Line data Source code
1 : /* Twofish for GPG
2 : * Copyright (C) 1998, 2002, 2003 Free Software Foundation, Inc.
3 : * Written by Matthew Skala <mskala@ansuz.sooke.bc.ca>, July 26, 1998
4 : * 256-bit key length added March 20, 1999
5 : * Some modifications to reduce the text size by Werner Koch, April, 1998
6 : *
7 : * This file is part of Libgcrypt.
8 : *
9 : * Libgcrypt is free software; you can redistribute it and/or modify
10 : * it under the terms of the GNU Lesser General Public License as
11 : * published by the Free Software Foundation; either version 2.1 of
12 : * the License, or (at your option) any later version.
13 : *
14 : * Libgcrypt is distributed in the hope that it will be useful,
15 : * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 : * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 : * GNU Lesser General Public License for more details.
18 : *
19 : * You should have received a copy of the GNU Lesser General Public
20 : * License along with this program; if not, write to the Free Software
21 : * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
22 : ********************************************************************
23 : *
24 : * This code is a "clean room" implementation, written from the paper
25 : * _Twofish: A 128-Bit Block Cipher_ by Bruce Schneier, John Kelsey,
26 : * Doug Whiting, David Wagner, Chris Hall, and Niels Ferguson, available
27 : * through http://www.counterpane.com/twofish.html
28 : *
29 : * For background information on multiplication in finite fields, used for
30 : * the matrix operations in the key schedule, see the book _Contemporary
31 : * Abstract Algebra_ by Joseph A. Gallian, especially chapter 22 in the
32 : * Third Edition.
33 : *
34 : * Only the 128- and 256-bit key sizes are supported. This code is intended
35 : * for GNU C on a 32-bit system, but it should work almost anywhere. Loops
36 : * are unrolled, precomputation tables are used, etc., for maximum speed at
37 : * some cost in memory consumption. */
38 :
39 : #include <config.h>
40 : #include <stdio.h>
41 : #include <stdlib.h>
42 : #include <string.h> /* for memcmp() */
43 :
44 : #include "types.h" /* for byte and u32 typedefs */
45 : #include "g10lib.h"
46 : #include "cipher.h"
47 : #include "bufhelp.h"
48 : #include "cipher-internal.h"
49 : #include "cipher-selftest.h"
50 :
51 :
52 : #define TWOFISH_BLOCKSIZE 16
53 :
54 :
55 : /* USE_AMD64_ASM indicates whether to use AMD64 assembly code. */
56 : #undef USE_AMD64_ASM
57 : #if defined(__x86_64__) && (defined(HAVE_COMPATIBLE_GCC_AMD64_PLATFORM_AS) || \
58 : defined(HAVE_COMPATIBLE_GCC_WIN64_PLATFORM_AS))
59 : # define USE_AMD64_ASM 1
60 : #endif
61 :
62 : /* USE_ARM_ASM indicates whether to use ARM assembly code. */
63 : #undef USE_ARM_ASM
64 : #if defined(__ARMEL__)
65 : # if defined(HAVE_COMPATIBLE_GCC_ARM_PLATFORM_AS)
66 : # define USE_ARM_ASM 1
67 : # endif
68 : #endif
69 : # if defined(__AARCH64EL__)
70 : # ifdef HAVE_COMPATIBLE_GCC_AARCH64_PLATFORM_AS
71 : # define USE_ARM_ASM 1
72 : # endif
73 : # endif
74 :
75 :
76 : /* Prototype for the self-test function. */
77 : static const char *selftest(void);
78 :
79 : /* Structure for an expanded Twofish key. s contains the key-dependent
80 : * S-boxes composed with the MDS matrix; w contains the eight "whitening"
81 : * subkeys, K[0] through K[7]. k holds the remaining, "round" subkeys. Note
82 : * that k[i] corresponds to what the Twofish paper calls K[i+8]. */
83 : typedef struct {
84 : u32 s[4][256], w[8], k[32];
85 : } TWOFISH_context;
86 :
87 : /* These two tables are the q0 and q1 permutations, exactly as described in
88 : * the Twofish paper. */
89 :
90 : static const byte q0[256] = {
91 : 0xA9, 0x67, 0xB3, 0xE8, 0x04, 0xFD, 0xA3, 0x76, 0x9A, 0x92, 0x80, 0x78,
92 : 0xE4, 0xDD, 0xD1, 0x38, 0x0D, 0xC6, 0x35, 0x98, 0x18, 0xF7, 0xEC, 0x6C,
93 : 0x43, 0x75, 0x37, 0x26, 0xFA, 0x13, 0x94, 0x48, 0xF2, 0xD0, 0x8B, 0x30,
94 : 0x84, 0x54, 0xDF, 0x23, 0x19, 0x5B, 0x3D, 0x59, 0xF3, 0xAE, 0xA2, 0x82,
95 : 0x63, 0x01, 0x83, 0x2E, 0xD9, 0x51, 0x9B, 0x7C, 0xA6, 0xEB, 0xA5, 0xBE,
96 : 0x16, 0x0C, 0xE3, 0x61, 0xC0, 0x8C, 0x3A, 0xF5, 0x73, 0x2C, 0x25, 0x0B,
97 : 0xBB, 0x4E, 0x89, 0x6B, 0x53, 0x6A, 0xB4, 0xF1, 0xE1, 0xE6, 0xBD, 0x45,
98 : 0xE2, 0xF4, 0xB6, 0x66, 0xCC, 0x95, 0x03, 0x56, 0xD4, 0x1C, 0x1E, 0xD7,
99 : 0xFB, 0xC3, 0x8E, 0xB5, 0xE9, 0xCF, 0xBF, 0xBA, 0xEA, 0x77, 0x39, 0xAF,
100 : 0x33, 0xC9, 0x62, 0x71, 0x81, 0x79, 0x09, 0xAD, 0x24, 0xCD, 0xF9, 0xD8,
101 : 0xE5, 0xC5, 0xB9, 0x4D, 0x44, 0x08, 0x86, 0xE7, 0xA1, 0x1D, 0xAA, 0xED,
102 : 0x06, 0x70, 0xB2, 0xD2, 0x41, 0x7B, 0xA0, 0x11, 0x31, 0xC2, 0x27, 0x90,
103 : 0x20, 0xF6, 0x60, 0xFF, 0x96, 0x5C, 0xB1, 0xAB, 0x9E, 0x9C, 0x52, 0x1B,
104 : 0x5F, 0x93, 0x0A, 0xEF, 0x91, 0x85, 0x49, 0xEE, 0x2D, 0x4F, 0x8F, 0x3B,
105 : 0x47, 0x87, 0x6D, 0x46, 0xD6, 0x3E, 0x69, 0x64, 0x2A, 0xCE, 0xCB, 0x2F,
106 : 0xFC, 0x97, 0x05, 0x7A, 0xAC, 0x7F, 0xD5, 0x1A, 0x4B, 0x0E, 0xA7, 0x5A,
107 : 0x28, 0x14, 0x3F, 0x29, 0x88, 0x3C, 0x4C, 0x02, 0xB8, 0xDA, 0xB0, 0x17,
108 : 0x55, 0x1F, 0x8A, 0x7D, 0x57, 0xC7, 0x8D, 0x74, 0xB7, 0xC4, 0x9F, 0x72,
109 : 0x7E, 0x15, 0x22, 0x12, 0x58, 0x07, 0x99, 0x34, 0x6E, 0x50, 0xDE, 0x68,
110 : 0x65, 0xBC, 0xDB, 0xF8, 0xC8, 0xA8, 0x2B, 0x40, 0xDC, 0xFE, 0x32, 0xA4,
111 : 0xCA, 0x10, 0x21, 0xF0, 0xD3, 0x5D, 0x0F, 0x00, 0x6F, 0x9D, 0x36, 0x42,
112 : 0x4A, 0x5E, 0xC1, 0xE0
113 : };
114 :
115 : static const byte q1[256] = {
116 : 0x75, 0xF3, 0xC6, 0xF4, 0xDB, 0x7B, 0xFB, 0xC8, 0x4A, 0xD3, 0xE6, 0x6B,
117 : 0x45, 0x7D, 0xE8, 0x4B, 0xD6, 0x32, 0xD8, 0xFD, 0x37, 0x71, 0xF1, 0xE1,
118 : 0x30, 0x0F, 0xF8, 0x1B, 0x87, 0xFA, 0x06, 0x3F, 0x5E, 0xBA, 0xAE, 0x5B,
119 : 0x8A, 0x00, 0xBC, 0x9D, 0x6D, 0xC1, 0xB1, 0x0E, 0x80, 0x5D, 0xD2, 0xD5,
120 : 0xA0, 0x84, 0x07, 0x14, 0xB5, 0x90, 0x2C, 0xA3, 0xB2, 0x73, 0x4C, 0x54,
121 : 0x92, 0x74, 0x36, 0x51, 0x38, 0xB0, 0xBD, 0x5A, 0xFC, 0x60, 0x62, 0x96,
122 : 0x6C, 0x42, 0xF7, 0x10, 0x7C, 0x28, 0x27, 0x8C, 0x13, 0x95, 0x9C, 0xC7,
123 : 0x24, 0x46, 0x3B, 0x70, 0xCA, 0xE3, 0x85, 0xCB, 0x11, 0xD0, 0x93, 0xB8,
124 : 0xA6, 0x83, 0x20, 0xFF, 0x9F, 0x77, 0xC3, 0xCC, 0x03, 0x6F, 0x08, 0xBF,
125 : 0x40, 0xE7, 0x2B, 0xE2, 0x79, 0x0C, 0xAA, 0x82, 0x41, 0x3A, 0xEA, 0xB9,
126 : 0xE4, 0x9A, 0xA4, 0x97, 0x7E, 0xDA, 0x7A, 0x17, 0x66, 0x94, 0xA1, 0x1D,
127 : 0x3D, 0xF0, 0xDE, 0xB3, 0x0B, 0x72, 0xA7, 0x1C, 0xEF, 0xD1, 0x53, 0x3E,
128 : 0x8F, 0x33, 0x26, 0x5F, 0xEC, 0x76, 0x2A, 0x49, 0x81, 0x88, 0xEE, 0x21,
129 : 0xC4, 0x1A, 0xEB, 0xD9, 0xC5, 0x39, 0x99, 0xCD, 0xAD, 0x31, 0x8B, 0x01,
130 : 0x18, 0x23, 0xDD, 0x1F, 0x4E, 0x2D, 0xF9, 0x48, 0x4F, 0xF2, 0x65, 0x8E,
131 : 0x78, 0x5C, 0x58, 0x19, 0x8D, 0xE5, 0x98, 0x57, 0x67, 0x7F, 0x05, 0x64,
132 : 0xAF, 0x63, 0xB6, 0xFE, 0xF5, 0xB7, 0x3C, 0xA5, 0xCE, 0xE9, 0x68, 0x44,
133 : 0xE0, 0x4D, 0x43, 0x69, 0x29, 0x2E, 0xAC, 0x15, 0x59, 0xA8, 0x0A, 0x9E,
134 : 0x6E, 0x47, 0xDF, 0x34, 0x35, 0x6A, 0xCF, 0xDC, 0x22, 0xC9, 0xC0, 0x9B,
135 : 0x89, 0xD4, 0xED, 0xAB, 0x12, 0xA2, 0x0D, 0x52, 0xBB, 0x02, 0x2F, 0xA9,
136 : 0xD7, 0x61, 0x1E, 0xB4, 0x50, 0x04, 0xF6, 0xC2, 0x16, 0x25, 0x86, 0x56,
137 : 0x55, 0x09, 0xBE, 0x91
138 : };
139 :
140 : /* These MDS tables are actually tables of MDS composed with q0 and q1,
141 : * because it is only ever used that way and we can save some time by
142 : * precomputing. Of course the main saving comes from precomputing the
143 : * GF(2^8) multiplication involved in the MDS matrix multiply; by looking
144 : * things up in these tables we reduce the matrix multiply to four lookups
145 : * and three XORs. Semi-formally, the definition of these tables is:
146 : * mds[0][i] = MDS (q1[i] 0 0 0)^T mds[1][i] = MDS (0 q0[i] 0 0)^T
147 : * mds[2][i] = MDS (0 0 q1[i] 0)^T mds[3][i] = MDS (0 0 0 q0[i])^T
148 : * where ^T means "transpose", the matrix multiply is performed in GF(2^8)
149 : * represented as GF(2)[x]/v(x) where v(x)=x^8+x^6+x^5+x^3+1 as described
150 : * by Schneier et al, and I'm casually glossing over the byte/word
151 : * conversion issues. */
152 :
153 : static const u32 mds[4][256] = {
154 : {0xBCBC3275, 0xECEC21F3, 0x202043C6, 0xB3B3C9F4, 0xDADA03DB, 0x02028B7B,
155 : 0xE2E22BFB, 0x9E9EFAC8, 0xC9C9EC4A, 0xD4D409D3, 0x18186BE6, 0x1E1E9F6B,
156 : 0x98980E45, 0xB2B2387D, 0xA6A6D2E8, 0x2626B74B, 0x3C3C57D6, 0x93938A32,
157 : 0x8282EED8, 0x525298FD, 0x7B7BD437, 0xBBBB3771, 0x5B5B97F1, 0x474783E1,
158 : 0x24243C30, 0x5151E20F, 0xBABAC6F8, 0x4A4AF31B, 0xBFBF4887, 0x0D0D70FA,
159 : 0xB0B0B306, 0x7575DE3F, 0xD2D2FD5E, 0x7D7D20BA, 0x666631AE, 0x3A3AA35B,
160 : 0x59591C8A, 0x00000000, 0xCDCD93BC, 0x1A1AE09D, 0xAEAE2C6D, 0x7F7FABC1,
161 : 0x2B2BC7B1, 0xBEBEB90E, 0xE0E0A080, 0x8A8A105D, 0x3B3B52D2, 0x6464BAD5,
162 : 0xD8D888A0, 0xE7E7A584, 0x5F5FE807, 0x1B1B1114, 0x2C2CC2B5, 0xFCFCB490,
163 : 0x3131272C, 0x808065A3, 0x73732AB2, 0x0C0C8173, 0x79795F4C, 0x6B6B4154,
164 : 0x4B4B0292, 0x53536974, 0x94948F36, 0x83831F51, 0x2A2A3638, 0xC4C49CB0,
165 : 0x2222C8BD, 0xD5D5F85A, 0xBDBDC3FC, 0x48487860, 0xFFFFCE62, 0x4C4C0796,
166 : 0x4141776C, 0xC7C7E642, 0xEBEB24F7, 0x1C1C1410, 0x5D5D637C, 0x36362228,
167 : 0x6767C027, 0xE9E9AF8C, 0x4444F913, 0x1414EA95, 0xF5F5BB9C, 0xCFCF18C7,
168 : 0x3F3F2D24, 0xC0C0E346, 0x7272DB3B, 0x54546C70, 0x29294CCA, 0xF0F035E3,
169 : 0x0808FE85, 0xC6C617CB, 0xF3F34F11, 0x8C8CE4D0, 0xA4A45993, 0xCACA96B8,
170 : 0x68683BA6, 0xB8B84D83, 0x38382820, 0xE5E52EFF, 0xADAD569F, 0x0B0B8477,
171 : 0xC8C81DC3, 0x9999FFCC, 0x5858ED03, 0x19199A6F, 0x0E0E0A08, 0x95957EBF,
172 : 0x70705040, 0xF7F730E7, 0x6E6ECF2B, 0x1F1F6EE2, 0xB5B53D79, 0x09090F0C,
173 : 0x616134AA, 0x57571682, 0x9F9F0B41, 0x9D9D803A, 0x111164EA, 0x2525CDB9,
174 : 0xAFAFDDE4, 0x4545089A, 0xDFDF8DA4, 0xA3A35C97, 0xEAEAD57E, 0x353558DA,
175 : 0xEDEDD07A, 0x4343FC17, 0xF8F8CB66, 0xFBFBB194, 0x3737D3A1, 0xFAFA401D,
176 : 0xC2C2683D, 0xB4B4CCF0, 0x32325DDE, 0x9C9C71B3, 0x5656E70B, 0xE3E3DA72,
177 : 0x878760A7, 0x15151B1C, 0xF9F93AEF, 0x6363BFD1, 0x3434A953, 0x9A9A853E,
178 : 0xB1B1428F, 0x7C7CD133, 0x88889B26, 0x3D3DA65F, 0xA1A1D7EC, 0xE4E4DF76,
179 : 0x8181942A, 0x91910149, 0x0F0FFB81, 0xEEEEAA88, 0x161661EE, 0xD7D77321,
180 : 0x9797F5C4, 0xA5A5A81A, 0xFEFE3FEB, 0x6D6DB5D9, 0x7878AEC5, 0xC5C56D39,
181 : 0x1D1DE599, 0x7676A4CD, 0x3E3EDCAD, 0xCBCB6731, 0xB6B6478B, 0xEFEF5B01,
182 : 0x12121E18, 0x6060C523, 0x6A6AB0DD, 0x4D4DF61F, 0xCECEE94E, 0xDEDE7C2D,
183 : 0x55559DF9, 0x7E7E5A48, 0x2121B24F, 0x03037AF2, 0xA0A02665, 0x5E5E198E,
184 : 0x5A5A6678, 0x65654B5C, 0x62624E58, 0xFDFD4519, 0x0606F48D, 0x404086E5,
185 : 0xF2F2BE98, 0x3333AC57, 0x17179067, 0x05058E7F, 0xE8E85E05, 0x4F4F7D64,
186 : 0x89896AAF, 0x10109563, 0x74742FB6, 0x0A0A75FE, 0x5C5C92F5, 0x9B9B74B7,
187 : 0x2D2D333C, 0x3030D6A5, 0x2E2E49CE, 0x494989E9, 0x46467268, 0x77775544,
188 : 0xA8A8D8E0, 0x9696044D, 0x2828BD43, 0xA9A92969, 0xD9D97929, 0x8686912E,
189 : 0xD1D187AC, 0xF4F44A15, 0x8D8D1559, 0xD6D682A8, 0xB9B9BC0A, 0x42420D9E,
190 : 0xF6F6C16E, 0x2F2FB847, 0xDDDD06DF, 0x23233934, 0xCCCC6235, 0xF1F1C46A,
191 : 0xC1C112CF, 0x8585EBDC, 0x8F8F9E22, 0x7171A1C9, 0x9090F0C0, 0xAAAA539B,
192 : 0x0101F189, 0x8B8BE1D4, 0x4E4E8CED, 0x8E8E6FAB, 0xABABA212, 0x6F6F3EA2,
193 : 0xE6E6540D, 0xDBDBF252, 0x92927BBB, 0xB7B7B602, 0x6969CA2F, 0x3939D9A9,
194 : 0xD3D30CD7, 0xA7A72361, 0xA2A2AD1E, 0xC3C399B4, 0x6C6C4450, 0x07070504,
195 : 0x04047FF6, 0x272746C2, 0xACACA716, 0xD0D07625, 0x50501386, 0xDCDCF756,
196 : 0x84841A55, 0xE1E15109, 0x7A7A25BE, 0x1313EF91},
197 :
198 : {0xA9D93939, 0x67901717, 0xB3719C9C, 0xE8D2A6A6, 0x04050707, 0xFD985252,
199 : 0xA3658080, 0x76DFE4E4, 0x9A084545, 0x92024B4B, 0x80A0E0E0, 0x78665A5A,
200 : 0xE4DDAFAF, 0xDDB06A6A, 0xD1BF6363, 0x38362A2A, 0x0D54E6E6, 0xC6432020,
201 : 0x3562CCCC, 0x98BEF2F2, 0x181E1212, 0xF724EBEB, 0xECD7A1A1, 0x6C774141,
202 : 0x43BD2828, 0x7532BCBC, 0x37D47B7B, 0x269B8888, 0xFA700D0D, 0x13F94444,
203 : 0x94B1FBFB, 0x485A7E7E, 0xF27A0303, 0xD0E48C8C, 0x8B47B6B6, 0x303C2424,
204 : 0x84A5E7E7, 0x54416B6B, 0xDF06DDDD, 0x23C56060, 0x1945FDFD, 0x5BA33A3A,
205 : 0x3D68C2C2, 0x59158D8D, 0xF321ECEC, 0xAE316666, 0xA23E6F6F, 0x82165757,
206 : 0x63951010, 0x015BEFEF, 0x834DB8B8, 0x2E918686, 0xD9B56D6D, 0x511F8383,
207 : 0x9B53AAAA, 0x7C635D5D, 0xA63B6868, 0xEB3FFEFE, 0xA5D63030, 0xBE257A7A,
208 : 0x16A7ACAC, 0x0C0F0909, 0xE335F0F0, 0x6123A7A7, 0xC0F09090, 0x8CAFE9E9,
209 : 0x3A809D9D, 0xF5925C5C, 0x73810C0C, 0x2C273131, 0x2576D0D0, 0x0BE75656,
210 : 0xBB7B9292, 0x4EE9CECE, 0x89F10101, 0x6B9F1E1E, 0x53A93434, 0x6AC4F1F1,
211 : 0xB499C3C3, 0xF1975B5B, 0xE1834747, 0xE66B1818, 0xBDC82222, 0x450E9898,
212 : 0xE26E1F1F, 0xF4C9B3B3, 0xB62F7474, 0x66CBF8F8, 0xCCFF9999, 0x95EA1414,
213 : 0x03ED5858, 0x56F7DCDC, 0xD4E18B8B, 0x1C1B1515, 0x1EADA2A2, 0xD70CD3D3,
214 : 0xFB2BE2E2, 0xC31DC8C8, 0x8E195E5E, 0xB5C22C2C, 0xE9894949, 0xCF12C1C1,
215 : 0xBF7E9595, 0xBA207D7D, 0xEA641111, 0x77840B0B, 0x396DC5C5, 0xAF6A8989,
216 : 0x33D17C7C, 0xC9A17171, 0x62CEFFFF, 0x7137BBBB, 0x81FB0F0F, 0x793DB5B5,
217 : 0x0951E1E1, 0xADDC3E3E, 0x242D3F3F, 0xCDA47676, 0xF99D5555, 0xD8EE8282,
218 : 0xE5864040, 0xC5AE7878, 0xB9CD2525, 0x4D049696, 0x44557777, 0x080A0E0E,
219 : 0x86135050, 0xE730F7F7, 0xA1D33737, 0x1D40FAFA, 0xAA346161, 0xED8C4E4E,
220 : 0x06B3B0B0, 0x706C5454, 0xB22A7373, 0xD2523B3B, 0x410B9F9F, 0x7B8B0202,
221 : 0xA088D8D8, 0x114FF3F3, 0x3167CBCB, 0xC2462727, 0x27C06767, 0x90B4FCFC,
222 : 0x20283838, 0xF67F0404, 0x60784848, 0xFF2EE5E5, 0x96074C4C, 0x5C4B6565,
223 : 0xB1C72B2B, 0xAB6F8E8E, 0x9E0D4242, 0x9CBBF5F5, 0x52F2DBDB, 0x1BF34A4A,
224 : 0x5FA63D3D, 0x9359A4A4, 0x0ABCB9B9, 0xEF3AF9F9, 0x91EF1313, 0x85FE0808,
225 : 0x49019191, 0xEE611616, 0x2D7CDEDE, 0x4FB22121, 0x8F42B1B1, 0x3BDB7272,
226 : 0x47B82F2F, 0x8748BFBF, 0x6D2CAEAE, 0x46E3C0C0, 0xD6573C3C, 0x3E859A9A,
227 : 0x6929A9A9, 0x647D4F4F, 0x2A948181, 0xCE492E2E, 0xCB17C6C6, 0x2FCA6969,
228 : 0xFCC3BDBD, 0x975CA3A3, 0x055EE8E8, 0x7AD0EDED, 0xAC87D1D1, 0x7F8E0505,
229 : 0xD5BA6464, 0x1AA8A5A5, 0x4BB72626, 0x0EB9BEBE, 0xA7608787, 0x5AF8D5D5,
230 : 0x28223636, 0x14111B1B, 0x3FDE7575, 0x2979D9D9, 0x88AAEEEE, 0x3C332D2D,
231 : 0x4C5F7979, 0x02B6B7B7, 0xB896CACA, 0xDA583535, 0xB09CC4C4, 0x17FC4343,
232 : 0x551A8484, 0x1FF64D4D, 0x8A1C5959, 0x7D38B2B2, 0x57AC3333, 0xC718CFCF,
233 : 0x8DF40606, 0x74695353, 0xB7749B9B, 0xC4F59797, 0x9F56ADAD, 0x72DAE3E3,
234 : 0x7ED5EAEA, 0x154AF4F4, 0x229E8F8F, 0x12A2ABAB, 0x584E6262, 0x07E85F5F,
235 : 0x99E51D1D, 0x34392323, 0x6EC1F6F6, 0x50446C6C, 0xDE5D3232, 0x68724646,
236 : 0x6526A0A0, 0xBC93CDCD, 0xDB03DADA, 0xF8C6BABA, 0xC8FA9E9E, 0xA882D6D6,
237 : 0x2BCF6E6E, 0x40507070, 0xDCEB8585, 0xFE750A0A, 0x328A9393, 0xA48DDFDF,
238 : 0xCA4C2929, 0x10141C1C, 0x2173D7D7, 0xF0CCB4B4, 0xD309D4D4, 0x5D108A8A,
239 : 0x0FE25151, 0x00000000, 0x6F9A1919, 0x9DE01A1A, 0x368F9494, 0x42E6C7C7,
240 : 0x4AECC9C9, 0x5EFDD2D2, 0xC1AB7F7F, 0xE0D8A8A8},
241 :
242 : {0xBC75BC32, 0xECF3EC21, 0x20C62043, 0xB3F4B3C9, 0xDADBDA03, 0x027B028B,
243 : 0xE2FBE22B, 0x9EC89EFA, 0xC94AC9EC, 0xD4D3D409, 0x18E6186B, 0x1E6B1E9F,
244 : 0x9845980E, 0xB27DB238, 0xA6E8A6D2, 0x264B26B7, 0x3CD63C57, 0x9332938A,
245 : 0x82D882EE, 0x52FD5298, 0x7B377BD4, 0xBB71BB37, 0x5BF15B97, 0x47E14783,
246 : 0x2430243C, 0x510F51E2, 0xBAF8BAC6, 0x4A1B4AF3, 0xBF87BF48, 0x0DFA0D70,
247 : 0xB006B0B3, 0x753F75DE, 0xD25ED2FD, 0x7DBA7D20, 0x66AE6631, 0x3A5B3AA3,
248 : 0x598A591C, 0x00000000, 0xCDBCCD93, 0x1A9D1AE0, 0xAE6DAE2C, 0x7FC17FAB,
249 : 0x2BB12BC7, 0xBE0EBEB9, 0xE080E0A0, 0x8A5D8A10, 0x3BD23B52, 0x64D564BA,
250 : 0xD8A0D888, 0xE784E7A5, 0x5F075FE8, 0x1B141B11, 0x2CB52CC2, 0xFC90FCB4,
251 : 0x312C3127, 0x80A38065, 0x73B2732A, 0x0C730C81, 0x794C795F, 0x6B546B41,
252 : 0x4B924B02, 0x53745369, 0x9436948F, 0x8351831F, 0x2A382A36, 0xC4B0C49C,
253 : 0x22BD22C8, 0xD55AD5F8, 0xBDFCBDC3, 0x48604878, 0xFF62FFCE, 0x4C964C07,
254 : 0x416C4177, 0xC742C7E6, 0xEBF7EB24, 0x1C101C14, 0x5D7C5D63, 0x36283622,
255 : 0x672767C0, 0xE98CE9AF, 0x441344F9, 0x149514EA, 0xF59CF5BB, 0xCFC7CF18,
256 : 0x3F243F2D, 0xC046C0E3, 0x723B72DB, 0x5470546C, 0x29CA294C, 0xF0E3F035,
257 : 0x088508FE, 0xC6CBC617, 0xF311F34F, 0x8CD08CE4, 0xA493A459, 0xCAB8CA96,
258 : 0x68A6683B, 0xB883B84D, 0x38203828, 0xE5FFE52E, 0xAD9FAD56, 0x0B770B84,
259 : 0xC8C3C81D, 0x99CC99FF, 0x580358ED, 0x196F199A, 0x0E080E0A, 0x95BF957E,
260 : 0x70407050, 0xF7E7F730, 0x6E2B6ECF, 0x1FE21F6E, 0xB579B53D, 0x090C090F,
261 : 0x61AA6134, 0x57825716, 0x9F419F0B, 0x9D3A9D80, 0x11EA1164, 0x25B925CD,
262 : 0xAFE4AFDD, 0x459A4508, 0xDFA4DF8D, 0xA397A35C, 0xEA7EEAD5, 0x35DA3558,
263 : 0xED7AEDD0, 0x431743FC, 0xF866F8CB, 0xFB94FBB1, 0x37A137D3, 0xFA1DFA40,
264 : 0xC23DC268, 0xB4F0B4CC, 0x32DE325D, 0x9CB39C71, 0x560B56E7, 0xE372E3DA,
265 : 0x87A78760, 0x151C151B, 0xF9EFF93A, 0x63D163BF, 0x345334A9, 0x9A3E9A85,
266 : 0xB18FB142, 0x7C337CD1, 0x8826889B, 0x3D5F3DA6, 0xA1ECA1D7, 0xE476E4DF,
267 : 0x812A8194, 0x91499101, 0x0F810FFB, 0xEE88EEAA, 0x16EE1661, 0xD721D773,
268 : 0x97C497F5, 0xA51AA5A8, 0xFEEBFE3F, 0x6DD96DB5, 0x78C578AE, 0xC539C56D,
269 : 0x1D991DE5, 0x76CD76A4, 0x3EAD3EDC, 0xCB31CB67, 0xB68BB647, 0xEF01EF5B,
270 : 0x1218121E, 0x602360C5, 0x6ADD6AB0, 0x4D1F4DF6, 0xCE4ECEE9, 0xDE2DDE7C,
271 : 0x55F9559D, 0x7E487E5A, 0x214F21B2, 0x03F2037A, 0xA065A026, 0x5E8E5E19,
272 : 0x5A785A66, 0x655C654B, 0x6258624E, 0xFD19FD45, 0x068D06F4, 0x40E54086,
273 : 0xF298F2BE, 0x335733AC, 0x17671790, 0x057F058E, 0xE805E85E, 0x4F644F7D,
274 : 0x89AF896A, 0x10631095, 0x74B6742F, 0x0AFE0A75, 0x5CF55C92, 0x9BB79B74,
275 : 0x2D3C2D33, 0x30A530D6, 0x2ECE2E49, 0x49E94989, 0x46684672, 0x77447755,
276 : 0xA8E0A8D8, 0x964D9604, 0x284328BD, 0xA969A929, 0xD929D979, 0x862E8691,
277 : 0xD1ACD187, 0xF415F44A, 0x8D598D15, 0xD6A8D682, 0xB90AB9BC, 0x429E420D,
278 : 0xF66EF6C1, 0x2F472FB8, 0xDDDFDD06, 0x23342339, 0xCC35CC62, 0xF16AF1C4,
279 : 0xC1CFC112, 0x85DC85EB, 0x8F228F9E, 0x71C971A1, 0x90C090F0, 0xAA9BAA53,
280 : 0x018901F1, 0x8BD48BE1, 0x4EED4E8C, 0x8EAB8E6F, 0xAB12ABA2, 0x6FA26F3E,
281 : 0xE60DE654, 0xDB52DBF2, 0x92BB927B, 0xB702B7B6, 0x692F69CA, 0x39A939D9,
282 : 0xD3D7D30C, 0xA761A723, 0xA21EA2AD, 0xC3B4C399, 0x6C506C44, 0x07040705,
283 : 0x04F6047F, 0x27C22746, 0xAC16ACA7, 0xD025D076, 0x50865013, 0xDC56DCF7,
284 : 0x8455841A, 0xE109E151, 0x7ABE7A25, 0x139113EF},
285 :
286 : {0xD939A9D9, 0x90176790, 0x719CB371, 0xD2A6E8D2, 0x05070405, 0x9852FD98,
287 : 0x6580A365, 0xDFE476DF, 0x08459A08, 0x024B9202, 0xA0E080A0, 0x665A7866,
288 : 0xDDAFE4DD, 0xB06ADDB0, 0xBF63D1BF, 0x362A3836, 0x54E60D54, 0x4320C643,
289 : 0x62CC3562, 0xBEF298BE, 0x1E12181E, 0x24EBF724, 0xD7A1ECD7, 0x77416C77,
290 : 0xBD2843BD, 0x32BC7532, 0xD47B37D4, 0x9B88269B, 0x700DFA70, 0xF94413F9,
291 : 0xB1FB94B1, 0x5A7E485A, 0x7A03F27A, 0xE48CD0E4, 0x47B68B47, 0x3C24303C,
292 : 0xA5E784A5, 0x416B5441, 0x06DDDF06, 0xC56023C5, 0x45FD1945, 0xA33A5BA3,
293 : 0x68C23D68, 0x158D5915, 0x21ECF321, 0x3166AE31, 0x3E6FA23E, 0x16578216,
294 : 0x95106395, 0x5BEF015B, 0x4DB8834D, 0x91862E91, 0xB56DD9B5, 0x1F83511F,
295 : 0x53AA9B53, 0x635D7C63, 0x3B68A63B, 0x3FFEEB3F, 0xD630A5D6, 0x257ABE25,
296 : 0xA7AC16A7, 0x0F090C0F, 0x35F0E335, 0x23A76123, 0xF090C0F0, 0xAFE98CAF,
297 : 0x809D3A80, 0x925CF592, 0x810C7381, 0x27312C27, 0x76D02576, 0xE7560BE7,
298 : 0x7B92BB7B, 0xE9CE4EE9, 0xF10189F1, 0x9F1E6B9F, 0xA93453A9, 0xC4F16AC4,
299 : 0x99C3B499, 0x975BF197, 0x8347E183, 0x6B18E66B, 0xC822BDC8, 0x0E98450E,
300 : 0x6E1FE26E, 0xC9B3F4C9, 0x2F74B62F, 0xCBF866CB, 0xFF99CCFF, 0xEA1495EA,
301 : 0xED5803ED, 0xF7DC56F7, 0xE18BD4E1, 0x1B151C1B, 0xADA21EAD, 0x0CD3D70C,
302 : 0x2BE2FB2B, 0x1DC8C31D, 0x195E8E19, 0xC22CB5C2, 0x8949E989, 0x12C1CF12,
303 : 0x7E95BF7E, 0x207DBA20, 0x6411EA64, 0x840B7784, 0x6DC5396D, 0x6A89AF6A,
304 : 0xD17C33D1, 0xA171C9A1, 0xCEFF62CE, 0x37BB7137, 0xFB0F81FB, 0x3DB5793D,
305 : 0x51E10951, 0xDC3EADDC, 0x2D3F242D, 0xA476CDA4, 0x9D55F99D, 0xEE82D8EE,
306 : 0x8640E586, 0xAE78C5AE, 0xCD25B9CD, 0x04964D04, 0x55774455, 0x0A0E080A,
307 : 0x13508613, 0x30F7E730, 0xD337A1D3, 0x40FA1D40, 0x3461AA34, 0x8C4EED8C,
308 : 0xB3B006B3, 0x6C54706C, 0x2A73B22A, 0x523BD252, 0x0B9F410B, 0x8B027B8B,
309 : 0x88D8A088, 0x4FF3114F, 0x67CB3167, 0x4627C246, 0xC06727C0, 0xB4FC90B4,
310 : 0x28382028, 0x7F04F67F, 0x78486078, 0x2EE5FF2E, 0x074C9607, 0x4B655C4B,
311 : 0xC72BB1C7, 0x6F8EAB6F, 0x0D429E0D, 0xBBF59CBB, 0xF2DB52F2, 0xF34A1BF3,
312 : 0xA63D5FA6, 0x59A49359, 0xBCB90ABC, 0x3AF9EF3A, 0xEF1391EF, 0xFE0885FE,
313 : 0x01914901, 0x6116EE61, 0x7CDE2D7C, 0xB2214FB2, 0x42B18F42, 0xDB723BDB,
314 : 0xB82F47B8, 0x48BF8748, 0x2CAE6D2C, 0xE3C046E3, 0x573CD657, 0x859A3E85,
315 : 0x29A96929, 0x7D4F647D, 0x94812A94, 0x492ECE49, 0x17C6CB17, 0xCA692FCA,
316 : 0xC3BDFCC3, 0x5CA3975C, 0x5EE8055E, 0xD0ED7AD0, 0x87D1AC87, 0x8E057F8E,
317 : 0xBA64D5BA, 0xA8A51AA8, 0xB7264BB7, 0xB9BE0EB9, 0x6087A760, 0xF8D55AF8,
318 : 0x22362822, 0x111B1411, 0xDE753FDE, 0x79D92979, 0xAAEE88AA, 0x332D3C33,
319 : 0x5F794C5F, 0xB6B702B6, 0x96CAB896, 0x5835DA58, 0x9CC4B09C, 0xFC4317FC,
320 : 0x1A84551A, 0xF64D1FF6, 0x1C598A1C, 0x38B27D38, 0xAC3357AC, 0x18CFC718,
321 : 0xF4068DF4, 0x69537469, 0x749BB774, 0xF597C4F5, 0x56AD9F56, 0xDAE372DA,
322 : 0xD5EA7ED5, 0x4AF4154A, 0x9E8F229E, 0xA2AB12A2, 0x4E62584E, 0xE85F07E8,
323 : 0xE51D99E5, 0x39233439, 0xC1F66EC1, 0x446C5044, 0x5D32DE5D, 0x72466872,
324 : 0x26A06526, 0x93CDBC93, 0x03DADB03, 0xC6BAF8C6, 0xFA9EC8FA, 0x82D6A882,
325 : 0xCF6E2BCF, 0x50704050, 0xEB85DCEB, 0x750AFE75, 0x8A93328A, 0x8DDFA48D,
326 : 0x4C29CA4C, 0x141C1014, 0x73D72173, 0xCCB4F0CC, 0x09D4D309, 0x108A5D10,
327 : 0xE2510FE2, 0x00000000, 0x9A196F9A, 0xE01A9DE0, 0x8F94368F, 0xE6C742E6,
328 : 0xECC94AEC, 0xFDD25EFD, 0xAB7FC1AB, 0xD8A8E0D8}
329 : };
330 :
331 : /* The exp_to_poly and poly_to_exp tables are used to perform efficient
332 : * operations in GF(2^8) represented as GF(2)[x]/w(x) where
333 : * w(x)=x^8+x^6+x^3+x^2+1. We care about doing that because it's part of the
334 : * definition of the RS matrix in the key schedule. Elements of that field
335 : * are polynomials of degree not greater than 7 and all coefficients 0 or 1,
336 : * which can be represented naturally by bytes (just substitute x=2). In that
337 : * form, GF(2^8) addition is the same as bitwise XOR, but GF(2^8)
338 : * multiplication is inefficient without hardware support. To multiply
339 : * faster, I make use of the fact x is a generator for the nonzero elements,
340 : * so that every element p of GF(2)[x]/w(x) is either 0 or equal to (x)^n for
341 : * some n in 0..254. Note that that caret is exponentiation in GF(2^8),
342 : * *not* polynomial notation. So if I want to compute pq where p and q are
343 : * in GF(2^8), I can just say:
344 : * 1. if p=0 or q=0 then pq=0
345 : * 2. otherwise, find m and n such that p=x^m and q=x^n
346 : * 3. pq=(x^m)(x^n)=x^(m+n), so add m and n and find pq
347 : * The translations in steps 2 and 3 are looked up in the tables
348 : * poly_to_exp (for step 2) and exp_to_poly (for step 3). To see this
349 : * in action, look at the CALC_S macro. As additional wrinkles, note that
350 : * one of my operands is always a constant, so the poly_to_exp lookup on it
351 : * is done in advance; I included the original values in the comments so
352 : * readers can have some chance of recognizing that this *is* the RS matrix
353 : * from the Twofish paper. I've only included the table entries I actually
354 : * need; I never do a lookup on a variable input of zero and the biggest
355 : * exponents I'll ever see are 254 (variable) and 237 (constant), so they'll
356 : * never sum to more than 491. I'm repeating part of the exp_to_poly table
357 : * so that I don't have to do mod-255 reduction in the exponent arithmetic.
358 : * Since I know my constant operands are never zero, I only have to worry
359 : * about zero values in the variable operand, and I do it with a simple
360 : * conditional branch. I know conditionals are expensive, but I couldn't
361 : * see a non-horrible way of avoiding them, and I did manage to group the
362 : * statements so that each if covers four group multiplications. */
363 :
364 : static const u16 poly_to_exp[256] = {
365 : 492,
366 : 0x00, 0x01, 0x17, 0x02, 0x2E, 0x18, 0x53, 0x03, 0x6A, 0x2F, 0x93, 0x19,
367 : 0x34, 0x54, 0x45, 0x04, 0x5C, 0x6B, 0xB6, 0x30, 0xA6, 0x94, 0x4B, 0x1A,
368 : 0x8C, 0x35, 0x81, 0x55, 0xAA, 0x46, 0x0D, 0x05, 0x24, 0x5D, 0x87, 0x6C,
369 : 0x9B, 0xB7, 0xC1, 0x31, 0x2B, 0xA7, 0xA3, 0x95, 0x98, 0x4C, 0xCA, 0x1B,
370 : 0xE6, 0x8D, 0x73, 0x36, 0xCD, 0x82, 0x12, 0x56, 0x62, 0xAB, 0xF0, 0x47,
371 : 0x4F, 0x0E, 0xBD, 0x06, 0xD4, 0x25, 0xD2, 0x5E, 0x27, 0x88, 0x66, 0x6D,
372 : 0xD6, 0x9C, 0x79, 0xB8, 0x08, 0xC2, 0xDF, 0x32, 0x68, 0x2C, 0xFD, 0xA8,
373 : 0x8A, 0xA4, 0x5A, 0x96, 0x29, 0x99, 0x22, 0x4D, 0x60, 0xCB, 0xE4, 0x1C,
374 : 0x7B, 0xE7, 0x3B, 0x8E, 0x9E, 0x74, 0xF4, 0x37, 0xD8, 0xCE, 0xF9, 0x83,
375 : 0x6F, 0x13, 0xB2, 0x57, 0xE1, 0x63, 0xDC, 0xAC, 0xC4, 0xF1, 0xAF, 0x48,
376 : 0x0A, 0x50, 0x42, 0x0F, 0xBA, 0xBE, 0xC7, 0x07, 0xDE, 0xD5, 0x78, 0x26,
377 : 0x65, 0xD3, 0xD1, 0x5F, 0xE3, 0x28, 0x21, 0x89, 0x59, 0x67, 0xFC, 0x6E,
378 : 0xB1, 0xD7, 0xF8, 0x9D, 0xF3, 0x7A, 0x3A, 0xB9, 0xC6, 0x09, 0x41, 0xC3,
379 : 0xAE, 0xE0, 0xDB, 0x33, 0x44, 0x69, 0x92, 0x2D, 0x52, 0xFE, 0x16, 0xA9,
380 : 0x0C, 0x8B, 0x80, 0xA5, 0x4A, 0x5B, 0xB5, 0x97, 0xC9, 0x2A, 0xA2, 0x9A,
381 : 0xC0, 0x23, 0x86, 0x4E, 0xBC, 0x61, 0xEF, 0xCC, 0x11, 0xE5, 0x72, 0x1D,
382 : 0x3D, 0x7C, 0xEB, 0xE8, 0xE9, 0x3C, 0xEA, 0x8F, 0x7D, 0x9F, 0xEC, 0x75,
383 : 0x1E, 0xF5, 0x3E, 0x38, 0xF6, 0xD9, 0x3F, 0xCF, 0x76, 0xFA, 0x1F, 0x84,
384 : 0xA0, 0x70, 0xED, 0x14, 0x90, 0xB3, 0x7E, 0x58, 0xFB, 0xE2, 0x20, 0x64,
385 : 0xD0, 0xDD, 0x77, 0xAD, 0xDA, 0xC5, 0x40, 0xF2, 0x39, 0xB0, 0xF7, 0x49,
386 : 0xB4, 0x0B, 0x7F, 0x51, 0x15, 0x43, 0x91, 0x10, 0x71, 0xBB, 0xEE, 0xBF,
387 : 0x85, 0xC8, 0xA1
388 : };
389 :
390 : static const byte exp_to_poly[492 + 256] = {
391 : 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x4D, 0x9A, 0x79, 0xF2,
392 : 0xA9, 0x1F, 0x3E, 0x7C, 0xF8, 0xBD, 0x37, 0x6E, 0xDC, 0xF5, 0xA7, 0x03,
393 : 0x06, 0x0C, 0x18, 0x30, 0x60, 0xC0, 0xCD, 0xD7, 0xE3, 0x8B, 0x5B, 0xB6,
394 : 0x21, 0x42, 0x84, 0x45, 0x8A, 0x59, 0xB2, 0x29, 0x52, 0xA4, 0x05, 0x0A,
395 : 0x14, 0x28, 0x50, 0xA0, 0x0D, 0x1A, 0x34, 0x68, 0xD0, 0xED, 0x97, 0x63,
396 : 0xC6, 0xC1, 0xCF, 0xD3, 0xEB, 0x9B, 0x7B, 0xF6, 0xA1, 0x0F, 0x1E, 0x3C,
397 : 0x78, 0xF0, 0xAD, 0x17, 0x2E, 0x5C, 0xB8, 0x3D, 0x7A, 0xF4, 0xA5, 0x07,
398 : 0x0E, 0x1C, 0x38, 0x70, 0xE0, 0x8D, 0x57, 0xAE, 0x11, 0x22, 0x44, 0x88,
399 : 0x5D, 0xBA, 0x39, 0x72, 0xE4, 0x85, 0x47, 0x8E, 0x51, 0xA2, 0x09, 0x12,
400 : 0x24, 0x48, 0x90, 0x6D, 0xDA, 0xF9, 0xBF, 0x33, 0x66, 0xCC, 0xD5, 0xE7,
401 : 0x83, 0x4B, 0x96, 0x61, 0xC2, 0xC9, 0xDF, 0xF3, 0xAB, 0x1B, 0x36, 0x6C,
402 : 0xD8, 0xFD, 0xB7, 0x23, 0x46, 0x8C, 0x55, 0xAA, 0x19, 0x32, 0x64, 0xC8,
403 : 0xDD, 0xF7, 0xA3, 0x0B, 0x16, 0x2C, 0x58, 0xB0, 0x2D, 0x5A, 0xB4, 0x25,
404 : 0x4A, 0x94, 0x65, 0xCA, 0xD9, 0xFF, 0xB3, 0x2B, 0x56, 0xAC, 0x15, 0x2A,
405 : 0x54, 0xA8, 0x1D, 0x3A, 0x74, 0xE8, 0x9D, 0x77, 0xEE, 0x91, 0x6F, 0xDE,
406 : 0xF1, 0xAF, 0x13, 0x26, 0x4C, 0x98, 0x7D, 0xFA, 0xB9, 0x3F, 0x7E, 0xFC,
407 : 0xB5, 0x27, 0x4E, 0x9C, 0x75, 0xEA, 0x99, 0x7F, 0xFE, 0xB1, 0x2F, 0x5E,
408 : 0xBC, 0x35, 0x6A, 0xD4, 0xE5, 0x87, 0x43, 0x86, 0x41, 0x82, 0x49, 0x92,
409 : 0x69, 0xD2, 0xE9, 0x9F, 0x73, 0xE6, 0x81, 0x4F, 0x9E, 0x71, 0xE2, 0x89,
410 : 0x5F, 0xBE, 0x31, 0x62, 0xC4, 0xC5, 0xC7, 0xC3, 0xCB, 0xDB, 0xFB, 0xBB,
411 : 0x3B, 0x76, 0xEC, 0x95, 0x67, 0xCE, 0xD1, 0xEF, 0x93, 0x6B, 0xD6, 0xE1,
412 : 0x8F, 0x53, 0xA6, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x4D,
413 : 0x9A, 0x79, 0xF2, 0xA9, 0x1F, 0x3E, 0x7C, 0xF8, 0xBD, 0x37, 0x6E, 0xDC,
414 : 0xF5, 0xA7, 0x03, 0x06, 0x0C, 0x18, 0x30, 0x60, 0xC0, 0xCD, 0xD7, 0xE3,
415 : 0x8B, 0x5B, 0xB6, 0x21, 0x42, 0x84, 0x45, 0x8A, 0x59, 0xB2, 0x29, 0x52,
416 : 0xA4, 0x05, 0x0A, 0x14, 0x28, 0x50, 0xA0, 0x0D, 0x1A, 0x34, 0x68, 0xD0,
417 : 0xED, 0x97, 0x63, 0xC6, 0xC1, 0xCF, 0xD3, 0xEB, 0x9B, 0x7B, 0xF6, 0xA1,
418 : 0x0F, 0x1E, 0x3C, 0x78, 0xF0, 0xAD, 0x17, 0x2E, 0x5C, 0xB8, 0x3D, 0x7A,
419 : 0xF4, 0xA5, 0x07, 0x0E, 0x1C, 0x38, 0x70, 0xE0, 0x8D, 0x57, 0xAE, 0x11,
420 : 0x22, 0x44, 0x88, 0x5D, 0xBA, 0x39, 0x72, 0xE4, 0x85, 0x47, 0x8E, 0x51,
421 : 0xA2, 0x09, 0x12, 0x24, 0x48, 0x90, 0x6D, 0xDA, 0xF9, 0xBF, 0x33, 0x66,
422 : 0xCC, 0xD5, 0xE7, 0x83, 0x4B, 0x96, 0x61, 0xC2, 0xC9, 0xDF, 0xF3, 0xAB,
423 : 0x1B, 0x36, 0x6C, 0xD8, 0xFD, 0xB7, 0x23, 0x46, 0x8C, 0x55, 0xAA, 0x19,
424 : 0x32, 0x64, 0xC8, 0xDD, 0xF7, 0xA3, 0x0B, 0x16, 0x2C, 0x58, 0xB0, 0x2D,
425 : 0x5A, 0xB4, 0x25, 0x4A, 0x94, 0x65, 0xCA, 0xD9, 0xFF, 0xB3, 0x2B, 0x56,
426 : 0xAC, 0x15, 0x2A, 0x54, 0xA8, 0x1D, 0x3A, 0x74, 0xE8, 0x9D, 0x77, 0xEE,
427 : 0x91, 0x6F, 0xDE, 0xF1, 0xAF, 0x13, 0x26, 0x4C, 0x98, 0x7D, 0xFA, 0xB9,
428 : 0x3F, 0x7E, 0xFC, 0xB5, 0x27, 0x4E, 0x9C, 0x75, 0xEA, 0x99, 0x7F, 0xFE,
429 : 0xB1, 0x2F, 0x5E, 0xBC, 0x35, 0x6A, 0xD4, 0xE5, 0x87, 0x43, 0x86, 0x41,
430 : 0x82, 0x49, 0x92, 0x69, 0xD2, 0xE9, 0x9F, 0x73, 0xE6, 0x81, 0x4F, 0x9E,
431 : 0x71, 0xE2, 0x89, 0x5F, 0xBE, 0x31, 0x62, 0xC4, 0xC5, 0xC7, 0xC3, 0xCB,
432 : };
433 :
434 :
435 : /* The table constants are indices of
436 : * S-box entries, preprocessed through q0 and q1. */
437 : static byte calc_sb_tbl[512] = {
438 : 0xA9, 0x75, 0x67, 0xF3, 0xB3, 0xC6, 0xE8, 0xF4,
439 : 0x04, 0xDB, 0xFD, 0x7B, 0xA3, 0xFB, 0x76, 0xC8,
440 : 0x9A, 0x4A, 0x92, 0xD3, 0x80, 0xE6, 0x78, 0x6B,
441 : 0xE4, 0x45, 0xDD, 0x7D, 0xD1, 0xE8, 0x38, 0x4B,
442 : 0x0D, 0xD6, 0xC6, 0x32, 0x35, 0xD8, 0x98, 0xFD,
443 : 0x18, 0x37, 0xF7, 0x71, 0xEC, 0xF1, 0x6C, 0xE1,
444 : 0x43, 0x30, 0x75, 0x0F, 0x37, 0xF8, 0x26, 0x1B,
445 : 0xFA, 0x87, 0x13, 0xFA, 0x94, 0x06, 0x48, 0x3F,
446 : 0xF2, 0x5E, 0xD0, 0xBA, 0x8B, 0xAE, 0x30, 0x5B,
447 : 0x84, 0x8A, 0x54, 0x00, 0xDF, 0xBC, 0x23, 0x9D,
448 : 0x19, 0x6D, 0x5B, 0xC1, 0x3D, 0xB1, 0x59, 0x0E,
449 : 0xF3, 0x80, 0xAE, 0x5D, 0xA2, 0xD2, 0x82, 0xD5,
450 : 0x63, 0xA0, 0x01, 0x84, 0x83, 0x07, 0x2E, 0x14,
451 : 0xD9, 0xB5, 0x51, 0x90, 0x9B, 0x2C, 0x7C, 0xA3,
452 : 0xA6, 0xB2, 0xEB, 0x73, 0xA5, 0x4C, 0xBE, 0x54,
453 : 0x16, 0x92, 0x0C, 0x74, 0xE3, 0x36, 0x61, 0x51,
454 : 0xC0, 0x38, 0x8C, 0xB0, 0x3A, 0xBD, 0xF5, 0x5A,
455 : 0x73, 0xFC, 0x2C, 0x60, 0x25, 0x62, 0x0B, 0x96,
456 : 0xBB, 0x6C, 0x4E, 0x42, 0x89, 0xF7, 0x6B, 0x10,
457 : 0x53, 0x7C, 0x6A, 0x28, 0xB4, 0x27, 0xF1, 0x8C,
458 : 0xE1, 0x13, 0xE6, 0x95, 0xBD, 0x9C, 0x45, 0xC7,
459 : 0xE2, 0x24, 0xF4, 0x46, 0xB6, 0x3B, 0x66, 0x70,
460 : 0xCC, 0xCA, 0x95, 0xE3, 0x03, 0x85, 0x56, 0xCB,
461 : 0xD4, 0x11, 0x1C, 0xD0, 0x1E, 0x93, 0xD7, 0xB8,
462 : 0xFB, 0xA6, 0xC3, 0x83, 0x8E, 0x20, 0xB5, 0xFF,
463 : 0xE9, 0x9F, 0xCF, 0x77, 0xBF, 0xC3, 0xBA, 0xCC,
464 : 0xEA, 0x03, 0x77, 0x6F, 0x39, 0x08, 0xAF, 0xBF,
465 : 0x33, 0x40, 0xC9, 0xE7, 0x62, 0x2B, 0x71, 0xE2,
466 : 0x81, 0x79, 0x79, 0x0C, 0x09, 0xAA, 0xAD, 0x82,
467 : 0x24, 0x41, 0xCD, 0x3A, 0xF9, 0xEA, 0xD8, 0xB9,
468 : 0xE5, 0xE4, 0xC5, 0x9A, 0xB9, 0xA4, 0x4D, 0x97,
469 : 0x44, 0x7E, 0x08, 0xDA, 0x86, 0x7A, 0xE7, 0x17,
470 : 0xA1, 0x66, 0x1D, 0x94, 0xAA, 0xA1, 0xED, 0x1D,
471 : 0x06, 0x3D, 0x70, 0xF0, 0xB2, 0xDE, 0xD2, 0xB3,
472 : 0x41, 0x0B, 0x7B, 0x72, 0xA0, 0xA7, 0x11, 0x1C,
473 : 0x31, 0xEF, 0xC2, 0xD1, 0x27, 0x53, 0x90, 0x3E,
474 : 0x20, 0x8F, 0xF6, 0x33, 0x60, 0x26, 0xFF, 0x5F,
475 : 0x96, 0xEC, 0x5C, 0x76, 0xB1, 0x2A, 0xAB, 0x49,
476 : 0x9E, 0x81, 0x9C, 0x88, 0x52, 0xEE, 0x1B, 0x21,
477 : 0x5F, 0xC4, 0x93, 0x1A, 0x0A, 0xEB, 0xEF, 0xD9,
478 : 0x91, 0xC5, 0x85, 0x39, 0x49, 0x99, 0xEE, 0xCD,
479 : 0x2D, 0xAD, 0x4F, 0x31, 0x8F, 0x8B, 0x3B, 0x01,
480 : 0x47, 0x18, 0x87, 0x23, 0x6D, 0xDD, 0x46, 0x1F,
481 : 0xD6, 0x4E, 0x3E, 0x2D, 0x69, 0xF9, 0x64, 0x48,
482 : 0x2A, 0x4F, 0xCE, 0xF2, 0xCB, 0x65, 0x2F, 0x8E,
483 : 0xFC, 0x78, 0x97, 0x5C, 0x05, 0x58, 0x7A, 0x19,
484 : 0xAC, 0x8D, 0x7F, 0xE5, 0xD5, 0x98, 0x1A, 0x57,
485 : 0x4B, 0x67, 0x0E, 0x7F, 0xA7, 0x05, 0x5A, 0x64,
486 : 0x28, 0xAF, 0x14, 0x63, 0x3F, 0xB6, 0x29, 0xFE,
487 : 0x88, 0xF5, 0x3C, 0xB7, 0x4C, 0x3C, 0x02, 0xA5,
488 : 0xB8, 0xCE, 0xDA, 0xE9, 0xB0, 0x68, 0x17, 0x44,
489 : 0x55, 0xE0, 0x1F, 0x4D, 0x8A, 0x43, 0x7D, 0x69,
490 : 0x57, 0x29, 0xC7, 0x2E, 0x8D, 0xAC, 0x74, 0x15,
491 : 0xB7, 0x59, 0xC4, 0xA8, 0x9F, 0x0A, 0x72, 0x9E,
492 : 0x7E, 0x6E, 0x15, 0x47, 0x22, 0xDF, 0x12, 0x34,
493 : 0x58, 0x35, 0x07, 0x6A, 0x99, 0xCF, 0x34, 0xDC,
494 : 0x6E, 0x22, 0x50, 0xC9, 0xDE, 0xC0, 0x68, 0x9B,
495 : 0x65, 0x89, 0xBC, 0xD4, 0xDB, 0xED, 0xF8, 0xAB,
496 : 0xC8, 0x12, 0xA8, 0xA2, 0x2B, 0x0D, 0x40, 0x52,
497 : 0xDC, 0xBB, 0xFE, 0x02, 0x32, 0x2F, 0xA4, 0xA9,
498 : 0xCA, 0xD7, 0x10, 0x61, 0x21, 0x1E, 0xF0, 0xB4,
499 : 0xD3, 0x50, 0x5D, 0x04, 0x0F, 0xF6, 0x00, 0xC2,
500 : 0x6F, 0x16, 0x9D, 0x25, 0x36, 0x86, 0x42, 0x56,
501 : 0x4A, 0x55, 0x5E, 0x09, 0xC1, 0xBE, 0xE0, 0x91
502 : };
503 :
504 : /* Macro to perform one column of the RS matrix multiplication. The
505 : * parameters a, b, c, and d are the four bytes of output; i is the index
506 : * of the key bytes, and w, x, y, and z, are the column of constants from
507 : * the RS matrix, preprocessed through the poly_to_exp table. */
508 :
509 : #define CALC_S(a, b, c, d, i, w, x, y, z) \
510 : { \
511 : tmp = poly_to_exp[key[i]]; \
512 : (a) ^= exp_to_poly[tmp + (w)]; \
513 : (b) ^= exp_to_poly[tmp + (x)]; \
514 : (c) ^= exp_to_poly[tmp + (y)]; \
515 : (d) ^= exp_to_poly[tmp + (z)]; \
516 : }
517 :
518 : /* Macros to calculate the key-dependent S-boxes for a 128-bit key using
519 : * the S vector from CALC_S. CALC_SB_2 computes a single entry in all
520 : * four S-boxes, where i is the index of the entry to compute, and a and b
521 : * are the index numbers preprocessed through the q0 and q1 tables
522 : * respectively. CALC_SB is simply a convenience to make the code shorter;
523 : * it calls CALC_SB_2 four times with consecutive indices from i to i+3,
524 : * using the remaining parameters two by two. */
525 :
526 : #define CALC_SB_2(i, a, b) \
527 : ctx->s[0][i] = mds[0][q0[(a) ^ sa] ^ se]; \
528 : ctx->s[1][i] = mds[1][q0[(b) ^ sb] ^ sf]; \
529 : ctx->s[2][i] = mds[2][q1[(a) ^ sc] ^ sg]; \
530 : ctx->s[3][i] = mds[3][q1[(b) ^ sd] ^ sh]
531 :
532 : #define CALC_SB(i, a, b, c, d, e, f, g, h) \
533 : CALC_SB_2 (i, a, b); CALC_SB_2 ((i)+1, c, d); \
534 : CALC_SB_2 ((i)+2, e, f); CALC_SB_2 ((i)+3, g, h)
535 :
536 : /* Macros exactly like CALC_SB and CALC_SB_2, but for 256-bit keys. */
537 :
538 : #define CALC_SB256_2(i, a, b) \
539 : ctx->s[0][i] = mds[0][q0[q0[q1[(b) ^ sa] ^ se] ^ si] ^ sm]; \
540 : ctx->s[1][i] = mds[1][q0[q1[q1[(a) ^ sb] ^ sf] ^ sj] ^ sn]; \
541 : ctx->s[2][i] = mds[2][q1[q0[q0[(a) ^ sc] ^ sg] ^ sk] ^ so]; \
542 : ctx->s[3][i] = mds[3][q1[q1[q0[(b) ^ sd] ^ sh] ^ sl] ^ sp];
543 :
544 : #define CALC_SB256(i, a, b, c, d, e, f, g, h) \
545 : CALC_SB256_2 (i, a, b); CALC_SB256_2 ((i)+1, c, d); \
546 : CALC_SB256_2 ((i)+2, e, f); CALC_SB256_2 ((i)+3, g, h)
547 :
548 : /* Macros to calculate the whitening and round subkeys. CALC_K_2 computes the
549 : * last two stages of the h() function for a given index (either 2i or 2i+1).
550 : * a, b, c, and d are the four bytes going into the last two stages. For
551 : * 128-bit keys, this is the entire h() function and a and c are the index
552 : * preprocessed through q0 and q1 respectively; for longer keys they are the
553 : * output of previous stages. j is the index of the first key byte to use.
554 : * CALC_K computes a pair of subkeys for 128-bit Twofish, by calling CALC_K_2
555 : * twice, doing the Pseudo-Hadamard Transform, and doing the necessary
556 : * rotations. Its parameters are: a, the array to write the results into,
557 : * j, the index of the first output entry, k and l, the preprocessed indices
558 : * for index 2i, and m and n, the preprocessed indices for index 2i+1.
559 : * CALC_K256_2 expands CALC_K_2 to handle 256-bit keys, by doing two
560 : * additional lookup-and-XOR stages. The parameters a and b are the index
561 : * preprocessed through q0 and q1 respectively; j is the index of the first
562 : * key byte to use. CALC_K256 is identical to CALC_K but for using the
563 : * CALC_K256_2 macro instead of CALC_K_2. */
564 :
565 : #define CALC_K_2(a, b, c, d, j) \
566 : mds[0][q0[a ^ key[(j) + 8]] ^ key[j]] \
567 : ^ mds[1][q0[b ^ key[(j) + 9]] ^ key[(j) + 1]] \
568 : ^ mds[2][q1[c ^ key[(j) + 10]] ^ key[(j) + 2]] \
569 : ^ mds[3][q1[d ^ key[(j) + 11]] ^ key[(j) + 3]]
570 :
571 : #define CALC_K(a, j, k, l, m, n) \
572 : x = CALC_K_2 (k, l, k, l, 0); \
573 : y = CALC_K_2 (m, n, m, n, 4); \
574 : y = (y << 8) + (y >> 24); \
575 : x += y; y += x; ctx->a[j] = x; \
576 : ctx->a[(j) + 1] = (y << 9) + (y >> 23)
577 :
578 : #define CALC_K256_2(a, b, j) \
579 : CALC_K_2 (q0[q1[b ^ key[(j) + 24]] ^ key[(j) + 16]], \
580 : q1[q1[a ^ key[(j) + 25]] ^ key[(j) + 17]], \
581 : q0[q0[a ^ key[(j) + 26]] ^ key[(j) + 18]], \
582 : q1[q0[b ^ key[(j) + 27]] ^ key[(j) + 19]], j)
583 :
584 : #define CALC_K256(a, j, k, l, m, n) \
585 : x = CALC_K256_2 (k, l, 0); \
586 : y = CALC_K256_2 (m, n, 4); \
587 : y = (y << 8) + (y >> 24); \
588 : x += y; y += x; ctx->a[j] = x; \
589 : ctx->a[(j) + 1] = (y << 9) + (y >> 23)
590 :
591 :
592 :
593 : /* Perform the key setup. Note that this works only with 128- and 256-bit
594 : * keys, despite the API that looks like it might support other sizes. */
595 :
596 : static gcry_err_code_t
597 0 : do_twofish_setkey (TWOFISH_context *ctx, const byte *key, const unsigned keylen)
598 : {
599 : int i, j, k;
600 :
601 : /* Temporaries for CALC_K. */
602 : u32 x, y;
603 :
604 : /* The S vector used to key the S-boxes, split up into individual bytes.
605 : * 128-bit keys use only sa through sh; 256-bit use all of them. */
606 0 : byte sa = 0, sb = 0, sc = 0, sd = 0, se = 0, sf = 0, sg = 0, sh = 0;
607 0 : byte si = 0, sj = 0, sk = 0, sl = 0, sm = 0, sn = 0, so = 0, sp = 0;
608 :
609 : /* Temporary for CALC_S. */
610 : unsigned int tmp;
611 :
612 : /* Flags for self-test. */
613 : static int initialized = 0;
614 : static const char *selftest_failed=0;
615 :
616 : /* Check key length. */
617 0 : if( ( ( keylen - 16 ) | 16 ) != 16 )
618 0 : return GPG_ERR_INV_KEYLEN;
619 :
620 : /* Do self-test if necessary. */
621 0 : if (!initialized)
622 : {
623 0 : initialized = 1;
624 0 : selftest_failed = selftest ();
625 0 : if( selftest_failed )
626 0 : log_error("%s\n", selftest_failed );
627 : }
628 0 : if( selftest_failed )
629 0 : return GPG_ERR_SELFTEST_FAILED;
630 :
631 : /* Compute the first two words of the S vector. The magic numbers are
632 : * the entries of the RS matrix, preprocessed through poly_to_exp. The
633 : * numbers in the comments are the original (polynomial form) matrix
634 : * entries. */
635 0 : CALC_S (sa, sb, sc, sd, 0, 0x00, 0x2D, 0x01, 0x2D); /* 01 A4 02 A4 */
636 0 : CALC_S (sa, sb, sc, sd, 1, 0x2D, 0xA4, 0x44, 0x8A); /* A4 56 A1 55 */
637 0 : CALC_S (sa, sb, sc, sd, 2, 0x8A, 0xD5, 0xBF, 0xD1); /* 55 82 FC 87 */
638 0 : CALC_S (sa, sb, sc, sd, 3, 0xD1, 0x7F, 0x3D, 0x99); /* 87 F3 C1 5A */
639 0 : CALC_S (sa, sb, sc, sd, 4, 0x99, 0x46, 0x66, 0x96); /* 5A 1E 47 58 */
640 0 : CALC_S (sa, sb, sc, sd, 5, 0x96, 0x3C, 0x5B, 0xED); /* 58 C6 AE DB */
641 0 : CALC_S (sa, sb, sc, sd, 6, 0xED, 0x37, 0x4F, 0xE0); /* DB 68 3D 9E */
642 0 : CALC_S (sa, sb, sc, sd, 7, 0xE0, 0xD0, 0x8C, 0x17); /* 9E E5 19 03 */
643 0 : CALC_S (se, sf, sg, sh, 8, 0x00, 0x2D, 0x01, 0x2D); /* 01 A4 02 A4 */
644 0 : CALC_S (se, sf, sg, sh, 9, 0x2D, 0xA4, 0x44, 0x8A); /* A4 56 A1 55 */
645 0 : CALC_S (se, sf, sg, sh, 10, 0x8A, 0xD5, 0xBF, 0xD1); /* 55 82 FC 87 */
646 0 : CALC_S (se, sf, sg, sh, 11, 0xD1, 0x7F, 0x3D, 0x99); /* 87 F3 C1 5A */
647 0 : CALC_S (se, sf, sg, sh, 12, 0x99, 0x46, 0x66, 0x96); /* 5A 1E 47 58 */
648 0 : CALC_S (se, sf, sg, sh, 13, 0x96, 0x3C, 0x5B, 0xED); /* 58 C6 AE DB */
649 0 : CALC_S (se, sf, sg, sh, 14, 0xED, 0x37, 0x4F, 0xE0); /* DB 68 3D 9E */
650 0 : CALC_S (se, sf, sg, sh, 15, 0xE0, 0xD0, 0x8C, 0x17); /* 9E E5 19 03 */
651 :
652 0 : if (keylen == 32) /* 256-bit key */
653 : {
654 : /* Calculate the remaining two words of the S vector */
655 0 : CALC_S (si, sj, sk, sl, 16, 0x00, 0x2D, 0x01, 0x2D); /* 01 A4 02 A4 */
656 0 : CALC_S (si, sj, sk, sl, 17, 0x2D, 0xA4, 0x44, 0x8A); /* A4 56 A1 55 */
657 0 : CALC_S (si, sj, sk, sl, 18, 0x8A, 0xD5, 0xBF, 0xD1); /* 55 82 FC 87 */
658 0 : CALC_S (si, sj, sk, sl, 19, 0xD1, 0x7F, 0x3D, 0x99); /* 87 F3 C1 5A */
659 0 : CALC_S (si, sj, sk, sl, 20, 0x99, 0x46, 0x66, 0x96); /* 5A 1E 47 58 */
660 0 : CALC_S (si, sj, sk, sl, 21, 0x96, 0x3C, 0x5B, 0xED); /* 58 C6 AE DB */
661 0 : CALC_S (si, sj, sk, sl, 22, 0xED, 0x37, 0x4F, 0xE0); /* DB 68 3D 9E */
662 0 : CALC_S (si, sj, sk, sl, 23, 0xE0, 0xD0, 0x8C, 0x17); /* 9E E5 19 03 */
663 0 : CALC_S (sm, sn, so, sp, 24, 0x00, 0x2D, 0x01, 0x2D); /* 01 A4 02 A4 */
664 0 : CALC_S (sm, sn, so, sp, 25, 0x2D, 0xA4, 0x44, 0x8A); /* A4 56 A1 55 */
665 0 : CALC_S (sm, sn, so, sp, 26, 0x8A, 0xD5, 0xBF, 0xD1); /* 55 82 FC 87 */
666 0 : CALC_S (sm, sn, so, sp, 27, 0xD1, 0x7F, 0x3D, 0x99); /* 87 F3 C1 5A */
667 0 : CALC_S (sm, sn, so, sp, 28, 0x99, 0x46, 0x66, 0x96); /* 5A 1E 47 58 */
668 0 : CALC_S (sm, sn, so, sp, 29, 0x96, 0x3C, 0x5B, 0xED); /* 58 C6 AE DB */
669 0 : CALC_S (sm, sn, so, sp, 30, 0xED, 0x37, 0x4F, 0xE0); /* DB 68 3D 9E */
670 0 : CALC_S (sm, sn, so, sp, 31, 0xE0, 0xD0, 0x8C, 0x17); /* 9E E5 19 03 */
671 :
672 : /* Compute the S-boxes. */
673 0 : for(i=j=0,k=1; i < 256; i++, j += 2, k += 2 )
674 : {
675 0 : CALC_SB256_2( i, calc_sb_tbl[j], calc_sb_tbl[k] );
676 : }
677 :
678 : /* Calculate whitening and round subkeys. */
679 0 : for (i = 0; i < 8; i += 2)
680 : {
681 0 : CALC_K256 ( w, i, q0[i], q1[i], q0[i + 1], q1[i + 1] );
682 : }
683 0 : for (j = 0; j < 32; j += 2, i += 2)
684 : {
685 0 : CALC_K256 ( k, j, q0[i], q1[i], q0[i + 1], q1[i + 1] );
686 : }
687 : }
688 : else
689 : {
690 : /* Compute the S-boxes. */
691 0 : for(i=j=0,k=1; i < 256; i++, j += 2, k += 2 )
692 : {
693 0 : CALC_SB_2( i, calc_sb_tbl[j], calc_sb_tbl[k] );
694 : }
695 :
696 : /* Calculate whitening and round subkeys. */
697 0 : for (i = 0; i < 8; i += 2)
698 : {
699 0 : CALC_K ( w, i, q0[i], q1[i], q0[i + 1], q1[i + 1] );
700 : }
701 0 : for (j = 0; j < 32; j += 2, i += 2)
702 : {
703 0 : CALC_K ( k, j, q0[i], q1[i], q0[i + 1], q1[i + 1] );
704 : }
705 : }
706 :
707 0 : return 0;
708 : }
709 :
710 : static gcry_err_code_t
711 0 : twofish_setkey (void *context, const byte *key, unsigned int keylen)
712 : {
713 0 : TWOFISH_context *ctx = context;
714 0 : int rc = do_twofish_setkey (ctx, key, keylen);
715 0 : _gcry_burn_stack (23+6*sizeof(void*));
716 0 : return rc;
717 : }
718 :
719 :
720 :
721 : #ifdef USE_AMD64_ASM
722 :
723 : /* Assembly implementations of Twofish. */
724 : extern void _gcry_twofish_amd64_encrypt_block(const TWOFISH_context *c,
725 : byte *out, const byte *in);
726 :
727 : extern void _gcry_twofish_amd64_decrypt_block(const TWOFISH_context *c,
728 : byte *out, const byte *in);
729 :
730 : /* These assembly implementations process three blocks in parallel. */
731 : extern void _gcry_twofish_amd64_ctr_enc(const TWOFISH_context *c, byte *out,
732 : const byte *in, byte *ctr);
733 :
734 : extern void _gcry_twofish_amd64_cbc_dec(const TWOFISH_context *c, byte *out,
735 : const byte *in, byte *iv);
736 :
737 : extern void _gcry_twofish_amd64_cfb_dec(const TWOFISH_context *c, byte *out,
738 : const byte *in, byte *iv);
739 :
740 : extern void _gcry_twofish_amd64_ocb_enc(const TWOFISH_context *ctx, byte *out,
741 : const byte *in, byte *offset,
742 : byte *checksum, const u64 Ls[3]);
743 :
744 : extern void _gcry_twofish_amd64_ocb_dec(const TWOFISH_context *ctx, byte *out,
745 : const byte *in, byte *offset,
746 : byte *checksum, const u64 Ls[3]);
747 :
748 : extern void _gcry_twofish_amd64_ocb_auth(const TWOFISH_context *ctx,
749 : const byte *abuf, byte *offset,
750 : byte *checksum, const u64 Ls[3]);
751 :
752 : #ifdef HAVE_COMPATIBLE_GCC_WIN64_PLATFORM_AS
753 : static inline void
754 : call_sysv_fn (const void *fn, const void *arg1, const void *arg2,
755 : const void *arg3, const void *arg4)
756 : {
757 : /* Call SystemV ABI function without storing non-volatile XMM registers,
758 : * as target function does not use vector instruction sets. */
759 : asm volatile ("callq *%0\n\t"
760 : : "+a" (fn),
761 : "+D" (arg1),
762 : "+S" (arg2),
763 : "+d" (arg3),
764 : "+c" (arg4)
765 : :
766 : : "cc", "memory", "r8", "r9", "r10", "r11");
767 : }
768 :
769 : static inline void
770 : call_sysv_fn5 (const void *fn, const void *arg1, const void *arg2,
771 : const void *arg3, const void *arg4, const void *arg5)
772 : {
773 : /* Call SystemV ABI function without storing non-volatile XMM registers,
774 : * as target function does not use vector instruction sets. */
775 : asm volatile ("movq %[arg5], %%r8\n\t"
776 : "callq *%0\n\t"
777 : : "+a" (fn),
778 : "+D" (arg1),
779 : "+S" (arg2),
780 : "+d" (arg3),
781 : "+c" (arg4)
782 : : [arg5] "g" (arg5)
783 : : "cc", "memory", "r8", "r9", "r10", "r11");
784 : }
785 :
786 : static inline void
787 : call_sysv_fn6 (const void *fn, const void *arg1, const void *arg2,
788 : const void *arg3, const void *arg4, const void *arg5,
789 : const void *arg6)
790 : {
791 : /* Call SystemV ABI function without storing non-volatile XMM registers,
792 : * as target function does not use vector instruction sets. */
793 : asm volatile ("movq %[arg5], %%r8\n\t"
794 : "movq %[arg6], %%r9\n\t"
795 : "callq *%0\n\t"
796 : : "+a" (fn),
797 : "+D" (arg1),
798 : "+S" (arg2),
799 : "+d" (arg3),
800 : "+c" (arg4)
801 : : [arg5] "g" (arg5),
802 : [arg6] "g" (arg6)
803 : : "cc", "memory", "r8", "r9", "r10", "r11");
804 : }
805 : #endif
806 :
807 : static inline void
808 0 : twofish_amd64_encrypt_block(const TWOFISH_context *c, byte *out, const byte *in)
809 : {
810 : #ifdef HAVE_COMPATIBLE_GCC_WIN64_PLATFORM_AS
811 : call_sysv_fn(_gcry_twofish_amd64_encrypt_block, c, out, in, NULL);
812 : #else
813 0 : _gcry_twofish_amd64_encrypt_block(c, out, in);
814 : #endif
815 0 : }
816 :
817 : static inline void
818 0 : twofish_amd64_decrypt_block(const TWOFISH_context *c, byte *out, const byte *in)
819 : {
820 : #ifdef HAVE_COMPATIBLE_GCC_WIN64_PLATFORM_AS
821 : call_sysv_fn(_gcry_twofish_amd64_decrypt_block, c, out, in, NULL);
822 : #else
823 0 : _gcry_twofish_amd64_decrypt_block(c, out, in);
824 : #endif
825 0 : }
826 :
827 : static inline void
828 0 : twofish_amd64_ctr_enc(const TWOFISH_context *c, byte *out, const byte *in,
829 : byte *ctr)
830 : {
831 : #ifdef HAVE_COMPATIBLE_GCC_WIN64_PLATFORM_AS
832 : call_sysv_fn(_gcry_twofish_amd64_ctr_enc, c, out, in, ctr);
833 : #else
834 0 : _gcry_twofish_amd64_ctr_enc(c, out, in, ctr);
835 : #endif
836 0 : }
837 :
838 : static inline void
839 0 : twofish_amd64_cbc_dec(const TWOFISH_context *c, byte *out, const byte *in,
840 : byte *iv)
841 : {
842 : #ifdef HAVE_COMPATIBLE_GCC_WIN64_PLATFORM_AS
843 : call_sysv_fn(_gcry_twofish_amd64_cbc_dec, c, out, in, iv);
844 : #else
845 0 : _gcry_twofish_amd64_cbc_dec(c, out, in, iv);
846 : #endif
847 0 : }
848 :
849 : static inline void
850 0 : twofish_amd64_cfb_dec(const TWOFISH_context *c, byte *out, const byte *in,
851 : byte *iv)
852 : {
853 : #ifdef HAVE_COMPATIBLE_GCC_WIN64_PLATFORM_AS
854 : call_sysv_fn(_gcry_twofish_amd64_cfb_dec, c, out, in, iv);
855 : #else
856 0 : _gcry_twofish_amd64_cfb_dec(c, out, in, iv);
857 : #endif
858 0 : }
859 :
860 : static inline void
861 0 : twofish_amd64_ocb_enc(const TWOFISH_context *ctx, byte *out, const byte *in,
862 : byte *offset, byte *checksum, const u64 Ls[3])
863 : {
864 : #ifdef HAVE_COMPATIBLE_GCC_WIN64_PLATFORM_AS
865 : call_sysv_fn6(_gcry_twofish_amd64_ocb_enc, ctx, out, in, offset, checksum, Ls);
866 : #else
867 0 : _gcry_twofish_amd64_ocb_enc(ctx, out, in, offset, checksum, Ls);
868 : #endif
869 0 : }
870 :
871 : static inline void
872 0 : twofish_amd64_ocb_dec(const TWOFISH_context *ctx, byte *out, const byte *in,
873 : byte *offset, byte *checksum, const u64 Ls[3])
874 : {
875 : #ifdef HAVE_COMPATIBLE_GCC_WIN64_PLATFORM_AS
876 : call_sysv_fn6(_gcry_twofish_amd64_ocb_dec, ctx, out, in, offset, checksum, Ls);
877 : #else
878 0 : _gcry_twofish_amd64_ocb_dec(ctx, out, in, offset, checksum, Ls);
879 : #endif
880 0 : }
881 :
882 : static inline void
883 0 : twofish_amd64_ocb_auth(const TWOFISH_context *ctx, const byte *abuf,
884 : byte *offset, byte *checksum, const u64 Ls[3])
885 : {
886 : #ifdef HAVE_COMPATIBLE_GCC_WIN64_PLATFORM_AS
887 : call_sysv_fn5(_gcry_twofish_amd64_ocb_auth, ctx, abuf, offset, checksum, Ls);
888 : #else
889 0 : _gcry_twofish_amd64_ocb_auth(ctx, abuf, offset, checksum, Ls);
890 : #endif
891 0 : }
892 :
893 : #elif defined(USE_ARM_ASM)
894 :
895 : /* Assembly implementations of Twofish. */
896 : extern void _gcry_twofish_arm_encrypt_block(const TWOFISH_context *c,
897 : byte *out, const byte *in);
898 :
899 : extern void _gcry_twofish_arm_decrypt_block(const TWOFISH_context *c,
900 : byte *out, const byte *in);
901 :
902 : #else /*!USE_AMD64_ASM && !USE_ARM_ASM*/
903 :
904 : /* Macros to compute the g() function in the encryption and decryption
905 : * rounds. G1 is the straight g() function; G2 includes the 8-bit
906 : * rotation for the high 32-bit word. */
907 :
908 : #define G1(a) \
909 : (ctx->s[0][(a) & 0xFF]) ^ (ctx->s[1][((a) >> 8) & 0xFF]) \
910 : ^ (ctx->s[2][((a) >> 16) & 0xFF]) ^ (ctx->s[3][(a) >> 24])
911 :
912 : #define G2(b) \
913 : (ctx->s[1][(b) & 0xFF]) ^ (ctx->s[2][((b) >> 8) & 0xFF]) \
914 : ^ (ctx->s[3][((b) >> 16) & 0xFF]) ^ (ctx->s[0][(b) >> 24])
915 :
916 : /* Encryption and decryption Feistel rounds. Each one calls the two g()
917 : * macros, does the PHT, and performs the XOR and the appropriate bit
918 : * rotations. The parameters are the round number (used to select subkeys),
919 : * and the four 32-bit chunks of the text. */
920 :
921 : #define ENCROUND(n, a, b, c, d) \
922 : x = G1 (a); y = G2 (b); \
923 : x += y; y += x + ctx->k[2 * (n) + 1]; \
924 : (c) ^= x + ctx->k[2 * (n)]; \
925 : (c) = ((c) >> 1) + ((c) << 31); \
926 : (d) = (((d) << 1)+((d) >> 31)) ^ y
927 :
928 : #define DECROUND(n, a, b, c, d) \
929 : x = G1 (a); y = G2 (b); \
930 : x += y; y += x; \
931 : (d) ^= y + ctx->k[2 * (n) + 1]; \
932 : (d) = ((d) >> 1) + ((d) << 31); \
933 : (c) = (((c) << 1)+((c) >> 31)); \
934 : (c) ^= (x + ctx->k[2 * (n)])
935 :
936 : /* Encryption and decryption cycles; each one is simply two Feistel rounds
937 : * with the 32-bit chunks re-ordered to simulate the "swap" */
938 :
939 : #define ENCCYCLE(n) \
940 : ENCROUND (2 * (n), a, b, c, d); \
941 : ENCROUND (2 * (n) + 1, c, d, a, b)
942 :
943 : #define DECCYCLE(n) \
944 : DECROUND (2 * (n) + 1, c, d, a, b); \
945 : DECROUND (2 * (n), a, b, c, d)
946 :
947 : /* Macros to convert the input and output bytes into 32-bit words,
948 : * and simultaneously perform the whitening step. INPACK packs word
949 : * number n into the variable named by x, using whitening subkey number m.
950 : * OUTUNPACK unpacks word number n from the variable named by x, using
951 : * whitening subkey number m. */
952 :
953 : #define INPACK(n, x, m) \
954 : x = buf_get_le32(in + (n) * 4); \
955 : x ^= ctx->w[m]
956 :
957 : #define OUTUNPACK(n, x, m) \
958 : x ^= ctx->w[m]; \
959 : buf_put_le32(out + (n) * 4, x)
960 :
961 : #endif /*!USE_AMD64_ASM*/
962 :
963 :
964 : /* Encrypt one block. in and out may be the same. */
965 :
966 : #ifdef USE_AMD64_ASM
967 :
968 : static unsigned int
969 0 : twofish_encrypt (void *context, byte *out, const byte *in)
970 : {
971 0 : TWOFISH_context *ctx = context;
972 0 : twofish_amd64_encrypt_block(ctx, out, in);
973 0 : return /*burn_stack*/ (4*sizeof (void*));
974 : }
975 :
976 : #elif defined(USE_ARM_ASM)
977 :
978 : static unsigned int
979 : twofish_encrypt (void *context, byte *out, const byte *in)
980 : {
981 : TWOFISH_context *ctx = context;
982 : _gcry_twofish_arm_encrypt_block(ctx, out, in);
983 : return /*burn_stack*/ (4*sizeof (void*));
984 : }
985 :
986 : #else /*!USE_AMD64_ASM && !USE_ARM_ASM*/
987 :
988 : static void
989 : do_twofish_encrypt (const TWOFISH_context *ctx, byte *out, const byte *in)
990 : {
991 : /* The four 32-bit chunks of the text. */
992 : u32 a, b, c, d;
993 :
994 : /* Temporaries used by the round function. */
995 : u32 x, y;
996 :
997 : /* Input whitening and packing. */
998 : INPACK (0, a, 0);
999 : INPACK (1, b, 1);
1000 : INPACK (2, c, 2);
1001 : INPACK (3, d, 3);
1002 :
1003 : /* Encryption Feistel cycles. */
1004 : ENCCYCLE (0);
1005 : ENCCYCLE (1);
1006 : ENCCYCLE (2);
1007 : ENCCYCLE (3);
1008 : ENCCYCLE (4);
1009 : ENCCYCLE (5);
1010 : ENCCYCLE (6);
1011 : ENCCYCLE (7);
1012 :
1013 : /* Output whitening and unpacking. */
1014 : OUTUNPACK (0, c, 4);
1015 : OUTUNPACK (1, d, 5);
1016 : OUTUNPACK (2, a, 6);
1017 : OUTUNPACK (3, b, 7);
1018 : }
1019 :
1020 : static unsigned int
1021 : twofish_encrypt (void *context, byte *out, const byte *in)
1022 : {
1023 : TWOFISH_context *ctx = context;
1024 : do_twofish_encrypt (ctx, out, in);
1025 : return /*burn_stack*/ (24+3*sizeof (void*));
1026 : }
1027 :
1028 : #endif /*!USE_AMD64_ASM && !USE_ARM_ASM*/
1029 :
1030 :
1031 : /* Decrypt one block. in and out may be the same. */
1032 :
1033 : #ifdef USE_AMD64_ASM
1034 :
1035 : static unsigned int
1036 0 : twofish_decrypt (void *context, byte *out, const byte *in)
1037 : {
1038 0 : TWOFISH_context *ctx = context;
1039 0 : twofish_amd64_decrypt_block(ctx, out, in);
1040 0 : return /*burn_stack*/ (4*sizeof (void*));
1041 : }
1042 :
1043 : #elif defined(USE_ARM_ASM)
1044 :
1045 : static unsigned int
1046 : twofish_decrypt (void *context, byte *out, const byte *in)
1047 : {
1048 : TWOFISH_context *ctx = context;
1049 : _gcry_twofish_arm_decrypt_block(ctx, out, in);
1050 : return /*burn_stack*/ (4*sizeof (void*));
1051 : }
1052 :
1053 : #else /*!USE_AMD64_ASM && !USE_ARM_ASM*/
1054 :
1055 : static void
1056 : do_twofish_decrypt (const TWOFISH_context *ctx, byte *out, const byte *in)
1057 : {
1058 : /* The four 32-bit chunks of the text. */
1059 : u32 a, b, c, d;
1060 :
1061 : /* Temporaries used by the round function. */
1062 : u32 x, y;
1063 :
1064 : /* Input whitening and packing. */
1065 : INPACK (0, c, 4);
1066 : INPACK (1, d, 5);
1067 : INPACK (2, a, 6);
1068 : INPACK (3, b, 7);
1069 :
1070 : /* Encryption Feistel cycles. */
1071 : DECCYCLE (7);
1072 : DECCYCLE (6);
1073 : DECCYCLE (5);
1074 : DECCYCLE (4);
1075 : DECCYCLE (3);
1076 : DECCYCLE (2);
1077 : DECCYCLE (1);
1078 : DECCYCLE (0);
1079 :
1080 : /* Output whitening and unpacking. */
1081 : OUTUNPACK (0, a, 0);
1082 : OUTUNPACK (1, b, 1);
1083 : OUTUNPACK (2, c, 2);
1084 : OUTUNPACK (3, d, 3);
1085 : }
1086 :
1087 : static unsigned int
1088 : twofish_decrypt (void *context, byte *out, const byte *in)
1089 : {
1090 : TWOFISH_context *ctx = context;
1091 :
1092 : do_twofish_decrypt (ctx, out, in);
1093 : return /*burn_stack*/ (24+3*sizeof (void*));
1094 : }
1095 :
1096 : #endif /*!USE_AMD64_ASM && !USE_ARM_ASM*/
1097 :
1098 :
1099 :
1100 : /* Bulk encryption of complete blocks in CTR mode. This function is only
1101 : intended for the bulk encryption feature of cipher.c. CTR is expected to be
1102 : of size TWOFISH_BLOCKSIZE. */
1103 : void
1104 0 : _gcry_twofish_ctr_enc(void *context, unsigned char *ctr, void *outbuf_arg,
1105 : const void *inbuf_arg, size_t nblocks)
1106 : {
1107 0 : TWOFISH_context *ctx = context;
1108 0 : unsigned char *outbuf = outbuf_arg;
1109 0 : const unsigned char *inbuf = inbuf_arg;
1110 : unsigned char tmpbuf[TWOFISH_BLOCKSIZE];
1111 0 : unsigned int burn, burn_stack_depth = 0;
1112 : int i;
1113 :
1114 : #ifdef USE_AMD64_ASM
1115 : {
1116 : /* Process data in 3 block chunks. */
1117 0 : while (nblocks >= 3)
1118 : {
1119 0 : twofish_amd64_ctr_enc(ctx, outbuf, inbuf, ctr);
1120 :
1121 0 : nblocks -= 3;
1122 0 : outbuf += 3 * TWOFISH_BLOCKSIZE;
1123 0 : inbuf += 3 * TWOFISH_BLOCKSIZE;
1124 :
1125 0 : burn = 8 * sizeof(void*);
1126 0 : if (burn > burn_stack_depth)
1127 0 : burn_stack_depth = burn;
1128 : }
1129 :
1130 : /* Use generic code to handle smaller chunks... */
1131 : /* TODO: use caching instead? */
1132 : }
1133 : #endif
1134 :
1135 0 : for ( ;nblocks; nblocks-- )
1136 : {
1137 : /* Encrypt the counter. */
1138 0 : burn = twofish_encrypt(ctx, tmpbuf, ctr);
1139 0 : if (burn > burn_stack_depth)
1140 0 : burn_stack_depth = burn;
1141 :
1142 : /* XOR the input with the encrypted counter and store in output. */
1143 0 : buf_xor(outbuf, tmpbuf, inbuf, TWOFISH_BLOCKSIZE);
1144 0 : outbuf += TWOFISH_BLOCKSIZE;
1145 0 : inbuf += TWOFISH_BLOCKSIZE;
1146 : /* Increment the counter. */
1147 0 : for (i = TWOFISH_BLOCKSIZE; i > 0; i--)
1148 : {
1149 0 : ctr[i-1]++;
1150 0 : if (ctr[i-1])
1151 0 : break;
1152 : }
1153 : }
1154 :
1155 0 : wipememory(tmpbuf, sizeof(tmpbuf));
1156 0 : _gcry_burn_stack(burn_stack_depth);
1157 0 : }
1158 :
1159 :
1160 : /* Bulk decryption of complete blocks in CBC mode. This function is only
1161 : intended for the bulk encryption feature of cipher.c. */
1162 : void
1163 0 : _gcry_twofish_cbc_dec(void *context, unsigned char *iv, void *outbuf_arg,
1164 : const void *inbuf_arg, size_t nblocks)
1165 : {
1166 0 : TWOFISH_context *ctx = context;
1167 0 : unsigned char *outbuf = outbuf_arg;
1168 0 : const unsigned char *inbuf = inbuf_arg;
1169 : unsigned char savebuf[TWOFISH_BLOCKSIZE];
1170 0 : unsigned int burn, burn_stack_depth = 0;
1171 :
1172 : #ifdef USE_AMD64_ASM
1173 : {
1174 : /* Process data in 3 block chunks. */
1175 0 : while (nblocks >= 3)
1176 : {
1177 0 : twofish_amd64_cbc_dec(ctx, outbuf, inbuf, iv);
1178 :
1179 0 : nblocks -= 3;
1180 0 : outbuf += 3 * TWOFISH_BLOCKSIZE;
1181 0 : inbuf += 3 * TWOFISH_BLOCKSIZE;
1182 :
1183 0 : burn = 9 * sizeof(void*);
1184 0 : if (burn > burn_stack_depth)
1185 0 : burn_stack_depth = burn;
1186 : }
1187 :
1188 : /* Use generic code to handle smaller chunks... */
1189 : }
1190 : #endif
1191 :
1192 0 : for ( ;nblocks; nblocks-- )
1193 : {
1194 : /* INBUF is needed later and it may be identical to OUTBUF, so store
1195 : the intermediate result to SAVEBUF. */
1196 0 : burn = twofish_decrypt (ctx, savebuf, inbuf);
1197 0 : if (burn > burn_stack_depth)
1198 0 : burn_stack_depth = burn;
1199 :
1200 0 : buf_xor_n_copy_2(outbuf, savebuf, iv, inbuf, TWOFISH_BLOCKSIZE);
1201 0 : inbuf += TWOFISH_BLOCKSIZE;
1202 0 : outbuf += TWOFISH_BLOCKSIZE;
1203 : }
1204 :
1205 0 : wipememory(savebuf, sizeof(savebuf));
1206 0 : _gcry_burn_stack(burn_stack_depth);
1207 0 : }
1208 :
1209 :
1210 : /* Bulk decryption of complete blocks in CFB mode. This function is only
1211 : intended for the bulk encryption feature of cipher.c. */
1212 : void
1213 0 : _gcry_twofish_cfb_dec(void *context, unsigned char *iv, void *outbuf_arg,
1214 : const void *inbuf_arg, size_t nblocks)
1215 : {
1216 0 : TWOFISH_context *ctx = context;
1217 0 : unsigned char *outbuf = outbuf_arg;
1218 0 : const unsigned char *inbuf = inbuf_arg;
1219 0 : unsigned int burn, burn_stack_depth = 0;
1220 :
1221 : #ifdef USE_AMD64_ASM
1222 : {
1223 : /* Process data in 3 block chunks. */
1224 0 : while (nblocks >= 3)
1225 : {
1226 0 : twofish_amd64_cfb_dec(ctx, outbuf, inbuf, iv);
1227 :
1228 0 : nblocks -= 3;
1229 0 : outbuf += 3 * TWOFISH_BLOCKSIZE;
1230 0 : inbuf += 3 * TWOFISH_BLOCKSIZE;
1231 :
1232 0 : burn = 8 * sizeof(void*);
1233 0 : if (burn > burn_stack_depth)
1234 0 : burn_stack_depth = burn;
1235 : }
1236 :
1237 : /* Use generic code to handle smaller chunks... */
1238 : }
1239 : #endif
1240 :
1241 0 : for ( ;nblocks; nblocks-- )
1242 : {
1243 0 : burn = twofish_encrypt(ctx, iv, iv);
1244 0 : if (burn > burn_stack_depth)
1245 0 : burn_stack_depth = burn;
1246 :
1247 0 : buf_xor_n_copy(outbuf, iv, inbuf, TWOFISH_BLOCKSIZE);
1248 0 : outbuf += TWOFISH_BLOCKSIZE;
1249 0 : inbuf += TWOFISH_BLOCKSIZE;
1250 : }
1251 :
1252 0 : _gcry_burn_stack(burn_stack_depth);
1253 0 : }
1254 :
1255 : /* Bulk encryption/decryption of complete blocks in OCB mode. */
1256 : size_t
1257 0 : _gcry_twofish_ocb_crypt (gcry_cipher_hd_t c, void *outbuf_arg,
1258 : const void *inbuf_arg, size_t nblocks, int encrypt)
1259 : {
1260 : #ifdef USE_AMD64_ASM
1261 0 : TWOFISH_context *ctx = (void *)&c->context.c;
1262 0 : unsigned char *outbuf = outbuf_arg;
1263 0 : const unsigned char *inbuf = inbuf_arg;
1264 0 : unsigned int burn, burn_stack_depth = 0;
1265 0 : u64 blkn = c->u_mode.ocb.data_nblocks;
1266 :
1267 : {
1268 : /* Use u64 to store pointers for x32 support (assembly function
1269 : * assumes 64-bit pointers). */
1270 : u64 Ls[3];
1271 :
1272 : /* Process data in 3 block chunks. */
1273 0 : while (nblocks >= 3)
1274 : {
1275 0 : Ls[0] = (uintptr_t)(const void *)ocb_get_l(c, blkn + 1);
1276 0 : Ls[1] = (uintptr_t)(const void *)ocb_get_l(c, blkn + 2);
1277 0 : Ls[2] = (uintptr_t)(const void *)ocb_get_l(c, blkn + 3);
1278 0 : blkn += 3;
1279 :
1280 0 : if (encrypt)
1281 0 : twofish_amd64_ocb_enc(ctx, outbuf, inbuf, c->u_iv.iv, c->u_ctr.ctr,
1282 : Ls);
1283 : else
1284 0 : twofish_amd64_ocb_dec(ctx, outbuf, inbuf, c->u_iv.iv, c->u_ctr.ctr,
1285 : Ls);
1286 :
1287 0 : nblocks -= 3;
1288 0 : outbuf += 3 * TWOFISH_BLOCKSIZE;
1289 0 : inbuf += 3 * TWOFISH_BLOCKSIZE;
1290 :
1291 0 : burn = 8 * sizeof(void*);
1292 0 : if (burn > burn_stack_depth)
1293 0 : burn_stack_depth = burn;
1294 : }
1295 :
1296 : /* Use generic code to handle smaller chunks... */
1297 : }
1298 :
1299 0 : c->u_mode.ocb.data_nblocks = blkn;
1300 :
1301 0 : if (burn_stack_depth)
1302 0 : _gcry_burn_stack (burn_stack_depth + 4 * sizeof(void *));
1303 : #else
1304 : (void)c;
1305 : (void)outbuf_arg;
1306 : (void)inbuf_arg;
1307 : (void)encrypt;
1308 : #endif
1309 :
1310 0 : return nblocks;
1311 : }
1312 :
1313 : /* Bulk authentication of complete blocks in OCB mode. */
1314 : size_t
1315 0 : _gcry_twofish_ocb_auth (gcry_cipher_hd_t c, const void *abuf_arg,
1316 : size_t nblocks)
1317 : {
1318 : #ifdef USE_AMD64_ASM
1319 0 : TWOFISH_context *ctx = (void *)&c->context.c;
1320 0 : const unsigned char *abuf = abuf_arg;
1321 0 : unsigned int burn, burn_stack_depth = 0;
1322 0 : u64 blkn = c->u_mode.ocb.aad_nblocks;
1323 :
1324 : {
1325 : /* Use u64 to store pointers for x32 support (assembly function
1326 : * assumes 64-bit pointers). */
1327 : u64 Ls[3];
1328 :
1329 : /* Process data in 3 block chunks. */
1330 0 : while (nblocks >= 3)
1331 : {
1332 0 : Ls[0] = (uintptr_t)(const void *)ocb_get_l(c, blkn + 1);
1333 0 : Ls[1] = (uintptr_t)(const void *)ocb_get_l(c, blkn + 2);
1334 0 : Ls[2] = (uintptr_t)(const void *)ocb_get_l(c, blkn + 3);
1335 0 : blkn += 3;
1336 :
1337 0 : twofish_amd64_ocb_auth(ctx, abuf, c->u_mode.ocb.aad_offset,
1338 0 : c->u_mode.ocb.aad_sum, Ls);
1339 :
1340 0 : nblocks -= 3;
1341 0 : abuf += 3 * TWOFISH_BLOCKSIZE;
1342 :
1343 0 : burn = 8 * sizeof(void*);
1344 0 : if (burn > burn_stack_depth)
1345 0 : burn_stack_depth = burn;
1346 : }
1347 :
1348 : /* Use generic code to handle smaller chunks... */
1349 : }
1350 :
1351 0 : c->u_mode.ocb.aad_nblocks = blkn;
1352 :
1353 0 : if (burn_stack_depth)
1354 0 : _gcry_burn_stack (burn_stack_depth + 4 * sizeof(void *));
1355 : #else
1356 : (void)c;
1357 : (void)abuf_arg;
1358 : #endif
1359 :
1360 0 : return nblocks;
1361 : }
1362 :
1363 :
1364 :
1365 : /* Run the self-tests for TWOFISH-CTR, tests IV increment of bulk CTR
1366 : encryption. Returns NULL on success. */
1367 : static const char *
1368 0 : selftest_ctr (void)
1369 : {
1370 0 : const int nblocks = 3+1;
1371 0 : const int blocksize = TWOFISH_BLOCKSIZE;
1372 0 : const int context_size = sizeof(TWOFISH_context);
1373 :
1374 0 : return _gcry_selftest_helper_ctr("TWOFISH", &twofish_setkey,
1375 : &twofish_encrypt, &_gcry_twofish_ctr_enc, nblocks, blocksize,
1376 : context_size);
1377 : }
1378 :
1379 : /* Run the self-tests for TWOFISH-CBC, tests bulk CBC decryption.
1380 : Returns NULL on success. */
1381 : static const char *
1382 0 : selftest_cbc (void)
1383 : {
1384 0 : const int nblocks = 3+2;
1385 0 : const int blocksize = TWOFISH_BLOCKSIZE;
1386 0 : const int context_size = sizeof(TWOFISH_context);
1387 :
1388 0 : return _gcry_selftest_helper_cbc("TWOFISH", &twofish_setkey,
1389 : &twofish_encrypt, &_gcry_twofish_cbc_dec, nblocks, blocksize,
1390 : context_size);
1391 : }
1392 :
1393 : /* Run the self-tests for TWOFISH-CFB, tests bulk CBC decryption.
1394 : Returns NULL on success. */
1395 : static const char *
1396 0 : selftest_cfb (void)
1397 : {
1398 0 : const int nblocks = 3+2;
1399 0 : const int blocksize = TWOFISH_BLOCKSIZE;
1400 0 : const int context_size = sizeof(TWOFISH_context);
1401 :
1402 0 : return _gcry_selftest_helper_cfb("TWOFISH", &twofish_setkey,
1403 : &twofish_encrypt, &_gcry_twofish_cfb_dec, nblocks, blocksize,
1404 : context_size);
1405 : }
1406 :
1407 :
1408 : /* Test a single encryption and decryption with each key size. */
1409 :
1410 : static const char*
1411 0 : selftest (void)
1412 : {
1413 : TWOFISH_context ctx; /* Expanded key. */
1414 : byte scratch[16]; /* Encryption/decryption result buffer. */
1415 : const char *r;
1416 :
1417 : /* Test vectors for single encryption/decryption. Note that I am using
1418 : * the vectors from the Twofish paper's "known answer test", I=3 for
1419 : * 128-bit and I=4 for 256-bit, instead of the all-0 vectors from the
1420 : * "intermediate value test", because an all-0 key would trigger all the
1421 : * special cases in the RS matrix multiply, leaving the math untested. */
1422 : static byte plaintext[16] = {
1423 : 0xD4, 0x91, 0xDB, 0x16, 0xE7, 0xB1, 0xC3, 0x9E,
1424 : 0x86, 0xCB, 0x08, 0x6B, 0x78, 0x9F, 0x54, 0x19
1425 : };
1426 : static byte key[16] = {
1427 : 0x9F, 0x58, 0x9F, 0x5C, 0xF6, 0x12, 0x2C, 0x32,
1428 : 0xB6, 0xBF, 0xEC, 0x2F, 0x2A, 0xE8, 0xC3, 0x5A
1429 : };
1430 : static const byte ciphertext[16] = {
1431 : 0x01, 0x9F, 0x98, 0x09, 0xDE, 0x17, 0x11, 0x85,
1432 : 0x8F, 0xAA, 0xC3, 0xA3, 0xBA, 0x20, 0xFB, 0xC3
1433 : };
1434 : static byte plaintext_256[16] = {
1435 : 0x90, 0xAF, 0xE9, 0x1B, 0xB2, 0x88, 0x54, 0x4F,
1436 : 0x2C, 0x32, 0xDC, 0x23, 0x9B, 0x26, 0x35, 0xE6
1437 : };
1438 : static byte key_256[32] = {
1439 : 0xD4, 0x3B, 0xB7, 0x55, 0x6E, 0xA3, 0x2E, 0x46,
1440 : 0xF2, 0xA2, 0x82, 0xB7, 0xD4, 0x5B, 0x4E, 0x0D,
1441 : 0x57, 0xFF, 0x73, 0x9D, 0x4D, 0xC9, 0x2C, 0x1B,
1442 : 0xD7, 0xFC, 0x01, 0x70, 0x0C, 0xC8, 0x21, 0x6F
1443 : };
1444 : static const byte ciphertext_256[16] = {
1445 : 0x6C, 0xB4, 0x56, 0x1C, 0x40, 0xBF, 0x0A, 0x97,
1446 : 0x05, 0x93, 0x1C, 0xB6, 0xD4, 0x08, 0xE7, 0xFA
1447 : };
1448 :
1449 0 : twofish_setkey (&ctx, key, sizeof(key));
1450 0 : twofish_encrypt (&ctx, scratch, plaintext);
1451 0 : if (memcmp (scratch, ciphertext, sizeof (ciphertext)))
1452 0 : return "Twofish-128 test encryption failed.";
1453 0 : twofish_decrypt (&ctx, scratch, scratch);
1454 0 : if (memcmp (scratch, plaintext, sizeof (plaintext)))
1455 0 : return "Twofish-128 test decryption failed.";
1456 :
1457 0 : twofish_setkey (&ctx, key_256, sizeof(key_256));
1458 0 : twofish_encrypt (&ctx, scratch, plaintext_256);
1459 0 : if (memcmp (scratch, ciphertext_256, sizeof (ciphertext_256)))
1460 0 : return "Twofish-256 test encryption failed.";
1461 0 : twofish_decrypt (&ctx, scratch, scratch);
1462 0 : if (memcmp (scratch, plaintext_256, sizeof (plaintext_256)))
1463 0 : return "Twofish-256 test decryption failed.";
1464 :
1465 0 : if ((r = selftest_ctr()) != NULL)
1466 0 : return r;
1467 0 : if ((r = selftest_cbc()) != NULL)
1468 0 : return r;
1469 0 : if ((r = selftest_cfb()) != NULL)
1470 0 : return r;
1471 :
1472 0 : return NULL;
1473 : }
1474 :
1475 : /* More complete test program. This does 1000 encryptions and decryptions
1476 : * with each of 250 128-bit keys and 2000 encryptions and decryptions with
1477 : * each of 125 256-bit keys, using a feedback scheme similar to a Feistel
1478 : * cipher, so as to be sure of testing all the table entries pretty
1479 : * thoroughly. We keep changing the keys so as to get a more meaningful
1480 : * performance number, since the key setup is non-trivial for Twofish. */
1481 :
1482 : #ifdef TEST
1483 :
1484 : #include <stdio.h>
1485 : #include <string.h>
1486 : #include <time.h>
1487 :
1488 : int
1489 : main()
1490 : {
1491 : TWOFISH_context ctx; /* Expanded key. */
1492 : int i, j; /* Loop counters. */
1493 :
1494 : const char *encrypt_msg; /* Message to print regarding encryption test;
1495 : * the printf is done outside the loop to avoid
1496 : * stuffing up the timing. */
1497 : clock_t timer; /* For computing elapsed time. */
1498 :
1499 : /* Test buffer. */
1500 : byte buffer[4][16] = {
1501 : {0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
1502 : 0x88, 0x99, 0xAA, 0xBB, 0xCC, 0xDD, 0xEE, 0xFF},
1503 : {0x0F, 0x1E, 0x2D, 0x3C, 0x4B, 0x5A, 0x69, 0x78,
1504 : 0x87, 0x96, 0xA5, 0xB4, 0xC3, 0xD2 ,0xE1, 0xF0},
1505 : {0x01, 0x23, 0x45, 0x67, 0x89, 0xAB, 0xCD, 0xEF,
1506 : 0xFE, 0xDC, 0xBA, 0x98, 0x76, 0x54 ,0x32, 0x10},
1507 : {0x01, 0x23, 0x45, 0x67, 0x76, 0x54 ,0x32, 0x10,
1508 : 0x89, 0xAB, 0xCD, 0xEF, 0xFE, 0xDC, 0xBA, 0x98}
1509 : };
1510 :
1511 : /* Expected outputs for the million-operation test */
1512 : static const byte test_encrypt[4][16] = {
1513 : {0xC8, 0x23, 0xB8, 0xB7, 0x6B, 0xFE, 0x91, 0x13,
1514 : 0x2F, 0xA7, 0x5E, 0xE6, 0x94, 0x77, 0x6F, 0x6B},
1515 : {0x90, 0x36, 0xD8, 0x29, 0xD5, 0x96, 0xC2, 0x8E,
1516 : 0xE4, 0xFF, 0x76, 0xBC, 0xE5, 0x77, 0x88, 0x27},
1517 : {0xB8, 0x78, 0x69, 0xAF, 0x42, 0x8B, 0x48, 0x64,
1518 : 0xF7, 0xE9, 0xF3, 0x9C, 0x42, 0x18, 0x7B, 0x73},
1519 : {0x7A, 0x88, 0xFB, 0xEB, 0x90, 0xA4, 0xB4, 0xA8,
1520 : 0x43, 0xA3, 0x1D, 0xF1, 0x26, 0xC4, 0x53, 0x57}
1521 : };
1522 : static const byte test_decrypt[4][16] = {
1523 : {0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
1524 : 0x88, 0x99, 0xAA, 0xBB, 0xCC, 0xDD, 0xEE, 0xFF},
1525 : {0x0F, 0x1E, 0x2D, 0x3C, 0x4B, 0x5A, 0x69, 0x78,
1526 : 0x87, 0x96, 0xA5, 0xB4, 0xC3, 0xD2 ,0xE1, 0xF0},
1527 : {0x01, 0x23, 0x45, 0x67, 0x89, 0xAB, 0xCD, 0xEF,
1528 : 0xFE, 0xDC, 0xBA, 0x98, 0x76, 0x54 ,0x32, 0x10},
1529 : {0x01, 0x23, 0x45, 0x67, 0x76, 0x54 ,0x32, 0x10,
1530 : 0x89, 0xAB, 0xCD, 0xEF, 0xFE, 0xDC, 0xBA, 0x98}
1531 : };
1532 :
1533 : /* Start the timer ticking. */
1534 : timer = clock ();
1535 :
1536 : /* Encryption test. */
1537 : for (i = 0; i < 125; i++)
1538 : {
1539 : twofish_setkey (&ctx, buffer[0], sizeof (buffer[0]));
1540 : for (j = 0; j < 1000; j++)
1541 : twofish_encrypt (&ctx, buffer[2], buffer[2]);
1542 : twofish_setkey (&ctx, buffer[1], sizeof (buffer[1]));
1543 : for (j = 0; j < 1000; j++)
1544 : twofish_encrypt (&ctx, buffer[3], buffer[3]);
1545 : twofish_setkey (&ctx, buffer[2], sizeof (buffer[2])*2);
1546 : for (j = 0; j < 1000; j++) {
1547 : twofish_encrypt (&ctx, buffer[0], buffer[0]);
1548 : twofish_encrypt (&ctx, buffer[1], buffer[1]);
1549 : }
1550 : }
1551 : encrypt_msg = memcmp (buffer, test_encrypt, sizeof (test_encrypt)) ?
1552 : "encryption failure!\n" : "encryption OK!\n";
1553 :
1554 : /* Decryption test. */
1555 : for (i = 0; i < 125; i++)
1556 : {
1557 : twofish_setkey (&ctx, buffer[2], sizeof (buffer[2])*2);
1558 : for (j = 0; j < 1000; j++) {
1559 : twofish_decrypt (&ctx, buffer[0], buffer[0]);
1560 : twofish_decrypt (&ctx, buffer[1], buffer[1]);
1561 : }
1562 : twofish_setkey (&ctx, buffer[1], sizeof (buffer[1]));
1563 : for (j = 0; j < 1000; j++)
1564 : twofish_decrypt (&ctx, buffer[3], buffer[3]);
1565 : twofish_setkey (&ctx, buffer[0], sizeof (buffer[0]));
1566 : for (j = 0; j < 1000; j++)
1567 : twofish_decrypt (&ctx, buffer[2], buffer[2]);
1568 : }
1569 :
1570 : /* Stop the timer, and print results. */
1571 : timer = clock () - timer;
1572 : printf (encrypt_msg);
1573 : printf (memcmp (buffer, test_decrypt, sizeof (test_decrypt)) ?
1574 : "decryption failure!\n" : "decryption OK!\n");
1575 : printf ("elapsed time: %.1f s.\n", (float) timer / CLOCKS_PER_SEC);
1576 :
1577 : return 0;
1578 : }
1579 :
1580 : #endif /* TEST */
1581 :
1582 :
1583 :
1584 : gcry_cipher_spec_t _gcry_cipher_spec_twofish =
1585 : {
1586 : GCRY_CIPHER_TWOFISH, {0, 0},
1587 : "TWOFISH", NULL, NULL, 16, 256, sizeof (TWOFISH_context),
1588 : twofish_setkey, twofish_encrypt, twofish_decrypt
1589 : };
1590 :
1591 : gcry_cipher_spec_t _gcry_cipher_spec_twofish128 =
1592 : {
1593 : GCRY_CIPHER_TWOFISH128, {0, 0},
1594 : "TWOFISH128", NULL, NULL, 16, 128, sizeof (TWOFISH_context),
1595 : twofish_setkey, twofish_encrypt, twofish_decrypt
1596 : };
|