File: | obj/../kern/thread.c |
Location: | line 1655, column 2 |
Description: | Function call argument is an uninitialized value |
1 | /* | |||
2 | * Mach Operating System | |||
3 | * Copyright (c) 1994-1987 Carnegie Mellon University | |||
4 | * All Rights Reserved. | |||
5 | * | |||
6 | * Permission to use, copy, modify and distribute this software and its | |||
7 | * documentation is hereby granted, provided that both the copyright | |||
8 | * notice and this permission notice appear in all copies of the | |||
9 | * software, derivative works or modified versions, and any portions | |||
10 | * thereof, and that both notices appear in supporting documentation. | |||
11 | * | |||
12 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" | |||
13 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR | |||
14 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. | |||
15 | * | |||
16 | * Carnegie Mellon requests users of this software to return to | |||
17 | * | |||
18 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU | |||
19 | * School of Computer Science | |||
20 | * Carnegie Mellon University | |||
21 | * Pittsburgh PA 15213-3890 | |||
22 | * | |||
23 | * any improvements or extensions that they make and grant Carnegie Mellon | |||
24 | * the rights to redistribute these changes. | |||
25 | */ | |||
26 | /* | |||
27 | * File: kern/thread.c | |||
28 | * Author: Avadis Tevanian, Jr., Michael Wayne Young, David Golub | |||
29 | * Date: 1986 | |||
30 | * | |||
31 | * Thread management primitives implementation. | |||
32 | */ | |||
33 | ||||
34 | #include <kern/printf.h> | |||
35 | #include <mach/std_types.h> | |||
36 | #include <mach/policy.h> | |||
37 | #include <mach/thread_info.h> | |||
38 | #include <mach/thread_special_ports.h> | |||
39 | #include <mach/thread_status.h> | |||
40 | #include <mach/time_value.h> | |||
41 | #include <machine/vm_param.h> | |||
42 | #include <kern/ast.h> | |||
43 | #include <kern/counters.h> | |||
44 | #include <kern/debug.h> | |||
45 | #include <kern/eventcount.h> | |||
46 | #include <kern/ipc_mig.h> | |||
47 | #include <kern/ipc_tt.h> | |||
48 | #include <kern/processor.h> | |||
49 | #include <kern/queue.h> | |||
50 | #include <kern/sched.h> | |||
51 | #include <kern/sched_prim.h> | |||
52 | #include <kern/syscall_subr.h> | |||
53 | #include <kern/thread.h> | |||
54 | #include <kern/thread_swap.h> | |||
55 | #include <kern/host.h> | |||
56 | #include <kern/kalloc.h> | |||
57 | #include <kern/slab.h> | |||
58 | #include <kern/mach_clock.h> | |||
59 | #include <vm/vm_kern.h> | |||
60 | #include <ipc/ipc_kmsg.h> | |||
61 | #include <ipc/ipc_port.h> | |||
62 | #include <ipc/mach_msg.h> | |||
63 | #include <machine/machspl.h> /* for splsched */ | |||
64 | #include <machine/pcb.h> | |||
65 | #include <machine/thread.h> /* for MACHINE_STACK */ | |||
66 | ||||
67 | thread_t active_threads[NCPUS1]; | |||
68 | vm_offset_t active_stacks[NCPUS1]; | |||
69 | ||||
70 | struct kmem_cache thread_cache; | |||
71 | ||||
72 | queue_head_t reaper_queue; | |||
73 | decl_simple_lock_data(, reaper_lock) | |||
74 | ||||
75 | extern void pcb_module_init(void); | |||
76 | ||||
77 | /* private */ | |||
78 | struct thread thread_template; | |||
79 | ||||
80 | #if MACH_DEBUG1 | |||
81 | void stack_init(vm_offset_t stack); /* forward */ | |||
82 | void stack_finalize(vm_offset_t stack); /* forward */ | |||
83 | ||||
84 | #define STACK_MARKER0xdeadbeefU 0xdeadbeefU | |||
85 | boolean_t stack_check_usage = FALSE((boolean_t) 0); | |||
86 | decl_simple_lock_data(, stack_usage_lock) | |||
87 | vm_size_t stack_max_usage = 0; | |||
88 | #endif /* MACH_DEBUG */ | |||
89 | ||||
90 | /* | |||
91 | * Machine-dependent code must define: | |||
92 | * pcb_init | |||
93 | * pcb_terminate | |||
94 | * pcb_collect | |||
95 | * | |||
96 | * The thread->pcb field is reserved for machine-dependent code. | |||
97 | */ | |||
98 | ||||
99 | #ifdef MACHINE_STACK | |||
100 | /* | |||
101 | * Machine-dependent code must define: | |||
102 | * stack_alloc_try | |||
103 | * stack_alloc | |||
104 | * stack_free | |||
105 | * stack_handoff | |||
106 | * stack_collect | |||
107 | * and if MACH_DEBUG: | |||
108 | * stack_statistics | |||
109 | */ | |||
110 | #else /* MACHINE_STACK */ | |||
111 | /* | |||
112 | * We allocate stacks from generic kernel VM. | |||
113 | * Machine-dependent code must define: | |||
114 | * stack_attach | |||
115 | * stack_detach | |||
116 | * stack_handoff | |||
117 | * | |||
118 | * The stack_free_list can only be accessed at splsched, | |||
119 | * because stack_alloc_try/thread_invoke operate at splsched. | |||
120 | */ | |||
121 | ||||
122 | decl_simple_lock_data(, stack_lock_data)/* splsched only */ | |||
123 | #define stack_lock() simple_lock(&stack_lock_data) | |||
124 | #define stack_unlock() simple_unlock(&stack_lock_data) | |||
125 | ||||
126 | vm_offset_t stack_free_list; /* splsched only */ | |||
127 | unsigned int stack_free_count = 0; /* splsched only */ | |||
128 | unsigned int stack_free_limit = 1; /* patchable */ | |||
129 | ||||
130 | unsigned int stack_alloc_hits = 0; /* debugging */ | |||
131 | unsigned int stack_alloc_misses = 0; /* debugging */ | |||
132 | unsigned int stack_alloc_max = 0; /* debugging */ | |||
133 | ||||
134 | /* | |||
135 | * The next field is at the base of the stack, | |||
136 | * so the low end is left unsullied. | |||
137 | */ | |||
138 | ||||
139 | #define stack_next(stack)(*((vm_offset_t *)((stack) + (1*4096)) - 1)) (*((vm_offset_t *)((stack) + KERNEL_STACK_SIZE(1*4096)) - 1)) | |||
140 | ||||
141 | /* | |||
142 | * stack_alloc_try: | |||
143 | * | |||
144 | * Non-blocking attempt to allocate a kernel stack. | |||
145 | * Called at splsched with the thread locked. | |||
146 | */ | |||
147 | ||||
148 | boolean_t stack_alloc_try( | |||
149 | thread_t thread, | |||
150 | void (*resume)(thread_t)) | |||
151 | { | |||
152 | register vm_offset_t stack; | |||
153 | ||||
154 | stack_lock(); | |||
155 | stack = stack_free_list; | |||
156 | if (stack != 0) { | |||
157 | stack_free_list = stack_next(stack)(*((vm_offset_t *)((stack) + (1*4096)) - 1)); | |||
158 | stack_free_count--; | |||
159 | } else { | |||
160 | stack = thread->stack_privilege; | |||
161 | } | |||
162 | stack_unlock(); | |||
163 | ||||
164 | if (stack != 0) { | |||
165 | stack_attach(thread, stack, resume); | |||
166 | stack_alloc_hits++; | |||
167 | return TRUE((boolean_t) 1); | |||
168 | } else { | |||
169 | stack_alloc_misses++; | |||
170 | return FALSE((boolean_t) 0); | |||
171 | } | |||
172 | } | |||
173 | ||||
174 | /* | |||
175 | * stack_alloc: | |||
176 | * | |||
177 | * Allocate a kernel stack for a thread. | |||
178 | * May block. | |||
179 | */ | |||
180 | ||||
181 | void stack_alloc( | |||
182 | thread_t thread, | |||
183 | void (*resume)(thread_t)) | |||
184 | { | |||
185 | vm_offset_t stack; | |||
186 | spl_t s; | |||
187 | ||||
188 | /* | |||
189 | * We first try the free list. It is probably empty, | |||
190 | * or stack_alloc_try would have succeeded, but possibly | |||
191 | * a stack was freed before the swapin thread got to us. | |||
192 | */ | |||
193 | ||||
194 | s = splsched(); | |||
195 | stack_lock(); | |||
196 | stack = stack_free_list; | |||
197 | if (stack != 0) { | |||
198 | stack_free_list = stack_next(stack)(*((vm_offset_t *)((stack) + (1*4096)) - 1)); | |||
199 | stack_free_count--; | |||
200 | } | |||
201 | stack_unlock(); | |||
202 | (void) splx(s); | |||
203 | ||||
204 | if (stack == 0) { | |||
205 | /* | |||
206 | * Kernel stacks should be naturally aligned, | |||
207 | * so that it is easy to find the starting/ending | |||
208 | * addresses of a stack given an address in the middle. | |||
209 | */ | |||
210 | ||||
211 | if (kmem_alloc_aligned(kmem_map, &stack, KERNEL_STACK_SIZE(1*4096)) | |||
212 | != KERN_SUCCESS0) | |||
213 | panic("stack_alloc"); | |||
214 | ||||
215 | #if MACH_DEBUG1 | |||
216 | stack_init(stack); | |||
217 | #endif /* MACH_DEBUG */ | |||
218 | } | |||
219 | ||||
220 | stack_attach(thread, stack, resume); | |||
221 | } | |||
222 | ||||
223 | /* | |||
224 | * stack_free: | |||
225 | * | |||
226 | * Free a thread's kernel stack. | |||
227 | * Called at splsched with the thread locked. | |||
228 | */ | |||
229 | ||||
230 | void stack_free( | |||
231 | thread_t thread) | |||
232 | { | |||
233 | register vm_offset_t stack; | |||
234 | ||||
235 | stack = stack_detach(thread); | |||
236 | ||||
237 | if (stack != thread->stack_privilege) { | |||
238 | stack_lock(); | |||
239 | stack_next(stack)(*((vm_offset_t *)((stack) + (1*4096)) - 1)) = stack_free_list; | |||
240 | stack_free_list = stack; | |||
241 | if (++stack_free_count > stack_alloc_max) | |||
242 | stack_alloc_max = stack_free_count; | |||
243 | stack_unlock(); | |||
244 | } | |||
245 | } | |||
246 | ||||
247 | /* | |||
248 | * stack_collect: | |||
249 | * | |||
250 | * Free excess kernel stacks. | |||
251 | * May block. | |||
252 | */ | |||
253 | ||||
254 | void stack_collect(void) | |||
255 | { | |||
256 | register vm_offset_t stack; | |||
257 | spl_t s; | |||
258 | ||||
259 | s = splsched(); | |||
260 | stack_lock(); | |||
261 | while (stack_free_count > stack_free_limit) { | |||
262 | stack = stack_free_list; | |||
263 | stack_free_list = stack_next(stack)(*((vm_offset_t *)((stack) + (1*4096)) - 1)); | |||
264 | stack_free_count--; | |||
265 | stack_unlock(); | |||
266 | (void) splx(s); | |||
267 | ||||
268 | #if MACH_DEBUG1 | |||
269 | stack_finalize(stack); | |||
270 | #endif /* MACH_DEBUG */ | |||
271 | kmem_free(kmem_map, stack, KERNEL_STACK_SIZE(1*4096)); | |||
272 | ||||
273 | s = splsched(); | |||
274 | stack_lock(); | |||
275 | } | |||
276 | stack_unlock(); | |||
277 | (void) splx(s); | |||
278 | } | |||
279 | #endif /* MACHINE_STACK */ | |||
280 | ||||
281 | /* | |||
282 | * stack_privilege: | |||
283 | * | |||
284 | * stack_alloc_try on this thread must always succeed. | |||
285 | */ | |||
286 | ||||
287 | void stack_privilege( | |||
288 | register thread_t thread) | |||
289 | { | |||
290 | /* | |||
291 | * This implementation only works for the current thread. | |||
292 | */ | |||
293 | ||||
294 | if (thread != current_thread()(active_threads[(0)])) | |||
295 | panic("stack_privilege"); | |||
296 | ||||
297 | if (thread->stack_privilege == 0) | |||
298 | thread->stack_privilege = current_stack()(active_stacks[(0)]); | |||
299 | } | |||
300 | ||||
301 | void thread_init(void) | |||
302 | { | |||
303 | kmem_cache_init(&thread_cache, "thread", sizeof(struct thread), 0, | |||
304 | NULL((void *) 0), NULL((void *) 0), NULL((void *) 0), 0); | |||
305 | ||||
306 | /* | |||
307 | * Fill in a template thread for fast initialization. | |||
308 | * [Fields that must be (or are typically) reset at | |||
309 | * time of creation are so noted.] | |||
310 | */ | |||
311 | ||||
312 | /* thread_template.links (none) */ | |||
313 | thread_template.runq = RUN_QUEUE_NULL((run_queue_t) 0); | |||
314 | ||||
315 | /* thread_template.task (later) */ | |||
316 | /* thread_template.thread_list (later) */ | |||
317 | /* thread_template.pset_threads (later) */ | |||
318 | ||||
319 | /* thread_template.lock (later) */ | |||
320 | /* one ref for being alive; one for the guy who creates the thread */ | |||
321 | thread_template.ref_count = 2; | |||
322 | ||||
323 | thread_template.pcb = (pcb_t) 0; /* (reset) */ | |||
324 | thread_template.kernel_stack = (vm_offset_t) 0; | |||
325 | thread_template.stack_privilege = (vm_offset_t) 0; | |||
326 | ||||
327 | thread_template.wait_event = 0; | |||
328 | /* thread_template.suspend_count (later) */ | |||
329 | thread_template.wait_result = KERN_SUCCESS0; | |||
330 | thread_template.wake_active = FALSE((boolean_t) 0); | |||
331 | thread_template.state = TH_SUSP0x02 | TH_SWAPPED0x0100; | |||
332 | thread_template.swap_func = thread_bootstrap_return; | |||
333 | ||||
334 | /* thread_template.priority (later) */ | |||
335 | thread_template.max_priority = BASEPRI_USER25; | |||
336 | /* thread_template.sched_pri (later - compute_priority) */ | |||
337 | #if MACH_FIXPRI1 | |||
338 | thread_template.sched_data = 0; | |||
339 | thread_template.policy = POLICY_TIMESHARE1; | |||
340 | #endif /* MACH_FIXPRI */ | |||
341 | thread_template.depress_priority = -1; | |||
342 | thread_template.cpu_usage = 0; | |||
343 | thread_template.sched_usage = 0; | |||
344 | /* thread_template.sched_stamp (later) */ | |||
345 | ||||
346 | thread_template.recover = (vm_offset_t) 0; | |||
347 | thread_template.vm_privilege = FALSE((boolean_t) 0); | |||
348 | ||||
349 | thread_template.user_stop_count = 1; | |||
350 | ||||
351 | /* thread_template.<IPC structures> (later) */ | |||
352 | ||||
353 | timer_init(&(thread_template.user_timer)); | |||
354 | timer_init(&(thread_template.system_timer)); | |||
355 | thread_template.user_timer_save.low = 0; | |||
356 | thread_template.user_timer_save.high = 0; | |||
357 | thread_template.system_timer_save.low = 0; | |||
358 | thread_template.system_timer_save.high = 0; | |||
359 | thread_template.cpu_delta = 0; | |||
360 | thread_template.sched_delta = 0; | |||
361 | ||||
362 | thread_template.active = FALSE((boolean_t) 0); /* reset */ | |||
363 | thread_template.ast = AST_ZILCH0x0; | |||
364 | ||||
365 | /* thread_template.processor_set (later) */ | |||
366 | thread_template.bound_processor = PROCESSOR_NULL((processor_t) 0); | |||
367 | #if MACH_HOST0 | |||
368 | thread_template.may_assign = TRUE((boolean_t) 1); | |||
369 | thread_template.assign_active = FALSE((boolean_t) 0); | |||
370 | #endif /* MACH_HOST */ | |||
371 | ||||
372 | #if NCPUS1 > 1 | |||
373 | /* thread_template.last_processor (later) */ | |||
374 | #endif /* NCPUS > 1 */ | |||
375 | ||||
376 | /* | |||
377 | * Initialize other data structures used in | |||
378 | * this module. | |||
379 | */ | |||
380 | ||||
381 | queue_init(&reaper_queue)((&reaper_queue)->next = (&reaper_queue)->prev = &reaper_queue); | |||
382 | simple_lock_init(&reaper_lock); | |||
383 | ||||
384 | #ifndef MACHINE_STACK | |||
385 | simple_lock_init(&stack_lock_data); | |||
386 | #endif /* MACHINE_STACK */ | |||
387 | ||||
388 | #if MACH_DEBUG1 | |||
389 | simple_lock_init(&stack_usage_lock); | |||
390 | #endif /* MACH_DEBUG */ | |||
391 | ||||
392 | /* | |||
393 | * Initialize any machine-dependent | |||
394 | * per-thread structures necessary. | |||
395 | */ | |||
396 | ||||
397 | pcb_module_init(); | |||
398 | } | |||
399 | ||||
400 | kern_return_t thread_create( | |||
401 | register task_t parent_task, | |||
402 | thread_t *child_thread) /* OUT */ | |||
403 | { | |||
404 | register thread_t new_thread; | |||
405 | register processor_set_t pset; | |||
406 | ||||
407 | if (parent_task == TASK_NULL((task_t) 0)) | |||
408 | return KERN_INVALID_ARGUMENT4; | |||
409 | ||||
410 | /* | |||
411 | * Allocate a thread and initialize static fields | |||
412 | */ | |||
413 | ||||
414 | new_thread = (thread_t) kmem_cache_alloc(&thread_cache); | |||
415 | ||||
416 | if (new_thread == THREAD_NULL((thread_t) 0)) | |||
417 | return KERN_RESOURCE_SHORTAGE6; | |||
418 | ||||
419 | *new_thread = thread_template; | |||
420 | ||||
421 | record_time_stamp (&new_thread->creation_time); | |||
422 | ||||
423 | /* | |||
424 | * Initialize runtime-dependent fields | |||
425 | */ | |||
426 | ||||
427 | new_thread->task = parent_task; | |||
428 | simple_lock_init(&new_thread->lock); | |||
429 | new_thread->sched_stamp = sched_tick; | |||
430 | thread_timeout_setup(new_thread); | |||
431 | ||||
432 | /* | |||
433 | * Create a pcb. The kernel stack is created later, | |||
434 | * when the thread is swapped-in. | |||
435 | */ | |||
436 | pcb_init(new_thread); | |||
437 | ||||
438 | ipc_thread_init(new_thread); | |||
439 | ||||
440 | /* | |||
441 | * Find the processor set for the parent task. | |||
442 | */ | |||
443 | task_lock(parent_task); | |||
444 | pset = parent_task->processor_set; | |||
445 | pset_reference(pset); | |||
446 | task_unlock(parent_task); | |||
447 | ||||
448 | /* | |||
449 | * Lock both the processor set and the task, | |||
450 | * so that the thread can be added to both | |||
451 | * simultaneously. Processor set must be | |||
452 | * locked first. | |||
453 | */ | |||
454 | ||||
455 | Restart: | |||
456 | pset_lock(pset); | |||
457 | task_lock(parent_task); | |||
458 | ||||
459 | /* | |||
460 | * If the task has changed processor sets, | |||
461 | * catch up (involves lots of lock juggling). | |||
462 | */ | |||
463 | { | |||
464 | processor_set_t cur_pset; | |||
465 | ||||
466 | cur_pset = parent_task->processor_set; | |||
467 | if (!cur_pset->active) | |||
468 | cur_pset = &default_pset; | |||
469 | ||||
470 | if (cur_pset != pset) { | |||
471 | pset_reference(cur_pset); | |||
472 | task_unlock(parent_task); | |||
473 | pset_unlock(pset); | |||
474 | pset_deallocate(pset); | |||
475 | pset = cur_pset; | |||
476 | goto Restart; | |||
477 | } | |||
478 | } | |||
479 | ||||
480 | /* | |||
481 | * Set the thread`s priority from the pset and task. | |||
482 | */ | |||
483 | ||||
484 | new_thread->priority = parent_task->priority; | |||
485 | if (pset->max_priority > new_thread->max_priority) | |||
486 | new_thread->max_priority = pset->max_priority; | |||
487 | if (new_thread->max_priority > new_thread->priority) | |||
488 | new_thread->priority = new_thread->max_priority; | |||
489 | /* | |||
490 | * Don't need to lock thread here because it can't | |||
491 | * possibly execute and no one else knows about it. | |||
492 | */ | |||
493 | compute_priority(new_thread, TRUE((boolean_t) 1)); | |||
494 | ||||
495 | /* | |||
496 | * Thread is suspended if the task is. Add 1 to | |||
497 | * suspend count since thread is created in suspended | |||
498 | * state. | |||
499 | */ | |||
500 | new_thread->suspend_count = parent_task->suspend_count + 1; | |||
501 | ||||
502 | /* | |||
503 | * Add the thread to the processor set. | |||
504 | * If the pset is empty, suspend the thread again. | |||
505 | */ | |||
506 | ||||
507 | pset_add_thread(pset, new_thread); | |||
508 | if (pset->empty) | |||
509 | new_thread->suspend_count++; | |||
510 | ||||
511 | #if HW_FOOTPRINT0 | |||
512 | /* | |||
513 | * Need to set last_processor, idle processor would be best, but | |||
514 | * that requires extra locking nonsense. Go for tail of | |||
515 | * processors queue to avoid master. | |||
516 | */ | |||
517 | if (!pset->empty) { | |||
518 | new_thread->last_processor = | |||
519 | (processor_t)queue_first(&pset->processors)((&pset->processors)->next); | |||
520 | } | |||
521 | else { | |||
522 | /* | |||
523 | * Thread created in empty processor set. Pick | |||
524 | * master processor as an acceptable legal value. | |||
525 | */ | |||
526 | new_thread->last_processor = master_processor; | |||
527 | } | |||
528 | #else /* HW_FOOTPRINT */ | |||
529 | /* | |||
530 | * Don't need to initialize because the context switch | |||
531 | * code will set it before it can be used. | |||
532 | */ | |||
533 | #endif /* HW_FOOTPRINT */ | |||
534 | ||||
535 | #if MACH_PCSAMPLE1 | |||
536 | new_thread->pc_sample.seqno = 0; | |||
537 | new_thread->pc_sample.sampletypes = 0; | |||
538 | #endif /* MACH_PCSAMPLE */ | |||
539 | ||||
540 | new_thread->pc_sample.buffer = 0; | |||
541 | /* | |||
542 | * Add the thread to the task`s list of threads. | |||
543 | * The new thread holds another reference to the task. | |||
544 | */ | |||
545 | ||||
546 | parent_task->ref_count++; | |||
547 | ||||
548 | parent_task->thread_count++; | |||
549 | queue_enter(&parent_task->thread_list, new_thread, thread_t,{ register queue_entry_t prev; prev = (&parent_task->thread_list )->prev; if ((&parent_task->thread_list) == prev) { (&parent_task->thread_list)->next = (queue_entry_t ) (new_thread); } else { ((thread_t)prev)->thread_list.next = (queue_entry_t)(new_thread); } (new_thread)->thread_list .prev = prev; (new_thread)->thread_list.next = &parent_task ->thread_list; (&parent_task->thread_list)->prev = (queue_entry_t) new_thread; } | |||
550 | thread_list){ register queue_entry_t prev; prev = (&parent_task->thread_list )->prev; if ((&parent_task->thread_list) == prev) { (&parent_task->thread_list)->next = (queue_entry_t ) (new_thread); } else { ((thread_t)prev)->thread_list.next = (queue_entry_t)(new_thread); } (new_thread)->thread_list .prev = prev; (new_thread)->thread_list.next = &parent_task ->thread_list; (&parent_task->thread_list)->prev = (queue_entry_t) new_thread; }; | |||
551 | ||||
552 | /* | |||
553 | * Finally, mark the thread active. | |||
554 | */ | |||
555 | ||||
556 | new_thread->active = TRUE((boolean_t) 1); | |||
557 | ||||
558 | if (!parent_task->active) { | |||
559 | task_unlock(parent_task); | |||
560 | pset_unlock(pset); | |||
561 | (void) thread_terminate(new_thread); | |||
562 | /* release ref we would have given our caller */ | |||
563 | thread_deallocate(new_thread); | |||
564 | return KERN_FAILURE5; | |||
565 | } | |||
566 | task_unlock(parent_task); | |||
567 | pset_unlock(pset); | |||
568 | ||||
569 | ipc_thread_enable(new_thread); | |||
570 | ||||
571 | *child_thread = new_thread; | |||
572 | return KERN_SUCCESS0; | |||
573 | } | |||
574 | ||||
575 | unsigned int thread_deallocate_stack = 0; | |||
576 | ||||
577 | void thread_deallocate( | |||
578 | register thread_t thread) | |||
579 | { | |||
580 | spl_t s; | |||
581 | register task_t task; | |||
582 | register processor_set_t pset; | |||
583 | ||||
584 | time_value_t user_time, system_time; | |||
585 | ||||
586 | if (thread == THREAD_NULL((thread_t) 0)) | |||
587 | return; | |||
588 | ||||
589 | /* | |||
590 | * First, check for new count > 0 (the common case). | |||
591 | * Only the thread needs to be locked. | |||
592 | */ | |||
593 | s = splsched(); | |||
594 | thread_lock(thread); | |||
595 | if (--thread->ref_count > 0) { | |||
596 | thread_unlock(thread); | |||
597 | (void) splx(s); | |||
598 | return; | |||
599 | } | |||
600 | ||||
601 | /* | |||
602 | * Count is zero. However, the task's and processor set's | |||
603 | * thread lists have implicit references to | |||
604 | * the thread, and may make new ones. Their locks also | |||
605 | * dominate the thread lock. To check for this, we | |||
606 | * temporarily restore the one thread reference, unlock | |||
607 | * the thread, and then lock the other structures in | |||
608 | * the proper order. | |||
609 | */ | |||
610 | thread->ref_count = 1; | |||
611 | thread_unlock(thread); | |||
612 | (void) splx(s); | |||
613 | ||||
614 | pset = thread->processor_set; | |||
615 | pset_lock(pset); | |||
616 | ||||
617 | #if MACH_HOST0 | |||
618 | /* | |||
619 | * The thread might have moved. | |||
620 | */ | |||
621 | while (pset != thread->processor_set) { | |||
622 | pset_unlock(pset); | |||
623 | pset = thread->processor_set; | |||
624 | pset_lock(pset); | |||
625 | } | |||
626 | #endif /* MACH_HOST */ | |||
627 | ||||
628 | task = thread->task; | |||
629 | task_lock(task); | |||
630 | ||||
631 | s = splsched(); | |||
632 | thread_lock(thread); | |||
633 | ||||
634 | if (--thread->ref_count > 0) { | |||
635 | /* | |||
636 | * Task or processor_set made extra reference. | |||
637 | */ | |||
638 | thread_unlock(thread); | |||
639 | (void) splx(s); | |||
640 | task_unlock(task); | |||
641 | pset_unlock(pset); | |||
642 | return; | |||
643 | } | |||
644 | ||||
645 | /* | |||
646 | * Thread has no references - we can remove it. | |||
647 | */ | |||
648 | ||||
649 | /* | |||
650 | * Remove pending timeouts. | |||
651 | */ | |||
652 | reset_timeout_check(&thread->timer)({ if ((&thread->timer)->set) reset_timeout((&thread ->timer)); }); | |||
653 | ||||
654 | reset_timeout_check(&thread->depress_timer)({ if ((&thread->depress_timer)->set) reset_timeout ((&thread->depress_timer)); }); | |||
655 | thread->depress_priority = -1; | |||
656 | ||||
657 | /* | |||
658 | * Accumulate times for dead threads in task. | |||
659 | */ | |||
660 | thread_read_times(thread, &user_time, &system_time); | |||
661 | time_value_add(&task->total_user_time, &user_time){ (&task->total_user_time)->microseconds += (&user_time )->microseconds; (&task->total_user_time)->seconds += (&user_time)->seconds; if ((&task->total_user_time )->microseconds >= (1000000)) { (&task->total_user_time )->microseconds -= (1000000); (&task->total_user_time )->seconds++; } }; | |||
662 | time_value_add(&task->total_system_time, &system_time){ (&task->total_system_time)->microseconds += (& system_time)->microseconds; (&task->total_system_time )->seconds += (&system_time)->seconds; if ((&task ->total_system_time)->microseconds >= (1000000)) { ( &task->total_system_time)->microseconds -= (1000000 ); (&task->total_system_time)->seconds++; } }; | |||
663 | ||||
664 | /* | |||
665 | * Remove thread from task list and processor_set threads list. | |||
666 | */ | |||
667 | task->thread_count--; | |||
668 | queue_remove(&task->thread_list, thread, thread_t, thread_list){ register queue_entry_t next, prev; next = (thread)->thread_list .next; prev = (thread)->thread_list.prev; if ((&task-> thread_list) == next) (&task->thread_list)->prev = prev ; else ((thread_t)next)->thread_list.prev = prev; if ((& task->thread_list) == prev) (&task->thread_list)-> next = next; else ((thread_t)prev)->thread_list.next = next ; }; | |||
669 | ||||
670 | pset_remove_thread(pset, thread); | |||
671 | ||||
672 | thread_unlock(thread); /* no more references - safe */ | |||
673 | (void) splx(s); | |||
674 | task_unlock(task); | |||
675 | pset_unlock(pset); | |||
676 | pset_deallocate(pset); | |||
677 | ||||
678 | /* | |||
679 | * A couple of quick sanity checks | |||
680 | */ | |||
681 | ||||
682 | if (thread == current_thread()(active_threads[(0)])) { | |||
683 | panic("thread deallocating itself"); | |||
684 | } | |||
685 | if ((thread->state & ~(TH_RUN0x04 | TH_HALTED0x10 | TH_SWAPPED0x0100)) != TH_SUSP0x02) | |||
686 | panic("unstopped thread destroyed!"); | |||
687 | ||||
688 | /* | |||
689 | * Deallocate the task reference, since we know the thread | |||
690 | * is not running. | |||
691 | */ | |||
692 | task_deallocate(thread->task); /* may block */ | |||
693 | ||||
694 | /* | |||
695 | * Clean up any machine-dependent resources. | |||
696 | */ | |||
697 | if ((thread->state & TH_SWAPPED0x0100) == 0) { | |||
698 | splsched(); | |||
699 | stack_free(thread); | |||
700 | (void) splx(s); | |||
701 | thread_deallocate_stack++; | |||
702 | } | |||
703 | /* | |||
704 | * Rattle the event count machinery (gag) | |||
705 | */ | |||
706 | evc_notify_abort(thread); | |||
707 | ||||
708 | pcb_terminate(thread); | |||
709 | kmem_cache_free(&thread_cache, (vm_offset_t) thread); | |||
710 | } | |||
711 | ||||
712 | void thread_reference( | |||
713 | register thread_t thread) | |||
714 | { | |||
715 | spl_t s; | |||
716 | ||||
717 | if (thread == THREAD_NULL((thread_t) 0)) | |||
718 | return; | |||
719 | ||||
720 | s = splsched(); | |||
721 | thread_lock(thread); | |||
722 | thread->ref_count++; | |||
723 | thread_unlock(thread); | |||
724 | (void) splx(s); | |||
725 | } | |||
726 | ||||
727 | /* | |||
728 | * thread_terminate: | |||
729 | * | |||
730 | * Permanently stop execution of the specified thread. | |||
731 | * | |||
732 | * A thread to be terminated must be allowed to clean up any state | |||
733 | * that it has before it exits. The thread is broken out of any | |||
734 | * wait condition that it is in, and signalled to exit. It then | |||
735 | * cleans up its state and calls thread_halt_self on its way out of | |||
736 | * the kernel. The caller waits for the thread to halt, terminates | |||
737 | * its IPC state, and then deallocates it. | |||
738 | * | |||
739 | * If the caller is the current thread, it must still exit the kernel | |||
740 | * to clean up any state (thread and port references, messages, etc). | |||
741 | * When it exits the kernel, it then terminates its IPC state and | |||
742 | * queues itself for the reaper thread, which will wait for the thread | |||
743 | * to stop and then deallocate it. (A thread cannot deallocate itself, | |||
744 | * since it needs a kernel stack to execute.) | |||
745 | */ | |||
746 | kern_return_t thread_terminate( | |||
747 | register thread_t thread) | |||
748 | { | |||
749 | register thread_t cur_thread = current_thread()(active_threads[(0)]); | |||
750 | register task_t cur_task; | |||
751 | spl_t s; | |||
752 | ||||
753 | if (thread == THREAD_NULL((thread_t) 0)) | |||
754 | return KERN_INVALID_ARGUMENT4; | |||
755 | ||||
756 | /* | |||
757 | * Break IPC control over the thread. | |||
758 | */ | |||
759 | ipc_thread_disable(thread); | |||
760 | ||||
761 | if (thread == cur_thread) { | |||
762 | ||||
763 | /* | |||
764 | * Current thread will queue itself for reaper when | |||
765 | * exiting kernel. | |||
766 | */ | |||
767 | s = splsched(); | |||
768 | thread_lock(thread); | |||
769 | if (thread->active) { | |||
770 | thread->active = FALSE((boolean_t) 0); | |||
771 | thread_ast_set(thread, AST_TERMINATE)(thread)->ast |= (0x2); | |||
772 | } | |||
773 | thread_unlock(thread); | |||
774 | ast_on(cpu_number(), AST_TERMINATE)({ if ((need_ast[(0)] |= (0x2)) != 0x0) { ; } }); | |||
775 | splx(s); | |||
776 | return KERN_SUCCESS0; | |||
777 | } | |||
778 | ||||
779 | /* | |||
780 | * Lock both threads and the current task | |||
781 | * to check termination races and prevent deadlocks. | |||
782 | */ | |||
783 | cur_task = current_task()((active_threads[(0)])->task); | |||
784 | task_lock(cur_task); | |||
785 | s = splsched(); | |||
786 | if ((vm_offset_t)thread < (vm_offset_t)cur_thread) { | |||
787 | thread_lock(thread); | |||
788 | thread_lock(cur_thread); | |||
789 | } | |||
790 | else { | |||
791 | thread_lock(cur_thread); | |||
792 | thread_lock(thread); | |||
793 | } | |||
794 | ||||
795 | /* | |||
796 | * If the current thread is being terminated, help out. | |||
797 | */ | |||
798 | if ((!cur_task->active) || (!cur_thread->active)) { | |||
799 | thread_unlock(cur_thread); | |||
800 | thread_unlock(thread); | |||
801 | (void) splx(s); | |||
802 | task_unlock(cur_task); | |||
803 | thread_terminate(cur_thread); | |||
804 | return KERN_FAILURE5; | |||
805 | } | |||
806 | ||||
807 | thread_unlock(cur_thread); | |||
808 | task_unlock(cur_task); | |||
809 | ||||
810 | /* | |||
811 | * Terminate victim thread. | |||
812 | */ | |||
813 | if (!thread->active) { | |||
814 | /* | |||
815 | * Someone else got there first. | |||
816 | */ | |||
817 | thread_unlock(thread); | |||
818 | (void) splx(s); | |||
819 | return KERN_FAILURE5; | |||
820 | } | |||
821 | ||||
822 | thread->active = FALSE((boolean_t) 0); | |||
823 | ||||
824 | thread_unlock(thread); | |||
825 | (void) splx(s); | |||
826 | ||||
827 | #if MACH_HOST0 | |||
828 | /* | |||
829 | * Reassign thread to default pset if needed. | |||
830 | */ | |||
831 | thread_freeze(thread); | |||
832 | if (thread->processor_set != &default_pset) { | |||
833 | thread_doassign(thread, &default_pset, FALSE((boolean_t) 0)); | |||
834 | } | |||
835 | #endif /* MACH_HOST */ | |||
836 | ||||
837 | /* | |||
838 | * Halt the victim at the clean point. | |||
839 | */ | |||
840 | (void) thread_halt(thread, TRUE((boolean_t) 1)); | |||
841 | #if MACH_HOST0 | |||
842 | thread_unfreeze(thread); | |||
843 | #endif /* MACH_HOST */ | |||
844 | /* | |||
845 | * Shut down the victims IPC and deallocate its | |||
846 | * reference to itself. | |||
847 | */ | |||
848 | ipc_thread_terminate(thread); | |||
849 | thread_deallocate(thread); | |||
850 | return KERN_SUCCESS0; | |||
851 | } | |||
852 | ||||
853 | /* | |||
854 | * thread_force_terminate: | |||
855 | * | |||
856 | * Version of thread_terminate called by task_terminate. thread is | |||
857 | * not the current thread. task_terminate is the dominant operation, | |||
858 | * so we can force this thread to stop. | |||
859 | */ | |||
860 | void | |||
861 | thread_force_terminate( | |||
862 | register thread_t thread) | |||
863 | { | |||
864 | boolean_t deallocate_here; | |||
865 | spl_t s; | |||
866 | ||||
867 | ipc_thread_disable(thread); | |||
868 | ||||
869 | #if MACH_HOST0 | |||
870 | /* | |||
871 | * Reassign thread to default pset if needed. | |||
872 | */ | |||
873 | thread_freeze(thread); | |||
874 | if (thread->processor_set != &default_pset) | |||
875 | thread_doassign(thread, &default_pset, FALSE((boolean_t) 0)); | |||
876 | #endif /* MACH_HOST */ | |||
877 | ||||
878 | s = splsched(); | |||
879 | thread_lock(thread); | |||
880 | deallocate_here = thread->active; | |||
881 | thread->active = FALSE((boolean_t) 0); | |||
882 | thread_unlock(thread); | |||
883 | (void) splx(s); | |||
884 | ||||
885 | (void) thread_halt(thread, TRUE((boolean_t) 1)); | |||
886 | ipc_thread_terminate(thread); | |||
887 | ||||
888 | #if MACH_HOST0 | |||
889 | thread_unfreeze(thread); | |||
890 | #endif /* MACH_HOST */ | |||
891 | ||||
892 | if (deallocate_here) | |||
893 | thread_deallocate(thread); | |||
894 | } | |||
895 | ||||
896 | ||||
897 | /* | |||
898 | * Halt a thread at a clean point, leaving it suspended. | |||
899 | * | |||
900 | * must_halt indicates whether thread must halt. | |||
901 | * | |||
902 | */ | |||
903 | kern_return_t thread_halt( | |||
904 | register thread_t thread, | |||
905 | boolean_t must_halt) | |||
906 | { | |||
907 | register thread_t cur_thread = current_thread()(active_threads[(0)]); | |||
908 | register kern_return_t ret; | |||
909 | spl_t s; | |||
910 | ||||
911 | if (thread == cur_thread) | |||
912 | panic("thread_halt: trying to halt current thread."); | |||
913 | /* | |||
914 | * If must_halt is FALSE, then a check must be made for | |||
915 | * a cycle of halt operations. | |||
916 | */ | |||
917 | if (!must_halt) { | |||
918 | /* | |||
919 | * Grab both thread locks. | |||
920 | */ | |||
921 | s = splsched(); | |||
922 | if ((vm_offset_t)thread < (vm_offset_t)cur_thread) { | |||
923 | thread_lock(thread); | |||
924 | thread_lock(cur_thread); | |||
925 | } | |||
926 | else { | |||
927 | thread_lock(cur_thread); | |||
928 | thread_lock(thread); | |||
929 | } | |||
930 | ||||
931 | /* | |||
932 | * If target thread is already halted, grab a hold | |||
933 | * on it and return. | |||
934 | */ | |||
935 | if (thread->state & TH_HALTED0x10) { | |||
936 | thread->suspend_count++; | |||
937 | thread_unlock(cur_thread); | |||
938 | thread_unlock(thread); | |||
939 | (void) splx(s); | |||
940 | return KERN_SUCCESS0; | |||
941 | } | |||
942 | ||||
943 | /* | |||
944 | * If someone is trying to halt us, we have a potential | |||
945 | * halt cycle. Break the cycle by interrupting anyone | |||
946 | * who is trying to halt us, and causing this operation | |||
947 | * to fail; retry logic will only retry operations | |||
948 | * that cannot deadlock. (If must_halt is TRUE, this | |||
949 | * operation can never cause a deadlock.) | |||
950 | */ | |||
951 | if (cur_thread->ast & AST_HALT0x1) { | |||
952 | thread_wakeup_with_result((event_t)&cur_thread->wake_active,thread_wakeup_prim(((event_t)&cur_thread->wake_active) , ((boolean_t) 0), (2)) | |||
953 | THREAD_INTERRUPTED)thread_wakeup_prim(((event_t)&cur_thread->wake_active) , ((boolean_t) 0), (2)); | |||
954 | thread_unlock(thread); | |||
955 | thread_unlock(cur_thread); | |||
956 | (void) splx(s); | |||
957 | return KERN_FAILURE5; | |||
958 | } | |||
959 | ||||
960 | thread_unlock(cur_thread); | |||
961 | ||||
962 | } | |||
963 | else { | |||
964 | /* | |||
965 | * Lock thread and check whether it is already halted. | |||
966 | */ | |||
967 | s = splsched(); | |||
968 | thread_lock(thread); | |||
969 | if (thread->state & TH_HALTED0x10) { | |||
970 | thread->suspend_count++; | |||
971 | thread_unlock(thread); | |||
972 | (void) splx(s); | |||
973 | return KERN_SUCCESS0; | |||
974 | } | |||
975 | } | |||
976 | ||||
977 | /* | |||
978 | * Suspend thread - inline version of thread_hold() because | |||
979 | * thread is already locked. | |||
980 | */ | |||
981 | thread->suspend_count++; | |||
982 | thread->state |= TH_SUSP0x02; | |||
983 | ||||
984 | /* | |||
985 | * If someone else is halting it, wait for that to complete. | |||
986 | * Fail if wait interrupted and must_halt is false. | |||
987 | */ | |||
988 | while ((thread->ast & AST_HALT0x1) && (!(thread->state & TH_HALTED0x10))) { | |||
989 | thread->wake_active = TRUE((boolean_t) 1); | |||
990 | thread_sleep((event_t) &thread->wake_active, | |||
991 | simple_lock_addr(thread->lock)((simple_lock_t)0), TRUE((boolean_t) 1)); | |||
992 | ||||
993 | if (thread->state & TH_HALTED0x10) { | |||
994 | (void) splx(s); | |||
995 | return KERN_SUCCESS0; | |||
996 | } | |||
997 | if ((current_thread()(active_threads[(0)])->wait_result != THREAD_AWAKENED0) | |||
998 | && !(must_halt)) { | |||
999 | (void) splx(s); | |||
1000 | thread_release(thread); | |||
1001 | return KERN_FAILURE5; | |||
1002 | } | |||
1003 | thread_lock(thread); | |||
1004 | } | |||
1005 | ||||
1006 | /* | |||
1007 | * Otherwise, have to do it ourselves. | |||
1008 | */ | |||
1009 | ||||
1010 | thread_ast_set(thread, AST_HALT)(thread)->ast |= (0x1); | |||
1011 | ||||
1012 | while (TRUE((boolean_t) 1)) { | |||
1013 | /* | |||
1014 | * Wait for thread to stop. | |||
1015 | */ | |||
1016 | thread_unlock(thread); | |||
1017 | (void) splx(s); | |||
1018 | ||||
1019 | ret = thread_dowait(thread, must_halt); | |||
1020 | ||||
1021 | /* | |||
1022 | * If the dowait failed, so do we. Drop AST_HALT, and | |||
1023 | * wake up anyone else who might be waiting for it. | |||
1024 | */ | |||
1025 | if (ret != KERN_SUCCESS0) { | |||
1026 | s = splsched(); | |||
1027 | thread_lock(thread); | |||
1028 | thread_ast_clear(thread, AST_HALT)(thread)->ast &= ~(0x1); | |||
1029 | thread_wakeup_with_result((event_t)&thread->wake_active,thread_wakeup_prim(((event_t)&thread->wake_active), (( boolean_t) 0), (2)) | |||
1030 | THREAD_INTERRUPTED)thread_wakeup_prim(((event_t)&thread->wake_active), (( boolean_t) 0), (2)); | |||
1031 | thread_unlock(thread); | |||
1032 | (void) splx(s); | |||
1033 | ||||
1034 | thread_release(thread); | |||
1035 | return ret; | |||
1036 | } | |||
1037 | ||||
1038 | /* | |||
1039 | * Clear any interruptible wait. | |||
1040 | */ | |||
1041 | clear_wait(thread, THREAD_INTERRUPTED2, TRUE((boolean_t) 1)); | |||
1042 | ||||
1043 | /* | |||
1044 | * If the thread's at a clean point, we're done. | |||
1045 | * Don't need a lock because it really is stopped. | |||
1046 | */ | |||
1047 | if (thread->state & TH_HALTED0x10) { | |||
1048 | return KERN_SUCCESS0; | |||
1049 | } | |||
1050 | ||||
1051 | /* | |||
1052 | * If the thread is at a nice continuation, | |||
1053 | * or a continuation with a cleanup routine, | |||
1054 | * call the cleanup routine. | |||
1055 | */ | |||
1056 | if ((((thread->swap_func == mach_msg_continue) || | |||
1057 | (thread->swap_func == mach_msg_receive_continue)) && | |||
1058 | mach_msg_interrupt(thread)) || | |||
1059 | (thread->swap_func == thread_exception_return) || | |||
1060 | (thread->swap_func == thread_bootstrap_return)) { | |||
1061 | s = splsched(); | |||
1062 | thread_lock(thread); | |||
1063 | thread->state |= TH_HALTED0x10; | |||
1064 | thread_ast_clear(thread, AST_HALT)(thread)->ast &= ~(0x1); | |||
1065 | thread_unlock(thread); | |||
1066 | splx(s); | |||
1067 | ||||
1068 | return KERN_SUCCESS0; | |||
1069 | } | |||
1070 | ||||
1071 | /* | |||
1072 | * Force the thread to stop at a clean | |||
1073 | * point, and arrange to wait for it. | |||
1074 | * | |||
1075 | * Set it running, so it can notice. Override | |||
1076 | * the suspend count. We know that the thread | |||
1077 | * is suspended and not waiting. | |||
1078 | * | |||
1079 | * Since the thread may hit an interruptible wait | |||
1080 | * before it reaches a clean point, we must force it | |||
1081 | * to wake us up when it does so. This involves some | |||
1082 | * trickery: | |||
1083 | * We mark the thread SUSPENDED so that thread_block | |||
1084 | * will suspend it and wake us up. | |||
1085 | * We mark the thread RUNNING so that it will run. | |||
1086 | * We mark the thread UN-INTERRUPTIBLE (!) so that | |||
1087 | * some other thread trying to halt or suspend it won't | |||
1088 | * take it off the run queue before it runs. Since | |||
1089 | * dispatching a thread (the tail of thread_invoke) marks | |||
1090 | * the thread interruptible, it will stop at the next | |||
1091 | * context switch or interruptible wait. | |||
1092 | */ | |||
1093 | ||||
1094 | s = splsched(); | |||
1095 | thread_lock(thread); | |||
1096 | if ((thread->state & TH_SCHED_STATE(0x01|0x02|0x04|0x08)) != TH_SUSP0x02) | |||
1097 | panic("thread_halt"); | |||
1098 | thread->state |= TH_RUN0x04 | TH_UNINT0x08; | |||
1099 | thread_setrun(thread, FALSE((boolean_t) 0)); | |||
1100 | ||||
1101 | /* | |||
1102 | * Continue loop and wait for thread to stop. | |||
1103 | */ | |||
1104 | } | |||
1105 | } | |||
1106 | ||||
1107 | void walking_zombie(void) | |||
1108 | { | |||
1109 | panic("the zombie walks!"); | |||
1110 | } | |||
1111 | ||||
1112 | /* | |||
1113 | * Thread calls this routine on exit from the kernel when it | |||
1114 | * notices a halt request. | |||
1115 | */ | |||
1116 | void thread_halt_self(void) | |||
1117 | { | |||
1118 | register thread_t thread = current_thread()(active_threads[(0)]); | |||
1119 | spl_t s; | |||
1120 | ||||
1121 | if (thread->ast & AST_TERMINATE0x2) { | |||
1122 | /* | |||
1123 | * Thread is terminating itself. Shut | |||
1124 | * down IPC, then queue it up for the | |||
1125 | * reaper thread. | |||
1126 | */ | |||
1127 | ipc_thread_terminate(thread); | |||
1128 | ||||
1129 | thread_hold(thread); | |||
1130 | ||||
1131 | s = splsched(); | |||
1132 | simple_lock(&reaper_lock); | |||
1133 | enqueue_tail(&reaper_queue, (queue_entry_t) thread); | |||
1134 | simple_unlock(&reaper_lock); | |||
1135 | ||||
1136 | thread_lock(thread); | |||
1137 | thread->state |= TH_HALTED0x10; | |||
1138 | thread_unlock(thread); | |||
1139 | (void) splx(s); | |||
1140 | ||||
1141 | thread_wakeup((event_t)&reaper_queue)thread_wakeup_prim(((event_t)&reaper_queue), ((boolean_t) 0), 0); | |||
1142 | counter(c_thread_halt_self_block++); | |||
1143 | thread_block(walking_zombie); | |||
1144 | /*NOTREACHED*/ | |||
1145 | } else { | |||
1146 | /* | |||
1147 | * Thread was asked to halt - show that it | |||
1148 | * has done so. | |||
1149 | */ | |||
1150 | s = splsched(); | |||
1151 | thread_lock(thread); | |||
1152 | thread->state |= TH_HALTED0x10; | |||
1153 | thread_ast_clear(thread, AST_HALT)(thread)->ast &= ~(0x1); | |||
1154 | thread_unlock(thread); | |||
1155 | splx(s); | |||
1156 | counter(c_thread_halt_self_block++); | |||
1157 | thread_block(thread_exception_return); | |||
1158 | /* | |||
1159 | * thread_release resets TH_HALTED. | |||
1160 | */ | |||
1161 | } | |||
1162 | } | |||
1163 | ||||
1164 | /* | |||
1165 | * thread_hold: | |||
1166 | * | |||
1167 | * Suspend execution of the specified thread. | |||
1168 | * This is a recursive-style suspension of the thread, a count of | |||
1169 | * suspends is maintained. | |||
1170 | */ | |||
1171 | void thread_hold( | |||
1172 | register thread_t thread) | |||
1173 | { | |||
1174 | spl_t s; | |||
1175 | ||||
1176 | s = splsched(); | |||
1177 | thread_lock(thread); | |||
1178 | thread->suspend_count++; | |||
1179 | thread->state |= TH_SUSP0x02; | |||
1180 | thread_unlock(thread); | |||
1181 | (void) splx(s); | |||
1182 | } | |||
1183 | ||||
1184 | /* | |||
1185 | * thread_dowait: | |||
1186 | * | |||
1187 | * Wait for a thread to actually enter stopped state. | |||
1188 | * | |||
1189 | * must_halt argument indicates if this may fail on interruption. | |||
1190 | * This is FALSE only if called from thread_abort via thread_halt. | |||
1191 | */ | |||
1192 | kern_return_t | |||
1193 | thread_dowait( | |||
1194 | register thread_t thread, | |||
1195 | boolean_t must_halt) | |||
1196 | { | |||
1197 | register boolean_t need_wakeup; | |||
1198 | register kern_return_t ret = KERN_SUCCESS0; | |||
1199 | spl_t s; | |||
1200 | ||||
1201 | if (thread == current_thread()(active_threads[(0)])) | |||
1202 | panic("thread_dowait"); | |||
1203 | ||||
1204 | /* | |||
1205 | * If a thread is not interruptible, it may not be suspended | |||
1206 | * until it becomes interruptible. In this case, we wait for | |||
1207 | * the thread to stop itself, and indicate that we are waiting | |||
1208 | * for it to stop so that it can wake us up when it does stop. | |||
1209 | * | |||
1210 | * If the thread is interruptible, we may be able to suspend | |||
1211 | * it immediately. There are several cases: | |||
1212 | * | |||
1213 | * 1) The thread is already stopped (trivial) | |||
1214 | * 2) The thread is runnable (marked RUN and on a run queue). | |||
1215 | * We pull it off the run queue and mark it stopped. | |||
1216 | * 3) The thread is running. We wait for it to stop. | |||
1217 | */ | |||
1218 | ||||
1219 | need_wakeup = FALSE((boolean_t) 0); | |||
1220 | s = splsched(); | |||
1221 | thread_lock(thread); | |||
1222 | ||||
1223 | for (;;) { | |||
1224 | switch (thread->state & TH_SCHED_STATE(0x01|0x02|0x04|0x08)) { | |||
1225 | case TH_SUSP0x02: | |||
1226 | case TH_WAIT0x01 | TH_SUSP0x02: | |||
1227 | /* | |||
1228 | * Thread is already suspended, or sleeping in an | |||
1229 | * interruptible wait. We win! | |||
1230 | */ | |||
1231 | break; | |||
1232 | ||||
1233 | case TH_RUN0x04 | TH_SUSP0x02: | |||
1234 | /* | |||
1235 | * The thread is interruptible. If we can pull | |||
1236 | * it off a runq, stop it here. | |||
1237 | */ | |||
1238 | if (rem_runq(thread) != RUN_QUEUE_NULL((run_queue_t) 0)) { | |||
1239 | thread->state &= ~TH_RUN0x04; | |||
1240 | need_wakeup = thread->wake_active; | |||
1241 | thread->wake_active = FALSE((boolean_t) 0); | |||
1242 | break; | |||
1243 | } | |||
1244 | #if NCPUS1 > 1 | |||
1245 | /* | |||
1246 | * The thread must be running, so make its | |||
1247 | * processor execute ast_check(). This | |||
1248 | * should cause the thread to take an ast and | |||
1249 | * context switch to suspend for us. | |||
1250 | */ | |||
1251 | cause_ast_check(thread->last_processor); | |||
1252 | #endif /* NCPUS > 1 */ | |||
1253 | ||||
1254 | /* | |||
1255 | * Fall through to wait for thread to stop. | |||
1256 | */ | |||
1257 | ||||
1258 | case TH_RUN0x04 | TH_SUSP0x02 | TH_UNINT0x08: | |||
1259 | case TH_RUN0x04 | TH_WAIT0x01 | TH_SUSP0x02: | |||
1260 | case TH_RUN0x04 | TH_WAIT0x01 | TH_SUSP0x02 | TH_UNINT0x08: | |||
1261 | case TH_WAIT0x01 | TH_SUSP0x02 | TH_UNINT0x08: | |||
1262 | /* | |||
1263 | * Wait for the thread to stop, or sleep interruptibly | |||
1264 | * (thread_block will stop it in the latter case). | |||
1265 | * Check for failure if interrupted. | |||
1266 | */ | |||
1267 | thread->wake_active = TRUE((boolean_t) 1); | |||
1268 | thread_sleep((event_t) &thread->wake_active, | |||
1269 | simple_lock_addr(thread->lock)((simple_lock_t)0), TRUE((boolean_t) 1)); | |||
1270 | thread_lock(thread); | |||
1271 | if ((current_thread()(active_threads[(0)])->wait_result != THREAD_AWAKENED0) && | |||
1272 | !must_halt) { | |||
1273 | ret = KERN_FAILURE5; | |||
1274 | break; | |||
1275 | } | |||
1276 | ||||
1277 | /* | |||
1278 | * Repeat loop to check thread`s state. | |||
1279 | */ | |||
1280 | continue; | |||
1281 | } | |||
1282 | /* | |||
1283 | * Thread is stopped at this point. | |||
1284 | */ | |||
1285 | break; | |||
1286 | } | |||
1287 | ||||
1288 | thread_unlock(thread); | |||
1289 | (void) splx(s); | |||
1290 | ||||
1291 | if (need_wakeup) | |||
1292 | thread_wakeup((event_t) &thread->wake_active)thread_wakeup_prim(((event_t) &thread->wake_active), ( (boolean_t) 0), 0); | |||
1293 | ||||
1294 | return ret; | |||
1295 | } | |||
1296 | ||||
1297 | void thread_release( | |||
1298 | register thread_t thread) | |||
1299 | { | |||
1300 | spl_t s; | |||
1301 | ||||
1302 | s = splsched(); | |||
1303 | thread_lock(thread); | |||
1304 | if (--thread->suspend_count == 0) { | |||
1305 | thread->state &= ~(TH_SUSP0x02 | TH_HALTED0x10); | |||
1306 | if ((thread->state & (TH_WAIT0x01 | TH_RUN0x04)) == 0) { | |||
1307 | /* was only suspended */ | |||
1308 | thread->state |= TH_RUN0x04; | |||
1309 | thread_setrun(thread, TRUE((boolean_t) 1)); | |||
1310 | } | |||
1311 | } | |||
1312 | thread_unlock(thread); | |||
1313 | (void) splx(s); | |||
1314 | } | |||
1315 | ||||
1316 | kern_return_t thread_suspend( | |||
1317 | register thread_t thread) | |||
1318 | { | |||
1319 | register boolean_t hold; | |||
1320 | spl_t spl; | |||
1321 | ||||
1322 | if (thread == THREAD_NULL((thread_t) 0)) | |||
1323 | return KERN_INVALID_ARGUMENT4; | |||
1324 | ||||
1325 | hold = FALSE((boolean_t) 0); | |||
1326 | spl = splsched(); | |||
1327 | thread_lock(thread); | |||
1328 | /* Wait for thread to get interruptible */ | |||
1329 | while (thread->state & TH_UNINT0x08) { | |||
1330 | assert_wait(&thread->state, TRUE((boolean_t) 1)); | |||
1331 | thread_unlock(thread); | |||
1332 | thread_block(NULL((void *) 0)); | |||
1333 | thread_lock(thread); | |||
1334 | } | |||
1335 | if (thread->user_stop_count++ == 0) { | |||
1336 | hold = TRUE((boolean_t) 1); | |||
1337 | thread->suspend_count++; | |||
1338 | thread->state |= TH_SUSP0x02; | |||
1339 | } | |||
1340 | thread_unlock(thread); | |||
1341 | (void) splx(spl); | |||
1342 | ||||
1343 | /* | |||
1344 | * Now wait for the thread if necessary. | |||
1345 | */ | |||
1346 | if (hold) { | |||
1347 | if (thread == current_thread()(active_threads[(0)])) { | |||
1348 | /* | |||
1349 | * We want to call thread_block on our way out, | |||
1350 | * to stop running. | |||
1351 | */ | |||
1352 | spl = splsched(); | |||
1353 | ast_on(cpu_number(), AST_BLOCK)({ if ((need_ast[(0)] |= (0x4)) != 0x0) { ; } }); | |||
1354 | (void) splx(spl); | |||
1355 | } else | |||
1356 | (void) thread_dowait(thread, TRUE((boolean_t) 1)); | |||
1357 | } | |||
1358 | return KERN_SUCCESS0; | |||
1359 | } | |||
1360 | ||||
1361 | ||||
1362 | kern_return_t thread_resume( | |||
1363 | register thread_t thread) | |||
1364 | { | |||
1365 | register kern_return_t ret; | |||
1366 | spl_t s; | |||
1367 | ||||
1368 | if (thread == THREAD_NULL((thread_t) 0)) | |||
1369 | return KERN_INVALID_ARGUMENT4; | |||
1370 | ||||
1371 | ret = KERN_SUCCESS0; | |||
1372 | ||||
1373 | s = splsched(); | |||
1374 | thread_lock(thread); | |||
1375 | if (thread->user_stop_count > 0) { | |||
1376 | if (--thread->user_stop_count == 0) { | |||
1377 | if (--thread->suspend_count == 0) { | |||
1378 | thread->state &= ~(TH_SUSP0x02 | TH_HALTED0x10); | |||
1379 | if ((thread->state & (TH_WAIT0x01 | TH_RUN0x04)) == 0) { | |||
1380 | /* was only suspended */ | |||
1381 | thread->state |= TH_RUN0x04; | |||
1382 | thread_setrun(thread, TRUE((boolean_t) 1)); | |||
1383 | } | |||
1384 | } | |||
1385 | } | |||
1386 | } | |||
1387 | else { | |||
1388 | ret = KERN_FAILURE5; | |||
1389 | } | |||
1390 | ||||
1391 | thread_unlock(thread); | |||
1392 | (void) splx(s); | |||
1393 | ||||
1394 | return ret; | |||
1395 | } | |||
1396 | ||||
1397 | /* | |||
1398 | * Return thread's machine-dependent state. | |||
1399 | */ | |||
1400 | kern_return_t thread_get_state( | |||
1401 | register thread_t thread, | |||
1402 | int flavor, | |||
1403 | thread_state_t old_state, /* pointer to OUT array */ | |||
1404 | natural_t *old_state_count) /*IN/OUT*/ | |||
1405 | { | |||
1406 | kern_return_t ret; | |||
1407 | ||||
1408 | if (thread == THREAD_NULL((thread_t) 0) || thread == current_thread()(active_threads[(0)])) { | |||
1409 | return KERN_INVALID_ARGUMENT4; | |||
1410 | } | |||
1411 | ||||
1412 | thread_hold(thread); | |||
1413 | (void) thread_dowait(thread, TRUE((boolean_t) 1)); | |||
1414 | ||||
1415 | ret = thread_getstatus(thread, flavor, old_state, old_state_count); | |||
1416 | ||||
1417 | thread_release(thread); | |||
1418 | return ret; | |||
1419 | } | |||
1420 | ||||
1421 | /* | |||
1422 | * Change thread's machine-dependent state. | |||
1423 | */ | |||
1424 | kern_return_t thread_set_state( | |||
1425 | register thread_t thread, | |||
1426 | int flavor, | |||
1427 | thread_state_t new_state, | |||
1428 | natural_t new_state_count) | |||
1429 | { | |||
1430 | kern_return_t ret; | |||
1431 | ||||
1432 | if (thread == THREAD_NULL((thread_t) 0) || thread == current_thread()(active_threads[(0)])) { | |||
1433 | return KERN_INVALID_ARGUMENT4; | |||
1434 | } | |||
1435 | ||||
1436 | thread_hold(thread); | |||
1437 | (void) thread_dowait(thread, TRUE((boolean_t) 1)); | |||
1438 | ||||
1439 | ret = thread_setstatus(thread, flavor, new_state, new_state_count); | |||
1440 | ||||
1441 | thread_release(thread); | |||
1442 | return ret; | |||
1443 | } | |||
1444 | ||||
1445 | kern_return_t thread_info( | |||
1446 | register thread_t thread, | |||
1447 | int flavor, | |||
1448 | thread_info_t thread_info_out, /* pointer to OUT array */ | |||
1449 | natural_t *thread_info_count) /*IN/OUT*/ | |||
1450 | { | |||
1451 | int state, flags; | |||
1452 | spl_t s; | |||
1453 | ||||
1454 | if (thread == THREAD_NULL((thread_t) 0)) | |||
1455 | return KERN_INVALID_ARGUMENT4; | |||
1456 | ||||
1457 | if (flavor == THREAD_BASIC_INFO1) { | |||
1458 | register thread_basic_info_t basic_info; | |||
1459 | ||||
1460 | /* Allow *thread_info_count to be one smaller than the | |||
1461 | usual amount, because creation_time is a new member | |||
1462 | that some callers might not know about. */ | |||
1463 | ||||
1464 | if (*thread_info_count < THREAD_BASIC_INFO_COUNT(sizeof(thread_basic_info_data_t) / sizeof(natural_t)) - 1) { | |||
1465 | return KERN_INVALID_ARGUMENT4; | |||
1466 | } | |||
1467 | ||||
1468 | basic_info = (thread_basic_info_t) thread_info_out; | |||
1469 | ||||
1470 | s = splsched(); | |||
1471 | thread_lock(thread); | |||
1472 | ||||
1473 | /* | |||
1474 | * Update lazy-evaluated scheduler info because someone wants it. | |||
1475 | */ | |||
1476 | if ((thread->state & TH_RUN0x04) == 0 && | |||
1477 | thread->sched_stamp != sched_tick) | |||
1478 | update_priority(thread); | |||
1479 | ||||
1480 | /* fill in info */ | |||
1481 | ||||
1482 | thread_read_times(thread, | |||
1483 | &basic_info->user_time, | |||
1484 | &basic_info->system_time); | |||
1485 | basic_info->base_priority = thread->priority; | |||
1486 | basic_info->cur_priority = thread->sched_pri; | |||
1487 | basic_info->creation_time = thread->creation_time; | |||
1488 | ||||
1489 | /* | |||
1490 | * To calculate cpu_usage, first correct for timer rate, | |||
1491 | * then for 5/8 ageing. The correction factor [3/5] is | |||
1492 | * (1/(5/8) - 1). | |||
1493 | */ | |||
1494 | basic_info->cpu_usage = thread->cpu_usage / | |||
1495 | (TIMER_RATE1000000/TH_USAGE_SCALE1000); | |||
1496 | basic_info->cpu_usage = (basic_info->cpu_usage * 3) / 5; | |||
1497 | #if SIMPLE_CLOCK0 | |||
1498 | /* | |||
1499 | * Clock drift compensation. | |||
1500 | */ | |||
1501 | basic_info->cpu_usage = | |||
1502 | (basic_info->cpu_usage * 1000000)/sched_usec; | |||
1503 | #endif /* SIMPLE_CLOCK */ | |||
1504 | ||||
1505 | flags = 0; | |||
1506 | if (thread->state & TH_SWAPPED0x0100) | |||
1507 | flags |= TH_FLAGS_SWAPPED0x1; | |||
1508 | if (thread->state & TH_IDLE0x80) | |||
1509 | flags |= TH_FLAGS_IDLE0x2; | |||
1510 | ||||
1511 | if (thread->state & TH_HALTED0x10) | |||
1512 | state = TH_STATE_HALTED5; | |||
1513 | else | |||
1514 | if (thread->state & TH_RUN0x04) | |||
1515 | state = TH_STATE_RUNNING1; | |||
1516 | else | |||
1517 | if (thread->state & TH_UNINT0x08) | |||
1518 | state = TH_STATE_UNINTERRUPTIBLE4; | |||
1519 | else | |||
1520 | if (thread->state & TH_SUSP0x02) | |||
1521 | state = TH_STATE_STOPPED2; | |||
1522 | else | |||
1523 | if (thread->state & TH_WAIT0x01) | |||
1524 | state = TH_STATE_WAITING3; | |||
1525 | else | |||
1526 | state = 0; /* ? */ | |||
1527 | ||||
1528 | basic_info->run_state = state; | |||
1529 | basic_info->flags = flags; | |||
1530 | basic_info->suspend_count = thread->user_stop_count; | |||
1531 | if (state == TH_STATE_RUNNING1) | |||
1532 | basic_info->sleep_time = 0; | |||
1533 | else | |||
1534 | basic_info->sleep_time = sched_tick - thread->sched_stamp; | |||
1535 | ||||
1536 | thread_unlock(thread); | |||
1537 | splx(s); | |||
1538 | ||||
1539 | if (*thread_info_count > THREAD_BASIC_INFO_COUNT(sizeof(thread_basic_info_data_t) / sizeof(natural_t))) | |||
1540 | *thread_info_count = THREAD_BASIC_INFO_COUNT(sizeof(thread_basic_info_data_t) / sizeof(natural_t)); | |||
1541 | return KERN_SUCCESS0; | |||
1542 | } | |||
1543 | else if (flavor == THREAD_SCHED_INFO2) { | |||
1544 | register thread_sched_info_t sched_info; | |||
1545 | ||||
1546 | if (*thread_info_count < THREAD_SCHED_INFO_COUNT(sizeof(thread_sched_info_data_t) / sizeof(natural_t))) { | |||
1547 | return KERN_INVALID_ARGUMENT4; | |||
1548 | } | |||
1549 | ||||
1550 | sched_info = (thread_sched_info_t) thread_info_out; | |||
1551 | ||||
1552 | s = splsched(); | |||
1553 | thread_lock(thread); | |||
1554 | ||||
1555 | #if MACH_FIXPRI1 | |||
1556 | sched_info->policy = thread->policy; | |||
1557 | if (thread->policy == POLICY_FIXEDPRI2) { | |||
1558 | sched_info->data = (thread->sched_data * tick)/1000; | |||
1559 | } | |||
1560 | else { | |||
1561 | sched_info->data = 0; | |||
1562 | } | |||
1563 | #else /* MACH_FIXPRI */ | |||
1564 | sched_info->policy = POLICY_TIMESHARE1; | |||
1565 | sched_info->data = 0; | |||
1566 | #endif /* MACH_FIXPRI */ | |||
1567 | ||||
1568 | sched_info->base_priority = thread->priority; | |||
1569 | sched_info->max_priority = thread->max_priority; | |||
1570 | sched_info->cur_priority = thread->sched_pri; | |||
1571 | ||||
1572 | sched_info->depressed = (thread->depress_priority >= 0); | |||
1573 | sched_info->depress_priority = thread->depress_priority; | |||
1574 | ||||
1575 | thread_unlock(thread); | |||
1576 | splx(s); | |||
1577 | ||||
1578 | *thread_info_count = THREAD_SCHED_INFO_COUNT(sizeof(thread_sched_info_data_t) / sizeof(natural_t)); | |||
1579 | return KERN_SUCCESS0; | |||
1580 | } | |||
1581 | ||||
1582 | return KERN_INVALID_ARGUMENT4; | |||
1583 | } | |||
1584 | ||||
1585 | kern_return_t thread_abort( | |||
1586 | register thread_t thread) | |||
1587 | { | |||
1588 | if (thread == THREAD_NULL((thread_t) 0) || thread == current_thread()(active_threads[(0)])) { | |||
1589 | return KERN_INVALID_ARGUMENT4; | |||
1590 | } | |||
1591 | ||||
1592 | /* | |||
1593 | * | |||
1594 | * clear it of an event wait | |||
1595 | */ | |||
1596 | evc_notify_abort(thread); | |||
1597 | ||||
1598 | /* | |||
1599 | * Try to force the thread to a clean point | |||
1600 | * If the halt operation fails return KERN_ABORTED. | |||
1601 | * ipc code will convert this to an ipc interrupted error code. | |||
1602 | */ | |||
1603 | if (thread_halt(thread, FALSE((boolean_t) 0)) != KERN_SUCCESS0) | |||
1604 | return KERN_ABORTED14; | |||
1605 | ||||
1606 | /* | |||
1607 | * If the thread was in an exception, abort that too. | |||
1608 | */ | |||
1609 | mach_msg_abort_rpc(thread); | |||
1610 | ||||
1611 | /* | |||
1612 | * Then set it going again. | |||
1613 | */ | |||
1614 | thread_release(thread); | |||
1615 | ||||
1616 | /* | |||
1617 | * Also abort any depression. | |||
1618 | */ | |||
1619 | if (thread->depress_priority != -1) | |||
1620 | thread_depress_abort(thread); | |||
1621 | ||||
1622 | return KERN_SUCCESS0; | |||
1623 | } | |||
1624 | ||||
1625 | /* | |||
1626 | * thread_start: | |||
1627 | * | |||
1628 | * Start a thread at the specified routine. | |||
1629 | * The thread must be in a swapped state. | |||
1630 | */ | |||
1631 | ||||
1632 | void | |||
1633 | thread_start( | |||
1634 | thread_t thread, | |||
1635 | continuation_t start) | |||
1636 | { | |||
1637 | thread->swap_func = start; | |||
1638 | } | |||
1639 | ||||
1640 | /* | |||
1641 | * kernel_thread: | |||
1642 | * | |||
1643 | * Start up a kernel thread in the specified task. | |||
1644 | */ | |||
1645 | ||||
1646 | thread_t kernel_thread( | |||
1647 | task_t task, | |||
1648 | continuation_t start, | |||
1649 | void * arg) | |||
1650 | { | |||
1651 | thread_t thread; | |||
| ||||
1652 | ||||
1653 | (void) thread_create(task, &thread); | |||
1654 | /* release "extra" ref that thread_create gave us */ | |||
1655 | thread_deallocate(thread); | |||
| ||||
1656 | thread_start(thread, start); | |||
1657 | thread->ith_othersaved.other = arg; | |||
1658 | ||||
1659 | /* | |||
1660 | * We ensure that the kernel thread starts with a stack. | |||
1661 | * The swapin mechanism might not be operational yet. | |||
1662 | */ | |||
1663 | thread_doswapin(thread); | |||
1664 | thread->max_priority = BASEPRI_SYSTEM6; | |||
1665 | thread->priority = BASEPRI_SYSTEM6; | |||
1666 | thread->sched_pri = BASEPRI_SYSTEM6; | |||
1667 | (void) thread_resume(thread); | |||
1668 | return thread; | |||
1669 | } | |||
1670 | ||||
1671 | /* | |||
1672 | * reaper_thread: | |||
1673 | * | |||
1674 | * This kernel thread runs forever looking for threads to destroy | |||
1675 | * (when they request that they be destroyed, of course). | |||
1676 | */ | |||
1677 | void reaper_thread_continue(void) | |||
1678 | { | |||
1679 | for (;;) { | |||
1680 | register thread_t thread; | |||
1681 | spl_t s; | |||
1682 | ||||
1683 | s = splsched(); | |||
1684 | simple_lock(&reaper_lock); | |||
1685 | ||||
1686 | while ((thread = (thread_t) dequeue_head(&reaper_queue)) | |||
1687 | != THREAD_NULL((thread_t) 0)) { | |||
1688 | simple_unlock(&reaper_lock); | |||
1689 | (void) splx(s); | |||
1690 | ||||
1691 | (void) thread_dowait(thread, TRUE((boolean_t) 1)); /* may block */ | |||
1692 | thread_deallocate(thread); /* may block */ | |||
1693 | ||||
1694 | s = splsched(); | |||
1695 | simple_lock(&reaper_lock); | |||
1696 | } | |||
1697 | ||||
1698 | assert_wait((event_t) &reaper_queue, FALSE((boolean_t) 0)); | |||
1699 | simple_unlock(&reaper_lock); | |||
1700 | (void) splx(s); | |||
1701 | counter(c_reaper_thread_block++); | |||
1702 | thread_block(reaper_thread_continue); | |||
1703 | } | |||
1704 | } | |||
1705 | ||||
1706 | void reaper_thread(void) | |||
1707 | { | |||
1708 | reaper_thread_continue(); | |||
1709 | /*NOTREACHED*/ | |||
1710 | } | |||
1711 | ||||
1712 | #if MACH_HOST0 | |||
1713 | /* | |||
1714 | * thread_assign: | |||
1715 | * | |||
1716 | * Change processor set assignment. | |||
1717 | * Caller must hold an extra reference to the thread (if this is | |||
1718 | * called directly from the ipc interface, this is an operation | |||
1719 | * in progress reference). Caller must hold no locks -- this may block. | |||
1720 | */ | |||
1721 | ||||
1722 | kern_return_t | |||
1723 | thread_assign( | |||
1724 | thread_t thread, | |||
1725 | processor_set_t new_pset) | |||
1726 | { | |||
1727 | if (thread == THREAD_NULL((thread_t) 0) || new_pset == PROCESSOR_SET_NULL((processor_set_t) 0)) { | |||
1728 | return KERN_INVALID_ARGUMENT4; | |||
1729 | } | |||
1730 | ||||
1731 | thread_freeze(thread); | |||
1732 | thread_doassign(thread, new_pset, TRUE((boolean_t) 1)); | |||
1733 | ||||
1734 | return KERN_SUCCESS0; | |||
1735 | } | |||
1736 | ||||
1737 | /* | |||
1738 | * thread_freeze: | |||
1739 | * | |||
1740 | * Freeze thread's assignment. Prelude to assigning thread. | |||
1741 | * Only one freeze may be held per thread. | |||
1742 | */ | |||
1743 | void | |||
1744 | thread_freeze( | |||
1745 | thread_t thread) | |||
1746 | { | |||
1747 | spl_t s; | |||
1748 | /* | |||
1749 | * Freeze the assignment, deferring to a prior freeze. | |||
1750 | */ | |||
1751 | s = splsched(); | |||
1752 | thread_lock(thread); | |||
1753 | while (thread->may_assign == FALSE((boolean_t) 0)) { | |||
1754 | thread->assign_active = TRUE((boolean_t) 1); | |||
1755 | thread_sleep((event_t) &thread->assign_active, | |||
1756 | simple_lock_addr(thread->lock)((simple_lock_t)0), FALSE((boolean_t) 0)); | |||
1757 | thread_lock(thread); | |||
1758 | } | |||
1759 | thread->may_assign = FALSE((boolean_t) 0); | |||
1760 | thread_unlock(thread); | |||
1761 | (void) splx(s); | |||
1762 | ||||
1763 | } | |||
1764 | ||||
1765 | /* | |||
1766 | * thread_unfreeze: release freeze on thread's assignment. | |||
1767 | */ | |||
1768 | void | |||
1769 | thread_unfreeze( | |||
1770 | thread_t thread) | |||
1771 | { | |||
1772 | spl_t s; | |||
1773 | ||||
1774 | s = splsched(); | |||
1775 | thread_lock(thread); | |||
1776 | thread->may_assign = TRUE((boolean_t) 1); | |||
1777 | if (thread->assign_active) { | |||
1778 | thread->assign_active = FALSE((boolean_t) 0); | |||
1779 | thread_wakeup((event_t)&thread->assign_active)thread_wakeup_prim(((event_t)&thread->assign_active), ( (boolean_t) 0), 0); | |||
1780 | } | |||
1781 | thread_unlock(thread); | |||
1782 | splx(s); | |||
1783 | } | |||
1784 | ||||
1785 | /* | |||
1786 | * thread_doassign: | |||
1787 | * | |||
1788 | * Actually do thread assignment. thread_will_assign must have been | |||
1789 | * called on the thread. release_freeze argument indicates whether | |||
1790 | * to release freeze on thread. | |||
1791 | */ | |||
1792 | ||||
1793 | void | |||
1794 | thread_doassign( | |||
1795 | register thread_t thread, | |||
1796 | register processor_set_t new_pset, | |||
1797 | boolean_t release_freeze) | |||
1798 | { | |||
1799 | register processor_set_t pset; | |||
1800 | register boolean_t old_empty, new_empty; | |||
1801 | boolean_t recompute_pri = FALSE((boolean_t) 0); | |||
1802 | spl_t s; | |||
1803 | ||||
1804 | /* | |||
1805 | * Check for silly no-op. | |||
1806 | */ | |||
1807 | pset = thread->processor_set; | |||
1808 | if (pset == new_pset) { | |||
1809 | if (release_freeze) | |||
1810 | thread_unfreeze(thread); | |||
1811 | return; | |||
1812 | } | |||
1813 | /* | |||
1814 | * Suspend the thread and stop it if it's not the current thread. | |||
1815 | */ | |||
1816 | thread_hold(thread); | |||
1817 | if (thread != current_thread()(active_threads[(0)])) | |||
1818 | (void) thread_dowait(thread, TRUE((boolean_t) 1)); | |||
1819 | ||||
1820 | /* | |||
1821 | * Lock both psets now, use ordering to avoid deadlocks. | |||
1822 | */ | |||
1823 | Restart: | |||
1824 | if ((vm_offset_t)pset < (vm_offset_t)new_pset) { | |||
1825 | pset_lock(pset); | |||
1826 | pset_lock(new_pset); | |||
1827 | } | |||
1828 | else { | |||
1829 | pset_lock(new_pset); | |||
1830 | pset_lock(pset); | |||
1831 | } | |||
1832 | ||||
1833 | /* | |||
1834 | * Check if new_pset is ok to assign to. If not, reassign | |||
1835 | * to default_pset. | |||
1836 | */ | |||
1837 | if (!new_pset->active) { | |||
1838 | pset_unlock(pset); | |||
1839 | pset_unlock(new_pset); | |||
1840 | new_pset = &default_pset; | |||
1841 | goto Restart; | |||
1842 | } | |||
1843 | ||||
1844 | pset_reference(new_pset); | |||
1845 | ||||
1846 | /* | |||
1847 | * Grab the thread lock and move the thread. | |||
1848 | * Then drop the lock on the old pset and the thread's | |||
1849 | * reference to it. | |||
1850 | */ | |||
1851 | s = splsched(); | |||
1852 | thread_lock(thread); | |||
1853 | ||||
1854 | thread_change_psets(thread, pset, new_pset); | |||
1855 | ||||
1856 | old_empty = pset->empty; | |||
1857 | new_empty = new_pset->empty; | |||
1858 | ||||
1859 | pset_unlock(pset); | |||
1860 | ||||
1861 | /* | |||
1862 | * Reset policy and priorities if needed. | |||
1863 | */ | |||
1864 | #if MACH_FIXPRI1 | |||
1865 | if (thread->policy & new_pset->policies == 0) { | |||
1866 | thread->policy = POLICY_TIMESHARE1; | |||
1867 | recompute_pri = TRUE((boolean_t) 1); | |||
1868 | } | |||
1869 | #endif /* MACH_FIXPRI */ | |||
1870 | ||||
1871 | if (thread->max_priority < new_pset->max_priority) { | |||
1872 | thread->max_priority = new_pset->max_priority; | |||
1873 | if (thread->priority < thread->max_priority) { | |||
1874 | thread->priority = thread->max_priority; | |||
1875 | recompute_pri = TRUE((boolean_t) 1); | |||
1876 | } | |||
1877 | else { | |||
1878 | if ((thread->depress_priority >= 0) && | |||
1879 | (thread->depress_priority < thread->max_priority)) { | |||
1880 | thread->depress_priority = thread->max_priority; | |||
1881 | } | |||
1882 | } | |||
1883 | } | |||
1884 | ||||
1885 | pset_unlock(new_pset); | |||
1886 | ||||
1887 | if (recompute_pri) | |||
1888 | compute_priority(thread, TRUE((boolean_t) 1)); | |||
1889 | ||||
1890 | if (release_freeze) { | |||
1891 | thread->may_assign = TRUE((boolean_t) 1); | |||
1892 | if (thread->assign_active) { | |||
1893 | thread->assign_active = FALSE((boolean_t) 0); | |||
1894 | thread_wakeup((event_t)&thread->assign_active)thread_wakeup_prim(((event_t)&thread->assign_active), ( (boolean_t) 0), 0); | |||
1895 | } | |||
1896 | } | |||
1897 | ||||
1898 | thread_unlock(thread); | |||
1899 | splx(s); | |||
1900 | ||||
1901 | pset_deallocate(pset); | |||
1902 | ||||
1903 | /* | |||
1904 | * Figure out hold status of thread. Threads assigned to empty | |||
1905 | * psets must be held. Therefore: | |||
1906 | * If old pset was empty release its hold. | |||
1907 | * Release our hold from above unless new pset is empty. | |||
1908 | */ | |||
1909 | ||||
1910 | if (old_empty) | |||
1911 | thread_release(thread); | |||
1912 | if (!new_empty) | |||
1913 | thread_release(thread); | |||
1914 | ||||
1915 | /* | |||
1916 | * If current_thread is assigned, context switch to force | |||
1917 | * assignment to happen. This also causes hold to take | |||
1918 | * effect if the new pset is empty. | |||
1919 | */ | |||
1920 | if (thread == current_thread()(active_threads[(0)])) { | |||
1921 | s = splsched(); | |||
1922 | ast_on(cpu_number(), AST_BLOCK)({ if ((need_ast[(0)] |= (0x4)) != 0x0) { ; } }); | |||
1923 | (void) splx(s); | |||
1924 | } | |||
1925 | } | |||
1926 | #else /* MACH_HOST */ | |||
1927 | kern_return_t | |||
1928 | thread_assign( | |||
1929 | thread_t thread, | |||
1930 | processor_set_t new_pset) | |||
1931 | { | |||
1932 | return KERN_FAILURE5; | |||
1933 | } | |||
1934 | #endif /* MACH_HOST */ | |||
1935 | ||||
1936 | /* | |||
1937 | * thread_assign_default: | |||
1938 | * | |||
1939 | * Special version of thread_assign for assigning threads to default | |||
1940 | * processor set. | |||
1941 | */ | |||
1942 | kern_return_t | |||
1943 | thread_assign_default( | |||
1944 | thread_t thread) | |||
1945 | { | |||
1946 | return thread_assign(thread, &default_pset); | |||
1947 | } | |||
1948 | ||||
1949 | /* | |||
1950 | * thread_get_assignment | |||
1951 | * | |||
1952 | * Return current assignment for this thread. | |||
1953 | */ | |||
1954 | kern_return_t thread_get_assignment( | |||
1955 | thread_t thread, | |||
1956 | processor_set_t *pset) | |||
1957 | { | |||
1958 | *pset = thread->processor_set; | |||
1959 | pset_reference(*pset); | |||
1960 | return KERN_SUCCESS0; | |||
1961 | } | |||
1962 | ||||
1963 | /* | |||
1964 | * thread_priority: | |||
1965 | * | |||
1966 | * Set priority (and possibly max priority) for thread. | |||
1967 | */ | |||
1968 | kern_return_t | |||
1969 | thread_priority( | |||
1970 | thread_t thread, | |||
1971 | int priority, | |||
1972 | boolean_t set_max) | |||
1973 | { | |||
1974 | spl_t s; | |||
1975 | kern_return_t ret = KERN_SUCCESS0; | |||
1976 | ||||
1977 | if ((thread == THREAD_NULL((thread_t) 0)) || invalid_pri(priority)(((priority) < 0) || ((priority) >= 50))) | |||
1978 | return KERN_INVALID_ARGUMENT4; | |||
1979 | ||||
1980 | s = splsched(); | |||
1981 | thread_lock(thread); | |||
1982 | ||||
1983 | /* | |||
1984 | * Check for violation of max priority | |||
1985 | */ | |||
1986 | if (priority < thread->max_priority) { | |||
1987 | ret = KERN_FAILURE5; | |||
1988 | } | |||
1989 | else { | |||
1990 | /* | |||
1991 | * Set priorities. If a depression is in progress, | |||
1992 | * change the priority to restore. | |||
1993 | */ | |||
1994 | if (thread->depress_priority >= 0) { | |||
1995 | thread->depress_priority = priority; | |||
1996 | } | |||
1997 | else { | |||
1998 | thread->priority = priority; | |||
1999 | compute_priority(thread, TRUE((boolean_t) 1)); | |||
2000 | } | |||
2001 | ||||
2002 | if (set_max) | |||
2003 | thread->max_priority = priority; | |||
2004 | } | |||
2005 | thread_unlock(thread); | |||
2006 | (void) splx(s); | |||
2007 | ||||
2008 | return ret; | |||
2009 | } | |||
2010 | ||||
2011 | /* | |||
2012 | * thread_set_own_priority: | |||
2013 | * | |||
2014 | * Internal use only; sets the priority of the calling thread. | |||
2015 | * Will adjust max_priority if necessary. | |||
2016 | */ | |||
2017 | void | |||
2018 | thread_set_own_priority( | |||
2019 | int priority) | |||
2020 | { | |||
2021 | spl_t s; | |||
2022 | thread_t thread = current_thread()(active_threads[(0)]); | |||
2023 | ||||
2024 | s = splsched(); | |||
2025 | thread_lock(thread); | |||
2026 | ||||
2027 | if (priority < thread->max_priority) | |||
2028 | thread->max_priority = priority; | |||
2029 | thread->priority = priority; | |||
2030 | compute_priority(thread, TRUE((boolean_t) 1)); | |||
2031 | ||||
2032 | thread_unlock(thread); | |||
2033 | (void) splx(s); | |||
2034 | } | |||
2035 | ||||
2036 | /* | |||
2037 | * thread_max_priority: | |||
2038 | * | |||
2039 | * Reset the max priority for a thread. | |||
2040 | */ | |||
2041 | kern_return_t | |||
2042 | thread_max_priority( | |||
2043 | thread_t thread, | |||
2044 | processor_set_t pset, | |||
2045 | int max_priority) | |||
2046 | { | |||
2047 | spl_t s; | |||
2048 | kern_return_t ret = KERN_SUCCESS0; | |||
2049 | ||||
2050 | if ((thread == THREAD_NULL((thread_t) 0)) || (pset == PROCESSOR_SET_NULL((processor_set_t) 0)) || | |||
2051 | invalid_pri(max_priority)(((max_priority) < 0) || ((max_priority) >= 50))) | |||
2052 | return KERN_INVALID_ARGUMENT4; | |||
2053 | ||||
2054 | s = splsched(); | |||
2055 | thread_lock(thread); | |||
2056 | ||||
2057 | #if MACH_HOST0 | |||
2058 | /* | |||
2059 | * Check for wrong processor set. | |||
2060 | */ | |||
2061 | if (pset != thread->processor_set) { | |||
2062 | ret = KERN_FAILURE5; | |||
2063 | } | |||
2064 | else { | |||
2065 | #endif /* MACH_HOST */ | |||
2066 | thread->max_priority = max_priority; | |||
2067 | ||||
2068 | /* | |||
2069 | * Reset priority if it violates new max priority | |||
2070 | */ | |||
2071 | if (max_priority > thread->priority) { | |||
2072 | thread->priority = max_priority; | |||
2073 | ||||
2074 | compute_priority(thread, TRUE((boolean_t) 1)); | |||
2075 | } | |||
2076 | else { | |||
2077 | if (thread->depress_priority >= 0 && | |||
2078 | max_priority > thread->depress_priority) | |||
2079 | thread->depress_priority = max_priority; | |||
2080 | } | |||
2081 | #if MACH_HOST0 | |||
2082 | } | |||
2083 | #endif /* MACH_HOST */ | |||
2084 | ||||
2085 | thread_unlock(thread); | |||
2086 | (void) splx(s); | |||
2087 | ||||
2088 | return ret; | |||
2089 | } | |||
2090 | ||||
2091 | /* | |||
2092 | * thread_policy: | |||
2093 | * | |||
2094 | * Set scheduling policy for thread. | |||
2095 | */ | |||
2096 | kern_return_t | |||
2097 | thread_policy( | |||
2098 | thread_t thread, | |||
2099 | int policy, | |||
2100 | int data) | |||
2101 | { | |||
2102 | #if MACH_FIXPRI1 | |||
2103 | register kern_return_t ret = KERN_SUCCESS0; | |||
2104 | register int temp; | |||
2105 | spl_t s; | |||
2106 | #endif /* MACH_FIXPRI */ | |||
2107 | ||||
2108 | if ((thread == THREAD_NULL((thread_t) 0)) || invalid_policy(policy)(((policy) <= 0) || ((policy) > 2))) | |||
2109 | return KERN_INVALID_ARGUMENT4; | |||
2110 | ||||
2111 | #if MACH_FIXPRI1 | |||
2112 | s = splsched(); | |||
2113 | thread_lock(thread); | |||
2114 | ||||
2115 | /* | |||
2116 | * Check if changing policy. | |||
2117 | */ | |||
2118 | if (policy == thread->policy) { | |||
2119 | /* | |||
2120 | * Just changing data. This is meaningless for | |||
2121 | * timesharing, quantum for fixed priority (but | |||
2122 | * has no effect until current quantum runs out). | |||
2123 | */ | |||
2124 | if (policy == POLICY_FIXEDPRI2) { | |||
2125 | temp = data * 1000; | |||
2126 | if (temp % tick) | |||
2127 | temp += tick; | |||
2128 | thread->sched_data = temp/tick; | |||
2129 | } | |||
2130 | } | |||
2131 | else { | |||
2132 | /* | |||
2133 | * Changing policy. Check if new policy is allowed. | |||
2134 | */ | |||
2135 | if ((thread->processor_set->policies & policy) == 0) { | |||
2136 | ret = KERN_FAILURE5; | |||
2137 | } | |||
2138 | else { | |||
2139 | /* | |||
2140 | * Changing policy. Save data and calculate new | |||
2141 | * priority. | |||
2142 | */ | |||
2143 | thread->policy = policy; | |||
2144 | if (policy == POLICY_FIXEDPRI2) { | |||
2145 | temp = data * 1000; | |||
2146 | if (temp % tick) | |||
2147 | temp += tick; | |||
2148 | thread->sched_data = temp/tick; | |||
2149 | } | |||
2150 | compute_priority(thread, TRUE((boolean_t) 1)); | |||
2151 | } | |||
2152 | } | |||
2153 | thread_unlock(thread); | |||
2154 | (void) splx(s); | |||
2155 | ||||
2156 | return ret; | |||
2157 | #else /* MACH_FIXPRI */ | |||
2158 | if (policy == POLICY_TIMESHARE1) | |||
2159 | return KERN_SUCCESS0; | |||
2160 | else | |||
2161 | return KERN_FAILURE5; | |||
2162 | #endif /* MACH_FIXPRI */ | |||
2163 | } | |||
2164 | ||||
2165 | /* | |||
2166 | * thread_wire: | |||
2167 | * | |||
2168 | * Specify that the target thread must always be able | |||
2169 | * to run and to allocate memory. | |||
2170 | */ | |||
2171 | kern_return_t | |||
2172 | thread_wire( | |||
2173 | host_t host, | |||
2174 | thread_t thread, | |||
2175 | boolean_t wired) | |||
2176 | { | |||
2177 | spl_t s; | |||
2178 | ||||
2179 | if (host == HOST_NULL((host_t)0)) | |||
2180 | return KERN_INVALID_ARGUMENT4; | |||
2181 | ||||
2182 | if (thread == THREAD_NULL((thread_t) 0)) | |||
2183 | return KERN_INVALID_ARGUMENT4; | |||
2184 | ||||
2185 | /* | |||
2186 | * This implementation only works for the current thread. | |||
2187 | * See stack_privilege. | |||
2188 | */ | |||
2189 | if (thread != current_thread()(active_threads[(0)])) | |||
2190 | return KERN_INVALID_ARGUMENT4; | |||
2191 | ||||
2192 | s = splsched(); | |||
2193 | thread_lock(thread); | |||
2194 | ||||
2195 | if (wired) { | |||
2196 | thread->vm_privilege = TRUE((boolean_t) 1); | |||
2197 | stack_privilege(thread); | |||
2198 | } | |||
2199 | else { | |||
2200 | thread->vm_privilege = FALSE((boolean_t) 0); | |||
2201 | /*XXX stack_unprivilege(thread); */ | |||
2202 | thread->stack_privilege = 0; | |||
2203 | } | |||
2204 | ||||
2205 | thread_unlock(thread); | |||
2206 | splx(s); | |||
2207 | ||||
2208 | return KERN_SUCCESS0; | |||
2209 | } | |||
2210 | ||||
2211 | /* | |||
2212 | * thread_collect_scan: | |||
2213 | * | |||
2214 | * Attempt to free resources owned by threads. | |||
2215 | * pcb_collect doesn't do anything yet. | |||
2216 | */ | |||
2217 | ||||
2218 | void thread_collect_scan(void) | |||
2219 | { | |||
2220 | #if 0 | |||
2221 | register thread_t thread, prev_thread; | |||
2222 | processor_set_t pset, prev_pset; | |||
2223 | ||||
2224 | prev_thread = THREAD_NULL((thread_t) 0); | |||
2225 | prev_pset = PROCESSOR_SET_NULL((processor_set_t) 0); | |||
2226 | ||||
2227 | simple_lock(&all_psets_lock); | |||
2228 | queue_iterate(&all_psets, pset, processor_set_t, all_psets)for ((pset) = (processor_set_t) ((&all_psets)->next); ! (((&all_psets)) == ((queue_entry_t)(pset))); (pset) = (processor_set_t ) ((&(pset)->all_psets)->next)) { | |||
2229 | pset_lock(pset); | |||
2230 | queue_iterate(&pset->threads, thread, thread_t, pset_threads)for ((thread) = (thread_t) ((&pset->threads)->next) ; !(((&pset->threads)) == ((queue_entry_t)(thread))); ( thread) = (thread_t) ((&(thread)->pset_threads)->next )) { | |||
2231 | spl_t s = splsched(); | |||
2232 | thread_lock(thread); | |||
2233 | ||||
2234 | /* | |||
2235 | * Only collect threads which are | |||
2236 | * not runnable and are swapped. | |||
2237 | */ | |||
2238 | ||||
2239 | if ((thread->state & (TH_RUN0x04|TH_SWAPPED0x0100)) | |||
2240 | == TH_SWAPPED0x0100) { | |||
2241 | thread->ref_count++; | |||
2242 | thread_unlock(thread); | |||
2243 | (void) splx(s); | |||
2244 | pset->ref_count++; | |||
2245 | pset_unlock(pset); | |||
2246 | simple_unlock(&all_psets_lock); | |||
2247 | ||||
2248 | pcb_collect(thread); | |||
2249 | ||||
2250 | if (prev_thread != THREAD_NULL((thread_t) 0)) | |||
2251 | thread_deallocate(prev_thread); | |||
2252 | prev_thread = thread; | |||
2253 | ||||
2254 | if (prev_pset != PROCESSOR_SET_NULL((processor_set_t) 0)) | |||
2255 | pset_deallocate(prev_pset); | |||
2256 | prev_pset = pset; | |||
2257 | ||||
2258 | simple_lock(&all_psets_lock); | |||
2259 | pset_lock(pset); | |||
2260 | } else { | |||
2261 | thread_unlock(thread); | |||
2262 | (void) splx(s); | |||
2263 | } | |||
2264 | } | |||
2265 | pset_unlock(pset); | |||
2266 | } | |||
2267 | simple_unlock(&all_psets_lock); | |||
2268 | ||||
2269 | if (prev_thread != THREAD_NULL((thread_t) 0)) | |||
2270 | thread_deallocate(prev_thread); | |||
2271 | if (prev_pset != PROCESSOR_SET_NULL((processor_set_t) 0)) | |||
2272 | pset_deallocate(prev_pset); | |||
2273 | #endif /* 0 */ | |||
2274 | } | |||
2275 | ||||
2276 | boolean_t thread_collect_allowed = TRUE((boolean_t) 1); | |||
2277 | unsigned thread_collect_last_tick = 0; | |||
2278 | unsigned thread_collect_max_rate = 0; /* in ticks */ | |||
2279 | ||||
2280 | /* | |||
2281 | * consider_thread_collect: | |||
2282 | * | |||
2283 | * Called by the pageout daemon when the system needs more free pages. | |||
2284 | */ | |||
2285 | ||||
2286 | void consider_thread_collect(void) | |||
2287 | { | |||
2288 | /* | |||
2289 | * By default, don't attempt thread collection more frequently | |||
2290 | * than once a second. | |||
2291 | */ | |||
2292 | ||||
2293 | if (thread_collect_max_rate == 0) | |||
2294 | thread_collect_max_rate = hz; | |||
2295 | ||||
2296 | if (thread_collect_allowed && | |||
2297 | (sched_tick > | |||
2298 | (thread_collect_last_tick + thread_collect_max_rate))) { | |||
2299 | thread_collect_last_tick = sched_tick; | |||
2300 | thread_collect_scan(); | |||
2301 | } | |||
2302 | } | |||
2303 | ||||
2304 | #if MACH_DEBUG1 | |||
2305 | ||||
2306 | vm_size_t stack_usage( | |||
2307 | register vm_offset_t stack) | |||
2308 | { | |||
2309 | int i; | |||
2310 | ||||
2311 | for (i = 0; i < KERNEL_STACK_SIZE(1*4096)/sizeof(unsigned int); i++) | |||
2312 | if (((unsigned int *)stack)[i] != STACK_MARKER0xdeadbeefU) | |||
2313 | break; | |||
2314 | ||||
2315 | return KERNEL_STACK_SIZE(1*4096) - i * sizeof(unsigned int); | |||
2316 | } | |||
2317 | ||||
2318 | /* | |||
2319 | * Machine-dependent code should call stack_init | |||
2320 | * before doing its own initialization of the stack. | |||
2321 | */ | |||
2322 | ||||
2323 | void stack_init( | |||
2324 | register vm_offset_t stack) | |||
2325 | { | |||
2326 | if (stack_check_usage) { | |||
2327 | int i; | |||
2328 | ||||
2329 | for (i = 0; i < KERNEL_STACK_SIZE(1*4096)/sizeof(unsigned int); i++) | |||
2330 | ((unsigned int *)stack)[i] = STACK_MARKER0xdeadbeefU; | |||
2331 | } | |||
2332 | } | |||
2333 | ||||
2334 | /* | |||
2335 | * Machine-dependent code should call stack_finalize | |||
2336 | * before releasing the stack memory. | |||
2337 | */ | |||
2338 | ||||
2339 | void stack_finalize( | |||
2340 | register vm_offset_t stack) | |||
2341 | { | |||
2342 | if (stack_check_usage) { | |||
2343 | vm_size_t used = stack_usage(stack); | |||
2344 | ||||
2345 | simple_lock(&stack_usage_lock); | |||
2346 | if (used > stack_max_usage) | |||
2347 | stack_max_usage = used; | |||
2348 | simple_unlock(&stack_usage_lock); | |||
2349 | } | |||
2350 | } | |||
2351 | ||||
2352 | #ifndef MACHINE_STACK | |||
2353 | /* | |||
2354 | * stack_statistics: | |||
2355 | * | |||
2356 | * Return statistics on cached kernel stacks. | |||
2357 | * *maxusagep must be initialized by the caller. | |||
2358 | */ | |||
2359 | ||||
2360 | void stack_statistics( | |||
2361 | natural_t *totalp, | |||
2362 | vm_size_t *maxusagep) | |||
2363 | { | |||
2364 | spl_t s; | |||
2365 | ||||
2366 | s = splsched(); | |||
2367 | stack_lock(); | |||
2368 | if (stack_check_usage) { | |||
2369 | vm_offset_t stack; | |||
2370 | ||||
2371 | /* | |||
2372 | * This is pretty expensive to do at splsched, | |||
2373 | * but it only happens when someone makes | |||
2374 | * a debugging call, so it should be OK. | |||
2375 | */ | |||
2376 | ||||
2377 | for (stack = stack_free_list; stack != 0; | |||
2378 | stack = stack_next(stack)(*((vm_offset_t *)((stack) + (1*4096)) - 1))) { | |||
2379 | vm_size_t usage = stack_usage(stack); | |||
2380 | ||||
2381 | if (usage > *maxusagep) | |||
2382 | *maxusagep = usage; | |||
2383 | } | |||
2384 | } | |||
2385 | ||||
2386 | *totalp = stack_free_count; | |||
2387 | stack_unlock(); | |||
2388 | (void) splx(s); | |||
2389 | } | |||
2390 | #endif /* MACHINE_STACK */ | |||
2391 | ||||
2392 | kern_return_t host_stack_usage( | |||
2393 | host_t host, | |||
2394 | vm_size_t *reservedp, | |||
2395 | unsigned int *totalp, | |||
2396 | vm_size_t *spacep, | |||
2397 | vm_size_t *residentp, | |||
2398 | vm_size_t *maxusagep, | |||
2399 | vm_offset_t *maxstackp) | |||
2400 | { | |||
2401 | natural_t total; | |||
2402 | vm_size_t maxusage; | |||
2403 | ||||
2404 | if (host == HOST_NULL((host_t)0)) | |||
2405 | return KERN_INVALID_HOST22; | |||
2406 | ||||
2407 | simple_lock(&stack_usage_lock); | |||
2408 | maxusage = stack_max_usage; | |||
2409 | simple_unlock(&stack_usage_lock); | |||
2410 | ||||
2411 | stack_statistics(&total, &maxusage); | |||
2412 | ||||
2413 | *reservedp = 0; | |||
2414 | *totalp = total; | |||
2415 | *spacep = *residentp = total * round_page(KERNEL_STACK_SIZE)((vm_offset_t)((((vm_offset_t)((1*4096))) + ((1 << 12)- 1)) & ~((1 << 12)-1))); | |||
2416 | *maxusagep = maxusage; | |||
2417 | *maxstackp = 0; | |||
2418 | return KERN_SUCCESS0; | |||
2419 | } | |||
2420 | ||||
2421 | kern_return_t processor_set_stack_usage( | |||
2422 | processor_set_t pset, | |||
2423 | unsigned int *totalp, | |||
2424 | vm_size_t *spacep, | |||
2425 | vm_size_t *residentp, | |||
2426 | vm_size_t *maxusagep, | |||
2427 | vm_offset_t *maxstackp) | |||
2428 | { | |||
2429 | unsigned int total; | |||
2430 | vm_size_t maxusage; | |||
2431 | vm_offset_t maxstack; | |||
2432 | ||||
2433 | register thread_t *threads; | |||
2434 | register thread_t tmp_thread; | |||
2435 | ||||
2436 | unsigned int actual; /* this many things */ | |||
2437 | unsigned int i; | |||
2438 | ||||
2439 | vm_size_t size, size_needed; | |||
2440 | vm_offset_t addr; | |||
2441 | ||||
2442 | if (pset == PROCESSOR_SET_NULL((processor_set_t) 0)) | |||
2443 | return KERN_INVALID_ARGUMENT4; | |||
2444 | ||||
2445 | size = 0; addr = 0; | |||
2446 | ||||
2447 | for (;;) { | |||
2448 | pset_lock(pset); | |||
2449 | if (!pset->active) { | |||
2450 | pset_unlock(pset); | |||
2451 | return KERN_INVALID_ARGUMENT4; | |||
2452 | } | |||
2453 | ||||
2454 | actual = pset->thread_count; | |||
2455 | ||||
2456 | /* do we have the memory we need? */ | |||
2457 | ||||
2458 | size_needed = actual * sizeof(thread_t); | |||
2459 | if (size_needed <= size) | |||
2460 | break; | |||
2461 | ||||
2462 | /* unlock the pset and allocate more memory */ | |||
2463 | pset_unlock(pset); | |||
2464 | ||||
2465 | if (size != 0) | |||
2466 | kfree(addr, size); | |||
2467 | ||||
2468 | assert(size_needed > 0)({ if (!(size_needed > 0)) Assert("size_needed > 0", "../kern/thread.c" , 2468); }); | |||
2469 | size = size_needed; | |||
2470 | ||||
2471 | addr = kalloc(size); | |||
2472 | if (addr == 0) | |||
2473 | return KERN_RESOURCE_SHORTAGE6; | |||
2474 | } | |||
2475 | ||||
2476 | /* OK, have memory and the processor_set is locked & active */ | |||
2477 | ||||
2478 | threads = (thread_t *) addr; | |||
2479 | for (i = 0, tmp_thread = (thread_t) queue_first(&pset->threads)((&pset->threads)->next); | |||
2480 | i < actual; | |||
2481 | i++, | |||
2482 | tmp_thread = (thread_t) queue_next(&tmp_thread->pset_threads)((&tmp_thread->pset_threads)->next)) { | |||
2483 | thread_reference(tmp_thread); | |||
2484 | threads[i] = tmp_thread; | |||
2485 | } | |||
2486 | assert(queue_end(&pset->threads, (queue_entry_t) tmp_thread))({ if (!(((&pset->threads) == ((queue_entry_t) tmp_thread )))) Assert("queue_end(&pset->threads, (queue_entry_t) tmp_thread)" , "../kern/thread.c", 2486); }); | |||
2487 | ||||
2488 | /* can unlock processor set now that we have the thread refs */ | |||
2489 | pset_unlock(pset); | |||
2490 | ||||
2491 | /* calculate maxusage and free thread references */ | |||
2492 | ||||
2493 | total = 0; | |||
2494 | maxusage = 0; | |||
2495 | maxstack = 0; | |||
2496 | for (i = 0; i < actual; i++) { | |||
2497 | thread_t thread = threads[i]; | |||
2498 | vm_offset_t stack = 0; | |||
2499 | ||||
2500 | /* | |||
2501 | * thread->kernel_stack is only accurate if the | |||
2502 | * thread isn't swapped and is not executing. | |||
2503 | * | |||
2504 | * Of course, we don't have the appropriate locks | |||
2505 | * for these shenanigans. | |||
2506 | */ | |||
2507 | ||||
2508 | if ((thread->state & TH_SWAPPED0x0100) == 0) { | |||
2509 | int cpu; | |||
2510 | ||||
2511 | stack = thread->kernel_stack; | |||
2512 | ||||
2513 | for (cpu = 0; cpu < NCPUS1; cpu++) | |||
2514 | if (active_threads[cpu] == thread) { | |||
2515 | stack = active_stacks[cpu]; | |||
2516 | break; | |||
2517 | } | |||
2518 | } | |||
2519 | ||||
2520 | if (stack != 0) { | |||
2521 | total++; | |||
2522 | ||||
2523 | if (stack_check_usage) { | |||
2524 | vm_size_t usage = stack_usage(stack); | |||
2525 | ||||
2526 | if (usage > maxusage) { | |||
2527 | maxusage = usage; | |||
2528 | maxstack = (vm_offset_t) thread; | |||
2529 | } | |||
2530 | } | |||
2531 | } | |||
2532 | ||||
2533 | thread_deallocate(thread); | |||
2534 | } | |||
2535 | ||||
2536 | if (size != 0) | |||
2537 | kfree(addr, size); | |||
2538 | ||||
2539 | *totalp = total; | |||
2540 | *residentp = *spacep = total * round_page(KERNEL_STACK_SIZE)((vm_offset_t)((((vm_offset_t)((1*4096))) + ((1 << 12)- 1)) & ~((1 << 12)-1))); | |||
2541 | *maxusagep = maxusage; | |||
2542 | *maxstackp = maxstack; | |||
2543 | return KERN_SUCCESS0; | |||
2544 | } | |||
2545 | ||||
2546 | /* | |||
2547 | * Useful in the debugger: | |||
2548 | */ | |||
2549 | void | |||
2550 | thread_stats(void) | |||
2551 | { | |||
2552 | register thread_t thread; | |||
2553 | int total = 0, rpcreply = 0; | |||
2554 | ||||
2555 | queue_iterate(&default_pset.threads, thread, thread_t, pset_threads)for ((thread) = (thread_t) ((&default_pset.threads)->next ); !(((&default_pset.threads)) == ((queue_entry_t)(thread ))); (thread) = (thread_t) ((&(thread)->pset_threads)-> next)) { | |||
2556 | total++; | |||
2557 | if (thread->ith_rpc_reply != IP_NULL((ipc_port_t) ((ipc_object_t) 0))) | |||
2558 | rpcreply++; | |||
2559 | } | |||
2560 | ||||
2561 | printf("%d total threads.\n", total); | |||
2562 | printf("%d using rpc_reply.\n", rpcreply); | |||
2563 | } | |||
2564 | #endif /* MACH_DEBUG */ |