Line data Source code
1 : /* rmd160.c - RIPE-MD160
2 : * Copyright (C) 1998, 2001, 2002, 2003 Free Software Foundation, Inc.
3 : *
4 : * This file is part of Libgcrypt.
5 : *
6 : * Libgcrypt is free software; you can redistribute it and/or modify
7 : * it under the terms of the GNU Lesser General Public License as
8 : * published by the Free Software Foundation; either version 2.1 of
9 : * the License, or (at your option) any later version.
10 : *
11 : * Libgcrypt is distributed in the hope that it will be useful,
12 : * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 : * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 : * GNU Lesser General Public License for more details.
15 : *
16 : * You should have received a copy of the GNU Lesser General Public
17 : * License along with this program; if not, write to the Free Software
18 : * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
19 : */
20 :
21 : #include <config.h>
22 : #include <stdio.h>
23 : #include <stdlib.h>
24 : #include <string.h>
25 :
26 : #include "g10lib.h"
27 : #include "hash-common.h"
28 : #include "cipher.h" /* Only used for the rmd160_hash_buffer() prototype. */
29 :
30 : #include "bithelp.h"
31 : #include "bufhelp.h"
32 :
33 : /*********************************
34 : * RIPEMD-160 is not patented, see (as of 25.10.97)
35 : * http://www.esat.kuleuven.ac.be/~bosselae/ripemd160.html
36 : * Note that the code uses Little Endian byteorder, which is good for
37 : * 386 etc, but we must add some conversion when used on a big endian box.
38 : *
39 : *
40 : * Pseudo-code for RIPEMD-160
41 : *
42 : * RIPEMD-160 is an iterative hash function that operates on 32-bit words.
43 : * The round function takes as input a 5-word chaining variable and a 16-word
44 : * message block and maps this to a new chaining variable. All operations are
45 : * defined on 32-bit words. Padding is identical to that of MD4.
46 : *
47 : *
48 : * RIPEMD-160: definitions
49 : *
50 : *
51 : * nonlinear functions at bit level: exor, mux, -, mux, -
52 : *
53 : * f(j, x, y, z) = x XOR y XOR z (0 <= j <= 15)
54 : * f(j, x, y, z) = (x AND y) OR (NOT(x) AND z) (16 <= j <= 31)
55 : * f(j, x, y, z) = (x OR NOT(y)) XOR z (32 <= j <= 47)
56 : * f(j, x, y, z) = (x AND z) OR (y AND NOT(z)) (48 <= j <= 63)
57 : * f(j, x, y, z) = x XOR (y OR NOT(z)) (64 <= j <= 79)
58 : *
59 : *
60 : * added constants (hexadecimal)
61 : *
62 : * K(j) = 0x00000000 (0 <= j <= 15)
63 : * K(j) = 0x5A827999 (16 <= j <= 31) int(2**30 x sqrt(2))
64 : * K(j) = 0x6ED9EBA1 (32 <= j <= 47) int(2**30 x sqrt(3))
65 : * K(j) = 0x8F1BBCDC (48 <= j <= 63) int(2**30 x sqrt(5))
66 : * K(j) = 0xA953FD4E (64 <= j <= 79) int(2**30 x sqrt(7))
67 : * K'(j) = 0x50A28BE6 (0 <= j <= 15) int(2**30 x cbrt(2))
68 : * K'(j) = 0x5C4DD124 (16 <= j <= 31) int(2**30 x cbrt(3))
69 : * K'(j) = 0x6D703EF3 (32 <= j <= 47) int(2**30 x cbrt(5))
70 : * K'(j) = 0x7A6D76E9 (48 <= j <= 63) int(2**30 x cbrt(7))
71 : * K'(j) = 0x00000000 (64 <= j <= 79)
72 : *
73 : *
74 : * selection of message word
75 : *
76 : * r(j) = j (0 <= j <= 15)
77 : * r(16..31) = 7, 4, 13, 1, 10, 6, 15, 3, 12, 0, 9, 5, 2, 14, 11, 8
78 : * r(32..47) = 3, 10, 14, 4, 9, 15, 8, 1, 2, 7, 0, 6, 13, 11, 5, 12
79 : * r(48..63) = 1, 9, 11, 10, 0, 8, 12, 4, 13, 3, 7, 15, 14, 5, 6, 2
80 : * r(64..79) = 4, 0, 5, 9, 7, 12, 2, 10, 14, 1, 3, 8, 11, 6, 15, 13
81 : * r0(0..15) = 5, 14, 7, 0, 9, 2, 11, 4, 13, 6, 15, 8, 1, 10, 3, 12
82 : * r0(16..31)= 6, 11, 3, 7, 0, 13, 5, 10, 14, 15, 8, 12, 4, 9, 1, 2
83 : * r0(32..47)= 15, 5, 1, 3, 7, 14, 6, 9, 11, 8, 12, 2, 10, 0, 4, 13
84 : * r0(48..63)= 8, 6, 4, 1, 3, 11, 15, 0, 5, 12, 2, 13, 9, 7, 10, 14
85 : * r0(64..79)= 12, 15, 10, 4, 1, 5, 8, 7, 6, 2, 13, 14, 0, 3, 9, 11
86 : *
87 : *
88 : * amount for rotate left (rol)
89 : *
90 : * s(0..15) = 11, 14, 15, 12, 5, 8, 7, 9, 11, 13, 14, 15, 6, 7, 9, 8
91 : * s(16..31) = 7, 6, 8, 13, 11, 9, 7, 15, 7, 12, 15, 9, 11, 7, 13, 12
92 : * s(32..47) = 11, 13, 6, 7, 14, 9, 13, 15, 14, 8, 13, 6, 5, 12, 7, 5
93 : * s(48..63) = 11, 12, 14, 15, 14, 15, 9, 8, 9, 14, 5, 6, 8, 6, 5, 12
94 : * s(64..79) = 9, 15, 5, 11, 6, 8, 13, 12, 5, 12, 13, 14, 11, 8, 5, 6
95 : * s'(0..15) = 8, 9, 9, 11, 13, 15, 15, 5, 7, 7, 8, 11, 14, 14, 12, 6
96 : * s'(16..31)= 9, 13, 15, 7, 12, 8, 9, 11, 7, 7, 12, 7, 6, 15, 13, 11
97 : * s'(32..47)= 9, 7, 15, 11, 8, 6, 6, 14, 12, 13, 5, 14, 13, 13, 7, 5
98 : * s'(48..63)= 15, 5, 8, 11, 14, 14, 6, 14, 6, 9, 12, 9, 12, 5, 15, 8
99 : * s'(64..79)= 8, 5, 12, 9, 12, 5, 14, 6, 8, 13, 6, 5, 15, 13, 11, 11
100 : *
101 : *
102 : * initial value (hexadecimal)
103 : *
104 : * h0 = 0x67452301; h1 = 0xEFCDAB89; h2 = 0x98BADCFE; h3 = 0x10325476;
105 : * h4 = 0xC3D2E1F0;
106 : *
107 : *
108 : * RIPEMD-160: pseudo-code
109 : *
110 : * It is assumed that the message after padding consists of t 16-word blocks
111 : * that will be denoted with X[i][j], with 0 <= i <= t-1 and 0 <= j <= 15.
112 : * The symbol [+] denotes addition modulo 2**32 and rol_s denotes cyclic left
113 : * shift (rotate) over s positions.
114 : *
115 : *
116 : * for i := 0 to t-1 {
117 : * A := h0; B := h1; C := h2; D = h3; E = h4;
118 : * A' := h0; B' := h1; C' := h2; D' = h3; E' = h4;
119 : * for j := 0 to 79 {
120 : * T := rol_s(j)(A [+] f(j, B, C, D) [+] X[i][r(j)] [+] K(j)) [+] E;
121 : * A := E; E := D; D := rol_10(C); C := B; B := T;
122 : * T := rol_s'(j)(A' [+] f(79-j, B', C', D') [+] X[i][r'(j)]
123 : [+] K'(j)) [+] E';
124 : * A' := E'; E' := D'; D' := rol_10(C'); C' := B'; B' := T;
125 : * }
126 : * T := h1 [+] C [+] D'; h1 := h2 [+] D [+] E'; h2 := h3 [+] E [+] A';
127 : * h3 := h4 [+] A [+] B'; h4 := h0 [+] B [+] C'; h0 := T;
128 : * }
129 : */
130 :
131 : /* Some examples:
132 : * "" 9c1185a5c5e9fc54612808977ee8f548b2258d31
133 : * "a" 0bdc9d2d256b3ee9daae347be6f4dc835a467ffe
134 : * "abc" 8eb208f7e05d987a9b044a8e98c6b087f15a0bfc
135 : * "message digest" 5d0689ef49d2fae572b881b123a85ffa21595f36
136 : * "a...z" f71c27109c692c1b56bbdceb5b9d2865b3708dbc
137 : * "abcdbcde...nopq" 12a053384a9c0c88e405a06c27dcf49ada62eb2b
138 : * "A...Za...z0...9" b0e20b6e3116640286ed3a87a5713079b21f5189
139 : * 8 times "1234567890" 9b752e45573d4b39f4dbd3323cab82bf63326bfb
140 : * 1 million times "a" 52783243c1697bdbe16d37f97f68f08325dc1528
141 : */
142 :
143 : typedef struct
144 : {
145 : gcry_md_block_ctx_t bctx;
146 : u32 h0,h1,h2,h3,h4;
147 : } RMD160_CONTEXT;
148 :
149 :
150 : static unsigned int
151 : transform ( void *ctx, const unsigned char *data, size_t nblks );
152 :
153 : static void
154 0 : rmd160_init (void *context, unsigned int flags)
155 : {
156 0 : RMD160_CONTEXT *hd = context;
157 :
158 : (void)flags;
159 :
160 0 : hd->h0 = 0x67452301;
161 0 : hd->h1 = 0xEFCDAB89;
162 0 : hd->h2 = 0x98BADCFE;
163 0 : hd->h3 = 0x10325476;
164 0 : hd->h4 = 0xC3D2E1F0;
165 :
166 0 : hd->bctx.nblocks = 0;
167 0 : hd->bctx.nblocks_high = 0;
168 0 : hd->bctx.count = 0;
169 0 : hd->bctx.blocksize = 64;
170 0 : hd->bctx.bwrite = transform;
171 0 : }
172 :
173 :
174 : /****************
175 : * Transform the message X which consists of 16 32-bit-words
176 : */
177 : static unsigned int
178 0 : transform_blk ( void *ctx, const unsigned char *data )
179 : {
180 0 : RMD160_CONTEXT *hd = ctx;
181 : register u32 al, ar, bl, br, cl, cr, dl, dr, el, er;
182 : u32 x[16];
183 : int i;
184 :
185 0 : for ( i = 0; i < 16; i++ )
186 0 : x[i] = buf_get_le32(data + i * 4);
187 :
188 : #define K0 0x00000000
189 : #define K1 0x5A827999
190 : #define K2 0x6ED9EBA1
191 : #define K3 0x8F1BBCDC
192 : #define K4 0xA953FD4E
193 : #define KK0 0x50A28BE6
194 : #define KK1 0x5C4DD124
195 : #define KK2 0x6D703EF3
196 : #define KK3 0x7A6D76E9
197 : #define KK4 0x00000000
198 : #define F0(x,y,z) ( (x) ^ (y) ^ (z) )
199 : #define F1(x,y,z) ( ((x) & (y)) | (~(x) & (z)) )
200 : #define F2(x,y,z) ( ((x) | ~(y)) ^ (z) )
201 : #define F3(x,y,z) ( ((x) & (z)) | ((y) & ~(z)) )
202 : #define F4(x,y,z) ( (x) ^ ((y) | ~(z)) )
203 : #define R(a,b,c,d,e,f,k,r,s) do { a += f(b,c,d) + k + x[r]; \
204 : a = rol(a,s) + e; \
205 : c = rol(c,10); \
206 : } while(0)
207 :
208 : /* left lane and right lanes interleaved */
209 0 : al = ar = hd->h0;
210 0 : bl = br = hd->h1;
211 0 : cl = cr = hd->h2;
212 0 : dl = dr = hd->h3;
213 0 : el = er = hd->h4;
214 0 : R( al, bl, cl, dl, el, F0, K0, 0, 11 );
215 0 : R( ar, br, cr, dr, er, F4, KK0, 5, 8);
216 0 : R( el, al, bl, cl, dl, F0, K0, 1, 14 );
217 0 : R( er, ar, br, cr, dr, F4, KK0, 14, 9);
218 0 : R( dl, el, al, bl, cl, F0, K0, 2, 15 );
219 0 : R( dr, er, ar, br, cr, F4, KK0, 7, 9);
220 0 : R( cl, dl, el, al, bl, F0, K0, 3, 12 );
221 0 : R( cr, dr, er, ar, br, F4, KK0, 0, 11);
222 0 : R( bl, cl, dl, el, al, F0, K0, 4, 5 );
223 0 : R( br, cr, dr, er, ar, F4, KK0, 9, 13);
224 0 : R( al, bl, cl, dl, el, F0, K0, 5, 8 );
225 0 : R( ar, br, cr, dr, er, F4, KK0, 2, 15);
226 0 : R( el, al, bl, cl, dl, F0, K0, 6, 7 );
227 0 : R( er, ar, br, cr, dr, F4, KK0, 11, 15);
228 0 : R( dl, el, al, bl, cl, F0, K0, 7, 9 );
229 0 : R( dr, er, ar, br, cr, F4, KK0, 4, 5);
230 0 : R( cl, dl, el, al, bl, F0, K0, 8, 11 );
231 0 : R( cr, dr, er, ar, br, F4, KK0, 13, 7);
232 0 : R( bl, cl, dl, el, al, F0, K0, 9, 13 );
233 0 : R( br, cr, dr, er, ar, F4, KK0, 6, 7);
234 0 : R( al, bl, cl, dl, el, F0, K0, 10, 14 );
235 0 : R( ar, br, cr, dr, er, F4, KK0, 15, 8);
236 0 : R( el, al, bl, cl, dl, F0, K0, 11, 15 );
237 0 : R( er, ar, br, cr, dr, F4, KK0, 8, 11);
238 0 : R( dl, el, al, bl, cl, F0, K0, 12, 6 );
239 0 : R( dr, er, ar, br, cr, F4, KK0, 1, 14);
240 0 : R( cl, dl, el, al, bl, F0, K0, 13, 7 );
241 0 : R( cr, dr, er, ar, br, F4, KK0, 10, 14);
242 0 : R( bl, cl, dl, el, al, F0, K0, 14, 9 );
243 0 : R( br, cr, dr, er, ar, F4, KK0, 3, 12);
244 0 : R( al, bl, cl, dl, el, F0, K0, 15, 8 );
245 0 : R( ar, br, cr, dr, er, F4, KK0, 12, 6);
246 0 : R( el, al, bl, cl, dl, F1, K1, 7, 7 );
247 0 : R( er, ar, br, cr, dr, F3, KK1, 6, 9);
248 0 : R( dl, el, al, bl, cl, F1, K1, 4, 6 );
249 0 : R( dr, er, ar, br, cr, F3, KK1, 11, 13);
250 0 : R( cl, dl, el, al, bl, F1, K1, 13, 8 );
251 0 : R( cr, dr, er, ar, br, F3, KK1, 3, 15);
252 0 : R( bl, cl, dl, el, al, F1, K1, 1, 13 );
253 0 : R( br, cr, dr, er, ar, F3, KK1, 7, 7);
254 0 : R( al, bl, cl, dl, el, F1, K1, 10, 11 );
255 0 : R( ar, br, cr, dr, er, F3, KK1, 0, 12);
256 0 : R( el, al, bl, cl, dl, F1, K1, 6, 9 );
257 0 : R( er, ar, br, cr, dr, F3, KK1, 13, 8);
258 0 : R( dl, el, al, bl, cl, F1, K1, 15, 7 );
259 0 : R( dr, er, ar, br, cr, F3, KK1, 5, 9);
260 0 : R( cl, dl, el, al, bl, F1, K1, 3, 15 );
261 0 : R( cr, dr, er, ar, br, F3, KK1, 10, 11);
262 0 : R( bl, cl, dl, el, al, F1, K1, 12, 7 );
263 0 : R( br, cr, dr, er, ar, F3, KK1, 14, 7);
264 0 : R( al, bl, cl, dl, el, F1, K1, 0, 12 );
265 0 : R( ar, br, cr, dr, er, F3, KK1, 15, 7);
266 0 : R( el, al, bl, cl, dl, F1, K1, 9, 15 );
267 0 : R( er, ar, br, cr, dr, F3, KK1, 8, 12);
268 0 : R( dl, el, al, bl, cl, F1, K1, 5, 9 );
269 0 : R( dr, er, ar, br, cr, F3, KK1, 12, 7);
270 0 : R( cl, dl, el, al, bl, F1, K1, 2, 11 );
271 0 : R( cr, dr, er, ar, br, F3, KK1, 4, 6);
272 0 : R( bl, cl, dl, el, al, F1, K1, 14, 7 );
273 0 : R( br, cr, dr, er, ar, F3, KK1, 9, 15);
274 0 : R( al, bl, cl, dl, el, F1, K1, 11, 13 );
275 0 : R( ar, br, cr, dr, er, F3, KK1, 1, 13);
276 0 : R( el, al, bl, cl, dl, F1, K1, 8, 12 );
277 0 : R( er, ar, br, cr, dr, F3, KK1, 2, 11);
278 0 : R( dl, el, al, bl, cl, F2, K2, 3, 11 );
279 0 : R( dr, er, ar, br, cr, F2, KK2, 15, 9);
280 0 : R( cl, dl, el, al, bl, F2, K2, 10, 13 );
281 0 : R( cr, dr, er, ar, br, F2, KK2, 5, 7);
282 0 : R( bl, cl, dl, el, al, F2, K2, 14, 6 );
283 0 : R( br, cr, dr, er, ar, F2, KK2, 1, 15);
284 0 : R( al, bl, cl, dl, el, F2, K2, 4, 7 );
285 0 : R( ar, br, cr, dr, er, F2, KK2, 3, 11);
286 0 : R( el, al, bl, cl, dl, F2, K2, 9, 14 );
287 0 : R( er, ar, br, cr, dr, F2, KK2, 7, 8);
288 0 : R( dl, el, al, bl, cl, F2, K2, 15, 9 );
289 0 : R( dr, er, ar, br, cr, F2, KK2, 14, 6);
290 0 : R( cl, dl, el, al, bl, F2, K2, 8, 13 );
291 0 : R( cr, dr, er, ar, br, F2, KK2, 6, 6);
292 0 : R( bl, cl, dl, el, al, F2, K2, 1, 15 );
293 0 : R( br, cr, dr, er, ar, F2, KK2, 9, 14);
294 0 : R( al, bl, cl, dl, el, F2, K2, 2, 14 );
295 0 : R( ar, br, cr, dr, er, F2, KK2, 11, 12);
296 0 : R( el, al, bl, cl, dl, F2, K2, 7, 8 );
297 0 : R( er, ar, br, cr, dr, F2, KK2, 8, 13);
298 0 : R( dl, el, al, bl, cl, F2, K2, 0, 13 );
299 0 : R( dr, er, ar, br, cr, F2, KK2, 12, 5);
300 0 : R( cl, dl, el, al, bl, F2, K2, 6, 6 );
301 0 : R( cr, dr, er, ar, br, F2, KK2, 2, 14);
302 0 : R( bl, cl, dl, el, al, F2, K2, 13, 5 );
303 0 : R( br, cr, dr, er, ar, F2, KK2, 10, 13);
304 0 : R( al, bl, cl, dl, el, F2, K2, 11, 12 );
305 0 : R( ar, br, cr, dr, er, F2, KK2, 0, 13);
306 0 : R( el, al, bl, cl, dl, F2, K2, 5, 7 );
307 0 : R( er, ar, br, cr, dr, F2, KK2, 4, 7);
308 0 : R( dl, el, al, bl, cl, F2, K2, 12, 5 );
309 0 : R( dr, er, ar, br, cr, F2, KK2, 13, 5);
310 0 : R( cl, dl, el, al, bl, F3, K3, 1, 11 );
311 0 : R( cr, dr, er, ar, br, F1, KK3, 8, 15);
312 0 : R( bl, cl, dl, el, al, F3, K3, 9, 12 );
313 0 : R( br, cr, dr, er, ar, F1, KK3, 6, 5);
314 0 : R( al, bl, cl, dl, el, F3, K3, 11, 14 );
315 0 : R( ar, br, cr, dr, er, F1, KK3, 4, 8);
316 0 : R( el, al, bl, cl, dl, F3, K3, 10, 15 );
317 0 : R( er, ar, br, cr, dr, F1, KK3, 1, 11);
318 0 : R( dl, el, al, bl, cl, F3, K3, 0, 14 );
319 0 : R( dr, er, ar, br, cr, F1, KK3, 3, 14);
320 0 : R( cl, dl, el, al, bl, F3, K3, 8, 15 );
321 0 : R( cr, dr, er, ar, br, F1, KK3, 11, 14);
322 0 : R( bl, cl, dl, el, al, F3, K3, 12, 9 );
323 0 : R( br, cr, dr, er, ar, F1, KK3, 15, 6);
324 0 : R( al, bl, cl, dl, el, F3, K3, 4, 8 );
325 0 : R( ar, br, cr, dr, er, F1, KK3, 0, 14);
326 0 : R( el, al, bl, cl, dl, F3, K3, 13, 9 );
327 0 : R( er, ar, br, cr, dr, F1, KK3, 5, 6);
328 0 : R( dl, el, al, bl, cl, F3, K3, 3, 14 );
329 0 : R( dr, er, ar, br, cr, F1, KK3, 12, 9);
330 0 : R( cl, dl, el, al, bl, F3, K3, 7, 5 );
331 0 : R( cr, dr, er, ar, br, F1, KK3, 2, 12);
332 0 : R( bl, cl, dl, el, al, F3, K3, 15, 6 );
333 0 : R( br, cr, dr, er, ar, F1, KK3, 13, 9);
334 0 : R( al, bl, cl, dl, el, F3, K3, 14, 8 );
335 0 : R( ar, br, cr, dr, er, F1, KK3, 9, 12);
336 0 : R( el, al, bl, cl, dl, F3, K3, 5, 6 );
337 0 : R( er, ar, br, cr, dr, F1, KK3, 7, 5);
338 0 : R( dl, el, al, bl, cl, F3, K3, 6, 5 );
339 0 : R( dr, er, ar, br, cr, F1, KK3, 10, 15);
340 0 : R( cl, dl, el, al, bl, F3, K3, 2, 12 );
341 0 : R( cr, dr, er, ar, br, F1, KK3, 14, 8);
342 0 : R( bl, cl, dl, el, al, F4, K4, 4, 9 );
343 0 : R( br, cr, dr, er, ar, F0, KK4, 12, 8);
344 0 : R( al, bl, cl, dl, el, F4, K4, 0, 15 );
345 0 : R( ar, br, cr, dr, er, F0, KK4, 15, 5);
346 0 : R( el, al, bl, cl, dl, F4, K4, 5, 5 );
347 0 : R( er, ar, br, cr, dr, F0, KK4, 10, 12);
348 0 : R( dl, el, al, bl, cl, F4, K4, 9, 11 );
349 0 : R( dr, er, ar, br, cr, F0, KK4, 4, 9);
350 0 : R( cl, dl, el, al, bl, F4, K4, 7, 6 );
351 0 : R( cr, dr, er, ar, br, F0, KK4, 1, 12);
352 0 : R( bl, cl, dl, el, al, F4, K4, 12, 8 );
353 0 : R( br, cr, dr, er, ar, F0, KK4, 5, 5);
354 0 : R( al, bl, cl, dl, el, F4, K4, 2, 13 );
355 0 : R( ar, br, cr, dr, er, F0, KK4, 8, 14);
356 0 : R( el, al, bl, cl, dl, F4, K4, 10, 12 );
357 0 : R( er, ar, br, cr, dr, F0, KK4, 7, 6);
358 0 : R( dl, el, al, bl, cl, F4, K4, 14, 5 );
359 0 : R( dr, er, ar, br, cr, F0, KK4, 6, 8);
360 0 : R( cl, dl, el, al, bl, F4, K4, 1, 12 );
361 0 : R( cr, dr, er, ar, br, F0, KK4, 2, 13);
362 0 : R( bl, cl, dl, el, al, F4, K4, 3, 13 );
363 0 : R( br, cr, dr, er, ar, F0, KK4, 13, 6);
364 0 : R( al, bl, cl, dl, el, F4, K4, 8, 14 );
365 0 : R( ar, br, cr, dr, er, F0, KK4, 14, 5);
366 0 : R( el, al, bl, cl, dl, F4, K4, 11, 11 );
367 0 : R( er, ar, br, cr, dr, F0, KK4, 0, 15);
368 0 : R( dl, el, al, bl, cl, F4, K4, 6, 8 );
369 0 : R( dr, er, ar, br, cr, F0, KK4, 3, 13);
370 0 : R( cl, dl, el, al, bl, F4, K4, 15, 5 );
371 0 : R( cr, dr, er, ar, br, F0, KK4, 9, 11);
372 0 : R( bl, cl, dl, el, al, F4, K4, 13, 6 );
373 0 : R( br, cr, dr, er, ar, F0, KK4, 11, 11);
374 :
375 0 : dr += cl + hd->h1;
376 0 : hd->h1 = hd->h2 + dl + er;
377 0 : hd->h2 = hd->h3 + el + ar;
378 0 : hd->h3 = hd->h4 + al + br;
379 0 : hd->h4 = hd->h0 + bl + cr;
380 0 : hd->h0 = dr;
381 :
382 0 : return /*burn_stack*/ 104+5*sizeof(void*);
383 : }
384 :
385 :
386 : static unsigned int
387 0 : transform ( void *c, const unsigned char *data, size_t nblks )
388 : {
389 : unsigned int burn;
390 :
391 : do
392 : {
393 0 : burn = transform_blk (c, data);
394 0 : data += 64;
395 : }
396 0 : while (--nblks);
397 :
398 0 : return burn;
399 : }
400 :
401 :
402 : /*
403 : * The routine terminates the computation
404 : */
405 : static void
406 0 : rmd160_final( void *context )
407 : {
408 0 : RMD160_CONTEXT *hd = context;
409 : u32 t, th, msb, lsb;
410 : byte *p;
411 : unsigned int burn;
412 :
413 0 : _gcry_md_block_write(hd, NULL, 0); /* flush */;
414 :
415 0 : t = hd->bctx.nblocks;
416 : if (sizeof t == sizeof hd->bctx.nblocks)
417 : th = hd->bctx.nblocks_high;
418 : else
419 0 : th = hd->bctx.nblocks >> 32;
420 :
421 : /* multiply by 64 to make a byte count */
422 0 : lsb = t << 6;
423 0 : msb = (th << 6) | (t >> 26);
424 : /* add the count */
425 0 : t = lsb;
426 0 : if( (lsb += hd->bctx.count) < t )
427 0 : msb++;
428 : /* multiply by 8 to make a bit count */
429 0 : t = lsb;
430 0 : lsb <<= 3;
431 0 : msb <<= 3;
432 0 : msb |= t >> 29;
433 :
434 0 : if( hd->bctx.count < 56 ) /* enough room */
435 : {
436 0 : hd->bctx.buf[hd->bctx.count++] = 0x80; /* pad */
437 0 : while( hd->bctx.count < 56 )
438 0 : hd->bctx.buf[hd->bctx.count++] = 0; /* pad */
439 : }
440 : else /* need one extra block */
441 : {
442 0 : hd->bctx.buf[hd->bctx.count++] = 0x80; /* pad character */
443 0 : while( hd->bctx.count < 64 )
444 0 : hd->bctx.buf[hd->bctx.count++] = 0;
445 0 : _gcry_md_block_write(hd, NULL, 0); /* flush */;
446 0 : memset(hd->bctx.buf, 0, 56 ); /* fill next block with zeroes */
447 : }
448 : /* append the 64 bit count */
449 0 : buf_put_le32(hd->bctx.buf + 56, lsb);
450 0 : buf_put_le32(hd->bctx.buf + 60, msb);
451 0 : burn = transform ( hd, hd->bctx.buf, 1 );
452 0 : _gcry_burn_stack (burn);
453 :
454 0 : p = hd->bctx.buf;
455 : #define X(a) do { buf_put_le32(p, hd->h##a); p += 4; } while(0)
456 0 : X(0);
457 0 : X(1);
458 0 : X(2);
459 0 : X(3);
460 0 : X(4);
461 : #undef X
462 0 : }
463 :
464 : static byte *
465 0 : rmd160_read( void *context )
466 : {
467 0 : RMD160_CONTEXT *hd = context;
468 :
469 0 : return hd->bctx.buf;
470 : }
471 :
472 :
473 :
474 : /****************
475 : * Shortcut functions which puts the hash value of the supplied buffer
476 : * into outbuf which must have a size of 20 bytes.
477 : */
478 : void
479 0 : _gcry_rmd160_hash_buffer (void *outbuf, const void *buffer, size_t length )
480 : {
481 : RMD160_CONTEXT hd;
482 :
483 0 : rmd160_init (&hd, 0);
484 0 : _gcry_md_block_write ( &hd, buffer, length );
485 0 : rmd160_final ( &hd );
486 0 : memcpy ( outbuf, hd.bctx.buf, 20 );
487 0 : }
488 :
489 : static byte asn[15] = /* Object ID is 1.3.36.3.2.1 */
490 : { 0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2b, 0x24, 0x03,
491 : 0x02, 0x01, 0x05, 0x00, 0x04, 0x14 };
492 :
493 : static gcry_md_oid_spec_t oid_spec_rmd160[] =
494 : {
495 : /* rsaSignatureWithripemd160 */
496 : { "1.3.36.3.3.1.2" },
497 : /* TeleTrust hash algorithm. */
498 : { "1.3.36.3.2.1" },
499 : { NULL }
500 : };
501 :
502 : gcry_md_spec_t _gcry_digest_spec_rmd160 =
503 : {
504 : GCRY_MD_RMD160, {0, 0},
505 : "RIPEMD160", asn, DIM (asn), oid_spec_rmd160, 20,
506 : rmd160_init, _gcry_md_block_write, rmd160_final, rmd160_read, NULL,
507 : sizeof (RMD160_CONTEXT)
508 : };
|