464 | */ |
| 4465 | |
| 4466 | if ((*wired = (entry->wired_count != 0))) |
| 4467 | prot = fault_type = entry->protection; |
| 4468 | |
| 4469 | /* |
| 4470 | * If the entry was copy-on-write, we either ... |
| 4471 | */ |
| 4472 | |
| 4473 | if (entry->needs_copy) { |
| 4474 | /* |
| 4475 | * If we want to write the page, we may as well |
| 4476 | * handle that now since we've got the map locked. |
| 4477 | * |
| 4478 | * If we don't need to write the page, we just |
| 4479 | * demote the permissions allowed. |
| 4480 | */ |
| 4481 | |
| 4482 | if (fault_type & VM_PROT_WRITE((vm_prot_t) 0x02)) { |
| 4483 | /* |
| 4484 | * Make a new object, and place it in the |
| 4485 | * object chain. Note that no new references |
| 4486 | * have appeared -- one just moved from the |
| 4487 | * map to the new object. |
| 4488 | */ |
| 4489 | |
| 4490 | if (vm_map_lock_read_to_write(map)(lock_read_to_write(&(map)->lock) || (((map)->timestamp ++), 0))) { |
| 4491 | goto RetryLookup; |
| 4492 | } |
| 4493 | map->timestamp++; |
| 4494 | |
| 4495 | vm_object_shadow( |
| 4496 | &entry->object.vm_object, |
| 4497 | &entry->offset, |
| 4498 | (vm_size_t) (entry->vme_endlinks.end - entry->vme_startlinks.start)); |
| 4499 | |
| 4500 | entry->needs_copy = FALSE((boolean_t) 0); |
| 4501 | |
| 4502 | vm_map_lock_write_to_read(map)lock_write_to_read(&(map)->lock); |
| 4503 | } |
| 4504 | else { |
| 4505 | /* |
| 4506 | * We're attempting to read a copy-on-write |
| 4507 | * page -- don't allow writes. |
| 4508 | */ |
| 4509 | |
| 4510 | prot &= (~VM_PROT_WRITE((vm_prot_t) 0x02)); |
| 4511 | } |
| 4512 | } |
| 4513 | |
| 4514 | /* |
| 4515 | * Create an object if necessary. |
| 4516 | */ |
| 4517 | if (entry->object.vm_object == VM_OBJECT_NULL((vm_object_t) 0)) { |
| 4518 | |
| 4519 | if (vm_map_lock_read_to_write(map)(lock_read_to_write(&(map)->lock) || (((map)->timestamp ++), 0))) { |
| 4520 | goto RetryLookup; |
| 4521 | } |
| 4522 | |
| 4523 | entry->object.vm_object = vm_object_allocate( |
| 4524 | (vm_size_t)(entry->vme_endlinks.end - entry->vme_startlinks.start)); |
| 4525 | entry->offset = 0; |
| 4526 | vm_map_lock_write_to_read(map)lock_write_to_read(&(map)->lock); |
| 4527 | } |
| 4528 | |
| 4529 | /* |
| 4530 | * Return the object/offset from this entry. If the entry |
| 4531 | * was copy-on-write or empty, it has been fixed up. Also |
| 4532 | * return the protection. |
| 4533 | */ |
| 4534 | |
| 4535 | *offset = (vaddr - entry->vme_startlinks.start) + entry->offset; |
| 4536 | *object = entry->object.vm_object; |
| 4537 | *out_prot = prot; |
| 4538 | |
| 4539 | /* |
| 4540 | * Lock the object to prevent it from disappearing |
| 4541 | */ |
| 4542 | |
| 4543 | vm_object_lock(*object); |
| 4544 | |
| 4545 | /* |
| 4546 | * Save the version number and unlock the map. |
| 4547 | */ |
| 4548 | |
| 4549 | out_version->main_timestamp = map->timestamp; |
| 4550 | |
| 4551 | RETURN(KERN_SUCCESS0); |
| 4552 | |
| 4553 | #undef RETURN |
| 4554 | } |
| 4555 | |
| 4556 | /* |
| 4557 | * vm_map_verify: |
| 4558 | * |
| 4559 | * Verifies that the map in question has not changed |
| 4560 | * since the given version. If successful, the map |
| 4561 | * will not change until vm_map_verify_done() is called. |
| 4562 | */ |
| 4563 | boolean_t vm_map_verify(map, version) |
| 4564 | register |
| 4565 | vm_map_t map; |
| 4566 | register |
| 4567 | vm_map_version_t *version; /* REF */ |
| 4568 | { |
| 4569 | boolean_t result; |
| 4570 | |
| 4571 | vm_map_lock_read(map)lock_read(&(map)->lock); |
| 4572 | result = (map->timestamp == version->main_timestamp); |
| 4573 | |
| 4574 | if (!result) |
| 4575 | vm_map_unlock_read(map)lock_done(&(map)->lock); |
| 4576 | |
| 4577 | return(result); |
| 4578 | } |
| 4579 | |
| 4580 | /* |
| 4581 | * vm_map_verify_done: |
| 4582 | * |
| 4583 | * Releases locks acquired by a vm_map_verify. |
| 4584 | * |
| 4585 | * This is now a macro in vm/vm_map.h. It does a |
| 4586 | * vm_map_unlock_read on the map. |
| 4587 | */ |
| 4588 | |
| 4589 | /* |
| 4590 | * vm_region: |
| 4591 | * |
| 4592 | * User call to obtain information about a region in |
| 4593 | * a task's address map. |
| 4594 | */ |
| 4595 | |
| 4596 | kern_return_t vm_region(map, address, size, |
| 4597 | protection, max_protection, |
| 4598 | inheritance, is_shared, |
| 4599 | object_name, offset_in_object) |
| 4600 | vm_map_t map; |
| 4601 | vm_offset_t *address; /* IN/OUT */ |
| 4602 | vm_size_t *size; /* OUT */ |
| 4603 | vm_prot_t *protection; /* OUT */ |
| 4604 | vm_prot_t *max_protection; /* OUT */ |
| 4605 | vm_inherit_t *inheritance; /* OUT */ |
| 4606 | boolean_t *is_shared; /* OUT */ |
| 4607 | ipc_port_t *object_name; /* OUT */ |
| 4608 | vm_offset_t *offset_in_object; /* OUT */ |
| 4609 | { |
| 4610 | vm_map_entry_t tmp_entry; |
| 4611 | register |
| 4612 | vm_map_entry_t entry; |
| 4613 | register |
| 4614 | vm_offset_t tmp_offset; |
| 4615 | vm_offset_t start; |
| 4616 | |
| 4617 | if (map == VM_MAP_NULL((vm_map_t) 0)) |
| 4618 | return(KERN_INVALID_ARGUMENT4); |
| 4619 | |
| 4620 | start = *address; |
| 4621 | |
| 4622 | vm_map_lock_read(map)lock_read(&(map)->lock); |
| 4623 | if (!vm_map_lookup_entry(map, start, &tmp_entry)) { |
| 4624 | if ((entry = tmp_entry->vme_nextlinks.next) == vm_map_to_entry(map)((struct vm_map_entry *) &(map)->hdr.links)) { |
| 4625 | vm_map_unlock_read(map)lock_done(&(map)->lock); |
| 4626 | return(KERN_NO_SPACE3); |
| 4627 | } |
| 4628 | } else { |
| 4629 | entry = tmp_entry; |
| 4630 | } |
| 4631 | |
| 4632 | start = entry->vme_startlinks.start; |
| 4633 | *protection = entry->protection; |
| 4634 | *max_protection = entry->max_protection; |
| 4635 | *inheritance = entry->inheritance; |
| 4636 | *address = start; |
| 4637 | *size = (entry->vme_endlinks.end - start); |
| 4638 | |
| 4639 | tmp_offset = entry->offset; |
| 4640 | |
| 4641 | |
| 4642 | if (entry->is_sub_map) { |
| 4643 | *is_shared = FALSE((boolean_t) 0); |
| 4644 | *object_name = IP_NULL((ipc_port_t) ((ipc_object_t) 0)); |
| 4645 | *offset_in_object = tmp_offset; |
| 4646 | } else { |
| 4647 | *is_shared = entry->is_shared; |
| 4648 | *object_name = vm_object_name(entry->object.vm_object); |
| 4649 | *offset_in_object = tmp_offset; |
| 4650 | } |
| 4651 | |
| 4652 | vm_map_unlock_read(map)lock_done(&(map)->lock); |
| 4653 | |
| 4654 | return(KERN_SUCCESS0); |
| 4655 | } |
| 4656 | |
| 4657 | /* |
| 4658 | * Routine: vm_map_simplify |
| 4659 | * |
| 4660 | * Description: |
| 4661 | * Attempt to simplify the map representation in |
| 4662 | * the vicinity of the given starting address. |
| 4663 | * Note: |
| 4664 | * This routine is intended primarily to keep the |
| 4665 | * kernel maps more compact -- they generally don't |
| 4666 | * benefit from the "expand a map entry" technology |
| 4667 | * at allocation time because the adjacent entry |
| 4668 | * is often wired down. |
| 4669 | */ |
| 4670 | void vm_map_simplify(map, start) |
| 4671 | vm_map_t map; |
| 4672 | vm_offset_t start; |
| 4673 | { |
| 4674 | vm_map_entry_t this_entry; |
| 4675 | vm_map_entry_t prev_entry; |
| 4676 | |
| 4677 | vm_map_lock(map)({ lock_write(&(map)->lock); (map)->timestamp++; }); |
| 4678 | if ( |
| 4679 | (vm_map_lookup_entry(map, start, &this_entry)) && |
| 4680 | ((prev_entry = this_entry->vme_prevlinks.prev) != vm_map_to_entry(map)((struct vm_map_entry *) &(map)->hdr.links)) && |
| 4681 | |
| 4682 | (prev_entry->vme_endlinks.end == start) && |
| 4683 | |
| 4684 | (prev_entry->is_shared == FALSE((boolean_t) 0)) && |
| 4685 | (prev_entry->is_sub_map == FALSE((boolean_t) 0)) && |
| 4686 | |
| 4687 | (this_entry->is_shared == FALSE((boolean_t) 0)) && |
| 4688 | (this_entry->is_sub_map == FALSE((boolean_t) 0)) && |
| 4689 | |
| 4690 | (prev_entry->inheritance == this_entry->inheritance) && |
| 4691 | (prev_entry->protection == this_entry->protection) && |
| 4692 | (prev_entry->max_protection == this_entry->max_protection) && |
| 4693 | (prev_entry->wired_count == this_entry->wired_count) && |
| 4694 | (prev_entry->user_wired_count == this_entry->user_wired_count) && |
| 4695 | |
| 4696 | (prev_entry->needs_copy == this_entry->needs_copy) && |
| 4697 | |
| 4698 | (prev_entry->object.vm_object == this_entry->object.vm_object) && |
| 4699 | ((prev_entry->offset + (prev_entry->vme_endlinks.end - prev_entry->vme_startlinks.start)) |
| 4700 | == this_entry->offset) && |
| 4701 | (prev_entry->projected_on == 0) && |
| 4702 | (this_entry->projected_on == 0) |
| 4703 | ) { |
| 4704 | if (map->first_free == this_entry) |
| 4705 | map->first_free = prev_entry; |
| 4706 | |
| 4707 | SAVE_HINT(map, prev_entry); (map)->hint = (prev_entry); ;; |
| 4708 | vm_map_entry_unlink(map, this_entry)({ (&(map)->hdr)->nentries--; (this_entry)->links .next->links.prev = (this_entry)->links.prev; (this_entry )->links.prev->links.next = (this_entry)->links.next ; rbtree_remove(&(&(map)->hdr)->tree, &(this_entry )->tree_node); }); |
| 4709 | prev_entry->vme_endlinks.end = this_entry->vme_endlinks.end; |
| 4710 | vm_object_deallocate(this_entry->object.vm_object); |
| 4711 | vm_map_entry_dispose(map, this_entry)_vm_map_entry_dispose(&(map)->hdr, (this_entry)); |
| 4712 | } |
| 4713 | vm_map_unlock(map)lock_done(&(map)->lock); |
| 4714 | } |
| 4715 | |
| 4716 | |
| 4717 | /* |
| 4718 | * Routine: vm_map_machine_attribute |
| 4719 | * Purpose: |
| 4720 | * Provide machine-specific attributes to mappings, |
| 4721 | * such as cachability etc. for machines that provide |
| 4722 | * them. NUMA architectures and machines with big/strange |
| 4723 | * caches will use this. |
| 4724 | * Note: |
| 4725 | * Responsibilities for locking and checking are handled here, |
| 4726 | * everything else in the pmap module. If any non-volatile |
| 4727 | * information must be kept, the pmap module should handle |
| 4728 | * it itself. [This assumes that attributes do not |
| 4729 | * need to be inherited, which seems ok to me] |
| 4730 | */ |
| 4731 | kern_return_t vm_map_machine_attribute(map, address, size, attribute, value) |
| 4732 | vm_map_t map; |
| 4733 | vm_offset_t address; |
| 4734 | vm_size_t size; |
| 4735 | vm_machine_attribute_t attribute; |
| 4736 | vm_machine_attribute_val_t* value; /* IN/OUT */ |
| 4737 | { |
| 4738 | kern_return_t ret; |
| 4739 | |
| 4740 | if (address < vm_map_min(map)((map)->hdr.links.start) || |
| 4741 | (address + size) > vm_map_max(map)((map)->hdr.links.end)) |
| 4742 | return KERN_INVALID_ARGUMENT4; |
| 4743 | |
| 4744 | vm_map_lock(map)({ lock_write(&(map)->lock); (map)->timestamp++; }); |
| 4745 | |
| 4746 | ret = pmap_attribute(map->pmap, address, size, attribute, value)(1); |
| 4747 | |
| 4748 | vm_map_unlock(map)lock_done(&(map)->lock); |
| 4749 | |
| 4750 | return ret; |
| 4751 | } |
| 4752 | |
| 4753 | |
| 4754 | #if MACH_KDB0 |
| 4755 | |
| 4756 | #define printf kdbprintf |
| 4757 | |
| 4758 | /* |
| 4759 | * vm_map_print: [ debug ] |
| 4760 | */ |
| 4761 | void vm_map_print(map) |
| 4762 | register vm_map_t map; |
| 4763 | { |
| 4764 | register vm_map_entry_t entry; |
| 4765 | |
| 4766 | iprintf("Task map 0x%X: pmap=0x%X,", |
| 4767 | (vm_offset_t) map, (vm_offset_t) (map->pmap)); |
| 4768 | printf("ref=%d,nentries=%d,", map->ref_count, map->hdr.nentries); |
| 4769 | printf("version=%d\n", map->timestamp); |
| 4770 | indent += 2; |
| 4771 | for (entry = vm_map_first_entry(map)((map)->hdr.links.next); |
| 4772 | entry != vm_map_to_entry(map)((struct vm_map_entry *) &(map)->hdr.links); |
| 4773 | entry = entry->vme_nextlinks.next) { |
| 4774 | static char *inheritance_name[3] = { "share", "copy", "none"}; |
| 4775 | |
| 4776 | iprintf("map entry 0x%X: ", (vm_offset_t) entry); |
| 4777 | printf("start=0x%X, end=0x%X, ", |
| 4778 | (vm_offset_t) entry->vme_startlinks.start, (vm_offset_t) entry->vme_endlinks.end); |
| 4779 | printf("prot=%X/%X/%s, ", |
| 4780 | entry->protection, |
| 4781 | entry->max_protection, |
| 4782 | inheritance_name[entry->inheritance]); |
| 4783 | if (entry->wired_count != 0) { |
| 4784 | printf("wired("); |
| 4785 | if (entry->user_wired_count != 0) |
| 4786 | printf("u"); |
| 4787 | if (entry->wired_count > |
| 4788 | ((entry->user_wired_count == 0) ? 0 : 1)) |
| 4789 | printf("k"); |
| 4790 | printf(") "); |
| 4791 | } |
| 4792 | if (entry->in_transition) { |
| 4793 | printf("in transition"); |
| 4794 | if (entry->needs_wakeup) |
| 4795 | printf("(wake request)"); |
| 4796 | printf(", "); |
| 4797 | } |
| 4798 | if (entry->is_sub_map) { |
| 4799 | printf("submap=0x%X, offset=0x%X\n", |
| 4800 | (vm_offset_t) entry->object.sub_map, |
| 4801 | (vm_offset_t) entry->offset); |
| 4802 | } else { |
| 4803 | printf("object=0x%X, offset=0x%X", |
| 4804 | (vm_offset_t) entry->object.vm_object, |
| 4805 | (vm_offset_t) entry->offset); |
| 4806 | if (entry->is_shared) |
| 4807 | printf(", shared"); |
| 4808 | if (entry->needs_copy) |
| 4809 | printf(", copy needed"); |
| 4810 | printf("\n"); |
| 4811 | |
| 4812 | if ((entry->vme_prevlinks.prev == vm_map_to_entry(map)((struct vm_map_entry *) &(map)->hdr.links)) || |
| 4813 | (entry->vme_prevlinks.prev->object.vm_object != entry->object.vm_object)) { |
| 4814 | indent += 2; |
| 4815 | vm_object_print(entry->object.vm_object); |
| 4816 | indent -= 2; |
| 4817 | } |
| 4818 | } |
| 4819 | } |
| 4820 | indent -= 2; |
| 4821 | } |
| 4822 | |
| 4823 | /* |
| 4824 | * Routine: vm_map_copy_print |
| 4825 | * Purpose: |
| 4826 | * Pretty-print a copy object for ddb. |
| 4827 | */ |
| 4828 | |
| 4829 | void vm_map_copy_print(copy) |
| 4830 | vm_map_copy_t copy; |
| 4831 | { |
| 4832 | int i, npages; |
| 4833 | |
| 4834 | printf("copy object 0x%x\n", copy); |
| 4835 | |
| 4836 | indent += 2; |
| 4837 | |
| 4838 | iprintf("type=%d", copy->type); |
| 4839 | switch (copy->type) { |
| 4840 | case VM_MAP_COPY_ENTRY_LIST1: |
| 4841 | printf("[entry_list]"); |
| 4842 | break; |
| 4843 | |
| 4844 | case VM_MAP_COPY_OBJECT2: |
| 4845 | printf("[object]"); |
| 4846 | break; |
| 4847 | |
| 4848 | case VM_MAP_COPY_PAGE_LIST3: |
| 4849 | printf("[page_list]"); |
| 4850 | break; |
| 4851 | |
| 4852 | default: |
| 4853 | printf("[bad type]"); |
| 4854 | break; |
| 4855 | } |
| 4856 | printf(", offset=0x%x", copy->offset); |
| 4857 | printf(", size=0x%x\n", copy->size); |
| 4858 | |
| 4859 | switch (copy->type) { |
| 4860 | case VM_MAP_COPY_ENTRY_LIST1: |
| 4861 | /* XXX add stuff here */ |
| 4862 | break; |
| 4863 | |
| 4864 | case VM_MAP_COPY_OBJECT2: |
| 4865 | iprintf("object=0x%x\n", copy->cpy_objectc_u.c_o.object); |
| 4866 | break; |
| 4867 | |
| 4868 | case VM_MAP_COPY_PAGE_LIST3: |
| 4869 | iprintf("npages=%d", copy->cpy_npagesc_u.c_p.npages); |
| 4870 | printf(", cont=%x", copy->cpy_contc_u.c_p.cont); |
| 4871 | printf(", cont_args=%x\n", copy->cpy_cont_argsc_u.c_p.cont_args); |
| 4872 | if (copy->cpy_npagesc_u.c_p.npages < 0) { |
| 4873 | npages = 0; |
| 4874 | } else if (copy->cpy_npagesc_u.c_p.npages > VM_MAP_COPY_PAGE_LIST_MAX64) { |
| 4875 | npages = VM_MAP_COPY_PAGE_LIST_MAX64; |
| 4876 | } else { |
| 4877 | npages = copy->cpy_npagesc_u.c_p.npages; |
| 4878 | } |
| 4879 | iprintf("copy->cpy_page_list[0..%d] = {", npages); |
| 4880 | for (i = 0; i < npages - 1; i++) { |
| 4881 | printf("0x%x, ", copy->cpy_page_listc_u.c_p.page_list[i]); |
| 4882 | } |
| 4883 | if (npages > 0) { |
| 4884 | printf("0x%x", copy->cpy_page_listc_u.c_p.page_list[npages - 1]); |
| 4885 | } |
| 4886 | printf("}\n"); |
| 4887 | break; |
| 4888 | } |
| 4889 | |
| 4890 | indent -=2; |
| 4891 | } |
| 4892 | #endif /* MACH_KDB */ |