File: | obj/../vm/vm_fault.c |
Location: | line 729, column 5 |
Description: | Value stored to 'offset' is never read |
1 | /* |
2 | * Mach Operating System |
3 | * Copyright (c) 1994,1990,1989,1988,1987 Carnegie Mellon University. |
4 | * Copyright (c) 1993,1994 The University of Utah and |
5 | * the Computer Systems Laboratory (CSL). |
6 | * All rights reserved. |
7 | * |
8 | * Permission to use, copy, modify and distribute this software and its |
9 | * documentation is hereby granted, provided that both the copyright |
10 | * notice and this permission notice appear in all copies of the |
11 | * software, derivative works or modified versions, and any portions |
12 | * thereof, and that both notices appear in supporting documentation. |
13 | * |
14 | * CARNEGIE MELLON, THE UNIVERSITY OF UTAH AND CSL ALLOW FREE USE OF |
15 | * THIS SOFTWARE IN ITS "AS IS" CONDITION, AND DISCLAIM ANY LIABILITY |
16 | * OF ANY KIND FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF |
17 | * THIS SOFTWARE. |
18 | * |
19 | * Carnegie Mellon requests users of this software to return to |
20 | * |
21 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU |
22 | * School of Computer Science |
23 | * Carnegie Mellon University |
24 | * Pittsburgh PA 15213-3890 |
25 | * |
26 | * any improvements or extensions that they make and grant Carnegie Mellon |
27 | * the rights to redistribute these changes. |
28 | */ |
29 | /* |
30 | * File: vm_fault.c |
31 | * Author: Avadis Tevanian, Jr., Michael Wayne Young |
32 | * |
33 | * Page fault handling module. |
34 | */ |
35 | |
36 | #include <kern/printf.h> |
37 | #include <vm/vm_fault.h> |
38 | #include <mach/kern_return.h> |
39 | #include <mach/message.h> /* for error codes */ |
40 | #include <kern/counters.h> |
41 | #include <kern/debug.h> |
42 | #include <kern/thread.h> |
43 | #include <kern/sched_prim.h> |
44 | #include <vm/vm_map.h> |
45 | #include <vm/vm_object.h> |
46 | #include <vm/vm_page.h> |
47 | #include <vm/pmap.h> |
48 | #include <mach/vm_statistics.h> |
49 | #include <vm/vm_pageout.h> |
50 | #include <mach/vm_param.h> |
51 | #include <mach/memory_object.h> |
52 | #include <vm/memory_object_user.user.h> |
53 | /* For memory_object_data_{request,unlock} */ |
54 | #include <kern/macro_help.h> |
55 | #include <kern/slab.h> |
56 | |
57 | #if MACH_PCSAMPLE1 |
58 | #include <kern/pc_sample.h> |
59 | #endif |
60 | |
61 | |
62 | |
63 | /* |
64 | * State needed by vm_fault_continue. |
65 | * This is a little hefty to drop directly |
66 | * into the thread structure. |
67 | */ |
68 | typedef struct vm_fault_state { |
69 | struct vm_map *vmf_map; |
70 | vm_offset_t vmf_vaddr; |
71 | vm_prot_t vmf_fault_type; |
72 | boolean_t vmf_change_wiring; |
73 | void (*vmf_continuation)(); |
74 | vm_map_version_t vmf_version; |
75 | boolean_t vmf_wired; |
76 | struct vm_object *vmf_object; |
77 | vm_offset_t vmf_offset; |
78 | vm_prot_t vmf_prot; |
79 | |
80 | boolean_t vmfp_backoff; |
81 | struct vm_object *vmfp_object; |
82 | vm_offset_t vmfp_offset; |
83 | struct vm_page *vmfp_first_m; |
84 | vm_prot_t vmfp_access; |
85 | } vm_fault_state_t; |
86 | |
87 | struct kmem_cache vm_fault_state_cache; |
88 | |
89 | int vm_object_absent_max = 50; |
90 | |
91 | int vm_fault_debug = 0; |
92 | |
93 | boolean_t vm_fault_dirty_handling = FALSE((boolean_t) 0); |
94 | boolean_t vm_fault_interruptible = TRUE((boolean_t) 1); |
95 | |
96 | boolean_t software_reference_bits = TRUE((boolean_t) 1); |
97 | |
98 | #if MACH_KDB0 |
99 | extern struct db_watchpoint *db_watchpoint_list; |
100 | #endif /* MACH_KDB */ |
101 | |
102 | /* |
103 | * Routine: vm_fault_init |
104 | * Purpose: |
105 | * Initialize our private data structures. |
106 | */ |
107 | void vm_fault_init(void) |
108 | { |
109 | kmem_cache_init(&vm_fault_state_cache, "vm_fault_state", |
110 | sizeof(vm_fault_state_t), 0, NULL((void *) 0), NULL((void *) 0), NULL((void *) 0), 0); |
111 | } |
112 | |
113 | /* |
114 | * Routine: vm_fault_cleanup |
115 | * Purpose: |
116 | * Clean up the result of vm_fault_page. |
117 | * Results: |
118 | * The paging reference for "object" is released. |
119 | * "object" is unlocked. |
120 | * If "top_page" is not null, "top_page" is |
121 | * freed and the paging reference for the object |
122 | * containing it is released. |
123 | * |
124 | * In/out conditions: |
125 | * "object" must be locked. |
126 | */ |
127 | void |
128 | vm_fault_cleanup(object, top_page) |
129 | register vm_object_t object; |
130 | register vm_page_t top_page; |
131 | { |
132 | vm_object_paging_end(object)({ ({ if (!((object)->paging_in_progress != 0)) Assert("(object)->paging_in_progress != 0" , "../vm/vm_fault.c", 132); }); if (--(object)->paging_in_progress == 0) { ({ if ((object)->all_wanted & (1 << (2) )) thread_wakeup_prim(((event_t)(((vm_offset_t) object) + (2) )), ((boolean_t) 0), 0); (object)->all_wanted &= ~(1 << (2)); }); } }); |
133 | vm_object_unlock(object); |
134 | |
135 | if (top_page != VM_PAGE_NULL((vm_page_t) 0)) { |
136 | object = top_page->object; |
137 | vm_object_lock(object); |
138 | VM_PAGE_FREE(top_page)({ ; vm_page_free(top_page); ; }); |
139 | vm_object_paging_end(object)({ ({ if (!((object)->paging_in_progress != 0)) Assert("(object)->paging_in_progress != 0" , "../vm/vm_fault.c", 139); }); if (--(object)->paging_in_progress == 0) { ({ if ((object)->all_wanted & (1 << (2) )) thread_wakeup_prim(((event_t)(((vm_offset_t) object) + (2) )), ((boolean_t) 0), 0); (object)->all_wanted &= ~(1 << (2)); }); } }); |
140 | vm_object_unlock(object); |
141 | } |
142 | } |
143 | |
144 | |
145 | #if MACH_PCSAMPLE1 |
146 | /* |
147 | * Do PC sampling on current thread, assuming |
148 | * that it is the thread taking this page fault. |
149 | * |
150 | * Must check for THREAD_NULL, since faults |
151 | * can occur before threads are running. |
152 | */ |
153 | |
154 | #define vm_stat_sample(flavor)({ thread_t _thread_ = (active_threads[(0)]); if (_thread_ != ((thread_t) 0)) ({ task_t task; if ((_thread_)->pc_sample .sampletypes & ((flavor))) take_pc_sample((_thread_), & (_thread_)->pc_sample, ((flavor))); task = (_thread_)-> task; if (task->pc_sample.sampletypes & ((flavor))) take_pc_sample ((_thread_), &task->pc_sample, ((flavor))); }); }) \ |
155 | MACRO_BEGIN({ \ |
156 | thread_t _thread_ = current_thread()(active_threads[(0)]); \ |
157 | \ |
158 | if (_thread_ != THREAD_NULL((thread_t) 0)) \ |
159 | take_pc_sample_macro(_thread_, (flavor))({ task_t task; if ((_thread_)->pc_sample.sampletypes & ((flavor))) take_pc_sample((_thread_), &(_thread_)->pc_sample , ((flavor))); task = (_thread_)->task; if (task->pc_sample .sampletypes & ((flavor))) take_pc_sample((_thread_), & task->pc_sample, ((flavor))); }); \ |
160 | MACRO_END}) |
161 | |
162 | #else |
163 | #define vm_stat_sample(x)({ thread_t _thread_ = (active_threads[(0)]); if (_thread_ != ((thread_t) 0)) ({ task_t task; if ((_thread_)->pc_sample .sampletypes & ((x))) take_pc_sample((_thread_), &(_thread_ )->pc_sample, ((x))); task = (_thread_)->task; if (task ->pc_sample.sampletypes & ((x))) take_pc_sample((_thread_ ), &task->pc_sample, ((x))); }); }) |
164 | #endif /* MACH_PCSAMPLE */ |
165 | |
166 | |
167 | |
168 | /* |
169 | * Routine: vm_fault_page |
170 | * Purpose: |
171 | * Find the resident page for the virtual memory |
172 | * specified by the given virtual memory object |
173 | * and offset. |
174 | * Additional arguments: |
175 | * The required permissions for the page is given |
176 | * in "fault_type". Desired permissions are included |
177 | * in "protection". |
178 | * |
179 | * If the desired page is known to be resident (for |
180 | * example, because it was previously wired down), asserting |
181 | * the "unwiring" parameter will speed the search. |
182 | * |
183 | * If the operation can be interrupted (by thread_abort |
184 | * or thread_terminate), then the "interruptible" |
185 | * parameter should be asserted. |
186 | * |
187 | * Results: |
188 | * The page containing the proper data is returned |
189 | * in "result_page". |
190 | * |
191 | * In/out conditions: |
192 | * The source object must be locked and referenced, |
193 | * and must donate one paging reference. The reference |
194 | * is not affected. The paging reference and lock are |
195 | * consumed. |
196 | * |
197 | * If the call succeeds, the object in which "result_page" |
198 | * resides is left locked and holding a paging reference. |
199 | * If this is not the original object, a busy page in the |
200 | * original object is returned in "top_page", to prevent other |
201 | * callers from pursuing this same data, along with a paging |
202 | * reference for the original object. The "top_page" should |
203 | * be destroyed when this guarantee is no longer required. |
204 | * The "result_page" is also left busy. It is not removed |
205 | * from the pageout queues. |
206 | */ |
207 | vm_fault_return_t vm_fault_page(first_object, first_offset, |
208 | fault_type, must_be_resident, interruptible, |
209 | protection, |
210 | result_page, top_page, |
211 | resume, continuation) |
212 | /* Arguments: */ |
213 | vm_object_t first_object; /* Object to begin search */ |
214 | vm_offset_t first_offset; /* Offset into object */ |
215 | vm_prot_t fault_type; /* What access is requested */ |
216 | boolean_t must_be_resident;/* Must page be resident? */ |
217 | boolean_t interruptible; /* May fault be interrupted? */ |
218 | /* Modifies in place: */ |
219 | vm_prot_t *protection; /* Protection for mapping */ |
220 | /* Returns: */ |
221 | vm_page_t *result_page; /* Page found, if successful */ |
222 | vm_page_t *top_page; /* Page in top object, if |
223 | * not result_page. |
224 | */ |
225 | /* More arguments: */ |
226 | boolean_t resume; /* We are restarting. */ |
227 | void (*continuation)(); /* Continuation for blocking. */ |
228 | { |
229 | register |
230 | vm_page_t m; |
231 | register |
232 | vm_object_t object; |
233 | register |
234 | vm_offset_t offset; |
235 | vm_page_t first_m; |
236 | vm_object_t next_object; |
237 | vm_object_t copy_object; |
238 | boolean_t look_for_page; |
239 | vm_prot_t access_required; |
240 | |
241 | if (resume) { |
242 | register vm_fault_state_t *state = |
243 | (vm_fault_state_t *) current_thread()(active_threads[(0)])->ith_othersaved.other; |
244 | |
245 | if (state->vmfp_backoff) |
246 | goto after_block_and_backoff; |
247 | |
248 | object = state->vmfp_object; |
249 | offset = state->vmfp_offset; |
250 | first_m = state->vmfp_first_m; |
251 | access_required = state->vmfp_access; |
252 | goto after_thread_block; |
253 | } |
254 | |
255 | vm_stat_sample(SAMPLED_PC_VM_FAULTS_ANY)({ thread_t _thread_ = (active_threads[(0)]); if (_thread_ != ((thread_t) 0)) ({ task_t task; if ((_thread_)->pc_sample .sampletypes & ((0x100))) take_pc_sample((_thread_), & (_thread_)->pc_sample, ((0x100))); task = (_thread_)->task ; if (task->pc_sample.sampletypes & ((0x100))) take_pc_sample ((_thread_), &task->pc_sample, ((0x100))); }); }); |
256 | vm_stat.faults++; /* needs lock XXX */ |
257 | current_task()((active_threads[(0)])->task)->faults++; |
258 | |
259 | /* |
260 | * Recovery actions |
261 | */ |
262 | #define RELEASE_PAGE(m){ ({ (m)->busy = ((boolean_t) 0); if ((m)->wanted) { (m )->wanted = ((boolean_t) 0); thread_wakeup_prim((((event_t ) m)), ((boolean_t) 0), 0); } }); ; vm_page_unwire(m); ; } \ |
263 | MACRO_BEGIN({ \ |
264 | PAGE_WAKEUP_DONE(m)({ (m)->busy = ((boolean_t) 0); if ((m)->wanted) { (m)-> wanted = ((boolean_t) 0); thread_wakeup_prim((((event_t) m)), ((boolean_t) 0), 0); } }); \ |
265 | vm_page_lock_queues(); \ |
266 | if (!m->active && !m->inactive) \ |
267 | vm_page_activate(m); \ |
268 | vm_page_unlock_queues(); \ |
269 | MACRO_END}) |
270 | |
271 | if (vm_fault_dirty_handling |
272 | #if MACH_KDB0 |
273 | /* |
274 | * If there are watchpoints set, then |
275 | * we don't want to give away write permission |
276 | * on a read fault. Make the task write fault, |
277 | * so that the watchpoint code notices the access. |
278 | */ |
279 | || db_watchpoint_list |
280 | #endif /* MACH_KDB */ |
281 | ) { |
282 | /* |
283 | * If we aren't asking for write permission, |
284 | * then don't give it away. We're using write |
285 | * faults to set the dirty bit. |
286 | */ |
287 | if (!(fault_type & VM_PROT_WRITE((vm_prot_t) 0x02))) |
288 | *protection &= ~VM_PROT_WRITE((vm_prot_t) 0x02); |
289 | } |
290 | |
291 | if (!vm_fault_interruptible) |
292 | interruptible = FALSE((boolean_t) 0); |
293 | |
294 | /* |
295 | * INVARIANTS (through entire routine): |
296 | * |
297 | * 1) At all times, we must either have the object |
298 | * lock or a busy page in some object to prevent |
299 | * some other thread from trying to bring in |
300 | * the same page. |
301 | * |
302 | * Note that we cannot hold any locks during the |
303 | * pager access or when waiting for memory, so |
304 | * we use a busy page then. |
305 | * |
306 | * Note also that we aren't as concerned about more than |
307 | * one thread attempting to memory_object_data_unlock |
308 | * the same page at once, so we don't hold the page |
309 | * as busy then, but do record the highest unlock |
310 | * value so far. [Unlock requests may also be delivered |
311 | * out of order.] |
312 | * |
313 | * 2) To prevent another thread from racing us down the |
314 | * shadow chain and entering a new page in the top |
315 | * object before we do, we must keep a busy page in |
316 | * the top object while following the shadow chain. |
317 | * |
318 | * 3) We must increment paging_in_progress on any object |
319 | * for which we have a busy page, to prevent |
320 | * vm_object_collapse from removing the busy page |
321 | * without our noticing. |
322 | * |
323 | * 4) We leave busy pages on the pageout queues. |
324 | * If the pageout daemon comes across a busy page, |
325 | * it will remove the page from the pageout queues. |
326 | */ |
327 | |
328 | /* |
329 | * Search for the page at object/offset. |
330 | */ |
331 | |
332 | object = first_object; |
333 | offset = first_offset; |
334 | first_m = VM_PAGE_NULL((vm_page_t) 0); |
335 | access_required = fault_type; |
336 | |
337 | /* |
338 | * See whether this page is resident |
339 | */ |
340 | |
341 | while (TRUE((boolean_t) 1)) { |
342 | m = vm_page_lookup(object, offset); |
343 | if (m != VM_PAGE_NULL((vm_page_t) 0)) { |
344 | /* |
345 | * If the page is being brought in, |
346 | * wait for it and then retry. |
347 | * |
348 | * A possible optimization: if the page |
349 | * is known to be resident, we can ignore |
350 | * pages that are absent (regardless of |
351 | * whether they're busy). |
352 | */ |
353 | |
354 | if (m->busy) { |
355 | kern_return_t wait_result; |
356 | |
357 | PAGE_ASSERT_WAIT(m, interruptible)({ (m)->wanted = ((boolean_t) 1); assert_wait((event_t) (m ), (interruptible)); }); |
358 | vm_object_unlock(object); |
359 | if (continuation != (void (*)()) 0) { |
360 | register vm_fault_state_t *state = |
361 | (vm_fault_state_t *) current_thread()(active_threads[(0)])->ith_othersaved.other; |
362 | |
363 | /* |
364 | * Save variables in case |
365 | * thread_block discards |
366 | * our kernel stack. |
367 | */ |
368 | |
369 | state->vmfp_backoff = FALSE((boolean_t) 0); |
370 | state->vmfp_object = object; |
371 | state->vmfp_offset = offset; |
372 | state->vmfp_first_m = first_m; |
373 | state->vmfp_access = |
374 | access_required; |
375 | state->vmf_prot = *protection; |
376 | |
377 | counter(c_vm_fault_page_block_busy_user++); |
378 | thread_block(continuation); |
379 | } else |
380 | { |
381 | counter(c_vm_fault_page_block_busy_kernel++); |
382 | thread_block((void (*)()) 0); |
383 | } |
384 | after_thread_block: |
385 | wait_result = current_thread()(active_threads[(0)])->wait_result; |
386 | vm_object_lock(object); |
387 | if (wait_result != THREAD_AWAKENED0) { |
388 | vm_fault_cleanup(object, first_m); |
389 | if (wait_result == THREAD_RESTART3) |
390 | return(VM_FAULT_RETRY1); |
391 | else |
392 | return(VM_FAULT_INTERRUPTED2); |
393 | } |
394 | continue; |
395 | } |
396 | |
397 | /* |
398 | * If the page is in error, give up now. |
399 | */ |
400 | |
401 | if (m->error) { |
402 | VM_PAGE_FREE(m)({ ; vm_page_free(m); ; }); |
403 | vm_fault_cleanup(object, first_m); |
404 | return(VM_FAULT_MEMORY_ERROR5); |
405 | } |
406 | |
407 | /* |
408 | * If the page isn't busy, but is absent, |
409 | * then it was deemed "unavailable". |
410 | */ |
411 | |
412 | if (m->absent) { |
413 | /* |
414 | * Remove the non-existent page (unless it's |
415 | * in the top object) and move on down to the |
416 | * next object (if there is one). |
417 | */ |
418 | |
419 | offset += object->shadow_offset; |
420 | access_required = VM_PROT_READ((vm_prot_t) 0x01); |
421 | next_object = object->shadow; |
422 | if (next_object == VM_OBJECT_NULL((vm_object_t) 0)) { |
423 | vm_page_t real_m; |
424 | |
425 | assert(!must_be_resident)({ if (!(!must_be_resident)) Assert("!must_be_resident", "../vm/vm_fault.c" , 425); }); |
426 | |
427 | /* |
428 | * Absent page at bottom of shadow |
429 | * chain; zero fill the page we left |
430 | * busy in the first object, and flush |
431 | * the absent page. But first we |
432 | * need to allocate a real page. |
433 | */ |
434 | |
435 | real_m = vm_page_grab(!object->internal); |
436 | if (real_m == VM_PAGE_NULL((vm_page_t) 0)) { |
437 | vm_fault_cleanup(object, first_m); |
438 | return(VM_FAULT_MEMORY_SHORTAGE3); |
439 | } |
440 | |
441 | if (object != first_object) { |
442 | VM_PAGE_FREE(m)({ ; vm_page_free(m); ; }); |
443 | vm_object_paging_end(object)({ ({ if (!((object)->paging_in_progress != 0)) Assert("(object)->paging_in_progress != 0" , "../vm/vm_fault.c", 443); }); if (--(object)->paging_in_progress == 0) { ({ if ((object)->all_wanted & (1 << (2) )) thread_wakeup_prim(((event_t)(((vm_offset_t) object) + (2) )), ((boolean_t) 0), 0); (object)->all_wanted &= ~(1 << (2)); }); } }); |
444 | vm_object_unlock(object); |
445 | object = first_object; |
446 | offset = first_offset; |
447 | m = first_m; |
448 | first_m = VM_PAGE_NULL((vm_page_t) 0); |
449 | vm_object_lock(object); |
450 | } |
451 | |
452 | VM_PAGE_FREE(m)({ ; vm_page_free(m); ; }); |
453 | assert(real_m->busy)({ if (!(real_m->busy)) Assert("real_m->busy", "../vm/vm_fault.c" , 453); }); |
454 | vm_page_lock_queues(); |
455 | vm_page_insert(real_m, object, offset); |
456 | vm_page_unlock_queues(); |
457 | m = real_m; |
458 | |
459 | /* |
460 | * Drop the lock while zero filling |
461 | * page. Then break because this |
462 | * is the page we wanted. Checking |
463 | * the page lock is a waste of time; |
464 | * this page was either absent or |
465 | * newly allocated -- in both cases |
466 | * it can't be page locked by a pager. |
467 | */ |
468 | vm_object_unlock(object); |
469 | |
470 | vm_page_zero_fill(m); |
471 | |
472 | vm_stat_sample(SAMPLED_PC_VM_ZFILL_FAULTS)({ thread_t _thread_ = (active_threads[(0)]); if (_thread_ != ((thread_t) 0)) ({ task_t task; if ((_thread_)->pc_sample .sampletypes & ((0x10))) take_pc_sample((_thread_), & (_thread_)->pc_sample, ((0x10))); task = (_thread_)->task ; if (task->pc_sample.sampletypes & ((0x10))) take_pc_sample ((_thread_), &task->pc_sample, ((0x10))); }); }); |
473 | |
474 | vm_stat.zero_fill_count++; |
475 | current_task()((active_threads[(0)])->task)->zero_fills++; |
476 | vm_object_lock(object); |
477 | pmap_clear_modify(m->phys_addr); |
478 | break; |
479 | } else { |
480 | if (must_be_resident) { |
481 | vm_object_paging_end(object)({ ({ if (!((object)->paging_in_progress != 0)) Assert("(object)->paging_in_progress != 0" , "../vm/vm_fault.c", 481); }); if (--(object)->paging_in_progress == 0) { ({ if ((object)->all_wanted & (1 << (2) )) thread_wakeup_prim(((event_t)(((vm_offset_t) object) + (2) )), ((boolean_t) 0), 0); (object)->all_wanted &= ~(1 << (2)); }); } }); |
482 | } else if (object != first_object) { |
483 | vm_object_paging_end(object)({ ({ if (!((object)->paging_in_progress != 0)) Assert("(object)->paging_in_progress != 0" , "../vm/vm_fault.c", 483); }); if (--(object)->paging_in_progress == 0) { ({ if ((object)->all_wanted & (1 << (2) )) thread_wakeup_prim(((event_t)(((vm_offset_t) object) + (2) )), ((boolean_t) 0), 0); (object)->all_wanted &= ~(1 << (2)); }); } }); |
484 | VM_PAGE_FREE(m)({ ; vm_page_free(m); ; }); |
485 | } else { |
486 | first_m = m; |
487 | m->absent = FALSE((boolean_t) 0); |
488 | vm_object_absent_release(object)({ (object)->absent_count--; ({ if (((object))->all_wanted & (1 << (3))) thread_wakeup_prim(((event_t)(((vm_offset_t ) (object)) + (3))), ((boolean_t) 0), 0); ((object))->all_wanted &= ~(1 << (3)); }); }); |
489 | m->busy = TRUE((boolean_t) 1); |
490 | |
491 | vm_page_lock_queues(); |
492 | VM_PAGE_QUEUES_REMOVE(m)({ if (m->active) { { register queue_entry_t next, prev; next = (m)->pageq.next; prev = (m)->pageq.prev; if ((&vm_page_queue_active ) == next) (&vm_page_queue_active)->prev = prev; else ( (vm_page_t)next)->pageq.prev = prev; if ((&vm_page_queue_active ) == prev) (&vm_page_queue_active)->next = next; else ( (vm_page_t)prev)->pageq.next = next; }; m->active = ((boolean_t ) 0); vm_page_active_count--; } if (m->inactive) { { register queue_entry_t next, prev; next = (m)->pageq.next; prev = ( m)->pageq.prev; if ((&vm_page_queue_inactive) == next) (&vm_page_queue_inactive)->prev = prev; else ((vm_page_t )next)->pageq.prev = prev; if ((&vm_page_queue_inactive ) == prev) (&vm_page_queue_inactive)->next = next; else ((vm_page_t)prev)->pageq.next = next; }; m->inactive = ((boolean_t) 0); vm_page_inactive_count--; } }); |
493 | vm_page_unlock_queues(); |
494 | } |
495 | vm_object_lock(next_object); |
496 | vm_object_unlock(object); |
497 | object = next_object; |
498 | vm_object_paging_begin(object)((object)->paging_in_progress++); |
499 | continue; |
500 | } |
501 | } |
502 | |
503 | /* |
504 | * If the desired access to this page has |
505 | * been locked out, request that it be unlocked. |
506 | */ |
507 | |
508 | if (access_required & m->page_lock) { |
509 | if ((access_required & m->unlock_request) != access_required) { |
510 | vm_prot_t new_unlock_request; |
511 | kern_return_t rc; |
512 | |
513 | if (!object->pager_ready) { |
514 | vm_object_assert_wait(object,({ (object)->all_wanted |= 1 << (1); assert_wait((event_t )(((vm_offset_t) object) + (1)), (interruptible)); }) |
515 | VM_OBJECT_EVENT_PAGER_READY,({ (object)->all_wanted |= 1 << (1); assert_wait((event_t )(((vm_offset_t) object) + (1)), (interruptible)); }) |
516 | interruptible)({ (object)->all_wanted |= 1 << (1); assert_wait((event_t )(((vm_offset_t) object) + (1)), (interruptible)); }); |
517 | goto block_and_backoff; |
518 | } |
519 | |
520 | new_unlock_request = m->unlock_request = |
521 | (access_required | m->unlock_request); |
522 | vm_object_unlock(object); |
523 | if ((rc = memory_object_data_unlock( |
524 | object->pager, |
525 | object->pager_request, |
526 | offset + object->paging_offset, |
527 | PAGE_SIZE(1 << 12), |
528 | new_unlock_request)) |
529 | != KERN_SUCCESS0) { |
530 | printf("vm_fault: memory_object_data_unlock failed\n"); |
531 | vm_object_lock(object); |
532 | vm_fault_cleanup(object, first_m); |
533 | return((rc == MACH_SEND_INTERRUPTED0x10000007) ? |
534 | VM_FAULT_INTERRUPTED2 : |
535 | VM_FAULT_MEMORY_ERROR5); |
536 | } |
537 | vm_object_lock(object); |
538 | continue; |
539 | } |
540 | |
541 | PAGE_ASSERT_WAIT(m, interruptible)({ (m)->wanted = ((boolean_t) 1); assert_wait((event_t) (m ), (interruptible)); }); |
542 | goto block_and_backoff; |
543 | } |
544 | |
545 | /* |
546 | * We mark the page busy and leave it on |
547 | * the pageout queues. If the pageout |
548 | * deamon comes across it, then it will |
549 | * remove the page. |
550 | */ |
551 | |
552 | if (!software_reference_bits) { |
553 | vm_page_lock_queues(); |
554 | if (m->inactive) { |
555 | vm_stat_sample(SAMPLED_PC_VM_REACTIVATION_FAULTS)({ thread_t _thread_ = (active_threads[(0)]); if (_thread_ != ((thread_t) 0)) ({ task_t task; if ((_thread_)->pc_sample .sampletypes & ((0x20))) take_pc_sample((_thread_), & (_thread_)->pc_sample, ((0x20))); task = (_thread_)->task ; if (task->pc_sample.sampletypes & ((0x20))) take_pc_sample ((_thread_), &task->pc_sample, ((0x20))); }); }); |
556 | vm_stat.reactivations++; |
557 | current_task()((active_threads[(0)])->task)->reactivations++; |
558 | } |
559 | |
560 | VM_PAGE_QUEUES_REMOVE(m)({ if (m->active) { { register queue_entry_t next, prev; next = (m)->pageq.next; prev = (m)->pageq.prev; if ((&vm_page_queue_active ) == next) (&vm_page_queue_active)->prev = prev; else ( (vm_page_t)next)->pageq.prev = prev; if ((&vm_page_queue_active ) == prev) (&vm_page_queue_active)->next = next; else ( (vm_page_t)prev)->pageq.next = next; }; m->active = ((boolean_t ) 0); vm_page_active_count--; } if (m->inactive) { { register queue_entry_t next, prev; next = (m)->pageq.next; prev = ( m)->pageq.prev; if ((&vm_page_queue_inactive) == next) (&vm_page_queue_inactive)->prev = prev; else ((vm_page_t )next)->pageq.prev = prev; if ((&vm_page_queue_inactive ) == prev) (&vm_page_queue_inactive)->next = next; else ((vm_page_t)prev)->pageq.next = next; }; m->inactive = ((boolean_t) 0); vm_page_inactive_count--; } }); |
561 | vm_page_unlock_queues(); |
562 | } |
563 | |
564 | assert(!m->busy)({ if (!(!m->busy)) Assert("!m->busy", "../vm/vm_fault.c" , 564); }); |
565 | m->busy = TRUE((boolean_t) 1); |
566 | assert(!m->absent)({ if (!(!m->absent)) Assert("!m->absent", "../vm/vm_fault.c" , 566); }); |
567 | break; |
568 | } |
569 | |
570 | look_for_page = |
571 | (object->pager_created) |
572 | #if MACH_PAGEMAP1 |
573 | && (vm_external_state_get(object->existence_info, offset + object->paging_offset)(((object->existence_info) != ((vm_external_t) 0)) ? _vm_external_state_get (object->existence_info, offset + object->paging_offset ) : 2) != |
574 | VM_EXTERNAL_STATE_ABSENT3) |
575 | #endif /* MACH_PAGEMAP */ |
576 | ; |
577 | |
578 | if ((look_for_page || (object == first_object)) |
579 | && !must_be_resident) { |
580 | /* |
581 | * Allocate a new page for this object/offset |
582 | * pair. |
583 | */ |
584 | |
585 | m = vm_page_grab_fictitious(); |
586 | if (m == VM_PAGE_NULL((vm_page_t) 0)) { |
587 | vm_fault_cleanup(object, first_m); |
588 | return(VM_FAULT_FICTITIOUS_SHORTAGE4); |
589 | } |
590 | |
591 | vm_page_lock_queues(); |
592 | vm_page_insert(m, object, offset); |
593 | vm_page_unlock_queues(); |
594 | } |
595 | |
596 | if (look_for_page && !must_be_resident) { |
597 | kern_return_t rc; |
598 | |
599 | /* |
600 | * If the memory manager is not ready, we |
601 | * cannot make requests. |
602 | */ |
603 | if (!object->pager_ready) { |
604 | vm_object_assert_wait(object,({ (object)->all_wanted |= 1 << (1); assert_wait((event_t )(((vm_offset_t) object) + (1)), (interruptible)); }) |
605 | VM_OBJECT_EVENT_PAGER_READY,({ (object)->all_wanted |= 1 << (1); assert_wait((event_t )(((vm_offset_t) object) + (1)), (interruptible)); }) |
606 | interruptible)({ (object)->all_wanted |= 1 << (1); assert_wait((event_t )(((vm_offset_t) object) + (1)), (interruptible)); }); |
607 | VM_PAGE_FREE(m)({ ; vm_page_free(m); ; }); |
608 | goto block_and_backoff; |
609 | } |
610 | |
611 | if (object->internal) { |
612 | /* |
613 | * Requests to the default pager |
614 | * must reserve a real page in advance, |
615 | * because the pager's data-provided |
616 | * won't block for pages. |
617 | */ |
618 | |
619 | if (m->fictitious && !vm_page_convert(m, FALSE((boolean_t) 0))) { |
620 | VM_PAGE_FREE(m)({ ; vm_page_free(m); ; }); |
621 | vm_fault_cleanup(object, first_m); |
622 | return(VM_FAULT_MEMORY_SHORTAGE3); |
623 | } |
624 | } else if (object->absent_count > |
625 | vm_object_absent_max) { |
626 | /* |
627 | * If there are too many outstanding page |
628 | * requests pending on this object, we |
629 | * wait for them to be resolved now. |
630 | */ |
631 | |
632 | vm_object_absent_assert_wait(object, interruptible)({ ({ ((object))->all_wanted |= 1 << (3); assert_wait ((event_t)(((vm_offset_t) (object)) + (3)), ((interruptible)) ); }); }); |
633 | VM_PAGE_FREE(m)({ ; vm_page_free(m); ; }); |
634 | goto block_and_backoff; |
635 | } |
636 | |
637 | /* |
638 | * Indicate that the page is waiting for data |
639 | * from the memory manager. |
640 | */ |
641 | |
642 | m->absent = TRUE((boolean_t) 1); |
643 | object->absent_count++; |
644 | |
645 | /* |
646 | * We have a busy page, so we can |
647 | * release the object lock. |
648 | */ |
649 | vm_object_unlock(object); |
650 | |
651 | /* |
652 | * Call the memory manager to retrieve the data. |
653 | */ |
654 | |
655 | vm_stat.pageins++; |
656 | vm_stat_sample(SAMPLED_PC_VM_PAGEIN_FAULTS)({ thread_t _thread_ = (active_threads[(0)]); if (_thread_ != ((thread_t) 0)) ({ task_t task; if ((_thread_)->pc_sample .sampletypes & ((0x40))) take_pc_sample((_thread_), & (_thread_)->pc_sample, ((0x40))); task = (_thread_)->task ; if (task->pc_sample.sampletypes & ((0x40))) take_pc_sample ((_thread_), &task->pc_sample, ((0x40))); }); }); |
657 | current_task()((active_threads[(0)])->task)->pageins++; |
658 | |
659 | if ((rc = memory_object_data_request(object->pager, |
660 | object->pager_request, |
661 | m->offset + object->paging_offset, |
662 | PAGE_SIZE(1 << 12), access_required)) != KERN_SUCCESS0) { |
663 | if (rc != MACH_SEND_INTERRUPTED0x10000007) |
664 | printf("%s(0x%p, 0x%p, 0x%lx, 0x%x, 0x%x) failed, %x\n", |
665 | "memory_object_data_request", |
666 | object->pager, |
667 | object->pager_request, |
668 | m->offset + object->paging_offset, |
669 | PAGE_SIZE(1 << 12), access_required, rc); |
670 | /* |
671 | * Don't want to leave a busy page around, |
672 | * but the data request may have blocked, |
673 | * so check if it's still there and busy. |
674 | */ |
675 | vm_object_lock(object); |
676 | if (m == vm_page_lookup(object,offset) && |
677 | m->absent && m->busy) |
678 | VM_PAGE_FREE(m)({ ; vm_page_free(m); ; }); |
679 | vm_fault_cleanup(object, first_m); |
680 | return((rc == MACH_SEND_INTERRUPTED0x10000007) ? |
681 | VM_FAULT_INTERRUPTED2 : |
682 | VM_FAULT_MEMORY_ERROR5); |
683 | } |
684 | |
685 | /* |
686 | * Retry with same object/offset, since new data may |
687 | * be in a different page (i.e., m is meaningless at |
688 | * this point). |
689 | */ |
690 | vm_object_lock(object); |
691 | continue; |
692 | } |
693 | |
694 | /* |
695 | * For the XP system, the only case in which we get here is if |
696 | * object has no pager (or unwiring). If the pager doesn't |
697 | * have the page this is handled in the m->absent case above |
698 | * (and if you change things here you should look above). |
699 | */ |
700 | if (object == first_object) |
701 | first_m = m; |
702 | else |
703 | { |
704 | assert(m == VM_PAGE_NULL)({ if (!(m == ((vm_page_t) 0))) Assert("m == VM_PAGE_NULL", "../vm/vm_fault.c" , 704); }); |
705 | } |
706 | |
707 | /* |
708 | * Move on to the next object. Lock the next |
709 | * object before unlocking the current one. |
710 | */ |
711 | access_required = VM_PROT_READ((vm_prot_t) 0x01); |
712 | |
713 | offset += object->shadow_offset; |
714 | next_object = object->shadow; |
715 | if (next_object == VM_OBJECT_NULL((vm_object_t) 0)) { |
716 | assert(!must_be_resident)({ if (!(!must_be_resident)) Assert("!must_be_resident", "../vm/vm_fault.c" , 716); }); |
717 | |
718 | /* |
719 | * If there's no object left, fill the page |
720 | * in the top object with zeros. But first we |
721 | * need to allocate a real page. |
722 | */ |
723 | |
724 | if (object != first_object) { |
725 | vm_object_paging_end(object)({ ({ if (!((object)->paging_in_progress != 0)) Assert("(object)->paging_in_progress != 0" , "../vm/vm_fault.c", 725); }); if (--(object)->paging_in_progress == 0) { ({ if ((object)->all_wanted & (1 << (2) )) thread_wakeup_prim(((event_t)(((vm_offset_t) object) + (2) )), ((boolean_t) 0), 0); (object)->all_wanted &= ~(1 << (2)); }); } }); |
726 | vm_object_unlock(object); |
727 | |
728 | object = first_object; |
729 | offset = first_offset; |
Value stored to 'offset' is never read | |
730 | vm_object_lock(object); |
731 | } |
732 | |
733 | m = first_m; |
734 | assert(m->object == object)({ if (!(m->object == object)) Assert("m->object == object" , "../vm/vm_fault.c", 734); }); |
735 | first_m = VM_PAGE_NULL((vm_page_t) 0); |
736 | |
737 | if (m->fictitious && !vm_page_convert(m, !object->internal)) { |
738 | VM_PAGE_FREE(m)({ ; vm_page_free(m); ; }); |
739 | vm_fault_cleanup(object, VM_PAGE_NULL((vm_page_t) 0)); |
740 | return(VM_FAULT_MEMORY_SHORTAGE3); |
741 | } |
742 | |
743 | vm_object_unlock(object); |
744 | vm_page_zero_fill(m); |
745 | vm_stat_sample(SAMPLED_PC_VM_ZFILL_FAULTS)({ thread_t _thread_ = (active_threads[(0)]); if (_thread_ != ((thread_t) 0)) ({ task_t task; if ((_thread_)->pc_sample .sampletypes & ((0x10))) take_pc_sample((_thread_), & (_thread_)->pc_sample, ((0x10))); task = (_thread_)->task ; if (task->pc_sample.sampletypes & ((0x10))) take_pc_sample ((_thread_), &task->pc_sample, ((0x10))); }); }); |
746 | vm_stat.zero_fill_count++; |
747 | current_task()((active_threads[(0)])->task)->zero_fills++; |
748 | vm_object_lock(object); |
749 | pmap_clear_modify(m->phys_addr); |
750 | break; |
751 | } |
752 | else { |
753 | vm_object_lock(next_object); |
754 | if ((object != first_object) || must_be_resident) |
755 | vm_object_paging_end(object)({ ({ if (!((object)->paging_in_progress != 0)) Assert("(object)->paging_in_progress != 0" , "../vm/vm_fault.c", 755); }); if (--(object)->paging_in_progress == 0) { ({ if ((object)->all_wanted & (1 << (2) )) thread_wakeup_prim(((event_t)(((vm_offset_t) object) + (2) )), ((boolean_t) 0), 0); (object)->all_wanted &= ~(1 << (2)); }); } }); |
756 | vm_object_unlock(object); |
757 | object = next_object; |
758 | vm_object_paging_begin(object)((object)->paging_in_progress++); |
759 | } |
760 | } |
761 | |
762 | /* |
763 | * PAGE HAS BEEN FOUND. |
764 | * |
765 | * This page (m) is: |
766 | * busy, so that we can play with it; |
767 | * not absent, so that nobody else will fill it; |
768 | * possibly eligible for pageout; |
769 | * |
770 | * The top-level page (first_m) is: |
771 | * VM_PAGE_NULL if the page was found in the |
772 | * top-level object; |
773 | * busy, not absent, and ineligible for pageout. |
774 | * |
775 | * The current object (object) is locked. A paging |
776 | * reference is held for the current and top-level |
777 | * objects. |
778 | */ |
779 | |
780 | #if EXTRA_ASSERTIONS |
781 | assert(m->busy && !m->absent)({ if (!(m->busy && !m->absent)) Assert("m->busy && !m->absent" , "../vm/vm_fault.c", 781); }); |
782 | assert((first_m == VM_PAGE_NULL) ||({ if (!((first_m == ((vm_page_t) 0)) || (first_m->busy && !first_m->absent && !first_m->active && !first_m->inactive))) Assert("(first_m == VM_PAGE_NULL) || (first_m->busy && !first_m->absent && !first_m->active && !first_m->inactive)" , "../vm/vm_fault.c", 784); }) |
783 | (first_m->busy && !first_m->absent &&({ if (!((first_m == ((vm_page_t) 0)) || (first_m->busy && !first_m->absent && !first_m->active && !first_m->inactive))) Assert("(first_m == VM_PAGE_NULL) || (first_m->busy && !first_m->absent && !first_m->active && !first_m->inactive)" , "../vm/vm_fault.c", 784); }) |
784 | !first_m->active && !first_m->inactive))({ if (!((first_m == ((vm_page_t) 0)) || (first_m->busy && !first_m->absent && !first_m->active && !first_m->inactive))) Assert("(first_m == VM_PAGE_NULL) || (first_m->busy && !first_m->absent && !first_m->active && !first_m->inactive)" , "../vm/vm_fault.c", 784); }); |
785 | #endif /* EXTRA_ASSERTIONS */ |
786 | |
787 | /* |
788 | * If the page is being written, but isn't |
789 | * already owned by the top-level object, |
790 | * we have to copy it into a new page owned |
791 | * by the top-level object. |
792 | */ |
793 | |
794 | if (object != first_object) { |
795 | /* |
796 | * We only really need to copy if we |
797 | * want to write it. |
798 | */ |
799 | |
800 | if (fault_type & VM_PROT_WRITE((vm_prot_t) 0x02)) { |
801 | vm_page_t copy_m; |
802 | |
803 | assert(!must_be_resident)({ if (!(!must_be_resident)) Assert("!must_be_resident", "../vm/vm_fault.c" , 803); }); |
804 | |
805 | /* |
806 | * If we try to collapse first_object at this |
807 | * point, we may deadlock when we try to get |
808 | * the lock on an intermediate object (since we |
809 | * have the bottom object locked). We can't |
810 | * unlock the bottom object, because the page |
811 | * we found may move (by collapse) if we do. |
812 | * |
813 | * Instead, we first copy the page. Then, when |
814 | * we have no more use for the bottom object, |
815 | * we unlock it and try to collapse. |
816 | * |
817 | * Note that we copy the page even if we didn't |
818 | * need to... that's the breaks. |
819 | */ |
820 | |
821 | /* |
822 | * Allocate a page for the copy |
823 | */ |
824 | copy_m = vm_page_grab(!first_object->internal); |
825 | if (copy_m == VM_PAGE_NULL((vm_page_t) 0)) { |
826 | RELEASE_PAGE(m){ ({ (m)->busy = ((boolean_t) 0); if ((m)->wanted) { (m )->wanted = ((boolean_t) 0); thread_wakeup_prim((((event_t ) m)), ((boolean_t) 0), 0); } }); ; vm_page_unwire(m); ; }; |
827 | vm_fault_cleanup(object, first_m); |
828 | return(VM_FAULT_MEMORY_SHORTAGE3); |
829 | } |
830 | |
831 | vm_object_unlock(object); |
832 | vm_page_copy(m, copy_m); |
833 | vm_object_lock(object); |
834 | |
835 | /* |
836 | * If another map is truly sharing this |
837 | * page with us, we have to flush all |
838 | * uses of the original page, since we |
839 | * can't distinguish those which want the |
840 | * original from those which need the |
841 | * new copy. |
842 | * |
843 | * XXXO If we know that only one map has |
844 | * access to this page, then we could |
845 | * avoid the pmap_page_protect() call. |
846 | */ |
847 | |
848 | vm_page_lock_queues(); |
849 | vm_page_deactivate(m); |
850 | pmap_page_protect(m->phys_addr, VM_PROT_NONE((vm_prot_t) 0x00)); |
851 | vm_page_unlock_queues(); |
852 | |
853 | /* |
854 | * We no longer need the old page or object. |
855 | */ |
856 | |
857 | PAGE_WAKEUP_DONE(m)({ (m)->busy = ((boolean_t) 0); if ((m)->wanted) { (m)-> wanted = ((boolean_t) 0); thread_wakeup_prim((((event_t) m)), ((boolean_t) 0), 0); } }); |
858 | vm_object_paging_end(object)({ ({ if (!((object)->paging_in_progress != 0)) Assert("(object)->paging_in_progress != 0" , "../vm/vm_fault.c", 858); }); if (--(object)->paging_in_progress == 0) { ({ if ((object)->all_wanted & (1 << (2) )) thread_wakeup_prim(((event_t)(((vm_offset_t) object) + (2) )), ((boolean_t) 0), 0); (object)->all_wanted &= ~(1 << (2)); }); } }); |
859 | vm_object_unlock(object); |
860 | |
861 | vm_stat.cow_faults++; |
862 | vm_stat_sample(SAMPLED_PC_VM_COW_FAULTS)({ thread_t _thread_ = (active_threads[(0)]); if (_thread_ != ((thread_t) 0)) ({ task_t task; if ((_thread_)->pc_sample .sampletypes & ((0x80))) take_pc_sample((_thread_), & (_thread_)->pc_sample, ((0x80))); task = (_thread_)->task ; if (task->pc_sample.sampletypes & ((0x80))) take_pc_sample ((_thread_), &task->pc_sample, ((0x80))); }); }); |
863 | current_task()((active_threads[(0)])->task)->cow_faults++; |
864 | object = first_object; |
865 | offset = first_offset; |
866 | |
867 | vm_object_lock(object); |
868 | VM_PAGE_FREE(first_m)({ ; vm_page_free(first_m); ; }); |
869 | first_m = VM_PAGE_NULL((vm_page_t) 0); |
870 | assert(copy_m->busy)({ if (!(copy_m->busy)) Assert("copy_m->busy", "../vm/vm_fault.c" , 870); }); |
871 | vm_page_lock_queues(); |
872 | vm_page_insert(copy_m, object, offset); |
873 | vm_page_unlock_queues(); |
874 | m = copy_m; |
875 | |
876 | /* |
877 | * Now that we've gotten the copy out of the |
878 | * way, let's try to collapse the top object. |
879 | * But we have to play ugly games with |
880 | * paging_in_progress to do that... |
881 | */ |
882 | |
883 | vm_object_paging_end(object)({ ({ if (!((object)->paging_in_progress != 0)) Assert("(object)->paging_in_progress != 0" , "../vm/vm_fault.c", 883); }); if (--(object)->paging_in_progress == 0) { ({ if ((object)->all_wanted & (1 << (2) )) thread_wakeup_prim(((event_t)(((vm_offset_t) object) + (2) )), ((boolean_t) 0), 0); (object)->all_wanted &= ~(1 << (2)); }); } }); |
884 | vm_object_collapse(object); |
885 | vm_object_paging_begin(object)((object)->paging_in_progress++); |
886 | } |
887 | else { |
888 | *protection &= (~VM_PROT_WRITE((vm_prot_t) 0x02)); |
889 | } |
890 | } |
891 | |
892 | /* |
893 | * Now check whether the page needs to be pushed into the |
894 | * copy object. The use of asymmetric copy on write for |
895 | * shared temporary objects means that we may do two copies to |
896 | * satisfy the fault; one above to get the page from a |
897 | * shadowed object, and one here to push it into the copy. |
898 | */ |
899 | |
900 | while ((copy_object = first_object->copy) != VM_OBJECT_NULL((vm_object_t) 0)) { |
901 | vm_offset_t copy_offset; |
902 | vm_page_t copy_m; |
903 | |
904 | /* |
905 | * If the page is being written, but hasn't been |
906 | * copied to the copy-object, we have to copy it there. |
907 | */ |
908 | |
909 | if ((fault_type & VM_PROT_WRITE((vm_prot_t) 0x02)) == 0) { |
910 | *protection &= ~VM_PROT_WRITE((vm_prot_t) 0x02); |
911 | break; |
912 | } |
913 | |
914 | /* |
915 | * If the page was guaranteed to be resident, |
916 | * we must have already performed the copy. |
917 | */ |
918 | |
919 | if (must_be_resident) |
920 | break; |
921 | |
922 | /* |
923 | * Try to get the lock on the copy_object. |
924 | */ |
925 | if (!vm_object_lock_try(copy_object)(((boolean_t) 1))) { |
926 | vm_object_unlock(object); |
927 | |
928 | simple_lock_pause(); /* wait a bit */ |
929 | |
930 | vm_object_lock(object); |
931 | continue; |
932 | } |
933 | |
934 | /* |
935 | * Make another reference to the copy-object, |
936 | * to keep it from disappearing during the |
937 | * copy. |
938 | */ |
939 | assert(copy_object->ref_count > 0)({ if (!(copy_object->ref_count > 0)) Assert("copy_object->ref_count > 0" , "../vm/vm_fault.c", 939); }); |
940 | copy_object->ref_count++; |
941 | |
942 | /* |
943 | * Does the page exist in the copy? |
944 | */ |
945 | copy_offset = first_offset - copy_object->shadow_offset; |
946 | copy_m = vm_page_lookup(copy_object, copy_offset); |
947 | if (copy_m != VM_PAGE_NULL((vm_page_t) 0)) { |
948 | if (copy_m->busy) { |
949 | /* |
950 | * If the page is being brought |
951 | * in, wait for it and then retry. |
952 | */ |
953 | PAGE_ASSERT_WAIT(copy_m, interruptible)({ (copy_m)->wanted = ((boolean_t) 1); assert_wait((event_t ) (copy_m), (interruptible)); }); |
954 | RELEASE_PAGE(m){ ({ (m)->busy = ((boolean_t) 0); if ((m)->wanted) { (m )->wanted = ((boolean_t) 0); thread_wakeup_prim((((event_t ) m)), ((boolean_t) 0), 0); } }); ; vm_page_unwire(m); ; }; |
955 | copy_object->ref_count--; |
956 | assert(copy_object->ref_count > 0)({ if (!(copy_object->ref_count > 0)) Assert("copy_object->ref_count > 0" , "../vm/vm_fault.c", 956); }); |
957 | vm_object_unlock(copy_object); |
958 | goto block_and_backoff; |
959 | } |
960 | } |
961 | else { |
962 | /* |
963 | * Allocate a page for the copy |
964 | */ |
965 | copy_m = vm_page_alloc(copy_object, copy_offset); |
966 | if (copy_m == VM_PAGE_NULL((vm_page_t) 0)) { |
967 | RELEASE_PAGE(m){ ({ (m)->busy = ((boolean_t) 0); if ((m)->wanted) { (m )->wanted = ((boolean_t) 0); thread_wakeup_prim((((event_t ) m)), ((boolean_t) 0), 0); } }); ; vm_page_unwire(m); ; }; |
968 | copy_object->ref_count--; |
969 | assert(copy_object->ref_count > 0)({ if (!(copy_object->ref_count > 0)) Assert("copy_object->ref_count > 0" , "../vm/vm_fault.c", 969); }); |
970 | vm_object_unlock(copy_object); |
971 | vm_fault_cleanup(object, first_m); |
972 | return(VM_FAULT_MEMORY_SHORTAGE3); |
973 | } |
974 | |
975 | /* |
976 | * Must copy page into copy-object. |
977 | */ |
978 | |
979 | vm_page_copy(m, copy_m); |
980 | |
981 | /* |
982 | * If the old page was in use by any users |
983 | * of the copy-object, it must be removed |
984 | * from all pmaps. (We can't know which |
985 | * pmaps use it.) |
986 | */ |
987 | |
988 | vm_page_lock_queues(); |
989 | pmap_page_protect(m->phys_addr, VM_PROT_NONE((vm_prot_t) 0x00)); |
990 | copy_m->dirty = TRUE((boolean_t) 1); |
991 | vm_page_unlock_queues(); |
992 | |
993 | /* |
994 | * If there's a pager, then immediately |
995 | * page out this page, using the "initialize" |
996 | * option. Else, we use the copy. |
997 | */ |
998 | |
999 | if (!copy_object->pager_created) { |
1000 | vm_page_lock_queues(); |
1001 | vm_page_activate(copy_m); |
1002 | vm_page_unlock_queues(); |
1003 | PAGE_WAKEUP_DONE(copy_m)({ (copy_m)->busy = ((boolean_t) 0); if ((copy_m)->wanted ) { (copy_m)->wanted = ((boolean_t) 0); thread_wakeup_prim ((((event_t) copy_m)), ((boolean_t) 0), 0); } }); |
1004 | } else { |
1005 | /* |
1006 | * The page is already ready for pageout: |
1007 | * not on pageout queues and busy. |
1008 | * Unlock everything except the |
1009 | * copy_object itself. |
1010 | */ |
1011 | |
1012 | vm_object_unlock(object); |
1013 | |
1014 | /* |
1015 | * Write the page to the copy-object, |
1016 | * flushing it from the kernel. |
1017 | */ |
1018 | |
1019 | vm_pageout_page(copy_m, TRUE((boolean_t) 1), TRUE((boolean_t) 1)); |
1020 | |
1021 | /* |
1022 | * Since the pageout may have |
1023 | * temporarily dropped the |
1024 | * copy_object's lock, we |
1025 | * check whether we'll have |
1026 | * to deallocate the hard way. |
1027 | */ |
1028 | |
1029 | if ((copy_object->shadow != object) || |
1030 | (copy_object->ref_count == 1)) { |
1031 | vm_object_unlock(copy_object); |
1032 | vm_object_deallocate(copy_object); |
1033 | vm_object_lock(object); |
1034 | continue; |
1035 | } |
1036 | |
1037 | /* |
1038 | * Pick back up the old object's |
1039 | * lock. [It is safe to do so, |
1040 | * since it must be deeper in the |
1041 | * object tree.] |
1042 | */ |
1043 | |
1044 | vm_object_lock(object); |
1045 | } |
1046 | |
1047 | /* |
1048 | * Because we're pushing a page upward |
1049 | * in the object tree, we must restart |
1050 | * any faults that are waiting here. |
1051 | * [Note that this is an expansion of |
1052 | * PAGE_WAKEUP that uses the THREAD_RESTART |
1053 | * wait result]. Can't turn off the page's |
1054 | * busy bit because we're not done with it. |
1055 | */ |
1056 | |
1057 | if (m->wanted) { |
1058 | m->wanted = FALSE((boolean_t) 0); |
1059 | thread_wakeup_with_result((event_t) m,thread_wakeup_prim(((event_t) m), ((boolean_t) 0), (3)) |
1060 | THREAD_RESTART)thread_wakeup_prim(((event_t) m), ((boolean_t) 0), (3)); |
1061 | } |
1062 | } |
1063 | |
1064 | /* |
1065 | * The reference count on copy_object must be |
1066 | * at least 2: one for our extra reference, |
1067 | * and at least one from the outside world |
1068 | * (we checked that when we last locked |
1069 | * copy_object). |
1070 | */ |
1071 | copy_object->ref_count--; |
1072 | assert(copy_object->ref_count > 0)({ if (!(copy_object->ref_count > 0)) Assert("copy_object->ref_count > 0" , "../vm/vm_fault.c", 1072); }); |
1073 | vm_object_unlock(copy_object); |
1074 | |
1075 | break; |
1076 | } |
1077 | |
1078 | *result_page = m; |
1079 | *top_page = first_m; |
1080 | |
1081 | /* |
1082 | * If the page can be written, assume that it will be. |
1083 | * [Earlier, we restrict the permission to allow write |
1084 | * access only if the fault so required, so we don't |
1085 | * mark read-only data as dirty.] |
1086 | */ |
1087 | |
1088 | if (vm_fault_dirty_handling && (*protection & VM_PROT_WRITE((vm_prot_t) 0x02))) |
1089 | m->dirty = TRUE((boolean_t) 1); |
1090 | |
1091 | return(VM_FAULT_SUCCESS0); |
1092 | |
1093 | block_and_backoff: |
1094 | vm_fault_cleanup(object, first_m); |
1095 | |
1096 | if (continuation != (void (*)()) 0) { |
1097 | register vm_fault_state_t *state = |
1098 | (vm_fault_state_t *) current_thread()(active_threads[(0)])->ith_othersaved.other; |
1099 | |
1100 | /* |
1101 | * Save variables in case we must restart. |
1102 | */ |
1103 | |
1104 | state->vmfp_backoff = TRUE((boolean_t) 1); |
1105 | state->vmf_prot = *protection; |
1106 | |
1107 | counter(c_vm_fault_page_block_backoff_user++); |
1108 | thread_block(continuation); |
1109 | } else |
1110 | { |
1111 | counter(c_vm_fault_page_block_backoff_kernel++); |
1112 | thread_block((void (*)()) 0); |
1113 | } |
1114 | after_block_and_backoff: |
1115 | if (current_thread()(active_threads[(0)])->wait_result == THREAD_AWAKENED0) |
1116 | return VM_FAULT_RETRY1; |
1117 | else |
1118 | return VM_FAULT_INTERRUPTED2; |
1119 | |
1120 | #undef RELEASE_PAGE |
1121 | } |
1122 | |
1123 | /* |
1124 | * Routine: vm_fault |
1125 | * Purpose: |
1126 | * Handle page faults, including pseudo-faults |
1127 | * used to change the wiring status of pages. |
1128 | * Returns: |
1129 | * If an explicit (expression) continuation is supplied, |
1130 | * then we call the continuation instead of returning. |
1131 | * Implementation: |
1132 | * Explicit continuations make this a little icky, |
1133 | * because it hasn't been rewritten to embrace CPS. |
1134 | * Instead, we have resume arguments for vm_fault and |
1135 | * vm_fault_page, to let continue the fault computation. |
1136 | * |
1137 | * vm_fault and vm_fault_page save mucho state |
1138 | * in the moral equivalent of a closure. The state |
1139 | * structure is allocated when first entering vm_fault |
1140 | * and deallocated when leaving vm_fault. |
1141 | */ |
1142 | |
1143 | void |
1144 | vm_fault_continue() |
1145 | { |
1146 | register vm_fault_state_t *state = |
1147 | (vm_fault_state_t *) current_thread()(active_threads[(0)])->ith_othersaved.other; |
1148 | |
1149 | (void) vm_fault(state->vmf_map, |
1150 | state->vmf_vaddr, |
1151 | state->vmf_fault_type, |
1152 | state->vmf_change_wiring, |
1153 | TRUE((boolean_t) 1), state->vmf_continuation); |
1154 | /*NOTREACHED*/ |
1155 | } |
1156 | |
1157 | kern_return_t vm_fault(map, vaddr, fault_type, change_wiring, |
1158 | resume, continuation) |
1159 | vm_map_t map; |
1160 | vm_offset_t vaddr; |
1161 | vm_prot_t fault_type; |
1162 | boolean_t change_wiring; |
1163 | boolean_t resume; |
1164 | void (*continuation)(); |
1165 | { |
1166 | vm_map_version_t version; /* Map version for verificiation */ |
1167 | boolean_t wired; /* Should mapping be wired down? */ |
1168 | vm_object_t object; /* Top-level object */ |
1169 | vm_offset_t offset; /* Top-level offset */ |
1170 | vm_prot_t prot; /* Protection for mapping */ |
1171 | vm_object_t old_copy_object; /* Saved copy object */ |
1172 | vm_page_t result_page; /* Result of vm_fault_page */ |
1173 | vm_page_t top_page; /* Placeholder page */ |
1174 | kern_return_t kr; |
1175 | |
1176 | register |
1177 | vm_page_t m; /* Fast access to result_page */ |
1178 | |
1179 | if (resume) { |
1180 | register vm_fault_state_t *state = |
1181 | (vm_fault_state_t *) current_thread()(active_threads[(0)])->ith_othersaved.other; |
1182 | |
1183 | /* |
1184 | * Retrieve cached variables and |
1185 | * continue vm_fault_page. |
1186 | */ |
1187 | |
1188 | object = state->vmf_object; |
1189 | if (object == VM_OBJECT_NULL((vm_object_t) 0)) |
1190 | goto RetryFault; |
1191 | version = state->vmf_version; |
1192 | wired = state->vmf_wired; |
1193 | offset = state->vmf_offset; |
1194 | prot = state->vmf_prot; |
1195 | |
1196 | kr = vm_fault_page(object, offset, fault_type, |
1197 | (change_wiring && !wired), !change_wiring, |
1198 | &prot, &result_page, &top_page, |
1199 | TRUE((boolean_t) 1), vm_fault_continue); |
1200 | goto after_vm_fault_page; |
1201 | } |
1202 | |
1203 | if (continuation != (void (*)()) 0) { |
1204 | /* |
1205 | * We will probably need to save state. |
1206 | */ |
1207 | |
1208 | char * state; |
1209 | |
1210 | /* |
1211 | * if this assignment stmt is written as |
1212 | * 'active_threads[cpu_number()] = kmem_cache_alloc()', |
1213 | * cpu_number may be evaluated before kmem_cache_alloc; |
1214 | * if kmem_cache_alloc blocks, cpu_number will be wrong |
1215 | */ |
1216 | |
1217 | state = (char *) kmem_cache_alloc(&vm_fault_state_cache); |
1218 | current_thread()(active_threads[(0)])->ith_othersaved.other = state; |
1219 | |
1220 | } |
1221 | |
1222 | RetryFault: ; |
1223 | |
1224 | /* |
1225 | * Find the backing store object and offset into |
1226 | * it to begin the search. |
1227 | */ |
1228 | |
1229 | if ((kr = vm_map_lookup(&map, vaddr, fault_type, &version, |
1230 | &object, &offset, |
1231 | &prot, &wired)) != KERN_SUCCESS0) { |
1232 | goto done; |
1233 | } |
1234 | |
1235 | /* |
1236 | * If the page is wired, we must fault for the current protection |
1237 | * value, to avoid further faults. |
1238 | */ |
1239 | |
1240 | if (wired) |
1241 | fault_type = prot; |
1242 | |
1243 | /* |
1244 | * Make a reference to this object to |
1245 | * prevent its disposal while we are messing with |
1246 | * it. Once we have the reference, the map is free |
1247 | * to be diddled. Since objects reference their |
1248 | * shadows (and copies), they will stay around as well. |
1249 | */ |
1250 | |
1251 | assert(object->ref_count > 0)({ if (!(object->ref_count > 0)) Assert("object->ref_count > 0" , "../vm/vm_fault.c", 1251); }); |
1252 | object->ref_count++; |
1253 | vm_object_paging_begin(object)((object)->paging_in_progress++); |
1254 | |
1255 | if (continuation != (void (*)()) 0) { |
1256 | register vm_fault_state_t *state = |
1257 | (vm_fault_state_t *) current_thread()(active_threads[(0)])->ith_othersaved.other; |
1258 | |
1259 | /* |
1260 | * Save variables, in case vm_fault_page discards |
1261 | * our kernel stack and we have to restart. |
1262 | */ |
1263 | |
1264 | state->vmf_map = map; |
1265 | state->vmf_vaddr = vaddr; |
1266 | state->vmf_fault_type = fault_type; |
1267 | state->vmf_change_wiring = change_wiring; |
1268 | state->vmf_continuation = continuation; |
1269 | |
1270 | state->vmf_version = version; |
1271 | state->vmf_wired = wired; |
1272 | state->vmf_object = object; |
1273 | state->vmf_offset = offset; |
1274 | state->vmf_prot = prot; |
1275 | |
1276 | kr = vm_fault_page(object, offset, fault_type, |
1277 | (change_wiring && !wired), !change_wiring, |
1278 | &prot, &result_page, &top_page, |
1279 | FALSE((boolean_t) 0), vm_fault_continue); |
1280 | } else |
1281 | { |
1282 | kr = vm_fault_page(object, offset, fault_type, |
1283 | (change_wiring && !wired), !change_wiring, |
1284 | &prot, &result_page, &top_page, |
1285 | FALSE((boolean_t) 0), (void (*)()) 0); |
1286 | } |
1287 | after_vm_fault_page: |
1288 | |
1289 | /* |
1290 | * If we didn't succeed, lose the object reference immediately. |
1291 | */ |
1292 | |
1293 | if (kr != VM_FAULT_SUCCESS0) |
1294 | vm_object_deallocate(object); |
1295 | |
1296 | /* |
1297 | * See why we failed, and take corrective action. |
1298 | */ |
1299 | |
1300 | switch (kr) { |
1301 | case VM_FAULT_SUCCESS0: |
1302 | break; |
1303 | case VM_FAULT_RETRY1: |
1304 | goto RetryFault; |
1305 | case VM_FAULT_INTERRUPTED2: |
1306 | kr = KERN_SUCCESS0; |
1307 | goto done; |
1308 | case VM_FAULT_MEMORY_SHORTAGE3: |
1309 | if (continuation != (void (*)()) 0) { |
1310 | register vm_fault_state_t *state = |
1311 | (vm_fault_state_t *) current_thread()(active_threads[(0)])->ith_othersaved.other; |
1312 | |
1313 | /* |
1314 | * Save variables in case VM_PAGE_WAIT |
1315 | * discards our kernel stack. |
1316 | */ |
1317 | |
1318 | state->vmf_map = map; |
1319 | state->vmf_vaddr = vaddr; |
1320 | state->vmf_fault_type = fault_type; |
1321 | state->vmf_change_wiring = change_wiring; |
1322 | state->vmf_continuation = continuation; |
1323 | state->vmf_object = VM_OBJECT_NULL((vm_object_t) 0); |
1324 | |
1325 | VM_PAGE_WAIT(vm_fault_continue)vm_page_wait(vm_fault_continue); |
1326 | } else |
1327 | VM_PAGE_WAIT((void (*)()) 0)vm_page_wait((void (*)()) 0); |
1328 | goto RetryFault; |
1329 | case VM_FAULT_FICTITIOUS_SHORTAGE4: |
1330 | vm_page_more_fictitious(); |
1331 | goto RetryFault; |
1332 | case VM_FAULT_MEMORY_ERROR5: |
1333 | kr = KERN_MEMORY_ERROR10; |
1334 | goto done; |
1335 | } |
1336 | |
1337 | m = result_page; |
1338 | |
1339 | assert((change_wiring && !wired) ?({ if (!((change_wiring && !wired) ? (top_page == ((vm_page_t ) 0)) : ((top_page == ((vm_page_t) 0)) == (m->object == object )))) Assert("(change_wiring && !wired) ? (top_page == VM_PAGE_NULL) : ((top_page == VM_PAGE_NULL) == (m->object == object))" , "../vm/vm_fault.c", 1341); }) |
1340 | (top_page == VM_PAGE_NULL) :({ if (!((change_wiring && !wired) ? (top_page == ((vm_page_t ) 0)) : ((top_page == ((vm_page_t) 0)) == (m->object == object )))) Assert("(change_wiring && !wired) ? (top_page == VM_PAGE_NULL) : ((top_page == VM_PAGE_NULL) == (m->object == object))" , "../vm/vm_fault.c", 1341); }) |
1341 | ((top_page == VM_PAGE_NULL) == (m->object == object)))({ if (!((change_wiring && !wired) ? (top_page == ((vm_page_t ) 0)) : ((top_page == ((vm_page_t) 0)) == (m->object == object )))) Assert("(change_wiring && !wired) ? (top_page == VM_PAGE_NULL) : ((top_page == VM_PAGE_NULL) == (m->object == object))" , "../vm/vm_fault.c", 1341); }); |
1342 | |
1343 | /* |
1344 | * How to clean up the result of vm_fault_page. This |
1345 | * happens whether the mapping is entered or not. |
1346 | */ |
1347 | |
1348 | #define UNLOCK_AND_DEALLOCATE{ { object->paging_in_progress--; ; }; vm_object_deallocate (object); } \ |
1349 | MACRO_BEGIN({ \ |
1350 | vm_fault_cleanup(m->object, top_page); \ |
1351 | vm_object_deallocate(object); \ |
1352 | MACRO_END}) |
1353 | |
1354 | /* |
1355 | * What to do with the resulting page from vm_fault_page |
1356 | * if it doesn't get entered into the physical map: |
1357 | */ |
1358 | |
1359 | #define RELEASE_PAGE(m){ ({ (m)->busy = ((boolean_t) 0); if ((m)->wanted) { (m )->wanted = ((boolean_t) 0); thread_wakeup_prim((((event_t ) m)), ((boolean_t) 0), 0); } }); ; vm_page_unwire(m); ; } \ |
1360 | MACRO_BEGIN({ \ |
1361 | PAGE_WAKEUP_DONE(m)({ (m)->busy = ((boolean_t) 0); if ((m)->wanted) { (m)-> wanted = ((boolean_t) 0); thread_wakeup_prim((((event_t) m)), ((boolean_t) 0), 0); } }); \ |
1362 | vm_page_lock_queues(); \ |
1363 | if (!m->active && !m->inactive) \ |
1364 | vm_page_activate(m); \ |
1365 | vm_page_unlock_queues(); \ |
1366 | MACRO_END}) |
1367 | |
1368 | /* |
1369 | * We must verify that the maps have not changed |
1370 | * since our last lookup. |
1371 | */ |
1372 | |
1373 | old_copy_object = m->object->copy; |
1374 | |
1375 | vm_object_unlock(m->object); |
1376 | while (!vm_map_verify(map, &version)) { |
1377 | vm_object_t retry_object; |
1378 | vm_offset_t retry_offset; |
1379 | vm_prot_t retry_prot; |
1380 | |
1381 | /* |
1382 | * To avoid trying to write_lock the map while another |
1383 | * thread has it read_locked (in vm_map_pageable), we |
1384 | * do not try for write permission. If the page is |
1385 | * still writable, we will get write permission. If it |
1386 | * is not, or has been marked needs_copy, we enter the |
1387 | * mapping without write permission, and will merely |
1388 | * take another fault. |
1389 | */ |
1390 | kr = vm_map_lookup(&map, vaddr, |
1391 | fault_type & ~VM_PROT_WRITE((vm_prot_t) 0x02), &version, |
1392 | &retry_object, &retry_offset, &retry_prot, |
1393 | &wired); |
1394 | |
1395 | if (kr != KERN_SUCCESS0) { |
1396 | vm_object_lock(m->object); |
1397 | RELEASE_PAGE(m){ ({ (m)->busy = ((boolean_t) 0); if ((m)->wanted) { (m )->wanted = ((boolean_t) 0); thread_wakeup_prim((((event_t ) m)), ((boolean_t) 0), 0); } }); ; vm_page_unwire(m); ; }; |
1398 | UNLOCK_AND_DEALLOCATE{ { object->paging_in_progress--; ; }; vm_object_deallocate (object); }; |
1399 | goto done; |
1400 | } |
1401 | |
1402 | vm_object_unlock(retry_object); |
1403 | vm_object_lock(m->object); |
1404 | |
1405 | if ((retry_object != object) || |
1406 | (retry_offset != offset)) { |
1407 | RELEASE_PAGE(m){ ({ (m)->busy = ((boolean_t) 0); if ((m)->wanted) { (m )->wanted = ((boolean_t) 0); thread_wakeup_prim((((event_t ) m)), ((boolean_t) 0), 0); } }); ; vm_page_unwire(m); ; }; |
1408 | UNLOCK_AND_DEALLOCATE{ { object->paging_in_progress--; ; }; vm_object_deallocate (object); }; |
1409 | goto RetryFault; |
1410 | } |
1411 | |
1412 | /* |
1413 | * Check whether the protection has changed or the object |
1414 | * has been copied while we left the map unlocked. |
1415 | */ |
1416 | prot &= retry_prot; |
1417 | vm_object_unlock(m->object); |
1418 | } |
1419 | vm_object_lock(m->object); |
1420 | |
1421 | /* |
1422 | * If the copy object changed while the top-level object |
1423 | * was unlocked, then we must take away write permission. |
1424 | */ |
1425 | |
1426 | if (m->object->copy != old_copy_object) |
1427 | prot &= ~VM_PROT_WRITE((vm_prot_t) 0x02); |
1428 | |
1429 | /* |
1430 | * If we want to wire down this page, but no longer have |
1431 | * adequate permissions, we must start all over. |
1432 | */ |
1433 | |
1434 | if (wired && (prot != fault_type)) { |
1435 | vm_map_verify_done(map, &version)(lock_done(&(map)->lock)); |
1436 | RELEASE_PAGE(m){ ({ (m)->busy = ((boolean_t) 0); if ((m)->wanted) { (m )->wanted = ((boolean_t) 0); thread_wakeup_prim((((event_t ) m)), ((boolean_t) 0), 0); } }); ; vm_page_unwire(m); ; }; |
1437 | UNLOCK_AND_DEALLOCATE{ { object->paging_in_progress--; ; }; vm_object_deallocate (object); }; |
1438 | goto RetryFault; |
1439 | } |
1440 | |
1441 | /* |
1442 | * It's critically important that a wired-down page be faulted |
1443 | * only once in each map for which it is wired. |
1444 | */ |
1445 | |
1446 | vm_object_unlock(m->object); |
1447 | |
1448 | /* |
1449 | * Put this page into the physical map. |
1450 | * We had to do the unlock above because pmap_enter |
1451 | * may cause other faults. The page may be on |
1452 | * the pageout queues. If the pageout daemon comes |
1453 | * across the page, it will remove it from the queues. |
1454 | */ |
1455 | |
1456 | PMAP_ENTER(map->pmap, vaddr, m, prot, wired)({ pmap_enter( (map->pmap), (vaddr), (m)->phys_addr, (prot ) & ~(m)->page_lock, (wired) ); }); |
1457 | |
1458 | /* |
1459 | * If the page is not wired down and isn't already |
1460 | * on a pageout queue, then put it where the |
1461 | * pageout daemon can find it. |
1462 | */ |
1463 | vm_object_lock(m->object); |
1464 | vm_page_lock_queues(); |
1465 | if (change_wiring) { |
1466 | if (wired) |
1467 | vm_page_wire(m); |
1468 | else |
1469 | vm_page_unwire(m); |
1470 | } else if (software_reference_bits) { |
1471 | if (!m->active && !m->inactive) |
1472 | vm_page_activate(m); |
1473 | m->reference = TRUE((boolean_t) 1); |
1474 | } else { |
1475 | vm_page_activate(m); |
1476 | } |
1477 | vm_page_unlock_queues(); |
1478 | |
1479 | /* |
1480 | * Unlock everything, and return |
1481 | */ |
1482 | |
1483 | vm_map_verify_done(map, &version)(lock_done(&(map)->lock)); |
1484 | PAGE_WAKEUP_DONE(m)({ (m)->busy = ((boolean_t) 0); if ((m)->wanted) { (m)-> wanted = ((boolean_t) 0); thread_wakeup_prim((((event_t) m)), ((boolean_t) 0), 0); } }); |
1485 | kr = KERN_SUCCESS0; |
1486 | UNLOCK_AND_DEALLOCATE{ { object->paging_in_progress--; ; }; vm_object_deallocate (object); }; |
1487 | |
1488 | #undef UNLOCK_AND_DEALLOCATE{ { object->paging_in_progress--; ; }; vm_object_deallocate (object); } |
1489 | #undef RELEASE_PAGE |
1490 | |
1491 | done: |
1492 | if (continuation != (void (*)()) 0) { |
1493 | register vm_fault_state_t *state = |
1494 | (vm_fault_state_t *) current_thread()(active_threads[(0)])->ith_othersaved.other; |
1495 | |
1496 | kmem_cache_free(&vm_fault_state_cache, (vm_offset_t) state); |
1497 | (*continuation)(kr); |
1498 | /*NOTREACHED*/ |
1499 | } |
1500 | |
1501 | return(kr); |
1502 | } |
1503 | |
1504 | kern_return_t vm_fault_wire_fast(); |
1505 | |
1506 | /* |
1507 | * vm_fault_wire: |
1508 | * |
1509 | * Wire down a range of virtual addresses in a map. |
1510 | */ |
1511 | void vm_fault_wire(map, entry) |
1512 | vm_map_t map; |
1513 | vm_map_entry_t entry; |
1514 | { |
1515 | |
1516 | register vm_offset_t va; |
1517 | register pmap_t pmap; |
1518 | register vm_offset_t end_addr = entry->vme_endlinks.end; |
1519 | |
1520 | pmap = vm_map_pmap(map)((map)->pmap); |
1521 | |
1522 | /* |
1523 | * Inform the physical mapping system that the |
1524 | * range of addresses may not fault, so that |
1525 | * page tables and such can be locked down as well. |
1526 | */ |
1527 | |
1528 | pmap_pageable(pmap, entry->vme_startlinks.start, end_addr, FALSE((boolean_t) 0)); |
1529 | |
1530 | /* |
1531 | * We simulate a fault to get the page and enter it |
1532 | * in the physical map. |
1533 | */ |
1534 | |
1535 | for (va = entry->vme_startlinks.start; va < end_addr; va += PAGE_SIZE(1 << 12)) { |
1536 | if (vm_fault_wire_fast(map, va, entry) != KERN_SUCCESS0) |
1537 | (void) vm_fault(map, va, VM_PROT_NONE((vm_prot_t) 0x00), TRUE((boolean_t) 1), |
1538 | FALSE((boolean_t) 0), (void (*)()) 0); |
1539 | } |
1540 | } |
1541 | |
1542 | /* |
1543 | * vm_fault_unwire: |
1544 | * |
1545 | * Unwire a range of virtual addresses in a map. |
1546 | */ |
1547 | void vm_fault_unwire(map, entry) |
1548 | vm_map_t map; |
1549 | vm_map_entry_t entry; |
1550 | { |
1551 | register vm_offset_t va; |
1552 | register pmap_t pmap; |
1553 | register vm_offset_t end_addr = entry->vme_endlinks.end; |
1554 | vm_object_t object; |
1555 | |
1556 | pmap = vm_map_pmap(map)((map)->pmap); |
1557 | |
1558 | object = (entry->is_sub_map) |
1559 | ? VM_OBJECT_NULL((vm_object_t) 0) : entry->object.vm_object; |
1560 | |
1561 | /* |
1562 | * Since the pages are wired down, we must be able to |
1563 | * get their mappings from the physical map system. |
1564 | */ |
1565 | |
1566 | for (va = entry->vme_startlinks.start; va < end_addr; va += PAGE_SIZE(1 << 12)) { |
1567 | pmap_change_wiring(pmap, va, FALSE((boolean_t) 0)); |
1568 | |
1569 | if (object == VM_OBJECT_NULL((vm_object_t) 0)) { |
1570 | vm_map_lock_set_recursive(map)lock_set_recursive(&(map)->lock); |
1571 | (void) vm_fault(map, va, VM_PROT_NONE((vm_prot_t) 0x00), TRUE((boolean_t) 1), |
1572 | FALSE((boolean_t) 0), (void (*)()) 0); |
1573 | vm_map_lock_clear_recursive(map)lock_clear_recursive(&(map)->lock); |
1574 | } else { |
1575 | vm_prot_t prot; |
1576 | vm_page_t result_page; |
1577 | vm_page_t top_page; |
1578 | vm_fault_return_t result; |
1579 | |
1580 | do { |
1581 | prot = VM_PROT_NONE((vm_prot_t) 0x00); |
1582 | |
1583 | vm_object_lock(object); |
1584 | vm_object_paging_begin(object)((object)->paging_in_progress++); |
1585 | result = vm_fault_page(object, |
1586 | entry->offset + |
1587 | (va - entry->vme_startlinks.start), |
1588 | VM_PROT_NONE((vm_prot_t) 0x00), TRUE((boolean_t) 1), |
1589 | FALSE((boolean_t) 0), &prot, |
1590 | &result_page, |
1591 | &top_page, |
1592 | FALSE((boolean_t) 0), (void (*)()) 0); |
1593 | } while (result == VM_FAULT_RETRY1); |
1594 | |
1595 | if (result != VM_FAULT_SUCCESS0) |
1596 | panic("vm_fault_unwire: failure"); |
1597 | |
1598 | vm_page_lock_queues(); |
1599 | vm_page_unwire(result_page); |
1600 | vm_page_unlock_queues(); |
1601 | PAGE_WAKEUP_DONE(result_page)({ (result_page)->busy = ((boolean_t) 0); if ((result_page )->wanted) { (result_page)->wanted = ((boolean_t) 0); thread_wakeup_prim ((((event_t) result_page)), ((boolean_t) 0), 0); } }); |
1602 | |
1603 | vm_fault_cleanup(result_page->object, top_page); |
1604 | } |
1605 | } |
1606 | |
1607 | /* |
1608 | * Inform the physical mapping system that the range |
1609 | * of addresses may fault, so that page tables and |
1610 | * such may be unwired themselves. |
1611 | */ |
1612 | |
1613 | pmap_pageable(pmap, entry->vme_startlinks.start, end_addr, TRUE((boolean_t) 1)); |
1614 | } |
1615 | |
1616 | /* |
1617 | * vm_fault_wire_fast: |
1618 | * |
1619 | * Handle common case of a wire down page fault at the given address. |
1620 | * If successful, the page is inserted into the associated physical map. |
1621 | * The map entry is passed in to avoid the overhead of a map lookup. |
1622 | * |
1623 | * NOTE: the given address should be truncated to the |
1624 | * proper page address. |
1625 | * |
1626 | * KERN_SUCCESS is returned if the page fault is handled; otherwise, |
1627 | * a standard error specifying why the fault is fatal is returned. |
1628 | * |
1629 | * The map in question must be referenced, and remains so. |
1630 | * Caller has a read lock on the map. |
1631 | * |
1632 | * This is a stripped version of vm_fault() for wiring pages. Anything |
1633 | * other than the common case will return KERN_FAILURE, and the caller |
1634 | * is expected to call vm_fault(). |
1635 | */ |
1636 | kern_return_t vm_fault_wire_fast(map, va, entry) |
1637 | vm_map_t map; |
1638 | vm_offset_t va; |
1639 | vm_map_entry_t entry; |
1640 | { |
1641 | vm_object_t object; |
1642 | vm_offset_t offset; |
1643 | register vm_page_t m; |
1644 | vm_prot_t prot; |
1645 | |
1646 | vm_stat.faults++; /* needs lock XXX */ |
1647 | current_task()((active_threads[(0)])->task)->faults++; |
1648 | /* |
1649 | * Recovery actions |
1650 | */ |
1651 | |
1652 | #undef RELEASE_PAGE |
1653 | #define RELEASE_PAGE(m){ ({ (m)->busy = ((boolean_t) 0); if ((m)->wanted) { (m )->wanted = ((boolean_t) 0); thread_wakeup_prim((((event_t ) m)), ((boolean_t) 0), 0); } }); ; vm_page_unwire(m); ; } { \ |
1654 | PAGE_WAKEUP_DONE(m)({ (m)->busy = ((boolean_t) 0); if ((m)->wanted) { (m)-> wanted = ((boolean_t) 0); thread_wakeup_prim((((event_t) m)), ((boolean_t) 0), 0); } }); \ |
1655 | vm_page_lock_queues(); \ |
1656 | vm_page_unwire(m); \ |
1657 | vm_page_unlock_queues(); \ |
1658 | } |
1659 | |
1660 | |
1661 | #undef UNLOCK_THINGS{ object->paging_in_progress--; ; } |
1662 | #define UNLOCK_THINGS{ object->paging_in_progress--; ; } { \ |
1663 | object->paging_in_progress--; \ |
1664 | vm_object_unlock(object); \ |
1665 | } |
1666 | |
1667 | #undef UNLOCK_AND_DEALLOCATE{ { object->paging_in_progress--; ; }; vm_object_deallocate (object); } |
1668 | #define UNLOCK_AND_DEALLOCATE{ { object->paging_in_progress--; ; }; vm_object_deallocate (object); } { \ |
1669 | UNLOCK_THINGS{ object->paging_in_progress--; ; }; \ |
1670 | vm_object_deallocate(object); \ |
1671 | } |
1672 | /* |
1673 | * Give up and have caller do things the hard way. |
1674 | */ |
1675 | |
1676 | #define GIVE_UP{ { { object->paging_in_progress--; ; }; vm_object_deallocate (object); }; return(5); } { \ |
1677 | UNLOCK_AND_DEALLOCATE{ { object->paging_in_progress--; ; }; vm_object_deallocate (object); }; \ |
1678 | return(KERN_FAILURE5); \ |
1679 | } |
1680 | |
1681 | |
1682 | /* |
1683 | * If this entry is not directly to a vm_object, bail out. |
1684 | */ |
1685 | if (entry->is_sub_map) |
1686 | return(KERN_FAILURE5); |
1687 | |
1688 | /* |
1689 | * Find the backing store object and offset into it. |
1690 | */ |
1691 | |
1692 | object = entry->object.vm_object; |
1693 | offset = (va - entry->vme_startlinks.start) + entry->offset; |
1694 | prot = entry->protection; |
1695 | |
1696 | /* |
1697 | * Make a reference to this object to prevent its |
1698 | * disposal while we are messing with it. |
1699 | */ |
1700 | |
1701 | vm_object_lock(object); |
1702 | assert(object->ref_count > 0)({ if (!(object->ref_count > 0)) Assert("object->ref_count > 0" , "../vm/vm_fault.c", 1702); }); |
1703 | object->ref_count++; |
1704 | object->paging_in_progress++; |
1705 | |
1706 | /* |
1707 | * INVARIANTS (through entire routine): |
1708 | * |
1709 | * 1) At all times, we must either have the object |
1710 | * lock or a busy page in some object to prevent |
1711 | * some other thread from trying to bring in |
1712 | * the same page. |
1713 | * |
1714 | * 2) Once we have a busy page, we must remove it from |
1715 | * the pageout queues, so that the pageout daemon |
1716 | * will not grab it away. |
1717 | * |
1718 | */ |
1719 | |
1720 | /* |
1721 | * Look for page in top-level object. If it's not there or |
1722 | * there's something going on, give up. |
1723 | */ |
1724 | m = vm_page_lookup(object, offset); |
1725 | if ((m == VM_PAGE_NULL((vm_page_t) 0)) || (m->error) || |
1726 | (m->busy) || (m->absent) || (prot & m->page_lock)) { |
1727 | GIVE_UP{ { { object->paging_in_progress--; ; }; vm_object_deallocate (object); }; return(5); }; |
1728 | } |
1729 | |
1730 | /* |
1731 | * Wire the page down now. All bail outs beyond this |
1732 | * point must unwire the page. |
1733 | */ |
1734 | |
1735 | vm_page_lock_queues(); |
1736 | vm_page_wire(m); |
1737 | vm_page_unlock_queues(); |
1738 | |
1739 | /* |
1740 | * Mark page busy for other threads. |
1741 | */ |
1742 | assert(!m->busy)({ if (!(!m->busy)) Assert("!m->busy", "../vm/vm_fault.c" , 1742); }); |
1743 | m->busy = TRUE((boolean_t) 1); |
1744 | assert(!m->absent)({ if (!(!m->absent)) Assert("!m->absent", "../vm/vm_fault.c" , 1744); }); |
1745 | |
1746 | /* |
1747 | * Give up if the page is being written and there's a copy object |
1748 | */ |
1749 | if ((object->copy != VM_OBJECT_NULL((vm_object_t) 0)) && (prot & VM_PROT_WRITE((vm_prot_t) 0x02))) { |
1750 | RELEASE_PAGE(m){ ({ (m)->busy = ((boolean_t) 0); if ((m)->wanted) { (m )->wanted = ((boolean_t) 0); thread_wakeup_prim((((event_t ) m)), ((boolean_t) 0), 0); } }); ; vm_page_unwire(m); ; }; |
1751 | GIVE_UP{ { { object->paging_in_progress--; ; }; vm_object_deallocate (object); }; return(5); }; |
1752 | } |
1753 | |
1754 | /* |
1755 | * Put this page into the physical map. |
1756 | * We have to unlock the object because pmap_enter |
1757 | * may cause other faults. |
1758 | */ |
1759 | vm_object_unlock(object); |
1760 | |
1761 | PMAP_ENTER(map->pmap, va, m, prot, TRUE)({ pmap_enter( (map->pmap), (va), (m)->phys_addr, (prot ) & ~(m)->page_lock, (((boolean_t) 1)) ); }); |
1762 | |
1763 | /* |
1764 | * Must relock object so that paging_in_progress can be cleared. |
1765 | */ |
1766 | vm_object_lock(object); |
1767 | |
1768 | /* |
1769 | * Unlock everything, and return |
1770 | */ |
1771 | |
1772 | PAGE_WAKEUP_DONE(m)({ (m)->busy = ((boolean_t) 0); if ((m)->wanted) { (m)-> wanted = ((boolean_t) 0); thread_wakeup_prim((((event_t) m)), ((boolean_t) 0), 0); } }); |
1773 | UNLOCK_AND_DEALLOCATE{ { object->paging_in_progress--; ; }; vm_object_deallocate (object); }; |
1774 | |
1775 | return(KERN_SUCCESS0); |
1776 | |
1777 | } |
1778 | |
1779 | /* |
1780 | * Routine: vm_fault_copy_cleanup |
1781 | * Purpose: |
1782 | * Release a page used by vm_fault_copy. |
1783 | */ |
1784 | |
1785 | void vm_fault_copy_cleanup(page, top_page) |
1786 | vm_page_t page; |
1787 | vm_page_t top_page; |
1788 | { |
1789 | vm_object_t object = page->object; |
1790 | |
1791 | vm_object_lock(object); |
1792 | PAGE_WAKEUP_DONE(page)({ (page)->busy = ((boolean_t) 0); if ((page)->wanted) { (page)->wanted = ((boolean_t) 0); thread_wakeup_prim((((event_t ) page)), ((boolean_t) 0), 0); } }); |
1793 | vm_page_lock_queues(); |
1794 | if (!page->active && !page->inactive) |
1795 | vm_page_activate(page); |
1796 | vm_page_unlock_queues(); |
1797 | vm_fault_cleanup(object, top_page); |
1798 | } |
1799 | |
1800 | /* |
1801 | * Routine: vm_fault_copy |
1802 | * |
1803 | * Purpose: |
1804 | * Copy pages from one virtual memory object to another -- |
1805 | * neither the source nor destination pages need be resident. |
1806 | * |
1807 | * Before actually copying a page, the version associated with |
1808 | * the destination address map wil be verified. |
1809 | * |
1810 | * In/out conditions: |
1811 | * The caller must hold a reference, but not a lock, to |
1812 | * each of the source and destination objects and to the |
1813 | * destination map. |
1814 | * |
1815 | * Results: |
1816 | * Returns KERN_SUCCESS if no errors were encountered in |
1817 | * reading or writing the data. Returns KERN_INTERRUPTED if |
1818 | * the operation was interrupted (only possible if the |
1819 | * "interruptible" argument is asserted). Other return values |
1820 | * indicate a permanent error in copying the data. |
1821 | * |
1822 | * The actual amount of data copied will be returned in the |
1823 | * "copy_size" argument. In the event that the destination map |
1824 | * verification failed, this amount may be less than the amount |
1825 | * requested. |
1826 | */ |
1827 | kern_return_t vm_fault_copy( |
1828 | src_object, |
1829 | src_offset, |
1830 | src_size, |
1831 | dst_object, |
1832 | dst_offset, |
1833 | dst_map, |
1834 | dst_version, |
1835 | interruptible |
1836 | ) |
1837 | vm_object_t src_object; |
1838 | vm_offset_t src_offset; |
1839 | vm_size_t *src_size; /* INOUT */ |
1840 | vm_object_t dst_object; |
1841 | vm_offset_t dst_offset; |
1842 | vm_map_t dst_map; |
1843 | vm_map_version_t *dst_version; |
1844 | boolean_t interruptible; |
1845 | { |
1846 | vm_page_t result_page; |
1847 | vm_prot_t prot; |
1848 | |
1849 | vm_page_t src_page; |
1850 | vm_page_t src_top_page; |
1851 | |
1852 | vm_page_t dst_page; |
1853 | vm_page_t dst_top_page; |
1854 | |
1855 | vm_size_t amount_done; |
1856 | vm_object_t old_copy_object; |
1857 | |
1858 | #define RETURN(x) \ |
1859 | MACRO_BEGIN({ \ |
1860 | *src_size = amount_done; \ |
1861 | MACRO_RETURNif (((boolean_t) 1)) return(x); \ |
1862 | MACRO_END}) |
1863 | |
1864 | amount_done = 0; |
1865 | do { /* while (amount_done != *src_size) */ |
1866 | |
1867 | RetrySourceFault: ; |
1868 | |
1869 | if (src_object == VM_OBJECT_NULL((vm_object_t) 0)) { |
1870 | /* |
1871 | * No source object. We will just |
1872 | * zero-fill the page in dst_object. |
1873 | */ |
1874 | |
1875 | src_page = VM_PAGE_NULL((vm_page_t) 0); |
1876 | } else { |
1877 | prot = VM_PROT_READ((vm_prot_t) 0x01); |
1878 | |
1879 | vm_object_lock(src_object); |
1880 | vm_object_paging_begin(src_object)((src_object)->paging_in_progress++); |
1881 | |
1882 | switch (vm_fault_page(src_object, src_offset, |
1883 | VM_PROT_READ((vm_prot_t) 0x01), FALSE((boolean_t) 0), interruptible, |
1884 | &prot, &result_page, &src_top_page, |
1885 | FALSE((boolean_t) 0), (void (*)()) 0)) { |
1886 | |
1887 | case VM_FAULT_SUCCESS0: |
1888 | break; |
1889 | case VM_FAULT_RETRY1: |
1890 | goto RetrySourceFault; |
1891 | case VM_FAULT_INTERRUPTED2: |
1892 | RETURN(MACH_SEND_INTERRUPTED0x10000007); |
1893 | case VM_FAULT_MEMORY_SHORTAGE3: |
1894 | VM_PAGE_WAIT((void (*)()) 0)vm_page_wait((void (*)()) 0); |
1895 | goto RetrySourceFault; |
1896 | case VM_FAULT_FICTITIOUS_SHORTAGE4: |
1897 | vm_page_more_fictitious(); |
1898 | goto RetrySourceFault; |
1899 | case VM_FAULT_MEMORY_ERROR5: |
1900 | return(KERN_MEMORY_ERROR10); |
1901 | } |
1902 | |
1903 | src_page = result_page; |
1904 | |
1905 | assert((src_top_page == VM_PAGE_NULL) ==({ if (!((src_top_page == ((vm_page_t) 0)) == (src_page->object == src_object))) Assert("(src_top_page == VM_PAGE_NULL) == (src_page->object == src_object)" , "../vm/vm_fault.c", 1906); }) |
1906 | (src_page->object == src_object))({ if (!((src_top_page == ((vm_page_t) 0)) == (src_page->object == src_object))) Assert("(src_top_page == VM_PAGE_NULL) == (src_page->object == src_object)" , "../vm/vm_fault.c", 1906); }); |
1907 | |
1908 | assert ((prot & VM_PROT_READ) != VM_PROT_NONE)({ if (!((prot & ((vm_prot_t) 0x01)) != ((vm_prot_t) 0x00 ))) Assert("(prot & VM_PROT_READ) != VM_PROT_NONE", "../vm/vm_fault.c" , 1908); }); |
1909 | |
1910 | vm_object_unlock(src_page->object); |
1911 | } |
1912 | |
1913 | RetryDestinationFault: ; |
1914 | |
1915 | prot = VM_PROT_WRITE((vm_prot_t) 0x02); |
1916 | |
1917 | vm_object_lock(dst_object); |
1918 | vm_object_paging_begin(dst_object)((dst_object)->paging_in_progress++); |
1919 | |
1920 | switch (vm_fault_page(dst_object, dst_offset, VM_PROT_WRITE((vm_prot_t) 0x02), |
1921 | FALSE((boolean_t) 0), FALSE((boolean_t) 0) /* interruptible */, |
1922 | &prot, &result_page, &dst_top_page, |
1923 | FALSE((boolean_t) 0), (void (*)()) 0)) { |
1924 | |
1925 | case VM_FAULT_SUCCESS0: |
1926 | break; |
1927 | case VM_FAULT_RETRY1: |
1928 | goto RetryDestinationFault; |
1929 | case VM_FAULT_INTERRUPTED2: |
1930 | if (src_page != VM_PAGE_NULL((vm_page_t) 0)) |
1931 | vm_fault_copy_cleanup(src_page, |
1932 | src_top_page); |
1933 | RETURN(MACH_SEND_INTERRUPTED0x10000007); |
1934 | case VM_FAULT_MEMORY_SHORTAGE3: |
1935 | VM_PAGE_WAIT((void (*)()) 0)vm_page_wait((void (*)()) 0); |
1936 | goto RetryDestinationFault; |
1937 | case VM_FAULT_FICTITIOUS_SHORTAGE4: |
1938 | vm_page_more_fictitious(); |
1939 | goto RetryDestinationFault; |
1940 | case VM_FAULT_MEMORY_ERROR5: |
1941 | if (src_page != VM_PAGE_NULL((vm_page_t) 0)) |
1942 | vm_fault_copy_cleanup(src_page, |
1943 | src_top_page); |
1944 | return(KERN_MEMORY_ERROR10); |
1945 | } |
1946 | assert ((prot & VM_PROT_WRITE) != VM_PROT_NONE)({ if (!((prot & ((vm_prot_t) 0x02)) != ((vm_prot_t) 0x00 ))) Assert("(prot & VM_PROT_WRITE) != VM_PROT_NONE", "../vm/vm_fault.c" , 1946); }); |
1947 | |
1948 | dst_page = result_page; |
1949 | |
1950 | old_copy_object = dst_page->object->copy; |
1951 | |
1952 | vm_object_unlock(dst_page->object); |
1953 | |
1954 | if (!vm_map_verify(dst_map, dst_version)) { |
1955 | |
1956 | BailOut: ; |
1957 | |
1958 | if (src_page != VM_PAGE_NULL((vm_page_t) 0)) |
1959 | vm_fault_copy_cleanup(src_page, src_top_page); |
1960 | vm_fault_copy_cleanup(dst_page, dst_top_page); |
1961 | break; |
1962 | } |
1963 | |
1964 | |
1965 | vm_object_lock(dst_page->object); |
1966 | if (dst_page->object->copy != old_copy_object) { |
1967 | vm_object_unlock(dst_page->object); |
1968 | vm_map_verify_done(dst_map, dst_version)(lock_done(&(dst_map)->lock)); |
1969 | goto BailOut; |
1970 | } |
1971 | vm_object_unlock(dst_page->object); |
1972 | |
1973 | /* |
1974 | * Copy the page, and note that it is dirty |
1975 | * immediately. |
1976 | */ |
1977 | |
1978 | if (src_page == VM_PAGE_NULL((vm_page_t) 0)) |
1979 | vm_page_zero_fill(dst_page); |
1980 | else |
1981 | vm_page_copy(src_page, dst_page); |
1982 | dst_page->dirty = TRUE((boolean_t) 1); |
1983 | |
1984 | /* |
1985 | * Unlock everything, and return |
1986 | */ |
1987 | |
1988 | vm_map_verify_done(dst_map, dst_version)(lock_done(&(dst_map)->lock)); |
1989 | |
1990 | if (src_page != VM_PAGE_NULL((vm_page_t) 0)) |
1991 | vm_fault_copy_cleanup(src_page, src_top_page); |
1992 | vm_fault_copy_cleanup(dst_page, dst_top_page); |
1993 | |
1994 | amount_done += PAGE_SIZE(1 << 12); |
1995 | src_offset += PAGE_SIZE(1 << 12); |
1996 | dst_offset += PAGE_SIZE(1 << 12); |
1997 | |
1998 | } while (amount_done != *src_size); |
1999 | |
2000 | RETURN(KERN_SUCCESS0); |
2001 | #undef RETURN |
2002 | |
2003 | /*NOTREACHED*/ |
2004 | } |
2005 | |
2006 | |
2007 | |
2008 | |
2009 | |
2010 | #ifdef notdef |
2011 | |
2012 | /* |
2013 | * Routine: vm_fault_page_overwrite |
2014 | * |
2015 | * Description: |
2016 | * A form of vm_fault_page that assumes that the |
2017 | * resulting page will be overwritten in its entirety, |
2018 | * making it unnecessary to obtain the correct *contents* |
2019 | * of the page. |
2020 | * |
2021 | * Implementation: |
2022 | * XXX Untested. Also unused. Eventually, this technology |
2023 | * could be used in vm_fault_copy() to advantage. |
2024 | */ |
2025 | vm_fault_return_t vm_fault_page_overwrite(dst_object, dst_offset, result_page) |
2026 | register |
2027 | vm_object_t dst_object; |
2028 | vm_offset_t dst_offset; |
2029 | vm_page_t *result_page; /* OUT */ |
2030 | { |
2031 | register |
2032 | vm_page_t dst_page; |
2033 | |
2034 | #define interruptible FALSE((boolean_t) 0) /* XXX */ |
2035 | |
2036 | while (TRUE((boolean_t) 1)) { |
2037 | /* |
2038 | * Look for a page at this offset |
2039 | */ |
2040 | |
2041 | while ((dst_page = vm_page_lookup(dst_object, dst_offset)) |
2042 | == VM_PAGE_NULL((vm_page_t) 0)) { |
2043 | /* |
2044 | * No page, no problem... just allocate one. |
2045 | */ |
2046 | |
2047 | dst_page = vm_page_alloc(dst_object, dst_offset); |
2048 | if (dst_page == VM_PAGE_NULL((vm_page_t) 0)) { |
2049 | vm_object_unlock(dst_object); |
2050 | VM_PAGE_WAIT((void (*)()) 0)vm_page_wait((void (*)()) 0); |
2051 | vm_object_lock(dst_object); |
2052 | continue; |
2053 | } |
2054 | |
2055 | /* |
2056 | * Pretend that the memory manager |
2057 | * write-protected the page. |
2058 | * |
2059 | * Note that we will be asking for write |
2060 | * permission without asking for the data |
2061 | * first. |
2062 | */ |
2063 | |
2064 | dst_page->overwriting = TRUE((boolean_t) 1); |
2065 | dst_page->page_lock = VM_PROT_WRITE((vm_prot_t) 0x02); |
2066 | dst_page->absent = TRUE((boolean_t) 1); |
2067 | dst_object->absent_count++; |
2068 | |
2069 | break; |
2070 | |
2071 | /* |
2072 | * When we bail out, we might have to throw |
2073 | * away the page created here. |
2074 | */ |
2075 | |
2076 | #define DISCARD_PAGE \ |
2077 | MACRO_BEGIN({ \ |
2078 | vm_object_lock(dst_object); \ |
2079 | dst_page = vm_page_lookup(dst_object, dst_offset); \ |
2080 | if ((dst_page != VM_PAGE_NULL((vm_page_t) 0)) && dst_page->overwriting) \ |
2081 | VM_PAGE_FREE(dst_page)({ ; vm_page_free(dst_page); ; }); \ |
2082 | vm_object_unlock(dst_object); \ |
2083 | MACRO_END}) |
2084 | } |
2085 | |
2086 | /* |
2087 | * If the page is write-protected... |
2088 | */ |
2089 | |
2090 | if (dst_page->page_lock & VM_PROT_WRITE((vm_prot_t) 0x02)) { |
2091 | /* |
2092 | * ... and an unlock request hasn't been sent |
2093 | */ |
2094 | |
2095 | if ( ! (dst_page->unlock_request & VM_PROT_WRITE((vm_prot_t) 0x02))) { |
2096 | vm_prot_t u; |
2097 | kern_return_t rc; |
2098 | |
2099 | /* |
2100 | * ... then send one now. |
2101 | */ |
2102 | |
2103 | if (!dst_object->pager_ready) { |
2104 | vm_object_assert_wait(dst_object,({ (dst_object)->all_wanted |= 1 << (1); assert_wait ((event_t)(((vm_offset_t) dst_object) + (1)), (interruptible) ); }) |
2105 | VM_OBJECT_EVENT_PAGER_READY,({ (dst_object)->all_wanted |= 1 << (1); assert_wait ((event_t)(((vm_offset_t) dst_object) + (1)), (interruptible) ); }) |
2106 | interruptible)({ (dst_object)->all_wanted |= 1 << (1); assert_wait ((event_t)(((vm_offset_t) dst_object) + (1)), (interruptible) ); }); |
2107 | vm_object_unlock(dst_object); |
2108 | thread_block((void (*)()) 0); |
2109 | if (current_thread()(active_threads[(0)])->wait_result != |
2110 | THREAD_AWAKENED0) { |
2111 | DISCARD_PAGE; |
2112 | return(VM_FAULT_INTERRUPTED2); |
2113 | } |
2114 | continue; |
2115 | } |
2116 | |
2117 | u = dst_page->unlock_request |= VM_PROT_WRITE((vm_prot_t) 0x02); |
2118 | vm_object_unlock(dst_object); |
2119 | |
2120 | if ((rc = memory_object_data_unlock( |
2121 | dst_object->pager, |
2122 | dst_object->pager_request, |
2123 | dst_offset + dst_object->paging_offset, |
2124 | PAGE_SIZE(1 << 12), |
2125 | u)) != KERN_SUCCESS0) { |
2126 | printf("vm_object_overwrite: memory_object_data_unlock failed\n"); |
2127 | DISCARD_PAGE; |
2128 | return((rc == MACH_SEND_INTERRUPTED0x10000007) ? |
2129 | VM_FAULT_INTERRUPTED2 : |
2130 | VM_FAULT_MEMORY_ERROR5); |
2131 | } |
2132 | vm_object_lock(dst_object); |
2133 | continue; |
2134 | } |
2135 | |
2136 | /* ... fall through to wait below */ |
2137 | } else { |
2138 | /* |
2139 | * If the page isn't being used for other |
2140 | * purposes, then we're done. |
2141 | */ |
2142 | if ( ! (dst_page->busy || dst_page->absent || dst_page->error) ) |
2143 | break; |
2144 | } |
2145 | |
2146 | PAGE_ASSERT_WAIT(dst_page, interruptible)({ (dst_page)->wanted = ((boolean_t) 1); assert_wait((event_t ) (dst_page), (interruptible)); }); |
2147 | vm_object_unlock(dst_object); |
2148 | thread_block((void (*)()) 0); |
2149 | if (current_thread()(active_threads[(0)])->wait_result != THREAD_AWAKENED0) { |
2150 | DISCARD_PAGE; |
2151 | return(VM_FAULT_INTERRUPTED2); |
2152 | } |
2153 | } |
2154 | |
2155 | *result_page = dst_page; |
2156 | return(VM_FAULT_SUCCESS0); |
2157 | |
2158 | #undef interruptible |
2159 | #undef DISCARD_PAGE |
2160 | } |
2161 | |
2162 | #endif /* notdef */ |