File: | obj-scan-build/../vm/vm_map.c |
Location: | line 3404, column 4 |
Description: | Value stored to 'src_size' is never read |
1 | /* |
2 | * Mach Operating System |
3 | * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University. |
4 | * Copyright (c) 1993,1994 The University of Utah and |
5 | * the Computer Systems Laboratory (CSL). |
6 | * All rights reserved. |
7 | * |
8 | * Permission to use, copy, modify and distribute this software and its |
9 | * documentation is hereby granted, provided that both the copyright |
10 | * notice and this permission notice appear in all copies of the |
11 | * software, derivative works or modified versions, and any portions |
12 | * thereof, and that both notices appear in supporting documentation. |
13 | * |
14 | * CARNEGIE MELLON, THE UNIVERSITY OF UTAH AND CSL ALLOW FREE USE OF |
15 | * THIS SOFTWARE IN ITS "AS IS" CONDITION, AND DISCLAIM ANY LIABILITY |
16 | * OF ANY KIND FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF |
17 | * THIS SOFTWARE. |
18 | * |
19 | * Carnegie Mellon requests users of this software to return to |
20 | * |
21 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU |
22 | * School of Computer Science |
23 | * Carnegie Mellon University |
24 | * Pittsburgh PA 15213-3890 |
25 | * |
26 | * any improvements or extensions that they make and grant Carnegie Mellon |
27 | * the rights to redistribute these changes. |
28 | */ |
29 | /* |
30 | * File: vm/vm_map.c |
31 | * Author: Avadis Tevanian, Jr., Michael Wayne Young |
32 | * Date: 1985 |
33 | * |
34 | * Virtual memory mapping module. |
35 | */ |
36 | |
37 | #include <kern/printf.h> |
38 | #include <mach/kern_return.h> |
39 | #include <mach/port.h> |
40 | #include <mach/vm_attributes.h> |
41 | #include <mach/vm_param.h> |
42 | #include <kern/assert.h> |
43 | #include <kern/debug.h> |
44 | #include <kern/kalloc.h> |
45 | #include <kern/rbtree.h> |
46 | #include <kern/slab.h> |
47 | #include <vm/pmap.h> |
48 | #include <vm/vm_fault.h> |
49 | #include <vm/vm_map.h> |
50 | #include <vm/vm_object.h> |
51 | #include <vm/vm_page.h> |
52 | #include <vm/vm_resident.h> |
53 | #include <vm/vm_kern.h> |
54 | #include <ipc/ipc_port.h> |
55 | |
56 | #if MACH_KDB0 |
57 | #include <ddb/db_output.h> |
58 | #include <vm/vm_print.h> |
59 | #endif /* MACH_KDB */ |
60 | |
61 | |
62 | /* Forward declarations */ |
63 | kern_return_t vm_map_delete( |
64 | vm_map_t map, |
65 | vm_offset_t start, |
66 | vm_offset_t end); |
67 | |
68 | kern_return_t vm_map_copyout_page_list( |
69 | vm_map_t dst_map, |
70 | vm_offset_t *dst_addr, /* OUT */ |
71 | vm_map_copy_t copy); |
72 | |
73 | void vm_map_copy_page_discard (vm_map_copy_t copy); |
74 | |
75 | /* |
76 | * Macros to copy a vm_map_entry. We must be careful to correctly |
77 | * manage the wired page count. vm_map_entry_copy() creates a new |
78 | * map entry to the same memory - the wired count in the new entry |
79 | * must be set to zero. vm_map_entry_copy_full() creates a new |
80 | * entry that is identical to the old entry. This preserves the |
81 | * wire count; it's used for map splitting and cache changing in |
82 | * vm_map_copyout. |
83 | */ |
84 | #define vm_map_entry_copy(NEW,OLD)({ *(NEW) = *(OLD); (NEW)->is_shared = ((boolean_t) 0); (NEW )->needs_wakeup = ((boolean_t) 0); (NEW)->in_transition = ((boolean_t) 0); (NEW)->wired_count = 0; (NEW)->user_wired_count = 0; }) \({ |
85 | MACRO_BEGIN({ \ |
86 | *(NEW) = *(OLD); \ |
87 | (NEW)->is_shared = FALSE((boolean_t) 0); \ |
88 | (NEW)->needs_wakeup = FALSE((boolean_t) 0); \ |
89 | (NEW)->in_transition = FALSE((boolean_t) 0); \ |
90 | (NEW)->wired_count = 0; \ |
91 | (NEW)->user_wired_count = 0; \}) |
92 | MACRO_END}) |
93 | |
94 | #define vm_map_entry_copy_full(NEW,OLD)(*(NEW) = *(OLD)) (*(NEW) = *(OLD)) |
95 | |
96 | /* |
97 | * Virtual memory maps provide for the mapping, protection, |
98 | * and sharing of virtual memory objects. In addition, |
99 | * this module provides for an efficient virtual copy of |
100 | * memory from one map to another. |
101 | * |
102 | * Synchronization is required prior to most operations. |
103 | * |
104 | * Maps consist of an ordered doubly-linked list of simple |
105 | * entries; a hint and a red-black tree are used to speed up lookups. |
106 | * |
107 | * Sharing maps have been deleted from this version of Mach. |
108 | * All shared objects are now mapped directly into the respective |
109 | * maps. This requires a change in the copy on write strategy; |
110 | * the asymmetric (delayed) strategy is used for shared temporary |
111 | * objects instead of the symmetric (shadow) strategy. This is |
112 | * selected by the (new) use_shared_copy bit in the object. See |
113 | * vm_object_copy_temporary in vm_object.c for details. All maps |
114 | * are now "top level" maps (either task map, kernel map or submap |
115 | * of the kernel map). |
116 | * |
117 | * Since portions of maps are specified by start/end addreses, |
118 | * which may not align with existing map entries, all |
119 | * routines merely "clip" entries to these start/end values. |
120 | * [That is, an entry is split into two, bordering at a |
121 | * start or end value.] Note that these clippings may not |
122 | * always be necessary (as the two resulting entries are then |
123 | * not changed); however, the clipping is done for convenience. |
124 | * No attempt is currently made to "glue back together" two |
125 | * abutting entries. |
126 | * |
127 | * The symmetric (shadow) copy strategy implements virtual copy |
128 | * by copying VM object references from one map to |
129 | * another, and then marking both regions as copy-on-write. |
130 | * It is important to note that only one writeable reference |
131 | * to a VM object region exists in any map when this strategy |
132 | * is used -- this means that shadow object creation can be |
133 | * delayed until a write operation occurs. The asymmetric (delayed) |
134 | * strategy allows multiple maps to have writeable references to |
135 | * the same region of a vm object, and hence cannot delay creating |
136 | * its copy objects. See vm_object_copy_temporary() in vm_object.c. |
137 | * Copying of permanent objects is completely different; see |
138 | * vm_object_copy_strategically() in vm_object.c. |
139 | */ |
140 | |
141 | struct kmem_cache vm_map_cache; /* cache for vm_map structures */ |
142 | struct kmem_cache vm_map_entry_cache; /* cache for vm_map_entry structures */ |
143 | struct kmem_cache vm_map_kentry_cache; /* cache for kernel entry structures */ |
144 | struct kmem_cache vm_map_copy_cache; /* cache for vm_map_copy structures */ |
145 | |
146 | boolean_t vm_map_lookup_entry(); /* forward declaration */ |
147 | |
148 | /* |
149 | * Placeholder object for submap operations. This object is dropped |
150 | * into the range by a call to vm_map_find, and removed when |
151 | * vm_map_submap creates the submap. |
152 | */ |
153 | |
154 | static struct vm_object vm_submap_object_store; |
155 | vm_object_t vm_submap_object = &vm_submap_object_store; |
156 | |
157 | /* |
158 | * vm_map_init: |
159 | * |
160 | * Initialize the vm_map module. Must be called before |
161 | * any other vm_map routines. |
162 | * |
163 | * Map and entry structures are allocated from caches -- we must |
164 | * initialize those caches. |
165 | * |
166 | * There are three caches of interest: |
167 | * |
168 | * vm_map_cache: used to allocate maps. |
169 | * vm_map_entry_cache: used to allocate map entries. |
170 | * vm_map_kentry_cache: used to allocate map entries for the kernel. |
171 | * |
172 | * Kernel map entries are allocated from a special cache, using a custom |
173 | * page allocation function to avoid recursion. It would be difficult |
174 | * (perhaps impossible) for the kernel to allocate more memory to an entry |
175 | * cache when it became empty since the very act of allocating memory |
176 | * implies the creation of a new entry. |
177 | */ |
178 | |
179 | vm_offset_t kentry_data; |
180 | vm_size_t kentry_data_size = KENTRY_DATA_SIZE(256*(1 << 12)); |
181 | |
182 | static vm_offset_t kentry_pagealloc(vm_size_t size) |
183 | { |
184 | vm_offset_t result; |
185 | |
186 | if (size > kentry_data_size) |
187 | panic("vm_map: kentry memory exhausted"); |
188 | |
189 | result = kentry_data; |
190 | kentry_data += size; |
191 | kentry_data_size -= size; |
192 | return result; |
193 | } |
194 | |
195 | void vm_map_init(void) |
196 | { |
197 | kmem_cache_init(&vm_map_cache, "vm_map", sizeof(struct vm_map), 0, |
198 | NULL((void *) 0), NULL((void *) 0), NULL((void *) 0), 0); |
199 | kmem_cache_init(&vm_map_entry_cache, "vm_map_entry", |
200 | sizeof(struct vm_map_entry), 0, NULL((void *) 0), NULL((void *) 0), NULL((void *) 0), 0); |
201 | kmem_cache_init(&vm_map_kentry_cache, "vm_map_kentry", |
202 | sizeof(struct vm_map_entry), 0, NULL((void *) 0), kentry_pagealloc, |
203 | NULL((void *) 0), KMEM_CACHE_NOCPUPOOL0x1 | KMEM_CACHE_NOOFFSLAB0x2 |
204 | | KMEM_CACHE_NORECLAIM0x4); |
205 | kmem_cache_init(&vm_map_copy_cache, "vm_map_copy", |
206 | sizeof(struct vm_map_copy), 0, NULL((void *) 0), NULL((void *) 0), NULL((void *) 0), 0); |
207 | |
208 | /* |
209 | * Submap object is initialized by vm_object_init. |
210 | */ |
211 | } |
212 | |
213 | void vm_map_setup(map, pmap, min, max, pageable) |
214 | vm_map_t map; |
215 | pmap_t pmap; |
216 | vm_offset_t min, max; |
217 | boolean_t pageable; |
218 | { |
219 | vm_map_first_entry(map)((map)->hdr.links.next) = vm_map_to_entry(map)((struct vm_map_entry *) &(map)->hdr.links); |
220 | vm_map_last_entry(map)((map)->hdr.links.prev) = vm_map_to_entry(map)((struct vm_map_entry *) &(map)->hdr.links); |
221 | map->hdr.nentries = 0; |
222 | map->hdr.entries_pageable = pageable; |
223 | rbtree_init(&map->hdr.tree); |
224 | |
225 | map->size = 0; |
226 | map->ref_count = 1; |
227 | map->pmap = pmap; |
228 | map->min_offsethdr.links.start = min; |
229 | map->max_offsethdr.links.end = max; |
230 | map->wiring_required = FALSE((boolean_t) 0); |
231 | map->wait_for_space = FALSE((boolean_t) 0); |
232 | map->first_free = vm_map_to_entry(map)((struct vm_map_entry *) &(map)->hdr.links); |
233 | map->hint = vm_map_to_entry(map)((struct vm_map_entry *) &(map)->hdr.links); |
234 | vm_map_lock_init(map)({ lock_init(&(map)->lock, ((boolean_t) 1)); (map)-> timestamp = 0; }); |
235 | simple_lock_init(&map->ref_lock); |
236 | simple_lock_init(&map->hint_lock); |
237 | } |
238 | |
239 | /* |
240 | * vm_map_create: |
241 | * |
242 | * Creates and returns a new empty VM map with |
243 | * the given physical map structure, and having |
244 | * the given lower and upper address bounds. |
245 | */ |
246 | vm_map_t vm_map_create(pmap, min, max, pageable) |
247 | pmap_t pmap; |
248 | vm_offset_t min, max; |
249 | boolean_t pageable; |
250 | { |
251 | register vm_map_t result; |
252 | |
253 | result = (vm_map_t) kmem_cache_alloc(&vm_map_cache); |
254 | if (result == VM_MAP_NULL((vm_map_t) 0)) |
255 | panic("vm_map_create"); |
256 | |
257 | vm_map_setup(result, pmap, min, max, pageable); |
258 | |
259 | return(result); |
260 | } |
261 | |
262 | /* |
263 | * vm_map_entry_create: [ internal use only ] |
264 | * |
265 | * Allocates a VM map entry for insertion in the |
266 | * given map (or map copy). No fields are filled. |
267 | */ |
268 | #define vm_map_entry_create(map)_vm_map_entry_create(&(map)->hdr) \ |
269 | _vm_map_entry_create(&(map)->hdr) |
270 | |
271 | #define vm_map_copy_entry_create(copy)_vm_map_entry_create(&(copy)->c_u.hdr) \ |
272 | _vm_map_entry_create(&(copy)->cpy_hdrc_u.hdr) |
273 | |
274 | vm_map_entry_t _vm_map_entry_create(map_header) |
275 | register struct vm_map_header *map_header; |
276 | { |
277 | register kmem_cache_t cache; |
278 | register vm_map_entry_t entry; |
279 | |
280 | if (map_header->entries_pageable) |
281 | cache = &vm_map_entry_cache; |
282 | else |
283 | cache = &vm_map_kentry_cache; |
284 | |
285 | entry = (vm_map_entry_t) kmem_cache_alloc(cache); |
286 | if (entry == VM_MAP_ENTRY_NULL((vm_map_entry_t) 0)) |
287 | panic("vm_map_entry_create"); |
288 | |
289 | return(entry); |
290 | } |
291 | |
292 | /* |
293 | * vm_map_entry_dispose: [ internal use only ] |
294 | * |
295 | * Inverse of vm_map_entry_create. |
296 | */ |
297 | #define vm_map_entry_dispose(map, entry)_vm_map_entry_dispose(&(map)->hdr, (entry)) \ |
298 | _vm_map_entry_dispose(&(map)->hdr, (entry)) |
299 | |
300 | #define vm_map_copy_entry_dispose(map, entry)_vm_map_entry_dispose(&(copy)->c_u.hdr, (entry)) \ |
301 | _vm_map_entry_dispose(&(copy)->cpy_hdrc_u.hdr, (entry)) |
302 | |
303 | void _vm_map_entry_dispose(map_header, entry) |
304 | register struct vm_map_header *map_header; |
305 | register vm_map_entry_t entry; |
306 | { |
307 | register kmem_cache_t cache; |
308 | |
309 | if (map_header->entries_pageable) |
310 | cache = &vm_map_entry_cache; |
311 | else |
312 | cache = &vm_map_kentry_cache; |
313 | |
314 | kmem_cache_free(cache, (vm_offset_t) entry); |
315 | } |
316 | |
317 | /* |
318 | * Red-black tree lookup/insert comparison functions |
319 | */ |
320 | static inline int vm_map_entry_cmp_lookup(vm_offset_t addr, |
321 | const struct rbtree_node *node) |
322 | { |
323 | struct vm_map_entry *entry; |
324 | |
325 | entry = rbtree_entry(node, struct vm_map_entry, tree_node)((struct vm_map_entry *)((char *)node - __builtin_offsetof (struct vm_map_entry, tree_node))); |
326 | |
327 | if (addr < entry->vme_startlinks.start) |
328 | return -1; |
329 | else if (addr < entry->vme_endlinks.end) |
330 | return 0; |
331 | else |
332 | return 1; |
333 | } |
334 | |
335 | static inline int vm_map_entry_cmp_insert(const struct rbtree_node *a, |
336 | const struct rbtree_node *b) |
337 | { |
338 | struct vm_map_entry *entry; |
339 | |
340 | entry = rbtree_entry(a, struct vm_map_entry, tree_node)((struct vm_map_entry *)((char *)a - __builtin_offsetof (struct vm_map_entry, tree_node))); |
341 | return vm_map_entry_cmp_lookup(entry->vme_startlinks.start, b); |
342 | } |
343 | |
344 | /* |
345 | * vm_map_entry_{un,}link: |
346 | * |
347 | * Insert/remove entries from maps (or map copies). |
348 | * |
349 | * The start and end addresses of the entries must be properly set |
350 | * before using these macros. |
351 | */ |
352 | #define vm_map_entry_link(map, after_where, entry)({ (&(map)->hdr)->nentries++; (entry)->links.prev = (after_where); (entry)->links.next = (after_where)-> links.next; (entry)->links.prev->links.next = (entry)-> links.next->links.prev = (entry); ({ struct rbtree_node *___cur , *___prev; int ___diff, ___index; ___prev = ((void *) 0); ___index = -1; ___cur = (&(&(map)->hdr)->tree)->root ; while (___cur != ((void *) 0)) { ___diff = vm_map_entry_cmp_insert (&(entry)->tree_node, ___cur); ({ if (!(___diff != 0)) Assert("___diff != 0", "../vm/vm_map.c", 352); }); ___prev = ___cur; ___index = rbtree_d2i(___diff); ___cur = ___cur-> children[___index]; } rbtree_insert_rebalance(&(&(map )->hdr)->tree, ___prev, ___index, &(entry)->tree_node ); }); }) \ |
353 | _vm_map_entry_link(&(map)->hdr, after_where, entry)({ (&(map)->hdr)->nentries++; (entry)->links.prev = (after_where); (entry)->links.next = (after_where)-> links.next; (entry)->links.prev->links.next = (entry)-> links.next->links.prev = (entry); ({ struct rbtree_node *___cur , *___prev; int ___diff, ___index; ___prev = ((void *) 0); ___index = -1; ___cur = (&(&(map)->hdr)->tree)->root ; while (___cur != ((void *) 0)) { ___diff = vm_map_entry_cmp_insert (&(entry)->tree_node, ___cur); ({ if (!(___diff != 0)) Assert("___diff != 0", "../vm/vm_map.c", 353); }); ___prev = ___cur; ___index = rbtree_d2i(___diff); ___cur = ___cur-> children[___index]; } rbtree_insert_rebalance(&(&(map )->hdr)->tree, ___prev, ___index, &(entry)->tree_node ); }); }) |
354 | |
355 | #define vm_map_copy_entry_link(copy, after_where, entry)({ (&(copy)->c_u.hdr)->nentries++; (entry)->links .prev = (after_where); (entry)->links.next = (after_where) ->links.next; (entry)->links.prev->links.next = (entry )->links.next->links.prev = (entry); ({ struct rbtree_node *___cur, *___prev; int ___diff, ___index; ___prev = ((void * ) 0); ___index = -1; ___cur = (&(&(copy)->c_u.hdr) ->tree)->root; while (___cur != ((void *) 0)) { ___diff = vm_map_entry_cmp_insert(&(entry)->tree_node, ___cur ); ({ if (!(___diff != 0)) Assert("___diff != 0", "../vm/vm_map.c" , 355); }); ___prev = ___cur; ___index = rbtree_d2i(___diff); ___cur = ___cur->children[___index]; } rbtree_insert_rebalance (&(&(copy)->c_u.hdr)->tree, ___prev, ___index, & (entry)->tree_node); }); }) \ |
356 | _vm_map_entry_link(&(copy)->cpy_hdr, after_where, entry)({ (&(copy)->c_u.hdr)->nentries++; (entry)->links .prev = (after_where); (entry)->links.next = (after_where) ->links.next; (entry)->links.prev->links.next = (entry )->links.next->links.prev = (entry); ({ struct rbtree_node *___cur, *___prev; int ___diff, ___index; ___prev = ((void * ) 0); ___index = -1; ___cur = (&(&(copy)->c_u.hdr) ->tree)->root; while (___cur != ((void *) 0)) { ___diff = vm_map_entry_cmp_insert(&(entry)->tree_node, ___cur ); ({ if (!(___diff != 0)) Assert("___diff != 0", "../vm/vm_map.c" , 356); }); ___prev = ___cur; ___index = rbtree_d2i(___diff); ___cur = ___cur->children[___index]; } rbtree_insert_rebalance (&(&(copy)->c_u.hdr)->tree, ___prev, ___index, & (entry)->tree_node); }); }) |
357 | |
358 | #define _vm_map_entry_link(hdr, after_where, entry)({ (hdr)->nentries++; (entry)->links.prev = (after_where ); (entry)->links.next = (after_where)->links.next; (entry )->links.prev->links.next = (entry)->links.next-> links.prev = (entry); ({ struct rbtree_node *___cur, *___prev ; int ___diff, ___index; ___prev = ((void *) 0); ___index = - 1; ___cur = (&(hdr)->tree)->root; while (___cur != ( (void *) 0)) { ___diff = vm_map_entry_cmp_insert(&(entry) ->tree_node, ___cur); ({ if (!(___diff != 0)) Assert("___diff != 0" , "../vm/vm_map.c", 358); }); ___prev = ___cur; ___index = rbtree_d2i (___diff); ___cur = ___cur->children[___index]; } rbtree_insert_rebalance (&(hdr)->tree, ___prev, ___index, &(entry)->tree_node ); }); }) \ |
359 | MACRO_BEGIN({ \ |
360 | (hdr)->nentries++; \ |
361 | (entry)->vme_prevlinks.prev = (after_where); \ |
362 | (entry)->vme_nextlinks.next = (after_where)->vme_nextlinks.next; \ |
363 | (entry)->vme_prevlinks.prev->vme_nextlinks.next = \ |
364 | (entry)->vme_nextlinks.next->vme_prevlinks.prev = (entry); \ |
365 | rbtree_insert(&(hdr)->tree, &(entry)->tree_node, \({ struct rbtree_node *___cur, *___prev; int ___diff, ___index ; ___prev = ((void *) 0); ___index = -1; ___cur = (&(hdr) ->tree)->root; while (___cur != ((void *) 0)) { ___diff = vm_map_entry_cmp_insert(&(entry)->tree_node, ___cur ); ({ if (!(___diff != 0)) Assert("___diff != 0", "../vm/vm_map.c" , 366); }); ___prev = ___cur; ___index = rbtree_d2i(___diff); ___cur = ___cur->children[___index]; } rbtree_insert_rebalance (&(hdr)->tree, ___prev, ___index, &(entry)->tree_node ); }) |
366 | vm_map_entry_cmp_insert)({ struct rbtree_node *___cur, *___prev; int ___diff, ___index ; ___prev = ((void *) 0); ___index = -1; ___cur = (&(hdr) ->tree)->root; while (___cur != ((void *) 0)) { ___diff = vm_map_entry_cmp_insert(&(entry)->tree_node, ___cur ); ({ if (!(___diff != 0)) Assert("___diff != 0", "../vm/vm_map.c" , 366); }); ___prev = ___cur; ___index = rbtree_d2i(___diff); ___cur = ___cur->children[___index]; } rbtree_insert_rebalance (&(hdr)->tree, ___prev, ___index, &(entry)->tree_node ); }); \ |
367 | MACRO_END}) |
368 | |
369 | #define vm_map_entry_unlink(map, entry)({ (&(map)->hdr)->nentries--; (entry)->links.next ->links.prev = (entry)->links.prev; (entry)->links.prev ->links.next = (entry)->links.next; rbtree_remove(& (&(map)->hdr)->tree, &(entry)->tree_node); } ) \ |
370 | _vm_map_entry_unlink(&(map)->hdr, entry)({ (&(map)->hdr)->nentries--; (entry)->links.next ->links.prev = (entry)->links.prev; (entry)->links.prev ->links.next = (entry)->links.next; rbtree_remove(& (&(map)->hdr)->tree, &(entry)->tree_node); } ) |
371 | |
372 | #define vm_map_copy_entry_unlink(copy, entry)({ (&(copy)->c_u.hdr)->nentries--; (entry)->links .next->links.prev = (entry)->links.prev; (entry)->links .prev->links.next = (entry)->links.next; rbtree_remove( &(&(copy)->c_u.hdr)->tree, &(entry)->tree_node ); }) \ |
373 | _vm_map_entry_unlink(&(copy)->cpy_hdr, entry)({ (&(copy)->c_u.hdr)->nentries--; (entry)->links .next->links.prev = (entry)->links.prev; (entry)->links .prev->links.next = (entry)->links.next; rbtree_remove( &(&(copy)->c_u.hdr)->tree, &(entry)->tree_node ); }) |
374 | |
375 | #define _vm_map_entry_unlink(hdr, entry)({ (hdr)->nentries--; (entry)->links.next->links.prev = (entry)->links.prev; (entry)->links.prev->links.next = (entry)->links.next; rbtree_remove(&(hdr)->tree, &(entry)->tree_node); }) \ |
376 | MACRO_BEGIN({ \ |
377 | (hdr)->nentries--; \ |
378 | (entry)->vme_nextlinks.next->vme_prevlinks.prev = (entry)->vme_prevlinks.prev; \ |
379 | (entry)->vme_prevlinks.prev->vme_nextlinks.next = (entry)->vme_nextlinks.next; \ |
380 | rbtree_remove(&(hdr)->tree, &(entry)->tree_node); \ |
381 | MACRO_END}) |
382 | |
383 | /* |
384 | * vm_map_reference: |
385 | * |
386 | * Creates another valid reference to the given map. |
387 | * |
388 | */ |
389 | void vm_map_reference(map) |
390 | register vm_map_t map; |
391 | { |
392 | if (map == VM_MAP_NULL((vm_map_t) 0)) |
393 | return; |
394 | |
395 | simple_lock(&map->ref_lock); |
396 | map->ref_count++; |
397 | simple_unlock(&map->ref_lock); |
398 | } |
399 | |
400 | /* |
401 | * vm_map_deallocate: |
402 | * |
403 | * Removes a reference from the specified map, |
404 | * destroying it if no references remain. |
405 | * The map should not be locked. |
406 | */ |
407 | void vm_map_deallocate(map) |
408 | register vm_map_t map; |
409 | { |
410 | register int c; |
411 | |
412 | if (map == VM_MAP_NULL((vm_map_t) 0)) |
413 | return; |
414 | |
415 | simple_lock(&map->ref_lock); |
416 | c = --map->ref_count; |
417 | simple_unlock(&map->ref_lock); |
418 | |
419 | if (c > 0) { |
420 | return; |
421 | } |
422 | |
423 | projected_buffer_collect(map); |
424 | (void) vm_map_delete(map, map->min_offsethdr.links.start, map->max_offsethdr.links.end); |
425 | |
426 | pmap_destroy(map->pmap); |
427 | |
428 | kmem_cache_free(&vm_map_cache, (vm_offset_t) map); |
429 | } |
430 | |
431 | /* |
432 | * SAVE_HINT: |
433 | * |
434 | * Saves the specified entry as the hint for |
435 | * future lookups. Performs necessary interlocks. |
436 | */ |
437 | #define SAVE_HINT(map,value); (map)->hint = (value); ; \ |
438 | simple_lock(&(map)->hint_lock); \ |
439 | (map)->hint = (value); \ |
440 | simple_unlock(&(map)->hint_lock); |
441 | |
442 | /* |
443 | * vm_map_lookup_entry: [ internal use only ] |
444 | * |
445 | * Finds the map entry containing (or |
446 | * immediately preceding) the specified address |
447 | * in the given map; the entry is returned |
448 | * in the "entry" parameter. The boolean |
449 | * result indicates whether the address is |
450 | * actually contained in the map. |
451 | */ |
452 | boolean_t vm_map_lookup_entry(map, address, entry) |
453 | register vm_map_t map; |
454 | register vm_offset_t address; |
455 | vm_map_entry_t *entry; /* OUT */ |
456 | { |
457 | register struct rbtree_node *node; |
458 | register vm_map_entry_t hint; |
459 | |
460 | /* |
461 | * First, make a quick check to see if we are already |
462 | * looking at the entry we want (which is often the case). |
463 | */ |
464 | |
465 | simple_lock(&map->hint_lock); |
466 | hint = map->hint; |
467 | simple_unlock(&map->hint_lock); |
468 | |
469 | if ((hint != vm_map_to_entry(map)((struct vm_map_entry *) &(map)->hdr.links)) && (address >= hint->vme_startlinks.start)) { |
470 | if (address < hint->vme_endlinks.end) { |
471 | *entry = hint; |
472 | return(TRUE((boolean_t) 1)); |
473 | } else { |
474 | vm_map_entry_t next = hint->vme_nextlinks.next; |
475 | |
476 | if ((next == vm_map_to_entry(map)((struct vm_map_entry *) &(map)->hdr.links)) |
477 | || (address < next->vme_startlinks.start)) { |
478 | *entry = hint; |
479 | return(FALSE((boolean_t) 0)); |
480 | } |
481 | } |
482 | } |
483 | |
484 | /* |
485 | * If the hint didn't help, use the red-black tree. |
486 | */ |
487 | |
488 | node = rbtree_lookup_nearest(&map->hdr.tree, address,({ struct rbtree_node *___cur, *___prev; int ___diff, ___index ; ___prev = ((void *) 0); ___index = -1; ___cur = (&map-> hdr.tree)->root; while (___cur != ((void *) 0)) { ___diff = vm_map_entry_cmp_lookup(address, ___cur); if (___diff == 0) break ; ___prev = ___cur; ___index = rbtree_d2i(___diff); ___cur = ___cur ->children[___index]; } if (___cur == ((void *) 0)) ___cur = rbtree_nearest(___prev, ___index, 0); ___cur; }) |
489 | vm_map_entry_cmp_lookup, RBTREE_LEFT)({ struct rbtree_node *___cur, *___prev; int ___diff, ___index ; ___prev = ((void *) 0); ___index = -1; ___cur = (&map-> hdr.tree)->root; while (___cur != ((void *) 0)) { ___diff = vm_map_entry_cmp_lookup(address, ___cur); if (___diff == 0) break ; ___prev = ___cur; ___index = rbtree_d2i(___diff); ___cur = ___cur ->children[___index]; } if (___cur == ((void *) 0)) ___cur = rbtree_nearest(___prev, ___index, 0); ___cur; }); |
490 | |
491 | if (node == NULL((void *) 0)) { |
492 | *entry = vm_map_to_entry(map)((struct vm_map_entry *) &(map)->hdr.links); |
493 | SAVE_HINT(map, *entry); (map)->hint = (*entry); ;; |
494 | return(FALSE((boolean_t) 0)); |
495 | } else { |
496 | *entry = rbtree_entry(node, struct vm_map_entry, tree_node)((struct vm_map_entry *)((char *)node - __builtin_offsetof (struct vm_map_entry, tree_node))); |
497 | SAVE_HINT(map, *entry); (map)->hint = (*entry); ;; |
498 | return((address < (*entry)->vme_endlinks.end) ? TRUE((boolean_t) 1) : FALSE((boolean_t) 0)); |
499 | } |
500 | } |
501 | |
502 | /* |
503 | * Routine: invalid_user_access |
504 | * |
505 | * Verifies whether user access is valid. |
506 | */ |
507 | |
508 | boolean_t |
509 | invalid_user_access(map, start, end, prot) |
510 | vm_map_t map; |
511 | vm_offset_t start, end; |
512 | vm_prot_t prot; |
513 | { |
514 | vm_map_entry_t entry; |
515 | |
516 | return (map == VM_MAP_NULL((vm_map_t) 0) || map == kernel_map || |
517 | !vm_map_lookup_entry(map, start, &entry) || |
518 | entry->vme_endlinks.end < end || |
519 | (prot & ~(entry->protection))); |
520 | } |
521 | |
522 | |
523 | /* |
524 | * Routine: vm_map_find_entry |
525 | * Purpose: |
526 | * Allocate a range in the specified virtual address map, |
527 | * returning the entry allocated for that range. |
528 | * Used by kmem_alloc, etc. Returns wired entries. |
529 | * |
530 | * The map must be locked. |
531 | * |
532 | * If an entry is allocated, the object/offset fields |
533 | * are initialized to zero. If an object is supplied, |
534 | * then an existing entry may be extended. |
535 | */ |
536 | kern_return_t vm_map_find_entry(map, address, size, mask, object, o_entry) |
537 | register vm_map_t map; |
538 | vm_offset_t *address; /* OUT */ |
539 | vm_size_t size; |
540 | vm_offset_t mask; |
541 | vm_object_t object; |
542 | vm_map_entry_t *o_entry; /* OUT */ |
543 | { |
544 | register vm_map_entry_t entry, new_entry; |
545 | register vm_offset_t start; |
546 | register vm_offset_t end; |
547 | |
548 | /* |
549 | * Look for the first possible address; |
550 | * if there's already something at this |
551 | * address, we have to start after it. |
552 | */ |
553 | |
554 | if ((entry = map->first_free) == vm_map_to_entry(map)((struct vm_map_entry *) &(map)->hdr.links)) |
555 | start = map->min_offsethdr.links.start; |
556 | else |
557 | start = entry->vme_endlinks.end; |
558 | |
559 | /* |
560 | * In any case, the "entry" always precedes |
561 | * the proposed new region throughout the loop: |
562 | */ |
563 | |
564 | while (TRUE((boolean_t) 1)) { |
565 | register vm_map_entry_t next; |
566 | |
567 | /* |
568 | * Find the end of the proposed new region. |
569 | * Be sure we didn't go beyond the end, or |
570 | * wrap around the address. |
571 | */ |
572 | |
573 | if (((start + mask) & ~mask) < start) { |
574 | printf_once("no more room for vm_map_find_entry in %p\n", map)({ static int __once = 0; if (!__once) { printf("no more room for vm_map_find_entry in %p\n" , map); __once = 1; } }); |
575 | return(KERN_NO_SPACE3); |
576 | } |
577 | start = ((start + mask) & ~mask); |
578 | end = start + size; |
579 | |
580 | if ((end > map->max_offsethdr.links.end) || (end < start)) { |
581 | printf_once("no more room for vm_map_find_entry in %p\n", map)({ static int __once = 0; if (!__once) { printf("no more room for vm_map_find_entry in %p\n" , map); __once = 1; } }); |
582 | return(KERN_NO_SPACE3); |
583 | } |
584 | |
585 | /* |
586 | * If there are no more entries, we must win. |
587 | */ |
588 | |
589 | next = entry->vme_nextlinks.next; |
590 | if (next == vm_map_to_entry(map)((struct vm_map_entry *) &(map)->hdr.links)) |
591 | break; |
592 | |
593 | /* |
594 | * If there is another entry, it must be |
595 | * after the end of the potential new region. |
596 | */ |
597 | |
598 | if (next->vme_startlinks.start >= end) |
599 | break; |
600 | |
601 | /* |
602 | * Didn't fit -- move to the next entry. |
603 | */ |
604 | |
605 | entry = next; |
606 | start = entry->vme_endlinks.end; |
607 | } |
608 | |
609 | /* |
610 | * At this point, |
611 | * "start" and "end" should define the endpoints of the |
612 | * available new range, and |
613 | * "entry" should refer to the region before the new |
614 | * range, and |
615 | * |
616 | * the map should be locked. |
617 | */ |
618 | |
619 | *address = start; |
620 | |
621 | /* |
622 | * See whether we can avoid creating a new entry by |
623 | * extending one of our neighbors. [So far, we only attempt to |
624 | * extend from below.] |
625 | */ |
626 | |
627 | if ((object != VM_OBJECT_NULL((vm_object_t) 0)) && |
628 | (entry != vm_map_to_entry(map)((struct vm_map_entry *) &(map)->hdr.links)) && |
629 | (entry->vme_endlinks.end == start) && |
630 | (!entry->is_shared) && |
631 | (!entry->is_sub_map) && |
632 | (entry->object.vm_object == object) && |
633 | (entry->needs_copy == FALSE((boolean_t) 0)) && |
634 | (entry->inheritance == VM_INHERIT_DEFAULT((vm_inherit_t) 1)) && |
635 | (entry->protection == VM_PROT_DEFAULT(((vm_prot_t) 0x01)|((vm_prot_t) 0x02))) && |
636 | (entry->max_protection == VM_PROT_ALL(((vm_prot_t) 0x01)|((vm_prot_t) 0x02)|((vm_prot_t) 0x04))) && |
637 | (entry->wired_count == 1) && |
638 | (entry->user_wired_count == 0) && |
639 | (entry->projected_on == 0)) { |
640 | /* |
641 | * Because this is a special case, |
642 | * we don't need to use vm_object_coalesce. |
643 | */ |
644 | |
645 | entry->vme_endlinks.end = end; |
646 | new_entry = entry; |
647 | } else { |
648 | new_entry = vm_map_entry_create(map)_vm_map_entry_create(&(map)->hdr); |
649 | |
650 | new_entry->vme_startlinks.start = start; |
651 | new_entry->vme_endlinks.end = end; |
652 | |
653 | new_entry->is_shared = FALSE((boolean_t) 0); |
654 | new_entry->is_sub_map = FALSE((boolean_t) 0); |
655 | new_entry->object.vm_object = VM_OBJECT_NULL((vm_object_t) 0); |
656 | new_entry->offset = (vm_offset_t) 0; |
657 | |
658 | new_entry->needs_copy = FALSE((boolean_t) 0); |
659 | |
660 | new_entry->inheritance = VM_INHERIT_DEFAULT((vm_inherit_t) 1); |
661 | new_entry->protection = VM_PROT_DEFAULT(((vm_prot_t) 0x01)|((vm_prot_t) 0x02)); |
662 | new_entry->max_protection = VM_PROT_ALL(((vm_prot_t) 0x01)|((vm_prot_t) 0x02)|((vm_prot_t) 0x04)); |
663 | new_entry->wired_count = 1; |
664 | new_entry->user_wired_count = 0; |
665 | |
666 | new_entry->in_transition = FALSE((boolean_t) 0); |
667 | new_entry->needs_wakeup = FALSE((boolean_t) 0); |
668 | new_entry->projected_on = 0; |
669 | |
670 | /* |
671 | * Insert the new entry into the list |
672 | */ |
673 | |
674 | vm_map_entry_link(map, entry, new_entry)({ (&(map)->hdr)->nentries++; (new_entry)->links .prev = (entry); (new_entry)->links.next = (entry)->links .next; (new_entry)->links.prev->links.next = (new_entry )->links.next->links.prev = (new_entry); ({ struct rbtree_node *___cur, *___prev; int ___diff, ___index; ___prev = ((void * ) 0); ___index = -1; ___cur = (&(&(map)->hdr)-> tree)->root; while (___cur != ((void *) 0)) { ___diff = vm_map_entry_cmp_insert (&(new_entry)->tree_node, ___cur); ({ if (!(___diff != 0)) Assert("___diff != 0", "../vm/vm_map.c", 674); }); ___prev = ___cur; ___index = rbtree_d2i(___diff); ___cur = ___cur-> children[___index]; } rbtree_insert_rebalance(&(&(map )->hdr)->tree, ___prev, ___index, &(new_entry)-> tree_node); }); }); |
675 | } |
676 | |
677 | map->size += size; |
678 | |
679 | /* |
680 | * Update the free space hint and the lookup hint |
681 | */ |
682 | |
683 | map->first_free = new_entry; |
684 | SAVE_HINT(map, new_entry); (map)->hint = (new_entry); ;; |
685 | |
686 | *o_entry = new_entry; |
687 | return(KERN_SUCCESS0); |
688 | } |
689 | |
690 | int vm_map_pmap_enter_print = FALSE((boolean_t) 0); |
691 | int vm_map_pmap_enter_enable = FALSE((boolean_t) 0); |
692 | |
693 | /* |
694 | * Routine: vm_map_pmap_enter |
695 | * |
696 | * Description: |
697 | * Force pages from the specified object to be entered into |
698 | * the pmap at the specified address if they are present. |
699 | * As soon as a page not found in the object the scan ends. |
700 | * |
701 | * Returns: |
702 | * Nothing. |
703 | * |
704 | * In/out conditions: |
705 | * The source map should not be locked on entry. |
706 | */ |
707 | void |
708 | vm_map_pmap_enter(map, addr, end_addr, object, offset, protection) |
709 | vm_map_t map; |
710 | register |
711 | vm_offset_t addr; |
712 | register |
713 | vm_offset_t end_addr; |
714 | register |
715 | vm_object_t object; |
716 | vm_offset_t offset; |
717 | vm_prot_t protection; |
718 | { |
719 | while (addr < end_addr) { |
720 | register vm_page_t m; |
721 | |
722 | vm_object_lock(object); |
723 | vm_object_paging_begin(object)((object)->paging_in_progress++); |
724 | |
725 | m = vm_page_lookup(object, offset); |
726 | if (m == VM_PAGE_NULL((vm_page_t) 0) || m->absent) { |
727 | vm_object_paging_end(object)({ ({ if (!((object)->paging_in_progress != 0)) Assert("(object)->paging_in_progress != 0" , "../vm/vm_map.c", 727); }); if (--(object)->paging_in_progress == 0) { ({ if ((object)->all_wanted & (1 << (2) )) thread_wakeup_prim(((event_t)(((vm_offset_t) object) + (2) )), ((boolean_t) 0), 0); (object)->all_wanted &= ~(1 << (2)); }); } }); |
728 | vm_object_unlock(object); |
729 | return; |
730 | } |
731 | |
732 | if (vm_map_pmap_enter_print) { |
733 | printf("vm_map_pmap_enter:"); |
734 | printf("map: %p, addr: %lx, object: %p, offset: %lx\n", |
735 | map, addr, object, offset); |
736 | } |
737 | |
738 | m->busy = TRUE((boolean_t) 1); |
739 | vm_object_unlock(object); |
740 | |
741 | PMAP_ENTER(map->pmap, addr, m,({ pmap_enter( (map->pmap), (addr), (m)->phys_addr, (protection ) & ~(m)->page_lock, (((boolean_t) 0)) ); }) |
742 | protection, FALSE)({ pmap_enter( (map->pmap), (addr), (m)->phys_addr, (protection ) & ~(m)->page_lock, (((boolean_t) 0)) ); }); |
743 | |
744 | vm_object_lock(object); |
745 | PAGE_WAKEUP_DONE(m)({ (m)->busy = ((boolean_t) 0); if ((m)->wanted) { (m)-> wanted = ((boolean_t) 0); thread_wakeup_prim((((event_t) m)), ((boolean_t) 0), 0); } }); |
746 | vm_page_lock_queues(); |
747 | if (!m->active && !m->inactive) |
748 | vm_page_activate(m); |
749 | vm_page_unlock_queues(); |
750 | vm_object_paging_end(object)({ ({ if (!((object)->paging_in_progress != 0)) Assert("(object)->paging_in_progress != 0" , "../vm/vm_map.c", 750); }); if (--(object)->paging_in_progress == 0) { ({ if ((object)->all_wanted & (1 << (2) )) thread_wakeup_prim(((event_t)(((vm_offset_t) object) + (2) )), ((boolean_t) 0), 0); (object)->all_wanted &= ~(1 << (2)); }); } }); |
751 | vm_object_unlock(object); |
752 | |
753 | offset += PAGE_SIZE(1 << 12); |
754 | addr += PAGE_SIZE(1 << 12); |
755 | } |
756 | } |
757 | |
758 | /* |
759 | * Routine: vm_map_enter |
760 | * |
761 | * Description: |
762 | * Allocate a range in the specified virtual address map. |
763 | * The resulting range will refer to memory defined by |
764 | * the given memory object and offset into that object. |
765 | * |
766 | * Arguments are as defined in the vm_map call. |
767 | */ |
768 | kern_return_t vm_map_enter( |
769 | map, |
770 | address, size, mask, anywhere, |
771 | object, offset, needs_copy, |
772 | cur_protection, max_protection, inheritance) |
773 | register |
774 | vm_map_t map; |
775 | vm_offset_t *address; /* IN/OUT */ |
776 | vm_size_t size; |
777 | vm_offset_t mask; |
778 | boolean_t anywhere; |
779 | vm_object_t object; |
780 | vm_offset_t offset; |
781 | boolean_t needs_copy; |
782 | vm_prot_t cur_protection; |
783 | vm_prot_t max_protection; |
784 | vm_inherit_t inheritance; |
785 | { |
786 | register vm_map_entry_t entry; |
787 | register vm_offset_t start; |
788 | register vm_offset_t end; |
789 | kern_return_t result = KERN_SUCCESS0; |
790 | |
791 | #define RETURN(value) { result = value; goto BailOut; } |
792 | |
793 | if (size == 0) |
794 | return KERN_INVALID_ARGUMENT4; |
795 | |
796 | StartAgain: ; |
797 | |
798 | start = *address; |
799 | |
800 | if (anywhere) { |
801 | vm_map_lock(map)({ lock_write(&(map)->lock); (map)->timestamp++; }); |
802 | |
803 | /* |
804 | * Calculate the first possible address. |
805 | */ |
806 | |
807 | if (start < map->min_offsethdr.links.start) |
808 | start = map->min_offsethdr.links.start; |
809 | if (start > map->max_offsethdr.links.end) |
810 | RETURN(KERN_NO_SPACE3); |
811 | |
812 | /* |
813 | * Look for the first possible address; |
814 | * if there's already something at this |
815 | * address, we have to start after it. |
816 | */ |
817 | |
818 | if (start == map->min_offsethdr.links.start) { |
819 | if ((entry = map->first_free) != vm_map_to_entry(map)((struct vm_map_entry *) &(map)->hdr.links)) |
820 | start = entry->vme_endlinks.end; |
821 | } else { |
822 | vm_map_entry_t tmp_entry; |
823 | if (vm_map_lookup_entry(map, start, &tmp_entry)) |
824 | start = tmp_entry->vme_endlinks.end; |
825 | entry = tmp_entry; |
826 | } |
827 | |
828 | /* |
829 | * In any case, the "entry" always precedes |
830 | * the proposed new region throughout the |
831 | * loop: |
832 | */ |
833 | |
834 | while (TRUE((boolean_t) 1)) { |
835 | register vm_map_entry_t next; |
836 | |
837 | /* |
838 | * Find the end of the proposed new region. |
839 | * Be sure we didn't go beyond the end, or |
840 | * wrap around the address. |
841 | */ |
842 | |
843 | if (((start + mask) & ~mask) < start) { |
844 | printf_once("no more room for vm_map_enter in %p\n", map)({ static int __once = 0; if (!__once) { printf("no more room for vm_map_enter in %p\n" , map); __once = 1; } }); |
845 | RETURN(KERN_NO_SPACE3); |
846 | } |
847 | start = ((start + mask) & ~mask); |
848 | end = start + size; |
849 | |
850 | if ((end > map->max_offsethdr.links.end) || (end < start)) { |
851 | if (map->wait_for_space) { |
852 | if (size <= (map->max_offsethdr.links.end - |
853 | map->min_offsethdr.links.start)) { |
854 | assert_wait((event_t) map, TRUE((boolean_t) 1)); |
855 | vm_map_unlock(map)lock_done(&(map)->lock); |
856 | thread_block((void (*)()) 0); |
857 | goto StartAgain; |
858 | } |
859 | } |
860 | |
861 | printf_once("no more room for vm_map_enter in %p\n", map)({ static int __once = 0; if (!__once) { printf("no more room for vm_map_enter in %p\n" , map); __once = 1; } }); |
862 | RETURN(KERN_NO_SPACE3); |
863 | } |
864 | |
865 | /* |
866 | * If there are no more entries, we must win. |
867 | */ |
868 | |
869 | next = entry->vme_nextlinks.next; |
870 | if (next == vm_map_to_entry(map)((struct vm_map_entry *) &(map)->hdr.links)) |
871 | break; |
872 | |
873 | /* |
874 | * If there is another entry, it must be |
875 | * after the end of the potential new region. |
876 | */ |
877 | |
878 | if (next->vme_startlinks.start >= end) |
879 | break; |
880 | |
881 | /* |
882 | * Didn't fit -- move to the next entry. |
883 | */ |
884 | |
885 | entry = next; |
886 | start = entry->vme_endlinks.end; |
887 | } |
888 | *address = start; |
889 | } else { |
890 | vm_map_entry_t temp_entry; |
891 | |
892 | /* |
893 | * Verify that: |
894 | * the address doesn't itself violate |
895 | * the mask requirement. |
896 | */ |
897 | |
898 | if ((start & mask) != 0) |
899 | return(KERN_NO_SPACE3); |
900 | |
901 | vm_map_lock(map)({ lock_write(&(map)->lock); (map)->timestamp++; }); |
902 | |
903 | /* |
904 | * ... the address is within bounds |
905 | */ |
906 | |
907 | end = start + size; |
908 | |
909 | if ((start < map->min_offsethdr.links.start) || |
910 | (end > map->max_offsethdr.links.end) || |
911 | (start >= end)) { |
912 | RETURN(KERN_INVALID_ADDRESS1); |
913 | } |
914 | |
915 | /* |
916 | * ... the starting address isn't allocated |
917 | */ |
918 | |
919 | if (vm_map_lookup_entry(map, start, &temp_entry)) |
920 | RETURN(KERN_NO_SPACE3); |
921 | |
922 | entry = temp_entry; |
923 | |
924 | /* |
925 | * ... the next region doesn't overlap the |
926 | * end point. |
927 | */ |
928 | |
929 | if ((entry->vme_nextlinks.next != vm_map_to_entry(map)((struct vm_map_entry *) &(map)->hdr.links)) && |
930 | (entry->vme_nextlinks.next->vme_startlinks.start < end)) |
931 | RETURN(KERN_NO_SPACE3); |
932 | } |
933 | |
934 | /* |
935 | * At this point, |
936 | * "start" and "end" should define the endpoints of the |
937 | * available new range, and |
938 | * "entry" should refer to the region before the new |
939 | * range, and |
940 | * |
941 | * the map should be locked. |
942 | */ |
943 | |
944 | /* |
945 | * See whether we can avoid creating a new entry (and object) by |
946 | * extending one of our neighbors. [So far, we only attempt to |
947 | * extend from below.] |
948 | */ |
949 | |
950 | if ((object == VM_OBJECT_NULL((vm_object_t) 0)) && |
951 | (entry != vm_map_to_entry(map)((struct vm_map_entry *) &(map)->hdr.links)) && |
952 | (entry->vme_endlinks.end == start) && |
953 | (!entry->is_shared) && |
954 | (!entry->is_sub_map) && |
955 | (entry->inheritance == inheritance) && |
956 | (entry->protection == cur_protection) && |
957 | (entry->max_protection == max_protection) && |
958 | (entry->wired_count == 0) && /* implies user_wired_count == 0 */ |
959 | (entry->projected_on == 0)) { |
960 | if (vm_object_coalesce(entry->object.vm_object, |
961 | VM_OBJECT_NULL((vm_object_t) 0), |
962 | entry->offset, |
963 | (vm_offset_t) 0, |
964 | (vm_size_t)(entry->vme_endlinks.end - entry->vme_startlinks.start), |
965 | (vm_size_t)(end - entry->vme_endlinks.end))) { |
966 | |
967 | /* |
968 | * Coalesced the two objects - can extend |
969 | * the previous map entry to include the |
970 | * new range. |
971 | */ |
972 | map->size += (end - entry->vme_endlinks.end); |
973 | entry->vme_endlinks.end = end; |
974 | RETURN(KERN_SUCCESS0); |
975 | } |
976 | } |
977 | |
978 | /* |
979 | * Create a new entry |
980 | */ |
981 | |
982 | /**/ { |
983 | register vm_map_entry_t new_entry; |
984 | |
985 | new_entry = vm_map_entry_create(map)_vm_map_entry_create(&(map)->hdr); |
986 | |
987 | new_entry->vme_startlinks.start = start; |
988 | new_entry->vme_endlinks.end = end; |
989 | |
990 | new_entry->is_shared = FALSE((boolean_t) 0); |
991 | new_entry->is_sub_map = FALSE((boolean_t) 0); |
992 | new_entry->object.vm_object = object; |
993 | new_entry->offset = offset; |
994 | |
995 | new_entry->needs_copy = needs_copy; |
996 | |
997 | new_entry->inheritance = inheritance; |
998 | new_entry->protection = cur_protection; |
999 | new_entry->max_protection = max_protection; |
1000 | new_entry->wired_count = 0; |
1001 | new_entry->user_wired_count = 0; |
1002 | |
1003 | new_entry->in_transition = FALSE((boolean_t) 0); |
1004 | new_entry->needs_wakeup = FALSE((boolean_t) 0); |
1005 | new_entry->projected_on = 0; |
1006 | |
1007 | /* |
1008 | * Insert the new entry into the list |
1009 | */ |
1010 | |
1011 | vm_map_entry_link(map, entry, new_entry)({ (&(map)->hdr)->nentries++; (new_entry)->links .prev = (entry); (new_entry)->links.next = (entry)->links .next; (new_entry)->links.prev->links.next = (new_entry )->links.next->links.prev = (new_entry); ({ struct rbtree_node *___cur, *___prev; int ___diff, ___index; ___prev = ((void * ) 0); ___index = -1; ___cur = (&(&(map)->hdr)-> tree)->root; while (___cur != ((void *) 0)) { ___diff = vm_map_entry_cmp_insert (&(new_entry)->tree_node, ___cur); ({ if (!(___diff != 0)) Assert("___diff != 0", "../vm/vm_map.c", 1011); }); ___prev = ___cur; ___index = rbtree_d2i(___diff); ___cur = ___cur-> children[___index]; } rbtree_insert_rebalance(&(&(map )->hdr)->tree, ___prev, ___index, &(new_entry)-> tree_node); }); }); |
1012 | map->size += size; |
1013 | |
1014 | /* |
1015 | * Update the free space hint and the lookup hint |
1016 | */ |
1017 | |
1018 | if ((map->first_free == entry) && |
1019 | ((entry == vm_map_to_entry(map)((struct vm_map_entry *) &(map)->hdr.links) ? map->min_offsethdr.links.start : entry->vme_endlinks.end) |
1020 | >= new_entry->vme_startlinks.start)) |
1021 | map->first_free = new_entry; |
1022 | |
1023 | SAVE_HINT(map, new_entry); (map)->hint = (new_entry); ;; |
1024 | |
1025 | vm_map_unlock(map)lock_done(&(map)->lock); |
1026 | |
1027 | if ((object != VM_OBJECT_NULL((vm_object_t) 0)) && |
1028 | (vm_map_pmap_enter_enable) && |
1029 | (!anywhere) && |
1030 | (!needs_copy) && |
1031 | (size < (128*1024))) { |
1032 | vm_map_pmap_enter(map, start, end, |
1033 | object, offset, cur_protection); |
1034 | } |
1035 | |
1036 | return(result); |
1037 | /**/ } |
1038 | |
1039 | BailOut: ; |
1040 | |
1041 | vm_map_unlock(map)lock_done(&(map)->lock); |
1042 | return(result); |
1043 | |
1044 | #undef RETURN |
1045 | } |
1046 | |
1047 | /* |
1048 | * vm_map_clip_start: [ internal use only ] |
1049 | * |
1050 | * Asserts that the given entry begins at or after |
1051 | * the specified address; if necessary, |
1052 | * it splits the entry into two. |
1053 | */ |
1054 | void _vm_map_clip_start(); |
1055 | #define vm_map_clip_start(map, entry, startaddr)({ if ((startaddr) > (entry)->links.start) _vm_map_clip_start (&(map)->hdr,(entry),(startaddr)); }) \ |
1056 | MACRO_BEGIN({ \ |
1057 | if ((startaddr) > (entry)->vme_startlinks.start) \ |
1058 | _vm_map_clip_start(&(map)->hdr,(entry),(startaddr)); \ |
1059 | MACRO_END}) |
1060 | |
1061 | void _vm_map_copy_clip_start(); |
1062 | #define vm_map_copy_clip_start(copy, entry, startaddr)({ if ((startaddr) > (entry)->links.start) _vm_map_clip_start (&(copy)->c_u.hdr,(entry),(startaddr)); }) \ |
1063 | MACRO_BEGIN({ \ |
1064 | if ((startaddr) > (entry)->vme_startlinks.start) \ |
1065 | _vm_map_clip_start(&(copy)->cpy_hdrc_u.hdr,(entry),(startaddr)); \ |
1066 | MACRO_END}) |
1067 | |
1068 | /* |
1069 | * This routine is called only when it is known that |
1070 | * the entry must be split. |
1071 | */ |
1072 | void _vm_map_clip_start(map_header, entry, start) |
1073 | register struct vm_map_header *map_header; |
1074 | register vm_map_entry_t entry; |
1075 | register vm_offset_t start; |
1076 | { |
1077 | register vm_map_entry_t new_entry; |
1078 | |
1079 | /* |
1080 | * Split off the front portion -- |
1081 | * note that we must insert the new |
1082 | * entry BEFORE this one, so that |
1083 | * this entry has the specified starting |
1084 | * address. |
1085 | */ |
1086 | |
1087 | new_entry = _vm_map_entry_create(map_header); |
1088 | vm_map_entry_copy_full(new_entry, entry)(*(new_entry) = *(entry)); |
1089 | |
1090 | new_entry->vme_endlinks.end = start; |
1091 | entry->offset += (start - entry->vme_startlinks.start); |
1092 | entry->vme_startlinks.start = start; |
1093 | |
1094 | _vm_map_entry_link(map_header, entry->vme_prev, new_entry)({ (map_header)->nentries++; (new_entry)->links.prev = ( entry->links.prev); (new_entry)->links.next = (entry-> links.prev)->links.next; (new_entry)->links.prev->links .next = (new_entry)->links.next->links.prev = (new_entry ); ({ struct rbtree_node *___cur, *___prev; int ___diff, ___index ; ___prev = ((void *) 0); ___index = -1; ___cur = (&(map_header )->tree)->root; while (___cur != ((void *) 0)) { ___diff = vm_map_entry_cmp_insert(&(new_entry)->tree_node, ___cur ); ({ if (!(___diff != 0)) Assert("___diff != 0", "../vm/vm_map.c" , 1094); }); ___prev = ___cur; ___index = rbtree_d2i(___diff) ; ___cur = ___cur->children[___index]; } rbtree_insert_rebalance (&(map_header)->tree, ___prev, ___index, &(new_entry )->tree_node); }); }); |
1095 | |
1096 | if (entry->is_sub_map) |
1097 | vm_map_reference(new_entry->object.sub_map); |
1098 | else |
1099 | vm_object_reference(new_entry->object.vm_object); |
1100 | } |
1101 | |
1102 | /* |
1103 | * vm_map_clip_end: [ internal use only ] |
1104 | * |
1105 | * Asserts that the given entry ends at or before |
1106 | * the specified address; if necessary, |
1107 | * it splits the entry into two. |
1108 | */ |
1109 | void _vm_map_clip_end(); |
1110 | #define vm_map_clip_end(map, entry, endaddr)({ if ((endaddr) < (entry)->links.end) _vm_map_clip_end (&(map)->hdr,(entry),(endaddr)); }) \ |
1111 | MACRO_BEGIN({ \ |
1112 | if ((endaddr) < (entry)->vme_endlinks.end) \ |
1113 | _vm_map_clip_end(&(map)->hdr,(entry),(endaddr)); \ |
1114 | MACRO_END}) |
1115 | |
1116 | void _vm_map_copy_clip_end(); |
1117 | #define vm_map_copy_clip_end(copy, entry, endaddr)({ if ((endaddr) < (entry)->links.end) _vm_map_clip_end (&(copy)->c_u.hdr,(entry),(endaddr)); }) \ |
1118 | MACRO_BEGIN({ \ |
1119 | if ((endaddr) < (entry)->vme_endlinks.end) \ |
1120 | _vm_map_clip_end(&(copy)->cpy_hdrc_u.hdr,(entry),(endaddr)); \ |
1121 | MACRO_END}) |
1122 | |
1123 | /* |
1124 | * This routine is called only when it is known that |
1125 | * the entry must be split. |
1126 | */ |
1127 | void _vm_map_clip_end(map_header, entry, end) |
1128 | register struct vm_map_header *map_header; |
1129 | register vm_map_entry_t entry; |
1130 | register vm_offset_t end; |
1131 | { |
1132 | register vm_map_entry_t new_entry; |
1133 | |
1134 | /* |
1135 | * Create a new entry and insert it |
1136 | * AFTER the specified entry |
1137 | */ |
1138 | |
1139 | new_entry = _vm_map_entry_create(map_header); |
1140 | vm_map_entry_copy_full(new_entry, entry)(*(new_entry) = *(entry)); |
1141 | |
1142 | new_entry->vme_startlinks.start = entry->vme_endlinks.end = end; |
1143 | new_entry->offset += (end - entry->vme_startlinks.start); |
1144 | |
1145 | _vm_map_entry_link(map_header, entry, new_entry)({ (map_header)->nentries++; (new_entry)->links.prev = ( entry); (new_entry)->links.next = (entry)->links.next; ( new_entry)->links.prev->links.next = (new_entry)->links .next->links.prev = (new_entry); ({ struct rbtree_node *___cur , *___prev; int ___diff, ___index; ___prev = ((void *) 0); ___index = -1; ___cur = (&(map_header)->tree)->root; while ( ___cur != ((void *) 0)) { ___diff = vm_map_entry_cmp_insert(& (new_entry)->tree_node, ___cur); ({ if (!(___diff != 0)) Assert ("___diff != 0", "../vm/vm_map.c", 1145); }); ___prev = ___cur ; ___index = rbtree_d2i(___diff); ___cur = ___cur->children [___index]; } rbtree_insert_rebalance(&(map_header)->tree , ___prev, ___index, &(new_entry)->tree_node); }); }); |
1146 | |
1147 | if (entry->is_sub_map) |
1148 | vm_map_reference(new_entry->object.sub_map); |
1149 | else |
1150 | vm_object_reference(new_entry->object.vm_object); |
1151 | } |
1152 | |
1153 | /* |
1154 | * VM_MAP_RANGE_CHECK: [ internal use only ] |
1155 | * |
1156 | * Asserts that the starting and ending region |
1157 | * addresses fall within the valid range of the map. |
1158 | */ |
1159 | #define VM_MAP_RANGE_CHECK(map, start, end){ if (start < ((map)->hdr.links.start)) start = ((map)-> hdr.links.start); if (end > ((map)->hdr.links.end)) end = ((map)->hdr.links.end); if (start > end) start = end ; } \ |
1160 | { \ |
1161 | if (start < vm_map_min(map)((map)->hdr.links.start)) \ |
1162 | start = vm_map_min(map)((map)->hdr.links.start); \ |
1163 | if (end > vm_map_max(map)((map)->hdr.links.end)) \ |
1164 | end = vm_map_max(map)((map)->hdr.links.end); \ |
1165 | if (start > end) \ |
1166 | start = end; \ |
1167 | } |
1168 | |
1169 | /* |
1170 | * vm_map_submap: [ kernel use only ] |
1171 | * |
1172 | * Mark the given range as handled by a subordinate map. |
1173 | * |
1174 | * This range must have been created with vm_map_find using |
1175 | * the vm_submap_object, and no other operations may have been |
1176 | * performed on this range prior to calling vm_map_submap. |
1177 | * |
1178 | * Only a limited number of operations can be performed |
1179 | * within this rage after calling vm_map_submap: |
1180 | * vm_fault |
1181 | * [Don't try vm_map_copyin!] |
1182 | * |
1183 | * To remove a submapping, one must first remove the |
1184 | * range from the superior map, and then destroy the |
1185 | * submap (if desired). [Better yet, don't try it.] |
1186 | */ |
1187 | kern_return_t vm_map_submap(map, start, end, submap) |
1188 | register vm_map_t map; |
1189 | register vm_offset_t start; |
1190 | register vm_offset_t end; |
1191 | vm_map_t submap; |
1192 | { |
1193 | vm_map_entry_t entry; |
1194 | register kern_return_t result = KERN_INVALID_ARGUMENT4; |
1195 | register vm_object_t object; |
1196 | |
1197 | vm_map_lock(map)({ lock_write(&(map)->lock); (map)->timestamp++; }); |
1198 | |
1199 | VM_MAP_RANGE_CHECK(map, start, end){ if (start < ((map)->hdr.links.start)) start = ((map)-> hdr.links.start); if (end > ((map)->hdr.links.end)) end = ((map)->hdr.links.end); if (start > end) start = end ; }; |
1200 | |
1201 | if (vm_map_lookup_entry(map, start, &entry)) { |
1202 | vm_map_clip_start(map, entry, start)({ if ((start) > (entry)->links.start) _vm_map_clip_start (&(map)->hdr,(entry),(start)); }); |
1203 | } |
1204 | else |
1205 | entry = entry->vme_nextlinks.next; |
1206 | |
1207 | vm_map_clip_end(map, entry, end)({ if ((end) < (entry)->links.end) _vm_map_clip_end(& (map)->hdr,(entry),(end)); }); |
1208 | |
1209 | if ((entry->vme_startlinks.start == start) && (entry->vme_endlinks.end == end) && |
1210 | (!entry->is_sub_map) && |
1211 | ((object = entry->object.vm_object) == vm_submap_object) && |
1212 | (object->resident_page_count == 0) && |
1213 | (object->copy == VM_OBJECT_NULL((vm_object_t) 0)) && |
1214 | (object->shadow == VM_OBJECT_NULL((vm_object_t) 0)) && |
1215 | (!object->pager_created)) { |
1216 | entry->object.vm_object = VM_OBJECT_NULL((vm_object_t) 0); |
1217 | vm_object_deallocate(object); |
1218 | entry->is_sub_map = TRUE((boolean_t) 1); |
1219 | vm_map_reference(entry->object.sub_map = submap); |
1220 | result = KERN_SUCCESS0; |
1221 | } |
1222 | vm_map_unlock(map)lock_done(&(map)->lock); |
1223 | |
1224 | return(result); |
1225 | } |
1226 | |
1227 | /* |
1228 | * vm_map_protect: |
1229 | * |
1230 | * Sets the protection of the specified address |
1231 | * region in the target map. If "set_max" is |
1232 | * specified, the maximum protection is to be set; |
1233 | * otherwise, only the current protection is affected. |
1234 | */ |
1235 | kern_return_t vm_map_protect(map, start, end, new_prot, set_max) |
1236 | register vm_map_t map; |
1237 | register vm_offset_t start; |
1238 | register vm_offset_t end; |
1239 | register vm_prot_t new_prot; |
1240 | register boolean_t set_max; |
1241 | { |
1242 | register vm_map_entry_t current; |
1243 | vm_map_entry_t entry; |
1244 | |
1245 | vm_map_lock(map)({ lock_write(&(map)->lock); (map)->timestamp++; }); |
1246 | |
1247 | VM_MAP_RANGE_CHECK(map, start, end){ if (start < ((map)->hdr.links.start)) start = ((map)-> hdr.links.start); if (end > ((map)->hdr.links.end)) end = ((map)->hdr.links.end); if (start > end) start = end ; }; |
1248 | |
1249 | if (vm_map_lookup_entry(map, start, &entry)) { |
1250 | vm_map_clip_start(map, entry, start)({ if ((start) > (entry)->links.start) _vm_map_clip_start (&(map)->hdr,(entry),(start)); }); |
1251 | } |
1252 | else |
1253 | entry = entry->vme_nextlinks.next; |
1254 | |
1255 | /* |
1256 | * Make a first pass to check for protection |
1257 | * violations. |
1258 | */ |
1259 | |
1260 | current = entry; |
1261 | while ((current != vm_map_to_entry(map)((struct vm_map_entry *) &(map)->hdr.links)) && |
1262 | (current->vme_startlinks.start < end)) { |
1263 | |
1264 | if (current->is_sub_map) { |
1265 | vm_map_unlock(map)lock_done(&(map)->lock); |
1266 | return(KERN_INVALID_ARGUMENT4); |
1267 | } |
1268 | if ((new_prot & (VM_PROT_NOTIFY((vm_prot_t) 0x10) | current->max_protection)) |
1269 | != new_prot) { |
1270 | vm_map_unlock(map)lock_done(&(map)->lock); |
1271 | return(KERN_PROTECTION_FAILURE2); |
1272 | } |
1273 | |
1274 | current = current->vme_nextlinks.next; |
1275 | } |
1276 | |
1277 | /* |
1278 | * Go back and fix up protections. |
1279 | * [Note that clipping is not necessary the second time.] |
1280 | */ |
1281 | |
1282 | current = entry; |
1283 | |
1284 | while ((current != vm_map_to_entry(map)((struct vm_map_entry *) &(map)->hdr.links)) && |
1285 | (current->vme_startlinks.start < end)) { |
1286 | |
1287 | vm_prot_t old_prot; |
1288 | |
1289 | vm_map_clip_end(map, current, end)({ if ((end) < (current)->links.end) _vm_map_clip_end(& (map)->hdr,(current),(end)); }); |
1290 | |
1291 | old_prot = current->protection; |
1292 | if (set_max) |
1293 | current->protection = |
1294 | (current->max_protection = new_prot) & |
1295 | old_prot; |
1296 | else |
1297 | current->protection = new_prot; |
1298 | |
1299 | /* |
1300 | * Update physical map if necessary. |
1301 | */ |
1302 | |
1303 | if (current->protection != old_prot) { |
1304 | pmap_protect(map->pmap, current->vme_startlinks.start, |
1305 | current->vme_endlinks.end, |
1306 | current->protection); |
1307 | } |
1308 | current = current->vme_nextlinks.next; |
1309 | } |
1310 | |
1311 | vm_map_unlock(map)lock_done(&(map)->lock); |
1312 | return(KERN_SUCCESS0); |
1313 | } |
1314 | |
1315 | /* |
1316 | * vm_map_inherit: |
1317 | * |
1318 | * Sets the inheritance of the specified address |
1319 | * range in the target map. Inheritance |
1320 | * affects how the map will be shared with |
1321 | * child maps at the time of vm_map_fork. |
1322 | */ |
1323 | kern_return_t vm_map_inherit(map, start, end, new_inheritance) |
1324 | register vm_map_t map; |
1325 | register vm_offset_t start; |
1326 | register vm_offset_t end; |
1327 | register vm_inherit_t new_inheritance; |
1328 | { |
1329 | register vm_map_entry_t entry; |
1330 | vm_map_entry_t temp_entry; |
1331 | |
1332 | vm_map_lock(map)({ lock_write(&(map)->lock); (map)->timestamp++; }); |
1333 | |
1334 | VM_MAP_RANGE_CHECK(map, start, end){ if (start < ((map)->hdr.links.start)) start = ((map)-> hdr.links.start); if (end > ((map)->hdr.links.end)) end = ((map)->hdr.links.end); if (start > end) start = end ; }; |
1335 | |
1336 | if (vm_map_lookup_entry(map, start, &temp_entry)) { |
1337 | entry = temp_entry; |
1338 | vm_map_clip_start(map, entry, start)({ if ((start) > (entry)->links.start) _vm_map_clip_start (&(map)->hdr,(entry),(start)); }); |
1339 | } |
1340 | else |
1341 | entry = temp_entry->vme_nextlinks.next; |
1342 | |
1343 | while ((entry != vm_map_to_entry(map)((struct vm_map_entry *) &(map)->hdr.links)) && (entry->vme_startlinks.start < end)) { |
1344 | vm_map_clip_end(map, entry, end)({ if ((end) < (entry)->links.end) _vm_map_clip_end(& (map)->hdr,(entry),(end)); }); |
1345 | |
1346 | entry->inheritance = new_inheritance; |
1347 | |
1348 | entry = entry->vme_nextlinks.next; |
1349 | } |
1350 | |
1351 | vm_map_unlock(map)lock_done(&(map)->lock); |
1352 | return(KERN_SUCCESS0); |
1353 | } |
1354 | |
1355 | /* |
1356 | * vm_map_pageable_common: |
1357 | * |
1358 | * Sets the pageability of the specified address |
1359 | * range in the target map. Regions specified |
1360 | * as not pageable require locked-down physical |
1361 | * memory and physical page maps. access_type indicates |
1362 | * types of accesses that must not generate page faults. |
1363 | * This is checked against protection of memory being locked-down. |
1364 | * access_type of VM_PROT_NONE makes memory pageable. |
1365 | * |
1366 | * The map must not be locked, but a reference |
1367 | * must remain to the map throughout the call. |
1368 | * |
1369 | * Callers should use macros in vm/vm_map.h (i.e. vm_map_pageable, |
1370 | * or vm_map_pageable_user); don't call vm_map_pageable directly. |
1371 | */ |
1372 | kern_return_t vm_map_pageable_common(map, start, end, access_type, user_wire) |
1373 | register vm_map_t map; |
1374 | register vm_offset_t start; |
1375 | register vm_offset_t end; |
1376 | register vm_prot_t access_type; |
1377 | boolean_t user_wire; |
1378 | { |
1379 | register vm_map_entry_t entry; |
1380 | vm_map_entry_t start_entry; |
1381 | |
1382 | vm_map_lock(map)({ lock_write(&(map)->lock); (map)->timestamp++; }); |
1383 | |
1384 | VM_MAP_RANGE_CHECK(map, start, end){ if (start < ((map)->hdr.links.start)) start = ((map)-> hdr.links.start); if (end > ((map)->hdr.links.end)) end = ((map)->hdr.links.end); if (start > end) start = end ; }; |
1385 | |
1386 | if (vm_map_lookup_entry(map, start, &start_entry)) { |
1387 | entry = start_entry; |
1388 | /* |
1389 | * vm_map_clip_start will be done later. |
1390 | */ |
1391 | } |
1392 | else { |
1393 | /* |
1394 | * Start address is not in map; this is fatal. |
1395 | */ |
1396 | vm_map_unlock(map)lock_done(&(map)->lock); |
1397 | return(KERN_FAILURE5); |
1398 | } |
1399 | |
1400 | /* |
1401 | * Actions are rather different for wiring and unwiring, |
1402 | * so we have two separate cases. |
1403 | */ |
1404 | |
1405 | if (access_type == VM_PROT_NONE((vm_prot_t) 0x00)) { |
1406 | |
1407 | vm_map_clip_start(map, entry, start)({ if ((start) > (entry)->links.start) _vm_map_clip_start (&(map)->hdr,(entry),(start)); }); |
1408 | |
1409 | /* |
1410 | * Unwiring. First ensure that the range to be |
1411 | * unwired is really wired down. |
1412 | */ |
1413 | while ((entry != vm_map_to_entry(map)((struct vm_map_entry *) &(map)->hdr.links)) && |
1414 | (entry->vme_startlinks.start < end)) { |
1415 | |
1416 | if ((entry->wired_count == 0) || |
1417 | ((entry->vme_endlinks.end < end) && |
1418 | ((entry->vme_nextlinks.next == vm_map_to_entry(map)((struct vm_map_entry *) &(map)->hdr.links)) || |
1419 | (entry->vme_nextlinks.next->vme_startlinks.start > entry->vme_endlinks.end))) || |
1420 | (user_wire && (entry->user_wired_count == 0))) { |
1421 | vm_map_unlock(map)lock_done(&(map)->lock); |
1422 | return(KERN_INVALID_ARGUMENT4); |
1423 | } |
1424 | entry = entry->vme_nextlinks.next; |
1425 | } |
1426 | |
1427 | /* |
1428 | * Now decrement the wiring count for each region. |
1429 | * If a region becomes completely unwired, |
1430 | * unwire its physical pages and mappings. |
1431 | */ |
1432 | entry = start_entry; |
1433 | while ((entry != vm_map_to_entry(map)((struct vm_map_entry *) &(map)->hdr.links)) && |
1434 | (entry->vme_startlinks.start < end)) { |
1435 | vm_map_clip_end(map, entry, end)({ if ((end) < (entry)->links.end) _vm_map_clip_end(& (map)->hdr,(entry),(end)); }); |
1436 | |
1437 | if (user_wire) { |
1438 | if (--(entry->user_wired_count) == 0) |
1439 | entry->wired_count--; |
1440 | } |
1441 | else { |
1442 | entry->wired_count--; |
1443 | } |
1444 | |
1445 | if (entry->wired_count == 0) |
1446 | vm_fault_unwire(map, entry); |
1447 | |
1448 | entry = entry->vme_nextlinks.next; |
1449 | } |
1450 | } |
1451 | |
1452 | else { |
1453 | /* |
1454 | * Wiring. We must do this in two passes: |
1455 | * |
1456 | * 1. Holding the write lock, we create any shadow |
1457 | * or zero-fill objects that need to be created. |
1458 | * Then we clip each map entry to the region to be |
1459 | * wired and increment its wiring count. We |
1460 | * create objects before clipping the map entries |
1461 | * to avoid object proliferation. |
1462 | * |
1463 | * 2. We downgrade to a read lock, and call |
1464 | * vm_fault_wire to fault in the pages for any |
1465 | * newly wired area (wired_count is 1). |
1466 | * |
1467 | * Downgrading to a read lock for vm_fault_wire avoids |
1468 | * a possible deadlock with another thread that may have |
1469 | * faulted on one of the pages to be wired (it would mark |
1470 | * the page busy, blocking us, then in turn block on the |
1471 | * map lock that we hold). Because of problems in the |
1472 | * recursive lock package, we cannot upgrade to a write |
1473 | * lock in vm_map_lookup. Thus, any actions that require |
1474 | * the write lock must be done beforehand. Because we |
1475 | * keep the read lock on the map, the copy-on-write |
1476 | * status of the entries we modify here cannot change. |
1477 | */ |
1478 | |
1479 | /* |
1480 | * Pass 1. |
1481 | */ |
1482 | while ((entry != vm_map_to_entry(map)((struct vm_map_entry *) &(map)->hdr.links)) && |
1483 | (entry->vme_startlinks.start < end)) { |
1484 | vm_map_clip_end(map, entry, end)({ if ((end) < (entry)->links.end) _vm_map_clip_end(& (map)->hdr,(entry),(end)); }); |
1485 | |
1486 | if (entry->wired_count == 0) { |
1487 | |
1488 | /* |
1489 | * Perform actions of vm_map_lookup that need |
1490 | * the write lock on the map: create a shadow |
1491 | * object for a copy-on-write region, or an |
1492 | * object for a zero-fill region. |
1493 | */ |
1494 | if (entry->needs_copy && |
1495 | ((entry->protection & VM_PROT_WRITE((vm_prot_t) 0x02)) != 0)) { |
1496 | |
1497 | vm_object_shadow(&entry->object.vm_object, |
1498 | &entry->offset, |
1499 | (vm_size_t)(entry->vme_endlinks.end |
1500 | - entry->vme_startlinks.start)); |
1501 | entry->needs_copy = FALSE((boolean_t) 0); |
1502 | } |
1503 | if (entry->object.vm_object == VM_OBJECT_NULL((vm_object_t) 0)) { |
1504 | entry->object.vm_object = |
1505 | vm_object_allocate( |
1506 | (vm_size_t)(entry->vme_endlinks.end |
1507 | - entry->vme_startlinks.start)); |
1508 | entry->offset = (vm_offset_t)0; |
1509 | } |
1510 | } |
1511 | vm_map_clip_start(map, entry, start)({ if ((start) > (entry)->links.start) _vm_map_clip_start (&(map)->hdr,(entry),(start)); }); |
1512 | vm_map_clip_end(map, entry, end)({ if ((end) < (entry)->links.end) _vm_map_clip_end(& (map)->hdr,(entry),(end)); }); |
1513 | |
1514 | if (user_wire) { |
1515 | if ((entry->user_wired_count)++ == 0) |
1516 | entry->wired_count++; |
1517 | } |
1518 | else { |
1519 | entry->wired_count++; |
1520 | } |
1521 | |
1522 | /* |
1523 | * Check for holes and protection mismatch. |
1524 | * Holes: Next entry should be contiguous unless |
1525 | * this is the end of the region. |
1526 | * Protection: Access requested must be allowed. |
1527 | */ |
1528 | if (((entry->vme_endlinks.end < end) && |
1529 | ((entry->vme_nextlinks.next == vm_map_to_entry(map)((struct vm_map_entry *) &(map)->hdr.links)) || |
1530 | (entry->vme_nextlinks.next->vme_startlinks.start > entry->vme_endlinks.end))) || |
1531 | ((entry->protection & access_type) != access_type)) { |
1532 | /* |
1533 | * Found a hole or protection problem. |
1534 | * Object creation actions |
1535 | * do not need to be undone, but the |
1536 | * wired counts need to be restored. |
1537 | */ |
1538 | while ((entry != vm_map_to_entry(map)((struct vm_map_entry *) &(map)->hdr.links)) && |
1539 | (entry->vme_endlinks.end > start)) { |
1540 | if (user_wire) { |
1541 | if (--(entry->user_wired_count) == 0) |
1542 | entry->wired_count--; |
1543 | } |
1544 | else { |
1545 | entry->wired_count--; |
1546 | } |
1547 | |
1548 | entry = entry->vme_prevlinks.prev; |
1549 | } |
1550 | |
1551 | vm_map_unlock(map)lock_done(&(map)->lock); |
1552 | return(KERN_FAILURE5); |
1553 | } |
1554 | entry = entry->vme_nextlinks.next; |
1555 | } |
1556 | |
1557 | /* |
1558 | * Pass 2. |
1559 | */ |
1560 | |
1561 | /* |
1562 | * HACK HACK HACK HACK |
1563 | * |
1564 | * If we are wiring in the kernel map or a submap of it, |
1565 | * unlock the map to avoid deadlocks. We trust that the |
1566 | * kernel threads are well-behaved, and therefore will |
1567 | * not do anything destructive to this region of the map |
1568 | * while we have it unlocked. We cannot trust user threads |
1569 | * to do the same. |
1570 | * |
1571 | * HACK HACK HACK HACK |
1572 | */ |
1573 | if (vm_map_pmap(map)((map)->pmap) == kernel_pmap) { |
1574 | vm_map_unlock(map)lock_done(&(map)->lock); /* trust me ... */ |
1575 | } |
1576 | else { |
1577 | vm_map_lock_set_recursive(map)lock_set_recursive(&(map)->lock); |
1578 | vm_map_lock_write_to_read(map)lock_write_to_read(&(map)->lock); |
1579 | } |
1580 | |
1581 | entry = start_entry; |
1582 | while (entry != vm_map_to_entry(map)((struct vm_map_entry *) &(map)->hdr.links) && |
1583 | entry->vme_startlinks.start < end) { |
1584 | /* |
1585 | * Wiring cases: |
1586 | * Kernel: wired == 1 && user_wired == 0 |
1587 | * User: wired == 1 && user_wired == 1 |
1588 | * |
1589 | * Don't need to wire if either is > 1. wired = 0 && |
1590 | * user_wired == 1 can't happen. |
1591 | */ |
1592 | |
1593 | /* |
1594 | * XXX This assumes that the faults always succeed. |
1595 | */ |
1596 | if ((entry->wired_count == 1) && |
1597 | (entry->user_wired_count <= 1)) { |
1598 | vm_fault_wire(map, entry); |
1599 | } |
1600 | entry = entry->vme_nextlinks.next; |
1601 | } |
1602 | |
1603 | if (vm_map_pmap(map)((map)->pmap) == kernel_pmap) { |
1604 | vm_map_lock(map)({ lock_write(&(map)->lock); (map)->timestamp++; }); |
1605 | } |
1606 | else { |
1607 | vm_map_lock_clear_recursive(map)lock_clear_recursive(&(map)->lock); |
1608 | } |
1609 | } |
1610 | |
1611 | vm_map_unlock(map)lock_done(&(map)->lock); |
1612 | |
1613 | return(KERN_SUCCESS0); |
1614 | } |
1615 | |
1616 | /* |
1617 | * vm_map_entry_delete: [ internal use only ] |
1618 | * |
1619 | * Deallocate the given entry from the target map. |
1620 | */ |
1621 | void vm_map_entry_delete(map, entry) |
1622 | register vm_map_t map; |
1623 | register vm_map_entry_t entry; |
1624 | { |
1625 | register vm_offset_t s, e; |
1626 | register vm_object_t object; |
1627 | extern vm_object_t kernel_object; |
1628 | |
1629 | s = entry->vme_startlinks.start; |
1630 | e = entry->vme_endlinks.end; |
1631 | |
1632 | /*Check if projected buffer*/ |
1633 | if (map != kernel_map && entry->projected_on != 0) { |
1634 | /*Check if projected kernel entry is persistent; |
1635 | may only manipulate directly if it is*/ |
1636 | if (entry->projected_on->projected_on == 0) |
1637 | entry->wired_count = 0; /*Avoid unwire fault*/ |
1638 | else |
1639 | return; |
1640 | } |
1641 | |
1642 | /* |
1643 | * Get the object. Null objects cannot have pmap entries. |
1644 | */ |
1645 | |
1646 | if ((object = entry->object.vm_object) != VM_OBJECT_NULL((vm_object_t) 0)) { |
1647 | |
1648 | /* |
1649 | * Unwire before removing addresses from the pmap; |
1650 | * otherwise, unwiring will put the entries back in |
1651 | * the pmap. |
1652 | */ |
1653 | |
1654 | if (entry->wired_count != 0) { |
1655 | vm_fault_unwire(map, entry); |
1656 | entry->wired_count = 0; |
1657 | entry->user_wired_count = 0; |
1658 | } |
1659 | |
1660 | /* |
1661 | * If the object is shared, we must remove |
1662 | * *all* references to this data, since we can't |
1663 | * find all of the physical maps which are sharing |
1664 | * it. |
1665 | */ |
1666 | |
1667 | if (object == kernel_object) { |
1668 | vm_object_lock(object); |
1669 | vm_object_page_remove(object, entry->offset, |
1670 | entry->offset + (e - s)); |
1671 | vm_object_unlock(object); |
1672 | } else if (entry->is_shared) { |
1673 | vm_object_pmap_remove(object, |
1674 | entry->offset, |
1675 | entry->offset + (e - s)); |
1676 | } |
1677 | else { |
1678 | pmap_remove(map->pmap, s, e); |
1679 | } |
1680 | } |
1681 | |
1682 | /* |
1683 | * Deallocate the object only after removing all |
1684 | * pmap entries pointing to its pages. |
1685 | */ |
1686 | |
1687 | if (entry->is_sub_map) |
1688 | vm_map_deallocate(entry->object.sub_map); |
1689 | else |
1690 | vm_object_deallocate(entry->object.vm_object); |
1691 | |
1692 | vm_map_entry_unlink(map, entry)({ (&(map)->hdr)->nentries--; (entry)->links.next ->links.prev = (entry)->links.prev; (entry)->links.prev ->links.next = (entry)->links.next; rbtree_remove(& (&(map)->hdr)->tree, &(entry)->tree_node); } ); |
1693 | map->size -= e - s; |
1694 | |
1695 | vm_map_entry_dispose(map, entry)_vm_map_entry_dispose(&(map)->hdr, (entry)); |
1696 | } |
1697 | |
1698 | /* |
1699 | * vm_map_delete: [ internal use only ] |
1700 | * |
1701 | * Deallocates the given address range from the target |
1702 | * map. |
1703 | */ |
1704 | |
1705 | kern_return_t vm_map_delete(map, start, end) |
1706 | register vm_map_t map; |
1707 | register vm_offset_t start; |
1708 | register vm_offset_t end; |
1709 | { |
1710 | vm_map_entry_t entry; |
1711 | vm_map_entry_t first_entry; |
1712 | |
1713 | /* |
1714 | * Find the start of the region, and clip it |
1715 | */ |
1716 | |
1717 | if (!vm_map_lookup_entry(map, start, &first_entry)) |
1718 | entry = first_entry->vme_nextlinks.next; |
1719 | else { |
1720 | entry = first_entry; |
1721 | vm_map_clip_start(map, entry, start)({ if ((start) > (entry)->links.start) _vm_map_clip_start (&(map)->hdr,(entry),(start)); }); |
1722 | |
1723 | /* |
1724 | * Fix the lookup hint now, rather than each |
1725 | * time though the loop. |
1726 | */ |
1727 | |
1728 | SAVE_HINT(map, entry->vme_prev); (map)->hint = (entry->links.prev); ;; |
1729 | } |
1730 | |
1731 | /* |
1732 | * Save the free space hint |
1733 | */ |
1734 | |
1735 | if (map->first_free->vme_startlinks.start >= start) |
1736 | map->first_free = entry->vme_prevlinks.prev; |
1737 | |
1738 | /* |
1739 | * Step through all entries in this region |
1740 | */ |
1741 | |
1742 | while ((entry != vm_map_to_entry(map)((struct vm_map_entry *) &(map)->hdr.links)) && (entry->vme_startlinks.start < end)) { |
1743 | vm_map_entry_t next; |
1744 | |
1745 | vm_map_clip_end(map, entry, end)({ if ((end) < (entry)->links.end) _vm_map_clip_end(& (map)->hdr,(entry),(end)); }); |
1746 | |
1747 | /* |
1748 | * If the entry is in transition, we must wait |
1749 | * for it to exit that state. It could be clipped |
1750 | * while we leave the map unlocked. |
1751 | */ |
1752 | if(entry->in_transition) { |
1753 | /* |
1754 | * Say that we are waiting, and wait for entry. |
1755 | */ |
1756 | entry->needs_wakeup = TRUE((boolean_t) 1); |
1757 | vm_map_entry_wait(map, FALSE)({ assert_wait((event_t)&(map)->hdr, ((boolean_t) 0)); lock_done(&(map)->lock); thread_block((void (*)()) 0) ; }); |
1758 | vm_map_lock(map)({ lock_write(&(map)->lock); (map)->timestamp++; }); |
1759 | |
1760 | /* |
1761 | * The entry could have been clipped or it |
1762 | * may not exist anymore. look it up again. |
1763 | */ |
1764 | if(!vm_map_lookup_entry(map, start, &entry)) { |
1765 | entry = entry->vme_nextlinks.next; |
1766 | } |
1767 | continue; |
1768 | } |
1769 | |
1770 | next = entry->vme_nextlinks.next; |
1771 | |
1772 | vm_map_entry_delete(map, entry); |
1773 | entry = next; |
1774 | } |
1775 | |
1776 | if (map->wait_for_space) |
1777 | thread_wakeup((event_t) map)thread_wakeup_prim(((event_t) map), ((boolean_t) 0), 0); |
1778 | |
1779 | return(KERN_SUCCESS0); |
1780 | } |
1781 | |
1782 | /* |
1783 | * vm_map_remove: |
1784 | * |
1785 | * Remove the given address range from the target map. |
1786 | * This is the exported form of vm_map_delete. |
1787 | */ |
1788 | kern_return_t vm_map_remove(map, start, end) |
1789 | register vm_map_t map; |
1790 | register vm_offset_t start; |
1791 | register vm_offset_t end; |
1792 | { |
1793 | register kern_return_t result; |
1794 | |
1795 | vm_map_lock(map)({ lock_write(&(map)->lock); (map)->timestamp++; }); |
1796 | VM_MAP_RANGE_CHECK(map, start, end){ if (start < ((map)->hdr.links.start)) start = ((map)-> hdr.links.start); if (end > ((map)->hdr.links.end)) end = ((map)->hdr.links.end); if (start > end) start = end ; }; |
1797 | result = vm_map_delete(map, start, end); |
1798 | vm_map_unlock(map)lock_done(&(map)->lock); |
1799 | |
1800 | return(result); |
1801 | } |
1802 | |
1803 | |
1804 | /* |
1805 | * vm_map_copy_steal_pages: |
1806 | * |
1807 | * Steal all the pages from a vm_map_copy page_list by copying ones |
1808 | * that have not already been stolen. |
1809 | */ |
1810 | void |
1811 | vm_map_copy_steal_pages(copy) |
1812 | vm_map_copy_t copy; |
1813 | { |
1814 | register vm_page_t m, new_m; |
1815 | register int i; |
1816 | vm_object_t object; |
1817 | |
1818 | for (i = 0; i < copy->cpy_npagesc_u.c_p.npages; i++) { |
1819 | |
1820 | /* |
1821 | * If the page is not tabled, then it's already stolen. |
1822 | */ |
1823 | m = copy->cpy_page_listc_u.c_p.page_list[i]; |
1824 | if (!m->tabled) |
1825 | continue; |
1826 | |
1827 | /* |
1828 | * Page was not stolen, get a new |
1829 | * one and do the copy now. |
1830 | */ |
1831 | while ((new_m = vm_page_grab(FALSE((boolean_t) 0))) == VM_PAGE_NULL((vm_page_t) 0)) { |
1832 | VM_PAGE_WAIT((void(*)()) 0)vm_page_wait((void(*)()) 0); |
1833 | } |
1834 | |
1835 | vm_page_copy(m, new_m); |
1836 | |
1837 | object = m->object; |
1838 | vm_object_lock(object); |
1839 | vm_page_lock_queues(); |
1840 | if (!m->active && !m->inactive) |
1841 | vm_page_activate(m); |
1842 | vm_page_unlock_queues(); |
1843 | PAGE_WAKEUP_DONE(m)({ (m)->busy = ((boolean_t) 0); if ((m)->wanted) { (m)-> wanted = ((boolean_t) 0); thread_wakeup_prim((((event_t) m)), ((boolean_t) 0), 0); } }); |
1844 | vm_object_paging_end(object)({ ({ if (!((object)->paging_in_progress != 0)) Assert("(object)->paging_in_progress != 0" , "../vm/vm_map.c", 1844); }); if (--(object)->paging_in_progress == 0) { ({ if ((object)->all_wanted & (1 << (2) )) thread_wakeup_prim(((event_t)(((vm_offset_t) object) + (2) )), ((boolean_t) 0), 0); (object)->all_wanted &= ~(1 << (2)); }); } }); |
1845 | vm_object_unlock(object); |
1846 | |
1847 | copy->cpy_page_listc_u.c_p.page_list[i] = new_m; |
1848 | } |
1849 | } |
1850 | |
1851 | /* |
1852 | * vm_map_copy_page_discard: |
1853 | * |
1854 | * Get rid of the pages in a page_list copy. If the pages are |
1855 | * stolen, they are freed. If the pages are not stolen, they |
1856 | * are unbusied, and associated state is cleaned up. |
1857 | */ |
1858 | void vm_map_copy_page_discard(copy) |
1859 | vm_map_copy_t copy; |
1860 | { |
1861 | while (copy->cpy_npagesc_u.c_p.npages > 0) { |
1862 | vm_page_t m; |
1863 | |
1864 | if((m = copy->cpy_page_listc_u.c_p.page_list[--(copy->cpy_npagesc_u.c_p.npages)]) != |
1865 | VM_PAGE_NULL((vm_page_t) 0)) { |
1866 | |
1867 | /* |
1868 | * If it's not in the table, then it's |
1869 | * a stolen page that goes back |
1870 | * to the free list. Else it belongs |
1871 | * to some object, and we hold a |
1872 | * paging reference on that object. |
1873 | */ |
1874 | if (!m->tabled) { |
1875 | VM_PAGE_FREE(m)({ ; vm_page_free(m); ; }); |
1876 | } |
1877 | else { |
1878 | vm_object_t object; |
1879 | |
1880 | object = m->object; |
1881 | |
1882 | vm_object_lock(object); |
1883 | vm_page_lock_queues(); |
1884 | if (!m->active && !m->inactive) |
1885 | vm_page_activate(m); |
1886 | vm_page_unlock_queues(); |
1887 | |
1888 | PAGE_WAKEUP_DONE(m)({ (m)->busy = ((boolean_t) 0); if ((m)->wanted) { (m)-> wanted = ((boolean_t) 0); thread_wakeup_prim((((event_t) m)), ((boolean_t) 0), 0); } }); |
1889 | vm_object_paging_end(object)({ ({ if (!((object)->paging_in_progress != 0)) Assert("(object)->paging_in_progress != 0" , "../vm/vm_map.c", 1889); }); if (--(object)->paging_in_progress == 0) { ({ if ((object)->all_wanted & (1 << (2) )) thread_wakeup_prim(((event_t)(((vm_offset_t) object) + (2) )), ((boolean_t) 0), 0); (object)->all_wanted &= ~(1 << (2)); }); } }); |
1890 | vm_object_unlock(object); |
1891 | } |
1892 | } |
1893 | } |
1894 | } |
1895 | |
1896 | /* |
1897 | * Routine: vm_map_copy_discard |
1898 | * |
1899 | * Description: |
1900 | * Dispose of a map copy object (returned by |
1901 | * vm_map_copyin). |
1902 | */ |
1903 | void |
1904 | vm_map_copy_discard(copy) |
1905 | vm_map_copy_t copy; |
1906 | { |
1907 | free_next_copy: |
1908 | if (copy == VM_MAP_COPY_NULL((vm_map_copy_t) 0)) |
1909 | return; |
1910 | |
1911 | switch (copy->type) { |
1912 | case VM_MAP_COPY_ENTRY_LIST1: |
1913 | while (vm_map_copy_first_entry(copy)((copy)->c_u.hdr.links.next) != |
1914 | vm_map_copy_to_entry(copy)((struct vm_map_entry *) &(copy)->c_u.hdr.links)) { |
1915 | vm_map_entry_t entry = vm_map_copy_first_entry(copy)((copy)->c_u.hdr.links.next); |
1916 | |
1917 | vm_map_copy_entry_unlink(copy, entry)({ (&(copy)->c_u.hdr)->nentries--; (entry)->links .next->links.prev = (entry)->links.prev; (entry)->links .prev->links.next = (entry)->links.next; rbtree_remove( &(&(copy)->c_u.hdr)->tree, &(entry)->tree_node ); }); |
1918 | vm_object_deallocate(entry->object.vm_object); |
1919 | vm_map_copy_entry_dispose(copy, entry)_vm_map_entry_dispose(&(copy)->c_u.hdr, (entry)); |
1920 | } |
1921 | break; |
1922 | case VM_MAP_COPY_OBJECT2: |
1923 | vm_object_deallocate(copy->cpy_objectc_u.c_o.object); |
1924 | break; |
1925 | case VM_MAP_COPY_PAGE_LIST3: |
1926 | |
1927 | /* |
1928 | * To clean this up, we have to unbusy all the pages |
1929 | * and release the paging references in their objects. |
1930 | */ |
1931 | if (copy->cpy_npagesc_u.c_p.npages > 0) |
1932 | vm_map_copy_page_discard(copy); |
1933 | |
1934 | /* |
1935 | * If there's a continuation, abort it. The |
1936 | * abort routine releases any storage. |
1937 | */ |
1938 | if (vm_map_copy_has_cont(copy)(((copy)->c_u.c_p.cont) != (kern_return_t (*)()) 0)) { |
1939 | |
1940 | /* |
1941 | * Special case: recognize |
1942 | * vm_map_copy_discard_cont and optimize |
1943 | * here to avoid tail recursion. |
1944 | */ |
1945 | if (copy->cpy_contc_u.c_p.cont == vm_map_copy_discard_cont) { |
1946 | register vm_map_copy_t new_copy; |
1947 | |
1948 | new_copy = (vm_map_copy_t) copy->cpy_cont_argsc_u.c_p.cont_args; |
1949 | kmem_cache_free(&vm_map_copy_cache, (vm_offset_t) copy); |
1950 | copy = new_copy; |
1951 | goto free_next_copy; |
1952 | } |
1953 | else { |
1954 | vm_map_copy_abort_cont(copy)({ vm_map_copy_page_discard(copy); (*((copy)->c_u.c_p.cont ))((copy)->c_u.c_p.cont_args, (vm_map_copy_t *) 0); (copy) ->c_u.c_p.cont = (kern_return_t (*)()) 0; (copy)->c_u.c_p .cont_args = (char *) 0; }); |
1955 | } |
1956 | } |
1957 | |
1958 | break; |
1959 | } |
1960 | kmem_cache_free(&vm_map_copy_cache, (vm_offset_t) copy); |
1961 | } |
1962 | |
1963 | /* |
1964 | * Routine: vm_map_copy_copy |
1965 | * |
1966 | * Description: |
1967 | * Move the information in a map copy object to |
1968 | * a new map copy object, leaving the old one |
1969 | * empty. |
1970 | * |
1971 | * This is used by kernel routines that need |
1972 | * to look at out-of-line data (in copyin form) |
1973 | * before deciding whether to return SUCCESS. |
1974 | * If the routine returns FAILURE, the original |
1975 | * copy object will be deallocated; therefore, |
1976 | * these routines must make a copy of the copy |
1977 | * object and leave the original empty so that |
1978 | * deallocation will not fail. |
1979 | */ |
1980 | vm_map_copy_t |
1981 | vm_map_copy_copy(copy) |
1982 | vm_map_copy_t copy; |
1983 | { |
1984 | vm_map_copy_t new_copy; |
1985 | |
1986 | if (copy == VM_MAP_COPY_NULL((vm_map_copy_t) 0)) |
1987 | return VM_MAP_COPY_NULL((vm_map_copy_t) 0); |
1988 | |
1989 | /* |
1990 | * Allocate a new copy object, and copy the information |
1991 | * from the old one into it. |
1992 | */ |
1993 | |
1994 | new_copy = (vm_map_copy_t) kmem_cache_alloc(&vm_map_copy_cache); |
1995 | *new_copy = *copy; |
1996 | |
1997 | if (copy->type == VM_MAP_COPY_ENTRY_LIST1) { |
1998 | /* |
1999 | * The links in the entry chain must be |
2000 | * changed to point to the new copy object. |
2001 | */ |
2002 | vm_map_copy_first_entry(copy)((copy)->c_u.hdr.links.next)->vme_prevlinks.prev |
2003 | = vm_map_copy_to_entry(new_copy)((struct vm_map_entry *) &(new_copy)->c_u.hdr.links); |
2004 | vm_map_copy_last_entry(copy)((copy)->c_u.hdr.links.prev)->vme_nextlinks.next |
2005 | = vm_map_copy_to_entry(new_copy)((struct vm_map_entry *) &(new_copy)->c_u.hdr.links); |
2006 | } |
2007 | |
2008 | /* |
2009 | * Change the old copy object into one that contains |
2010 | * nothing to be deallocated. |
2011 | */ |
2012 | copy->type = VM_MAP_COPY_OBJECT2; |
2013 | copy->cpy_objectc_u.c_o.object = VM_OBJECT_NULL((vm_object_t) 0); |
2014 | |
2015 | /* |
2016 | * Return the new object. |
2017 | */ |
2018 | return new_copy; |
2019 | } |
2020 | |
2021 | /* |
2022 | * Routine: vm_map_copy_discard_cont |
2023 | * |
2024 | * Description: |
2025 | * A version of vm_map_copy_discard that can be called |
2026 | * as a continuation from a vm_map_copy page list. |
2027 | */ |
2028 | kern_return_t vm_map_copy_discard_cont(cont_args, copy_result) |
2029 | vm_map_copyin_args_t cont_args; |
2030 | vm_map_copy_t *copy_result; /* OUT */ |
2031 | { |
2032 | vm_map_copy_discard((vm_map_copy_t) cont_args); |
2033 | if (copy_result != (vm_map_copy_t *)0) |
2034 | *copy_result = VM_MAP_COPY_NULL((vm_map_copy_t) 0); |
2035 | return(KERN_SUCCESS0); |
2036 | } |
2037 | |
2038 | /* |
2039 | * Routine: vm_map_copy_overwrite |
2040 | * |
2041 | * Description: |
2042 | * Copy the memory described by the map copy |
2043 | * object (copy; returned by vm_map_copyin) onto |
2044 | * the specified destination region (dst_map, dst_addr). |
2045 | * The destination must be writeable. |
2046 | * |
2047 | * Unlike vm_map_copyout, this routine actually |
2048 | * writes over previously-mapped memory. If the |
2049 | * previous mapping was to a permanent (user-supplied) |
2050 | * memory object, it is preserved. |
2051 | * |
2052 | * The attributes (protection and inheritance) of the |
2053 | * destination region are preserved. |
2054 | * |
2055 | * If successful, consumes the copy object. |
2056 | * Otherwise, the caller is responsible for it. |
2057 | * |
2058 | * Implementation notes: |
2059 | * To overwrite temporary virtual memory, it is |
2060 | * sufficient to remove the previous mapping and insert |
2061 | * the new copy. This replacement is done either on |
2062 | * the whole region (if no permanent virtual memory |
2063 | * objects are embedded in the destination region) or |
2064 | * in individual map entries. |
2065 | * |
2066 | * To overwrite permanent virtual memory, it is |
2067 | * necessary to copy each page, as the external |
2068 | * memory management interface currently does not |
2069 | * provide any optimizations. |
2070 | * |
2071 | * Once a page of permanent memory has been overwritten, |
2072 | * it is impossible to interrupt this function; otherwise, |
2073 | * the call would be neither atomic nor location-independent. |
2074 | * The kernel-state portion of a user thread must be |
2075 | * interruptible. |
2076 | * |
2077 | * It may be expensive to forward all requests that might |
2078 | * overwrite permanent memory (vm_write, vm_copy) to |
2079 | * uninterruptible kernel threads. This routine may be |
2080 | * called by interruptible threads; however, success is |
2081 | * not guaranteed -- if the request cannot be performed |
2082 | * atomically and interruptibly, an error indication is |
2083 | * returned. |
2084 | */ |
2085 | kern_return_t vm_map_copy_overwrite(dst_map, dst_addr, copy, interruptible) |
2086 | vm_map_t dst_map; |
2087 | vm_offset_t dst_addr; |
2088 | vm_map_copy_t copy; |
2089 | boolean_t interruptible; |
2090 | { |
2091 | vm_size_t size; |
2092 | vm_offset_t start; |
2093 | vm_map_entry_t tmp_entry; |
2094 | vm_map_entry_t entry; |
2095 | |
2096 | boolean_t contains_permanent_objects = FALSE((boolean_t) 0); |
2097 | |
2098 | interruptible = FALSE((boolean_t) 0); /* XXX */ |
2099 | |
2100 | /* |
2101 | * Check for null copy object. |
2102 | */ |
2103 | |
2104 | if (copy == VM_MAP_COPY_NULL((vm_map_copy_t) 0)) |
2105 | return(KERN_SUCCESS0); |
2106 | |
2107 | /* |
2108 | * Only works for entry lists at the moment. Will |
2109 | * support page lists LATER. |
2110 | */ |
2111 | |
2112 | assert(copy->type == VM_MAP_COPY_ENTRY_LIST)({ if (!(copy->type == 1)) Assert("copy->type == VM_MAP_COPY_ENTRY_LIST" , "../vm/vm_map.c", 2112); }); |
2113 | |
2114 | /* |
2115 | * Currently this routine only handles page-aligned |
2116 | * regions. Eventually, it should handle misalignments |
2117 | * by actually copying pages. |
2118 | */ |
2119 | |
2120 | if (!page_aligned(copy->offset)((((vm_offset_t) (copy->offset)) & ((1 << 12)-1) ) == 0) || |
2121 | !page_aligned(copy->size)((((vm_offset_t) (copy->size)) & ((1 << 12)-1)) == 0) || |
2122 | !page_aligned(dst_addr)((((vm_offset_t) (dst_addr)) & ((1 << 12)-1)) == 0)) |
2123 | return(KERN_INVALID_ARGUMENT4); |
2124 | |
2125 | size = copy->size; |
2126 | |
2127 | if (size == 0) { |
2128 | vm_map_copy_discard(copy); |
2129 | return(KERN_SUCCESS0); |
2130 | } |
2131 | |
2132 | /* |
2133 | * Verify that the destination is all writeable |
2134 | * initially. |
2135 | */ |
2136 | start_pass_1: |
2137 | vm_map_lock(dst_map)({ lock_write(&(dst_map)->lock); (dst_map)->timestamp ++; }); |
2138 | if (!vm_map_lookup_entry(dst_map, dst_addr, &tmp_entry)) { |
2139 | vm_map_unlock(dst_map)lock_done(&(dst_map)->lock); |
2140 | return(KERN_INVALID_ADDRESS1); |
2141 | } |
2142 | vm_map_clip_start(dst_map, tmp_entry, dst_addr)({ if ((dst_addr) > (tmp_entry)->links.start) _vm_map_clip_start (&(dst_map)->hdr,(tmp_entry),(dst_addr)); }); |
2143 | for (entry = tmp_entry;;) { |
2144 | vm_size_t sub_size = (entry->vme_endlinks.end - entry->vme_startlinks.start); |
2145 | vm_map_entry_t next = entry->vme_nextlinks.next; |
2146 | |
2147 | if ( ! (entry->protection & VM_PROT_WRITE((vm_prot_t) 0x02))) { |
2148 | vm_map_unlock(dst_map)lock_done(&(dst_map)->lock); |
2149 | return(KERN_PROTECTION_FAILURE2); |
2150 | } |
2151 | |
2152 | /* |
2153 | * If the entry is in transition, we must wait |
2154 | * for it to exit that state. Anything could happen |
2155 | * when we unlock the map, so start over. |
2156 | */ |
2157 | if (entry->in_transition) { |
2158 | |
2159 | /* |
2160 | * Say that we are waiting, and wait for entry. |
2161 | */ |
2162 | entry->needs_wakeup = TRUE((boolean_t) 1); |
2163 | vm_map_entry_wait(dst_map, FALSE)({ assert_wait((event_t)&(dst_map)->hdr, ((boolean_t) 0 )); lock_done(&(dst_map)->lock); thread_block((void (* )()) 0); }); |
2164 | |
2165 | goto start_pass_1; |
2166 | } |
2167 | |
2168 | if (size <= sub_size) |
2169 | break; |
2170 | |
2171 | if ((next == vm_map_to_entry(dst_map)((struct vm_map_entry *) &(dst_map)->hdr.links)) || |
2172 | (next->vme_startlinks.start != entry->vme_endlinks.end)) { |
2173 | vm_map_unlock(dst_map)lock_done(&(dst_map)->lock); |
2174 | return(KERN_INVALID_ADDRESS1); |
2175 | } |
2176 | |
2177 | |
2178 | /* |
2179 | * Check for permanent objects in the destination. |
2180 | */ |
2181 | |
2182 | if ((entry->object.vm_object != VM_OBJECT_NULL((vm_object_t) 0)) && |
2183 | !entry->object.vm_object->temporary) |
2184 | contains_permanent_objects = TRUE((boolean_t) 1); |
2185 | |
2186 | size -= sub_size; |
2187 | entry = next; |
2188 | } |
2189 | |
2190 | /* |
2191 | * If there are permanent objects in the destination, then |
2192 | * the copy cannot be interrupted. |
2193 | */ |
2194 | |
2195 | if (interruptible && contains_permanent_objects) { |
2196 | vm_map_unlock(dst_map)lock_done(&(dst_map)->lock); |
2197 | return(KERN_FAILURE5); /* XXX */ |
2198 | } |
2199 | |
2200 | /* |
2201 | * XXXO If there are no permanent objects in the destination, |
2202 | * XXXO and the source and destination map entry caches match, |
2203 | * XXXO and the destination map entry is not shared, |
2204 | * XXXO then the map entries can be deleted and replaced |
2205 | * XXXO with those from the copy. The following code is the |
2206 | * XXXO basic idea of what to do, but there are lots of annoying |
2207 | * XXXO little details about getting protection and inheritance |
2208 | * XXXO right. Should add protection, inheritance, and sharing checks |
2209 | * XXXO to the above pass and make sure that no wiring is involved. |
2210 | */ |
2211 | /* |
2212 | * if (!contains_permanent_objects && |
2213 | * copy->cpy_hdr.entries_pageable == dst_map->hdr.entries_pageable) { |
2214 | * |
2215 | * * |
2216 | * * Run over copy and adjust entries. Steal code |
2217 | * * from vm_map_copyout() to do this. |
2218 | * * |
2219 | * |
2220 | * tmp_entry = tmp_entry->vme_prev; |
2221 | * vm_map_delete(dst_map, dst_addr, dst_addr + copy->size); |
2222 | * vm_map_copy_insert(dst_map, tmp_entry, copy); |
2223 | * |
2224 | * vm_map_unlock(dst_map); |
2225 | * vm_map_copy_discard(copy); |
2226 | * } |
2227 | */ |
2228 | /* |
2229 | * |
2230 | * Make a second pass, overwriting the data |
2231 | * At the beginning of each loop iteration, |
2232 | * the next entry to be overwritten is "tmp_entry" |
2233 | * (initially, the value returned from the lookup above), |
2234 | * and the starting address expected in that entry |
2235 | * is "start". |
2236 | */ |
2237 | |
2238 | start = dst_addr; |
2239 | |
2240 | while (vm_map_copy_first_entry(copy)((copy)->c_u.hdr.links.next) != vm_map_copy_to_entry(copy)((struct vm_map_entry *) &(copy)->c_u.hdr.links)) { |
2241 | vm_map_entry_t copy_entry = vm_map_copy_first_entry(copy)((copy)->c_u.hdr.links.next); |
2242 | vm_size_t copy_size = (copy_entry->vme_endlinks.end - copy_entry->vme_startlinks.start); |
2243 | vm_object_t object; |
2244 | |
2245 | entry = tmp_entry; |
2246 | size = (entry->vme_endlinks.end - entry->vme_startlinks.start); |
2247 | /* |
2248 | * Make sure that no holes popped up in the |
2249 | * address map, and that the protection is |
2250 | * still valid, in case the map was unlocked |
2251 | * earlier. |
2252 | */ |
2253 | |
2254 | if (entry->vme_startlinks.start != start) { |
2255 | vm_map_unlock(dst_map)lock_done(&(dst_map)->lock); |
2256 | return(KERN_INVALID_ADDRESS1); |
2257 | } |
2258 | assert(entry != vm_map_to_entry(dst_map))({ if (!(entry != ((struct vm_map_entry *) &(dst_map)-> hdr.links))) Assert("entry != vm_map_to_entry(dst_map)", "../vm/vm_map.c" , 2258); }); |
2259 | |
2260 | /* |
2261 | * Check protection again |
2262 | */ |
2263 | |
2264 | if ( ! (entry->protection & VM_PROT_WRITE((vm_prot_t) 0x02))) { |
2265 | vm_map_unlock(dst_map)lock_done(&(dst_map)->lock); |
2266 | return(KERN_PROTECTION_FAILURE2); |
2267 | } |
2268 | |
2269 | /* |
2270 | * Adjust to source size first |
2271 | */ |
2272 | |
2273 | if (copy_size < size) { |
2274 | vm_map_clip_end(dst_map, entry, entry->vme_start + copy_size)({ if ((entry->links.start + copy_size) < (entry)->links .end) _vm_map_clip_end(&(dst_map)->hdr,(entry),(entry-> links.start + copy_size)); }); |
2275 | size = copy_size; |
2276 | } |
2277 | |
2278 | /* |
2279 | * Adjust to destination size |
2280 | */ |
2281 | |
2282 | if (size < copy_size) { |
2283 | vm_map_copy_clip_end(copy, copy_entry,({ if ((copy_entry->links.start + size) < (copy_entry)-> links.end) _vm_map_clip_end(&(copy)->c_u.hdr,(copy_entry ),(copy_entry->links.start + size)); }) |
2284 | copy_entry->vme_start + size)({ if ((copy_entry->links.start + size) < (copy_entry)-> links.end) _vm_map_clip_end(&(copy)->c_u.hdr,(copy_entry ),(copy_entry->links.start + size)); }); |
2285 | copy_size = size; |
2286 | } |
2287 | |
2288 | assert((entry->vme_end - entry->vme_start) == size)({ if (!((entry->links.end - entry->links.start) == size )) Assert("(entry->vme_end - entry->vme_start) == size" , "../vm/vm_map.c", 2288); }); |
2289 | assert((tmp_entry->vme_end - tmp_entry->vme_start) == size)({ if (!((tmp_entry->links.end - tmp_entry->links.start ) == size)) Assert("(tmp_entry->vme_end - tmp_entry->vme_start) == size" , "../vm/vm_map.c", 2289); }); |
2290 | assert((copy_entry->vme_end - copy_entry->vme_start) == size)({ if (!((copy_entry->links.end - copy_entry->links.start ) == size)) Assert("(copy_entry->vme_end - copy_entry->vme_start) == size" , "../vm/vm_map.c", 2290); }); |
2291 | |
2292 | /* |
2293 | * If the destination contains temporary unshared memory, |
2294 | * we can perform the copy by throwing it away and |
2295 | * installing the source data. |
2296 | */ |
2297 | |
2298 | object = entry->object.vm_object; |
2299 | if (!entry->is_shared && |
2300 | ((object == VM_OBJECT_NULL((vm_object_t) 0)) || object->temporary)) { |
2301 | vm_object_t old_object = entry->object.vm_object; |
2302 | vm_offset_t old_offset = entry->offset; |
2303 | |
2304 | entry->object = copy_entry->object; |
2305 | entry->offset = copy_entry->offset; |
2306 | entry->needs_copy = copy_entry->needs_copy; |
2307 | entry->wired_count = 0; |
2308 | entry->user_wired_count = 0; |
2309 | |
2310 | vm_map_copy_entry_unlink(copy, copy_entry)({ (&(copy)->c_u.hdr)->nentries--; (copy_entry)-> links.next->links.prev = (copy_entry)->links.prev; (copy_entry )->links.prev->links.next = (copy_entry)->links.next ; rbtree_remove(&(&(copy)->c_u.hdr)->tree, & (copy_entry)->tree_node); }); |
2311 | vm_map_copy_entry_dispose(copy, copy_entry)_vm_map_entry_dispose(&(copy)->c_u.hdr, (copy_entry)); |
2312 | |
2313 | vm_object_pmap_protect( |
2314 | old_object, |
2315 | old_offset, |
2316 | size, |
2317 | dst_map->pmap, |
2318 | tmp_entry->vme_startlinks.start, |
2319 | VM_PROT_NONE((vm_prot_t) 0x00)); |
2320 | |
2321 | vm_object_deallocate(old_object); |
2322 | |
2323 | /* |
2324 | * Set up for the next iteration. The map |
2325 | * has not been unlocked, so the next |
2326 | * address should be at the end of this |
2327 | * entry, and the next map entry should be |
2328 | * the one following it. |
2329 | */ |
2330 | |
2331 | start = tmp_entry->vme_endlinks.end; |
2332 | tmp_entry = tmp_entry->vme_nextlinks.next; |
2333 | } else { |
2334 | vm_map_version_t version; |
2335 | vm_object_t dst_object = entry->object.vm_object; |
2336 | vm_offset_t dst_offset = entry->offset; |
2337 | kern_return_t r; |
2338 | |
2339 | /* |
2340 | * Take an object reference, and record |
2341 | * the map version information so that the |
2342 | * map can be safely unlocked. |
2343 | */ |
2344 | |
2345 | vm_object_reference(dst_object); |
2346 | |
2347 | version.main_timestamp = dst_map->timestamp; |
2348 | |
2349 | vm_map_unlock(dst_map)lock_done(&(dst_map)->lock); |
2350 | |
2351 | /* |
2352 | * Copy as much as possible in one pass |
2353 | */ |
2354 | |
2355 | copy_size = size; |
2356 | r = vm_fault_copy( |
2357 | copy_entry->object.vm_object, |
2358 | copy_entry->offset, |
2359 | ©_size, |
2360 | dst_object, |
2361 | dst_offset, |
2362 | dst_map, |
2363 | &version, |
2364 | FALSE((boolean_t) 0) /* XXX interruptible */ ); |
2365 | |
2366 | /* |
2367 | * Release the object reference |
2368 | */ |
2369 | |
2370 | vm_object_deallocate(dst_object); |
2371 | |
2372 | /* |
2373 | * If a hard error occurred, return it now |
2374 | */ |
2375 | |
2376 | if (r != KERN_SUCCESS0) |
2377 | return(r); |
2378 | |
2379 | if (copy_size != 0) { |
2380 | /* |
2381 | * Dispose of the copied region |
2382 | */ |
2383 | |
2384 | vm_map_copy_clip_end(copy, copy_entry,({ if ((copy_entry->links.start + copy_size) < (copy_entry )->links.end) _vm_map_clip_end(&(copy)->c_u.hdr,(copy_entry ),(copy_entry->links.start + copy_size)); }) |
2385 | copy_entry->vme_start + copy_size)({ if ((copy_entry->links.start + copy_size) < (copy_entry )->links.end) _vm_map_clip_end(&(copy)->c_u.hdr,(copy_entry ),(copy_entry->links.start + copy_size)); }); |
2386 | vm_map_copy_entry_unlink(copy, copy_entry)({ (&(copy)->c_u.hdr)->nentries--; (copy_entry)-> links.next->links.prev = (copy_entry)->links.prev; (copy_entry )->links.prev->links.next = (copy_entry)->links.next ; rbtree_remove(&(&(copy)->c_u.hdr)->tree, & (copy_entry)->tree_node); }); |
2387 | vm_object_deallocate(copy_entry->object.vm_object); |
2388 | vm_map_copy_entry_dispose(copy, copy_entry)_vm_map_entry_dispose(&(copy)->c_u.hdr, (copy_entry)); |
2389 | } |
2390 | |
2391 | /* |
2392 | * Pick up in the destination map where we left off. |
2393 | * |
2394 | * Use the version information to avoid a lookup |
2395 | * in the normal case. |
2396 | */ |
2397 | |
2398 | start += copy_size; |
2399 | vm_map_lock(dst_map)({ lock_write(&(dst_map)->lock); (dst_map)->timestamp ++; }); |
2400 | if ((version.main_timestamp + 1) == dst_map->timestamp) { |
2401 | /* We can safely use saved tmp_entry value */ |
2402 | |
2403 | vm_map_clip_end(dst_map, tmp_entry, start)({ if ((start) < (tmp_entry)->links.end) _vm_map_clip_end (&(dst_map)->hdr,(tmp_entry),(start)); }); |
2404 | tmp_entry = tmp_entry->vme_nextlinks.next; |
2405 | } else { |
2406 | /* Must do lookup of tmp_entry */ |
2407 | |
2408 | if (!vm_map_lookup_entry(dst_map, start, &tmp_entry)) { |
2409 | vm_map_unlock(dst_map)lock_done(&(dst_map)->lock); |
2410 | return(KERN_INVALID_ADDRESS1); |
2411 | } |
2412 | vm_map_clip_start(dst_map, tmp_entry, start)({ if ((start) > (tmp_entry)->links.start) _vm_map_clip_start (&(dst_map)->hdr,(tmp_entry),(start)); }); |
2413 | } |
2414 | } |
2415 | |
2416 | } |
2417 | vm_map_unlock(dst_map)lock_done(&(dst_map)->lock); |
2418 | |
2419 | /* |
2420 | * Throw away the vm_map_copy object |
2421 | */ |
2422 | vm_map_copy_discard(copy); |
2423 | |
2424 | return(KERN_SUCCESS0); |
2425 | } |
2426 | |
2427 | /* |
2428 | * Macro: vm_map_copy_insert |
2429 | * |
2430 | * Description: |
2431 | * Link a copy chain ("copy") into a map at the |
2432 | * specified location (after "where"). |
2433 | * Side effects: |
2434 | * The copy chain is destroyed. |
2435 | * Warning: |
2436 | * The arguments are evaluated multiple times. |
2437 | */ |
2438 | #define vm_map_copy_insert(map, where, copy)({ struct rbtree_node *node, *tmp; for (node = rbtree_postwalk_deepest (&(copy)->c_u.hdr.tree), tmp = rbtree_postwalk_unlink( node); node != ((void *) 0); node = tmp, tmp = rbtree_postwalk_unlink (node)) ({ struct rbtree_node *___cur, *___prev; int ___diff, ___index; ___prev = ((void *) 0); ___index = -1; ___cur = (& (map)->hdr.tree)->root; while (___cur != ((void *) 0)) { ___diff = vm_map_entry_cmp_insert(node, ___cur); ({ if (!(___diff != 0)) Assert("___diff != 0", "../vm/vm_map.c", 2438); }); ___prev = ___cur; ___index = rbtree_d2i(___diff); ___cur = ___cur-> children[___index]; } rbtree_insert_rebalance(&(map)-> hdr.tree, ___prev, ___index, node); }); (((where)->links.next )->links.prev = ((copy)->c_u.hdr.links.prev)) ->links .next = ((where)->links.next); ((where)->links.next = ( (copy)->c_u.hdr.links.next)) ->links.prev = (where); (map )->hdr.nentries += (copy)->c_u.hdr.nentries; kmem_cache_free (&vm_map_copy_cache, (vm_offset_t) copy); }) \ |
2439 | MACRO_BEGIN({ \ |
2440 | struct rbtree_node *node, *tmp; \ |
2441 | rbtree_for_each_remove(&(copy)->cpy_hdr.tree, node, tmp)for (node = rbtree_postwalk_deepest(&(copy)->c_u.hdr.tree ), tmp = rbtree_postwalk_unlink(node); node != ((void *) 0); node = tmp, tmp = rbtree_postwalk_unlink(node)) \ |
2442 | rbtree_insert(&(map)->hdr.tree, node, \({ struct rbtree_node *___cur, *___prev; int ___diff, ___index ; ___prev = ((void *) 0); ___index = -1; ___cur = (&(map) ->hdr.tree)->root; while (___cur != ((void *) 0)) { ___diff = vm_map_entry_cmp_insert(node, ___cur); ({ if (!(___diff != 0)) Assert("___diff != 0", "../vm/vm_map.c", 2443); }); ___prev = ___cur; ___index = rbtree_d2i(___diff); ___cur = ___cur-> children[___index]; } rbtree_insert_rebalance(&(map)-> hdr.tree, ___prev, ___index, node); }) |
2443 | vm_map_entry_cmp_insert)({ struct rbtree_node *___cur, *___prev; int ___diff, ___index ; ___prev = ((void *) 0); ___index = -1; ___cur = (&(map) ->hdr.tree)->root; while (___cur != ((void *) 0)) { ___diff = vm_map_entry_cmp_insert(node, ___cur); ({ if (!(___diff != 0)) Assert("___diff != 0", "../vm/vm_map.c", 2443); }); ___prev = ___cur; ___index = rbtree_d2i(___diff); ___cur = ___cur-> children[___index]; } rbtree_insert_rebalance(&(map)-> hdr.tree, ___prev, ___index, node); }); \ |
2444 | (((where)->vme_nextlinks.next)->vme_prevlinks.prev = vm_map_copy_last_entry(copy)((copy)->c_u.hdr.links.prev)) \ |
2445 | ->vme_nextlinks.next = ((where)->vme_nextlinks.next); \ |
2446 | ((where)->vme_nextlinks.next = vm_map_copy_first_entry(copy)((copy)->c_u.hdr.links.next)) \ |
2447 | ->vme_prevlinks.prev = (where); \ |
2448 | (map)->hdr.nentries += (copy)->cpy_hdrc_u.hdr.nentries; \ |
2449 | kmem_cache_free(&vm_map_copy_cache, (vm_offset_t) copy); \ |
2450 | MACRO_END}) |
2451 | |
2452 | /* |
2453 | * Routine: vm_map_copyout |
2454 | * |
2455 | * Description: |
2456 | * Copy out a copy chain ("copy") into newly-allocated |
2457 | * space in the destination map. |
2458 | * |
2459 | * If successful, consumes the copy object. |
2460 | * Otherwise, the caller is responsible for it. |
2461 | */ |
2462 | kern_return_t vm_map_copyout(dst_map, dst_addr, copy) |
2463 | register |
2464 | vm_map_t dst_map; |
2465 | vm_offset_t *dst_addr; /* OUT */ |
2466 | register |
2467 | vm_map_copy_t copy; |
2468 | { |
2469 | vm_size_t size; |
2470 | vm_size_t adjustment; |
2471 | vm_offset_t start; |
2472 | vm_offset_t vm_copy_start; |
2473 | vm_map_entry_t last; |
2474 | register |
2475 | vm_map_entry_t entry; |
2476 | |
2477 | /* |
2478 | * Check for null copy object. |
2479 | */ |
2480 | |
2481 | if (copy == VM_MAP_COPY_NULL((vm_map_copy_t) 0)) { |
2482 | *dst_addr = 0; |
2483 | return(KERN_SUCCESS0); |
2484 | } |
2485 | |
2486 | /* |
2487 | * Check for special copy object, created |
2488 | * by vm_map_copyin_object. |
2489 | */ |
2490 | |
2491 | if (copy->type == VM_MAP_COPY_OBJECT2) { |
2492 | vm_object_t object = copy->cpy_objectc_u.c_o.object; |
2493 | vm_size_t offset = copy->offset; |
2494 | vm_size_t tmp_size = copy->size; |
2495 | kern_return_t kr; |
2496 | |
2497 | *dst_addr = 0; |
2498 | kr = vm_map_enter(dst_map, dst_addr, tmp_size, |
2499 | (vm_offset_t) 0, TRUE((boolean_t) 1), |
2500 | object, offset, FALSE((boolean_t) 0), |
2501 | VM_PROT_DEFAULT(((vm_prot_t) 0x01)|((vm_prot_t) 0x02)), VM_PROT_ALL(((vm_prot_t) 0x01)|((vm_prot_t) 0x02)|((vm_prot_t) 0x04)), |
2502 | VM_INHERIT_DEFAULT((vm_inherit_t) 1)); |
2503 | if (kr != KERN_SUCCESS0) |
2504 | return(kr); |
2505 | kmem_cache_free(&vm_map_copy_cache, (vm_offset_t) copy); |
2506 | return(KERN_SUCCESS0); |
2507 | } |
2508 | |
2509 | if (copy->type == VM_MAP_COPY_PAGE_LIST3) |
2510 | return(vm_map_copyout_page_list(dst_map, dst_addr, copy)); |
2511 | |
2512 | /* |
2513 | * Find space for the data |
2514 | */ |
2515 | |
2516 | vm_copy_start = trunc_page(copy->offset)((vm_offset_t)(((vm_offset_t)(copy->offset)) & ~((1 << 12)-1))); |
2517 | size = round_page(copy->offset + copy->size)((vm_offset_t)((((vm_offset_t)(copy->offset + copy->size )) + ((1 << 12)-1)) & ~((1 << 12)-1))) - vm_copy_start; |
2518 | |
2519 | StartAgain: ; |
2520 | |
2521 | vm_map_lock(dst_map)({ lock_write(&(dst_map)->lock); (dst_map)->timestamp ++; }); |
2522 | start = ((last = dst_map->first_free) == vm_map_to_entry(dst_map)((struct vm_map_entry *) &(dst_map)->hdr.links)) ? |
2523 | vm_map_min(dst_map)((dst_map)->hdr.links.start) : last->vme_endlinks.end; |
2524 | |
2525 | while (TRUE((boolean_t) 1)) { |
2526 | vm_map_entry_t next = last->vme_nextlinks.next; |
2527 | vm_offset_t end = start + size; |
2528 | |
2529 | if ((end > dst_map->max_offsethdr.links.end) || (end < start)) { |
2530 | if (dst_map->wait_for_space) { |
2531 | if (size <= (dst_map->max_offsethdr.links.end - dst_map->min_offsethdr.links.start)) { |
2532 | assert_wait((event_t) dst_map, TRUE((boolean_t) 1)); |
2533 | vm_map_unlock(dst_map)lock_done(&(dst_map)->lock); |
2534 | thread_block((void (*)()) 0); |
2535 | goto StartAgain; |
2536 | } |
2537 | } |
2538 | vm_map_unlock(dst_map)lock_done(&(dst_map)->lock); |
2539 | printf_once("no more room for vm_map_copyout in %p\n", dst_map)({ static int __once = 0; if (!__once) { printf("no more room for vm_map_copyout in %p\n" , dst_map); __once = 1; } }); |
2540 | return(KERN_NO_SPACE3); |
2541 | } |
2542 | |
2543 | if ((next == vm_map_to_entry(dst_map)((struct vm_map_entry *) &(dst_map)->hdr.links)) || |
2544 | (next->vme_startlinks.start >= end)) |
2545 | break; |
2546 | |
2547 | last = next; |
2548 | start = last->vme_endlinks.end; |
2549 | } |
2550 | |
2551 | /* |
2552 | * Since we're going to just drop the map |
2553 | * entries from the copy into the destination |
2554 | * map, they must come from the same pool. |
2555 | */ |
2556 | |
2557 | if (copy->cpy_hdrc_u.hdr.entries_pageable != dst_map->hdr.entries_pageable) { |
2558 | /* |
2559 | * Mismatches occur when dealing with the default |
2560 | * pager. |
2561 | */ |
2562 | kmem_cache_t old_cache; |
2563 | vm_map_entry_t next, new; |
2564 | |
2565 | /* |
2566 | * Find the cache that the copies were allocated from |
2567 | */ |
2568 | old_cache = (copy->cpy_hdrc_u.hdr.entries_pageable) |
2569 | ? &vm_map_entry_cache |
2570 | : &vm_map_kentry_cache; |
2571 | entry = vm_map_copy_first_entry(copy)((copy)->c_u.hdr.links.next); |
2572 | |
2573 | /* |
2574 | * Reinitialize the copy so that vm_map_copy_entry_link |
2575 | * will work. |
2576 | */ |
2577 | copy->cpy_hdrc_u.hdr.nentries = 0; |
2578 | copy->cpy_hdrc_u.hdr.entries_pageable = dst_map->hdr.entries_pageable; |
2579 | vm_map_copy_first_entry(copy)((copy)->c_u.hdr.links.next) = |
2580 | vm_map_copy_last_entry(copy)((copy)->c_u.hdr.links.prev) = |
2581 | vm_map_copy_to_entry(copy)((struct vm_map_entry *) &(copy)->c_u.hdr.links); |
2582 | |
2583 | /* |
2584 | * Copy each entry. |
2585 | */ |
2586 | while (entry != vm_map_copy_to_entry(copy)((struct vm_map_entry *) &(copy)->c_u.hdr.links)) { |
2587 | new = vm_map_copy_entry_create(copy)_vm_map_entry_create(&(copy)->c_u.hdr); |
2588 | vm_map_entry_copy_full(new, entry)(*(new) = *(entry)); |
2589 | vm_map_copy_entry_link(copy,({ (&(copy)->c_u.hdr)->nentries++; (new)->links. prev = (((copy)->c_u.hdr.links.prev)); (new)->links.next = (((copy)->c_u.hdr.links.prev))->links.next; (new)-> links.prev->links.next = (new)->links.next->links.prev = (new); ({ struct rbtree_node *___cur, *___prev; int ___diff , ___index; ___prev = ((void *) 0); ___index = -1; ___cur = ( &(&(copy)->c_u.hdr)->tree)->root; while (___cur != ((void *) 0)) { ___diff = vm_map_entry_cmp_insert(&(new )->tree_node, ___cur); ({ if (!(___diff != 0)) Assert("___diff != 0" , "../vm/vm_map.c", 2591); }); ___prev = ___cur; ___index = rbtree_d2i (___diff); ___cur = ___cur->children[___index]; } rbtree_insert_rebalance (&(&(copy)->c_u.hdr)->tree, ___prev, ___index, & (new)->tree_node); }); }) |
2590 | vm_map_copy_last_entry(copy),({ (&(copy)->c_u.hdr)->nentries++; (new)->links. prev = (((copy)->c_u.hdr.links.prev)); (new)->links.next = (((copy)->c_u.hdr.links.prev))->links.next; (new)-> links.prev->links.next = (new)->links.next->links.prev = (new); ({ struct rbtree_node *___cur, *___prev; int ___diff , ___index; ___prev = ((void *) 0); ___index = -1; ___cur = ( &(&(copy)->c_u.hdr)->tree)->root; while (___cur != ((void *) 0)) { ___diff = vm_map_entry_cmp_insert(&(new )->tree_node, ___cur); ({ if (!(___diff != 0)) Assert("___diff != 0" , "../vm/vm_map.c", 2591); }); ___prev = ___cur; ___index = rbtree_d2i (___diff); ___cur = ___cur->children[___index]; } rbtree_insert_rebalance (&(&(copy)->c_u.hdr)->tree, ___prev, ___index, & (new)->tree_node); }); }) |
2591 | new)({ (&(copy)->c_u.hdr)->nentries++; (new)->links. prev = (((copy)->c_u.hdr.links.prev)); (new)->links.next = (((copy)->c_u.hdr.links.prev))->links.next; (new)-> links.prev->links.next = (new)->links.next->links.prev = (new); ({ struct rbtree_node *___cur, *___prev; int ___diff , ___index; ___prev = ((void *) 0); ___index = -1; ___cur = ( &(&(copy)->c_u.hdr)->tree)->root; while (___cur != ((void *) 0)) { ___diff = vm_map_entry_cmp_insert(&(new )->tree_node, ___cur); ({ if (!(___diff != 0)) Assert("___diff != 0" , "../vm/vm_map.c", 2591); }); ___prev = ___cur; ___index = rbtree_d2i (___diff); ___cur = ___cur->children[___index]; } rbtree_insert_rebalance (&(&(copy)->c_u.hdr)->tree, ___prev, ___index, & (new)->tree_node); }); }); |
2592 | next = entry->vme_nextlinks.next; |
2593 | kmem_cache_free(old_cache, (vm_offset_t) entry); |
2594 | entry = next; |
2595 | } |
2596 | } |
2597 | |
2598 | /* |
2599 | * Adjust the addresses in the copy chain, and |
2600 | * reset the region attributes. |
2601 | */ |
2602 | |
2603 | adjustment = start - vm_copy_start; |
2604 | for (entry = vm_map_copy_first_entry(copy)((copy)->c_u.hdr.links.next); |
2605 | entry != vm_map_copy_to_entry(copy)((struct vm_map_entry *) &(copy)->c_u.hdr.links); |
2606 | entry = entry->vme_nextlinks.next) { |
2607 | entry->vme_startlinks.start += adjustment; |
2608 | entry->vme_endlinks.end += adjustment; |
2609 | |
2610 | entry->inheritance = VM_INHERIT_DEFAULT((vm_inherit_t) 1); |
2611 | entry->protection = VM_PROT_DEFAULT(((vm_prot_t) 0x01)|((vm_prot_t) 0x02)); |
2612 | entry->max_protection = VM_PROT_ALL(((vm_prot_t) 0x01)|((vm_prot_t) 0x02)|((vm_prot_t) 0x04)); |
2613 | entry->projected_on = 0; |
2614 | |
2615 | /* |
2616 | * If the entry is now wired, |
2617 | * map the pages into the destination map. |
2618 | */ |
2619 | if (entry->wired_count != 0) { |
2620 | register vm_offset_t va; |
2621 | vm_offset_t offset; |
2622 | register vm_object_t object; |
2623 | |
2624 | object = entry->object.vm_object; |
2625 | offset = entry->offset; |
2626 | va = entry->vme_startlinks.start; |
2627 | |
2628 | pmap_pageable(dst_map->pmap, |
2629 | entry->vme_startlinks.start, |
2630 | entry->vme_endlinks.end, |
2631 | TRUE((boolean_t) 1)); |
2632 | |
2633 | while (va < entry->vme_endlinks.end) { |
2634 | register vm_page_t m; |
2635 | |
2636 | /* |
2637 | * Look up the page in the object. |
2638 | * Assert that the page will be found in the |
2639 | * top object: |
2640 | * either |
2641 | * the object was newly created by |
2642 | * vm_object_copy_slowly, and has |
2643 | * copies of all of the pages from |
2644 | * the source object |
2645 | * or |
2646 | * the object was moved from the old |
2647 | * map entry; because the old map |
2648 | * entry was wired, all of the pages |
2649 | * were in the top-level object. |
2650 | * (XXX not true if we wire pages for |
2651 | * reading) |
2652 | */ |
2653 | vm_object_lock(object); |
2654 | vm_object_paging_begin(object)((object)->paging_in_progress++); |
2655 | |
2656 | m = vm_page_lookup(object, offset); |
2657 | if (m == VM_PAGE_NULL((vm_page_t) 0) || m->wire_count == 0 || |
2658 | m->absent) |
2659 | panic("vm_map_copyout: wiring 0x%x", m); |
2660 | |
2661 | m->busy = TRUE((boolean_t) 1); |
2662 | vm_object_unlock(object); |
2663 | |
2664 | PMAP_ENTER(dst_map->pmap, va, m,({ pmap_enter( (dst_map->pmap), (va), (m)->phys_addr, ( entry->protection) & ~(m)->page_lock, (((boolean_t) 1)) ); }) |
2665 | entry->protection, TRUE)({ pmap_enter( (dst_map->pmap), (va), (m)->phys_addr, ( entry->protection) & ~(m)->page_lock, (((boolean_t) 1)) ); }); |
2666 | |
2667 | vm_object_lock(object); |
2668 | PAGE_WAKEUP_DONE(m)({ (m)->busy = ((boolean_t) 0); if ((m)->wanted) { (m)-> wanted = ((boolean_t) 0); thread_wakeup_prim((((event_t) m)), ((boolean_t) 0), 0); } }); |
2669 | /* the page is wired, so we don't have to activate */ |
2670 | vm_object_paging_end(object)({ ({ if (!((object)->paging_in_progress != 0)) Assert("(object)->paging_in_progress != 0" , "../vm/vm_map.c", 2670); }); if (--(object)->paging_in_progress == 0) { ({ if ((object)->all_wanted & (1 << (2) )) thread_wakeup_prim(((event_t)(((vm_offset_t) object) + (2) )), ((boolean_t) 0), 0); (object)->all_wanted &= ~(1 << (2)); }); } }); |
2671 | vm_object_unlock(object); |
2672 | |
2673 | offset += PAGE_SIZE(1 << 12); |
2674 | va += PAGE_SIZE(1 << 12); |
2675 | } |
2676 | } |
2677 | |
2678 | |
2679 | } |
2680 | |
2681 | /* |
2682 | * Correct the page alignment for the result |
2683 | */ |
2684 | |
2685 | *dst_addr = start + (copy->offset - vm_copy_start); |
2686 | |
2687 | /* |
2688 | * Update the hints and the map size |
2689 | */ |
2690 | |
2691 | if (dst_map->first_free == last) |
2692 | dst_map->first_free = vm_map_copy_last_entry(copy)((copy)->c_u.hdr.links.prev); |
2693 | SAVE_HINT(dst_map, vm_map_copy_last_entry(copy)); (dst_map)->hint = (((copy)->c_u.hdr.links.prev)); ;; |
2694 | |
2695 | dst_map->size += size; |
2696 | |
2697 | /* |
2698 | * Link in the copy |
2699 | */ |
2700 | |
2701 | vm_map_copy_insert(dst_map, last, copy)({ struct rbtree_node *node, *tmp; for (node = rbtree_postwalk_deepest (&(copy)->c_u.hdr.tree), tmp = rbtree_postwalk_unlink( node); node != ((void *) 0); node = tmp, tmp = rbtree_postwalk_unlink (node)) ({ struct rbtree_node *___cur, *___prev; int ___diff, ___index; ___prev = ((void *) 0); ___index = -1; ___cur = (& (dst_map)->hdr.tree)->root; while (___cur != ((void *) 0 )) { ___diff = vm_map_entry_cmp_insert(node, ___cur); ({ if ( !(___diff != 0)) Assert("___diff != 0", "../vm/vm_map.c", 2701 ); }); ___prev = ___cur; ___index = rbtree_d2i(___diff); ___cur = ___cur->children[___index]; } rbtree_insert_rebalance(& (dst_map)->hdr.tree, ___prev, ___index, node); }); (((last )->links.next)->links.prev = ((copy)->c_u.hdr.links. prev)) ->links.next = ((last)->links.next); ((last)-> links.next = ((copy)->c_u.hdr.links.next)) ->links.prev = (last); (dst_map)->hdr.nentries += (copy)->c_u.hdr.nentries ; kmem_cache_free(&vm_map_copy_cache, (vm_offset_t) copy) ; }); |
2702 | |
2703 | vm_map_unlock(dst_map)lock_done(&(dst_map)->lock); |
2704 | |
2705 | /* |
2706 | * XXX If wiring_required, call vm_map_pageable |
2707 | */ |
2708 | |
2709 | return(KERN_SUCCESS0); |
2710 | } |
2711 | |
2712 | /* |
2713 | * |
2714 | * vm_map_copyout_page_list: |
2715 | * |
2716 | * Version of vm_map_copyout() for page list vm map copies. |
2717 | * |
2718 | */ |
2719 | kern_return_t vm_map_copyout_page_list(dst_map, dst_addr, copy) |
2720 | register |
2721 | vm_map_t dst_map; |
2722 | vm_offset_t *dst_addr; /* OUT */ |
2723 | register |
2724 | vm_map_copy_t copy; |
2725 | { |
2726 | vm_size_t size; |
2727 | vm_offset_t start; |
2728 | vm_offset_t end; |
2729 | vm_offset_t offset; |
2730 | vm_map_entry_t last; |
2731 | register |
2732 | vm_object_t object; |
2733 | vm_page_t *page_list, m; |
2734 | vm_map_entry_t entry; |
2735 | vm_offset_t old_last_offset; |
2736 | boolean_t cont_invoked, needs_wakeup = FALSE((boolean_t) 0); |
2737 | kern_return_t result = KERN_SUCCESS0; |
2738 | vm_map_copy_t orig_copy; |
2739 | vm_offset_t dst_offset; |
2740 | boolean_t must_wire; |
2741 | |
2742 | /* |
2743 | * Make sure the pages are stolen, because we are |
2744 | * going to put them in a new object. Assume that |
2745 | * all pages are identical to first in this regard. |
2746 | */ |
2747 | |
2748 | page_list = ©->cpy_page_listc_u.c_p.page_list[0]; |
2749 | if ((*page_list)->tabled) |
2750 | vm_map_copy_steal_pages(copy); |
2751 | |
2752 | /* |
2753 | * Find space for the data |
2754 | */ |
2755 | |
2756 | size = round_page(copy->offset + copy->size)((vm_offset_t)((((vm_offset_t)(copy->offset + copy->size )) + ((1 << 12)-1)) & ~((1 << 12)-1))) - |
2757 | trunc_page(copy->offset)((vm_offset_t)(((vm_offset_t)(copy->offset)) & ~((1 << 12)-1))); |
2758 | StartAgain: |
2759 | vm_map_lock(dst_map)({ lock_write(&(dst_map)->lock); (dst_map)->timestamp ++; }); |
2760 | must_wire = dst_map->wiring_required; |
2761 | |
2762 | last = dst_map->first_free; |
2763 | if (last == vm_map_to_entry(dst_map)((struct vm_map_entry *) &(dst_map)->hdr.links)) { |
2764 | start = vm_map_min(dst_map)((dst_map)->hdr.links.start); |
2765 | } else { |
2766 | start = last->vme_endlinks.end; |
2767 | } |
2768 | |
2769 | while (TRUE((boolean_t) 1)) { |
2770 | vm_map_entry_t next = last->vme_nextlinks.next; |
2771 | end = start + size; |
2772 | |
2773 | if ((end > dst_map->max_offsethdr.links.end) || (end < start)) { |
2774 | if (dst_map->wait_for_space) { |
2775 | if (size <= (dst_map->max_offsethdr.links.end - |
2776 | dst_map->min_offsethdr.links.start)) { |
2777 | assert_wait((event_t) dst_map, TRUE((boolean_t) 1)); |
2778 | vm_map_unlock(dst_map)lock_done(&(dst_map)->lock); |
2779 | thread_block((void (*)()) 0); |
2780 | goto StartAgain; |
2781 | } |
2782 | } |
2783 | vm_map_unlock(dst_map)lock_done(&(dst_map)->lock); |
2784 | printf_once("no more room for vm_map_copyout_page_list in %p\n", dst_map)({ static int __once = 0; if (!__once) { printf("no more room for vm_map_copyout_page_list in %p\n" , dst_map); __once = 1; } }); |
2785 | return(KERN_NO_SPACE3); |
2786 | } |
2787 | |
2788 | if ((next == vm_map_to_entry(dst_map)((struct vm_map_entry *) &(dst_map)->hdr.links)) || |
2789 | (next->vme_startlinks.start >= end)) { |
2790 | break; |
2791 | } |
2792 | |
2793 | last = next; |
2794 | start = last->vme_endlinks.end; |
2795 | } |
2796 | |
2797 | /* |
2798 | * See whether we can avoid creating a new entry (and object) by |
2799 | * extending one of our neighbors. [So far, we only attempt to |
2800 | * extend from below.] |
2801 | * |
2802 | * The code path below here is a bit twisted. If any of the |
2803 | * extension checks fails, we branch to create_object. If |
2804 | * it all works, we fall out the bottom and goto insert_pages. |
2805 | */ |
2806 | if (last == vm_map_to_entry(dst_map)((struct vm_map_entry *) &(dst_map)->hdr.links) || |
2807 | last->vme_endlinks.end != start || |
2808 | last->is_shared != FALSE((boolean_t) 0) || |
2809 | last->is_sub_map != FALSE((boolean_t) 0) || |
2810 | last->inheritance != VM_INHERIT_DEFAULT((vm_inherit_t) 1) || |
2811 | last->protection != VM_PROT_DEFAULT(((vm_prot_t) 0x01)|((vm_prot_t) 0x02)) || |
2812 | last->max_protection != VM_PROT_ALL(((vm_prot_t) 0x01)|((vm_prot_t) 0x02)|((vm_prot_t) 0x04)) || |
2813 | (must_wire ? (last->wired_count != 1 || |
2814 | last->user_wired_count != 1) : |
2815 | (last->wired_count != 0))) { |
2816 | goto create_object; |
2817 | } |
2818 | |
2819 | /* |
2820 | * If this entry needs an object, make one. |
2821 | */ |
2822 | if (last->object.vm_object == VM_OBJECT_NULL((vm_object_t) 0)) { |
2823 | object = vm_object_allocate( |
2824 | (vm_size_t)(last->vme_endlinks.end - last->vme_startlinks.start + size)); |
2825 | last->object.vm_object = object; |
2826 | last->offset = 0; |
2827 | vm_object_lock(object); |
2828 | } |
2829 | else { |
2830 | vm_offset_t prev_offset = last->offset; |
2831 | vm_size_t prev_size = start - last->vme_startlinks.start; |
2832 | vm_size_t new_size; |
2833 | |
2834 | /* |
2835 | * This is basically vm_object_coalesce. |
2836 | */ |
2837 | |
2838 | object = last->object.vm_object; |
2839 | vm_object_lock(object); |
2840 | |
2841 | /* |
2842 | * Try to collapse the object first |
2843 | */ |
2844 | vm_object_collapse(object); |
2845 | |
2846 | /* |
2847 | * Can't coalesce if pages not mapped to |
2848 | * last may be in use anyway: |
2849 | * . more than one reference |
2850 | * . paged out |
2851 | * . shadows another object |
2852 | * . has a copy elsewhere |
2853 | * . paging references (pages might be in page-list) |
2854 | */ |
2855 | |
2856 | if ((object->ref_count > 1) || |
2857 | object->pager_created || |
2858 | (object->shadow != VM_OBJECT_NULL((vm_object_t) 0)) || |
2859 | (object->copy != VM_OBJECT_NULL((vm_object_t) 0)) || |
2860 | (object->paging_in_progress != 0)) { |
2861 | vm_object_unlock(object); |
2862 | goto create_object; |
2863 | } |
2864 | |
2865 | /* |
2866 | * Extend the object if necessary. Don't have to call |
2867 | * vm_object_page_remove because the pages aren't mapped, |
2868 | * and vm_page_replace will free up any old ones it encounters. |
2869 | */ |
2870 | new_size = prev_offset + prev_size + size; |
2871 | if (new_size > object->size) |
2872 | object->size = new_size; |
2873 | } |
2874 | |
2875 | /* |
2876 | * Coalesced the two objects - can extend |
2877 | * the previous map entry to include the |
2878 | * new range. |
2879 | */ |
2880 | dst_map->size += size; |
2881 | last->vme_endlinks.end = end; |
2882 | |
2883 | SAVE_HINT(dst_map, last); (dst_map)->hint = (last); ;; |
2884 | |
2885 | goto insert_pages; |
2886 | |
2887 | create_object: |
2888 | |
2889 | /* |
2890 | * Create object |
2891 | */ |
2892 | object = vm_object_allocate(size); |
2893 | |
2894 | /* |
2895 | * Create entry |
2896 | */ |
2897 | |
2898 | entry = vm_map_entry_create(dst_map)_vm_map_entry_create(&(dst_map)->hdr); |
2899 | |
2900 | entry->object.vm_object = object; |
2901 | entry->offset = 0; |
2902 | |
2903 | entry->is_shared = FALSE((boolean_t) 0); |
2904 | entry->is_sub_map = FALSE((boolean_t) 0); |
2905 | entry->needs_copy = FALSE((boolean_t) 0); |
2906 | |
2907 | if (must_wire) { |
2908 | entry->wired_count = 1; |
2909 | entry->user_wired_count = 1; |
2910 | } else { |
2911 | entry->wired_count = 0; |
2912 | entry->user_wired_count = 0; |
2913 | } |
2914 | |
2915 | entry->in_transition = TRUE((boolean_t) 1); |
2916 | entry->needs_wakeup = FALSE((boolean_t) 0); |
2917 | |
2918 | entry->vme_startlinks.start = start; |
2919 | entry->vme_endlinks.end = start + size; |
2920 | |
2921 | entry->inheritance = VM_INHERIT_DEFAULT((vm_inherit_t) 1); |
2922 | entry->protection = VM_PROT_DEFAULT(((vm_prot_t) 0x01)|((vm_prot_t) 0x02)); |
2923 | entry->max_protection = VM_PROT_ALL(((vm_prot_t) 0x01)|((vm_prot_t) 0x02)|((vm_prot_t) 0x04)); |
2924 | entry->projected_on = 0; |
2925 | |
2926 | vm_object_lock(object); |
2927 | |
2928 | /* |
2929 | * Update the hints and the map size |
2930 | */ |
2931 | if (dst_map->first_free == last) { |
2932 | dst_map->first_free = entry; |
2933 | } |
2934 | SAVE_HINT(dst_map, entry); (dst_map)->hint = (entry); ;; |
2935 | dst_map->size += size; |
2936 | |
2937 | /* |
2938 | * Link in the entry |
2939 | */ |
2940 | vm_map_entry_link(dst_map, last, entry)({ (&(dst_map)->hdr)->nentries++; (entry)->links .prev = (last); (entry)->links.next = (last)->links.next ; (entry)->links.prev->links.next = (entry)->links.next ->links.prev = (entry); ({ struct rbtree_node *___cur, *___prev ; int ___diff, ___index; ___prev = ((void *) 0); ___index = - 1; ___cur = (&(&(dst_map)->hdr)->tree)->root ; while (___cur != ((void *) 0)) { ___diff = vm_map_entry_cmp_insert (&(entry)->tree_node, ___cur); ({ if (!(___diff != 0)) Assert("___diff != 0", "../vm/vm_map.c", 2940); }); ___prev = ___cur; ___index = rbtree_d2i(___diff); ___cur = ___cur-> children[___index]; } rbtree_insert_rebalance(&(&(dst_map )->hdr)->tree, ___prev, ___index, &(entry)->tree_node ); }); }); |
2941 | last = entry; |
2942 | |
2943 | /* |
2944 | * Transfer pages into new object. |
2945 | * Scan page list in vm_map_copy. |
2946 | */ |
2947 | insert_pages: |
2948 | dst_offset = copy->offset & PAGE_MASK((1 << 12)-1); |
2949 | cont_invoked = FALSE((boolean_t) 0); |
2950 | orig_copy = copy; |
2951 | last->in_transition = TRUE((boolean_t) 1); |
2952 | old_last_offset = last->offset |
2953 | + (start - last->vme_startlinks.start); |
2954 | |
2955 | vm_page_lock_queues(); |
2956 | |
2957 | for (offset = 0; offset < size; offset += PAGE_SIZE(1 << 12)) { |
2958 | m = *page_list; |
2959 | assert(m && !m->tabled)({ if (!(m && !m->tabled)) Assert("m && !m->tabled" , "../vm/vm_map.c", 2959); }); |
2960 | |
2961 | /* |
2962 | * Must clear busy bit in page before inserting it. |
2963 | * Ok to skip wakeup logic because nobody else |
2964 | * can possibly know about this page. |
2965 | * The page is dirty in its new object. |
2966 | */ |
2967 | |
2968 | assert(!m->wanted)({ if (!(!m->wanted)) Assert("!m->wanted", "../vm/vm_map.c" , 2968); }); |
2969 | |
2970 | m->busy = FALSE((boolean_t) 0); |
2971 | m->dirty = TRUE((boolean_t) 1); |
2972 | vm_page_replace(m, object, old_last_offset + offset); |
2973 | if (must_wire) { |
2974 | vm_page_wire(m); |
2975 | PMAP_ENTER(dst_map->pmap,({ pmap_enter( (dst_map->pmap), (last->links.start + m-> offset - last->offset), (m)->phys_addr, (last->protection ) & ~(m)->page_lock, (((boolean_t) 1)) ); }) |
2976 | last->vme_start + m->offset - last->offset,({ pmap_enter( (dst_map->pmap), (last->links.start + m-> offset - last->offset), (m)->phys_addr, (last->protection ) & ~(m)->page_lock, (((boolean_t) 1)) ); }) |
2977 | m, last->protection, TRUE)({ pmap_enter( (dst_map->pmap), (last->links.start + m-> offset - last->offset), (m)->phys_addr, (last->protection ) & ~(m)->page_lock, (((boolean_t) 1)) ); }); |
2978 | } else { |
2979 | vm_page_activate(m); |
2980 | } |
2981 | |
2982 | *page_list++ = VM_PAGE_NULL((vm_page_t) 0); |
2983 | if (--(copy->cpy_npagesc_u.c_p.npages) == 0 && |
2984 | vm_map_copy_has_cont(copy)(((copy)->c_u.c_p.cont) != (kern_return_t (*)()) 0)) { |
2985 | vm_map_copy_t new_copy; |
2986 | |
2987 | /* |
2988 | * Ok to unlock map because entry is |
2989 | * marked in_transition. |
2990 | */ |
2991 | cont_invoked = TRUE((boolean_t) 1); |
2992 | vm_page_unlock_queues(); |
2993 | vm_object_unlock(object); |
2994 | vm_map_unlock(dst_map)lock_done(&(dst_map)->lock); |
2995 | vm_map_copy_invoke_cont(copy, &new_copy, &result)({ vm_map_copy_page_discard(copy); *&result = (*((copy)-> c_u.c_p.cont))((copy)->c_u.c_p.cont_args, &new_copy); ( copy)->c_u.c_p.cont = (kern_return_t (*)()) 0; }); |
2996 | |
2997 | if (result == KERN_SUCCESS0) { |
2998 | |
2999 | /* |
3000 | * If we got back a copy with real pages, |
3001 | * steal them now. Either all of the |
3002 | * pages in the list are tabled or none |
3003 | * of them are; mixtures are not possible. |
3004 | * |
3005 | * Save original copy for consume on |
3006 | * success logic at end of routine. |
3007 | */ |
3008 | if (copy != orig_copy) |
3009 | vm_map_copy_discard(copy); |
3010 | |
3011 | if ((copy = new_copy) != VM_MAP_COPY_NULL((vm_map_copy_t) 0)) { |
3012 | page_list = ©->cpy_page_listc_u.c_p.page_list[0]; |
3013 | if ((*page_list)->tabled) |
3014 | vm_map_copy_steal_pages(copy); |
3015 | } |
3016 | } |
3017 | else { |
3018 | /* |
3019 | * Continuation failed. |
3020 | */ |
3021 | vm_map_lock(dst_map)({ lock_write(&(dst_map)->lock); (dst_map)->timestamp ++; }); |
3022 | goto error; |
3023 | } |
3024 | |
3025 | vm_map_lock(dst_map)({ lock_write(&(dst_map)->lock); (dst_map)->timestamp ++; }); |
3026 | vm_object_lock(object); |
3027 | vm_page_lock_queues(); |
3028 | } |
3029 | } |
3030 | |
3031 | vm_page_unlock_queues(); |
3032 | vm_object_unlock(object); |
3033 | |
3034 | *dst_addr = start + dst_offset; |
3035 | |
3036 | /* |
3037 | * Clear the in transition bits. This is easy if we |
3038 | * didn't have a continuation. |
3039 | */ |
3040 | error: |
3041 | if (!cont_invoked) { |
3042 | /* |
3043 | * We didn't unlock the map, so nobody could |
3044 | * be waiting. |
3045 | */ |
3046 | last->in_transition = FALSE((boolean_t) 0); |
3047 | assert(!last->needs_wakeup)({ if (!(!last->needs_wakeup)) Assert("!last->needs_wakeup" , "../vm/vm_map.c", 3047); }); |
3048 | needs_wakeup = FALSE((boolean_t) 0); |
3049 | } |
3050 | else { |
3051 | if (!vm_map_lookup_entry(dst_map, start, &entry)) |
3052 | panic("vm_map_copyout_page_list: missing entry"); |
3053 | |
3054 | /* |
3055 | * Clear transition bit for all constituent entries that |
3056 | * were in the original entry. Also check for waiters. |
3057 | */ |
3058 | while((entry != vm_map_to_entry(dst_map)((struct vm_map_entry *) &(dst_map)->hdr.links)) && |
3059 | (entry->vme_startlinks.start < end)) { |
3060 | assert(entry->in_transition)({ if (!(entry->in_transition)) Assert("entry->in_transition" , "../vm/vm_map.c", 3060); }); |
3061 | entry->in_transition = FALSE((boolean_t) 0); |
3062 | if(entry->needs_wakeup) { |
3063 | entry->needs_wakeup = FALSE((boolean_t) 0); |
3064 | needs_wakeup = TRUE((boolean_t) 1); |
3065 | } |
3066 | entry = entry->vme_nextlinks.next; |
3067 | } |
3068 | } |
3069 | |
3070 | if (result != KERN_SUCCESS0) |
3071 | vm_map_delete(dst_map, start, end); |
3072 | |
3073 | vm_map_unlock(dst_map)lock_done(&(dst_map)->lock); |
3074 | |
3075 | if (needs_wakeup) |
3076 | vm_map_entry_wakeup(dst_map)thread_wakeup_prim(((event_t)&(dst_map)->hdr), ((boolean_t ) 0), 0); |
3077 | |
3078 | /* |
3079 | * Consume on success logic. |
3080 | */ |
3081 | if (copy != orig_copy) { |
3082 | kmem_cache_free(&vm_map_copy_cache, (vm_offset_t) copy); |
3083 | } |
3084 | if (result == KERN_SUCCESS0) { |
3085 | kmem_cache_free(&vm_map_copy_cache, (vm_offset_t) orig_copy); |
3086 | } |
3087 | |
3088 | return(result); |
3089 | } |
3090 | |
3091 | /* |
3092 | * Routine: vm_map_copyin |
3093 | * |
3094 | * Description: |
3095 | * Copy the specified region (src_addr, len) from the |
3096 | * source address space (src_map), possibly removing |
3097 | * the region from the source address space (src_destroy). |
3098 | * |
3099 | * Returns: |
3100 | * A vm_map_copy_t object (copy_result), suitable for |
3101 | * insertion into another address space (using vm_map_copyout), |
3102 | * copying over another address space region (using |
3103 | * vm_map_copy_overwrite). If the copy is unused, it |
3104 | * should be destroyed (using vm_map_copy_discard). |
3105 | * |
3106 | * In/out conditions: |
3107 | * The source map should not be locked on entry. |
3108 | */ |
3109 | kern_return_t vm_map_copyin(src_map, src_addr, len, src_destroy, copy_result) |
3110 | vm_map_t src_map; |
3111 | vm_offset_t src_addr; |
3112 | vm_size_t len; |
3113 | boolean_t src_destroy; |
3114 | vm_map_copy_t *copy_result; /* OUT */ |
3115 | { |
3116 | vm_map_entry_t tmp_entry; /* Result of last map lookup -- |
3117 | * in multi-level lookup, this |
3118 | * entry contains the actual |
3119 | * vm_object/offset. |
3120 | */ |
3121 | |
3122 | vm_offset_t src_start; /* Start of current entry -- |
3123 | * where copy is taking place now |
3124 | */ |
3125 | vm_offset_t src_end; /* End of entire region to be |
3126 | * copied */ |
3127 | |
3128 | register |
3129 | vm_map_copy_t copy; /* Resulting copy */ |
3130 | |
3131 | /* |
3132 | * Check for copies of zero bytes. |
3133 | */ |
3134 | |
3135 | if (len == 0) { |
3136 | *copy_result = VM_MAP_COPY_NULL((vm_map_copy_t) 0); |
3137 | return(KERN_SUCCESS0); |
3138 | } |
3139 | |
3140 | /* |
3141 | * Compute start and end of region |
3142 | */ |
3143 | |
3144 | src_start = trunc_page(src_addr)((vm_offset_t)(((vm_offset_t)(src_addr)) & ~((1 << 12 )-1))); |
3145 | src_end = round_page(src_addr + len)((vm_offset_t)((((vm_offset_t)(src_addr + len)) + ((1 << 12)-1)) & ~((1 << 12)-1))); |
3146 | |
3147 | /* |
3148 | * Check that the end address doesn't overflow |
3149 | */ |
3150 | |
3151 | if (src_end <= src_start) |
3152 | if ((src_end < src_start) || (src_start != 0)) |
3153 | return(KERN_INVALID_ADDRESS1); |
3154 | |
3155 | /* |
3156 | * Allocate a header element for the list. |
3157 | * |
3158 | * Use the start and end in the header to |
3159 | * remember the endpoints prior to rounding. |
3160 | */ |
3161 | |
3162 | copy = (vm_map_copy_t) kmem_cache_alloc(&vm_map_copy_cache); |
3163 | vm_map_copy_first_entry(copy)((copy)->c_u.hdr.links.next) = |
3164 | vm_map_copy_last_entry(copy)((copy)->c_u.hdr.links.prev) = vm_map_copy_to_entry(copy)((struct vm_map_entry *) &(copy)->c_u.hdr.links); |
3165 | copy->type = VM_MAP_COPY_ENTRY_LIST1; |
3166 | copy->cpy_hdrc_u.hdr.nentries = 0; |
3167 | copy->cpy_hdrc_u.hdr.entries_pageable = TRUE((boolean_t) 1); |
3168 | rbtree_init(©->cpy_hdrc_u.hdr.tree); |
3169 | |
3170 | copy->offset = src_addr; |
3171 | copy->size = len; |
3172 | |
3173 | #define RETURN(x) \ |
3174 | MACRO_BEGIN({ \ |
3175 | vm_map_unlock(src_map)lock_done(&(src_map)->lock); \ |
3176 | vm_map_copy_discard(copy); \ |
3177 | MACRO_RETURNif (((boolean_t) 1)) return(x); \ |
3178 | MACRO_END}) |
3179 | |
3180 | /* |
3181 | * Find the beginning of the region. |
3182 | */ |
3183 | |
3184 | vm_map_lock(src_map)({ lock_write(&(src_map)->lock); (src_map)->timestamp ++; }); |
3185 | |
3186 | if (!vm_map_lookup_entry(src_map, src_start, &tmp_entry)) |
3187 | RETURN(KERN_INVALID_ADDRESS1); |
3188 | vm_map_clip_start(src_map, tmp_entry, src_start)({ if ((src_start) > (tmp_entry)->links.start) _vm_map_clip_start (&(src_map)->hdr,(tmp_entry),(src_start)); }); |
3189 | |
3190 | /* |
3191 | * Go through entries until we get to the end. |
3192 | */ |
3193 | |
3194 | while (TRUE((boolean_t) 1)) { |
3195 | register |
3196 | vm_map_entry_t src_entry = tmp_entry; /* Top-level entry */ |
3197 | vm_size_t src_size; /* Size of source |
3198 | * map entry (in both |
3199 | * maps) |
3200 | */ |
3201 | |
3202 | register |
3203 | vm_object_t src_object; /* Object to copy */ |
3204 | vm_offset_t src_offset; |
3205 | |
3206 | boolean_t src_needs_copy; /* Should source map |
3207 | * be made read-only |
3208 | * for copy-on-write? |
3209 | */ |
3210 | |
3211 | register |
3212 | vm_map_entry_t new_entry; /* Map entry for copy */ |
3213 | boolean_t new_entry_needs_copy; /* Will new entry be COW? */ |
3214 | |
3215 | boolean_t was_wired; /* Was source wired? */ |
3216 | vm_map_version_t version; /* Version before locks |
3217 | * dropped to make copy |
3218 | */ |
3219 | |
3220 | /* |
3221 | * Verify that the region can be read. |
3222 | */ |
3223 | |
3224 | if (! (src_entry->protection & VM_PROT_READ((vm_prot_t) 0x01))) |
3225 | RETURN(KERN_PROTECTION_FAILURE2); |
3226 | |
3227 | /* |
3228 | * Clip against the endpoints of the entire region. |
3229 | */ |
3230 | |
3231 | vm_map_clip_end(src_map, src_entry, src_end)({ if ((src_end) < (src_entry)->links.end) _vm_map_clip_end (&(src_map)->hdr,(src_entry),(src_end)); }); |
3232 | |
3233 | src_size = src_entry->vme_endlinks.end - src_start; |
3234 | src_object = src_entry->object.vm_object; |
3235 | src_offset = src_entry->offset; |
3236 | was_wired = (src_entry->wired_count != 0); |
3237 | |
3238 | /* |
3239 | * Create a new address map entry to |
3240 | * hold the result. Fill in the fields from |
3241 | * the appropriate source entries. |
3242 | */ |
3243 | |
3244 | new_entry = vm_map_copy_entry_create(copy)_vm_map_entry_create(&(copy)->c_u.hdr); |
3245 | vm_map_entry_copy(new_entry, src_entry)({ *(new_entry) = *(src_entry); (new_entry)->is_shared = ( (boolean_t) 0); (new_entry)->needs_wakeup = ((boolean_t) 0 ); (new_entry)->in_transition = ((boolean_t) 0); (new_entry )->wired_count = 0; (new_entry)->user_wired_count = 0; } ); |
3246 | |
3247 | /* |
3248 | * Attempt non-blocking copy-on-write optimizations. |
3249 | */ |
3250 | |
3251 | if (src_destroy && |
3252 | (src_object == VM_OBJECT_NULL((vm_object_t) 0) || |
3253 | (src_object->temporary && !src_object->use_shared_copy))) |
3254 | { |
3255 | /* |
3256 | * If we are destroying the source, and the object |
3257 | * is temporary, and not shared writable, |
3258 | * we can move the object reference |
3259 | * from the source to the copy. The copy is |
3260 | * copy-on-write only if the source is. |
3261 | * We make another reference to the object, because |
3262 | * destroying the source entry will deallocate it. |
3263 | */ |
3264 | vm_object_reference(src_object); |
3265 | |
3266 | /* |
3267 | * Copy is always unwired. vm_map_copy_entry |
3268 | * set its wired count to zero. |
3269 | */ |
3270 | |
3271 | goto CopySuccessful; |
3272 | } |
3273 | |
3274 | if (!was_wired && |
3275 | vm_object_copy_temporary( |
3276 | &new_entry->object.vm_object, |
3277 | &new_entry->offset, |
3278 | &src_needs_copy, |
3279 | &new_entry_needs_copy)) { |
3280 | |
3281 | new_entry->needs_copy = new_entry_needs_copy; |
3282 | |
3283 | /* |
3284 | * Handle copy-on-write obligations |
3285 | */ |
3286 | |
3287 | if (src_needs_copy && !tmp_entry->needs_copy) { |
3288 | vm_object_pmap_protect( |
3289 | src_object, |
3290 | src_offset, |
3291 | src_size, |
3292 | (src_entry->is_shared ? PMAP_NULL((pmap_t) 0) |
3293 | : src_map->pmap), |
3294 | src_entry->vme_startlinks.start, |
3295 | src_entry->protection & |
3296 | ~VM_PROT_WRITE((vm_prot_t) 0x02)); |
3297 | |
3298 | tmp_entry->needs_copy = TRUE((boolean_t) 1); |
3299 | } |
3300 | |
3301 | /* |
3302 | * The map has never been unlocked, so it's safe to |
3303 | * move to the next entry rather than doing another |
3304 | * lookup. |
3305 | */ |
3306 | |
3307 | goto CopySuccessful; |
3308 | } |
3309 | |
3310 | new_entry->needs_copy = FALSE((boolean_t) 0); |
3311 | |
3312 | /* |
3313 | * Take an object reference, so that we may |
3314 | * release the map lock(s). |
3315 | */ |
3316 | |
3317 | assert(src_object != VM_OBJECT_NULL)({ if (!(src_object != ((vm_object_t) 0))) Assert("src_object != VM_OBJECT_NULL" , "../vm/vm_map.c", 3317); }); |
3318 | vm_object_reference(src_object); |
3319 | |
3320 | /* |
3321 | * Record the timestamp for later verification. |
3322 | * Unlock the map. |
3323 | */ |
3324 | |
3325 | version.main_timestamp = src_map->timestamp; |
3326 | vm_map_unlock(src_map)lock_done(&(src_map)->lock); |
3327 | |
3328 | /* |
3329 | * Perform the copy |
3330 | */ |
3331 | |
3332 | if (was_wired) { |
3333 | vm_object_lock(src_object); |
3334 | (void) vm_object_copy_slowly( |
3335 | src_object, |
3336 | src_offset, |
3337 | src_size, |
3338 | FALSE((boolean_t) 0), |
3339 | &new_entry->object.vm_object); |
3340 | new_entry->offset = 0; |
3341 | new_entry->needs_copy = FALSE((boolean_t) 0); |
3342 | } else { |
3343 | kern_return_t result; |
3344 | |
3345 | result = vm_object_copy_strategically(src_object, |
3346 | src_offset, |
3347 | src_size, |
3348 | &new_entry->object.vm_object, |
3349 | &new_entry->offset, |
3350 | &new_entry_needs_copy); |
3351 | |
3352 | new_entry->needs_copy = new_entry_needs_copy; |
3353 | |
3354 | |
3355 | if (result != KERN_SUCCESS0) { |
3356 | vm_map_copy_entry_dispose(copy, new_entry)_vm_map_entry_dispose(&(copy)->c_u.hdr, (new_entry)); |
3357 | |
3358 | vm_map_lock(src_map)({ lock_write(&(src_map)->lock); (src_map)->timestamp ++; }); |
3359 | RETURN(result); |
3360 | } |
3361 | |
3362 | } |
3363 | |
3364 | /* |
3365 | * Throw away the extra reference |
3366 | */ |
3367 | |
3368 | vm_object_deallocate(src_object); |
3369 | |
3370 | /* |
3371 | * Verify that the map has not substantially |
3372 | * changed while the copy was being made. |
3373 | */ |
3374 | |
3375 | vm_map_lock(src_map)({ lock_write(&(src_map)->lock); (src_map)->timestamp ++; }); /* Increments timestamp once! */ |
3376 | |
3377 | if ((version.main_timestamp + 1) == src_map->timestamp) |
3378 | goto CopySuccessful; |
3379 | |
3380 | /* |
3381 | * Simple version comparison failed. |
3382 | * |
3383 | * Retry the lookup and verify that the |
3384 | * same object/offset are still present. |
3385 | * |
3386 | * [Note: a memory manager that colludes with |
3387 | * the calling task can detect that we have |
3388 | * cheated. While the map was unlocked, the |
3389 | * mapping could have been changed and restored.] |
3390 | */ |
3391 | |
3392 | if (!vm_map_lookup_entry(src_map, src_start, &tmp_entry)) { |
3393 | vm_map_copy_entry_dispose(copy, new_entry)_vm_map_entry_dispose(&(copy)->c_u.hdr, (new_entry)); |
3394 | RETURN(KERN_INVALID_ADDRESS1); |
3395 | } |
3396 | |
3397 | src_entry = tmp_entry; |
3398 | vm_map_clip_start(src_map, src_entry, src_start)({ if ((src_start) > (src_entry)->links.start) _vm_map_clip_start (&(src_map)->hdr,(src_entry),(src_start)); }); |
3399 | |
3400 | if ((src_entry->protection & VM_PROT_READ((vm_prot_t) 0x01)) == VM_PROT_NONE((vm_prot_t) 0x00)) |
3401 | goto VerificationFailed; |
3402 | |
3403 | if (src_entry->vme_endlinks.end < new_entry->vme_endlinks.end) |
3404 | src_size = (new_entry->vme_endlinks.end = src_entry->vme_endlinks.end) - src_start; |
Value stored to 'src_size' is never read | |
3405 | |
3406 | if ((src_entry->object.vm_object != src_object) || |
3407 | (src_entry->offset != src_offset) ) { |
3408 | |
3409 | /* |
3410 | * Verification failed. |
3411 | * |
3412 | * Start over with this top-level entry. |
3413 | */ |
3414 | |
3415 | VerificationFailed: ; |
3416 | |
3417 | vm_object_deallocate(new_entry->object.vm_object); |
3418 | vm_map_copy_entry_dispose(copy, new_entry)_vm_map_entry_dispose(&(copy)->c_u.hdr, (new_entry)); |
3419 | tmp_entry = src_entry; |
3420 | continue; |
3421 | } |
3422 | |
3423 | /* |
3424 | * Verification succeeded. |
3425 | */ |
3426 | |
3427 | CopySuccessful: ; |
3428 | |
3429 | /* |
3430 | * Link in the new copy entry. |
3431 | */ |
3432 | |
3433 | vm_map_copy_entry_link(copy, vm_map_copy_last_entry(copy),({ (&(copy)->c_u.hdr)->nentries++; (new_entry)-> links.prev = (((copy)->c_u.hdr.links.prev)); (new_entry)-> links.next = (((copy)->c_u.hdr.links.prev))->links.next ; (new_entry)->links.prev->links.next = (new_entry)-> links.next->links.prev = (new_entry); ({ struct rbtree_node *___cur, *___prev; int ___diff, ___index; ___prev = ((void * ) 0); ___index = -1; ___cur = (&(&(copy)->c_u.hdr) ->tree)->root; while (___cur != ((void *) 0)) { ___diff = vm_map_entry_cmp_insert(&(new_entry)->tree_node, ___cur ); ({ if (!(___diff != 0)) Assert("___diff != 0", "../vm/vm_map.c" , 3434); }); ___prev = ___cur; ___index = rbtree_d2i(___diff) ; ___cur = ___cur->children[___index]; } rbtree_insert_rebalance (&(&(copy)->c_u.hdr)->tree, ___prev, ___index, & (new_entry)->tree_node); }); }) |
3434 | new_entry)({ (&(copy)->c_u.hdr)->nentries++; (new_entry)-> links.prev = (((copy)->c_u.hdr.links.prev)); (new_entry)-> links.next = (((copy)->c_u.hdr.links.prev))->links.next ; (new_entry)->links.prev->links.next = (new_entry)-> links.next->links.prev = (new_entry); ({ struct rbtree_node *___cur, *___prev; int ___diff, ___index; ___prev = ((void * ) 0); ___index = -1; ___cur = (&(&(copy)->c_u.hdr) ->tree)->root; while (___cur != ((void *) 0)) { ___diff = vm_map_entry_cmp_insert(&(new_entry)->tree_node, ___cur ); ({ if (!(___diff != 0)) Assert("___diff != 0", "../vm/vm_map.c" , 3434); }); ___prev = ___cur; ___index = rbtree_d2i(___diff) ; ___cur = ___cur->children[___index]; } rbtree_insert_rebalance (&(&(copy)->c_u.hdr)->tree, ___prev, ___index, & (new_entry)->tree_node); }); }); |
3435 | |
3436 | /* |
3437 | * Determine whether the entire region |
3438 | * has been copied. |
3439 | */ |
3440 | src_start = new_entry->vme_endlinks.end; |
3441 | if ((src_start >= src_end) && (src_end != 0)) |
3442 | break; |
3443 | |
3444 | /* |
3445 | * Verify that there are no gaps in the region |
3446 | */ |
3447 | |
3448 | tmp_entry = src_entry->vme_nextlinks.next; |
3449 | if (tmp_entry->vme_startlinks.start != src_start) |
3450 | RETURN(KERN_INVALID_ADDRESS1); |
3451 | } |
3452 | |
3453 | /* |
3454 | * If the source should be destroyed, do it now, since the |
3455 | * copy was successful. |
3456 | */ |
3457 | if (src_destroy) |
3458 | (void) vm_map_delete(src_map, trunc_page(src_addr)((vm_offset_t)(((vm_offset_t)(src_addr)) & ~((1 << 12 )-1))), src_end); |
3459 | |
3460 | vm_map_unlock(src_map)lock_done(&(src_map)->lock); |
3461 | |
3462 | *copy_result = copy; |
3463 | return(KERN_SUCCESS0); |
3464 | |
3465 | #undef RETURN |
3466 | } |
3467 | |
3468 | /* |
3469 | * vm_map_copyin_object: |
3470 | * |
3471 | * Create a copy object from an object. |
3472 | * Our caller donates an object reference. |
3473 | */ |
3474 | |
3475 | kern_return_t vm_map_copyin_object(object, offset, size, copy_result) |
3476 | vm_object_t object; |
3477 | vm_offset_t offset; /* offset of region in object */ |
3478 | vm_size_t size; /* size of region in object */ |
3479 | vm_map_copy_t *copy_result; /* OUT */ |
3480 | { |
3481 | vm_map_copy_t copy; /* Resulting copy */ |
3482 | |
3483 | /* |
3484 | * We drop the object into a special copy object |
3485 | * that contains the object directly. These copy objects |
3486 | * are distinguished by entries_pageable == FALSE |
3487 | * and null links. |
3488 | */ |
3489 | |
3490 | copy = (vm_map_copy_t) kmem_cache_alloc(&vm_map_copy_cache); |
3491 | vm_map_copy_first_entry(copy)((copy)->c_u.hdr.links.next) = |
3492 | vm_map_copy_last_entry(copy)((copy)->c_u.hdr.links.prev) = VM_MAP_ENTRY_NULL((vm_map_entry_t) 0); |
3493 | copy->type = VM_MAP_COPY_OBJECT2; |
3494 | copy->cpy_objectc_u.c_o.object = object; |
3495 | copy->offset = offset; |
3496 | copy->size = size; |
3497 | |
3498 | *copy_result = copy; |
3499 | return(KERN_SUCCESS0); |
3500 | } |
3501 | |
3502 | /* |
3503 | * vm_map_copyin_page_list_cont: |
3504 | * |
3505 | * Continuation routine for vm_map_copyin_page_list. |
3506 | * |
3507 | * If vm_map_copyin_page_list can't fit the entire vm range |
3508 | * into a single page list object, it creates a continuation. |
3509 | * When the target of the operation has used the pages in the |
3510 | * initial page list, it invokes the continuation, which calls |
3511 | * this routine. If an error happens, the continuation is aborted |
3512 | * (abort arg to this routine is TRUE). To avoid deadlocks, the |
3513 | * pages are discarded from the initial page list before invoking |
3514 | * the continuation. |
3515 | * |
3516 | * NOTE: This is not the same sort of continuation used by |
3517 | * the scheduler. |
3518 | */ |
3519 | |
3520 | kern_return_t vm_map_copyin_page_list_cont(cont_args, copy_result) |
3521 | vm_map_copyin_args_t cont_args; |
3522 | vm_map_copy_t *copy_result; /* OUT */ |
3523 | { |
3524 | kern_return_t result = 0; /* '=0' to quiet gcc warnings */ |
3525 | register boolean_t do_abort, src_destroy, src_destroy_only; |
3526 | |
3527 | /* |
3528 | * Check for cases that only require memory destruction. |
3529 | */ |
3530 | do_abort = (copy_result == (vm_map_copy_t *) 0); |
3531 | src_destroy = (cont_args->destroy_len != (vm_size_t) 0); |
3532 | src_destroy_only = (cont_args->src_len == (vm_size_t) 0); |
3533 | |
3534 | if (do_abort || src_destroy_only) { |
3535 | if (src_destroy) |
3536 | result = vm_map_remove(cont_args->map, |
3537 | cont_args->destroy_addr, |
3538 | cont_args->destroy_addr + cont_args->destroy_len); |
3539 | if (!do_abort) |
3540 | *copy_result = VM_MAP_COPY_NULL((vm_map_copy_t) 0); |
3541 | } |
3542 | else { |
3543 | result = vm_map_copyin_page_list(cont_args->map, |
3544 | cont_args->src_addr, cont_args->src_len, src_destroy, |
3545 | cont_args->steal_pages, copy_result, TRUE((boolean_t) 1)); |
3546 | |
3547 | if (src_destroy && !cont_args->steal_pages && |
3548 | vm_map_copy_has_cont(*copy_result)(((*copy_result)->c_u.c_p.cont) != (kern_return_t (*)()) 0 )) { |
3549 | vm_map_copyin_args_t new_args; |
3550 | /* |
3551 | * Transfer old destroy info. |
3552 | */ |
3553 | new_args = (vm_map_copyin_args_t) |
3554 | (*copy_result)->cpy_cont_argsc_u.c_p.cont_args; |
3555 | new_args->destroy_addr = cont_args->destroy_addr; |
3556 | new_args->destroy_len = cont_args->destroy_len; |
3557 | } |
3558 | } |
3559 | |
3560 | vm_map_deallocate(cont_args->map); |
3561 | kfree((vm_offset_t)cont_args, sizeof(vm_map_copyin_args_data_t)); |
3562 | |
3563 | return(result); |
3564 | } |
3565 | |
3566 | /* |
3567 | * vm_map_copyin_page_list: |
3568 | * |
3569 | * This is a variant of vm_map_copyin that copies in a list of pages. |
3570 | * If steal_pages is TRUE, the pages are only in the returned list. |
3571 | * If steal_pages is FALSE, the pages are busy and still in their |
3572 | * objects. A continuation may be returned if not all the pages fit: |
3573 | * the recipient of this copy_result must be prepared to deal with it. |
3574 | */ |
3575 | |
3576 | kern_return_t vm_map_copyin_page_list(src_map, src_addr, len, src_destroy, |
3577 | steal_pages, copy_result, is_cont) |
3578 | vm_map_t src_map; |
3579 | vm_offset_t src_addr; |
3580 | vm_size_t len; |
3581 | boolean_t src_destroy; |
3582 | boolean_t steal_pages; |
3583 | vm_map_copy_t *copy_result; /* OUT */ |
3584 | boolean_t is_cont; |
3585 | { |
3586 | vm_map_entry_t src_entry; |
3587 | vm_page_t m; |
3588 | vm_offset_t src_start; |
3589 | vm_offset_t src_end; |
3590 | vm_size_t src_size; |
3591 | register |
3592 | vm_object_t src_object; |
3593 | register |
3594 | vm_offset_t src_offset; |
3595 | vm_offset_t src_last_offset; |
3596 | register |
3597 | vm_map_copy_t copy; /* Resulting copy */ |
3598 | kern_return_t result = KERN_SUCCESS0; |
3599 | boolean_t need_map_lookup; |
3600 | vm_map_copyin_args_t cont_args; |
3601 | |
3602 | /* |
3603 | * If steal_pages is FALSE, this leaves busy pages in |
3604 | * the object. A continuation must be used if src_destroy |
3605 | * is true in this case (!steal_pages && src_destroy). |
3606 | * |
3607 | * XXX Still have a more general problem of what happens |
3608 | * XXX if the same page occurs twice in a list. Deadlock |
3609 | * XXX can happen if vm_fault_page was called. A |
3610 | * XXX possible solution is to use a continuation if vm_fault_page |
3611 | * XXX is called and we cross a map entry boundary. |
3612 | */ |
3613 | |
3614 | /* |
3615 | * Check for copies of zero bytes. |
3616 | */ |
3617 | |
3618 | if (len == 0) { |
3619 | *copy_result = VM_MAP_COPY_NULL((vm_map_copy_t) 0); |
3620 | return(KERN_SUCCESS0); |
3621 | } |
3622 | |
3623 | /* |
3624 | * Compute start and end of region |
3625 | */ |
3626 | |
3627 | src_start = trunc_page(src_addr)((vm_offset_t)(((vm_offset_t)(src_addr)) & ~((1 << 12 )-1))); |
3628 | src_end = round_page(src_addr + len)((vm_offset_t)((((vm_offset_t)(src_addr + len)) + ((1 << 12)-1)) & ~((1 << 12)-1))); |
3629 | |
3630 | /* |
3631 | * Check that the end address doesn't overflow |
3632 | */ |
3633 | |
3634 | if (src_end <= src_start && (src_end < src_start || src_start != 0)) { |
3635 | return KERN_INVALID_ADDRESS1; |
3636 | } |
3637 | |
3638 | /* |
3639 | * Allocate a header element for the page list. |
3640 | * |
3641 | * Record original offset and size, as caller may not |
3642 | * be page-aligned. |
3643 | */ |
3644 | |
3645 | copy = (vm_map_copy_t) kmem_cache_alloc(&vm_map_copy_cache); |
3646 | copy->type = VM_MAP_COPY_PAGE_LIST3; |
3647 | copy->cpy_npagesc_u.c_p.npages = 0; |
3648 | copy->offset = src_addr; |
3649 | copy->size = len; |
3650 | copy->cpy_contc_u.c_p.cont = ((kern_return_t (*)()) 0); |
3651 | copy->cpy_cont_argsc_u.c_p.cont_args = (char *) VM_MAP_COPYIN_ARGS_NULL((vm_map_copyin_args_t) 0); |
3652 | |
3653 | /* |
3654 | * Find the beginning of the region. |
3655 | */ |
3656 | |
3657 | do_map_lookup: |
3658 | |
3659 | vm_map_lock(src_map)({ lock_write(&(src_map)->lock); (src_map)->timestamp ++; }); |
3660 | |
3661 | if (!vm_map_lookup_entry(src_map, src_start, &src_entry)) { |
3662 | result = KERN_INVALID_ADDRESS1; |
3663 | goto error; |
3664 | } |
3665 | need_map_lookup = FALSE((boolean_t) 0); |
3666 | |
3667 | /* |
3668 | * Go through entries until we get to the end. |
3669 | */ |
3670 | |
3671 | while (TRUE((boolean_t) 1)) { |
3672 | |
3673 | if (! (src_entry->protection & VM_PROT_READ((vm_prot_t) 0x01))) { |
3674 | result = KERN_PROTECTION_FAILURE2; |
3675 | goto error; |
3676 | } |
3677 | |
3678 | if (src_end > src_entry->vme_endlinks.end) |
3679 | src_size = src_entry->vme_endlinks.end - src_start; |
3680 | else |
3681 | src_size = src_end - src_start; |
3682 | |
3683 | src_object = src_entry->object.vm_object; |
3684 | src_offset = src_entry->offset + |
3685 | (src_start - src_entry->vme_startlinks.start); |
3686 | |
3687 | /* |
3688 | * If src_object is NULL, allocate it now; |
3689 | * we're going to fault on it shortly. |
3690 | */ |
3691 | if (src_object == VM_OBJECT_NULL((vm_object_t) 0)) { |
3692 | src_object = vm_object_allocate((vm_size_t) |
3693 | src_entry->vme_endlinks.end - |
3694 | src_entry->vme_startlinks.start); |
3695 | src_entry->object.vm_object = src_object; |
3696 | } |
3697 | |
3698 | /* |
3699 | * Iterate over pages. Fault in ones that aren't present. |
3700 | */ |
3701 | src_last_offset = src_offset + src_size; |
3702 | for (; (src_offset < src_last_offset && !need_map_lookup); |
3703 | src_offset += PAGE_SIZE(1 << 12), src_start += PAGE_SIZE(1 << 12)) { |
3704 | |
3705 | if (copy->cpy_npagesc_u.c_p.npages == VM_MAP_COPY_PAGE_LIST_MAX64) { |
3706 | make_continuation: |
3707 | /* |
3708 | * At this point we have the max number of |
3709 | * pages busy for this thread that we're |
3710 | * willing to allow. Stop here and record |
3711 | * arguments for the remainder. Note: |
3712 | * this means that this routine isn't atomic, |
3713 | * but that's the breaks. Note that only |
3714 | * the first vm_map_copy_t that comes back |
3715 | * from this routine has the right offset |
3716 | * and size; those from continuations are |
3717 | * page rounded, and short by the amount |
3718 | * already done. |
3719 | * |
3720 | * Reset src_end so the src_destroy |
3721 | * code at the bottom doesn't do |
3722 | * something stupid. |
3723 | */ |
3724 | |
3725 | cont_args = (vm_map_copyin_args_t) |
3726 | kalloc(sizeof(vm_map_copyin_args_data_t)); |
3727 | cont_args->map = src_map; |
3728 | vm_map_reference(src_map); |
3729 | cont_args->src_addr = src_start; |
3730 | cont_args->src_len = len - (src_start - src_addr); |
3731 | if (src_destroy) { |
3732 | cont_args->destroy_addr = cont_args->src_addr; |
3733 | cont_args->destroy_len = cont_args->src_len; |
3734 | } |
3735 | else { |
3736 | cont_args->destroy_addr = (vm_offset_t) 0; |
3737 | cont_args->destroy_len = (vm_offset_t) 0; |
3738 | } |
3739 | cont_args->steal_pages = steal_pages; |
3740 | |
3741 | copy->cpy_cont_argsc_u.c_p.cont_args = (char *) cont_args; |
3742 | copy->cpy_contc_u.c_p.cont = vm_map_copyin_page_list_cont; |
3743 | |
3744 | src_end = src_start; |
3745 | vm_map_clip_end(src_map, src_entry, src_end)({ if ((src_end) < (src_entry)->links.end) _vm_map_clip_end (&(src_map)->hdr,(src_entry),(src_end)); }); |
3746 | break; |
3747 | } |
3748 | |
3749 | /* |
3750 | * Try to find the page of data. |
3751 | */ |
3752 | vm_object_lock(src_object); |
3753 | vm_object_paging_begin(src_object)((src_object)->paging_in_progress++); |
3754 | if (((m = vm_page_lookup(src_object, src_offset)) != |
3755 | VM_PAGE_NULL((vm_page_t) 0)) && !m->busy && !m->fictitious && |
3756 | !m->absent && !m->error) { |
3757 | |
3758 | /* |
3759 | * This is the page. Mark it busy |
3760 | * and keep the paging reference on |
3761 | * the object whilst we do our thing. |
3762 | */ |
3763 | m->busy = TRUE((boolean_t) 1); |
3764 | |
3765 | /* |
3766 | * Also write-protect the page, so |
3767 | * that the map`s owner cannot change |
3768 | * the data. The busy bit will prevent |
3769 | * faults on the page from succeeding |
3770 | * until the copy is released; after |
3771 | * that, the page can be re-entered |
3772 | * as writable, since we didn`t alter |
3773 | * the map entry. This scheme is a |
3774 | * cheap copy-on-write. |
3775 | * |
3776 | * Don`t forget the protection and |
3777 | * the page_lock value! |
3778 | * |
3779 | * If the source is being destroyed |
3780 | * AND not shared writable, we don`t |
3781 | * have to protect the page, since |
3782 | * we will destroy the (only) |
3783 | * writable mapping later. |
3784 | */ |
3785 | if (!src_destroy || |
3786 | src_object->use_shared_copy) |
3787 | { |
3788 | pmap_page_protect(m->phys_addr, |
3789 | src_entry->protection |
3790 | & ~m->page_lock |
3791 | & ~VM_PROT_WRITE((vm_prot_t) 0x02)); |
3792 | } |
3793 | |
3794 | } |
3795 | else { |
3796 | vm_prot_t result_prot; |
3797 | vm_page_t top_page; |
3798 | kern_return_t kr; |
3799 | |
3800 | /* |
3801 | * Have to fault the page in; must |
3802 | * unlock the map to do so. While |
3803 | * the map is unlocked, anything |
3804 | * can happen, we must lookup the |
3805 | * map entry before continuing. |
3806 | */ |
3807 | vm_map_unlock(src_map)lock_done(&(src_map)->lock); |
3808 | need_map_lookup = TRUE((boolean_t) 1); |
3809 | retry: |
3810 | result_prot = VM_PROT_READ((vm_prot_t) 0x01); |
3811 | |
3812 | kr = vm_fault_page(src_object, src_offset, |
3813 | VM_PROT_READ((vm_prot_t) 0x01), FALSE((boolean_t) 0), FALSE((boolean_t) 0), |
3814 | &result_prot, &m, &top_page, |
3815 | FALSE((boolean_t) 0), (void (*)()) 0); |
3816 | /* |
3817 | * Cope with what happened. |
3818 | */ |
3819 | switch (kr) { |
3820 | case VM_FAULT_SUCCESS0: |
3821 | break; |
3822 | case VM_FAULT_INTERRUPTED2: /* ??? */ |
3823 | case VM_FAULT_RETRY1: |
3824 | vm_object_lock(src_object); |
3825 | vm_object_paging_begin(src_object)((src_object)->paging_in_progress++); |
3826 | goto retry; |
3827 | case VM_FAULT_MEMORY_SHORTAGE3: |
3828 | VM_PAGE_WAIT((void (*)()) 0)vm_page_wait((void (*)()) 0); |
3829 | vm_object_lock(src_object); |
3830 | vm_object_paging_begin(src_object)((src_object)->paging_in_progress++); |
3831 | goto retry; |
3832 | case VM_FAULT_FICTITIOUS_SHORTAGE4: |
3833 | vm_page_more_fictitious(); |
3834 | vm_object_lock(src_object); |
3835 | vm_object_paging_begin(src_object)((src_object)->paging_in_progress++); |
3836 | goto retry; |
3837 | case VM_FAULT_MEMORY_ERROR5: |
3838 | /* |
3839 | * Something broke. If this |
3840 | * is a continuation, return |
3841 | * a partial result if possible, |
3842 | * else fail the whole thing. |
3843 | * In the continuation case, the |
3844 | * next continuation call will |
3845 | * get this error if it persists. |
3846 | */ |
3847 | vm_map_lock(src_map)({ lock_write(&(src_map)->lock); (src_map)->timestamp ++; }); |
3848 | if (is_cont && |
3849 | copy->cpy_npagesc_u.c_p.npages != 0) |
3850 | goto make_continuation; |
3851 | |
3852 | result = KERN_MEMORY_ERROR10; |
3853 | goto error; |
3854 | } |
3855 | |
3856 | if (top_page != VM_PAGE_NULL((vm_page_t) 0)) { |
3857 | vm_object_lock(src_object); |
3858 | VM_PAGE_FREE(top_page)({ ; vm_page_free(top_page); ; }); |
3859 | vm_object_paging_end(src_object)({ ({ if (!((src_object)->paging_in_progress != 0)) Assert ("(src_object)->paging_in_progress != 0", "../vm/vm_map.c" , 3859); }); if (--(src_object)->paging_in_progress == 0) { ({ if ((src_object)->all_wanted & (1 << (2))) thread_wakeup_prim (((event_t)(((vm_offset_t) src_object) + (2))), ((boolean_t) 0 ), 0); (src_object)->all_wanted &= ~(1 << (2)); } ); } }); |
3860 | vm_object_unlock(src_object); |
3861 | } |
3862 | |
3863 | /* |
3864 | * We do not need to write-protect |
3865 | * the page, since it cannot have |
3866 | * been in the pmap (and we did not |
3867 | * enter it above). The busy bit |
3868 | * will protect the page from being |
3869 | * entered as writable until it is |
3870 | * unlocked. |
3871 | */ |
3872 | |
3873 | } |
3874 | |
3875 | /* |
3876 | * The page is busy, its object is locked, and |
3877 | * we have a paging reference on it. Either |
3878 | * the map is locked, or need_map_lookup is |
3879 | * TRUE. |
3880 | * |
3881 | * Put the page in the page list. |
3882 | */ |
3883 | copy->cpy_page_listc_u.c_p.page_list[copy->cpy_npagesc_u.c_p.npages++] = m; |
3884 | vm_object_unlock(m->object); |
3885 | } |
3886 | |
3887 | /* |
3888 | * DETERMINE whether the entire region |
3889 | * has been copied. |
3890 | */ |
3891 | if (src_start >= src_end && src_end != 0) { |
3892 | if (need_map_lookup) |
3893 | vm_map_lock(src_map)({ lock_write(&(src_map)->lock); (src_map)->timestamp ++; }); |
3894 | break; |
3895 | } |
3896 | |
3897 | /* |
3898 | * If need_map_lookup is TRUE, have to start over with |
3899 | * another map lookup. Note that we dropped the map |
3900 | * lock (to call vm_fault_page) above only in this case. |
3901 | */ |
3902 | if (need_map_lookup) |
3903 | goto do_map_lookup; |
3904 | |
3905 | /* |
3906 | * Verify that there are no gaps in the region |
3907 | */ |
3908 | |
3909 | src_start = src_entry->vme_endlinks.end; |
3910 | src_entry = src_entry->vme_nextlinks.next; |
3911 | if (src_entry->vme_startlinks.start != src_start) { |
3912 | result = KERN_INVALID_ADDRESS1; |
3913 | goto error; |
3914 | } |
3915 | } |
3916 | |
3917 | /* |
3918 | * If steal_pages is true, make sure all |
3919 | * pages in the copy are not in any object |
3920 | * We try to remove them from the original |
3921 | * object, but we may have to copy them. |
3922 | * |
3923 | * At this point every page in the list is busy |
3924 | * and holds a paging reference to its object. |
3925 | * When we're done stealing, every page is busy, |
3926 | * and in no object (m->tabled == FALSE). |
3927 | */ |
3928 | src_start = trunc_page(src_addr)((vm_offset_t)(((vm_offset_t)(src_addr)) & ~((1 << 12 )-1))); |
3929 | if (steal_pages) { |
3930 | register int i; |
3931 | vm_offset_t unwire_end; |
3932 | |
3933 | unwire_end = src_start; |
3934 | for (i = 0; i < copy->cpy_npagesc_u.c_p.npages; i++) { |
3935 | |
3936 | /* |
3937 | * Remove the page from its object if it |
3938 | * can be stolen. It can be stolen if: |
3939 | * |
3940 | * (1) The source is being destroyed, |
3941 | * the object is temporary, and |
3942 | * not shared. |
3943 | * (2) The page is not precious. |
3944 | * |
3945 | * The not shared check consists of two |
3946 | * parts: (a) there are no objects that |
3947 | * shadow this object. (b) it is not the |
3948 | * object in any shared map entries (i.e., |
3949 | * use_shared_copy is not set). |
3950 | * |
3951 | * The first check (a) means that we can't |
3952 | * steal pages from objects that are not |
3953 | * at the top of their shadow chains. This |
3954 | * should not be a frequent occurrence. |
3955 | * |
3956 | * Stealing wired pages requires telling the |
3957 | * pmap module to let go of them. |
3958 | * |
3959 | * NOTE: stealing clean pages from objects |
3960 | * whose mappings survive requires a call to |
3961 | * the pmap module. Maybe later. |
3962 | */ |
3963 | m = copy->cpy_page_listc_u.c_p.page_list[i]; |
3964 | src_object = m->object; |
3965 | vm_object_lock(src_object); |
3966 | |
3967 | if (src_destroy && |
3968 | src_object->temporary && |
3969 | (!src_object->shadowed) && |
3970 | (!src_object->use_shared_copy) && |
3971 | !m->precious) { |
3972 | vm_offset_t page_vaddr; |
3973 | |
3974 | page_vaddr = src_start + (i * PAGE_SIZE(1 << 12)); |
3975 | if (m->wire_count > 0) { |
3976 | |
3977 | assert(m->wire_count == 1)({ if (!(m->wire_count == 1)) Assert("m->wire_count == 1" , "../vm/vm_map.c", 3977); }); |
3978 | /* |
3979 | * In order to steal a wired |
3980 | * page, we have to unwire it |
3981 | * first. We do this inline |
3982 | * here because we have the page. |
3983 | * |
3984 | * Step 1: Unwire the map entry. |
3985 | * Also tell the pmap module |
3986 | * that this piece of the |
3987 | * pmap is pageable. |
3988 | */ |
3989 | vm_object_unlock(src_object); |
3990 | if (page_vaddr >= unwire_end) { |
3991 | if (!vm_map_lookup_entry(src_map, |
3992 | page_vaddr, &src_entry)) |
3993 | panic("vm_map_copyin_page_list: missing wired map entry"); |
3994 | |
3995 | vm_map_clip_start(src_map, src_entry,({ if ((page_vaddr) > (src_entry)->links.start) _vm_map_clip_start (&(src_map)->hdr,(src_entry),(page_vaddr)); }) |
3996 | page_vaddr)({ if ((page_vaddr) > (src_entry)->links.start) _vm_map_clip_start (&(src_map)->hdr,(src_entry),(page_vaddr)); }); |
3997 | vm_map_clip_end(src_map, src_entry,({ if ((src_start + src_size) < (src_entry)->links.end) _vm_map_clip_end(&(src_map)->hdr,(src_entry),(src_start + src_size)); }) |
3998 | src_start + src_size)({ if ((src_start + src_size) < (src_entry)->links.end) _vm_map_clip_end(&(src_map)->hdr,(src_entry),(src_start + src_size)); }); |
3999 | |
4000 | assert(src_entry->wired_count > 0)({ if (!(src_entry->wired_count > 0)) Assert("src_entry->wired_count > 0" , "../vm/vm_map.c", 4000); }); |
4001 | src_entry->wired_count = 0; |
4002 | src_entry->user_wired_count = 0; |
4003 | unwire_end = src_entry->vme_endlinks.end; |
4004 | pmap_pageable(vm_map_pmap(src_map)((src_map)->pmap), |
4005 | page_vaddr, unwire_end, TRUE((boolean_t) 1)); |
4006 | } |
4007 | |
4008 | /* |
4009 | * Step 2: Unwire the page. |
4010 | * pmap_remove handles this for us. |
4011 | */ |
4012 | vm_object_lock(src_object); |
4013 | } |
4014 | |
4015 | /* |
4016 | * Don't need to remove the mapping; |
4017 | * vm_map_delete will handle it. |
4018 | * |
4019 | * Steal the page. Setting the wire count |
4020 | * to zero is vm_page_unwire without |
4021 | * activating the page. |
4022 | */ |
4023 | vm_page_lock_queues(); |
4024 | vm_page_remove(m); |
4025 | if (m->wire_count > 0) { |
4026 | m->wire_count = 0; |
4027 | vm_page_wire_count--; |
4028 | } else { |
4029 | VM_PAGE_QUEUES_REMOVE(m)({ if (m->active) { { register queue_entry_t next, prev; next = (m)->pageq.next; prev = (m)->pageq.prev; if ((&vm_page_queue_active ) == next) (&vm_page_queue_active)->prev = prev; else ( (vm_page_t)next)->pageq.prev = prev; if ((&vm_page_queue_active ) == prev) (&vm_page_queue_active)->next = next; else ( (vm_page_t)prev)->pageq.next = next; }; m->active = ((boolean_t ) 0); vm_page_active_count--; } if (m->inactive) { { register queue_entry_t next, prev; next = (m)->pageq.next; prev = ( m)->pageq.prev; if ((&vm_page_queue_inactive) == next) (&vm_page_queue_inactive)->prev = prev; else ((vm_page_t )next)->pageq.prev = prev; if ((&vm_page_queue_inactive ) == prev) (&vm_page_queue_inactive)->next = next; else ((vm_page_t)prev)->pageq.next = next; }; m->inactive = ((boolean_t) 0); vm_page_inactive_count--; } }); |
4030 | } |
4031 | vm_page_unlock_queues(); |
4032 | } |
4033 | else { |
4034 | /* |
4035 | * Have to copy this page. Have to |
4036 | * unlock the map while copying, |
4037 | * hence no further page stealing. |
4038 | * Hence just copy all the pages. |
4039 | * Unlock the map while copying; |
4040 | * This means no further page stealing. |
4041 | */ |
4042 | vm_object_unlock(src_object); |
4043 | vm_map_unlock(src_map)lock_done(&(src_map)->lock); |
4044 | |
4045 | vm_map_copy_steal_pages(copy); |
4046 | |
4047 | vm_map_lock(src_map)({ lock_write(&(src_map)->lock); (src_map)->timestamp ++; }); |
4048 | break; |
4049 | } |
4050 | |
4051 | vm_object_paging_end(src_object)({ ({ if (!((src_object)->paging_in_progress != 0)) Assert ("(src_object)->paging_in_progress != 0", "../vm/vm_map.c" , 4051); }); if (--(src_object)->paging_in_progress == 0) { ({ if ((src_object)->all_wanted & (1 << (2))) thread_wakeup_prim (((event_t)(((vm_offset_t) src_object) + (2))), ((boolean_t) 0 ), 0); (src_object)->all_wanted &= ~(1 << (2)); } ); } }); |
4052 | vm_object_unlock(src_object); |
4053 | } |
4054 | |
4055 | /* |
4056 | * If the source should be destroyed, do it now, since the |
4057 | * copy was successful. |
4058 | */ |
4059 | |
4060 | if (src_destroy) { |
4061 | (void) vm_map_delete(src_map, src_start, src_end); |
4062 | } |
4063 | } |
4064 | else { |
4065 | /* |
4066 | * !steal_pages leaves busy pages in the map. |
4067 | * This will cause src_destroy to hang. Use |
4068 | * a continuation to prevent this. |
4069 | */ |
4070 | if (src_destroy && !vm_map_copy_has_cont(copy)(((copy)->c_u.c_p.cont) != (kern_return_t (*)()) 0)) { |
4071 | cont_args = (vm_map_copyin_args_t) |
4072 | kalloc(sizeof(vm_map_copyin_args_data_t)); |
4073 | vm_map_reference(src_map); |
4074 | cont_args->map = src_map; |
4075 | cont_args->src_addr = (vm_offset_t) 0; |
4076 | cont_args->src_len = (vm_size_t) 0; |
4077 | cont_args->destroy_addr = src_start; |
4078 | cont_args->destroy_len = src_end - src_start; |
4079 | cont_args->steal_pages = FALSE((boolean_t) 0); |
4080 | |
4081 | copy->cpy_cont_argsc_u.c_p.cont_args = (char *) cont_args; |
4082 | copy->cpy_contc_u.c_p.cont = vm_map_copyin_page_list_cont; |
4083 | } |
4084 | |
4085 | } |
4086 | |
4087 | vm_map_unlock(src_map)lock_done(&(src_map)->lock); |
4088 | |
4089 | *copy_result = copy; |
4090 | return(result); |
4091 | |
4092 | error: |
4093 | vm_map_unlock(src_map)lock_done(&(src_map)->lock); |
4094 | vm_map_copy_discard(copy); |
4095 | return(result); |
4096 | } |
4097 | |
4098 | /* |
4099 | * vm_map_fork: |
4100 | * |
4101 | * Create and return a new map based on the old |
4102 | * map, according to the inheritance values on the |
4103 | * regions in that map. |
4104 | * |
4105 | * The source map must not be locked. |
4106 | */ |
4107 | vm_map_t vm_map_fork(old_map) |
4108 | vm_map_t old_map; |
4109 | { |
4110 | vm_map_t new_map; |
4111 | register |
4112 | vm_map_entry_t old_entry; |
4113 | register |
4114 | vm_map_entry_t new_entry; |
4115 | pmap_t new_pmap = pmap_create((vm_size_t) 0); |
4116 | vm_size_t new_size = 0; |
4117 | vm_size_t entry_size; |
4118 | register |
4119 | vm_object_t object; |
4120 | |
4121 | vm_map_lock(old_map)({ lock_write(&(old_map)->lock); (old_map)->timestamp ++; }); |
4122 | |
4123 | new_map = vm_map_create(new_pmap, |
4124 | old_map->min_offsethdr.links.start, |
4125 | old_map->max_offsethdr.links.end, |
4126 | old_map->hdr.entries_pageable); |
4127 | |
4128 | for ( |
4129 | old_entry = vm_map_first_entry(old_map)((old_map)->hdr.links.next); |
4130 | old_entry != vm_map_to_entry(old_map)((struct vm_map_entry *) &(old_map)->hdr.links); |
4131 | ) { |
4132 | if (old_entry->is_sub_map) |
4133 | panic("vm_map_fork: encountered a submap"); |
4134 | |
4135 | entry_size = (old_entry->vme_endlinks.end - old_entry->vme_startlinks.start); |
4136 | |
4137 | switch (old_entry->inheritance) { |
4138 | case VM_INHERIT_NONE((vm_inherit_t) 2): |
4139 | break; |
4140 | |
4141 | case VM_INHERIT_SHARE((vm_inherit_t) 0): |
4142 | /* |
4143 | * New sharing code. New map entry |
4144 | * references original object. Temporary |
4145 | * objects use asynchronous copy algorithm for |
4146 | * future copies. First make sure we have |
4147 | * the right object. If we need a shadow, |
4148 | * or someone else already has one, then |
4149 | * make a new shadow and share it. |
4150 | */ |
4151 | |
4152 | object = old_entry->object.vm_object; |
4153 | if (object == VM_OBJECT_NULL((vm_object_t) 0)) { |
4154 | object = vm_object_allocate( |
4155 | (vm_size_t)(old_entry->vme_endlinks.end - |
4156 | old_entry->vme_startlinks.start)); |
4157 | old_entry->offset = 0; |
4158 | old_entry->object.vm_object = object; |
4159 | assert(!old_entry->needs_copy)({ if (!(!old_entry->needs_copy)) Assert("!old_entry->needs_copy" , "../vm/vm_map.c", 4159); }); |
4160 | } |
4161 | else if (old_entry->needs_copy || object->shadowed || |
4162 | (object->temporary && !old_entry->is_shared && |
4163 | object->size > (vm_size_t)(old_entry->vme_endlinks.end - |
4164 | old_entry->vme_startlinks.start))) { |
4165 | |
4166 | assert(object->temporary)({ if (!(object->temporary)) Assert("object->temporary" , "../vm/vm_map.c", 4166); }); |
4167 | assert(!(object->shadowed && old_entry->is_shared))({ if (!(!(object->shadowed && old_entry->is_shared ))) Assert("!(object->shadowed && old_entry->is_shared)" , "../vm/vm_map.c", 4167); }); |
4168 | vm_object_shadow( |
4169 | &old_entry->object.vm_object, |
4170 | &old_entry->offset, |
4171 | (vm_size_t) (old_entry->vme_endlinks.end - |
4172 | old_entry->vme_startlinks.start)); |
4173 | |
4174 | /* |
4175 | * If we're making a shadow for other than |
4176 | * copy on write reasons, then we have |
4177 | * to remove write permission. |
4178 | */ |
4179 | |
4180 | if (!old_entry->needs_copy && |
4181 | (old_entry->protection & VM_PROT_WRITE((vm_prot_t) 0x02))) { |
4182 | pmap_protect(vm_map_pmap(old_map)((old_map)->pmap), |
4183 | old_entry->vme_startlinks.start, |
4184 | old_entry->vme_endlinks.end, |
4185 | old_entry->protection & |
4186 | ~VM_PROT_WRITE((vm_prot_t) 0x02)); |
4187 | } |
4188 | old_entry->needs_copy = FALSE((boolean_t) 0); |
4189 | object = old_entry->object.vm_object; |
4190 | } |
4191 | |
4192 | /* |
4193 | * Set use_shared_copy to indicate that |
4194 | * object must use shared (delayed) copy-on |
4195 | * write. This is ignored for permanent objects. |
4196 | * Bump the reference count for the new entry |
4197 | */ |
4198 | |
4199 | vm_object_lock(object); |
4200 | object->use_shared_copy = TRUE((boolean_t) 1); |
4201 | object->ref_count++; |
4202 | vm_object_unlock(object); |
4203 | |
4204 | new_entry = vm_map_entry_create(new_map)_vm_map_entry_create(&(new_map)->hdr); |
4205 | |
4206 | if (old_entry->projected_on != 0) { |
4207 | /* |
4208 | * If entry is projected buffer, clone the |
4209 | * entry exactly. |
4210 | */ |
4211 | |
4212 | vm_map_entry_copy_full(new_entry, old_entry)(*(new_entry) = *(old_entry)); |
4213 | |
4214 | } else { |
4215 | /* |
4216 | * Clone the entry, using object ref from above. |
4217 | * Mark both entries as shared. |
4218 | */ |
4219 | |
4220 | vm_map_entry_copy(new_entry, old_entry)({ *(new_entry) = *(old_entry); (new_entry)->is_shared = ( (boolean_t) 0); (new_entry)->needs_wakeup = ((boolean_t) 0 ); (new_entry)->in_transition = ((boolean_t) 0); (new_entry )->wired_count = 0; (new_entry)->user_wired_count = 0; } ); |
4221 | old_entry->is_shared = TRUE((boolean_t) 1); |
4222 | new_entry->is_shared = TRUE((boolean_t) 1); |
4223 | } |
4224 | |
4225 | /* |
4226 | * Insert the entry into the new map -- we |
4227 | * know we're inserting at the end of the new |
4228 | * map. |
4229 | */ |
4230 | |
4231 | vm_map_entry_link(({ (&(new_map)->hdr)->nentries++; (new_entry)->links .prev = (((new_map)->hdr.links.prev)); (new_entry)->links .next = (((new_map)->hdr.links.prev))->links.next; (new_entry )->links.prev->links.next = (new_entry)->links.next-> links.prev = (new_entry); ({ struct rbtree_node *___cur, *___prev ; int ___diff, ___index; ___prev = ((void *) 0); ___index = - 1; ___cur = (&(&(new_map)->hdr)->tree)->root ; while (___cur != ((void *) 0)) { ___diff = vm_map_entry_cmp_insert (&(new_entry)->tree_node, ___cur); ({ if (!(___diff != 0)) Assert("___diff != 0", "../vm/vm_map.c", 4234); }); ___prev = ___cur; ___index = rbtree_d2i(___diff); ___cur = ___cur-> children[___index]; } rbtree_insert_rebalance(&(&(new_map )->hdr)->tree, ___prev, ___index, &(new_entry)-> tree_node); }); }) |
4232 | new_map,({ (&(new_map)->hdr)->nentries++; (new_entry)->links .prev = (((new_map)->hdr.links.prev)); (new_entry)->links .next = (((new_map)->hdr.links.prev))->links.next; (new_entry )->links.prev->links.next = (new_entry)->links.next-> links.prev = (new_entry); ({ struct rbtree_node *___cur, *___prev ; int ___diff, ___index; ___prev = ((void *) 0); ___index = - 1; ___cur = (&(&(new_map)->hdr)->tree)->root ; while (___cur != ((void *) 0)) { ___diff = vm_map_entry_cmp_insert (&(new_entry)->tree_node, ___cur); ({ if (!(___diff != 0)) Assert("___diff != 0", "../vm/vm_map.c", 4234); }); ___prev = ___cur; ___index = rbtree_d2i(___diff); ___cur = ___cur-> children[___index]; } rbtree_insert_rebalance(&(&(new_map )->hdr)->tree, ___prev, ___index, &(new_entry)-> tree_node); }); }) |
4233 | vm_map_last_entry(new_map),({ (&(new_map)->hdr)->nentries++; (new_entry)->links .prev = (((new_map)->hdr.links.prev)); (new_entry)->links .next = (((new_map)->hdr.links.prev))->links.next; (new_entry )->links.prev->links.next = (new_entry)->links.next-> links.prev = (new_entry); ({ struct rbtree_node *___cur, *___prev ; int ___diff, ___index; ___prev = ((void *) 0); ___index = - 1; ___cur = (&(&(new_map)->hdr)->tree)->root ; while (___cur != ((void *) 0)) { ___diff = vm_map_entry_cmp_insert (&(new_entry)->tree_node, ___cur); ({ if (!(___diff != 0)) Assert("___diff != 0", "../vm/vm_map.c", 4234); }); ___prev = ___cur; ___index = rbtree_d2i(___diff); ___cur = ___cur-> children[___index]; } rbtree_insert_rebalance(&(&(new_map )->hdr)->tree, ___prev, ___index, &(new_entry)-> tree_node); }); }) |
4234 | new_entry)({ (&(new_map)->hdr)->nentries++; (new_entry)->links .prev = (((new_map)->hdr.links.prev)); (new_entry)->links .next = (((new_map)->hdr.links.prev))->links.next; (new_entry )->links.prev->links.next = (new_entry)->links.next-> links.prev = (new_entry); ({ struct rbtree_node *___cur, *___prev ; int ___diff, ___index; ___prev = ((void *) 0); ___index = - 1; ___cur = (&(&(new_map)->hdr)->tree)->root ; while (___cur != ((void *) 0)) { ___diff = vm_map_entry_cmp_insert (&(new_entry)->tree_node, ___cur); ({ if (!(___diff != 0)) Assert("___diff != 0", "../vm/vm_map.c", 4234); }); ___prev = ___cur; ___index = rbtree_d2i(___diff); ___cur = ___cur-> children[___index]; } rbtree_insert_rebalance(&(&(new_map )->hdr)->tree, ___prev, ___index, &(new_entry)-> tree_node); }); }); |
4235 | |
4236 | /* |
4237 | * Update the physical map |
4238 | */ |
4239 | |
4240 | pmap_copy(new_map->pmap, old_map->pmap, |
4241 | new_entry->vme_start, |
4242 | entry_size, |
4243 | old_entry->vme_start); |
4244 | |
4245 | new_size += entry_size; |
4246 | break; |
4247 | |
4248 | case VM_INHERIT_COPY((vm_inherit_t) 1): |
4249 | if (old_entry->wired_count == 0) { |
4250 | boolean_t src_needs_copy; |
4251 | boolean_t new_entry_needs_copy; |
4252 | |
4253 | new_entry = vm_map_entry_create(new_map)_vm_map_entry_create(&(new_map)->hdr); |
4254 | vm_map_entry_copy(new_entry, old_entry)({ *(new_entry) = *(old_entry); (new_entry)->is_shared = ( (boolean_t) 0); (new_entry)->needs_wakeup = ((boolean_t) 0 ); (new_entry)->in_transition = ((boolean_t) 0); (new_entry )->wired_count = 0; (new_entry)->user_wired_count = 0; } ); |
4255 | |
4256 | if (vm_object_copy_temporary( |
4257 | &new_entry->object.vm_object, |
4258 | &new_entry->offset, |
4259 | &src_needs_copy, |
4260 | &new_entry_needs_copy)) { |
4261 | |
4262 | /* |
4263 | * Handle copy-on-write obligations |
4264 | */ |
4265 | |
4266 | if (src_needs_copy && !old_entry->needs_copy) { |
4267 | vm_object_pmap_protect( |
4268 | old_entry->object.vm_object, |
4269 | old_entry->offset, |
4270 | entry_size, |
4271 | (old_entry->is_shared ? |
4272 | PMAP_NULL((pmap_t) 0) : |
4273 | old_map->pmap), |
4274 | old_entry->vme_startlinks.start, |
4275 | old_entry->protection & |
4276 | ~VM_PROT_WRITE((vm_prot_t) 0x02)); |
4277 | |
4278 | old_entry->needs_copy = TRUE((boolean_t) 1); |
4279 | } |
4280 | |
4281 | new_entry->needs_copy = new_entry_needs_copy; |
4282 | |
4283 | /* |
4284 | * Insert the entry at the end |
4285 | * of the map. |
4286 | */ |
4287 | |
4288 | vm_map_entry_link(new_map,({ (&(new_map)->hdr)->nentries++; (new_entry)->links .prev = (((new_map)->hdr.links.prev)); (new_entry)->links .next = (((new_map)->hdr.links.prev))->links.next; (new_entry )->links.prev->links.next = (new_entry)->links.next-> links.prev = (new_entry); ({ struct rbtree_node *___cur, *___prev ; int ___diff, ___index; ___prev = ((void *) 0); ___index = - 1; ___cur = (&(&(new_map)->hdr)->tree)->root ; while (___cur != ((void *) 0)) { ___diff = vm_map_entry_cmp_insert (&(new_entry)->tree_node, ___cur); ({ if (!(___diff != 0)) Assert("___diff != 0", "../vm/vm_map.c", 4290); }); ___prev = ___cur; ___index = rbtree_d2i(___diff); ___cur = ___cur-> children[___index]; } rbtree_insert_rebalance(&(&(new_map )->hdr)->tree, ___prev, ___index, &(new_entry)-> tree_node); }); }) |
4289 | vm_map_last_entry(new_map),({ (&(new_map)->hdr)->nentries++; (new_entry)->links .prev = (((new_map)->hdr.links.prev)); (new_entry)->links .next = (((new_map)->hdr.links.prev))->links.next; (new_entry )->links.prev->links.next = (new_entry)->links.next-> links.prev = (new_entry); ({ struct rbtree_node *___cur, *___prev ; int ___diff, ___index; ___prev = ((void *) 0); ___index = - 1; ___cur = (&(&(new_map)->hdr)->tree)->root ; while (___cur != ((void *) 0)) { ___diff = vm_map_entry_cmp_insert (&(new_entry)->tree_node, ___cur); ({ if (!(___diff != 0)) Assert("___diff != 0", "../vm/vm_map.c", 4290); }); ___prev = ___cur; ___index = rbtree_d2i(___diff); ___cur = ___cur-> children[___index]; } rbtree_insert_rebalance(&(&(new_map )->hdr)->tree, ___prev, ___index, &(new_entry)-> tree_node); }); }) |
4290 | new_entry)({ (&(new_map)->hdr)->nentries++; (new_entry)->links .prev = (((new_map)->hdr.links.prev)); (new_entry)->links .next = (((new_map)->hdr.links.prev))->links.next; (new_entry )->links.prev->links.next = (new_entry)->links.next-> links.prev = (new_entry); ({ struct rbtree_node *___cur, *___prev ; int ___diff, ___index; ___prev = ((void *) 0); ___index = - 1; ___cur = (&(&(new_map)->hdr)->tree)->root ; while (___cur != ((void *) 0)) { ___diff = vm_map_entry_cmp_insert (&(new_entry)->tree_node, ___cur); ({ if (!(___diff != 0)) Assert("___diff != 0", "../vm/vm_map.c", 4290); }); ___prev = ___cur; ___index = rbtree_d2i(___diff); ___cur = ___cur-> children[___index]; } rbtree_insert_rebalance(&(&(new_map )->hdr)->tree, ___prev, ___index, &(new_entry)-> tree_node); }); }); |
4291 | |
4292 | |
4293 | new_size += entry_size; |
4294 | break; |
4295 | } |
4296 | |
4297 | vm_map_entry_dispose(new_map, new_entry)_vm_map_entry_dispose(&(new_map)->hdr, (new_entry)); |
4298 | } |
4299 | |
4300 | /* INNER BLOCK (copy cannot be optimized) */ { |
4301 | |
4302 | vm_offset_t start = old_entry->vme_startlinks.start; |
4303 | vm_map_copy_t copy; |
4304 | vm_map_entry_t last = vm_map_last_entry(new_map)((new_map)->hdr.links.prev); |
4305 | |
4306 | vm_map_unlock(old_map)lock_done(&(old_map)->lock); |
4307 | if (vm_map_copyin(old_map, |
4308 | start, |
4309 | entry_size, |
4310 | FALSE((boolean_t) 0), |
4311 | ©) |
4312 | != KERN_SUCCESS0) { |
4313 | vm_map_lock(old_map)({ lock_write(&(old_map)->lock); (old_map)->timestamp ++; }); |
4314 | if (!vm_map_lookup_entry(old_map, start, &last)) |
4315 | last = last->vme_nextlinks.next; |
4316 | old_entry = last; |
4317 | /* |
4318 | * For some error returns, want to |
4319 | * skip to the next element. |
4320 | */ |
4321 | |
4322 | continue; |
4323 | } |
4324 | |
4325 | /* |
4326 | * Insert the copy into the new map |
4327 | */ |
4328 | |
4329 | vm_map_copy_insert(new_map, last, copy)({ struct rbtree_node *node, *tmp; for (node = rbtree_postwalk_deepest (&(copy)->c_u.hdr.tree), tmp = rbtree_postwalk_unlink( node); node != ((void *) 0); node = tmp, tmp = rbtree_postwalk_unlink (node)) ({ struct rbtree_node *___cur, *___prev; int ___diff, ___index; ___prev = ((void *) 0); ___index = -1; ___cur = (& (new_map)->hdr.tree)->root; while (___cur != ((void *) 0 )) { ___diff = vm_map_entry_cmp_insert(node, ___cur); ({ if ( !(___diff != 0)) Assert("___diff != 0", "../vm/vm_map.c", 4329 ); }); ___prev = ___cur; ___index = rbtree_d2i(___diff); ___cur = ___cur->children[___index]; } rbtree_insert_rebalance(& (new_map)->hdr.tree, ___prev, ___index, node); }); (((last )->links.next)->links.prev = ((copy)->c_u.hdr.links. prev)) ->links.next = ((last)->links.next); ((last)-> links.next = ((copy)->c_u.hdr.links.next)) ->links.prev = (last); (new_map)->hdr.nentries += (copy)->c_u.hdr.nentries ; kmem_cache_free(&vm_map_copy_cache, (vm_offset_t) copy) ; }); |
4330 | new_size += entry_size; |
4331 | |
4332 | /* |
4333 | * Pick up the traversal at the end of |
4334 | * the copied region. |
4335 | */ |
4336 | |
4337 | vm_map_lock(old_map)({ lock_write(&(old_map)->lock); (old_map)->timestamp ++; }); |
4338 | start += entry_size; |
4339 | if (!vm_map_lookup_entry(old_map, start, &last)) |
4340 | last = last->vme_nextlinks.next; |
4341 | else |
4342 | vm_map_clip_start(old_map, last, start)({ if ((start) > (last)->links.start) _vm_map_clip_start (&(old_map)->hdr,(last),(start)); }); |
4343 | old_entry = last; |
4344 | |
4345 | continue; |
4346 | /* INNER BLOCK (copy cannot be optimized) */ } |
4347 | } |
4348 | old_entry = old_entry->vme_nextlinks.next; |
4349 | } |
4350 | |
4351 | new_map->size = new_size; |
4352 | vm_map_unlock(old_map)lock_done(&(old_map)->lock); |
4353 | |
4354 | return(new_map); |
4355 | } |
4356 | |
4357 | /* |
4358 | * vm_map_lookup: |
4359 | * |
4360 | * Finds the VM object, offset, and |
4361 | * protection for a given virtual address in the |
4362 | * specified map, assuming a page fault of the |
4363 | * type specified. |
4364 | * |
4365 | * Returns the (object, offset, protection) for |
4366 | * this address, whether it is wired down, and whether |
4367 | * this map has the only reference to the data in question. |
4368 | * In order to later verify this lookup, a "version" |
4369 | * is returned. |
4370 | * |
4371 | * The map should not be locked; it will not be |
4372 | * locked on exit. In order to guarantee the |
4373 | * existence of the returned object, it is returned |
4374 | * locked. |
4375 | * |
4376 | * If a lookup is requested with "write protection" |
4377 | * specified, the map may be changed to perform virtual |
4378 | * copying operations, although the data referenced will |
4379 | * remain the same. |
4380 | */ |
4381 | kern_return_t vm_map_lookup(var_map, vaddr, fault_type, out_version, |
4382 | object, offset, out_prot, wired) |
4383 | vm_map_t *var_map; /* IN/OUT */ |
4384 | register vm_offset_t vaddr; |
4385 | register vm_prot_t fault_type; |
4386 | |
4387 | vm_map_version_t *out_version; /* OUT */ |
4388 | vm_object_t *object; /* OUT */ |
4389 | vm_offset_t *offset; /* OUT */ |
4390 | vm_prot_t *out_prot; /* OUT */ |
4391 | boolean_t *wired; /* OUT */ |
4392 | { |
4393 | register vm_map_entry_t entry; |
4394 | register vm_map_t map = *var_map; |
4395 | register vm_prot_t prot; |
4396 | |
4397 | RetryLookup: ; |
4398 | |
4399 | /* |
4400 | * Lookup the faulting address. |
4401 | */ |
4402 | |
4403 | vm_map_lock_read(map)lock_read(&(map)->lock); |
4404 | |
4405 | #define RETURN(why) \ |
4406 | { \ |
4407 | vm_map_unlock_read(map)lock_done(&(map)->lock); \ |
4408 | return(why); \ |
4409 | } |
4410 | |
4411 | /* |
4412 | * If the map has an interesting hint, try it before calling |
4413 | * full blown lookup routine. |
4414 | */ |
4415 | |
4416 | simple_lock(&map->hint_lock); |
4417 | entry = map->hint; |
4418 | simple_unlock(&map->hint_lock); |
4419 | |
4420 | if ((entry == vm_map_to_entry(map)((struct vm_map_entry *) &(map)->hdr.links)) || |
4421 | (vaddr < entry->vme_startlinks.start) || (vaddr >= entry->vme_endlinks.end)) { |
4422 | vm_map_entry_t tmp_entry; |
4423 | |
4424 | /* |
4425 | * Entry was either not a valid hint, or the vaddr |
4426 | * was not contained in the entry, so do a full lookup. |
4427 | */ |
4428 | if (!vm_map_lookup_entry(map, vaddr, &tmp_entry)) |
4429 | RETURN(KERN_INVALID_ADDRESS1); |
4430 | |
4431 | entry = tmp_entry; |
4432 | } |
4433 | |
4434 | /* |
4435 | * Handle submaps. |
4436 | */ |
4437 | |
4438 | if (entry->is_sub_map) { |
4439 | vm_map_t old_map = map; |
4440 | |
4441 | *var_map = map = entry->object.sub_map; |
4442 | vm_map_unlock_read(old_map)lock_done(&(old_map)->lock); |
4443 | goto RetryLookup; |
4444 | } |
4445 | |
4446 | /* |
4447 | * Check whether this task is allowed to have |
4448 | * this page. |
4449 | */ |
4450 | |
4451 | prot = entry->protection; |
4452 | |
4453 | if ((fault_type & (prot)) != fault_type) { |
4454 | if ((prot & VM_PROT_NOTIFY((vm_prot_t) 0x10)) && (fault_type & VM_PROT_WRITE((vm_prot_t) 0x02))) { |
4455 | RETURN(KERN_WRITE_PROTECTION_FAILURE24); |
4456 | } else { |
4457 | RETURN(KERN_PROTECTION_FAILURE2); |
4458 | } |
4459 | } |
4460 | |
4461 | /* |
4462 | * If this page is not pageable, we have to get |
4463 | * it for all possible accesses. |
4464 | */ |
4465 | |
4466 | if ((*wired = (entry->wired_count != 0))) |
4467 | prot = fault_type = entry->protection; |
4468 | |
4469 | /* |
4470 | * If the entry was copy-on-write, we either ... |
4471 | */ |
4472 | |
4473 | if (entry->needs_copy) { |
4474 | /* |
4475 | * If we want to write the page, we may as well |
4476 | * handle that now since we've got the map locked. |
4477 | * |
4478 | * If we don't need to write the page, we just |
4479 | * demote the permissions allowed. |
4480 | */ |
4481 | |
4482 | if (fault_type & VM_PROT_WRITE((vm_prot_t) 0x02)) { |
4483 | /* |
4484 | * Make a new object, and place it in the |
4485 | * object chain. Note that no new references |
4486 | * have appeared -- one just moved from the |
4487 | * map to the new object. |
4488 | */ |
4489 | |
4490 | if (vm_map_lock_read_to_write(map)(lock_read_to_write(&(map)->lock) || (((map)->timestamp ++), 0))) { |
4491 | goto RetryLookup; |
4492 | } |
4493 | map->timestamp++; |
4494 | |
4495 | vm_object_shadow( |
4496 | &entry->object.vm_object, |
4497 | &entry->offset, |
4498 | (vm_size_t) (entry->vme_endlinks.end - entry->vme_startlinks.start)); |
4499 | |
4500 | entry->needs_copy = FALSE((boolean_t) 0); |
4501 | |
4502 | vm_map_lock_write_to_read(map)lock_write_to_read(&(map)->lock); |
4503 | } |
4504 | else { |
4505 | /* |
4506 | * We're attempting to read a copy-on-write |
4507 | * page -- don't allow writes. |
4508 | */ |
4509 | |
4510 | prot &= (~VM_PROT_WRITE((vm_prot_t) 0x02)); |
4511 | } |
4512 | } |
4513 | |
4514 | /* |
4515 | * Create an object if necessary. |
4516 | */ |
4517 | if (entry->object.vm_object == VM_OBJECT_NULL((vm_object_t) 0)) { |
4518 | |
4519 | if (vm_map_lock_read_to_write(map)(lock_read_to_write(&(map)->lock) || (((map)->timestamp ++), 0))) { |
4520 | goto RetryLookup; |
4521 | } |
4522 | |
4523 | entry->object.vm_object = vm_object_allocate( |
4524 | (vm_size_t)(entry->vme_endlinks.end - entry->vme_startlinks.start)); |
4525 | entry->offset = 0; |
4526 | vm_map_lock_write_to_read(map)lock_write_to_read(&(map)->lock); |
4527 | } |
4528 | |
4529 | /* |
4530 | * Return the object/offset from this entry. If the entry |
4531 | * was copy-on-write or empty, it has been fixed up. Also |
4532 | * return the protection. |
4533 | */ |
4534 | |
4535 | *offset = (vaddr - entry->vme_startlinks.start) + entry->offset; |
4536 | *object = entry->object.vm_object; |
4537 | *out_prot = prot; |
4538 | |
4539 | /* |
4540 | * Lock the object to prevent it from disappearing |
4541 | */ |
4542 | |
4543 | vm_object_lock(*object); |
4544 | |
4545 | /* |
4546 | * Save the version number and unlock the map. |
4547 | */ |
4548 | |
4549 | out_version->main_timestamp = map->timestamp; |
4550 | |
4551 | RETURN(KERN_SUCCESS0); |
4552 | |
4553 | #undef RETURN |
4554 | } |
4555 | |
4556 | /* |
4557 | * vm_map_verify: |
4558 | * |
4559 | * Verifies that the map in question has not changed |
4560 | * since the given version. If successful, the map |
4561 | * will not change until vm_map_verify_done() is called. |
4562 | */ |
4563 | boolean_t vm_map_verify(map, version) |
4564 | register |
4565 | vm_map_t map; |
4566 | register |
4567 | vm_map_version_t *version; /* REF */ |
4568 | { |
4569 | boolean_t result; |
4570 | |
4571 | vm_map_lock_read(map)lock_read(&(map)->lock); |
4572 | result = (map->timestamp == version->main_timestamp); |
4573 | |
4574 | if (!result) |
4575 | vm_map_unlock_read(map)lock_done(&(map)->lock); |
4576 | |
4577 | return(result); |
4578 | } |
4579 | |
4580 | /* |
4581 | * vm_map_verify_done: |
4582 | * |
4583 | * Releases locks acquired by a vm_map_verify. |
4584 | * |
4585 | * This is now a macro in vm/vm_map.h. It does a |
4586 | * vm_map_unlock_read on the map. |
4587 | */ |
4588 | |
4589 | /* |
4590 | * vm_region: |
4591 | * |
4592 | * User call to obtain information about a region in |
4593 | * a task's address map. |
4594 | */ |
4595 | |
4596 | kern_return_t vm_region(map, address, size, |
4597 | protection, max_protection, |
4598 | inheritance, is_shared, |
4599 | object_name, offset_in_object) |
4600 | vm_map_t map; |
4601 | vm_offset_t *address; /* IN/OUT */ |
4602 | vm_size_t *size; /* OUT */ |
4603 | vm_prot_t *protection; /* OUT */ |
4604 | vm_prot_t *max_protection; /* OUT */ |
4605 | vm_inherit_t *inheritance; /* OUT */ |
4606 | boolean_t *is_shared; /* OUT */ |
4607 | ipc_port_t *object_name; /* OUT */ |
4608 | vm_offset_t *offset_in_object; /* OUT */ |
4609 | { |
4610 | vm_map_entry_t tmp_entry; |
4611 | register |
4612 | vm_map_entry_t entry; |
4613 | register |
4614 | vm_offset_t tmp_offset; |
4615 | vm_offset_t start; |
4616 | |
4617 | if (map == VM_MAP_NULL((vm_map_t) 0)) |
4618 | return(KERN_INVALID_ARGUMENT4); |
4619 | |
4620 | start = *address; |
4621 | |
4622 | vm_map_lock_read(map)lock_read(&(map)->lock); |
4623 | if (!vm_map_lookup_entry(map, start, &tmp_entry)) { |
4624 | if ((entry = tmp_entry->vme_nextlinks.next) == vm_map_to_entry(map)((struct vm_map_entry *) &(map)->hdr.links)) { |
4625 | vm_map_unlock_read(map)lock_done(&(map)->lock); |
4626 | return(KERN_NO_SPACE3); |
4627 | } |
4628 | } else { |
4629 | entry = tmp_entry; |
4630 | } |
4631 | |
4632 | start = entry->vme_startlinks.start; |
4633 | *protection = entry->protection; |
4634 | *max_protection = entry->max_protection; |
4635 | *inheritance = entry->inheritance; |
4636 | *address = start; |
4637 | *size = (entry->vme_endlinks.end - start); |
4638 | |
4639 | tmp_offset = entry->offset; |
4640 | |
4641 | |
4642 | if (entry->is_sub_map) { |
4643 | *is_shared = FALSE((boolean_t) 0); |
4644 | *object_name = IP_NULL((ipc_port_t) ((ipc_object_t) 0)); |
4645 | *offset_in_object = tmp_offset; |
4646 | } else { |
4647 | *is_shared = entry->is_shared; |
4648 | *object_name = vm_object_name(entry->object.vm_object); |
4649 | *offset_in_object = tmp_offset; |
4650 | } |
4651 | |
4652 | vm_map_unlock_read(map)lock_done(&(map)->lock); |
4653 | |
4654 | return(KERN_SUCCESS0); |
4655 | } |
4656 | |
4657 | /* |
4658 | * Routine: vm_map_simplify |
4659 | * |
4660 | * Description: |
4661 | * Attempt to simplify the map representation in |
4662 | * the vicinity of the given starting address. |
4663 | * Note: |
4664 | * This routine is intended primarily to keep the |
4665 | * kernel maps more compact -- they generally don't |
4666 | * benefit from the "expand a map entry" technology |
4667 | * at allocation time because the adjacent entry |
4668 | * is often wired down. |
4669 | */ |
4670 | void vm_map_simplify(map, start) |
4671 | vm_map_t map; |
4672 | vm_offset_t start; |
4673 | { |
4674 | vm_map_entry_t this_entry; |
4675 | vm_map_entry_t prev_entry; |
4676 | |
4677 | vm_map_lock(map)({ lock_write(&(map)->lock); (map)->timestamp++; }); |
4678 | if ( |
4679 | (vm_map_lookup_entry(map, start, &this_entry)) && |
4680 | ((prev_entry = this_entry->vme_prevlinks.prev) != vm_map_to_entry(map)((struct vm_map_entry *) &(map)->hdr.links)) && |
4681 | |
4682 | (prev_entry->vme_endlinks.end == start) && |
4683 | |
4684 | (prev_entry->is_shared == FALSE((boolean_t) 0)) && |
4685 | (prev_entry->is_sub_map == FALSE((boolean_t) 0)) && |
4686 | |
4687 | (this_entry->is_shared == FALSE((boolean_t) 0)) && |
4688 | (this_entry->is_sub_map == FALSE((boolean_t) 0)) && |
4689 | |
4690 | (prev_entry->inheritance == this_entry->inheritance) && |
4691 | (prev_entry->protection == this_entry->protection) && |
4692 | (prev_entry->max_protection == this_entry->max_protection) && |
4693 | (prev_entry->wired_count == this_entry->wired_count) && |
4694 | (prev_entry->user_wired_count == this_entry->user_wired_count) && |
4695 | |
4696 | (prev_entry->needs_copy == this_entry->needs_copy) && |
4697 | |
4698 | (prev_entry->object.vm_object == this_entry->object.vm_object) && |
4699 | ((prev_entry->offset + (prev_entry->vme_endlinks.end - prev_entry->vme_startlinks.start)) |
4700 | == this_entry->offset) && |
4701 | (prev_entry->projected_on == 0) && |
4702 | (this_entry->projected_on == 0) |
4703 | ) { |
4704 | if (map->first_free == this_entry) |
4705 | map->first_free = prev_entry; |
4706 | |
4707 | SAVE_HINT(map, prev_entry); (map)->hint = (prev_entry); ;; |
4708 | vm_map_entry_unlink(map, this_entry)({ (&(map)->hdr)->nentries--; (this_entry)->links .next->links.prev = (this_entry)->links.prev; (this_entry )->links.prev->links.next = (this_entry)->links.next ; rbtree_remove(&(&(map)->hdr)->tree, &(this_entry )->tree_node); }); |
4709 | prev_entry->vme_endlinks.end = this_entry->vme_endlinks.end; |
4710 | vm_object_deallocate(this_entry->object.vm_object); |
4711 | vm_map_entry_dispose(map, this_entry)_vm_map_entry_dispose(&(map)->hdr, (this_entry)); |
4712 | } |
4713 | vm_map_unlock(map)lock_done(&(map)->lock); |
4714 | } |
4715 | |
4716 | |
4717 | /* |
4718 | * Routine: vm_map_machine_attribute |
4719 | * Purpose: |
4720 | * Provide machine-specific attributes to mappings, |
4721 | * such as cachability etc. for machines that provide |
4722 | * them. NUMA architectures and machines with big/strange |
4723 | * caches will use this. |
4724 | * Note: |
4725 | * Responsibilities for locking and checking are handled here, |
4726 | * everything else in the pmap module. If any non-volatile |
4727 | * information must be kept, the pmap module should handle |
4728 | * it itself. [This assumes that attributes do not |
4729 | * need to be inherited, which seems ok to me] |
4730 | */ |
4731 | kern_return_t vm_map_machine_attribute(map, address, size, attribute, value) |
4732 | vm_map_t map; |
4733 | vm_offset_t address; |
4734 | vm_size_t size; |
4735 | vm_machine_attribute_t attribute; |
4736 | vm_machine_attribute_val_t* value; /* IN/OUT */ |
4737 | { |
4738 | kern_return_t ret; |
4739 | |
4740 | if (address < vm_map_min(map)((map)->hdr.links.start) || |
4741 | (address + size) > vm_map_max(map)((map)->hdr.links.end)) |
4742 | return KERN_INVALID_ARGUMENT4; |
4743 | |
4744 | vm_map_lock(map)({ lock_write(&(map)->lock); (map)->timestamp++; }); |
4745 | |
4746 | ret = pmap_attribute(map->pmap, address, size, attribute, value)(1); |
4747 | |
4748 | vm_map_unlock(map)lock_done(&(map)->lock); |
4749 | |
4750 | return ret; |
4751 | } |
4752 | |
4753 | |
4754 | #if MACH_KDB0 |
4755 | |
4756 | #define printf kdbprintf |
4757 | |
4758 | /* |
4759 | * vm_map_print: [ debug ] |
4760 | */ |
4761 | void vm_map_print(map) |
4762 | register vm_map_t map; |
4763 | { |
4764 | register vm_map_entry_t entry; |
4765 | |
4766 | iprintf("Task map 0x%X: pmap=0x%X,", |
4767 | (vm_offset_t) map, (vm_offset_t) (map->pmap)); |
4768 | printf("ref=%d,nentries=%d,", map->ref_count, map->hdr.nentries); |
4769 | printf("version=%d\n", map->timestamp); |
4770 | indent += 2; |
4771 | for (entry = vm_map_first_entry(map)((map)->hdr.links.next); |
4772 | entry != vm_map_to_entry(map)((struct vm_map_entry *) &(map)->hdr.links); |
4773 | entry = entry->vme_nextlinks.next) { |
4774 | static char *inheritance_name[3] = { "share", "copy", "none"}; |
4775 | |
4776 | iprintf("map entry 0x%X: ", (vm_offset_t) entry); |
4777 | printf("start=0x%X, end=0x%X, ", |
4778 | (vm_offset_t) entry->vme_startlinks.start, (vm_offset_t) entry->vme_endlinks.end); |
4779 | printf("prot=%X/%X/%s, ", |
4780 | entry->protection, |
4781 | entry->max_protection, |
4782 | inheritance_name[entry->inheritance]); |
4783 | if (entry->wired_count != 0) { |
4784 | printf("wired("); |
4785 | if (entry->user_wired_count != 0) |
4786 | printf("u"); |
4787 | if (entry->wired_count > |
4788 | ((entry->user_wired_count == 0) ? 0 : 1)) |
4789 | printf("k"); |
4790 | printf(") "); |
4791 | } |
4792 | if (entry->in_transition) { |
4793 | printf("in transition"); |
4794 | if (entry->needs_wakeup) |
4795 | printf("(wake request)"); |
4796 | printf(", "); |
4797 | } |
4798 | if (entry->is_sub_map) { |
4799 | printf("submap=0x%X, offset=0x%X\n", |
4800 | (vm_offset_t) entry->object.sub_map, |
4801 | (vm_offset_t) entry->offset); |
4802 | } else { |
4803 | printf("object=0x%X, offset=0x%X", |
4804 | (vm_offset_t) entry->object.vm_object, |
4805 | (vm_offset_t) entry->offset); |
4806 | if (entry->is_shared) |
4807 | printf(", shared"); |
4808 | if (entry->needs_copy) |
4809 | printf(", copy needed"); |
4810 | printf("\n"); |
4811 | |
4812 | if ((entry->vme_prevlinks.prev == vm_map_to_entry(map)((struct vm_map_entry *) &(map)->hdr.links)) || |
4813 | (entry->vme_prevlinks.prev->object.vm_object != entry->object.vm_object)) { |
4814 | indent += 2; |
4815 | vm_object_print(entry->object.vm_object); |
4816 | indent -= 2; |
4817 | } |
4818 | } |
4819 | } |
4820 | indent -= 2; |
4821 | } |
4822 | |
4823 | /* |
4824 | * Routine: vm_map_copy_print |
4825 | * Purpose: |
4826 | * Pretty-print a copy object for ddb. |
4827 | */ |
4828 | |
4829 | void vm_map_copy_print(copy) |
4830 | vm_map_copy_t copy; |
4831 | { |
4832 | int i, npages; |
4833 | |
4834 | printf("copy object 0x%x\n", copy); |
4835 | |
4836 | indent += 2; |
4837 | |
4838 | iprintf("type=%d", copy->type); |
4839 | switch (copy->type) { |
4840 | case VM_MAP_COPY_ENTRY_LIST1: |
4841 | printf("[entry_list]"); |
4842 | break; |
4843 | |
4844 | case VM_MAP_COPY_OBJECT2: |
4845 | printf("[object]"); |
4846 | break; |
4847 | |
4848 | case VM_MAP_COPY_PAGE_LIST3: |
4849 | printf("[page_list]"); |
4850 | break; |
4851 | |
4852 | default: |
4853 | printf("[bad type]"); |
4854 | break; |
4855 | } |
4856 | printf(", offset=0x%x", copy->offset); |
4857 | printf(", size=0x%x\n", copy->size); |
4858 | |
4859 | switch (copy->type) { |
4860 | case VM_MAP_COPY_ENTRY_LIST1: |
4861 | /* XXX add stuff here */ |
4862 | break; |
4863 | |
4864 | case VM_MAP_COPY_OBJECT2: |
4865 | iprintf("object=0x%x\n", copy->cpy_objectc_u.c_o.object); |
4866 | break; |
4867 | |
4868 | case VM_MAP_COPY_PAGE_LIST3: |
4869 | iprintf("npages=%d", copy->cpy_npagesc_u.c_p.npages); |
4870 | printf(", cont=%x", copy->cpy_contc_u.c_p.cont); |
4871 | printf(", cont_args=%x\n", copy->cpy_cont_argsc_u.c_p.cont_args); |
4872 | if (copy->cpy_npagesc_u.c_p.npages < 0) { |
4873 | npages = 0; |
4874 | } else if (copy->cpy_npagesc_u.c_p.npages > VM_MAP_COPY_PAGE_LIST_MAX64) { |
4875 | npages = VM_MAP_COPY_PAGE_LIST_MAX64; |
4876 | } else { |
4877 | npages = copy->cpy_npagesc_u.c_p.npages; |
4878 | } |
4879 | iprintf("copy->cpy_page_list[0..%d] = {", npages); |
4880 | for (i = 0; i < npages - 1; i++) { |
4881 | printf("0x%x, ", copy->cpy_page_listc_u.c_p.page_list[i]); |
4882 | } |
4883 | if (npages > 0) { |
4884 | printf("0x%x", copy->cpy_page_listc_u.c_p.page_list[npages - 1]); |
4885 | } |
4886 | printf("}\n"); |
4887 | break; |
4888 | } |
4889 | |
4890 | indent -=2; |
4891 | } |
4892 | #endif /* MACH_KDB */ |