File: | obj/../kern/slab.c |
Location: | line 1471, column 5 |
Description: | Assigned value is garbage or undefined |
1 | /* |
2 | * Copyright (c) 2011 Free Software Foundation. |
3 | * |
4 | * This program is free software; you can redistribute it and/or modify |
5 | * it under the terms of the GNU General Public License as published by |
6 | * the Free Software Foundation; either version 2 of the License, or |
7 | * (at your option) any later version. |
8 | * |
9 | * This program is distributed in the hope that it will be useful, |
10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
12 | * GNU General Public License for more details. |
13 | * |
14 | * You should have received a copy of the GNU General Public License along |
15 | * with this program; if not, write to the Free Software Foundation, Inc., |
16 | * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. |
17 | */ |
18 | |
19 | /* |
20 | * Copyright (c) 2010, 2011 Richard Braun. |
21 | * All rights reserved. |
22 | * |
23 | * Redistribution and use in source and binary forms, with or without |
24 | * modification, are permitted provided that the following conditions |
25 | * are met: |
26 | * 1. Redistributions of source code must retain the above copyright |
27 | * notice, this list of conditions and the following disclaimer. |
28 | * 2. Redistributions in binary form must reproduce the above copyright |
29 | * notice, this list of conditions and the following disclaimer in the |
30 | * documentation and/or other materials provided with the distribution. |
31 | * |
32 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR |
33 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES |
34 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. |
35 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, |
36 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
37 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
38 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
39 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
40 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
41 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
42 | * |
43 | * |
44 | * Object caching and general purpose memory allocator. |
45 | * |
46 | * This allocator is based on the paper "The Slab Allocator: An Object-Caching |
47 | * Kernel Memory Allocator" by Jeff Bonwick. |
48 | * |
49 | * It allows the allocation of objects (i.e. fixed-size typed buffers) from |
50 | * caches and is efficient in both space and time. This implementation follows |
51 | * many of the indications from the paper mentioned. The most notable |
52 | * differences are outlined below. |
53 | * |
54 | * The per-cache self-scaling hash table for buffer-to-bufctl conversion, |
55 | * described in 3.2.3 "Slab Layout for Large Objects", has been replaced by |
56 | * a red-black tree storing slabs, sorted by address. The use of a |
57 | * self-balancing tree for buffer-to-slab conversions provides a few advantages |
58 | * over a hash table. Unlike a hash table, a BST provides a "lookup nearest" |
59 | * operation, so obtaining the slab data (whether it is embedded in the slab or |
60 | * off slab) from a buffer address simply consists of a "lookup nearest towards |
61 | * 0" tree search. Storing slabs instead of buffers also considerably reduces |
62 | * the number of elements to retain. Finally, a self-balancing tree is a true |
63 | * self-scaling data structure, whereas a hash table requires periodic |
64 | * maintenance and complete resizing, which is expensive. The only drawback is |
65 | * that releasing a buffer to the slab layer takes logarithmic time instead of |
66 | * constant time. But as the data set size is kept reasonable (because slabs |
67 | * are stored instead of buffers) and because the CPU pool layer services most |
68 | * requests, avoiding many accesses to the slab layer, it is considered an |
69 | * acceptable tradeoff. |
70 | * |
71 | * This implementation uses per-cpu pools of objects, which service most |
72 | * allocation requests. These pools act as caches (but are named differently |
73 | * to avoid confusion with CPU caches) that reduce contention on multiprocessor |
74 | * systems. When a pool is empty and cannot provide an object, it is filled by |
75 | * transferring multiple objects from the slab layer. The symmetric case is |
76 | * handled likewise. |
77 | */ |
78 | |
79 | #include <string.h> |
80 | #include <kern/assert.h> |
81 | #include <kern/mach_clock.h> |
82 | #include <kern/printf.h> |
83 | #include <kern/slab.h> |
84 | #include <kern/kalloc.h> |
85 | #include <kern/cpu_number.h> |
86 | #include <mach/vm_param.h> |
87 | #include <mach/machine/vm_types.h> |
88 | #include <vm/vm_kern.h> |
89 | #include <vm/vm_types.h> |
90 | #include <sys/types.h> |
91 | |
92 | #ifdef MACH_DEBUG1 |
93 | #include <mach_debug/slab_info.h> |
94 | #endif |
95 | |
96 | /* |
97 | * Utility macros. |
98 | */ |
99 | #define ARRAY_SIZE(x)(sizeof(x) / sizeof((x)[0])) (sizeof(x) / sizeof((x)[0])) |
100 | #define P2ALIGNED(x, a)(((x) & ((a) - 1)) == 0) (((x) & ((a) - 1)) == 0) |
101 | #define ISP2(x)(((x) & ((x) - 1)) == 0) P2ALIGNED(x, x)(((x) & ((x) - 1)) == 0) |
102 | #define P2ALIGN(x, a)((x) & -(a)) ((x) & -(a)) |
103 | #define P2ROUND(x, a)(-(-(x) & -(a))) (-(-(x) & -(a))) |
104 | #define P2END(x, a)(-(~(x) & -(a))) (-(~(x) & -(a))) |
105 | #define likely(expr)__builtin_expect(!!(expr), 1) __builtin_expect(!!(expr), 1) |
106 | #define unlikely(expr)__builtin_expect(!!(expr), 0) __builtin_expect(!!(expr), 0) |
107 | |
108 | /* |
109 | * Minimum required alignment. |
110 | */ |
111 | #define KMEM_ALIGN_MIN8 8 |
112 | |
113 | /* |
114 | * Minimum number of buffers per slab. |
115 | * |
116 | * This value is ignored when the slab size exceeds a threshold. |
117 | */ |
118 | #define KMEM_MIN_BUFS_PER_SLAB8 8 |
119 | |
120 | /* |
121 | * Special slab size beyond which the minimum number of buffers per slab is |
122 | * ignored when computing the slab size of a cache. |
123 | */ |
124 | #define KMEM_SLAB_SIZE_THRESHOLD(8 * (1 << 12)) (8 * PAGE_SIZE(1 << 12)) |
125 | |
126 | /* |
127 | * Special buffer size under which slab data is unconditionnally allocated |
128 | * from its associated slab. |
129 | */ |
130 | #define KMEM_BUF_SIZE_THRESHOLD((1 << 12) / 8) (PAGE_SIZE(1 << 12) / 8) |
131 | |
132 | /* |
133 | * Time (in ticks) between two garbage collection operations. |
134 | */ |
135 | #define KMEM_GC_INTERVAL(5 * hz) (5 * hz) |
136 | |
137 | /* |
138 | * The transfer size of a CPU pool is computed by dividing the pool size by |
139 | * this value. |
140 | */ |
141 | #define KMEM_CPU_POOL_TRANSFER_RATIO2 2 |
142 | |
143 | /* |
144 | * Redzone guard word. |
145 | */ |
146 | #ifdef __LP64__ |
147 | #if _HOST_BIG_ENDIAN |
148 | #define KMEM_REDZONE_WORD0xcefaedfeUL 0xfeedfacefeedfaceUL |
149 | #else /* _HOST_BIG_ENDIAN */ |
150 | #define KMEM_REDZONE_WORD0xcefaedfeUL 0xcefaedfecefaedfeUL |
151 | #endif /* _HOST_BIG_ENDIAN */ |
152 | #else /* __LP64__ */ |
153 | #if _HOST_BIG_ENDIAN |
154 | #define KMEM_REDZONE_WORD0xcefaedfeUL 0xfeedfaceUL |
155 | #else /* _HOST_BIG_ENDIAN */ |
156 | #define KMEM_REDZONE_WORD0xcefaedfeUL 0xcefaedfeUL |
157 | #endif /* _HOST_BIG_ENDIAN */ |
158 | #endif /* __LP64__ */ |
159 | |
160 | /* |
161 | * Redzone byte for padding. |
162 | */ |
163 | #define KMEM_REDZONE_BYTE0xbb 0xbb |
164 | |
165 | /* |
166 | * Size of the VM submap from which default backend functions allocate. |
167 | */ |
168 | #define KMEM_MAP_SIZE(128 * 1024 * 1024) (128 * 1024 * 1024) |
169 | |
170 | /* |
171 | * Shift for the first kalloc cache size. |
172 | */ |
173 | #define KALLOC_FIRST_SHIFT5 5 |
174 | |
175 | /* |
176 | * Number of caches backing general purpose allocations. |
177 | */ |
178 | #define KALLOC_NR_CACHES13 13 |
179 | |
180 | /* |
181 | * Values the buftag state member can take. |
182 | */ |
183 | #ifdef __LP64__ |
184 | #if _HOST_BIG_ENDIAN |
185 | #define KMEM_BUFTAG_ALLOC0xedc810a1UL 0xa110c8eda110c8edUL |
186 | #define KMEM_BUFTAG_FREE0x0cb1eef4UL 0xf4eeb10cf4eeb10cUL |
187 | #else /* _HOST_BIG_ENDIAN */ |
188 | #define KMEM_BUFTAG_ALLOC0xedc810a1UL 0xedc810a1edc810a1UL |
189 | #define KMEM_BUFTAG_FREE0x0cb1eef4UL 0x0cb1eef40cb1eef4UL |
190 | #endif /* _HOST_BIG_ENDIAN */ |
191 | #else /* __LP64__ */ |
192 | #if _HOST_BIG_ENDIAN |
193 | #define KMEM_BUFTAG_ALLOC0xedc810a1UL 0xa110c8edUL |
194 | #define KMEM_BUFTAG_FREE0x0cb1eef4UL 0xf4eeb10cUL |
195 | #else /* _HOST_BIG_ENDIAN */ |
196 | #define KMEM_BUFTAG_ALLOC0xedc810a1UL 0xedc810a1UL |
197 | #define KMEM_BUFTAG_FREE0x0cb1eef4UL 0x0cb1eef4UL |
198 | #endif /* _HOST_BIG_ENDIAN */ |
199 | #endif /* __LP64__ */ |
200 | |
201 | /* |
202 | * Free and uninitialized patterns. |
203 | * |
204 | * These values are unconditionnally 64-bit wide since buffers are at least |
205 | * 8-byte aligned. |
206 | */ |
207 | #if _HOST_BIG_ENDIAN |
208 | #define KMEM_FREE_PATTERN0xefbeaddeefbeaddeULL 0xdeadbeefdeadbeefULL |
209 | #define KMEM_UNINIT_PATTERN0xfecaddbafecaddbaULL 0xbaddcafebaddcafeULL |
210 | #else /* _HOST_BIG_ENDIAN */ |
211 | #define KMEM_FREE_PATTERN0xefbeaddeefbeaddeULL 0xefbeaddeefbeaddeULL |
212 | #define KMEM_UNINIT_PATTERN0xfecaddbafecaddbaULL 0xfecaddbafecaddbaULL |
213 | #endif /* _HOST_BIG_ENDIAN */ |
214 | |
215 | /* |
216 | * Cache flags. |
217 | * |
218 | * The flags don't change once set and can be tested without locking. |
219 | */ |
220 | #define KMEM_CF_NO_CPU_POOL0x01 0x01 /* CPU pool layer disabled */ |
221 | #define KMEM_CF_SLAB_EXTERNAL0x02 0x02 /* Slab data is off slab */ |
222 | #define KMEM_CF_NO_RECLAIM0x04 0x04 /* Slabs are not reclaimable */ |
223 | #define KMEM_CF_VERIFY0x08 0x08 /* Debugging facilities enabled */ |
224 | #define KMEM_CF_DIRECT0x10 0x10 /* No buf-to-slab tree lookup */ |
225 | |
226 | /* |
227 | * Options for kmem_cache_alloc_verify(). |
228 | */ |
229 | #define KMEM_AV_NOCONSTRUCT0 0 |
230 | #define KMEM_AV_CONSTRUCT1 1 |
231 | |
232 | /* |
233 | * Error codes for kmem_cache_error(). |
234 | */ |
235 | #define KMEM_ERR_INVALID0 0 /* Invalid address being freed */ |
236 | #define KMEM_ERR_DOUBLEFREE1 1 /* Freeing already free address */ |
237 | #define KMEM_ERR_BUFTAG2 2 /* Invalid buftag content */ |
238 | #define KMEM_ERR_MODIFIED3 3 /* Buffer modified while free */ |
239 | #define KMEM_ERR_REDZONE4 4 /* Redzone violation */ |
240 | |
241 | #if SLAB_USE_CPU_POOLS0 |
242 | /* |
243 | * Available CPU pool types. |
244 | * |
245 | * For each entry, the CPU pool size applies from the entry buf_size |
246 | * (excluded) up to (and including) the buf_size of the preceding entry. |
247 | * |
248 | * See struct kmem_cpu_pool_type for a description of the values. |
249 | */ |
250 | static struct kmem_cpu_pool_type kmem_cpu_pool_types[] = { |
251 | { 32768, 1, 0, NULL((void *) 0) }, |
252 | { 4096, 8, CPU_L1_SIZE, NULL((void *) 0) }, |
253 | { 256, 64, CPU_L1_SIZE, NULL((void *) 0) }, |
254 | { 0, 128, CPU_L1_SIZE, NULL((void *) 0) } |
255 | }; |
256 | |
257 | /* |
258 | * Caches where CPU pool arrays are allocated from. |
259 | */ |
260 | static struct kmem_cache kmem_cpu_array_caches[ARRAY_SIZE(kmem_cpu_pool_types)(sizeof(kmem_cpu_pool_types) / sizeof((kmem_cpu_pool_types)[0 ]))]; |
261 | #endif /* SLAB_USE_CPU_POOLS */ |
262 | |
263 | /* |
264 | * Cache for off slab data. |
265 | */ |
266 | static struct kmem_cache kmem_slab_cache; |
267 | |
268 | /* |
269 | * General purpose caches array. |
270 | */ |
271 | static struct kmem_cache kalloc_caches[KALLOC_NR_CACHES13]; |
272 | |
273 | /* |
274 | * List of all caches managed by the allocator. |
275 | */ |
276 | static struct list kmem_cache_list; |
277 | static unsigned int kmem_nr_caches; |
278 | static simple_lock_data_t __attribute__((used)) kmem_cache_list_lock; |
279 | |
280 | /* |
281 | * VM submap for slab caches. |
282 | */ |
283 | static struct vm_map kmem_map_store; |
284 | vm_map_t kmem_map = &kmem_map_store; |
285 | |
286 | /* |
287 | * Time of the last memory reclaim, in clock ticks. |
288 | */ |
289 | static unsigned long kmem_gc_last_tick; |
290 | |
291 | #define kmem_error(format, ...)printf("mem: error: %s(): " format "\n", __func__, ...) \ |
292 | printf("mem: error: %s(): " format "\n", __func__, \ |
293 | ## __VA_ARGS__) |
294 | |
295 | #define kmem_warn(format, ...)printf("mem: warning: %s(): " format "\n", __func__, ...) \ |
296 | printf("mem: warning: %s(): " format "\n", __func__, \ |
297 | ## __VA_ARGS__) |
298 | |
299 | #define kmem_print(format, ...)printf(format "\n", ...) \ |
300 | printf(format "\n", ## __VA_ARGS__) |
301 | |
302 | static void kmem_cache_error(struct kmem_cache *cache, void *buf, int error, |
303 | void *arg); |
304 | static void * kmem_cache_alloc_from_slab(struct kmem_cache *cache); |
305 | static void kmem_cache_free_to_slab(struct kmem_cache *cache, void *buf); |
306 | |
307 | static void * kmem_buf_verify_bytes(void *buf, void *pattern, size_t size) |
308 | { |
309 | char *ptr, *pattern_ptr, *end; |
310 | |
311 | end = buf + size; |
312 | |
313 | for (ptr = buf, pattern_ptr = pattern; ptr < end; ptr++, pattern_ptr++) |
314 | if (*ptr != *pattern_ptr) |
315 | return ptr; |
316 | |
317 | return NULL((void *) 0); |
318 | } |
319 | |
320 | static void * kmem_buf_verify(void *buf, uint64_t pattern, vm_size_t size) |
321 | { |
322 | uint64_t *ptr, *end; |
323 | |
324 | assert(P2ALIGNED((unsigned long)buf, sizeof(uint64_t)))({ if (!(((((unsigned long)buf) & ((sizeof(uint64_t)) - 1 )) == 0))) Assert("P2ALIGNED((unsigned long)buf, sizeof(uint64_t))" , "../kern/slab.c", 324); }); |
325 | assert(P2ALIGNED(size, sizeof(uint64_t)))({ if (!((((size) & ((sizeof(uint64_t)) - 1)) == 0))) Assert ("P2ALIGNED(size, sizeof(uint64_t))", "../kern/slab.c", 325); }); |
326 | |
327 | end = buf + size; |
328 | |
329 | for (ptr = buf; ptr < end; ptr++) |
330 | if (*ptr != pattern) |
331 | return kmem_buf_verify_bytes(ptr, &pattern, sizeof(pattern)); |
332 | |
333 | return NULL((void *) 0); |
334 | } |
335 | |
336 | static void kmem_buf_fill(void *buf, uint64_t pattern, size_t size) |
337 | { |
338 | uint64_t *ptr, *end; |
339 | |
340 | assert(P2ALIGNED((unsigned long)buf, sizeof(uint64_t)))({ if (!(((((unsigned long)buf) & ((sizeof(uint64_t)) - 1 )) == 0))) Assert("P2ALIGNED((unsigned long)buf, sizeof(uint64_t))" , "../kern/slab.c", 340); }); |
341 | assert(P2ALIGNED(size, sizeof(uint64_t)))({ if (!((((size) & ((sizeof(uint64_t)) - 1)) == 0))) Assert ("P2ALIGNED(size, sizeof(uint64_t))", "../kern/slab.c", 341); }); |
342 | |
343 | end = buf + size; |
344 | |
345 | for (ptr = buf; ptr < end; ptr++) |
346 | *ptr = pattern; |
347 | } |
348 | |
349 | static void * kmem_buf_verify_fill(void *buf, uint64_t old, uint64_t new, |
350 | size_t size) |
351 | { |
352 | uint64_t *ptr, *end; |
353 | |
354 | assert(P2ALIGNED((unsigned long)buf, sizeof(uint64_t)))({ if (!(((((unsigned long)buf) & ((sizeof(uint64_t)) - 1 )) == 0))) Assert("P2ALIGNED((unsigned long)buf, sizeof(uint64_t))" , "../kern/slab.c", 354); }); |
355 | assert(P2ALIGNED(size, sizeof(uint64_t)))({ if (!((((size) & ((sizeof(uint64_t)) - 1)) == 0))) Assert ("P2ALIGNED(size, sizeof(uint64_t))", "../kern/slab.c", 355); }); |
356 | |
357 | end = buf + size; |
358 | |
359 | for (ptr = buf; ptr < end; ptr++) { |
360 | if (*ptr != old) |
361 | return kmem_buf_verify_bytes(ptr, &old, sizeof(old)); |
362 | |
363 | *ptr = new; |
364 | } |
365 | |
366 | return NULL((void *) 0); |
367 | } |
368 | |
369 | static inline union kmem_bufctl * |
370 | kmem_buf_to_bufctl(void *buf, struct kmem_cache *cache) |
371 | { |
372 | return (union kmem_bufctl *)(buf + cache->bufctl_dist); |
373 | } |
374 | |
375 | static inline struct kmem_buftag * |
376 | kmem_buf_to_buftag(void *buf, struct kmem_cache *cache) |
377 | { |
378 | return (struct kmem_buftag *)(buf + cache->buftag_dist); |
379 | } |
380 | |
381 | static inline void * kmem_bufctl_to_buf(union kmem_bufctl *bufctl, |
382 | struct kmem_cache *cache) |
383 | { |
384 | return (void *)bufctl - cache->bufctl_dist; |
385 | } |
386 | |
387 | static vm_offset_t kmem_pagealloc(vm_size_t size) |
388 | { |
389 | vm_offset_t addr; |
390 | kern_return_t kr; |
391 | |
392 | kr = kmem_alloc_wired(kmem_map, &addr, size); |
393 | |
394 | if (kr != KERN_SUCCESS0) |
395 | return 0; |
396 | |
397 | return addr; |
398 | } |
399 | |
400 | static void kmem_pagefree(vm_offset_t ptr, vm_size_t size) |
401 | { |
402 | kmem_free(kmem_map, ptr, size); |
403 | } |
404 | |
405 | static void kmem_slab_create_verify(struct kmem_slab *slab, |
406 | struct kmem_cache *cache) |
407 | { |
408 | struct kmem_buftag *buftag; |
409 | size_t buf_size; |
410 | unsigned long buffers; |
411 | void *buf; |
412 | |
413 | buf_size = cache->buf_size; |
414 | buf = slab->addr; |
415 | buftag = kmem_buf_to_buftag(buf, cache); |
416 | |
417 | for (buffers = cache->bufs_per_slab; buffers != 0; buffers--) { |
418 | kmem_buf_fill(buf, KMEM_FREE_PATTERN0xefbeaddeefbeaddeULL, cache->bufctl_dist); |
419 | buftag->state = KMEM_BUFTAG_FREE0x0cb1eef4UL; |
420 | buf += buf_size; |
421 | buftag = kmem_buf_to_buftag(buf, cache); |
422 | } |
423 | } |
424 | |
425 | /* |
426 | * Create an empty slab for a cache. |
427 | * |
428 | * The caller must drop all locks before calling this function. |
429 | */ |
430 | static struct kmem_slab * kmem_slab_create(struct kmem_cache *cache, |
431 | size_t color) |
432 | { |
433 | struct kmem_slab *slab; |
434 | union kmem_bufctl *bufctl; |
435 | size_t buf_size; |
436 | unsigned long buffers; |
437 | void *slab_buf; |
438 | |
439 | if (cache->slab_alloc_fn == NULL((void *) 0)) |
440 | slab_buf = (void *)kmem_pagealloc(cache->slab_size); |
441 | else |
442 | slab_buf = (void *)cache->slab_alloc_fn(cache->slab_size); |
443 | |
444 | if (slab_buf == NULL((void *) 0)) |
445 | return NULL((void *) 0); |
446 | |
447 | if (cache->flags & KMEM_CF_SLAB_EXTERNAL0x02) { |
448 | assert(!(cache->flags & KMEM_CF_NO_RECLAIM))({ if (!(!(cache->flags & 0x04))) Assert("!(cache->flags & KMEM_CF_NO_RECLAIM)" , "../kern/slab.c", 448); }); |
449 | slab = (struct kmem_slab *)kmem_cache_alloc(&kmem_slab_cache); |
450 | |
451 | if (slab == NULL((void *) 0)) { |
452 | if (cache->slab_free_fn == NULL((void *) 0)) |
453 | kmem_pagefree((vm_offset_t)slab_buf, cache->slab_size); |
454 | else |
455 | cache->slab_free_fn((vm_offset_t)slab_buf, cache->slab_size); |
456 | |
457 | return NULL((void *) 0); |
458 | } |
459 | } else { |
460 | slab = (struct kmem_slab *)(slab_buf + cache->slab_size) - 1; |
461 | } |
462 | |
463 | list_node_init(&slab->list_node); |
464 | rbtree_node_init(&slab->tree_node); |
465 | slab->nr_refs = 0; |
466 | slab->first_free = NULL((void *) 0); |
467 | slab->addr = slab_buf + color; |
468 | |
469 | buf_size = cache->buf_size; |
470 | bufctl = kmem_buf_to_bufctl(slab->addr, cache); |
471 | |
472 | for (buffers = cache->bufs_per_slab; buffers != 0; buffers--) { |
473 | bufctl->next = slab->first_free; |
474 | slab->first_free = bufctl; |
475 | bufctl = (union kmem_bufctl *)((void *)bufctl + buf_size); |
476 | } |
477 | |
478 | if (cache->flags & KMEM_CF_VERIFY0x08) |
479 | kmem_slab_create_verify(slab, cache); |
480 | |
481 | return slab; |
482 | } |
483 | |
484 | static void kmem_slab_destroy_verify(struct kmem_slab *slab, |
485 | struct kmem_cache *cache) |
486 | { |
487 | struct kmem_buftag *buftag; |
488 | size_t buf_size; |
489 | unsigned long buffers; |
490 | void *buf, *addr; |
491 | |
492 | buf_size = cache->buf_size; |
493 | buf = slab->addr; |
494 | buftag = kmem_buf_to_buftag(buf, cache); |
495 | |
496 | for (buffers = cache->bufs_per_slab; buffers != 0; buffers--) { |
497 | if (buftag->state != KMEM_BUFTAG_FREE0x0cb1eef4UL) |
498 | kmem_cache_error(cache, buf, KMEM_ERR_BUFTAG2, buftag); |
499 | |
500 | addr = kmem_buf_verify(buf, KMEM_FREE_PATTERN0xefbeaddeefbeaddeULL, cache->bufctl_dist); |
501 | |
502 | if (addr != NULL((void *) 0)) |
503 | kmem_cache_error(cache, buf, KMEM_ERR_MODIFIED3, addr); |
504 | |
505 | buf += buf_size; |
506 | buftag = kmem_buf_to_buftag(buf, cache); |
507 | } |
508 | } |
509 | |
510 | /* |
511 | * Destroy a slab. |
512 | * |
513 | * The caller must drop all locks before calling this function. |
514 | */ |
515 | static void kmem_slab_destroy(struct kmem_slab *slab, struct kmem_cache *cache) |
516 | { |
517 | vm_offset_t slab_buf; |
518 | |
519 | assert(slab->nr_refs == 0)({ if (!(slab->nr_refs == 0)) Assert("slab->nr_refs == 0" , "../kern/slab.c", 519); }); |
520 | assert(slab->first_free != NULL)({ if (!(slab->first_free != ((void *) 0))) Assert("slab->first_free != NULL" , "../kern/slab.c", 520); }); |
521 | assert(!(cache->flags & KMEM_CF_NO_RECLAIM))({ if (!(!(cache->flags & 0x04))) Assert("!(cache->flags & KMEM_CF_NO_RECLAIM)" , "../kern/slab.c", 521); }); |
522 | |
523 | if (cache->flags & KMEM_CF_VERIFY0x08) |
524 | kmem_slab_destroy_verify(slab, cache); |
525 | |
526 | slab_buf = (vm_offset_t)P2ALIGN((unsigned long)slab->addr, PAGE_SIZE)(((unsigned long)slab->addr) & -((1 << 12))); |
527 | |
528 | if (cache->slab_free_fn == NULL((void *) 0)) |
529 | kmem_pagefree(slab_buf, cache->slab_size); |
530 | else |
531 | cache->slab_free_fn(slab_buf, cache->slab_size); |
532 | |
533 | if (cache->flags & KMEM_CF_SLAB_EXTERNAL0x02) |
534 | kmem_cache_free(&kmem_slab_cache, (vm_offset_t)slab); |
535 | } |
536 | |
537 | static inline int kmem_slab_use_tree(int flags) |
538 | { |
539 | return !(flags & KMEM_CF_DIRECT0x10) || (flags & KMEM_CF_VERIFY0x08); |
540 | } |
541 | |
542 | static inline int kmem_slab_cmp_lookup(const void *addr, |
543 | const struct rbtree_node *node) |
544 | { |
545 | struct kmem_slab *slab; |
546 | |
547 | slab = rbtree_entry(node, struct kmem_slab, tree_node)((struct kmem_slab *)((char *)node - __builtin_offsetof (struct kmem_slab, tree_node))); |
548 | |
549 | if (addr == slab->addr) |
550 | return 0; |
551 | else if (addr < slab->addr) |
552 | return -1; |
553 | else |
554 | return 1; |
555 | } |
556 | |
557 | static inline int kmem_slab_cmp_insert(const struct rbtree_node *a, |
558 | const struct rbtree_node *b) |
559 | { |
560 | struct kmem_slab *slab; |
561 | |
562 | slab = rbtree_entry(a, struct kmem_slab, tree_node)((struct kmem_slab *)((char *)a - __builtin_offsetof (struct kmem_slab , tree_node))); |
563 | return kmem_slab_cmp_lookup(slab->addr, b); |
564 | } |
565 | |
566 | #if SLAB_USE_CPU_POOLS0 |
567 | static void kmem_cpu_pool_init(struct kmem_cpu_pool *cpu_pool, |
568 | struct kmem_cache *cache) |
569 | { |
570 | simple_lock_init(&cpu_pool->lock); |
571 | cpu_pool->flags = cache->flags; |
572 | cpu_pool->size = 0; |
573 | cpu_pool->transfer_size = 0; |
574 | cpu_pool->nr_objs = 0; |
575 | cpu_pool->array = NULL((void *) 0); |
576 | } |
577 | |
578 | /* |
579 | * Return a CPU pool. |
580 | * |
581 | * This function will generally return the pool matching the CPU running the |
582 | * calling thread. Because of context switches and thread migration, the |
583 | * caller might be running on another processor after this function returns. |
584 | * Although not optimal, this should rarely happen, and it doesn't affect the |
585 | * allocator operations in any other way, as CPU pools are always valid, and |
586 | * their access is serialized by a lock. |
587 | */ |
588 | static inline struct kmem_cpu_pool * kmem_cpu_pool_get(struct kmem_cache *cache) |
589 | { |
590 | return &cache->cpu_pools[cpu_number()(0)]; |
591 | } |
592 | |
593 | static inline void kmem_cpu_pool_build(struct kmem_cpu_pool *cpu_pool, |
594 | struct kmem_cache *cache, void **array) |
595 | { |
596 | cpu_pool->size = cache->cpu_pool_type->array_size; |
597 | cpu_pool->transfer_size = (cpu_pool->size |
598 | + KMEM_CPU_POOL_TRANSFER_RATIO2 - 1) |
599 | / KMEM_CPU_POOL_TRANSFER_RATIO2; |
600 | cpu_pool->array = array; |
601 | } |
602 | |
603 | static inline void * kmem_cpu_pool_pop(struct kmem_cpu_pool *cpu_pool) |
604 | { |
605 | cpu_pool->nr_objs--; |
606 | return cpu_pool->array[cpu_pool->nr_objs]; |
607 | } |
608 | |
609 | static inline void kmem_cpu_pool_push(struct kmem_cpu_pool *cpu_pool, void *obj) |
610 | { |
611 | cpu_pool->array[cpu_pool->nr_objs] = obj; |
612 | cpu_pool->nr_objs++; |
613 | } |
614 | |
615 | static int kmem_cpu_pool_fill(struct kmem_cpu_pool *cpu_pool, |
616 | struct kmem_cache *cache) |
617 | { |
618 | kmem_cache_ctor_t ctor; |
619 | void *buf; |
620 | int i; |
621 | |
622 | ctor = (cpu_pool->flags & KMEM_CF_VERIFY0x08) ? NULL((void *) 0) : cache->ctor; |
623 | |
624 | simple_lock(&cache->lock); |
625 | |
626 | for (i = 0; i < cpu_pool->transfer_size; i++) { |
627 | buf = kmem_cache_alloc_from_slab(cache); |
628 | |
629 | if (buf == NULL((void *) 0)) |
630 | break; |
631 | |
632 | if (ctor != NULL((void *) 0)) |
633 | ctor(buf); |
634 | |
635 | kmem_cpu_pool_push(cpu_pool, buf); |
636 | } |
637 | |
638 | simple_unlock(&cache->lock); |
639 | |
640 | return i; |
641 | } |
642 | |
643 | static void kmem_cpu_pool_drain(struct kmem_cpu_pool *cpu_pool, |
644 | struct kmem_cache *cache) |
645 | { |
646 | void *obj; |
647 | int i; |
648 | |
649 | simple_lock(&cache->lock); |
650 | |
651 | for (i = cpu_pool->transfer_size; i > 0; i--) { |
652 | obj = kmem_cpu_pool_pop(cpu_pool); |
653 | kmem_cache_free_to_slab(cache, obj); |
654 | } |
655 | |
656 | simple_unlock(&cache->lock); |
657 | } |
658 | #endif /* SLAB_USE_CPU_POOLS */ |
659 | |
660 | static void kmem_cache_error(struct kmem_cache *cache, void *buf, int error, |
661 | void *arg) |
662 | { |
663 | struct kmem_buftag *buftag; |
664 | |
665 | kmem_error("cache: %s, buffer: %p", cache->name, (void *)buf)printf("mem: error: %s(): " "cache: %s, buffer: %p" "\n", __func__ , cache->name, (void *)buf); |
666 | |
667 | switch(error) { |
668 | case KMEM_ERR_INVALID0: |
669 | kmem_error("freeing invalid address")printf("mem: error: %s(): " "freeing invalid address" "\n", __func__ ); |
670 | break; |
671 | case KMEM_ERR_DOUBLEFREE1: |
672 | kmem_error("attempting to free the same address twice")printf("mem: error: %s(): " "attempting to free the same address twice" "\n", __func__); |
673 | break; |
674 | case KMEM_ERR_BUFTAG2: |
675 | buftag = arg; |
676 | kmem_error("invalid buftag content, buftag state: %p",printf("mem: error: %s(): " "invalid buftag content, buftag state: %p" "\n", __func__, (void *)buftag->state) |
677 | (void *)buftag->state)printf("mem: error: %s(): " "invalid buftag content, buftag state: %p" "\n", __func__, (void *)buftag->state); |
678 | break; |
679 | case KMEM_ERR_MODIFIED3: |
680 | kmem_error("free buffer modified, fault address: %p, "printf("mem: error: %s(): " "free buffer modified, fault address: %p, " "offset in buffer: %td" "\n", __func__, arg, arg - buf) |
681 | "offset in buffer: %td", arg, arg - buf)printf("mem: error: %s(): " "free buffer modified, fault address: %p, " "offset in buffer: %td" "\n", __func__, arg, arg - buf); |
682 | break; |
683 | case KMEM_ERR_REDZONE4: |
684 | kmem_error("write beyond end of buffer, fault address: %p, "printf("mem: error: %s(): " "write beyond end of buffer, fault address: %p, " "offset in buffer: %td" "\n", __func__, arg, arg - buf) |
685 | "offset in buffer: %td", arg, arg - buf)printf("mem: error: %s(): " "write beyond end of buffer, fault address: %p, " "offset in buffer: %td" "\n", __func__, arg, arg - buf); |
686 | break; |
687 | default: |
688 | kmem_error("unknown error")printf("mem: error: %s(): " "unknown error" "\n", __func__); |
689 | } |
690 | |
691 | /* |
692 | * Never reached. |
693 | */ |
694 | } |
695 | |
696 | /* |
697 | * Compute an appropriate slab size for the given cache. |
698 | * |
699 | * Once the slab size is known, this function sets the related properties |
700 | * (buffers per slab and maximum color). It can also set the KMEM_CF_DIRECT |
701 | * and/or KMEM_CF_SLAB_EXTERNAL flags depending on the resulting layout. |
702 | */ |
703 | static void kmem_cache_compute_sizes(struct kmem_cache *cache, int flags) |
704 | { |
705 | size_t i, buffers, buf_size, slab_size, free_slab_size, optimal_size; |
706 | size_t waste, waste_min; |
707 | int embed, optimal_embed = optimal_embed; |
708 | |
709 | buf_size = cache->buf_size; |
710 | |
711 | if (buf_size < KMEM_BUF_SIZE_THRESHOLD((1 << 12) / 8)) |
712 | flags |= KMEM_CACHE_NOOFFSLAB0x2; |
713 | |
714 | i = 0; |
715 | waste_min = (size_t)-1; |
716 | |
717 | do { |
718 | i++; |
719 | slab_size = P2ROUND(i * buf_size, PAGE_SIZE)(-(-(i * buf_size) & -((1 << 12)))); |
720 | free_slab_size = slab_size; |
721 | |
722 | if (flags & KMEM_CACHE_NOOFFSLAB0x2) |
723 | free_slab_size -= sizeof(struct kmem_slab); |
724 | |
725 | buffers = free_slab_size / buf_size; |
726 | waste = free_slab_size % buf_size; |
727 | |
728 | if (buffers > i) |
729 | i = buffers; |
730 | |
731 | if (flags & KMEM_CACHE_NOOFFSLAB0x2) |
732 | embed = 1; |
733 | else if (sizeof(struct kmem_slab) <= waste) { |
734 | embed = 1; |
735 | waste -= sizeof(struct kmem_slab); |
736 | } else { |
737 | embed = 0; |
738 | } |
739 | |
740 | if (waste <= waste_min) { |
741 | waste_min = waste; |
742 | optimal_size = slab_size; |
743 | optimal_embed = embed; |
744 | } |
745 | } while ((buffers < KMEM_MIN_BUFS_PER_SLAB8) |
746 | && (slab_size < KMEM_SLAB_SIZE_THRESHOLD(8 * (1 << 12)))); |
747 | |
748 | assert(!(flags & KMEM_CACHE_NOOFFSLAB) || optimal_embed)({ if (!(!(flags & 0x2) || optimal_embed)) Assert("!(flags & KMEM_CACHE_NOOFFSLAB) || optimal_embed" , "../kern/slab.c", 748); }); |
749 | |
750 | cache->slab_size = optimal_size; |
751 | slab_size = cache->slab_size - (optimal_embed |
752 | ? sizeof(struct kmem_slab) |
753 | : 0); |
754 | cache->bufs_per_slab = slab_size / buf_size; |
755 | cache->color_max = slab_size % buf_size; |
756 | |
757 | if (cache->color_max >= PAGE_SIZE(1 << 12)) |
758 | cache->color_max = PAGE_SIZE(1 << 12) - 1; |
759 | |
760 | if (optimal_embed) { |
761 | if (cache->slab_size == PAGE_SIZE(1 << 12)) |
762 | cache->flags |= KMEM_CF_DIRECT0x10; |
763 | } else { |
764 | cache->flags |= KMEM_CF_SLAB_EXTERNAL0x02; |
765 | } |
766 | } |
767 | |
768 | void kmem_cache_init(struct kmem_cache *cache, const char *name, |
769 | size_t obj_size, size_t align, kmem_cache_ctor_t ctor, |
770 | kmem_slab_alloc_fn_t slab_alloc_fn, |
771 | kmem_slab_free_fn_t slab_free_fn, int flags) |
772 | { |
773 | #if SLAB_USE_CPU_POOLS0 |
774 | struct kmem_cpu_pool_type *cpu_pool_type; |
775 | size_t i; |
776 | #endif /* SLAB_USE_CPU_POOLS */ |
777 | size_t buf_size; |
778 | |
779 | #if SLAB_VERIFY0 |
780 | cache->flags = KMEM_CF_VERIFY0x08; |
781 | #else /* SLAB_VERIFY */ |
782 | cache->flags = 0; |
783 | #endif /* SLAB_VERIFY */ |
784 | |
785 | if (flags & KMEM_CACHE_NOCPUPOOL0x1) |
786 | cache->flags |= KMEM_CF_NO_CPU_POOL0x01; |
787 | |
788 | if (flags & KMEM_CACHE_NORECLAIM0x4) { |
789 | assert(slab_free_fn == NULL)({ if (!(slab_free_fn == ((void *) 0))) Assert("slab_free_fn == NULL" , "../kern/slab.c", 789); }); |
790 | flags |= KMEM_CACHE_NOOFFSLAB0x2; |
791 | cache->flags |= KMEM_CF_NO_RECLAIM0x04; |
792 | } |
793 | |
794 | if (flags & KMEM_CACHE_VERIFY0x8) |
795 | cache->flags |= KMEM_CF_VERIFY0x08; |
796 | |
797 | if (align < KMEM_ALIGN_MIN8) |
798 | align = KMEM_ALIGN_MIN8; |
799 | |
800 | assert(obj_size > 0)({ if (!(obj_size > 0)) Assert("obj_size > 0", "../kern/slab.c" , 800); }); |
801 | assert(ISP2(align))({ if (!((((align) & ((align) - 1)) == 0))) Assert("ISP2(align)" , "../kern/slab.c", 801); }); |
802 | assert(align < PAGE_SIZE)({ if (!(align < (1 << 12))) Assert("align < PAGE_SIZE" , "../kern/slab.c", 802); }); |
803 | |
804 | buf_size = P2ROUND(obj_size, align)(-(-(obj_size) & -(align))); |
805 | |
806 | simple_lock_init(&cache->lock); |
807 | list_node_init(&cache->node); |
808 | list_init(&cache->partial_slabs); |
809 | list_init(&cache->free_slabs); |
810 | rbtree_init(&cache->active_slabs); |
811 | cache->obj_size = obj_size; |
812 | cache->align = align; |
813 | cache->buf_size = buf_size; |
814 | cache->bufctl_dist = buf_size - sizeof(union kmem_bufctl); |
815 | cache->color = 0; |
816 | cache->nr_objs = 0; |
817 | cache->nr_bufs = 0; |
818 | cache->nr_slabs = 0; |
819 | cache->nr_free_slabs = 0; |
820 | cache->ctor = ctor; |
821 | cache->slab_alloc_fn = slab_alloc_fn; |
822 | cache->slab_free_fn = slab_free_fn; |
823 | strncpy(cache->name, name, sizeof(cache->name)); |
824 | cache->name[sizeof(cache->name) - 1] = '\0'; |
825 | cache->buftag_dist = 0; |
826 | cache->redzone_pad = 0; |
827 | |
828 | if (cache->flags & KMEM_CF_VERIFY0x08) { |
829 | cache->bufctl_dist = buf_size; |
830 | cache->buftag_dist = cache->bufctl_dist + sizeof(union kmem_bufctl); |
831 | cache->redzone_pad = cache->bufctl_dist - cache->obj_size; |
832 | buf_size += sizeof(union kmem_bufctl) + sizeof(struct kmem_buftag); |
833 | buf_size = P2ROUND(buf_size, align)(-(-(buf_size) & -(align))); |
834 | cache->buf_size = buf_size; |
835 | } |
836 | |
837 | kmem_cache_compute_sizes(cache, flags); |
838 | |
839 | #if SLAB_USE_CPU_POOLS0 |
840 | for (cpu_pool_type = kmem_cpu_pool_types; |
841 | buf_size <= cpu_pool_type->buf_size; |
842 | cpu_pool_type++); |
843 | |
844 | cache->cpu_pool_type = cpu_pool_type; |
845 | |
846 | for (i = 0; i < ARRAY_SIZE(cache->cpu_pools)(sizeof(cache->cpu_pools) / sizeof((cache->cpu_pools)[0 ])); i++) |
847 | kmem_cpu_pool_init(&cache->cpu_pools[i], cache); |
848 | #endif /* SLAB_USE_CPU_POOLS */ |
849 | |
850 | simple_lock(&kmem_cache_list_lock); |
851 | list_insert_tail(&kmem_cache_list, &cache->node); |
852 | kmem_nr_caches++; |
853 | simple_unlock(&kmem_cache_list_lock); |
854 | } |
855 | |
856 | static inline int kmem_cache_empty(struct kmem_cache *cache) |
857 | { |
858 | return cache->nr_objs == cache->nr_bufs; |
859 | } |
860 | |
861 | static int kmem_cache_grow(struct kmem_cache *cache) |
862 | { |
863 | struct kmem_slab *slab; |
864 | size_t color; |
865 | int empty; |
866 | |
867 | simple_lock(&cache->lock); |
868 | |
869 | if (!kmem_cache_empty(cache)) { |
870 | simple_unlock(&cache->lock); |
871 | return 1; |
872 | } |
873 | |
874 | color = cache->color; |
875 | cache->color += cache->align; |
876 | |
877 | if (cache->color > cache->color_max) |
878 | cache->color = 0; |
879 | |
880 | simple_unlock(&cache->lock); |
881 | |
882 | slab = kmem_slab_create(cache, color); |
883 | |
884 | simple_lock(&cache->lock); |
885 | |
886 | if (slab != NULL((void *) 0)) { |
887 | list_insert_head(&cache->free_slabs, &slab->list_node); |
888 | cache->nr_bufs += cache->bufs_per_slab; |
889 | cache->nr_slabs++; |
890 | cache->nr_free_slabs++; |
891 | } |
892 | |
893 | /* |
894 | * Even if our slab creation failed, another thread might have succeeded |
895 | * in growing the cache. |
896 | */ |
897 | empty = kmem_cache_empty(cache); |
898 | |
899 | simple_unlock(&cache->lock); |
900 | |
901 | return !empty; |
902 | } |
903 | |
904 | static void kmem_cache_reap(struct kmem_cache *cache) |
905 | { |
906 | struct kmem_slab *slab; |
907 | struct list dead_slabs; |
908 | unsigned long nr_free_slabs; |
909 | |
910 | if (cache->flags & KMEM_CF_NO_RECLAIM0x04) |
911 | return; |
912 | |
913 | simple_lock(&cache->lock); |
914 | list_set_head(&dead_slabs, &cache->free_slabs); |
915 | list_init(&cache->free_slabs); |
916 | nr_free_slabs = cache->nr_free_slabs; |
917 | cache->nr_bufs -= cache->bufs_per_slab * nr_free_slabs; |
918 | cache->nr_slabs -= nr_free_slabs; |
919 | cache->nr_free_slabs = 0; |
920 | simple_unlock(&cache->lock); |
921 | |
922 | while (!list_empty(&dead_slabs)) { |
923 | slab = list_first_entry(&dead_slabs, struct kmem_slab, list_node)((struct kmem_slab *)((char *)list_first(&dead_slabs) - __builtin_offsetof (struct kmem_slab, list_node))); |
924 | list_remove(&slab->list_node); |
925 | kmem_slab_destroy(slab, cache); |
926 | nr_free_slabs--; |
927 | } |
928 | |
929 | assert(nr_free_slabs == 0)({ if (!(nr_free_slabs == 0)) Assert("nr_free_slabs == 0", "../kern/slab.c" , 929); }); |
930 | } |
931 | |
932 | /* |
933 | * Allocate a raw (unconstructed) buffer from the slab layer of a cache. |
934 | * |
935 | * The cache must be locked before calling this function. |
936 | */ |
937 | static void * kmem_cache_alloc_from_slab(struct kmem_cache *cache) |
938 | { |
939 | struct kmem_slab *slab; |
940 | union kmem_bufctl *bufctl; |
941 | |
942 | if (!list_empty(&cache->partial_slabs)) |
943 | slab = list_first_entry(&cache->partial_slabs, struct kmem_slab,((struct kmem_slab *)((char *)list_first(&cache->partial_slabs ) - __builtin_offsetof (struct kmem_slab, list_node))) |
944 | list_node)((struct kmem_slab *)((char *)list_first(&cache->partial_slabs ) - __builtin_offsetof (struct kmem_slab, list_node))); |
945 | else if (!list_empty(&cache->free_slabs)) |
946 | slab = list_first_entry(&cache->free_slabs, struct kmem_slab,((struct kmem_slab *)((char *)list_first(&cache->free_slabs ) - __builtin_offsetof (struct kmem_slab, list_node))) |
947 | list_node)((struct kmem_slab *)((char *)list_first(&cache->free_slabs ) - __builtin_offsetof (struct kmem_slab, list_node))); |
948 | else |
949 | return NULL((void *) 0); |
950 | |
951 | bufctl = slab->first_free; |
952 | assert(bufctl != NULL)({ if (!(bufctl != ((void *) 0))) Assert("bufctl != NULL", "../kern/slab.c" , 952); }); |
953 | slab->first_free = bufctl->next; |
954 | slab->nr_refs++; |
955 | cache->nr_objs++; |
956 | |
957 | if (slab->nr_refs == cache->bufs_per_slab) { |
958 | /* The slab has become complete */ |
959 | list_remove(&slab->list_node); |
960 | |
961 | if (slab->nr_refs == 1) |
962 | cache->nr_free_slabs--; |
963 | } else if (slab->nr_refs == 1) { |
964 | /* |
965 | * The slab has become partial. Insert the new slab at the end of |
966 | * the list to reduce fragmentation. |
967 | */ |
968 | list_remove(&slab->list_node); |
969 | list_insert_tail(&cache->partial_slabs, &slab->list_node); |
970 | cache->nr_free_slabs--; |
971 | } |
972 | |
973 | if ((slab->nr_refs == 1) && kmem_slab_use_tree(cache->flags)) |
974 | rbtree_insert(&cache->active_slabs, &slab->tree_node,({ struct rbtree_node *___cur, *___prev; int ___diff, ___index ; ___prev = ((void *) 0); ___index = -1; ___cur = (&cache ->active_slabs)->root; while (___cur != ((void *) 0)) { ___diff = kmem_slab_cmp_insert(&slab->tree_node, ___cur ); ({ if (!(___diff != 0)) Assert("___diff != 0", "../kern/slab.c" , 975); }); ___prev = ___cur; ___index = rbtree_d2i(___diff); ___cur = ___cur->children[___index]; } rbtree_insert_rebalance (&cache->active_slabs, ___prev, ___index, &slab-> tree_node); }) |
975 | kmem_slab_cmp_insert)({ struct rbtree_node *___cur, *___prev; int ___diff, ___index ; ___prev = ((void *) 0); ___index = -1; ___cur = (&cache ->active_slabs)->root; while (___cur != ((void *) 0)) { ___diff = kmem_slab_cmp_insert(&slab->tree_node, ___cur ); ({ if (!(___diff != 0)) Assert("___diff != 0", "../kern/slab.c" , 975); }); ___prev = ___cur; ___index = rbtree_d2i(___diff); ___cur = ___cur->children[___index]; } rbtree_insert_rebalance (&cache->active_slabs, ___prev, ___index, &slab-> tree_node); }); |
976 | |
977 | return kmem_bufctl_to_buf(bufctl, cache); |
978 | } |
979 | |
980 | /* |
981 | * Release a buffer to the slab layer of a cache. |
982 | * |
983 | * The cache must be locked before calling this function. |
984 | */ |
985 | static void kmem_cache_free_to_slab(struct kmem_cache *cache, void *buf) |
986 | { |
987 | struct kmem_slab *slab; |
988 | union kmem_bufctl *bufctl; |
989 | |
990 | if (cache->flags & KMEM_CF_DIRECT0x10) { |
991 | assert(cache->slab_size == PAGE_SIZE)({ if (!(cache->slab_size == (1 << 12))) Assert("cache->slab_size == PAGE_SIZE" , "../kern/slab.c", 991); }); |
992 | slab = (struct kmem_slab *)P2END((unsigned long)buf, cache->slab_size)(-(~((unsigned long)buf) & -(cache->slab_size))) |
993 | - 1; |
994 | } else { |
995 | struct rbtree_node *node; |
996 | |
997 | node = rbtree_lookup_nearest(&cache->active_slabs, buf,({ struct rbtree_node *___cur, *___prev; int ___diff, ___index ; ___prev = ((void *) 0); ___index = -1; ___cur = (&cache ->active_slabs)->root; while (___cur != ((void *) 0)) { ___diff = kmem_slab_cmp_lookup(buf, ___cur); if (___diff == 0 ) break; ___prev = ___cur; ___index = rbtree_d2i(___diff); ___cur = ___cur->children[___index]; } if (___cur == ((void *) 0 )) ___cur = rbtree_nearest(___prev, ___index, 0); ___cur; }) |
998 | kmem_slab_cmp_lookup, RBTREE_LEFT)({ struct rbtree_node *___cur, *___prev; int ___diff, ___index ; ___prev = ((void *) 0); ___index = -1; ___cur = (&cache ->active_slabs)->root; while (___cur != ((void *) 0)) { ___diff = kmem_slab_cmp_lookup(buf, ___cur); if (___diff == 0 ) break; ___prev = ___cur; ___index = rbtree_d2i(___diff); ___cur = ___cur->children[___index]; } if (___cur == ((void *) 0 )) ___cur = rbtree_nearest(___prev, ___index, 0); ___cur; }); |
999 | assert(node != NULL)({ if (!(node != ((void *) 0))) Assert("node != NULL", "../kern/slab.c" , 999); }); |
1000 | slab = rbtree_entry(node, struct kmem_slab, tree_node)((struct kmem_slab *)((char *)node - __builtin_offsetof (struct kmem_slab, tree_node))); |
1001 | assert((unsigned long)buf < (P2ALIGN((unsigned long)slab->addr({ if (!((unsigned long)buf < ((((unsigned long)slab->addr + cache->slab_size) & -((1 << 12)))))) Assert("(unsigned long)buf < (P2ALIGN((unsigned long)slab->addr + cache->slab_size, PAGE_SIZE))" , "../kern/slab.c", 1002); }) |
1002 | + cache->slab_size, PAGE_SIZE)))({ if (!((unsigned long)buf < ((((unsigned long)slab->addr + cache->slab_size) & -((1 << 12)))))) Assert("(unsigned long)buf < (P2ALIGN((unsigned long)slab->addr + cache->slab_size, PAGE_SIZE))" , "../kern/slab.c", 1002); }); |
1003 | } |
1004 | |
1005 | assert(slab->nr_refs >= 1)({ if (!(slab->nr_refs >= 1)) Assert("slab->nr_refs >= 1" , "../kern/slab.c", 1005); }); |
1006 | assert(slab->nr_refs <= cache->bufs_per_slab)({ if (!(slab->nr_refs <= cache->bufs_per_slab)) Assert ("slab->nr_refs <= cache->bufs_per_slab", "../kern/slab.c" , 1006); }); |
1007 | bufctl = kmem_buf_to_bufctl(buf, cache); |
1008 | bufctl->next = slab->first_free; |
1009 | slab->first_free = bufctl; |
1010 | slab->nr_refs--; |
1011 | cache->nr_objs--; |
1012 | |
1013 | if (slab->nr_refs == 0) { |
1014 | /* The slab has become free */ |
1015 | |
1016 | if (kmem_slab_use_tree(cache->flags)) |
1017 | rbtree_remove(&cache->active_slabs, &slab->tree_node); |
1018 | |
1019 | if (cache->bufs_per_slab > 1) |
1020 | list_remove(&slab->list_node); |
1021 | |
1022 | list_insert_head(&cache->free_slabs, &slab->list_node); |
1023 | cache->nr_free_slabs++; |
1024 | } else if (slab->nr_refs == (cache->bufs_per_slab - 1)) { |
1025 | /* The slab has become partial */ |
1026 | list_insert_head(&cache->partial_slabs, &slab->list_node); |
1027 | } |
1028 | } |
1029 | |
1030 | static void kmem_cache_alloc_verify(struct kmem_cache *cache, void *buf, |
1031 | int construct) |
1032 | { |
1033 | struct kmem_buftag *buftag; |
1034 | union kmem_bufctl *bufctl; |
1035 | void *addr; |
1036 | |
1037 | buftag = kmem_buf_to_buftag(buf, cache); |
1038 | |
1039 | if (buftag->state != KMEM_BUFTAG_FREE0x0cb1eef4UL) |
1040 | kmem_cache_error(cache, buf, KMEM_ERR_BUFTAG2, buftag); |
1041 | |
1042 | addr = kmem_buf_verify_fill(buf, KMEM_FREE_PATTERN0xefbeaddeefbeaddeULL, KMEM_UNINIT_PATTERN0xfecaddbafecaddbaULL, |
1043 | cache->bufctl_dist); |
1044 | |
1045 | if (addr != NULL((void *) 0)) |
1046 | kmem_cache_error(cache, buf, KMEM_ERR_MODIFIED3, addr); |
1047 | |
1048 | addr = buf + cache->obj_size; |
1049 | memset(addr, KMEM_REDZONE_BYTE0xbb, cache->redzone_pad); |
1050 | |
1051 | bufctl = kmem_buf_to_bufctl(buf, cache); |
1052 | bufctl->redzone = KMEM_REDZONE_WORD0xcefaedfeUL; |
1053 | buftag->state = KMEM_BUFTAG_ALLOC0xedc810a1UL; |
1054 | |
1055 | if (construct && (cache->ctor != NULL((void *) 0))) |
1056 | cache->ctor(buf); |
1057 | } |
1058 | |
1059 | vm_offset_t kmem_cache_alloc(struct kmem_cache *cache) |
1060 | { |
1061 | int filled; |
1062 | void *buf; |
1063 | |
1064 | #if SLAB_USE_CPU_POOLS0 |
1065 | struct kmem_cpu_pool *cpu_pool; |
1066 | |
1067 | cpu_pool = kmem_cpu_pool_get(cache); |
1068 | |
1069 | if (cpu_pool->flags & KMEM_CF_NO_CPU_POOL0x01) |
1070 | goto slab_alloc; |
1071 | |
1072 | simple_lock(&cpu_pool->lock); |
1073 | |
1074 | fast_alloc: |
1075 | if (likely(cpu_pool->nr_objs > 0)__builtin_expect(!!(cpu_pool->nr_objs > 0), 1)) { |
1076 | buf = kmem_cpu_pool_pop(cpu_pool); |
1077 | simple_unlock(&cpu_pool->lock); |
1078 | |
1079 | if (cpu_pool->flags & KMEM_CF_VERIFY0x08) |
1080 | kmem_cache_alloc_verify(cache, buf, KMEM_AV_CONSTRUCT1); |
1081 | |
1082 | return (vm_offset_t)buf; |
1083 | } |
1084 | |
1085 | if (cpu_pool->array != NULL((void *) 0)) { |
1086 | filled = kmem_cpu_pool_fill(cpu_pool, cache); |
1087 | |
1088 | if (!filled) { |
1089 | simple_unlock(&cpu_pool->lock); |
1090 | |
1091 | filled = kmem_cache_grow(cache); |
1092 | |
1093 | if (!filled) |
1094 | return 0; |
1095 | |
1096 | simple_lock(&cpu_pool->lock); |
1097 | } |
1098 | |
1099 | goto fast_alloc; |
1100 | } |
1101 | |
1102 | simple_unlock(&cpu_pool->lock); |
1103 | #endif /* SLAB_USE_CPU_POOLS */ |
1104 | |
1105 | slab_alloc: |
1106 | simple_lock(&cache->lock); |
1107 | buf = kmem_cache_alloc_from_slab(cache); |
1108 | simple_unlock(&cache->lock); |
1109 | |
1110 | if (buf == NULL((void *) 0)) { |
1111 | filled = kmem_cache_grow(cache); |
1112 | |
1113 | if (!filled) |
1114 | return 0; |
1115 | |
1116 | goto slab_alloc; |
1117 | } |
1118 | |
1119 | if (cache->flags & KMEM_CF_VERIFY0x08) |
1120 | kmem_cache_alloc_verify(cache, buf, KMEM_AV_NOCONSTRUCT0); |
1121 | |
1122 | if (cache->ctor != NULL((void *) 0)) |
1123 | cache->ctor(buf); |
1124 | |
1125 | return (vm_offset_t)buf; |
1126 | } |
1127 | |
1128 | static void kmem_cache_free_verify(struct kmem_cache *cache, void *buf) |
1129 | { |
1130 | struct rbtree_node *node; |
1131 | struct kmem_buftag *buftag; |
1132 | struct kmem_slab *slab; |
1133 | union kmem_bufctl *bufctl; |
1134 | unsigned char *redzone_byte; |
1135 | unsigned long slabend; |
1136 | |
1137 | simple_lock(&cache->lock); |
1138 | node = rbtree_lookup_nearest(&cache->active_slabs, buf,({ struct rbtree_node *___cur, *___prev; int ___diff, ___index ; ___prev = ((void *) 0); ___index = -1; ___cur = (&cache ->active_slabs)->root; while (___cur != ((void *) 0)) { ___diff = kmem_slab_cmp_lookup(buf, ___cur); if (___diff == 0 ) break; ___prev = ___cur; ___index = rbtree_d2i(___diff); ___cur = ___cur->children[___index]; } if (___cur == ((void *) 0 )) ___cur = rbtree_nearest(___prev, ___index, 0); ___cur; }) |
1139 | kmem_slab_cmp_lookup, RBTREE_LEFT)({ struct rbtree_node *___cur, *___prev; int ___diff, ___index ; ___prev = ((void *) 0); ___index = -1; ___cur = (&cache ->active_slabs)->root; while (___cur != ((void *) 0)) { ___diff = kmem_slab_cmp_lookup(buf, ___cur); if (___diff == 0 ) break; ___prev = ___cur; ___index = rbtree_d2i(___diff); ___cur = ___cur->children[___index]; } if (___cur == ((void *) 0 )) ___cur = rbtree_nearest(___prev, ___index, 0); ___cur; }); |
1140 | simple_unlock(&cache->lock); |
1141 | |
1142 | if (node == NULL((void *) 0)) |
1143 | kmem_cache_error(cache, buf, KMEM_ERR_INVALID0, NULL((void *) 0)); |
1144 | |
1145 | slab = rbtree_entry(node, struct kmem_slab, tree_node)((struct kmem_slab *)((char *)node - __builtin_offsetof (struct kmem_slab, tree_node))); |
1146 | slabend = P2ALIGN((unsigned long)slab->addr + cache->slab_size, PAGE_SIZE)(((unsigned long)slab->addr + cache->slab_size) & - ((1 << 12))); |
1147 | |
1148 | if ((unsigned long)buf >= slabend) |
1149 | kmem_cache_error(cache, buf, KMEM_ERR_INVALID0, NULL((void *) 0)); |
1150 | |
1151 | if ((((unsigned long)buf - (unsigned long)slab->addr) % cache->buf_size) |
1152 | != 0) |
1153 | kmem_cache_error(cache, buf, KMEM_ERR_INVALID0, NULL((void *) 0)); |
1154 | |
1155 | /* |
1156 | * As the buffer address is valid, accessing its buftag is safe. |
1157 | */ |
1158 | buftag = kmem_buf_to_buftag(buf, cache); |
1159 | |
1160 | if (buftag->state != KMEM_BUFTAG_ALLOC0xedc810a1UL) { |
1161 | if (buftag->state == KMEM_BUFTAG_FREE0x0cb1eef4UL) |
1162 | kmem_cache_error(cache, buf, KMEM_ERR_DOUBLEFREE1, NULL((void *) 0)); |
1163 | else |
1164 | kmem_cache_error(cache, buf, KMEM_ERR_BUFTAG2, buftag); |
1165 | } |
1166 | |
1167 | redzone_byte = buf + cache->obj_size; |
1168 | bufctl = kmem_buf_to_bufctl(buf, cache); |
1169 | |
1170 | while (redzone_byte < (unsigned char *)bufctl) { |
1171 | if (*redzone_byte != KMEM_REDZONE_BYTE0xbb) |
1172 | kmem_cache_error(cache, buf, KMEM_ERR_REDZONE4, redzone_byte); |
1173 | |
1174 | redzone_byte++; |
1175 | } |
1176 | |
1177 | if (bufctl->redzone != KMEM_REDZONE_WORD0xcefaedfeUL) { |
1178 | unsigned long word; |
1179 | |
1180 | word = KMEM_REDZONE_WORD0xcefaedfeUL; |
1181 | redzone_byte = kmem_buf_verify_bytes(&bufctl->redzone, &word, |
1182 | sizeof(bufctl->redzone)); |
1183 | kmem_cache_error(cache, buf, KMEM_ERR_REDZONE4, redzone_byte); |
1184 | } |
1185 | |
1186 | kmem_buf_fill(buf, KMEM_FREE_PATTERN0xefbeaddeefbeaddeULL, cache->bufctl_dist); |
1187 | buftag->state = KMEM_BUFTAG_FREE0x0cb1eef4UL; |
1188 | } |
1189 | |
1190 | void kmem_cache_free(struct kmem_cache *cache, vm_offset_t obj) |
1191 | { |
1192 | #if SLAB_USE_CPU_POOLS0 |
1193 | struct kmem_cpu_pool *cpu_pool; |
1194 | void **array; |
1195 | |
1196 | cpu_pool = kmem_cpu_pool_get(cache); |
1197 | |
1198 | if (cpu_pool->flags & KMEM_CF_VERIFY0x08) { |
1199 | #else /* SLAB_USE_CPU_POOLS */ |
1200 | if (cache->flags & KMEM_CF_VERIFY0x08) { |
1201 | #endif /* SLAB_USE_CPU_POOLS */ |
1202 | kmem_cache_free_verify(cache, (void *)obj); |
1203 | } |
1204 | |
1205 | #if SLAB_USE_CPU_POOLS0 |
1206 | if (cpu_pool->flags & KMEM_CF_NO_CPU_POOL0x01) |
1207 | goto slab_free; |
1208 | |
1209 | simple_lock(&cpu_pool->lock); |
1210 | |
1211 | fast_free: |
1212 | if (likely(cpu_pool->nr_objs < cpu_pool->size)__builtin_expect(!!(cpu_pool->nr_objs < cpu_pool->size ), 1)) { |
1213 | kmem_cpu_pool_push(cpu_pool, (void *)obj); |
1214 | simple_unlock(&cpu_pool->lock); |
1215 | return; |
1216 | } |
1217 | |
1218 | if (cpu_pool->array != NULL((void *) 0)) { |
1219 | kmem_cpu_pool_drain(cpu_pool, cache); |
1220 | goto fast_free; |
1221 | } |
1222 | |
1223 | simple_unlock(&cpu_pool->lock); |
1224 | |
1225 | array = (void *)kmem_cache_alloc(cache->cpu_pool_type->array_cache); |
1226 | |
1227 | if (array != NULL((void *) 0)) { |
1228 | simple_lock(&cpu_pool->lock); |
1229 | |
1230 | /* |
1231 | * Another thread may have built the CPU pool while the lock was |
1232 | * dropped. |
1233 | */ |
1234 | if (cpu_pool->array != NULL((void *) 0)) { |
1235 | simple_unlock(&cpu_pool->lock); |
1236 | kmem_cache_free(cache->cpu_pool_type->array_cache, |
1237 | (vm_offset_t)array); |
1238 | simple_lock(&cpu_pool->lock); |
1239 | goto fast_free; |
1240 | } |
1241 | |
1242 | kmem_cpu_pool_build(cpu_pool, cache, array); |
1243 | goto fast_free; |
1244 | } |
1245 | |
1246 | slab_free: |
1247 | #endif /* SLAB_USE_CPU_POOLS */ |
1248 | |
1249 | simple_lock(&cache->lock); |
1250 | kmem_cache_free_to_slab(cache, (void *)obj); |
1251 | simple_unlock(&cache->lock); |
1252 | } |
1253 | |
1254 | void slab_collect(void) |
1255 | { |
1256 | struct kmem_cache *cache; |
1257 | |
1258 | if (elapsed_ticks <= (kmem_gc_last_tick + KMEM_GC_INTERVAL(5 * hz))) |
1259 | return; |
1260 | |
1261 | kmem_gc_last_tick = elapsed_ticks; |
1262 | |
1263 | simple_lock(&kmem_cache_list_lock); |
1264 | |
1265 | list_for_each_entry(&kmem_cache_list, cache, node)for (cache = ((typeof(*cache) *)((char *)list_first(&kmem_cache_list ) - __builtin_offsetof (typeof(*cache), node))); !list_end(& kmem_cache_list, &cache->node); cache = ((typeof(*cache ) *)((char *)list_next(&cache->node) - __builtin_offsetof (typeof(*cache), node)))) |
1266 | kmem_cache_reap(cache); |
1267 | |
1268 | simple_unlock(&kmem_cache_list_lock); |
1269 | } |
1270 | |
1271 | void slab_bootstrap(void) |
1272 | { |
1273 | /* Make sure a bufctl can always be stored in a buffer */ |
1274 | assert(sizeof(union kmem_bufctl) <= KMEM_ALIGN_MIN)({ if (!(sizeof(union kmem_bufctl) <= 8)) Assert("sizeof(union kmem_bufctl) <= KMEM_ALIGN_MIN" , "../kern/slab.c", 1274); }); |
1275 | |
1276 | list_init(&kmem_cache_list); |
1277 | simple_lock_init(&kmem_cache_list_lock); |
1278 | } |
1279 | |
1280 | void slab_init(void) |
1281 | { |
1282 | vm_offset_t min, max; |
1283 | |
1284 | #if SLAB_USE_CPU_POOLS0 |
1285 | struct kmem_cpu_pool_type *cpu_pool_type; |
1286 | char name[KMEM_CACHE_NAME_SIZE32]; |
1287 | size_t i, size; |
1288 | #endif /* SLAB_USE_CPU_POOLS */ |
1289 | |
1290 | kmem_submap(kmem_map, kernel_map, &min, &max, KMEM_MAP_SIZE(128 * 1024 * 1024), FALSE((boolean_t) 0)); |
1291 | |
1292 | #if SLAB_USE_CPU_POOLS0 |
1293 | for (i = 0; i < ARRAY_SIZE(kmem_cpu_pool_types)(sizeof(kmem_cpu_pool_types) / sizeof((kmem_cpu_pool_types)[0 ])); i++) { |
1294 | cpu_pool_type = &kmem_cpu_pool_types[i]; |
1295 | cpu_pool_type->array_cache = &kmem_cpu_array_caches[i]; |
1296 | sprintf(name, "kmem_cpu_array_%d", cpu_pool_type->array_size); |
1297 | size = sizeof(void *) * cpu_pool_type->array_size; |
1298 | kmem_cache_init(cpu_pool_type->array_cache, name, size, |
1299 | cpu_pool_type->array_align, NULL((void *) 0), NULL((void *) 0), NULL((void *) 0), 0); |
1300 | } |
1301 | #endif /* SLAB_USE_CPU_POOLS */ |
1302 | |
1303 | /* |
1304 | * Prevent off slab data for the slab cache to avoid infinite recursion. |
1305 | */ |
1306 | kmem_cache_init(&kmem_slab_cache, "kmem_slab", sizeof(struct kmem_slab), |
1307 | 0, NULL((void *) 0), NULL((void *) 0), NULL((void *) 0), KMEM_CACHE_NOOFFSLAB0x2); |
1308 | } |
1309 | |
1310 | static vm_offset_t kalloc_pagealloc(vm_size_t size) |
1311 | { |
1312 | vm_offset_t addr; |
1313 | kern_return_t kr; |
1314 | |
1315 | kr = kmem_alloc_wired(kmem_map, &addr, size); |
1316 | |
1317 | if (kr != KERN_SUCCESS0) |
1318 | return 0; |
1319 | |
1320 | return addr; |
1321 | } |
1322 | |
1323 | static void kalloc_pagefree(vm_offset_t ptr, vm_size_t size) |
1324 | { |
1325 | kmem_free(kmem_map, ptr, size); |
1326 | } |
1327 | |
1328 | void kalloc_init(void) |
1329 | { |
1330 | char name[KMEM_CACHE_NAME_SIZE32]; |
1331 | size_t i, size; |
1332 | |
1333 | size = 1 << KALLOC_FIRST_SHIFT5; |
1334 | |
1335 | for (i = 0; i < ARRAY_SIZE(kalloc_caches)(sizeof(kalloc_caches) / sizeof((kalloc_caches)[0])); i++) { |
1336 | sprintf(name, "kalloc_%lu", size); |
1337 | kmem_cache_init(&kalloc_caches[i], name, size, 0, NULL((void *) 0), |
1338 | kalloc_pagealloc, kalloc_pagefree, 0); |
1339 | size <<= 1; |
1340 | } |
1341 | } |
1342 | |
1343 | /* |
1344 | * Return the kalloc cache index matching the given allocation size, which |
1345 | * must be strictly greater than 0. |
1346 | */ |
1347 | static inline size_t kalloc_get_index(unsigned long size) |
1348 | { |
1349 | assert(size != 0)({ if (!(size != 0)) Assert("size != 0", "../kern/slab.c", 1349 ); }); |
1350 | |
1351 | size = (size - 1) >> KALLOC_FIRST_SHIFT5; |
1352 | |
1353 | if (size == 0) |
1354 | return 0; |
1355 | else |
1356 | return (sizeof(long) * 8) - __builtin_clzl(size); |
1357 | } |
1358 | |
1359 | static void kalloc_verify(struct kmem_cache *cache, void *buf, size_t size) |
1360 | { |
1361 | size_t redzone_size; |
1362 | void *redzone; |
1363 | |
1364 | assert(size <= cache->obj_size)({ if (!(size <= cache->obj_size)) Assert("size <= cache->obj_size" , "../kern/slab.c", 1364); }); |
1365 | |
1366 | redzone = buf + size; |
1367 | redzone_size = cache->obj_size - size; |
1368 | memset(redzone, KMEM_REDZONE_BYTE0xbb, redzone_size); |
1369 | } |
1370 | |
1371 | vm_offset_t kalloc(vm_size_t size) |
1372 | { |
1373 | size_t index; |
1374 | void *buf; |
1375 | |
1376 | if (size == 0) |
1377 | return 0; |
1378 | |
1379 | index = kalloc_get_index(size); |
1380 | |
1381 | if (index < ARRAY_SIZE(kalloc_caches)(sizeof(kalloc_caches) / sizeof((kalloc_caches)[0]))) { |
1382 | struct kmem_cache *cache; |
1383 | |
1384 | cache = &kalloc_caches[index]; |
1385 | buf = (void *)kmem_cache_alloc(cache); |
1386 | |
1387 | if ((buf != 0) && (cache->flags & KMEM_CF_VERIFY0x08)) |
1388 | kalloc_verify(cache, buf, size); |
1389 | } else |
1390 | buf = (void *)kalloc_pagealloc(size); |
1391 | |
1392 | return (vm_offset_t)buf; |
1393 | } |
1394 | |
1395 | static void kfree_verify(struct kmem_cache *cache, void *buf, size_t size) |
1396 | { |
1397 | unsigned char *redzone_byte, *redzone_end; |
1398 | |
1399 | assert(size <= cache->obj_size)({ if (!(size <= cache->obj_size)) Assert("size <= cache->obj_size" , "../kern/slab.c", 1399); }); |
1400 | |
1401 | redzone_byte = buf + size; |
1402 | redzone_end = buf + cache->obj_size; |
1403 | |
1404 | while (redzone_byte < redzone_end) { |
1405 | if (*redzone_byte != KMEM_REDZONE_BYTE0xbb) |
1406 | kmem_cache_error(cache, buf, KMEM_ERR_REDZONE4, redzone_byte); |
1407 | |
1408 | redzone_byte++; |
1409 | } |
1410 | } |
1411 | |
1412 | void kfree(vm_offset_t data, vm_size_t size) |
1413 | { |
1414 | size_t index; |
1415 | |
1416 | if ((data == 0) || (size == 0)) |
1417 | return; |
1418 | |
1419 | index = kalloc_get_index(size); |
1420 | |
1421 | if (index < ARRAY_SIZE(kalloc_caches)(sizeof(kalloc_caches) / sizeof((kalloc_caches)[0]))) { |
1422 | struct kmem_cache *cache; |
1423 | |
1424 | cache = &kalloc_caches[index]; |
1425 | |
1426 | if (cache->flags & KMEM_CF_VERIFY0x08) |
1427 | kfree_verify(cache, (void *)data, size); |
1428 | |
1429 | kmem_cache_free(cache, data); |
1430 | } else { |
1431 | kalloc_pagefree(data, size); |
1432 | } |
1433 | } |
1434 | |
1435 | void slab_info(void) |
1436 | { |
1437 | struct kmem_cache *cache; |
1438 | vm_size_t mem_usage, mem_reclaimable; |
1439 | |
1440 | printf("cache obj slab bufs objs bufs " |
1441 | " total reclaimable\n" |
1442 | "name size size /slab usage count " |
1443 | " memory memory\n"); |
1444 | |
1445 | simple_lock(&kmem_cache_list_lock); |
1446 | |
1447 | list_for_each_entry(&kmem_cache_list, cache, node)for (cache = ((typeof(*cache) *)((char *)list_first(&kmem_cache_list ) - __builtin_offsetof (typeof(*cache), node))); !list_end(& kmem_cache_list, &cache->node); cache = ((typeof(*cache ) *)((char *)list_next(&cache->node) - __builtin_offsetof (typeof(*cache), node)))) { |
1448 | simple_lock(&cache->lock); |
1449 | |
1450 | mem_usage = (cache->nr_slabs * cache->slab_size) >> 10; |
1451 | mem_reclaimable = (cache->nr_free_slabs * cache->slab_size) >> 10; |
1452 | |
1453 | printf("%-19s %6lu %3luk %4lu %6lu %6lu %7uk %10uk\n", |
1454 | cache->name, cache->obj_size, cache->slab_size >> 10, |
1455 | cache->bufs_per_slab, cache->nr_objs, cache->nr_bufs, |
1456 | mem_usage, mem_reclaimable); |
1457 | |
1458 | simple_unlock(&cache->lock); |
1459 | } |
1460 | |
1461 | simple_unlock(&kmem_cache_list_lock); |
1462 | } |
1463 | |
1464 | #if MACH_DEBUG1 |
1465 | kern_return_t host_slab_info(host_t host, cache_info_array_t *infop, |
1466 | unsigned int *infoCntp) |
1467 | { |
1468 | struct kmem_cache *cache; |
1469 | cache_info_t *info; |
1470 | unsigned int i, nr_caches; |
1471 | vm_size_t info_size = info_size; |
Assigned value is garbage or undefined | |
1472 | kern_return_t kr; |
1473 | |
1474 | if (host == HOST_NULL((host_t)0)) |
1475 | return KERN_INVALID_HOST22; |
1476 | |
1477 | /* |
1478 | * Assume the cache list is unaltered once the kernel is ready. |
1479 | */ |
1480 | |
1481 | simple_lock(&kmem_cache_list_lock); |
1482 | nr_caches = kmem_nr_caches; |
1483 | simple_unlock(&kmem_cache_list_lock); |
1484 | |
1485 | if (nr_caches <= *infoCntp) |
1486 | info = *infop; |
1487 | else { |
1488 | vm_offset_t info_addr; |
1489 | |
1490 | info_size = round_page(nr_caches * sizeof(*info))((vm_offset_t)((((vm_offset_t)(nr_caches * sizeof(*info))) + ( (1 << 12)-1)) & ~((1 << 12)-1))); |
1491 | kr = kmem_alloc_pageable(ipc_kernel_map, &info_addr, info_size); |
1492 | |
1493 | if (kr != KERN_SUCCESS0) |
1494 | return kr; |
1495 | |
1496 | info = (cache_info_t *)info_addr; |
1497 | } |
1498 | |
1499 | if (info == NULL((void *) 0)) |
1500 | return KERN_RESOURCE_SHORTAGE6; |
1501 | |
1502 | i = 0; |
1503 | |
1504 | list_for_each_entry(&kmem_cache_list, cache, node)for (cache = ((typeof(*cache) *)((char *)list_first(&kmem_cache_list ) - __builtin_offsetof (typeof(*cache), node))); !list_end(& kmem_cache_list, &cache->node); cache = ((typeof(*cache ) *)((char *)list_next(&cache->node) - __builtin_offsetof (typeof(*cache), node)))) { |
1505 | simple_lock(&cache_lock); |
1506 | info[i].flags = ((cache->flags & KMEM_CF_NO_CPU_POOL0x01) |
1507 | ? CACHE_FLAGS_NO_CPU_POOL0x01 : 0) |
1508 | | ((cache->flags & KMEM_CF_SLAB_EXTERNAL0x02) |
1509 | ? CACHE_FLAGS_SLAB_EXTERNAL0x02 : 0) |
1510 | | ((cache->flags & KMEM_CF_NO_RECLAIM0x04) |
1511 | ? CACHE_FLAGS_NO_RECLAIM0x04 : 0) |
1512 | | ((cache->flags & KMEM_CF_VERIFY0x08) |
1513 | ? CACHE_FLAGS_VERIFY0x08 : 0) |
1514 | | ((cache->flags & KMEM_CF_DIRECT0x10) |
1515 | ? CACHE_FLAGS_DIRECT0x10 : 0); |
1516 | #if SLAB_USE_CPU_POOLS0 |
1517 | info[i].cpu_pool_size = cache->cpu_pool_type->array_size; |
1518 | #else /* SLAB_USE_CPU_POOLS */ |
1519 | info[i].cpu_pool_size = 0; |
1520 | #endif /* SLAB_USE_CPU_POOLS */ |
1521 | info[i].obj_size = cache->obj_size; |
1522 | info[i].align = cache->align; |
1523 | info[i].buf_size = cache->buf_size; |
1524 | info[i].slab_size = cache->slab_size; |
1525 | info[i].bufs_per_slab = cache->bufs_per_slab; |
1526 | info[i].nr_objs = cache->nr_objs; |
1527 | info[i].nr_bufs = cache->nr_bufs; |
1528 | info[i].nr_slabs = cache->nr_slabs; |
1529 | info[i].nr_free_slabs = cache->nr_free_slabs; |
1530 | strncpy(info[i].name, cache->name, sizeof(info[i].name)); |
1531 | info[i].name[sizeof(info[i].name) - 1] = '\0'; |
1532 | simple_unlock(&cache->lock); |
1533 | |
1534 | i++; |
1535 | } |
1536 | |
1537 | if (info != *infop) { |
1538 | vm_map_copy_t copy; |
1539 | vm_size_t used; |
1540 | |
1541 | used = nr_caches * sizeof(*info); |
1542 | |
1543 | if (used != info_size) |
1544 | memset((char *)info + used, 0, info_size - used); |
1545 | |
1546 | kr = vm_map_copyin(ipc_kernel_map, (vm_offset_t)info, used, TRUE((boolean_t) 1), |
1547 | ©); |
1548 | |
1549 | assert(kr == KERN_SUCCESS)({ if (!(kr == 0)) Assert("kr == KERN_SUCCESS", "../kern/slab.c" , 1549); }); |
1550 | *infop = (cache_info_t *)copy; |
1551 | } |
1552 | |
1553 | *infoCntp = nr_caches; |
1554 | |
1555 | return KERN_SUCCESS0; |
1556 | } |
1557 | #endif /* MACH_DEBUG */ |