Line data Source code
1 : /* Twofish for GPG
2 : * Copyright (C) 1998, 2002, 2003 Free Software Foundation, Inc.
3 : * Written by Matthew Skala <mskala@ansuz.sooke.bc.ca>, July 26, 1998
4 : * 256-bit key length added March 20, 1999
5 : * Some modifications to reduce the text size by Werner Koch, April, 1998
6 : *
7 : * This file is part of Libgcrypt.
8 : *
9 : * Libgcrypt is free software; you can redistribute it and/or modify
10 : * it under the terms of the GNU Lesser General Public License as
11 : * published by the Free Software Foundation; either version 2.1 of
12 : * the License, or (at your option) any later version.
13 : *
14 : * Libgcrypt is distributed in the hope that it will be useful,
15 : * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 : * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 : * GNU Lesser General Public License for more details.
18 : *
19 : * You should have received a copy of the GNU Lesser General Public
20 : * License along with this program; if not, write to the Free Software
21 : * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
22 : ********************************************************************
23 : *
24 : * This code is a "clean room" implementation, written from the paper
25 : * _Twofish: A 128-Bit Block Cipher_ by Bruce Schneier, John Kelsey,
26 : * Doug Whiting, David Wagner, Chris Hall, and Niels Ferguson, available
27 : * through http://www.counterpane.com/twofish.html
28 : *
29 : * For background information on multiplication in finite fields, used for
30 : * the matrix operations in the key schedule, see the book _Contemporary
31 : * Abstract Algebra_ by Joseph A. Gallian, especially chapter 22 in the
32 : * Third Edition.
33 : *
34 : * Only the 128- and 256-bit key sizes are supported. This code is intended
35 : * for GNU C on a 32-bit system, but it should work almost anywhere. Loops
36 : * are unrolled, precomputation tables are used, etc., for maximum speed at
37 : * some cost in memory consumption. */
38 :
39 : #include <config.h>
40 : #include <stdio.h>
41 : #include <stdlib.h>
42 : #include <string.h> /* for memcmp() */
43 :
44 : #include "types.h" /* for byte and u32 typedefs */
45 : #include "g10lib.h"
46 : #include "cipher.h"
47 : #include "bufhelp.h"
48 : #include "cipher-internal.h"
49 : #include "cipher-selftest.h"
50 :
51 :
52 : #define TWOFISH_BLOCKSIZE 16
53 :
54 :
55 : /* USE_AMD64_ASM indicates whether to use AMD64 assembly code. */
56 : #undef USE_AMD64_ASM
57 : #if defined(__x86_64__) && (defined(HAVE_COMPATIBLE_GCC_AMD64_PLATFORM_AS) || \
58 : defined(HAVE_COMPATIBLE_GCC_WIN64_PLATFORM_AS))
59 : # define USE_AMD64_ASM 1
60 : #endif
61 :
62 : /* USE_ARM_ASM indicates whether to use ARM assembly code. */
63 : #undef USE_ARM_ASM
64 : #if defined(__ARMEL__)
65 : # if defined(HAVE_COMPATIBLE_GCC_ARM_PLATFORM_AS)
66 : # define USE_ARM_ASM 1
67 : # endif
68 : #endif
69 : # if defined(__AARCH64EL__)
70 : # ifdef HAVE_COMPATIBLE_GCC_AARCH64_PLATFORM_AS
71 : # define USE_ARM_ASM 1
72 : # endif
73 : # endif
74 :
75 : /* USE_AVX2 indicates whether to compile with AMD64 AVX2 code. */
76 : #undef USE_AVX2
77 : #if defined(__x86_64__) && (defined(HAVE_COMPATIBLE_GCC_AMD64_PLATFORM_AS) || \
78 : defined(HAVE_COMPATIBLE_GCC_WIN64_PLATFORM_AS))
79 : # if defined(ENABLE_AVX2_SUPPORT)
80 : # define USE_AVX2 1
81 : # endif
82 : #endif
83 :
84 :
85 : /* Prototype for the self-test function. */
86 : static const char *selftest(void);
87 :
88 : /* Structure for an expanded Twofish key. s contains the key-dependent
89 : * S-boxes composed with the MDS matrix; w contains the eight "whitening"
90 : * subkeys, K[0] through K[7]. k holds the remaining, "round" subkeys. Note
91 : * that k[i] corresponds to what the Twofish paper calls K[i+8]. */
92 : typedef struct {
93 : u32 s[4][256], w[8], k[32];
94 :
95 : #ifdef USE_AVX2
96 : int use_avx2;
97 : #endif
98 : } TWOFISH_context;
99 :
100 :
101 : /* Assembly implementations use SystemV ABI, ABI conversion and additional
102 : * stack to store XMM6-XMM15 needed on Win64. */
103 : #undef ASM_FUNC_ABI
104 : #if defined(USE_AVX2)
105 : # ifdef HAVE_COMPATIBLE_GCC_WIN64_PLATFORM_AS
106 : # define ASM_FUNC_ABI __attribute__((sysv_abi))
107 : # else
108 : # define ASM_FUNC_ABI
109 : # endif
110 : #endif
111 :
112 :
113 : /* These two tables are the q0 and q1 permutations, exactly as described in
114 : * the Twofish paper. */
115 :
116 : static const byte q0[256] = {
117 : 0xA9, 0x67, 0xB3, 0xE8, 0x04, 0xFD, 0xA3, 0x76, 0x9A, 0x92, 0x80, 0x78,
118 : 0xE4, 0xDD, 0xD1, 0x38, 0x0D, 0xC6, 0x35, 0x98, 0x18, 0xF7, 0xEC, 0x6C,
119 : 0x43, 0x75, 0x37, 0x26, 0xFA, 0x13, 0x94, 0x48, 0xF2, 0xD0, 0x8B, 0x30,
120 : 0x84, 0x54, 0xDF, 0x23, 0x19, 0x5B, 0x3D, 0x59, 0xF3, 0xAE, 0xA2, 0x82,
121 : 0x63, 0x01, 0x83, 0x2E, 0xD9, 0x51, 0x9B, 0x7C, 0xA6, 0xEB, 0xA5, 0xBE,
122 : 0x16, 0x0C, 0xE3, 0x61, 0xC0, 0x8C, 0x3A, 0xF5, 0x73, 0x2C, 0x25, 0x0B,
123 : 0xBB, 0x4E, 0x89, 0x6B, 0x53, 0x6A, 0xB4, 0xF1, 0xE1, 0xE6, 0xBD, 0x45,
124 : 0xE2, 0xF4, 0xB6, 0x66, 0xCC, 0x95, 0x03, 0x56, 0xD4, 0x1C, 0x1E, 0xD7,
125 : 0xFB, 0xC3, 0x8E, 0xB5, 0xE9, 0xCF, 0xBF, 0xBA, 0xEA, 0x77, 0x39, 0xAF,
126 : 0x33, 0xC9, 0x62, 0x71, 0x81, 0x79, 0x09, 0xAD, 0x24, 0xCD, 0xF9, 0xD8,
127 : 0xE5, 0xC5, 0xB9, 0x4D, 0x44, 0x08, 0x86, 0xE7, 0xA1, 0x1D, 0xAA, 0xED,
128 : 0x06, 0x70, 0xB2, 0xD2, 0x41, 0x7B, 0xA0, 0x11, 0x31, 0xC2, 0x27, 0x90,
129 : 0x20, 0xF6, 0x60, 0xFF, 0x96, 0x5C, 0xB1, 0xAB, 0x9E, 0x9C, 0x52, 0x1B,
130 : 0x5F, 0x93, 0x0A, 0xEF, 0x91, 0x85, 0x49, 0xEE, 0x2D, 0x4F, 0x8F, 0x3B,
131 : 0x47, 0x87, 0x6D, 0x46, 0xD6, 0x3E, 0x69, 0x64, 0x2A, 0xCE, 0xCB, 0x2F,
132 : 0xFC, 0x97, 0x05, 0x7A, 0xAC, 0x7F, 0xD5, 0x1A, 0x4B, 0x0E, 0xA7, 0x5A,
133 : 0x28, 0x14, 0x3F, 0x29, 0x88, 0x3C, 0x4C, 0x02, 0xB8, 0xDA, 0xB0, 0x17,
134 : 0x55, 0x1F, 0x8A, 0x7D, 0x57, 0xC7, 0x8D, 0x74, 0xB7, 0xC4, 0x9F, 0x72,
135 : 0x7E, 0x15, 0x22, 0x12, 0x58, 0x07, 0x99, 0x34, 0x6E, 0x50, 0xDE, 0x68,
136 : 0x65, 0xBC, 0xDB, 0xF8, 0xC8, 0xA8, 0x2B, 0x40, 0xDC, 0xFE, 0x32, 0xA4,
137 : 0xCA, 0x10, 0x21, 0xF0, 0xD3, 0x5D, 0x0F, 0x00, 0x6F, 0x9D, 0x36, 0x42,
138 : 0x4A, 0x5E, 0xC1, 0xE0
139 : };
140 :
141 : static const byte q1[256] = {
142 : 0x75, 0xF3, 0xC6, 0xF4, 0xDB, 0x7B, 0xFB, 0xC8, 0x4A, 0xD3, 0xE6, 0x6B,
143 : 0x45, 0x7D, 0xE8, 0x4B, 0xD6, 0x32, 0xD8, 0xFD, 0x37, 0x71, 0xF1, 0xE1,
144 : 0x30, 0x0F, 0xF8, 0x1B, 0x87, 0xFA, 0x06, 0x3F, 0x5E, 0xBA, 0xAE, 0x5B,
145 : 0x8A, 0x00, 0xBC, 0x9D, 0x6D, 0xC1, 0xB1, 0x0E, 0x80, 0x5D, 0xD2, 0xD5,
146 : 0xA0, 0x84, 0x07, 0x14, 0xB5, 0x90, 0x2C, 0xA3, 0xB2, 0x73, 0x4C, 0x54,
147 : 0x92, 0x74, 0x36, 0x51, 0x38, 0xB0, 0xBD, 0x5A, 0xFC, 0x60, 0x62, 0x96,
148 : 0x6C, 0x42, 0xF7, 0x10, 0x7C, 0x28, 0x27, 0x8C, 0x13, 0x95, 0x9C, 0xC7,
149 : 0x24, 0x46, 0x3B, 0x70, 0xCA, 0xE3, 0x85, 0xCB, 0x11, 0xD0, 0x93, 0xB8,
150 : 0xA6, 0x83, 0x20, 0xFF, 0x9F, 0x77, 0xC3, 0xCC, 0x03, 0x6F, 0x08, 0xBF,
151 : 0x40, 0xE7, 0x2B, 0xE2, 0x79, 0x0C, 0xAA, 0x82, 0x41, 0x3A, 0xEA, 0xB9,
152 : 0xE4, 0x9A, 0xA4, 0x97, 0x7E, 0xDA, 0x7A, 0x17, 0x66, 0x94, 0xA1, 0x1D,
153 : 0x3D, 0xF0, 0xDE, 0xB3, 0x0B, 0x72, 0xA7, 0x1C, 0xEF, 0xD1, 0x53, 0x3E,
154 : 0x8F, 0x33, 0x26, 0x5F, 0xEC, 0x76, 0x2A, 0x49, 0x81, 0x88, 0xEE, 0x21,
155 : 0xC4, 0x1A, 0xEB, 0xD9, 0xC5, 0x39, 0x99, 0xCD, 0xAD, 0x31, 0x8B, 0x01,
156 : 0x18, 0x23, 0xDD, 0x1F, 0x4E, 0x2D, 0xF9, 0x48, 0x4F, 0xF2, 0x65, 0x8E,
157 : 0x78, 0x5C, 0x58, 0x19, 0x8D, 0xE5, 0x98, 0x57, 0x67, 0x7F, 0x05, 0x64,
158 : 0xAF, 0x63, 0xB6, 0xFE, 0xF5, 0xB7, 0x3C, 0xA5, 0xCE, 0xE9, 0x68, 0x44,
159 : 0xE0, 0x4D, 0x43, 0x69, 0x29, 0x2E, 0xAC, 0x15, 0x59, 0xA8, 0x0A, 0x9E,
160 : 0x6E, 0x47, 0xDF, 0x34, 0x35, 0x6A, 0xCF, 0xDC, 0x22, 0xC9, 0xC0, 0x9B,
161 : 0x89, 0xD4, 0xED, 0xAB, 0x12, 0xA2, 0x0D, 0x52, 0xBB, 0x02, 0x2F, 0xA9,
162 : 0xD7, 0x61, 0x1E, 0xB4, 0x50, 0x04, 0xF6, 0xC2, 0x16, 0x25, 0x86, 0x56,
163 : 0x55, 0x09, 0xBE, 0x91
164 : };
165 :
166 : /* These MDS tables are actually tables of MDS composed with q0 and q1,
167 : * because it is only ever used that way and we can save some time by
168 : * precomputing. Of course the main saving comes from precomputing the
169 : * GF(2^8) multiplication involved in the MDS matrix multiply; by looking
170 : * things up in these tables we reduce the matrix multiply to four lookups
171 : * and three XORs. Semi-formally, the definition of these tables is:
172 : * mds[0][i] = MDS (q1[i] 0 0 0)^T mds[1][i] = MDS (0 q0[i] 0 0)^T
173 : * mds[2][i] = MDS (0 0 q1[i] 0)^T mds[3][i] = MDS (0 0 0 q0[i])^T
174 : * where ^T means "transpose", the matrix multiply is performed in GF(2^8)
175 : * represented as GF(2)[x]/v(x) where v(x)=x^8+x^6+x^5+x^3+1 as described
176 : * by Schneier et al, and I'm casually glossing over the byte/word
177 : * conversion issues. */
178 :
179 : static const u32 mds[4][256] = {
180 : {0xBCBC3275, 0xECEC21F3, 0x202043C6, 0xB3B3C9F4, 0xDADA03DB, 0x02028B7B,
181 : 0xE2E22BFB, 0x9E9EFAC8, 0xC9C9EC4A, 0xD4D409D3, 0x18186BE6, 0x1E1E9F6B,
182 : 0x98980E45, 0xB2B2387D, 0xA6A6D2E8, 0x2626B74B, 0x3C3C57D6, 0x93938A32,
183 : 0x8282EED8, 0x525298FD, 0x7B7BD437, 0xBBBB3771, 0x5B5B97F1, 0x474783E1,
184 : 0x24243C30, 0x5151E20F, 0xBABAC6F8, 0x4A4AF31B, 0xBFBF4887, 0x0D0D70FA,
185 : 0xB0B0B306, 0x7575DE3F, 0xD2D2FD5E, 0x7D7D20BA, 0x666631AE, 0x3A3AA35B,
186 : 0x59591C8A, 0x00000000, 0xCDCD93BC, 0x1A1AE09D, 0xAEAE2C6D, 0x7F7FABC1,
187 : 0x2B2BC7B1, 0xBEBEB90E, 0xE0E0A080, 0x8A8A105D, 0x3B3B52D2, 0x6464BAD5,
188 : 0xD8D888A0, 0xE7E7A584, 0x5F5FE807, 0x1B1B1114, 0x2C2CC2B5, 0xFCFCB490,
189 : 0x3131272C, 0x808065A3, 0x73732AB2, 0x0C0C8173, 0x79795F4C, 0x6B6B4154,
190 : 0x4B4B0292, 0x53536974, 0x94948F36, 0x83831F51, 0x2A2A3638, 0xC4C49CB0,
191 : 0x2222C8BD, 0xD5D5F85A, 0xBDBDC3FC, 0x48487860, 0xFFFFCE62, 0x4C4C0796,
192 : 0x4141776C, 0xC7C7E642, 0xEBEB24F7, 0x1C1C1410, 0x5D5D637C, 0x36362228,
193 : 0x6767C027, 0xE9E9AF8C, 0x4444F913, 0x1414EA95, 0xF5F5BB9C, 0xCFCF18C7,
194 : 0x3F3F2D24, 0xC0C0E346, 0x7272DB3B, 0x54546C70, 0x29294CCA, 0xF0F035E3,
195 : 0x0808FE85, 0xC6C617CB, 0xF3F34F11, 0x8C8CE4D0, 0xA4A45993, 0xCACA96B8,
196 : 0x68683BA6, 0xB8B84D83, 0x38382820, 0xE5E52EFF, 0xADAD569F, 0x0B0B8477,
197 : 0xC8C81DC3, 0x9999FFCC, 0x5858ED03, 0x19199A6F, 0x0E0E0A08, 0x95957EBF,
198 : 0x70705040, 0xF7F730E7, 0x6E6ECF2B, 0x1F1F6EE2, 0xB5B53D79, 0x09090F0C,
199 : 0x616134AA, 0x57571682, 0x9F9F0B41, 0x9D9D803A, 0x111164EA, 0x2525CDB9,
200 : 0xAFAFDDE4, 0x4545089A, 0xDFDF8DA4, 0xA3A35C97, 0xEAEAD57E, 0x353558DA,
201 : 0xEDEDD07A, 0x4343FC17, 0xF8F8CB66, 0xFBFBB194, 0x3737D3A1, 0xFAFA401D,
202 : 0xC2C2683D, 0xB4B4CCF0, 0x32325DDE, 0x9C9C71B3, 0x5656E70B, 0xE3E3DA72,
203 : 0x878760A7, 0x15151B1C, 0xF9F93AEF, 0x6363BFD1, 0x3434A953, 0x9A9A853E,
204 : 0xB1B1428F, 0x7C7CD133, 0x88889B26, 0x3D3DA65F, 0xA1A1D7EC, 0xE4E4DF76,
205 : 0x8181942A, 0x91910149, 0x0F0FFB81, 0xEEEEAA88, 0x161661EE, 0xD7D77321,
206 : 0x9797F5C4, 0xA5A5A81A, 0xFEFE3FEB, 0x6D6DB5D9, 0x7878AEC5, 0xC5C56D39,
207 : 0x1D1DE599, 0x7676A4CD, 0x3E3EDCAD, 0xCBCB6731, 0xB6B6478B, 0xEFEF5B01,
208 : 0x12121E18, 0x6060C523, 0x6A6AB0DD, 0x4D4DF61F, 0xCECEE94E, 0xDEDE7C2D,
209 : 0x55559DF9, 0x7E7E5A48, 0x2121B24F, 0x03037AF2, 0xA0A02665, 0x5E5E198E,
210 : 0x5A5A6678, 0x65654B5C, 0x62624E58, 0xFDFD4519, 0x0606F48D, 0x404086E5,
211 : 0xF2F2BE98, 0x3333AC57, 0x17179067, 0x05058E7F, 0xE8E85E05, 0x4F4F7D64,
212 : 0x89896AAF, 0x10109563, 0x74742FB6, 0x0A0A75FE, 0x5C5C92F5, 0x9B9B74B7,
213 : 0x2D2D333C, 0x3030D6A5, 0x2E2E49CE, 0x494989E9, 0x46467268, 0x77775544,
214 : 0xA8A8D8E0, 0x9696044D, 0x2828BD43, 0xA9A92969, 0xD9D97929, 0x8686912E,
215 : 0xD1D187AC, 0xF4F44A15, 0x8D8D1559, 0xD6D682A8, 0xB9B9BC0A, 0x42420D9E,
216 : 0xF6F6C16E, 0x2F2FB847, 0xDDDD06DF, 0x23233934, 0xCCCC6235, 0xF1F1C46A,
217 : 0xC1C112CF, 0x8585EBDC, 0x8F8F9E22, 0x7171A1C9, 0x9090F0C0, 0xAAAA539B,
218 : 0x0101F189, 0x8B8BE1D4, 0x4E4E8CED, 0x8E8E6FAB, 0xABABA212, 0x6F6F3EA2,
219 : 0xE6E6540D, 0xDBDBF252, 0x92927BBB, 0xB7B7B602, 0x6969CA2F, 0x3939D9A9,
220 : 0xD3D30CD7, 0xA7A72361, 0xA2A2AD1E, 0xC3C399B4, 0x6C6C4450, 0x07070504,
221 : 0x04047FF6, 0x272746C2, 0xACACA716, 0xD0D07625, 0x50501386, 0xDCDCF756,
222 : 0x84841A55, 0xE1E15109, 0x7A7A25BE, 0x1313EF91},
223 :
224 : {0xA9D93939, 0x67901717, 0xB3719C9C, 0xE8D2A6A6, 0x04050707, 0xFD985252,
225 : 0xA3658080, 0x76DFE4E4, 0x9A084545, 0x92024B4B, 0x80A0E0E0, 0x78665A5A,
226 : 0xE4DDAFAF, 0xDDB06A6A, 0xD1BF6363, 0x38362A2A, 0x0D54E6E6, 0xC6432020,
227 : 0x3562CCCC, 0x98BEF2F2, 0x181E1212, 0xF724EBEB, 0xECD7A1A1, 0x6C774141,
228 : 0x43BD2828, 0x7532BCBC, 0x37D47B7B, 0x269B8888, 0xFA700D0D, 0x13F94444,
229 : 0x94B1FBFB, 0x485A7E7E, 0xF27A0303, 0xD0E48C8C, 0x8B47B6B6, 0x303C2424,
230 : 0x84A5E7E7, 0x54416B6B, 0xDF06DDDD, 0x23C56060, 0x1945FDFD, 0x5BA33A3A,
231 : 0x3D68C2C2, 0x59158D8D, 0xF321ECEC, 0xAE316666, 0xA23E6F6F, 0x82165757,
232 : 0x63951010, 0x015BEFEF, 0x834DB8B8, 0x2E918686, 0xD9B56D6D, 0x511F8383,
233 : 0x9B53AAAA, 0x7C635D5D, 0xA63B6868, 0xEB3FFEFE, 0xA5D63030, 0xBE257A7A,
234 : 0x16A7ACAC, 0x0C0F0909, 0xE335F0F0, 0x6123A7A7, 0xC0F09090, 0x8CAFE9E9,
235 : 0x3A809D9D, 0xF5925C5C, 0x73810C0C, 0x2C273131, 0x2576D0D0, 0x0BE75656,
236 : 0xBB7B9292, 0x4EE9CECE, 0x89F10101, 0x6B9F1E1E, 0x53A93434, 0x6AC4F1F1,
237 : 0xB499C3C3, 0xF1975B5B, 0xE1834747, 0xE66B1818, 0xBDC82222, 0x450E9898,
238 : 0xE26E1F1F, 0xF4C9B3B3, 0xB62F7474, 0x66CBF8F8, 0xCCFF9999, 0x95EA1414,
239 : 0x03ED5858, 0x56F7DCDC, 0xD4E18B8B, 0x1C1B1515, 0x1EADA2A2, 0xD70CD3D3,
240 : 0xFB2BE2E2, 0xC31DC8C8, 0x8E195E5E, 0xB5C22C2C, 0xE9894949, 0xCF12C1C1,
241 : 0xBF7E9595, 0xBA207D7D, 0xEA641111, 0x77840B0B, 0x396DC5C5, 0xAF6A8989,
242 : 0x33D17C7C, 0xC9A17171, 0x62CEFFFF, 0x7137BBBB, 0x81FB0F0F, 0x793DB5B5,
243 : 0x0951E1E1, 0xADDC3E3E, 0x242D3F3F, 0xCDA47676, 0xF99D5555, 0xD8EE8282,
244 : 0xE5864040, 0xC5AE7878, 0xB9CD2525, 0x4D049696, 0x44557777, 0x080A0E0E,
245 : 0x86135050, 0xE730F7F7, 0xA1D33737, 0x1D40FAFA, 0xAA346161, 0xED8C4E4E,
246 : 0x06B3B0B0, 0x706C5454, 0xB22A7373, 0xD2523B3B, 0x410B9F9F, 0x7B8B0202,
247 : 0xA088D8D8, 0x114FF3F3, 0x3167CBCB, 0xC2462727, 0x27C06767, 0x90B4FCFC,
248 : 0x20283838, 0xF67F0404, 0x60784848, 0xFF2EE5E5, 0x96074C4C, 0x5C4B6565,
249 : 0xB1C72B2B, 0xAB6F8E8E, 0x9E0D4242, 0x9CBBF5F5, 0x52F2DBDB, 0x1BF34A4A,
250 : 0x5FA63D3D, 0x9359A4A4, 0x0ABCB9B9, 0xEF3AF9F9, 0x91EF1313, 0x85FE0808,
251 : 0x49019191, 0xEE611616, 0x2D7CDEDE, 0x4FB22121, 0x8F42B1B1, 0x3BDB7272,
252 : 0x47B82F2F, 0x8748BFBF, 0x6D2CAEAE, 0x46E3C0C0, 0xD6573C3C, 0x3E859A9A,
253 : 0x6929A9A9, 0x647D4F4F, 0x2A948181, 0xCE492E2E, 0xCB17C6C6, 0x2FCA6969,
254 : 0xFCC3BDBD, 0x975CA3A3, 0x055EE8E8, 0x7AD0EDED, 0xAC87D1D1, 0x7F8E0505,
255 : 0xD5BA6464, 0x1AA8A5A5, 0x4BB72626, 0x0EB9BEBE, 0xA7608787, 0x5AF8D5D5,
256 : 0x28223636, 0x14111B1B, 0x3FDE7575, 0x2979D9D9, 0x88AAEEEE, 0x3C332D2D,
257 : 0x4C5F7979, 0x02B6B7B7, 0xB896CACA, 0xDA583535, 0xB09CC4C4, 0x17FC4343,
258 : 0x551A8484, 0x1FF64D4D, 0x8A1C5959, 0x7D38B2B2, 0x57AC3333, 0xC718CFCF,
259 : 0x8DF40606, 0x74695353, 0xB7749B9B, 0xC4F59797, 0x9F56ADAD, 0x72DAE3E3,
260 : 0x7ED5EAEA, 0x154AF4F4, 0x229E8F8F, 0x12A2ABAB, 0x584E6262, 0x07E85F5F,
261 : 0x99E51D1D, 0x34392323, 0x6EC1F6F6, 0x50446C6C, 0xDE5D3232, 0x68724646,
262 : 0x6526A0A0, 0xBC93CDCD, 0xDB03DADA, 0xF8C6BABA, 0xC8FA9E9E, 0xA882D6D6,
263 : 0x2BCF6E6E, 0x40507070, 0xDCEB8585, 0xFE750A0A, 0x328A9393, 0xA48DDFDF,
264 : 0xCA4C2929, 0x10141C1C, 0x2173D7D7, 0xF0CCB4B4, 0xD309D4D4, 0x5D108A8A,
265 : 0x0FE25151, 0x00000000, 0x6F9A1919, 0x9DE01A1A, 0x368F9494, 0x42E6C7C7,
266 : 0x4AECC9C9, 0x5EFDD2D2, 0xC1AB7F7F, 0xE0D8A8A8},
267 :
268 : {0xBC75BC32, 0xECF3EC21, 0x20C62043, 0xB3F4B3C9, 0xDADBDA03, 0x027B028B,
269 : 0xE2FBE22B, 0x9EC89EFA, 0xC94AC9EC, 0xD4D3D409, 0x18E6186B, 0x1E6B1E9F,
270 : 0x9845980E, 0xB27DB238, 0xA6E8A6D2, 0x264B26B7, 0x3CD63C57, 0x9332938A,
271 : 0x82D882EE, 0x52FD5298, 0x7B377BD4, 0xBB71BB37, 0x5BF15B97, 0x47E14783,
272 : 0x2430243C, 0x510F51E2, 0xBAF8BAC6, 0x4A1B4AF3, 0xBF87BF48, 0x0DFA0D70,
273 : 0xB006B0B3, 0x753F75DE, 0xD25ED2FD, 0x7DBA7D20, 0x66AE6631, 0x3A5B3AA3,
274 : 0x598A591C, 0x00000000, 0xCDBCCD93, 0x1A9D1AE0, 0xAE6DAE2C, 0x7FC17FAB,
275 : 0x2BB12BC7, 0xBE0EBEB9, 0xE080E0A0, 0x8A5D8A10, 0x3BD23B52, 0x64D564BA,
276 : 0xD8A0D888, 0xE784E7A5, 0x5F075FE8, 0x1B141B11, 0x2CB52CC2, 0xFC90FCB4,
277 : 0x312C3127, 0x80A38065, 0x73B2732A, 0x0C730C81, 0x794C795F, 0x6B546B41,
278 : 0x4B924B02, 0x53745369, 0x9436948F, 0x8351831F, 0x2A382A36, 0xC4B0C49C,
279 : 0x22BD22C8, 0xD55AD5F8, 0xBDFCBDC3, 0x48604878, 0xFF62FFCE, 0x4C964C07,
280 : 0x416C4177, 0xC742C7E6, 0xEBF7EB24, 0x1C101C14, 0x5D7C5D63, 0x36283622,
281 : 0x672767C0, 0xE98CE9AF, 0x441344F9, 0x149514EA, 0xF59CF5BB, 0xCFC7CF18,
282 : 0x3F243F2D, 0xC046C0E3, 0x723B72DB, 0x5470546C, 0x29CA294C, 0xF0E3F035,
283 : 0x088508FE, 0xC6CBC617, 0xF311F34F, 0x8CD08CE4, 0xA493A459, 0xCAB8CA96,
284 : 0x68A6683B, 0xB883B84D, 0x38203828, 0xE5FFE52E, 0xAD9FAD56, 0x0B770B84,
285 : 0xC8C3C81D, 0x99CC99FF, 0x580358ED, 0x196F199A, 0x0E080E0A, 0x95BF957E,
286 : 0x70407050, 0xF7E7F730, 0x6E2B6ECF, 0x1FE21F6E, 0xB579B53D, 0x090C090F,
287 : 0x61AA6134, 0x57825716, 0x9F419F0B, 0x9D3A9D80, 0x11EA1164, 0x25B925CD,
288 : 0xAFE4AFDD, 0x459A4508, 0xDFA4DF8D, 0xA397A35C, 0xEA7EEAD5, 0x35DA3558,
289 : 0xED7AEDD0, 0x431743FC, 0xF866F8CB, 0xFB94FBB1, 0x37A137D3, 0xFA1DFA40,
290 : 0xC23DC268, 0xB4F0B4CC, 0x32DE325D, 0x9CB39C71, 0x560B56E7, 0xE372E3DA,
291 : 0x87A78760, 0x151C151B, 0xF9EFF93A, 0x63D163BF, 0x345334A9, 0x9A3E9A85,
292 : 0xB18FB142, 0x7C337CD1, 0x8826889B, 0x3D5F3DA6, 0xA1ECA1D7, 0xE476E4DF,
293 : 0x812A8194, 0x91499101, 0x0F810FFB, 0xEE88EEAA, 0x16EE1661, 0xD721D773,
294 : 0x97C497F5, 0xA51AA5A8, 0xFEEBFE3F, 0x6DD96DB5, 0x78C578AE, 0xC539C56D,
295 : 0x1D991DE5, 0x76CD76A4, 0x3EAD3EDC, 0xCB31CB67, 0xB68BB647, 0xEF01EF5B,
296 : 0x1218121E, 0x602360C5, 0x6ADD6AB0, 0x4D1F4DF6, 0xCE4ECEE9, 0xDE2DDE7C,
297 : 0x55F9559D, 0x7E487E5A, 0x214F21B2, 0x03F2037A, 0xA065A026, 0x5E8E5E19,
298 : 0x5A785A66, 0x655C654B, 0x6258624E, 0xFD19FD45, 0x068D06F4, 0x40E54086,
299 : 0xF298F2BE, 0x335733AC, 0x17671790, 0x057F058E, 0xE805E85E, 0x4F644F7D,
300 : 0x89AF896A, 0x10631095, 0x74B6742F, 0x0AFE0A75, 0x5CF55C92, 0x9BB79B74,
301 : 0x2D3C2D33, 0x30A530D6, 0x2ECE2E49, 0x49E94989, 0x46684672, 0x77447755,
302 : 0xA8E0A8D8, 0x964D9604, 0x284328BD, 0xA969A929, 0xD929D979, 0x862E8691,
303 : 0xD1ACD187, 0xF415F44A, 0x8D598D15, 0xD6A8D682, 0xB90AB9BC, 0x429E420D,
304 : 0xF66EF6C1, 0x2F472FB8, 0xDDDFDD06, 0x23342339, 0xCC35CC62, 0xF16AF1C4,
305 : 0xC1CFC112, 0x85DC85EB, 0x8F228F9E, 0x71C971A1, 0x90C090F0, 0xAA9BAA53,
306 : 0x018901F1, 0x8BD48BE1, 0x4EED4E8C, 0x8EAB8E6F, 0xAB12ABA2, 0x6FA26F3E,
307 : 0xE60DE654, 0xDB52DBF2, 0x92BB927B, 0xB702B7B6, 0x692F69CA, 0x39A939D9,
308 : 0xD3D7D30C, 0xA761A723, 0xA21EA2AD, 0xC3B4C399, 0x6C506C44, 0x07040705,
309 : 0x04F6047F, 0x27C22746, 0xAC16ACA7, 0xD025D076, 0x50865013, 0xDC56DCF7,
310 : 0x8455841A, 0xE109E151, 0x7ABE7A25, 0x139113EF},
311 :
312 : {0xD939A9D9, 0x90176790, 0x719CB371, 0xD2A6E8D2, 0x05070405, 0x9852FD98,
313 : 0x6580A365, 0xDFE476DF, 0x08459A08, 0x024B9202, 0xA0E080A0, 0x665A7866,
314 : 0xDDAFE4DD, 0xB06ADDB0, 0xBF63D1BF, 0x362A3836, 0x54E60D54, 0x4320C643,
315 : 0x62CC3562, 0xBEF298BE, 0x1E12181E, 0x24EBF724, 0xD7A1ECD7, 0x77416C77,
316 : 0xBD2843BD, 0x32BC7532, 0xD47B37D4, 0x9B88269B, 0x700DFA70, 0xF94413F9,
317 : 0xB1FB94B1, 0x5A7E485A, 0x7A03F27A, 0xE48CD0E4, 0x47B68B47, 0x3C24303C,
318 : 0xA5E784A5, 0x416B5441, 0x06DDDF06, 0xC56023C5, 0x45FD1945, 0xA33A5BA3,
319 : 0x68C23D68, 0x158D5915, 0x21ECF321, 0x3166AE31, 0x3E6FA23E, 0x16578216,
320 : 0x95106395, 0x5BEF015B, 0x4DB8834D, 0x91862E91, 0xB56DD9B5, 0x1F83511F,
321 : 0x53AA9B53, 0x635D7C63, 0x3B68A63B, 0x3FFEEB3F, 0xD630A5D6, 0x257ABE25,
322 : 0xA7AC16A7, 0x0F090C0F, 0x35F0E335, 0x23A76123, 0xF090C0F0, 0xAFE98CAF,
323 : 0x809D3A80, 0x925CF592, 0x810C7381, 0x27312C27, 0x76D02576, 0xE7560BE7,
324 : 0x7B92BB7B, 0xE9CE4EE9, 0xF10189F1, 0x9F1E6B9F, 0xA93453A9, 0xC4F16AC4,
325 : 0x99C3B499, 0x975BF197, 0x8347E183, 0x6B18E66B, 0xC822BDC8, 0x0E98450E,
326 : 0x6E1FE26E, 0xC9B3F4C9, 0x2F74B62F, 0xCBF866CB, 0xFF99CCFF, 0xEA1495EA,
327 : 0xED5803ED, 0xF7DC56F7, 0xE18BD4E1, 0x1B151C1B, 0xADA21EAD, 0x0CD3D70C,
328 : 0x2BE2FB2B, 0x1DC8C31D, 0x195E8E19, 0xC22CB5C2, 0x8949E989, 0x12C1CF12,
329 : 0x7E95BF7E, 0x207DBA20, 0x6411EA64, 0x840B7784, 0x6DC5396D, 0x6A89AF6A,
330 : 0xD17C33D1, 0xA171C9A1, 0xCEFF62CE, 0x37BB7137, 0xFB0F81FB, 0x3DB5793D,
331 : 0x51E10951, 0xDC3EADDC, 0x2D3F242D, 0xA476CDA4, 0x9D55F99D, 0xEE82D8EE,
332 : 0x8640E586, 0xAE78C5AE, 0xCD25B9CD, 0x04964D04, 0x55774455, 0x0A0E080A,
333 : 0x13508613, 0x30F7E730, 0xD337A1D3, 0x40FA1D40, 0x3461AA34, 0x8C4EED8C,
334 : 0xB3B006B3, 0x6C54706C, 0x2A73B22A, 0x523BD252, 0x0B9F410B, 0x8B027B8B,
335 : 0x88D8A088, 0x4FF3114F, 0x67CB3167, 0x4627C246, 0xC06727C0, 0xB4FC90B4,
336 : 0x28382028, 0x7F04F67F, 0x78486078, 0x2EE5FF2E, 0x074C9607, 0x4B655C4B,
337 : 0xC72BB1C7, 0x6F8EAB6F, 0x0D429E0D, 0xBBF59CBB, 0xF2DB52F2, 0xF34A1BF3,
338 : 0xA63D5FA6, 0x59A49359, 0xBCB90ABC, 0x3AF9EF3A, 0xEF1391EF, 0xFE0885FE,
339 : 0x01914901, 0x6116EE61, 0x7CDE2D7C, 0xB2214FB2, 0x42B18F42, 0xDB723BDB,
340 : 0xB82F47B8, 0x48BF8748, 0x2CAE6D2C, 0xE3C046E3, 0x573CD657, 0x859A3E85,
341 : 0x29A96929, 0x7D4F647D, 0x94812A94, 0x492ECE49, 0x17C6CB17, 0xCA692FCA,
342 : 0xC3BDFCC3, 0x5CA3975C, 0x5EE8055E, 0xD0ED7AD0, 0x87D1AC87, 0x8E057F8E,
343 : 0xBA64D5BA, 0xA8A51AA8, 0xB7264BB7, 0xB9BE0EB9, 0x6087A760, 0xF8D55AF8,
344 : 0x22362822, 0x111B1411, 0xDE753FDE, 0x79D92979, 0xAAEE88AA, 0x332D3C33,
345 : 0x5F794C5F, 0xB6B702B6, 0x96CAB896, 0x5835DA58, 0x9CC4B09C, 0xFC4317FC,
346 : 0x1A84551A, 0xF64D1FF6, 0x1C598A1C, 0x38B27D38, 0xAC3357AC, 0x18CFC718,
347 : 0xF4068DF4, 0x69537469, 0x749BB774, 0xF597C4F5, 0x56AD9F56, 0xDAE372DA,
348 : 0xD5EA7ED5, 0x4AF4154A, 0x9E8F229E, 0xA2AB12A2, 0x4E62584E, 0xE85F07E8,
349 : 0xE51D99E5, 0x39233439, 0xC1F66EC1, 0x446C5044, 0x5D32DE5D, 0x72466872,
350 : 0x26A06526, 0x93CDBC93, 0x03DADB03, 0xC6BAF8C6, 0xFA9EC8FA, 0x82D6A882,
351 : 0xCF6E2BCF, 0x50704050, 0xEB85DCEB, 0x750AFE75, 0x8A93328A, 0x8DDFA48D,
352 : 0x4C29CA4C, 0x141C1014, 0x73D72173, 0xCCB4F0CC, 0x09D4D309, 0x108A5D10,
353 : 0xE2510FE2, 0x00000000, 0x9A196F9A, 0xE01A9DE0, 0x8F94368F, 0xE6C742E6,
354 : 0xECC94AEC, 0xFDD25EFD, 0xAB7FC1AB, 0xD8A8E0D8}
355 : };
356 :
357 : /* The exp_to_poly and poly_to_exp tables are used to perform efficient
358 : * operations in GF(2^8) represented as GF(2)[x]/w(x) where
359 : * w(x)=x^8+x^6+x^3+x^2+1. We care about doing that because it's part of the
360 : * definition of the RS matrix in the key schedule. Elements of that field
361 : * are polynomials of degree not greater than 7 and all coefficients 0 or 1,
362 : * which can be represented naturally by bytes (just substitute x=2). In that
363 : * form, GF(2^8) addition is the same as bitwise XOR, but GF(2^8)
364 : * multiplication is inefficient without hardware support. To multiply
365 : * faster, I make use of the fact x is a generator for the nonzero elements,
366 : * so that every element p of GF(2)[x]/w(x) is either 0 or equal to (x)^n for
367 : * some n in 0..254. Note that that caret is exponentiation in GF(2^8),
368 : * *not* polynomial notation. So if I want to compute pq where p and q are
369 : * in GF(2^8), I can just say:
370 : * 1. if p=0 or q=0 then pq=0
371 : * 2. otherwise, find m and n such that p=x^m and q=x^n
372 : * 3. pq=(x^m)(x^n)=x^(m+n), so add m and n and find pq
373 : * The translations in steps 2 and 3 are looked up in the tables
374 : * poly_to_exp (for step 2) and exp_to_poly (for step 3). To see this
375 : * in action, look at the CALC_S macro. As additional wrinkles, note that
376 : * one of my operands is always a constant, so the poly_to_exp lookup on it
377 : * is done in advance; I included the original values in the comments so
378 : * readers can have some chance of recognizing that this *is* the RS matrix
379 : * from the Twofish paper. I've only included the table entries I actually
380 : * need; I never do a lookup on a variable input of zero and the biggest
381 : * exponents I'll ever see are 254 (variable) and 237 (constant), so they'll
382 : * never sum to more than 491. I'm repeating part of the exp_to_poly table
383 : * so that I don't have to do mod-255 reduction in the exponent arithmetic.
384 : * Since I know my constant operands are never zero, I only have to worry
385 : * about zero values in the variable operand, and I do it with a simple
386 : * conditional branch. I know conditionals are expensive, but I couldn't
387 : * see a non-horrible way of avoiding them, and I did manage to group the
388 : * statements so that each if covers four group multiplications. */
389 :
390 : static const u16 poly_to_exp[256] = {
391 : 492,
392 : 0x00, 0x01, 0x17, 0x02, 0x2E, 0x18, 0x53, 0x03, 0x6A, 0x2F, 0x93, 0x19,
393 : 0x34, 0x54, 0x45, 0x04, 0x5C, 0x6B, 0xB6, 0x30, 0xA6, 0x94, 0x4B, 0x1A,
394 : 0x8C, 0x35, 0x81, 0x55, 0xAA, 0x46, 0x0D, 0x05, 0x24, 0x5D, 0x87, 0x6C,
395 : 0x9B, 0xB7, 0xC1, 0x31, 0x2B, 0xA7, 0xA3, 0x95, 0x98, 0x4C, 0xCA, 0x1B,
396 : 0xE6, 0x8D, 0x73, 0x36, 0xCD, 0x82, 0x12, 0x56, 0x62, 0xAB, 0xF0, 0x47,
397 : 0x4F, 0x0E, 0xBD, 0x06, 0xD4, 0x25, 0xD2, 0x5E, 0x27, 0x88, 0x66, 0x6D,
398 : 0xD6, 0x9C, 0x79, 0xB8, 0x08, 0xC2, 0xDF, 0x32, 0x68, 0x2C, 0xFD, 0xA8,
399 : 0x8A, 0xA4, 0x5A, 0x96, 0x29, 0x99, 0x22, 0x4D, 0x60, 0xCB, 0xE4, 0x1C,
400 : 0x7B, 0xE7, 0x3B, 0x8E, 0x9E, 0x74, 0xF4, 0x37, 0xD8, 0xCE, 0xF9, 0x83,
401 : 0x6F, 0x13, 0xB2, 0x57, 0xE1, 0x63, 0xDC, 0xAC, 0xC4, 0xF1, 0xAF, 0x48,
402 : 0x0A, 0x50, 0x42, 0x0F, 0xBA, 0xBE, 0xC7, 0x07, 0xDE, 0xD5, 0x78, 0x26,
403 : 0x65, 0xD3, 0xD1, 0x5F, 0xE3, 0x28, 0x21, 0x89, 0x59, 0x67, 0xFC, 0x6E,
404 : 0xB1, 0xD7, 0xF8, 0x9D, 0xF3, 0x7A, 0x3A, 0xB9, 0xC6, 0x09, 0x41, 0xC3,
405 : 0xAE, 0xE0, 0xDB, 0x33, 0x44, 0x69, 0x92, 0x2D, 0x52, 0xFE, 0x16, 0xA9,
406 : 0x0C, 0x8B, 0x80, 0xA5, 0x4A, 0x5B, 0xB5, 0x97, 0xC9, 0x2A, 0xA2, 0x9A,
407 : 0xC0, 0x23, 0x86, 0x4E, 0xBC, 0x61, 0xEF, 0xCC, 0x11, 0xE5, 0x72, 0x1D,
408 : 0x3D, 0x7C, 0xEB, 0xE8, 0xE9, 0x3C, 0xEA, 0x8F, 0x7D, 0x9F, 0xEC, 0x75,
409 : 0x1E, 0xF5, 0x3E, 0x38, 0xF6, 0xD9, 0x3F, 0xCF, 0x76, 0xFA, 0x1F, 0x84,
410 : 0xA0, 0x70, 0xED, 0x14, 0x90, 0xB3, 0x7E, 0x58, 0xFB, 0xE2, 0x20, 0x64,
411 : 0xD0, 0xDD, 0x77, 0xAD, 0xDA, 0xC5, 0x40, 0xF2, 0x39, 0xB0, 0xF7, 0x49,
412 : 0xB4, 0x0B, 0x7F, 0x51, 0x15, 0x43, 0x91, 0x10, 0x71, 0xBB, 0xEE, 0xBF,
413 : 0x85, 0xC8, 0xA1
414 : };
415 :
416 : static const byte exp_to_poly[492 + 256] = {
417 : 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x4D, 0x9A, 0x79, 0xF2,
418 : 0xA9, 0x1F, 0x3E, 0x7C, 0xF8, 0xBD, 0x37, 0x6E, 0xDC, 0xF5, 0xA7, 0x03,
419 : 0x06, 0x0C, 0x18, 0x30, 0x60, 0xC0, 0xCD, 0xD7, 0xE3, 0x8B, 0x5B, 0xB6,
420 : 0x21, 0x42, 0x84, 0x45, 0x8A, 0x59, 0xB2, 0x29, 0x52, 0xA4, 0x05, 0x0A,
421 : 0x14, 0x28, 0x50, 0xA0, 0x0D, 0x1A, 0x34, 0x68, 0xD0, 0xED, 0x97, 0x63,
422 : 0xC6, 0xC1, 0xCF, 0xD3, 0xEB, 0x9B, 0x7B, 0xF6, 0xA1, 0x0F, 0x1E, 0x3C,
423 : 0x78, 0xF0, 0xAD, 0x17, 0x2E, 0x5C, 0xB8, 0x3D, 0x7A, 0xF4, 0xA5, 0x07,
424 : 0x0E, 0x1C, 0x38, 0x70, 0xE0, 0x8D, 0x57, 0xAE, 0x11, 0x22, 0x44, 0x88,
425 : 0x5D, 0xBA, 0x39, 0x72, 0xE4, 0x85, 0x47, 0x8E, 0x51, 0xA2, 0x09, 0x12,
426 : 0x24, 0x48, 0x90, 0x6D, 0xDA, 0xF9, 0xBF, 0x33, 0x66, 0xCC, 0xD5, 0xE7,
427 : 0x83, 0x4B, 0x96, 0x61, 0xC2, 0xC9, 0xDF, 0xF3, 0xAB, 0x1B, 0x36, 0x6C,
428 : 0xD8, 0xFD, 0xB7, 0x23, 0x46, 0x8C, 0x55, 0xAA, 0x19, 0x32, 0x64, 0xC8,
429 : 0xDD, 0xF7, 0xA3, 0x0B, 0x16, 0x2C, 0x58, 0xB0, 0x2D, 0x5A, 0xB4, 0x25,
430 : 0x4A, 0x94, 0x65, 0xCA, 0xD9, 0xFF, 0xB3, 0x2B, 0x56, 0xAC, 0x15, 0x2A,
431 : 0x54, 0xA8, 0x1D, 0x3A, 0x74, 0xE8, 0x9D, 0x77, 0xEE, 0x91, 0x6F, 0xDE,
432 : 0xF1, 0xAF, 0x13, 0x26, 0x4C, 0x98, 0x7D, 0xFA, 0xB9, 0x3F, 0x7E, 0xFC,
433 : 0xB5, 0x27, 0x4E, 0x9C, 0x75, 0xEA, 0x99, 0x7F, 0xFE, 0xB1, 0x2F, 0x5E,
434 : 0xBC, 0x35, 0x6A, 0xD4, 0xE5, 0x87, 0x43, 0x86, 0x41, 0x82, 0x49, 0x92,
435 : 0x69, 0xD2, 0xE9, 0x9F, 0x73, 0xE6, 0x81, 0x4F, 0x9E, 0x71, 0xE2, 0x89,
436 : 0x5F, 0xBE, 0x31, 0x62, 0xC4, 0xC5, 0xC7, 0xC3, 0xCB, 0xDB, 0xFB, 0xBB,
437 : 0x3B, 0x76, 0xEC, 0x95, 0x67, 0xCE, 0xD1, 0xEF, 0x93, 0x6B, 0xD6, 0xE1,
438 : 0x8F, 0x53, 0xA6, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x4D,
439 : 0x9A, 0x79, 0xF2, 0xA9, 0x1F, 0x3E, 0x7C, 0xF8, 0xBD, 0x37, 0x6E, 0xDC,
440 : 0xF5, 0xA7, 0x03, 0x06, 0x0C, 0x18, 0x30, 0x60, 0xC0, 0xCD, 0xD7, 0xE3,
441 : 0x8B, 0x5B, 0xB6, 0x21, 0x42, 0x84, 0x45, 0x8A, 0x59, 0xB2, 0x29, 0x52,
442 : 0xA4, 0x05, 0x0A, 0x14, 0x28, 0x50, 0xA0, 0x0D, 0x1A, 0x34, 0x68, 0xD0,
443 : 0xED, 0x97, 0x63, 0xC6, 0xC1, 0xCF, 0xD3, 0xEB, 0x9B, 0x7B, 0xF6, 0xA1,
444 : 0x0F, 0x1E, 0x3C, 0x78, 0xF0, 0xAD, 0x17, 0x2E, 0x5C, 0xB8, 0x3D, 0x7A,
445 : 0xF4, 0xA5, 0x07, 0x0E, 0x1C, 0x38, 0x70, 0xE0, 0x8D, 0x57, 0xAE, 0x11,
446 : 0x22, 0x44, 0x88, 0x5D, 0xBA, 0x39, 0x72, 0xE4, 0x85, 0x47, 0x8E, 0x51,
447 : 0xA2, 0x09, 0x12, 0x24, 0x48, 0x90, 0x6D, 0xDA, 0xF9, 0xBF, 0x33, 0x66,
448 : 0xCC, 0xD5, 0xE7, 0x83, 0x4B, 0x96, 0x61, 0xC2, 0xC9, 0xDF, 0xF3, 0xAB,
449 : 0x1B, 0x36, 0x6C, 0xD8, 0xFD, 0xB7, 0x23, 0x46, 0x8C, 0x55, 0xAA, 0x19,
450 : 0x32, 0x64, 0xC8, 0xDD, 0xF7, 0xA3, 0x0B, 0x16, 0x2C, 0x58, 0xB0, 0x2D,
451 : 0x5A, 0xB4, 0x25, 0x4A, 0x94, 0x65, 0xCA, 0xD9, 0xFF, 0xB3, 0x2B, 0x56,
452 : 0xAC, 0x15, 0x2A, 0x54, 0xA8, 0x1D, 0x3A, 0x74, 0xE8, 0x9D, 0x77, 0xEE,
453 : 0x91, 0x6F, 0xDE, 0xF1, 0xAF, 0x13, 0x26, 0x4C, 0x98, 0x7D, 0xFA, 0xB9,
454 : 0x3F, 0x7E, 0xFC, 0xB5, 0x27, 0x4E, 0x9C, 0x75, 0xEA, 0x99, 0x7F, 0xFE,
455 : 0xB1, 0x2F, 0x5E, 0xBC, 0x35, 0x6A, 0xD4, 0xE5, 0x87, 0x43, 0x86, 0x41,
456 : 0x82, 0x49, 0x92, 0x69, 0xD2, 0xE9, 0x9F, 0x73, 0xE6, 0x81, 0x4F, 0x9E,
457 : 0x71, 0xE2, 0x89, 0x5F, 0xBE, 0x31, 0x62, 0xC4, 0xC5, 0xC7, 0xC3, 0xCB,
458 : };
459 :
460 :
461 : /* The table constants are indices of
462 : * S-box entries, preprocessed through q0 and q1. */
463 : static byte calc_sb_tbl[512] = {
464 : 0xA9, 0x75, 0x67, 0xF3, 0xB3, 0xC6, 0xE8, 0xF4,
465 : 0x04, 0xDB, 0xFD, 0x7B, 0xA3, 0xFB, 0x76, 0xC8,
466 : 0x9A, 0x4A, 0x92, 0xD3, 0x80, 0xE6, 0x78, 0x6B,
467 : 0xE4, 0x45, 0xDD, 0x7D, 0xD1, 0xE8, 0x38, 0x4B,
468 : 0x0D, 0xD6, 0xC6, 0x32, 0x35, 0xD8, 0x98, 0xFD,
469 : 0x18, 0x37, 0xF7, 0x71, 0xEC, 0xF1, 0x6C, 0xE1,
470 : 0x43, 0x30, 0x75, 0x0F, 0x37, 0xF8, 0x26, 0x1B,
471 : 0xFA, 0x87, 0x13, 0xFA, 0x94, 0x06, 0x48, 0x3F,
472 : 0xF2, 0x5E, 0xD0, 0xBA, 0x8B, 0xAE, 0x30, 0x5B,
473 : 0x84, 0x8A, 0x54, 0x00, 0xDF, 0xBC, 0x23, 0x9D,
474 : 0x19, 0x6D, 0x5B, 0xC1, 0x3D, 0xB1, 0x59, 0x0E,
475 : 0xF3, 0x80, 0xAE, 0x5D, 0xA2, 0xD2, 0x82, 0xD5,
476 : 0x63, 0xA0, 0x01, 0x84, 0x83, 0x07, 0x2E, 0x14,
477 : 0xD9, 0xB5, 0x51, 0x90, 0x9B, 0x2C, 0x7C, 0xA3,
478 : 0xA6, 0xB2, 0xEB, 0x73, 0xA5, 0x4C, 0xBE, 0x54,
479 : 0x16, 0x92, 0x0C, 0x74, 0xE3, 0x36, 0x61, 0x51,
480 : 0xC0, 0x38, 0x8C, 0xB0, 0x3A, 0xBD, 0xF5, 0x5A,
481 : 0x73, 0xFC, 0x2C, 0x60, 0x25, 0x62, 0x0B, 0x96,
482 : 0xBB, 0x6C, 0x4E, 0x42, 0x89, 0xF7, 0x6B, 0x10,
483 : 0x53, 0x7C, 0x6A, 0x28, 0xB4, 0x27, 0xF1, 0x8C,
484 : 0xE1, 0x13, 0xE6, 0x95, 0xBD, 0x9C, 0x45, 0xC7,
485 : 0xE2, 0x24, 0xF4, 0x46, 0xB6, 0x3B, 0x66, 0x70,
486 : 0xCC, 0xCA, 0x95, 0xE3, 0x03, 0x85, 0x56, 0xCB,
487 : 0xD4, 0x11, 0x1C, 0xD0, 0x1E, 0x93, 0xD7, 0xB8,
488 : 0xFB, 0xA6, 0xC3, 0x83, 0x8E, 0x20, 0xB5, 0xFF,
489 : 0xE9, 0x9F, 0xCF, 0x77, 0xBF, 0xC3, 0xBA, 0xCC,
490 : 0xEA, 0x03, 0x77, 0x6F, 0x39, 0x08, 0xAF, 0xBF,
491 : 0x33, 0x40, 0xC9, 0xE7, 0x62, 0x2B, 0x71, 0xE2,
492 : 0x81, 0x79, 0x79, 0x0C, 0x09, 0xAA, 0xAD, 0x82,
493 : 0x24, 0x41, 0xCD, 0x3A, 0xF9, 0xEA, 0xD8, 0xB9,
494 : 0xE5, 0xE4, 0xC5, 0x9A, 0xB9, 0xA4, 0x4D, 0x97,
495 : 0x44, 0x7E, 0x08, 0xDA, 0x86, 0x7A, 0xE7, 0x17,
496 : 0xA1, 0x66, 0x1D, 0x94, 0xAA, 0xA1, 0xED, 0x1D,
497 : 0x06, 0x3D, 0x70, 0xF0, 0xB2, 0xDE, 0xD2, 0xB3,
498 : 0x41, 0x0B, 0x7B, 0x72, 0xA0, 0xA7, 0x11, 0x1C,
499 : 0x31, 0xEF, 0xC2, 0xD1, 0x27, 0x53, 0x90, 0x3E,
500 : 0x20, 0x8F, 0xF6, 0x33, 0x60, 0x26, 0xFF, 0x5F,
501 : 0x96, 0xEC, 0x5C, 0x76, 0xB1, 0x2A, 0xAB, 0x49,
502 : 0x9E, 0x81, 0x9C, 0x88, 0x52, 0xEE, 0x1B, 0x21,
503 : 0x5F, 0xC4, 0x93, 0x1A, 0x0A, 0xEB, 0xEF, 0xD9,
504 : 0x91, 0xC5, 0x85, 0x39, 0x49, 0x99, 0xEE, 0xCD,
505 : 0x2D, 0xAD, 0x4F, 0x31, 0x8F, 0x8B, 0x3B, 0x01,
506 : 0x47, 0x18, 0x87, 0x23, 0x6D, 0xDD, 0x46, 0x1F,
507 : 0xD6, 0x4E, 0x3E, 0x2D, 0x69, 0xF9, 0x64, 0x48,
508 : 0x2A, 0x4F, 0xCE, 0xF2, 0xCB, 0x65, 0x2F, 0x8E,
509 : 0xFC, 0x78, 0x97, 0x5C, 0x05, 0x58, 0x7A, 0x19,
510 : 0xAC, 0x8D, 0x7F, 0xE5, 0xD5, 0x98, 0x1A, 0x57,
511 : 0x4B, 0x67, 0x0E, 0x7F, 0xA7, 0x05, 0x5A, 0x64,
512 : 0x28, 0xAF, 0x14, 0x63, 0x3F, 0xB6, 0x29, 0xFE,
513 : 0x88, 0xF5, 0x3C, 0xB7, 0x4C, 0x3C, 0x02, 0xA5,
514 : 0xB8, 0xCE, 0xDA, 0xE9, 0xB0, 0x68, 0x17, 0x44,
515 : 0x55, 0xE0, 0x1F, 0x4D, 0x8A, 0x43, 0x7D, 0x69,
516 : 0x57, 0x29, 0xC7, 0x2E, 0x8D, 0xAC, 0x74, 0x15,
517 : 0xB7, 0x59, 0xC4, 0xA8, 0x9F, 0x0A, 0x72, 0x9E,
518 : 0x7E, 0x6E, 0x15, 0x47, 0x22, 0xDF, 0x12, 0x34,
519 : 0x58, 0x35, 0x07, 0x6A, 0x99, 0xCF, 0x34, 0xDC,
520 : 0x6E, 0x22, 0x50, 0xC9, 0xDE, 0xC0, 0x68, 0x9B,
521 : 0x65, 0x89, 0xBC, 0xD4, 0xDB, 0xED, 0xF8, 0xAB,
522 : 0xC8, 0x12, 0xA8, 0xA2, 0x2B, 0x0D, 0x40, 0x52,
523 : 0xDC, 0xBB, 0xFE, 0x02, 0x32, 0x2F, 0xA4, 0xA9,
524 : 0xCA, 0xD7, 0x10, 0x61, 0x21, 0x1E, 0xF0, 0xB4,
525 : 0xD3, 0x50, 0x5D, 0x04, 0x0F, 0xF6, 0x00, 0xC2,
526 : 0x6F, 0x16, 0x9D, 0x25, 0x36, 0x86, 0x42, 0x56,
527 : 0x4A, 0x55, 0x5E, 0x09, 0xC1, 0xBE, 0xE0, 0x91
528 : };
529 :
530 : /* Macro to perform one column of the RS matrix multiplication. The
531 : * parameters a, b, c, and d are the four bytes of output; i is the index
532 : * of the key bytes, and w, x, y, and z, are the column of constants from
533 : * the RS matrix, preprocessed through the poly_to_exp table. */
534 :
535 : #define CALC_S(a, b, c, d, i, w, x, y, z) \
536 : { \
537 : tmp = poly_to_exp[key[i]]; \
538 : (a) ^= exp_to_poly[tmp + (w)]; \
539 : (b) ^= exp_to_poly[tmp + (x)]; \
540 : (c) ^= exp_to_poly[tmp + (y)]; \
541 : (d) ^= exp_to_poly[tmp + (z)]; \
542 : }
543 :
544 : /* Macros to calculate the key-dependent S-boxes for a 128-bit key using
545 : * the S vector from CALC_S. CALC_SB_2 computes a single entry in all
546 : * four S-boxes, where i is the index of the entry to compute, and a and b
547 : * are the index numbers preprocessed through the q0 and q1 tables
548 : * respectively. CALC_SB is simply a convenience to make the code shorter;
549 : * it calls CALC_SB_2 four times with consecutive indices from i to i+3,
550 : * using the remaining parameters two by two. */
551 :
552 : #define CALC_SB_2(i, a, b) \
553 : ctx->s[0][i] = mds[0][q0[(a) ^ sa] ^ se]; \
554 : ctx->s[1][i] = mds[1][q0[(b) ^ sb] ^ sf]; \
555 : ctx->s[2][i] = mds[2][q1[(a) ^ sc] ^ sg]; \
556 : ctx->s[3][i] = mds[3][q1[(b) ^ sd] ^ sh]
557 :
558 : #define CALC_SB(i, a, b, c, d, e, f, g, h) \
559 : CALC_SB_2 (i, a, b); CALC_SB_2 ((i)+1, c, d); \
560 : CALC_SB_2 ((i)+2, e, f); CALC_SB_2 ((i)+3, g, h)
561 :
562 : /* Macros exactly like CALC_SB and CALC_SB_2, but for 256-bit keys. */
563 :
564 : #define CALC_SB256_2(i, a, b) \
565 : ctx->s[0][i] = mds[0][q0[q0[q1[(b) ^ sa] ^ se] ^ si] ^ sm]; \
566 : ctx->s[1][i] = mds[1][q0[q1[q1[(a) ^ sb] ^ sf] ^ sj] ^ sn]; \
567 : ctx->s[2][i] = mds[2][q1[q0[q0[(a) ^ sc] ^ sg] ^ sk] ^ so]; \
568 : ctx->s[3][i] = mds[3][q1[q1[q0[(b) ^ sd] ^ sh] ^ sl] ^ sp];
569 :
570 : #define CALC_SB256(i, a, b, c, d, e, f, g, h) \
571 : CALC_SB256_2 (i, a, b); CALC_SB256_2 ((i)+1, c, d); \
572 : CALC_SB256_2 ((i)+2, e, f); CALC_SB256_2 ((i)+3, g, h)
573 :
574 : /* Macros to calculate the whitening and round subkeys. CALC_K_2 computes the
575 : * last two stages of the h() function for a given index (either 2i or 2i+1).
576 : * a, b, c, and d are the four bytes going into the last two stages. For
577 : * 128-bit keys, this is the entire h() function and a and c are the index
578 : * preprocessed through q0 and q1 respectively; for longer keys they are the
579 : * output of previous stages. j is the index of the first key byte to use.
580 : * CALC_K computes a pair of subkeys for 128-bit Twofish, by calling CALC_K_2
581 : * twice, doing the Pseudo-Hadamard Transform, and doing the necessary
582 : * rotations. Its parameters are: a, the array to write the results into,
583 : * j, the index of the first output entry, k and l, the preprocessed indices
584 : * for index 2i, and m and n, the preprocessed indices for index 2i+1.
585 : * CALC_K256_2 expands CALC_K_2 to handle 256-bit keys, by doing two
586 : * additional lookup-and-XOR stages. The parameters a and b are the index
587 : * preprocessed through q0 and q1 respectively; j is the index of the first
588 : * key byte to use. CALC_K256 is identical to CALC_K but for using the
589 : * CALC_K256_2 macro instead of CALC_K_2. */
590 :
591 : #define CALC_K_2(a, b, c, d, j) \
592 : mds[0][q0[a ^ key[(j) + 8]] ^ key[j]] \
593 : ^ mds[1][q0[b ^ key[(j) + 9]] ^ key[(j) + 1]] \
594 : ^ mds[2][q1[c ^ key[(j) + 10]] ^ key[(j) + 2]] \
595 : ^ mds[3][q1[d ^ key[(j) + 11]] ^ key[(j) + 3]]
596 :
597 : #define CALC_K(a, j, k, l, m, n) \
598 : x = CALC_K_2 (k, l, k, l, 0); \
599 : y = CALC_K_2 (m, n, m, n, 4); \
600 : y = (y << 8) + (y >> 24); \
601 : x += y; y += x; ctx->a[j] = x; \
602 : ctx->a[(j) + 1] = (y << 9) + (y >> 23)
603 :
604 : #define CALC_K256_2(a, b, j) \
605 : CALC_K_2 (q0[q1[b ^ key[(j) + 24]] ^ key[(j) + 16]], \
606 : q1[q1[a ^ key[(j) + 25]] ^ key[(j) + 17]], \
607 : q0[q0[a ^ key[(j) + 26]] ^ key[(j) + 18]], \
608 : q1[q0[b ^ key[(j) + 27]] ^ key[(j) + 19]], j)
609 :
610 : #define CALC_K256(a, j, k, l, m, n) \
611 : x = CALC_K256_2 (k, l, 0); \
612 : y = CALC_K256_2 (m, n, 4); \
613 : y = (y << 8) + (y >> 24); \
614 : x += y; y += x; ctx->a[j] = x; \
615 : ctx->a[(j) + 1] = (y << 9) + (y >> 23)
616 :
617 :
618 :
619 : /* Perform the key setup. Note that this works only with 128- and 256-bit
620 : * keys, despite the API that looks like it might support other sizes. */
621 :
622 : static gcry_err_code_t
623 928 : do_twofish_setkey (TWOFISH_context *ctx, const byte *key, const unsigned keylen)
624 : {
625 : int i, j, k;
626 :
627 : /* Temporaries for CALC_K. */
628 : u32 x, y;
629 :
630 : /* The S vector used to key the S-boxes, split up into individual bytes.
631 : * 128-bit keys use only sa through sh; 256-bit use all of them. */
632 928 : byte sa = 0, sb = 0, sc = 0, sd = 0, se = 0, sf = 0, sg = 0, sh = 0;
633 928 : byte si = 0, sj = 0, sk = 0, sl = 0, sm = 0, sn = 0, so = 0, sp = 0;
634 :
635 : /* Temporary for CALC_S. */
636 : unsigned int tmp;
637 :
638 : /* Flags for self-test. */
639 : static int initialized = 0;
640 : static const char *selftest_failed=0;
641 :
642 : /* Check key length. */
643 928 : if( ( ( keylen - 16 ) | 16 ) != 16 )
644 0 : return GPG_ERR_INV_KEYLEN;
645 :
646 : /* Do self-test if necessary. */
647 928 : if (!initialized)
648 : {
649 4 : initialized = 1;
650 4 : selftest_failed = selftest ();
651 4 : if( selftest_failed )
652 0 : log_error("%s\n", selftest_failed );
653 : }
654 928 : if( selftest_failed )
655 0 : return GPG_ERR_SELFTEST_FAILED;
656 :
657 : /* Compute the first two words of the S vector. The magic numbers are
658 : * the entries of the RS matrix, preprocessed through poly_to_exp. The
659 : * numbers in the comments are the original (polynomial form) matrix
660 : * entries. */
661 928 : CALC_S (sa, sb, sc, sd, 0, 0x00, 0x2D, 0x01, 0x2D); /* 01 A4 02 A4 */
662 928 : CALC_S (sa, sb, sc, sd, 1, 0x2D, 0xA4, 0x44, 0x8A); /* A4 56 A1 55 */
663 928 : CALC_S (sa, sb, sc, sd, 2, 0x8A, 0xD5, 0xBF, 0xD1); /* 55 82 FC 87 */
664 928 : CALC_S (sa, sb, sc, sd, 3, 0xD1, 0x7F, 0x3D, 0x99); /* 87 F3 C1 5A */
665 928 : CALC_S (sa, sb, sc, sd, 4, 0x99, 0x46, 0x66, 0x96); /* 5A 1E 47 58 */
666 928 : CALC_S (sa, sb, sc, sd, 5, 0x96, 0x3C, 0x5B, 0xED); /* 58 C6 AE DB */
667 928 : CALC_S (sa, sb, sc, sd, 6, 0xED, 0x37, 0x4F, 0xE0); /* DB 68 3D 9E */
668 928 : CALC_S (sa, sb, sc, sd, 7, 0xE0, 0xD0, 0x8C, 0x17); /* 9E E5 19 03 */
669 928 : CALC_S (se, sf, sg, sh, 8, 0x00, 0x2D, 0x01, 0x2D); /* 01 A4 02 A4 */
670 928 : CALC_S (se, sf, sg, sh, 9, 0x2D, 0xA4, 0x44, 0x8A); /* A4 56 A1 55 */
671 928 : CALC_S (se, sf, sg, sh, 10, 0x8A, 0xD5, 0xBF, 0xD1); /* 55 82 FC 87 */
672 928 : CALC_S (se, sf, sg, sh, 11, 0xD1, 0x7F, 0x3D, 0x99); /* 87 F3 C1 5A */
673 928 : CALC_S (se, sf, sg, sh, 12, 0x99, 0x46, 0x66, 0x96); /* 5A 1E 47 58 */
674 928 : CALC_S (se, sf, sg, sh, 13, 0x96, 0x3C, 0x5B, 0xED); /* 58 C6 AE DB */
675 928 : CALC_S (se, sf, sg, sh, 14, 0xED, 0x37, 0x4F, 0xE0); /* DB 68 3D 9E */
676 928 : CALC_S (se, sf, sg, sh, 15, 0xE0, 0xD0, 0x8C, 0x17); /* 9E E5 19 03 */
677 :
678 928 : if (keylen == 32) /* 256-bit key */
679 : {
680 : /* Calculate the remaining two words of the S vector */
681 459 : CALC_S (si, sj, sk, sl, 16, 0x00, 0x2D, 0x01, 0x2D); /* 01 A4 02 A4 */
682 459 : CALC_S (si, sj, sk, sl, 17, 0x2D, 0xA4, 0x44, 0x8A); /* A4 56 A1 55 */
683 459 : CALC_S (si, sj, sk, sl, 18, 0x8A, 0xD5, 0xBF, 0xD1); /* 55 82 FC 87 */
684 459 : CALC_S (si, sj, sk, sl, 19, 0xD1, 0x7F, 0x3D, 0x99); /* 87 F3 C1 5A */
685 459 : CALC_S (si, sj, sk, sl, 20, 0x99, 0x46, 0x66, 0x96); /* 5A 1E 47 58 */
686 459 : CALC_S (si, sj, sk, sl, 21, 0x96, 0x3C, 0x5B, 0xED); /* 58 C6 AE DB */
687 459 : CALC_S (si, sj, sk, sl, 22, 0xED, 0x37, 0x4F, 0xE0); /* DB 68 3D 9E */
688 459 : CALC_S (si, sj, sk, sl, 23, 0xE0, 0xD0, 0x8C, 0x17); /* 9E E5 19 03 */
689 459 : CALC_S (sm, sn, so, sp, 24, 0x00, 0x2D, 0x01, 0x2D); /* 01 A4 02 A4 */
690 459 : CALC_S (sm, sn, so, sp, 25, 0x2D, 0xA4, 0x44, 0x8A); /* A4 56 A1 55 */
691 459 : CALC_S (sm, sn, so, sp, 26, 0x8A, 0xD5, 0xBF, 0xD1); /* 55 82 FC 87 */
692 459 : CALC_S (sm, sn, so, sp, 27, 0xD1, 0x7F, 0x3D, 0x99); /* 87 F3 C1 5A */
693 459 : CALC_S (sm, sn, so, sp, 28, 0x99, 0x46, 0x66, 0x96); /* 5A 1E 47 58 */
694 459 : CALC_S (sm, sn, so, sp, 29, 0x96, 0x3C, 0x5B, 0xED); /* 58 C6 AE DB */
695 459 : CALC_S (sm, sn, so, sp, 30, 0xED, 0x37, 0x4F, 0xE0); /* DB 68 3D 9E */
696 459 : CALC_S (sm, sn, so, sp, 31, 0xE0, 0xD0, 0x8C, 0x17); /* 9E E5 19 03 */
697 :
698 : /* Compute the S-boxes. */
699 117963 : for(i=j=0,k=1; i < 256; i++, j += 2, k += 2 )
700 : {
701 117504 : CALC_SB256_2( i, calc_sb_tbl[j], calc_sb_tbl[k] );
702 : }
703 :
704 : /* Calculate whitening and round subkeys. */
705 2295 : for (i = 0; i < 8; i += 2)
706 : {
707 1836 : CALC_K256 ( w, i, q0[i], q1[i], q0[i + 1], q1[i + 1] );
708 : }
709 7803 : for (j = 0; j < 32; j += 2, i += 2)
710 : {
711 7344 : CALC_K256 ( k, j, q0[i], q1[i], q0[i + 1], q1[i + 1] );
712 : }
713 : }
714 : else
715 : {
716 : /* Compute the S-boxes. */
717 120533 : for(i=j=0,k=1; i < 256; i++, j += 2, k += 2 )
718 : {
719 120064 : CALC_SB_2( i, calc_sb_tbl[j], calc_sb_tbl[k] );
720 : }
721 :
722 : /* Calculate whitening and round subkeys. */
723 2345 : for (i = 0; i < 8; i += 2)
724 : {
725 1876 : CALC_K ( w, i, q0[i], q1[i], q0[i + 1], q1[i + 1] );
726 : }
727 7973 : for (j = 0; j < 32; j += 2, i += 2)
728 : {
729 7504 : CALC_K ( k, j, q0[i], q1[i], q0[i + 1], q1[i + 1] );
730 : }
731 : }
732 :
733 928 : return 0;
734 : }
735 :
736 : static gcry_err_code_t
737 928 : twofish_setkey (void *context, const byte *key, unsigned int keylen)
738 : {
739 928 : TWOFISH_context *ctx = context;
740 928 : unsigned int hwfeatures = _gcry_get_hw_features ();
741 : int rc;
742 :
743 928 : rc = do_twofish_setkey (ctx, key, keylen);
744 :
745 : #ifdef USE_AVX2
746 928 : ctx->use_avx2 = 0;
747 928 : if ((hwfeatures & HWF_INTEL_AVX2) && (hwfeatures & HWF_INTEL_FAST_VPGATHER))
748 : {
749 0 : ctx->use_avx2 = 1;
750 : }
751 : #endif
752 :
753 : (void)hwfeatures;
754 :
755 928 : _gcry_burn_stack (23+6*sizeof(void*));
756 928 : return rc;
757 : }
758 :
759 :
760 : #ifdef USE_AVX2
761 : /* Assembler implementations of Twofish using AVX2. Process 16 block in
762 : parallel.
763 : */
764 : extern void _gcry_twofish_avx2_ctr_enc(const TWOFISH_context *ctx,
765 : unsigned char *out,
766 : const unsigned char *in,
767 : unsigned char *ctr) ASM_FUNC_ABI;
768 :
769 : extern void _gcry_twofish_avx2_cbc_dec(const TWOFISH_context *ctx,
770 : unsigned char *out,
771 : const unsigned char *in,
772 : unsigned char *iv) ASM_FUNC_ABI;
773 :
774 : extern void _gcry_twofish_avx2_cfb_dec(const TWOFISH_context *ctx,
775 : unsigned char *out,
776 : const unsigned char *in,
777 : unsigned char *iv) ASM_FUNC_ABI;
778 :
779 : extern void _gcry_twofish_avx2_ocb_enc(const TWOFISH_context *ctx,
780 : unsigned char *out,
781 : const unsigned char *in,
782 : unsigned char *offset,
783 : unsigned char *checksum,
784 : const u64 Ls[16]) ASM_FUNC_ABI;
785 :
786 : extern void _gcry_twofish_avx2_ocb_dec(const TWOFISH_context *ctx,
787 : unsigned char *out,
788 : const unsigned char *in,
789 : unsigned char *offset,
790 : unsigned char *checksum,
791 : const u64 Ls[16]) ASM_FUNC_ABI;
792 :
793 : extern void _gcry_twofish_avx2_ocb_auth(const TWOFISH_context *ctx,
794 : const unsigned char *abuf,
795 : unsigned char *offset,
796 : unsigned char *checksum,
797 : const u64 Ls[16]) ASM_FUNC_ABI;
798 : #endif
799 :
800 :
801 : #ifdef USE_AMD64_ASM
802 :
803 : /* Assembly implementations of Twofish. */
804 : extern void _gcry_twofish_amd64_encrypt_block(const TWOFISH_context *c,
805 : byte *out, const byte *in);
806 :
807 : extern void _gcry_twofish_amd64_decrypt_block(const TWOFISH_context *c,
808 : byte *out, const byte *in);
809 :
810 : /* These assembly implementations process three blocks in parallel. */
811 : extern void _gcry_twofish_amd64_ctr_enc(const TWOFISH_context *c, byte *out,
812 : const byte *in, byte *ctr);
813 :
814 : extern void _gcry_twofish_amd64_cbc_dec(const TWOFISH_context *c, byte *out,
815 : const byte *in, byte *iv);
816 :
817 : extern void _gcry_twofish_amd64_cfb_dec(const TWOFISH_context *c, byte *out,
818 : const byte *in, byte *iv);
819 :
820 : extern void _gcry_twofish_amd64_ocb_enc(const TWOFISH_context *ctx, byte *out,
821 : const byte *in, byte *offset,
822 : byte *checksum, const u64 Ls[3]);
823 :
824 : extern void _gcry_twofish_amd64_ocb_dec(const TWOFISH_context *ctx, byte *out,
825 : const byte *in, byte *offset,
826 : byte *checksum, const u64 Ls[3]);
827 :
828 : extern void _gcry_twofish_amd64_ocb_auth(const TWOFISH_context *ctx,
829 : const byte *abuf, byte *offset,
830 : byte *checksum, const u64 Ls[3]);
831 :
832 : #ifdef HAVE_COMPATIBLE_GCC_WIN64_PLATFORM_AS
833 : static inline void
834 : call_sysv_fn (const void *fn, const void *arg1, const void *arg2,
835 : const void *arg3, const void *arg4)
836 : {
837 : /* Call SystemV ABI function without storing non-volatile XMM registers,
838 : * as target function does not use vector instruction sets. */
839 : asm volatile ("callq *%0\n\t"
840 : : "+a" (fn),
841 : "+D" (arg1),
842 : "+S" (arg2),
843 : "+d" (arg3),
844 : "+c" (arg4)
845 : :
846 : : "cc", "memory", "r8", "r9", "r10", "r11");
847 : }
848 :
849 : static inline void
850 : call_sysv_fn5 (const void *fn, const void *arg1, const void *arg2,
851 : const void *arg3, const void *arg4, const void *arg5)
852 : {
853 : /* Call SystemV ABI function without storing non-volatile XMM registers,
854 : * as target function does not use vector instruction sets. */
855 : asm volatile ("movq %[arg5], %%r8\n\t"
856 : "callq *%0\n\t"
857 : : "+a" (fn),
858 : "+D" (arg1),
859 : "+S" (arg2),
860 : "+d" (arg3),
861 : "+c" (arg4)
862 : : [arg5] "g" (arg5)
863 : : "cc", "memory", "r8", "r9", "r10", "r11");
864 : }
865 :
866 : static inline void
867 : call_sysv_fn6 (const void *fn, const void *arg1, const void *arg2,
868 : const void *arg3, const void *arg4, const void *arg5,
869 : const void *arg6)
870 : {
871 : /* Call SystemV ABI function without storing non-volatile XMM registers,
872 : * as target function does not use vector instruction sets. */
873 : asm volatile ("movq %[arg5], %%r8\n\t"
874 : "movq %[arg6], %%r9\n\t"
875 : "callq *%0\n\t"
876 : : "+a" (fn),
877 : "+D" (arg1),
878 : "+S" (arg2),
879 : "+d" (arg3),
880 : "+c" (arg4)
881 : : [arg5] "g" (arg5),
882 : [arg6] "g" (arg6)
883 : : "cc", "memory", "r8", "r9", "r10", "r11");
884 : }
885 : #endif
886 :
887 : static inline void
888 5985243 : twofish_amd64_encrypt_block(const TWOFISH_context *c, byte *out, const byte *in)
889 : {
890 : #ifdef HAVE_COMPATIBLE_GCC_WIN64_PLATFORM_AS
891 : call_sysv_fn(_gcry_twofish_amd64_encrypt_block, c, out, in, NULL);
892 : #else
893 5985243 : _gcry_twofish_amd64_encrypt_block(c, out, in);
894 : #endif
895 5985243 : }
896 :
897 : static inline void
898 743070 : twofish_amd64_decrypt_block(const TWOFISH_context *c, byte *out, const byte *in)
899 : {
900 : #ifdef HAVE_COMPATIBLE_GCC_WIN64_PLATFORM_AS
901 : call_sysv_fn(_gcry_twofish_amd64_decrypt_block, c, out, in, NULL);
902 : #else
903 743070 : _gcry_twofish_amd64_decrypt_block(c, out, in);
904 : #endif
905 743070 : }
906 :
907 : static inline void
908 909010 : twofish_amd64_ctr_enc(const TWOFISH_context *c, byte *out, const byte *in,
909 : byte *ctr)
910 : {
911 : #ifdef HAVE_COMPATIBLE_GCC_WIN64_PLATFORM_AS
912 : call_sysv_fn(_gcry_twofish_amd64_ctr_enc, c, out, in, ctr);
913 : #else
914 909010 : _gcry_twofish_amd64_ctr_enc(c, out, in, ctr);
915 : #endif
916 909010 : }
917 :
918 : static inline void
919 235538 : twofish_amd64_cbc_dec(const TWOFISH_context *c, byte *out, const byte *in,
920 : byte *iv)
921 : {
922 : #ifdef HAVE_COMPATIBLE_GCC_WIN64_PLATFORM_AS
923 : call_sysv_fn(_gcry_twofish_amd64_cbc_dec, c, out, in, iv);
924 : #else
925 235538 : _gcry_twofish_amd64_cbc_dec(c, out, in, iv);
926 : #endif
927 235538 : }
928 :
929 : static inline void
930 191340 : twofish_amd64_cfb_dec(const TWOFISH_context *c, byte *out, const byte *in,
931 : byte *iv)
932 : {
933 : #ifdef HAVE_COMPATIBLE_GCC_WIN64_PLATFORM_AS
934 : call_sysv_fn(_gcry_twofish_amd64_cfb_dec, c, out, in, iv);
935 : #else
936 191340 : _gcry_twofish_amd64_cfb_dec(c, out, in, iv);
937 : #endif
938 191340 : }
939 :
940 : static inline void
941 1173312 : twofish_amd64_ocb_enc(const TWOFISH_context *ctx, byte *out, const byte *in,
942 : byte *offset, byte *checksum, const u64 Ls[3])
943 : {
944 : #ifdef HAVE_COMPATIBLE_GCC_WIN64_PLATFORM_AS
945 : call_sysv_fn6(_gcry_twofish_amd64_ocb_enc, ctx, out, in, offset, checksum, Ls);
946 : #else
947 1173312 : _gcry_twofish_amd64_ocb_enc(ctx, out, in, offset, checksum, Ls);
948 : #endif
949 1173312 : }
950 :
951 : static inline void
952 1156674 : twofish_amd64_ocb_dec(const TWOFISH_context *ctx, byte *out, const byte *in,
953 : byte *offset, byte *checksum, const u64 Ls[3])
954 : {
955 : #ifdef HAVE_COMPATIBLE_GCC_WIN64_PLATFORM_AS
956 : call_sysv_fn6(_gcry_twofish_amd64_ocb_dec, ctx, out, in, offset, checksum, Ls);
957 : #else
958 1156674 : _gcry_twofish_amd64_ocb_dec(ctx, out, in, offset, checksum, Ls);
959 : #endif
960 1156674 : }
961 :
962 : static inline void
963 2152568 : twofish_amd64_ocb_auth(const TWOFISH_context *ctx, const byte *abuf,
964 : byte *offset, byte *checksum, const u64 Ls[3])
965 : {
966 : #ifdef HAVE_COMPATIBLE_GCC_WIN64_PLATFORM_AS
967 : call_sysv_fn5(_gcry_twofish_amd64_ocb_auth, ctx, abuf, offset, checksum, Ls);
968 : #else
969 2152568 : _gcry_twofish_amd64_ocb_auth(ctx, abuf, offset, checksum, Ls);
970 : #endif
971 2152568 : }
972 :
973 : #elif defined(USE_ARM_ASM)
974 :
975 : /* Assembly implementations of Twofish. */
976 : extern void _gcry_twofish_arm_encrypt_block(const TWOFISH_context *c,
977 : byte *out, const byte *in);
978 :
979 : extern void _gcry_twofish_arm_decrypt_block(const TWOFISH_context *c,
980 : byte *out, const byte *in);
981 :
982 : #else /*!USE_AMD64_ASM && !USE_ARM_ASM*/
983 :
984 : /* Macros to compute the g() function in the encryption and decryption
985 : * rounds. G1 is the straight g() function; G2 includes the 8-bit
986 : * rotation for the high 32-bit word. */
987 :
988 : #define G1(a) \
989 : (ctx->s[0][(a) & 0xFF]) ^ (ctx->s[1][((a) >> 8) & 0xFF]) \
990 : ^ (ctx->s[2][((a) >> 16) & 0xFF]) ^ (ctx->s[3][(a) >> 24])
991 :
992 : #define G2(b) \
993 : (ctx->s[1][(b) & 0xFF]) ^ (ctx->s[2][((b) >> 8) & 0xFF]) \
994 : ^ (ctx->s[3][((b) >> 16) & 0xFF]) ^ (ctx->s[0][(b) >> 24])
995 :
996 : /* Encryption and decryption Feistel rounds. Each one calls the two g()
997 : * macros, does the PHT, and performs the XOR and the appropriate bit
998 : * rotations. The parameters are the round number (used to select subkeys),
999 : * and the four 32-bit chunks of the text. */
1000 :
1001 : #define ENCROUND(n, a, b, c, d) \
1002 : x = G1 (a); y = G2 (b); \
1003 : x += y; y += x + ctx->k[2 * (n) + 1]; \
1004 : (c) ^= x + ctx->k[2 * (n)]; \
1005 : (c) = ((c) >> 1) + ((c) << 31); \
1006 : (d) = (((d) << 1)+((d) >> 31)) ^ y
1007 :
1008 : #define DECROUND(n, a, b, c, d) \
1009 : x = G1 (a); y = G2 (b); \
1010 : x += y; y += x; \
1011 : (d) ^= y + ctx->k[2 * (n) + 1]; \
1012 : (d) = ((d) >> 1) + ((d) << 31); \
1013 : (c) = (((c) << 1)+((c) >> 31)); \
1014 : (c) ^= (x + ctx->k[2 * (n)])
1015 :
1016 : /* Encryption and decryption cycles; each one is simply two Feistel rounds
1017 : * with the 32-bit chunks re-ordered to simulate the "swap" */
1018 :
1019 : #define ENCCYCLE(n) \
1020 : ENCROUND (2 * (n), a, b, c, d); \
1021 : ENCROUND (2 * (n) + 1, c, d, a, b)
1022 :
1023 : #define DECCYCLE(n) \
1024 : DECROUND (2 * (n) + 1, c, d, a, b); \
1025 : DECROUND (2 * (n), a, b, c, d)
1026 :
1027 : /* Macros to convert the input and output bytes into 32-bit words,
1028 : * and simultaneously perform the whitening step. INPACK packs word
1029 : * number n into the variable named by x, using whitening subkey number m.
1030 : * OUTUNPACK unpacks word number n from the variable named by x, using
1031 : * whitening subkey number m. */
1032 :
1033 : #define INPACK(n, x, m) \
1034 : x = buf_get_le32(in + (n) * 4); \
1035 : x ^= ctx->w[m]
1036 :
1037 : #define OUTUNPACK(n, x, m) \
1038 : x ^= ctx->w[m]; \
1039 : buf_put_le32(out + (n) * 4, x)
1040 :
1041 : #endif /*!USE_AMD64_ASM*/
1042 :
1043 :
1044 : /* Encrypt one block. in and out may be the same. */
1045 :
1046 : #ifdef USE_AMD64_ASM
1047 :
1048 : static unsigned int
1049 5985243 : twofish_encrypt (void *context, byte *out, const byte *in)
1050 : {
1051 5985243 : TWOFISH_context *ctx = context;
1052 5985243 : twofish_amd64_encrypt_block(ctx, out, in);
1053 5985243 : return /*burn_stack*/ (4*sizeof (void*));
1054 : }
1055 :
1056 : #elif defined(USE_ARM_ASM)
1057 :
1058 : static unsigned int
1059 : twofish_encrypt (void *context, byte *out, const byte *in)
1060 : {
1061 : TWOFISH_context *ctx = context;
1062 : _gcry_twofish_arm_encrypt_block(ctx, out, in);
1063 : return /*burn_stack*/ (4*sizeof (void*));
1064 : }
1065 :
1066 : #else /*!USE_AMD64_ASM && !USE_ARM_ASM*/
1067 :
1068 : static void
1069 : do_twofish_encrypt (const TWOFISH_context *ctx, byte *out, const byte *in)
1070 : {
1071 : /* The four 32-bit chunks of the text. */
1072 : u32 a, b, c, d;
1073 :
1074 : /* Temporaries used by the round function. */
1075 : u32 x, y;
1076 :
1077 : /* Input whitening and packing. */
1078 : INPACK (0, a, 0);
1079 : INPACK (1, b, 1);
1080 : INPACK (2, c, 2);
1081 : INPACK (3, d, 3);
1082 :
1083 : /* Encryption Feistel cycles. */
1084 : ENCCYCLE (0);
1085 : ENCCYCLE (1);
1086 : ENCCYCLE (2);
1087 : ENCCYCLE (3);
1088 : ENCCYCLE (4);
1089 : ENCCYCLE (5);
1090 : ENCCYCLE (6);
1091 : ENCCYCLE (7);
1092 :
1093 : /* Output whitening and unpacking. */
1094 : OUTUNPACK (0, c, 4);
1095 : OUTUNPACK (1, d, 5);
1096 : OUTUNPACK (2, a, 6);
1097 : OUTUNPACK (3, b, 7);
1098 : }
1099 :
1100 : static unsigned int
1101 : twofish_encrypt (void *context, byte *out, const byte *in)
1102 : {
1103 : TWOFISH_context *ctx = context;
1104 : do_twofish_encrypt (ctx, out, in);
1105 : return /*burn_stack*/ (24+3*sizeof (void*));
1106 : }
1107 :
1108 : #endif /*!USE_AMD64_ASM && !USE_ARM_ASM*/
1109 :
1110 :
1111 : /* Decrypt one block. in and out may be the same. */
1112 :
1113 : #ifdef USE_AMD64_ASM
1114 :
1115 : static unsigned int
1116 743070 : twofish_decrypt (void *context, byte *out, const byte *in)
1117 : {
1118 743070 : TWOFISH_context *ctx = context;
1119 743070 : twofish_amd64_decrypt_block(ctx, out, in);
1120 743070 : return /*burn_stack*/ (4*sizeof (void*));
1121 : }
1122 :
1123 : #elif defined(USE_ARM_ASM)
1124 :
1125 : static unsigned int
1126 : twofish_decrypt (void *context, byte *out, const byte *in)
1127 : {
1128 : TWOFISH_context *ctx = context;
1129 : _gcry_twofish_arm_decrypt_block(ctx, out, in);
1130 : return /*burn_stack*/ (4*sizeof (void*));
1131 : }
1132 :
1133 : #else /*!USE_AMD64_ASM && !USE_ARM_ASM*/
1134 :
1135 : static void
1136 : do_twofish_decrypt (const TWOFISH_context *ctx, byte *out, const byte *in)
1137 : {
1138 : /* The four 32-bit chunks of the text. */
1139 : u32 a, b, c, d;
1140 :
1141 : /* Temporaries used by the round function. */
1142 : u32 x, y;
1143 :
1144 : /* Input whitening and packing. */
1145 : INPACK (0, c, 4);
1146 : INPACK (1, d, 5);
1147 : INPACK (2, a, 6);
1148 : INPACK (3, b, 7);
1149 :
1150 : /* Encryption Feistel cycles. */
1151 : DECCYCLE (7);
1152 : DECCYCLE (6);
1153 : DECCYCLE (5);
1154 : DECCYCLE (4);
1155 : DECCYCLE (3);
1156 : DECCYCLE (2);
1157 : DECCYCLE (1);
1158 : DECCYCLE (0);
1159 :
1160 : /* Output whitening and unpacking. */
1161 : OUTUNPACK (0, a, 0);
1162 : OUTUNPACK (1, b, 1);
1163 : OUTUNPACK (2, c, 2);
1164 : OUTUNPACK (3, d, 3);
1165 : }
1166 :
1167 : static unsigned int
1168 : twofish_decrypt (void *context, byte *out, const byte *in)
1169 : {
1170 : TWOFISH_context *ctx = context;
1171 :
1172 : do_twofish_decrypt (ctx, out, in);
1173 : return /*burn_stack*/ (24+3*sizeof (void*));
1174 : }
1175 :
1176 : #endif /*!USE_AMD64_ASM && !USE_ARM_ASM*/
1177 :
1178 :
1179 :
1180 : /* Bulk encryption of complete blocks in CTR mode. This function is only
1181 : intended for the bulk encryption feature of cipher.c. CTR is expected to be
1182 : of size TWOFISH_BLOCKSIZE. */
1183 : void
1184 32666 : _gcry_twofish_ctr_enc(void *context, unsigned char *ctr, void *outbuf_arg,
1185 : const void *inbuf_arg, size_t nblocks)
1186 : {
1187 32666 : TWOFISH_context *ctx = context;
1188 32666 : unsigned char *outbuf = outbuf_arg;
1189 32666 : const unsigned char *inbuf = inbuf_arg;
1190 : unsigned char tmpbuf[TWOFISH_BLOCKSIZE];
1191 32666 : unsigned int burn, burn_stack_depth = 0;
1192 : int i;
1193 :
1194 : #ifdef USE_AVX2
1195 32666 : if (ctx->use_avx2)
1196 : {
1197 0 : int did_use_avx2 = 0;
1198 :
1199 : /* Process data in 16 block chunks. */
1200 0 : while (nblocks >= 16)
1201 : {
1202 0 : _gcry_twofish_avx2_ctr_enc(ctx, outbuf, inbuf, ctr);
1203 :
1204 0 : nblocks -= 16;
1205 0 : outbuf += 16 * TWOFISH_BLOCKSIZE;
1206 0 : inbuf += 16 * TWOFISH_BLOCKSIZE;
1207 0 : did_use_avx2 = 1;
1208 : }
1209 :
1210 0 : if (did_use_avx2)
1211 : {
1212 : /* twofish-avx2 assembly code does not use stack */
1213 0 : if (nblocks == 0)
1214 0 : burn_stack_depth = 0;
1215 : }
1216 : }
1217 : #endif
1218 :
1219 : #ifdef USE_AMD64_ASM
1220 : {
1221 : /* Process data in 3 block chunks. */
1222 974342 : while (nblocks >= 3)
1223 : {
1224 909010 : twofish_amd64_ctr_enc(ctx, outbuf, inbuf, ctr);
1225 :
1226 909010 : nblocks -= 3;
1227 909010 : outbuf += 3 * TWOFISH_BLOCKSIZE;
1228 909010 : inbuf += 3 * TWOFISH_BLOCKSIZE;
1229 :
1230 909010 : burn = 8 * sizeof(void*);
1231 909010 : if (burn > burn_stack_depth)
1232 30376 : burn_stack_depth = burn;
1233 : }
1234 :
1235 : /* Use generic code to handle smaller chunks... */
1236 : /* TODO: use caching instead? */
1237 : }
1238 : #endif
1239 :
1240 64862 : for ( ;nblocks; nblocks-- )
1241 : {
1242 : /* Encrypt the counter. */
1243 32196 : burn = twofish_encrypt(ctx, tmpbuf, ctr);
1244 32196 : if (burn > burn_stack_depth)
1245 2290 : burn_stack_depth = burn;
1246 :
1247 : /* XOR the input with the encrypted counter and store in output. */
1248 32196 : buf_xor(outbuf, tmpbuf, inbuf, TWOFISH_BLOCKSIZE);
1249 32196 : outbuf += TWOFISH_BLOCKSIZE;
1250 32196 : inbuf += TWOFISH_BLOCKSIZE;
1251 : /* Increment the counter. */
1252 33389 : for (i = TWOFISH_BLOCKSIZE; i > 0; i--)
1253 : {
1254 33385 : ctr[i-1]++;
1255 33385 : if (ctr[i-1])
1256 32192 : break;
1257 : }
1258 : }
1259 :
1260 32666 : wipememory(tmpbuf, sizeof(tmpbuf));
1261 32666 : _gcry_burn_stack(burn_stack_depth);
1262 32666 : }
1263 :
1264 :
1265 : /* Bulk decryption of complete blocks in CBC mode. This function is only
1266 : intended for the bulk encryption feature of cipher.c. */
1267 : void
1268 8156 : _gcry_twofish_cbc_dec(void *context, unsigned char *iv, void *outbuf_arg,
1269 : const void *inbuf_arg, size_t nblocks)
1270 : {
1271 8156 : TWOFISH_context *ctx = context;
1272 8156 : unsigned char *outbuf = outbuf_arg;
1273 8156 : const unsigned char *inbuf = inbuf_arg;
1274 : unsigned char savebuf[TWOFISH_BLOCKSIZE];
1275 8156 : unsigned int burn, burn_stack_depth = 0;
1276 :
1277 : #ifdef USE_AVX2
1278 8156 : if (ctx->use_avx2)
1279 : {
1280 0 : int did_use_avx2 = 0;
1281 :
1282 : /* Process data in 16 block chunks. */
1283 0 : while (nblocks >= 16)
1284 : {
1285 0 : _gcry_twofish_avx2_cbc_dec(ctx, outbuf, inbuf, iv);
1286 :
1287 0 : nblocks -= 16;
1288 0 : outbuf += 16 * TWOFISH_BLOCKSIZE;
1289 0 : inbuf += 16 * TWOFISH_BLOCKSIZE;
1290 0 : did_use_avx2 = 1;
1291 : }
1292 :
1293 0 : if (did_use_avx2)
1294 : {
1295 : /* twofish-avx2 assembly code does not use stack */
1296 0 : if (nblocks == 0)
1297 0 : burn_stack_depth = 0;
1298 : }
1299 : }
1300 : #endif
1301 :
1302 : #ifdef USE_AMD64_ASM
1303 : {
1304 : /* Process data in 3 block chunks. */
1305 251850 : while (nblocks >= 3)
1306 : {
1307 235538 : twofish_amd64_cbc_dec(ctx, outbuf, inbuf, iv);
1308 :
1309 235538 : nblocks -= 3;
1310 235538 : outbuf += 3 * TWOFISH_BLOCKSIZE;
1311 235538 : inbuf += 3 * TWOFISH_BLOCKSIZE;
1312 :
1313 235538 : burn = 9 * sizeof(void*);
1314 235538 : if (burn > burn_stack_depth)
1315 7252 : burn_stack_depth = burn;
1316 : }
1317 :
1318 : /* Use generic code to handle smaller chunks... */
1319 : }
1320 : #endif
1321 :
1322 16374 : for ( ;nblocks; nblocks-- )
1323 : {
1324 : /* INBUF is needed later and it may be identical to OUTBUF, so store
1325 : the intermediate result to SAVEBUF. */
1326 8218 : burn = twofish_decrypt (ctx, savebuf, inbuf);
1327 8218 : if (burn > burn_stack_depth)
1328 904 : burn_stack_depth = burn;
1329 :
1330 8218 : buf_xor_n_copy_2(outbuf, savebuf, iv, inbuf, TWOFISH_BLOCKSIZE);
1331 8218 : inbuf += TWOFISH_BLOCKSIZE;
1332 8218 : outbuf += TWOFISH_BLOCKSIZE;
1333 : }
1334 :
1335 8156 : wipememory(savebuf, sizeof(savebuf));
1336 8156 : _gcry_burn_stack(burn_stack_depth);
1337 8156 : }
1338 :
1339 :
1340 : /* Bulk decryption of complete blocks in CFB mode. This function is only
1341 : intended for the bulk encryption feature of cipher.c. */
1342 : void
1343 6232 : _gcry_twofish_cfb_dec(void *context, unsigned char *iv, void *outbuf_arg,
1344 : const void *inbuf_arg, size_t nblocks)
1345 : {
1346 6232 : TWOFISH_context *ctx = context;
1347 6232 : unsigned char *outbuf = outbuf_arg;
1348 6232 : const unsigned char *inbuf = inbuf_arg;
1349 6232 : unsigned int burn, burn_stack_depth = 0;
1350 :
1351 : #ifdef USE_AVX2
1352 6232 : if (ctx->use_avx2)
1353 : {
1354 0 : int did_use_avx2 = 0;
1355 :
1356 : /* Process data in 16 block chunks. */
1357 0 : while (nblocks >= 16)
1358 : {
1359 0 : _gcry_twofish_avx2_cfb_dec(ctx, outbuf, inbuf, iv);
1360 :
1361 0 : nblocks -= 16;
1362 0 : outbuf += 16 * TWOFISH_BLOCKSIZE;
1363 0 : inbuf += 16 * TWOFISH_BLOCKSIZE;
1364 0 : did_use_avx2 = 1;
1365 : }
1366 :
1367 0 : if (did_use_avx2)
1368 : {
1369 : /* twofish-avx2 assembly code does not use stack */
1370 0 : if (nblocks == 0)
1371 0 : burn_stack_depth = 0;
1372 : }
1373 : }
1374 : #endif
1375 :
1376 : #ifdef USE_AMD64_ASM
1377 : {
1378 : /* Process data in 3 block chunks. */
1379 203804 : while (nblocks >= 3)
1380 : {
1381 191340 : twofish_amd64_cfb_dec(ctx, outbuf, inbuf, iv);
1382 :
1383 191340 : nblocks -= 3;
1384 191340 : outbuf += 3 * TWOFISH_BLOCKSIZE;
1385 191340 : inbuf += 3 * TWOFISH_BLOCKSIZE;
1386 :
1387 191340 : burn = 8 * sizeof(void*);
1388 191340 : if (burn > burn_stack_depth)
1389 6100 : burn_stack_depth = burn;
1390 : }
1391 :
1392 : /* Use generic code to handle smaller chunks... */
1393 : }
1394 : #endif
1395 :
1396 12768 : for ( ;nblocks; nblocks-- )
1397 : {
1398 6536 : burn = twofish_encrypt(ctx, iv, iv);
1399 6536 : if (burn > burn_stack_depth)
1400 132 : burn_stack_depth = burn;
1401 :
1402 6536 : buf_xor_n_copy(outbuf, iv, inbuf, TWOFISH_BLOCKSIZE);
1403 6536 : outbuf += TWOFISH_BLOCKSIZE;
1404 6536 : inbuf += TWOFISH_BLOCKSIZE;
1405 : }
1406 :
1407 6232 : _gcry_burn_stack(burn_stack_depth);
1408 6232 : }
1409 :
1410 : /* Bulk encryption/decryption of complete blocks in OCB mode. */
1411 : size_t
1412 9666 : _gcry_twofish_ocb_crypt (gcry_cipher_hd_t c, void *outbuf_arg,
1413 : const void *inbuf_arg, size_t nblocks, int encrypt)
1414 : {
1415 : #ifdef USE_AMD64_ASM
1416 9666 : TWOFISH_context *ctx = (void *)&c->context.c;
1417 9666 : unsigned char *outbuf = outbuf_arg;
1418 9666 : const unsigned char *inbuf = inbuf_arg;
1419 9666 : unsigned int burn, burn_stack_depth = 0;
1420 9666 : u64 blkn = c->u_mode.ocb.data_nblocks;
1421 :
1422 : #ifdef USE_AVX2
1423 9666 : if (ctx->use_avx2)
1424 : {
1425 0 : int did_use_avx2 = 0;
1426 : u64 Ls[16];
1427 0 : unsigned int n = 16 - (blkn % 16);
1428 : u64 *l;
1429 : int i;
1430 :
1431 0 : if (nblocks >= 16)
1432 : {
1433 0 : for (i = 0; i < 16; i += 8)
1434 : {
1435 : /* Use u64 to store pointers for x32 support (assembly function
1436 : * assumes 64-bit pointers). */
1437 0 : Ls[(i + 0 + n) % 16] = (uintptr_t)(void *)c->u_mode.ocb.L[0];
1438 0 : Ls[(i + 1 + n) % 16] = (uintptr_t)(void *)c->u_mode.ocb.L[1];
1439 0 : Ls[(i + 2 + n) % 16] = (uintptr_t)(void *)c->u_mode.ocb.L[0];
1440 0 : Ls[(i + 3 + n) % 16] = (uintptr_t)(void *)c->u_mode.ocb.L[2];
1441 0 : Ls[(i + 4 + n) % 16] = (uintptr_t)(void *)c->u_mode.ocb.L[0];
1442 0 : Ls[(i + 5 + n) % 16] = (uintptr_t)(void *)c->u_mode.ocb.L[1];
1443 0 : Ls[(i + 6 + n) % 16] = (uintptr_t)(void *)c->u_mode.ocb.L[0];
1444 : }
1445 :
1446 0 : Ls[(7 + n) % 16] = (uintptr_t)(void *)c->u_mode.ocb.L[3];
1447 0 : l = &Ls[(15 + n) % 16];
1448 :
1449 : /* Process data in 16 block chunks. */
1450 0 : while (nblocks >= 16)
1451 : {
1452 0 : blkn += 16;
1453 0 : *l = (uintptr_t)(void *)ocb_get_l(c, blkn - blkn % 16);
1454 :
1455 0 : if (encrypt)
1456 0 : _gcry_twofish_avx2_ocb_enc(ctx, outbuf, inbuf, c->u_iv.iv,
1457 0 : c->u_ctr.ctr, Ls);
1458 : else
1459 0 : _gcry_twofish_avx2_ocb_dec(ctx, outbuf, inbuf, c->u_iv.iv,
1460 0 : c->u_ctr.ctr, Ls);
1461 :
1462 0 : nblocks -= 16;
1463 0 : outbuf += 16 * TWOFISH_BLOCKSIZE;
1464 0 : inbuf += 16 * TWOFISH_BLOCKSIZE;
1465 0 : did_use_avx2 = 1;
1466 : }
1467 : }
1468 :
1469 0 : if (did_use_avx2)
1470 : {
1471 : /* twofish-avx2 assembly code does not use stack */
1472 0 : if (nblocks == 0)
1473 0 : burn_stack_depth = 0;
1474 : }
1475 : }
1476 : #endif
1477 :
1478 : {
1479 : /* Use u64 to store pointers for x32 support (assembly function
1480 : * assumes 64-bit pointers). */
1481 : u64 Ls[3];
1482 :
1483 : /* Process data in 3 block chunks. */
1484 2349318 : while (nblocks >= 3)
1485 : {
1486 2329986 : Ls[0] = (uintptr_t)(const void *)ocb_get_l(c, blkn + 1);
1487 2329986 : Ls[1] = (uintptr_t)(const void *)ocb_get_l(c, blkn + 2);
1488 2329986 : Ls[2] = (uintptr_t)(const void *)ocb_get_l(c, blkn + 3);
1489 2329986 : blkn += 3;
1490 :
1491 2329986 : if (encrypt)
1492 1173312 : twofish_amd64_ocb_enc(ctx, outbuf, inbuf, c->u_iv.iv, c->u_ctr.ctr,
1493 : Ls);
1494 : else
1495 1156674 : twofish_amd64_ocb_dec(ctx, outbuf, inbuf, c->u_iv.iv, c->u_ctr.ctr,
1496 : Ls);
1497 :
1498 2329986 : nblocks -= 3;
1499 2329986 : outbuf += 3 * TWOFISH_BLOCKSIZE;
1500 2329986 : inbuf += 3 * TWOFISH_BLOCKSIZE;
1501 :
1502 2329986 : burn = 8 * sizeof(void*);
1503 2329986 : if (burn > burn_stack_depth)
1504 8864 : burn_stack_depth = burn;
1505 : }
1506 :
1507 : /* Use generic code to handle smaller chunks... */
1508 : }
1509 :
1510 9666 : c->u_mode.ocb.data_nblocks = blkn;
1511 :
1512 9666 : if (burn_stack_depth)
1513 8864 : _gcry_burn_stack (burn_stack_depth + 4 * sizeof(void *));
1514 : #else
1515 : (void)c;
1516 : (void)outbuf_arg;
1517 : (void)inbuf_arg;
1518 : (void)encrypt;
1519 : #endif
1520 :
1521 9666 : return nblocks;
1522 : }
1523 :
1524 : /* Bulk authentication of complete blocks in OCB mode. */
1525 : size_t
1526 1524 : _gcry_twofish_ocb_auth (gcry_cipher_hd_t c, const void *abuf_arg,
1527 : size_t nblocks)
1528 : {
1529 : #ifdef USE_AMD64_ASM
1530 1524 : TWOFISH_context *ctx = (void *)&c->context.c;
1531 1524 : const unsigned char *abuf = abuf_arg;
1532 1524 : unsigned int burn, burn_stack_depth = 0;
1533 1524 : u64 blkn = c->u_mode.ocb.aad_nblocks;
1534 :
1535 : #ifdef USE_AVX2
1536 1524 : if (ctx->use_avx2)
1537 : {
1538 0 : int did_use_avx2 = 0;
1539 : u64 Ls[16];
1540 0 : unsigned int n = 16 - (blkn % 16);
1541 : u64 *l;
1542 : int i;
1543 :
1544 0 : if (nblocks >= 16)
1545 : {
1546 0 : for (i = 0; i < 16; i += 8)
1547 : {
1548 : /* Use u64 to store pointers for x32 support (assembly function
1549 : * assumes 64-bit pointers). */
1550 0 : Ls[(i + 0 + n) % 16] = (uintptr_t)(void *)c->u_mode.ocb.L[0];
1551 0 : Ls[(i + 1 + n) % 16] = (uintptr_t)(void *)c->u_mode.ocb.L[1];
1552 0 : Ls[(i + 2 + n) % 16] = (uintptr_t)(void *)c->u_mode.ocb.L[0];
1553 0 : Ls[(i + 3 + n) % 16] = (uintptr_t)(void *)c->u_mode.ocb.L[2];
1554 0 : Ls[(i + 4 + n) % 16] = (uintptr_t)(void *)c->u_mode.ocb.L[0];
1555 0 : Ls[(i + 5 + n) % 16] = (uintptr_t)(void *)c->u_mode.ocb.L[1];
1556 0 : Ls[(i + 6 + n) % 16] = (uintptr_t)(void *)c->u_mode.ocb.L[0];
1557 : }
1558 :
1559 0 : Ls[(7 + n) % 16] = (uintptr_t)(void *)c->u_mode.ocb.L[3];
1560 0 : l = &Ls[(15 + n) % 16];
1561 :
1562 : /* Process data in 16 block chunks. */
1563 0 : while (nblocks >= 16)
1564 : {
1565 0 : blkn += 16;
1566 0 : *l = (uintptr_t)(void *)ocb_get_l(c, blkn - blkn % 16);
1567 :
1568 0 : _gcry_twofish_avx2_ocb_auth(ctx, abuf, c->u_mode.ocb.aad_offset,
1569 0 : c->u_mode.ocb.aad_sum, Ls);
1570 :
1571 0 : nblocks -= 16;
1572 0 : abuf += 16 * TWOFISH_BLOCKSIZE;
1573 0 : did_use_avx2 = 1;
1574 : }
1575 : }
1576 :
1577 0 : if (did_use_avx2)
1578 : {
1579 : /* twofish-avx2 assembly code does not use stack */
1580 0 : if (nblocks == 0)
1581 0 : burn_stack_depth = 0;
1582 : }
1583 :
1584 : /* Use generic code to handle smaller chunks... */
1585 : }
1586 : #endif
1587 :
1588 : {
1589 : /* Use u64 to store pointers for x32 support (assembly function
1590 : * assumes 64-bit pointers). */
1591 : u64 Ls[3];
1592 :
1593 : /* Process data in 3 block chunks. */
1594 2155616 : while (nblocks >= 3)
1595 : {
1596 2152568 : Ls[0] = (uintptr_t)(const void *)ocb_get_l(c, blkn + 1);
1597 2152568 : Ls[1] = (uintptr_t)(const void *)ocb_get_l(c, blkn + 2);
1598 2152568 : Ls[2] = (uintptr_t)(const void *)ocb_get_l(c, blkn + 3);
1599 2152568 : blkn += 3;
1600 :
1601 2152568 : twofish_amd64_ocb_auth(ctx, abuf, c->u_mode.ocb.aad_offset,
1602 2152568 : c->u_mode.ocb.aad_sum, Ls);
1603 :
1604 2152568 : nblocks -= 3;
1605 2152568 : abuf += 3 * TWOFISH_BLOCKSIZE;
1606 :
1607 2152568 : burn = 8 * sizeof(void*);
1608 2152568 : if (burn > burn_stack_depth)
1609 1392 : burn_stack_depth = burn;
1610 : }
1611 :
1612 : /* Use generic code to handle smaller chunks... */
1613 : }
1614 :
1615 1524 : c->u_mode.ocb.aad_nblocks = blkn;
1616 :
1617 1524 : if (burn_stack_depth)
1618 1392 : _gcry_burn_stack (burn_stack_depth + 4 * sizeof(void *));
1619 : #else
1620 : (void)c;
1621 : (void)abuf_arg;
1622 : #endif
1623 :
1624 1524 : return nblocks;
1625 : }
1626 :
1627 :
1628 :
1629 : /* Run the self-tests for TWOFISH-CTR, tests IV increment of bulk CTR
1630 : encryption. Returns NULL on success. */
1631 : static const char *
1632 4 : selftest_ctr (void)
1633 : {
1634 4 : const int nblocks = 16+1;
1635 4 : const int blocksize = TWOFISH_BLOCKSIZE;
1636 4 : const int context_size = sizeof(TWOFISH_context);
1637 :
1638 4 : return _gcry_selftest_helper_ctr("TWOFISH", &twofish_setkey,
1639 : &twofish_encrypt, &_gcry_twofish_ctr_enc, nblocks, blocksize,
1640 : context_size);
1641 : }
1642 :
1643 : /* Run the self-tests for TWOFISH-CBC, tests bulk CBC decryption.
1644 : Returns NULL on success. */
1645 : static const char *
1646 4 : selftest_cbc (void)
1647 : {
1648 4 : const int nblocks = 16+2;
1649 4 : const int blocksize = TWOFISH_BLOCKSIZE;
1650 4 : const int context_size = sizeof(TWOFISH_context);
1651 :
1652 4 : return _gcry_selftest_helper_cbc("TWOFISH", &twofish_setkey,
1653 : &twofish_encrypt, &_gcry_twofish_cbc_dec, nblocks, blocksize,
1654 : context_size);
1655 : }
1656 :
1657 : /* Run the self-tests for TWOFISH-CFB, tests bulk CBC decryption.
1658 : Returns NULL on success. */
1659 : static const char *
1660 4 : selftest_cfb (void)
1661 : {
1662 4 : const int nblocks = 16+2;
1663 4 : const int blocksize = TWOFISH_BLOCKSIZE;
1664 4 : const int context_size = sizeof(TWOFISH_context);
1665 :
1666 4 : return _gcry_selftest_helper_cfb("TWOFISH", &twofish_setkey,
1667 : &twofish_encrypt, &_gcry_twofish_cfb_dec, nblocks, blocksize,
1668 : context_size);
1669 : }
1670 :
1671 :
1672 : /* Test a single encryption and decryption with each key size. */
1673 :
1674 : static const char*
1675 4 : selftest (void)
1676 : {
1677 : TWOFISH_context ctx; /* Expanded key. */
1678 : byte scratch[16]; /* Encryption/decryption result buffer. */
1679 : const char *r;
1680 :
1681 : /* Test vectors for single encryption/decryption. Note that I am using
1682 : * the vectors from the Twofish paper's "known answer test", I=3 for
1683 : * 128-bit and I=4 for 256-bit, instead of the all-0 vectors from the
1684 : * "intermediate value test", because an all-0 key would trigger all the
1685 : * special cases in the RS matrix multiply, leaving the math untested. */
1686 : static byte plaintext[16] = {
1687 : 0xD4, 0x91, 0xDB, 0x16, 0xE7, 0xB1, 0xC3, 0x9E,
1688 : 0x86, 0xCB, 0x08, 0x6B, 0x78, 0x9F, 0x54, 0x19
1689 : };
1690 : static byte key[16] = {
1691 : 0x9F, 0x58, 0x9F, 0x5C, 0xF6, 0x12, 0x2C, 0x32,
1692 : 0xB6, 0xBF, 0xEC, 0x2F, 0x2A, 0xE8, 0xC3, 0x5A
1693 : };
1694 : static const byte ciphertext[16] = {
1695 : 0x01, 0x9F, 0x98, 0x09, 0xDE, 0x17, 0x11, 0x85,
1696 : 0x8F, 0xAA, 0xC3, 0xA3, 0xBA, 0x20, 0xFB, 0xC3
1697 : };
1698 : static byte plaintext_256[16] = {
1699 : 0x90, 0xAF, 0xE9, 0x1B, 0xB2, 0x88, 0x54, 0x4F,
1700 : 0x2C, 0x32, 0xDC, 0x23, 0x9B, 0x26, 0x35, 0xE6
1701 : };
1702 : static byte key_256[32] = {
1703 : 0xD4, 0x3B, 0xB7, 0x55, 0x6E, 0xA3, 0x2E, 0x46,
1704 : 0xF2, 0xA2, 0x82, 0xB7, 0xD4, 0x5B, 0x4E, 0x0D,
1705 : 0x57, 0xFF, 0x73, 0x9D, 0x4D, 0xC9, 0x2C, 0x1B,
1706 : 0xD7, 0xFC, 0x01, 0x70, 0x0C, 0xC8, 0x21, 0x6F
1707 : };
1708 : static const byte ciphertext_256[16] = {
1709 : 0x6C, 0xB4, 0x56, 0x1C, 0x40, 0xBF, 0x0A, 0x97,
1710 : 0x05, 0x93, 0x1C, 0xB6, 0xD4, 0x08, 0xE7, 0xFA
1711 : };
1712 :
1713 4 : twofish_setkey (&ctx, key, sizeof(key));
1714 4 : twofish_encrypt (&ctx, scratch, plaintext);
1715 4 : if (memcmp (scratch, ciphertext, sizeof (ciphertext)))
1716 0 : return "Twofish-128 test encryption failed.";
1717 4 : twofish_decrypt (&ctx, scratch, scratch);
1718 4 : if (memcmp (scratch, plaintext, sizeof (plaintext)))
1719 0 : return "Twofish-128 test decryption failed.";
1720 :
1721 4 : twofish_setkey (&ctx, key_256, sizeof(key_256));
1722 4 : twofish_encrypt (&ctx, scratch, plaintext_256);
1723 4 : if (memcmp (scratch, ciphertext_256, sizeof (ciphertext_256)))
1724 0 : return "Twofish-256 test encryption failed.";
1725 4 : twofish_decrypt (&ctx, scratch, scratch);
1726 4 : if (memcmp (scratch, plaintext_256, sizeof (plaintext_256)))
1727 0 : return "Twofish-256 test decryption failed.";
1728 :
1729 4 : if ((r = selftest_ctr()) != NULL)
1730 0 : return r;
1731 4 : if ((r = selftest_cbc()) != NULL)
1732 0 : return r;
1733 4 : if ((r = selftest_cfb()) != NULL)
1734 0 : return r;
1735 :
1736 4 : return NULL;
1737 : }
1738 :
1739 : /* More complete test program. This does 1000 encryptions and decryptions
1740 : * with each of 250 128-bit keys and 2000 encryptions and decryptions with
1741 : * each of 125 256-bit keys, using a feedback scheme similar to a Feistel
1742 : * cipher, so as to be sure of testing all the table entries pretty
1743 : * thoroughly. We keep changing the keys so as to get a more meaningful
1744 : * performance number, since the key setup is non-trivial for Twofish. */
1745 :
1746 : #ifdef TEST
1747 :
1748 : #include <stdio.h>
1749 : #include <string.h>
1750 : #include <time.h>
1751 :
1752 : int
1753 : main()
1754 : {
1755 : TWOFISH_context ctx; /* Expanded key. */
1756 : int i, j; /* Loop counters. */
1757 :
1758 : const char *encrypt_msg; /* Message to print regarding encryption test;
1759 : * the printf is done outside the loop to avoid
1760 : * stuffing up the timing. */
1761 : clock_t timer; /* For computing elapsed time. */
1762 :
1763 : /* Test buffer. */
1764 : byte buffer[4][16] = {
1765 : {0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
1766 : 0x88, 0x99, 0xAA, 0xBB, 0xCC, 0xDD, 0xEE, 0xFF},
1767 : {0x0F, 0x1E, 0x2D, 0x3C, 0x4B, 0x5A, 0x69, 0x78,
1768 : 0x87, 0x96, 0xA5, 0xB4, 0xC3, 0xD2 ,0xE1, 0xF0},
1769 : {0x01, 0x23, 0x45, 0x67, 0x89, 0xAB, 0xCD, 0xEF,
1770 : 0xFE, 0xDC, 0xBA, 0x98, 0x76, 0x54 ,0x32, 0x10},
1771 : {0x01, 0x23, 0x45, 0x67, 0x76, 0x54 ,0x32, 0x10,
1772 : 0x89, 0xAB, 0xCD, 0xEF, 0xFE, 0xDC, 0xBA, 0x98}
1773 : };
1774 :
1775 : /* Expected outputs for the million-operation test */
1776 : static const byte test_encrypt[4][16] = {
1777 : {0xC8, 0x23, 0xB8, 0xB7, 0x6B, 0xFE, 0x91, 0x13,
1778 : 0x2F, 0xA7, 0x5E, 0xE6, 0x94, 0x77, 0x6F, 0x6B},
1779 : {0x90, 0x36, 0xD8, 0x29, 0xD5, 0x96, 0xC2, 0x8E,
1780 : 0xE4, 0xFF, 0x76, 0xBC, 0xE5, 0x77, 0x88, 0x27},
1781 : {0xB8, 0x78, 0x69, 0xAF, 0x42, 0x8B, 0x48, 0x64,
1782 : 0xF7, 0xE9, 0xF3, 0x9C, 0x42, 0x18, 0x7B, 0x73},
1783 : {0x7A, 0x88, 0xFB, 0xEB, 0x90, 0xA4, 0xB4, 0xA8,
1784 : 0x43, 0xA3, 0x1D, 0xF1, 0x26, 0xC4, 0x53, 0x57}
1785 : };
1786 : static const byte test_decrypt[4][16] = {
1787 : {0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
1788 : 0x88, 0x99, 0xAA, 0xBB, 0xCC, 0xDD, 0xEE, 0xFF},
1789 : {0x0F, 0x1E, 0x2D, 0x3C, 0x4B, 0x5A, 0x69, 0x78,
1790 : 0x87, 0x96, 0xA5, 0xB4, 0xC3, 0xD2 ,0xE1, 0xF0},
1791 : {0x01, 0x23, 0x45, 0x67, 0x89, 0xAB, 0xCD, 0xEF,
1792 : 0xFE, 0xDC, 0xBA, 0x98, 0x76, 0x54 ,0x32, 0x10},
1793 : {0x01, 0x23, 0x45, 0x67, 0x76, 0x54 ,0x32, 0x10,
1794 : 0x89, 0xAB, 0xCD, 0xEF, 0xFE, 0xDC, 0xBA, 0x98}
1795 : };
1796 :
1797 : /* Start the timer ticking. */
1798 : timer = clock ();
1799 :
1800 : /* Encryption test. */
1801 : for (i = 0; i < 125; i++)
1802 : {
1803 : twofish_setkey (&ctx, buffer[0], sizeof (buffer[0]));
1804 : for (j = 0; j < 1000; j++)
1805 : twofish_encrypt (&ctx, buffer[2], buffer[2]);
1806 : twofish_setkey (&ctx, buffer[1], sizeof (buffer[1]));
1807 : for (j = 0; j < 1000; j++)
1808 : twofish_encrypt (&ctx, buffer[3], buffer[3]);
1809 : twofish_setkey (&ctx, buffer[2], sizeof (buffer[2])*2);
1810 : for (j = 0; j < 1000; j++) {
1811 : twofish_encrypt (&ctx, buffer[0], buffer[0]);
1812 : twofish_encrypt (&ctx, buffer[1], buffer[1]);
1813 : }
1814 : }
1815 : encrypt_msg = memcmp (buffer, test_encrypt, sizeof (test_encrypt)) ?
1816 : "encryption failure!\n" : "encryption OK!\n";
1817 :
1818 : /* Decryption test. */
1819 : for (i = 0; i < 125; i++)
1820 : {
1821 : twofish_setkey (&ctx, buffer[2], sizeof (buffer[2])*2);
1822 : for (j = 0; j < 1000; j++) {
1823 : twofish_decrypt (&ctx, buffer[0], buffer[0]);
1824 : twofish_decrypt (&ctx, buffer[1], buffer[1]);
1825 : }
1826 : twofish_setkey (&ctx, buffer[1], sizeof (buffer[1]));
1827 : for (j = 0; j < 1000; j++)
1828 : twofish_decrypt (&ctx, buffer[3], buffer[3]);
1829 : twofish_setkey (&ctx, buffer[0], sizeof (buffer[0]));
1830 : for (j = 0; j < 1000; j++)
1831 : twofish_decrypt (&ctx, buffer[2], buffer[2]);
1832 : }
1833 :
1834 : /* Stop the timer, and print results. */
1835 : timer = clock () - timer;
1836 : printf (encrypt_msg);
1837 : printf (memcmp (buffer, test_decrypt, sizeof (test_decrypt)) ?
1838 : "decryption failure!\n" : "decryption OK!\n");
1839 : printf ("elapsed time: %.1f s.\n", (float) timer / CLOCKS_PER_SEC);
1840 :
1841 : return 0;
1842 : }
1843 :
1844 : #endif /* TEST */
1845 :
1846 :
1847 :
1848 : gcry_cipher_spec_t _gcry_cipher_spec_twofish =
1849 : {
1850 : GCRY_CIPHER_TWOFISH, {0, 0},
1851 : "TWOFISH", NULL, NULL, 16, 256, sizeof (TWOFISH_context),
1852 : twofish_setkey, twofish_encrypt, twofish_decrypt
1853 : };
1854 :
1855 : gcry_cipher_spec_t _gcry_cipher_spec_twofish128 =
1856 : {
1857 : GCRY_CIPHER_TWOFISH128, {0, 0},
1858 : "TWOFISH128", NULL, NULL, 16, 128, sizeof (TWOFISH_context),
1859 : twofish_setkey, twofish_encrypt, twofish_decrypt
1860 : };
|