
Viengoos Developer Reference

Neal H. Walfield

December 15, 2008

ii

Contents

Contents iii

1 Introduction 1
1.1 Overview . 1

1.1.1 Virtualizable Interfaces 2
1.1.2 Object Statelessness . 2

1.2 Future Directions or TODO . 2
1.2.1 Virtualization . 3

1.3 Outline . 4

I Viengoos 5

2 Designation 7
2.1 Capabilities . 8

2.1.1 Format . 8
2.2 Addressing . 11

2.2.1 Address Encoding . 11
2.2.2 Address Translation . 12

2.3 Data Structures . 14
2.3.1 addr . 14
2.3.2 addr trans . 14
2.3.3 object policy . 14
2.3.4 cap properties . 15
2.3.5 cap . 15

3 Threads and Activations 17
3.1 Thread State . 17

3.1.1 Address Space Root . 17
3.1.2 Activity . 18
3.1.3 Exception Messenger . 18

iii

iv CONTENTS

3.1.4 User-Thread Control Block 18
3.2 Activations . 21
3.3 Exceptions . 22
3.4 Methods . 22

4 Messengers and IPC 25
4.1 Messages . 25

4.1.1 Format . 25
4.1.2 Canonical Form . 26

4.2 Messengers . 26
4.2.1 State . 27
4.2.2 Message Transfer . 28

4.3 IPC . 29
4.3.1 Receive Phase . 31
4.3.2 Send Phase . 31
4.3.3 Return Phase . 32

5 Resource Management 33
5.1 Object Policy . 33

6 Primordial Objects 35
6.1 Objects . 36
6.2 Folios . 37

6.2.1 Data Structures . 37
6.2.2 Methods . 37
6.2.3 Convenience Functions 37

6.3 Pages . 38
6.3.1 Methods . 38
6.3.2 Convenience Functions 38

6.4 Threads . 39
6.4.1 Methods . 39
6.4.2 Convenience Functions 39

6.5 Messengers . 40
6.5.1 Methods . 40
6.5.2 Convenience Functions 40

6.6 Endpoints . 41
6.6.1 Methods . 41
6.6.2 Convenience Functions 41

6.7 Activities . 42
6.7.1 Methods . 42
6.7.2 Convenience Functions 42

CONTENTS v

7 Exceptions 43

8 Resource Management 45

II Runtime Environment 47

III Bibliograph 49

Bibliography 51

vi CONTENTS

Chapter 1

Introduction

The text you are reading describes the Viengoos virtual machine. This text is an
attempt to provide a normative reference for Viengoos, to enumerate its interfaces
and to describe their behavior. It also attempts to explain the interfaces, to illus-
trate the motivation behind some decisions and to show the interfaces’ intended
uses. This interleaving of the prescriptive with the descriptive may be a source
of confusion. This is unintentional and as this document evolves, such confusion
will hopefully be eliminated.

1.1 Overview

Viengoos is an extensibility, object-capability system, ala Hydra [WCC+74] and
EROS [SSF99].

Viengoos was built on the following ideas:

• object based,

• recursively virtualizable interfaces [PG74],

• object statelessness [TLFH96],

• no kernel dynamic allocation,

• resource accountability,

• atomic methods,

• caching [CD94]

1

2 CHAPTER 1. INTRODUCTION

• interrupt model [FHL+99],

• activation-based [Ros95], and

• resilience to destructive interference [Mil06]

1.1.1 Virtualizable Interfaces

By virtualizable interfaces, we mean that all kernel implemented objects can be
easily proxied by a user-space task in such a way that the proxy behaves in a
manner indistinguishable from the kernel implementation.

The idea is perhaps more easily explained through an example of a familiar object
that is not easily virtualizable. Consider how files are implemented on Unix-
like systems and suppose that one process wishes to proxy access to a file. The
proxy can open the file itself and then provide another file descriptor to its clients.
The question is what sort of file descriptor. A pipe could be used. In this case,
the proxy will see the clients’ reads and writes, however, a pipe does not support
seeking and the kernel provides no way for the proxy to interpose on this operation
and provide its own implementation.

1.1.2 Object Statelessness

Continuing the previous example, supposing that there was a way to cause such
file invocations to be redirected to the proxy, another problem arises: proxying a
file is non-trivial as the object’s state machine is quite complicated. For instance,
the proxy must maintain a file pointer for each client. This is because each client
expects that the file descriptor it designates acts like a normal file descriptor, that
is, that the file pointer is private. To work around this, the proxy must maintain a
private file pointer for each client and then serialize access to the object and adjust
the object’s file pointer using the seek method before invoking the read method.
This is required even if the proxy only wants to do some sort of bounds checking.
To simplify virtualization, objects should avoid maintaining sessions: as much as
is feasible, interfaces should be so designed such that a method either senses or
transforms the state of the object.

1.2 Future Directions or TODO

The objects and interfaces described in this document (mostly) reflect the current
implementation. There are a number of limitations requiring some thought. The

1.2. FUTURE DIRECTIONS OR TODO 3

issues are outlined here.

1.2.1 Virtualization

Many of the methods are not virtualizable. Indeed, two of them are not even
methods: cap copy and cap read are not invoked on an object but are essentially
system calls. These should perhaps be modelled as thread object methods.

However, there is a more complicated problem and that is: the kernel walks the
cappages and other objects to resolve an address but what should it do when it
encounters an end point? The kernel cannot invoke it as then it must wait for a
reply and this provides an opportunity for destructive interference. The kernel
also cannot reply and tell the client to revert to some other method of resolution
(or can it?). If we just fault, a process can determine whether an object is kernel
or user-implemented by installing it in its address space and then trying to access
it. Perhaps, the process that does the virtualization can do some tricks to provide
a user-object but when the user tries to use it in its address space, by interposing
on the thread object, it can the install an appropriate cappage.

As for the rest, to be able to virtualize a kernel object, the implementation needs
to have access to all the information that the kernel implementation requires. This
means that we either have to deliver more information or we have to adapt the
interfaces.

An example of the former is to virtualize object slot copy in, the implementation
needs access to the source capability’s subpage descriptor, policy and the weak
predicates. This does not pose a fundamental problem: making this information
available to the object does not violate POLA. It does require that when a message
is delivered, any transferred capabilities must also include this information.

Another example is invoking an object: the object implementation also needs this
information, in particular, the weak predicate and the subpage descriptor.

One place where the interfaces need to be change in a more fundamental way is
object slot copy out. The kernel implementation of this method does a bit copy
from the designated source slot to the designated target slot. A user-implementation
cannot do such a bit copy; it needs to return the capability in the reply message. To
fix this, the target parameter needs to be a return value and object slot copy out
simply returns an appropriate capability. This raises another problem: how to then
store the capability. If we store it in the receive buffer, then we still need another
copy to get it where we want. If we store it directly in the address space (using
a scatter/gather technique), then we need to consider the case where the target
object is virtualized.

4 CHAPTER 1. INTRODUCTION

Also, for end points, we use the weak predicate to determine whether the capabil-
ity interface designates the send facet or the receive facet. To properly virtualize a
kernel object, we need to allow the user to control the weak predicate as normal.

1.3 Outline

This reference is divided into two parts. The first describes the kernel, how object
addressing works, the primordial objects and resource management mechanisms
and policies. The second part describes the sample run-time environment shipped
with Viengoos.

Part I

Viengoos

5

Chapter 2

Designation

“The name of the song is called ‘HADDOCKS’ EYES.’ ”
“Oh, that’s the name of the song, is it?” Alice said, trying to feel

interested.
“No, you don’t understand,” the Knight said, looking a little vexed.

“That’s what the name is CALLED. The name really IS ‘THE AGED
AGED MAN.’ ”

“Then I ought to have said ‘That’s what the SONG is called’?”
Alice corrected herself.

“No, you oughtn’t: that’s quite another thing! The SONG is
called ‘WAYS AND MEANS’: but that’s only what it’s CALLED,
you know!”

“Well, what IS the song, then?” said Alice, who was by this time
completely bewildered.

“I was coming to that,” the Knight said. “The song really IS ‘A-
SITTING ON A GATE’: and the tune’s my own invention.”

Through the Looking Glass
Lewis Carroll

Viengoos is an object-capability system. Objects are designated exclusively by
way of capabilities, which are kernel-protected, unforgeable references. Capabil-
ities are in turn designated by indexing an address space. Each thread object has a
capability slot that identifies the root of its address space. When a thread invokes
an object, it specifies an index. Viengoos finds the capability corresponding to
this index in its address space and then dereferences the capability to obtain the
object.

7

8 CHAPTER 2. DESIGNATION

This chapter first describes how capabilities work, their format, and the kernel
supported methods for manipulating capabilities. We then discuss addressing.
Namely, how addresses are encoded, address space construction, and address res-
olution.

2.1 Capabilities

A capability both designates an object and authorizes access to it. (The impor-
tance of this is best illustrated by the Confused Deputy problem [Har88].) Capa-
bilities are unforgeable in that they are kernel protected—their bit representation
is never exposed—and thus can only be transferred via authorized channels.

To sense or modify an object, a thread may invoke it. Invocation causes a message
to be sent to the object. The exact semantics of an invocation depend on the
invoked object’s implementation.

A capability may be delegated by transferring it in an object invocation. When a
capability is transferred in such a way, the capability is copied to the receipient’s
message buffer. Because the receive buffer is allocated beforehand, copying does
not require that the kernel allocate memory.

In Viengoos, the only way to revoke access to an object is to destroy the object.1

By destroying the object, all capabilities designating it become invalid and act as
if they designated the VOID object.

Viengoos allows user-object implementations. A user object is implemented by a
process. The process allocates an end point and delegates it to clients. To use the
object, a client invokes the end point. The server process is then notified that there
is a message and may act on it as it sees fit.

As user objects are accessed in the same way as kernel objects, it is possible to
interpose on specific objects or to fully or partially emulate the kernel from a
user-space process.

2.1.1 Format

A capability is 128-bits wide and consists of the following fields:

• an object identifier (OID),

1Revocation can be implemented by way of Redell’s Caretaker but so far, this mechanism has
not been required.

2.1. CAPABILITIES 9

• a version,

• a weak predicate (W),

• address translation directives,

– a guard, and

– a sub-page descriptor

• an object memory policy,

– a discardability predicate (D), and

– a priority

Object Identification

The OID field is used to locate an object. The OID corresponds to a block of
storage on backing store. Backing store is managed by so-called backing store
managers. When an object is referenced and the object is not in memory, Viengoos
submits a request to page the object in to the appropriate backing store manager.
Similarly, when Viengoos decides that the object should be flushed to persistent
store, it sends a request to the backing store manager.

When an object is destroyed, all references to it must be invalidated. Invalidating
references is difficult as it requires finding all of the references. Maintaining a
linked list of capabilities referencing an object requires two additional pointers per
capability. But this only suffices for in-memory objects: if a cappage is paged-out
and the object is destroyed, these must be invalidated as well. To work around this
problem, each object also has a version number. When a capability to an object
is created, the object’s version number is copied into the capability. Then, when
dereferencing a capability, the capability is only considered valid if the the version
numbers match. If they do not match, then the reference is known to not be valid
and the VOID object is returned instead of the object instance.

The use of the version field raises another problem: it is limited in size. To avoid
overflowing it and having to do a disk scavenge before being able to reuse the
storage, it is imperative to control its growth. The solution EROS has used is to
only bump the field if a capability designating the object goes to disk, a relatively
rare occurrence, they observe, and to rate-limit that to once every few minutes [?].

10 CHAPTER 2. DESIGNATION

Weak Capabilities

The data, cappage, endpoint, and activity objects implement two interfaces (facets):
a so-called strong facet and a weak facet. The weak facet allows access to a subset
of the functionality that the strong facet allows.

A capability designating the weak facet of a data-page provides read-only access
to the object. The same applies for a cappage, however, the access is transitively
removed: strong capabilities fetched via a weak capability are downgraded by the
kernel to weak reference the object’s weak facet. A capability designating the
weak facet of an end-point only allows enqueuing messages. And, a capability
designating the weak facet of an activity does not allowing changing the activity’s
policy.

Address Translation

In Viengoos, address spaces are composed through the arrangement of cappages;
cappages act as page-tables. A thread object contains a capability slot, which is
filled with the root capability. Some object methods all take a capability designat-
ing the root.

Viengoos uses a guarded page table scheme [Lie94]. To support this, capabilities
contain two fields: a guard and a subpage descriptor. The guard consists of a value
and a length. A subpage descriptor allows the use of only part of a capability page
in address translation. It consists of a subpage count and an offset. The count
indicates the number of subpages in the cappage. This value must be between 1
and 256 inclusive and be a power of 2. For example, a count of 2 means to divide
the cappage into two subpages, each consisting of 256/2 = 128 capabilities. The
offset is then used to select the subpage to index. Address translation is discussed
in section 2.2.2.

Object Memory Policy

To allow principals to control memory is managed, each capability contains two
fields that describe the discardability and the priority of the designated object.
Resource management is described in chapter 5.

2.2. ADDRESSING 11

2.2 Addressing

Capabilities designated using thread-local addresses. Each thread object contains
a capability slot that identifies the root of its address space. To designate a capa-
bility, a thread specifies the index of the capability in this address space.

2.2.1 Address Encoding

On Viengoos, all addresses are 64-bits wide. This is true even on 32-bit platforms.
On these platforms, hardware addresses are automatically extended.

A Viengoos address consists of a prefix and a depth. The depth specifies the
length of the prefix. This type of addressing allows addressing not only leaf ob-
jects but also internal nodes. (The intuition behind an addresses depth is how far
into the tree to search.) The address prefix is encoded in the most significant bits
of the address. This is followed by a bit with the value of 1, and then 63− depth
(idepth), which is encoded in unary.

63 0

prefix(depth) 1 idepth(63−depth)

Observe that the value of idepth is the position of the least significant bit that is
on.

The address with all zeros is the NULL address. The NULL address is sometimes
used to denote some default action. When returned, it typically means failure.

By convention, addresses are written prefix/depth.

Viengoos automatically translates machine addresses to the above form. The pre-
fix is set to the machine address zero-extended to 63 bits and the depth is set to
63. For machines with 64-bits addresses, addresses with the most significant bit
set are illegal.

The root capability slot is identified by the address 0/0. Its encoding is:

63 0

1 0(63)

The address 0x804b2c0 is encoded:
63 0

0x804b2c0(63) 1

12 CHAPTER 2. DESIGNATION

0

127
128

255

Cappage

. . . 01101000000000111011. . .
guard index

10000/5 0/2 0xF4D6
guard subpage OID

2.

3.

=?
1.

4.

GPT:

Address:

Figure 2.1: Translating part of an address using a GPT entry. The capability
containing the GPT entry is at the top left in the figure, to the right is the referenced
capability page, and bottom left is the address. First, the guard is compared to the
address. If they match, the object is found. The subpage descriptor selects a part
of the capability page, which is then indexed using the next portion of the address.

The address of the data object that contains the above byte would be the address
rounded down to the nearest page size and with a depth of 63 - the logarithm base
2 of the page size. If the underlying hardware has base pages with a size of 4kb,
then the address would be 0x804b000/51.

2.2.2 Address Translation

Address translation proceeds according to the following algorithm. Given an ad-
dress, translation starts with the capability in the thread’s address space capability
slot. First, the most significant bits of the address are compared with the guard in
the capability (lines 10–16). If these match, those address bits are consumed. If
there are no address bits left, then the designated capability slot has been located
and is returned. Otherwise, the object designated by the capability is found (line
21), divided according to the subpage descriptor in the capability and indexed us-
ing the most significant remaining bits of the address (lines 26–31). Again, the
number of bits used to index the subpage are consumed. If all the bits are con-
sumed, the capability slot has been located and is returned. Otherwise, the process
is repeated with the new capability and the remaining address bits. An iteration of
this process is illustrated in figure 2.1.

2.2. ADDRESSING 13

Algorithm 1 Capability slot lookup.
1: function THREAD→ CAPABILITYSLOTLOOKUP(address)
2: C ← thread .root . The root of the address space.
3: P ← prefix (address) . The bits to translate.
4: R← depth(address) . The number of bits remaining.

5: loop
6: if R = 0 then
7: return &C . C is the designated capability.
8: end if

9: . Check the guard.
10: if R < guard length(C) then
11: return failure . Not enough bits to translate guard.
12: end if
13: if guard(C) 6= PR..R−guard length(C)+1 then
14: return failure . The guard does not match.
15: end if
16: R← R− guard length(C)

17: if R = 0 then
18: return &C . C is the designated capability.
19: end if

20: . Look up the object designated by the PTE.
21: O ← cap to object(C)
22: if ¬Oortypeof (O) 6= cappage then
23: return failure . Type mismatch.
24: end if

25: . Index the capability page getting the next page table entry.
26: S ← 256/subpages(C) . The subpage size.
27: if R < log2(S) then
28: return failure . Not enough bits to index the cappage.
29: end if
30: C ← O.caps

[
S/subpages(C) + PR..R−log2(S)+1

]
31: R← R− log2(S)
32: end loop
33: end function

14 CHAPTER 2. DESIGNATION

Note that a capability slot can be identified by two different names: either with or
without the guard specified in the slot. This is a matter of convenience: it is useful
to be able to modify the capability that designates the object at a particular ad-
dress by designating the object. If this functionality were not provided, doing this
would require finding the guard, which is possible but cumbersome. Moreover,
the extension is quite simple.

When looking up objects, the same principle applies, however, the check if the
address has been fully translated at lines 6–8 is removed. That is, it is not sufficient
to specify the capability slot that designates the object, the guard must also match.

2.3 Data Structures

2.3.1 addr

The format of an address is:
63 0

1 0(63)

idepth is stored in unary. The depth is 63 - idepth.

2.3.2 addr trans

The addr trans structure has the following layout:
031

guard(22−lsp) subpage((lsp)) log2 sps(4) g depth(6)

log2 sps is logarithm base 2 of the number of subpages. subpage is the subpage to
select. It has a width of lsp. g depth is the number of length of the guard. guard is
the value of the guard and is zero-extended to g depth. Its width is also not fixed.

2.3.3 object policy

The object policy structure has the following layout:
07

D priority(7)

D is the discardability predicate.

2.3. DATA STRUCTURES 15

2.3.4 cap properties

The cap properties structure has the following layout:
031

∼(24) object policy(8)

addr trans(32)

2.3.5 cap

The following is the internal representation of a capability. Only the discardability
predicate, the priority and the address translator are exposed to the user.

031

version(23) W D priority(7)

address translator(32)

OID

D is the discardability predicate. W is the weak predicate.

16 CHAPTER 2. DESIGNATION

Chapter 3

Threads and Activations

A thread encapsulates an execution context. This consists of a register file, a name
space, and a resource principal.

Viengoos does not implement a first-class task abstraction, which encapsulates
multiple threads running in a single address space. It is possible to achieve this on
Viengoos by specifying the same address space root for multiple thread objects.

In Viengoos, unlike in traditional kernels, threads are not blocking entities. Block-
ing is instead done by messengers, which hold and transfer messages (see chap-
ter ?? for a description of messengers). By separating messengers from threads, it
is possible to reliably wait for multiple events while the thread continues to exe-
cute and to do so in a manner that does not require the kernel or a server to block
on the thread.

3.1 Thread State

A thread consists of four user-accessible capability slots: the address space root,
the current activity the exception messenger and the user-thread control block
(UTCB).

A thread object also contains space to save its CPU state, which it contains when
the thread is not executing on a CPU.

3.1.1 Address Space Root

The address space root capability slot determines the root of a thread’s address
space. This address space is used in two situations. First, when a thread performs

17

18 CHAPTER 3. THREADS AND ACTIVATIONS

an IPC, the arguments are identified by addresses, which are resolved in this ad-
dress space. Second, this naming context determines the hardware address space.
That is, it is the context in which the memory addresses to all hardware load and
store instructions are resolved.

3.1.2 Activity

A thread’s activity slot determines the thread’s current activity. This is used to
schedule the thread and to account resources that are allocated or consumed when
resolving a page fault.

If the activity slot does not contain a capability designating an activity, the thread
is not scheduled.

3.1.3 Exception Messenger

When a thread generates an exception, for instance, when it attempts to access a
memory location for which there is no valid translation, the thread is suspended,
and an exception message is generated and delivered to the thread’s exception
messenger. The kernel delivers execptions in non-blocking mode meaning if the
exeception messenger is not ready to receive a message, the message is dropped.

3.1.4 User-Thread Control Block

The user-thread control block (UTCB) is a normal data page. It provides a conduit
for the user and kernel to communicate and coordinate action. This is primarily
used for managing activations and in message delivery.

activated mode The activated mode bit indicates whether the thread is in acti-
vated mode. An activation is only delivered if this bit is clear. Before a
thread is activated, this bit is checked. If it is set, the activation is either de-
layed or dropped. In the former case, the messenger causing the activatation
blocks on the thread. A blocked messenger may be unblocked either by a
future activation or if thread activation collect is called. If the messenger is
destroyed or the delivery aborted, the activation will not be delivered.

pending message The kernel sets the pending message bit when a messenger at-
tempts to deliver a message to the thread, however, the thread is in activated
mode.

3.1. THREAD STATE 19

struct utcb {
union {

struct {
uintptr t activated mode : 1;
uintptr t pending message : 1;
uintptr t interrupt in transition : 1;
};
uint64 t status;
};

uintptr t saved ip;
uintptr t saved sp;

uintptr t activation handler sp;
uintptr t activation handler ip;
uintptr t activation handler end;

uint64 t protected payload;
uint64 t messenger id;

/∗ Inline data. ∗/
struct {

uintptr t inline word count : 2;
uintptr t inline cap count : 1;
};
uintptr t inline words[2];
addr t inline caps[1];
};

Listing 3.1: The user-thread control block structure.

20 CHAPTER 3. THREADS AND ACTIVATIONS

interrupt in transition The interrupt in transition bit is set by the kernel when
activating a thread to indicate whether the thread was activated while the
instruction pointer was in the so-called activation transition range (see ac-
tivation handler start and activation handler end below).

saved ip and saved sp When delivering an activation, the kernel interrupts the
thread, sets the saved ip and saved sp variables to the instruction pointer
and the stack pointer, sets the thread’s sp and ip to activation handler sp
and activation handler ip, respecitve, and then resumes the thread.

activation handler sp and activation handler ip When the kernel activates a thread,
it sets its SP and IP to these values, respectively.

activation handler ip and activation handler end These variables determine the
so-called activation transition range.

If the kernel activates a thread and its in the activation transition range (be-
tween activation handler ip inclusive and activation handler end exclusive,
the kernel does not save the current IP and SP in saved ip and saved sp
but sets the interrupt in transition bit. Using this mechanism, on many ar-
chitectures, it is possible to atomically, with respect to activation delivery,
clear activated mode and restore the interrupted stack pointer and instruc-
tion pointer without entering the kernel

protected payload When delivering a messenger’s message, the protected pay-
load variable is set to the protected payload of the capability that was used
to invoke the messenger to send the message.

messenger id When delivering a messenger’s message, the messenger id is set to
the messenger’s message id.

inline word count, inline cap count, inline words and inline caps When a mes-
senger delivers a message inline, inline word count is set to the number of
words (not bytes) that were transferred and inline cap count to the number
of capabilities transferred. The inline words variable is filled with any data.
If the message includes capabilities, they are saved sequentially in the slots
specified at invocation time and the address is copied to inline capability. If
an error occurs while transferring a capability, the corresponding elemeent
in inline capabilities is set to ADDR VOID.

3.2. ACTIVATIONS 21

3.2 Activations

A thread may be activated if a messenger associated with the thread transfers or
receives a message. Threads are only activated by messengers and scheduling
events. In the case of scheduling events, a kernel-provided messenger whose mes-
sage id variable is set to ˜0ULL is used and delivery is done in a non-blocking
manner.

Activating a thread proceeds as follows:

• Atomically, with respect to the thread’s execution:

– If the thread is activated (activated mode is non-zero):

∗ If delivery is non-blocking, return.
∗ Otherwise:
· Block the messenger on the thread, and
· Set pending message to 1.

• Suspend the thread’s execution.

• Set protected payload to that saved in the messenger.

• Set messenger id to the messenger’s messenger id.

• If the activation is the result of a message receipt:

– If the message is inline:

∗ Copy the messenger’s data to inline words and inline caps
∗ Update inline word count and inline cap count.

• Set activated mode to 1.

• If the thread’s IP is between activation handler ip (inclusive) and activation
handler end (exclusive):

– Set interrupt in transition to 1.

• Otherwise:

– Set interrupt in transition to 0,

– Set saved sp to the thread’s stack pointer, and

– Set saved ip to the thread’s instruction pointer.

22 CHAPTER 3. THREADS AND ACTIVATIONS

• Set the thread’s stack pointer to activation handler sp.

• Set the thread’s instruction pointer to activation handler ip.

• Resume the thread.

3.3 Exceptions

Exceptions are synthesized by the kernel in response to a thread action. There is
one type of exception, a fault exception.

The following actions result in the generation of a fault exception:

page fault A hardware load or store attempts to dereference an address for which
there is no valid translation.

access fault A hardware load or store attempts to accesses an object in an unau-
thorized manner.

discarded A hardware load or store attempts to access an object that has been
discarded.

When a thread generates an exception, the thread is suspended and a fault mes-
sage is delivered to its exception messenger. If this would block, the message is
discarded.

A fault message takes four parameters: the address of the fault (using Viengoos
address encoding), the value of the stack pointer, the value of the instruction
pointer and a fault information structure, which includes the type of access and
whether the object has been discarded:

63 0

∼(28/58) rwx(3) d

The fault message does not include a reply messenger.

3.4 Methods

3.4. METHODS 23

thread exregs(cap t activity, cap t thread,
uintptr t flags,
in out cap t aspace, in out cap t activity,
in out cap t utcb, in out cap t exception messenger,
in out uintptr t sp, in out uintptr t ip)

flags is a bit-wise or of the following

THREAD EXREGS SET UTCB = 64
THREAD EXREGS SET EXCEPTION MESSENGER = 32
THREAD EXREGS SET ASPACE = 16
THREAD EXREGS SET ACTIVITY = 8
THREAD EXREGS SET SP = 4
THREAD EXREGS SET IP = 2
THREAD EXREGS GET REGS = 1

If THREAD EXREGS GET REGS is set, the current value of the address space
root, activity, utcb, exception messenger, sp and ip are returned. Otherwise, the
values are undefined.

If THREAD EXREGS SET IP is set, the thread’s instruction pointer is set ac-
cording to ip.

If THREAD EXREGS SET SP is set, the thread’s stack pointer is set according
to sp.

If THREAD EXREGS SET ACTIVITY is set, the thread’s activity is set accord-
ing to activity.

If THREAD EXREGS SET ASPACE is set, the thread’s address space root is set
according to aspace.

If THREAD EXREGS SET EXCEPTION MESSENGER is set, the thread’s ex-
ception messenger is set according to exception messenger.

If THREAD EXREGS SET UTCB is set, the thread’s UTCB is set according to
utcb.

thread id (cap t activity, cap t thread, out uint64 t id)

Return the thread’s unique identifier.

thread activation collect (cap t activity, cap t thread)

Cause a blocked messenger, if any, to attempt to send an activation.

24 CHAPTER 3. THREADS AND ACTIVATIONS

Chapter 4

Messengers and IPC

IPC in Viengoos is asynchronous with respect to thread execution. This is achieved
by separating the messaging functionality from threads. To send an IPC, a pro-
gram allocates a so-called messenger, loads a payload and then enqueues the mes-
senger on a receiving messenger. When the receiving messenger accepts the mes-
sage from the sending messenger, the message is copied and the threads associated
with the two messengers are optionally notified of what has occurred by way of
an activation.

As messengers must be explicitly allocated like any other kernel object, the re-
quired storage can be correctly accounted.

4.1 Messages

Messages can carry both data and capabilities. A message is stored in a normal
data page. To send a message, the page containing the message is associated with
a messenger, which is then enqueued on the target object. When the target accepts
the message, the source messenger’s message is copied to the target messenger’s
message buffer.

4.1.1 Format

The kernel interprets a message buffer according to the following format. The
first 32-bits of the buffer contain the message header. This consists of a 16-bit
capability address count followed by a 16-bit data count. Immediately following
the header is the array of capability addresses, followed by the array of bytes.

25

26 CHAPTER 4. MESSENGERS AND IPC

struct message {
uint16 t cap count;
uint16 t data count;

addr t caps[cap count];
char data[data count];
};

Listing 4.1: Message format.

When used to send a message, the capability addresses are interpreted as the lo-
cation of the capabilities to send. When used to receive a message, the capability
addresses are interpreted as the slots in which the received capabilities should be
stored.

4.1.2 Canonical Form

Kernel objects interpret and format messages according to the following conven-
tion.

For received message, the first word of a message is interpreted as the method to
invoke on the object. The remaining bytes are the methods arguments. The last
capability is interpreted as the messenger to reply to.

When sending a reply, the first data word is the negation of the method identifier.
The second word contains the error code. If no error occurred, the error code is
set to 0.

When marshalling and unmarshalling arguments, the size of each argument is
rounded up to be a multiple of the word size and zero filled; the sign bit is not
extended.

4.2 Messengers

Messengers are first-class kernel objects, which are responsible for receiving and
transferring messages.

A messenger references a message buffer and a thread. It can either transfer its
contents to another messenger or its can wait for another messenger to send it a
message. After sending or receiving a message, a messenger optionally notifies
its associated thread by way of an activation. This is depicted in figure 4.1.

4.2. MESSENGERS 27

Sending
Thread

Sending
Messenger

Receiving
Messenger

Receiving
Thread

Buffer Buffer
Copy

Figure 4.1: To send or receive a message, a thread associates itself and a buffer
with a messenger. To send a message, it enqueues the prepared messenger on
some other messenger. When the latter messenger accepts the former’s message,
the contents of the sending messenger’s message buffer is copied to the receiving
messenger’s message buffer. The associated threads are then optionally activated.

To send a message, a messenger is enqueued on another messenger. The messen-
ger’s payload is only transferred to the target messenger once the messenger is
unblocked.

To prevent unprocessed messages from being overwritten, messengers are blocked
on message delivery. A further message is only delivered once the messenger is
explicitly unblocked.

Message payload may be stored either in a message buffer or inline. This is spec-
ified in the IPC interface.

4.2.1 State

A messenger has four capability slots: a thread slot, an address space root slot,
a message buffer slot and an activity slot. A messenger also contains a so-called
messenger id field, and a blocking status.

Thread

The thread slot specifies the thread to optionally activate when the messenger
transfers its message or receives a message. This is controlled via the IPC system
call.

Address Space Root

The address space root specifies the address space in which to interpret the capa-
bility addresses in the message buffer.

28 CHAPTER 4. MESSENGERS AND IPC

Message Buffer

The message buffer slot identifies the message buffer.

Activity

The activity identifies the activity used to send the message.

Messenger ID

The messenger ID is a 64-bit user-settable variable that is delivered to the thread
(in its UTCB) on activation. This can be used to identify a user-buffer associated
with a messenger. This variable can only be read or modified by way of a strong
capability.

Blocking Status

A messenger is either block, in which case any attempts to deliver a message to it
will block, or it is unblocked, in which an attempt to deliver a message to it will
succeed immediately.

4.2.2 Message Transfer

Messages are transfered between two messengers, a source messenger and a tar-
get messenger. A message transfer only occurs when the target messenger is not
blocked. If a message transfer is attempted and the target messenger is blocked,
then the transfer is either aborted (if the transfer is executed in non-blocking
mode), or the source messenger is enqueued on the target messenger (otherwise).

Message transfer proceeds as follows:

• The target messenger is blocked.

• The capabilities in the source message are matched with the capability slots
in the target message.

For each pair of capability address and capability slot address, the capabil-
ity and slot are looked up relative to their respective messenger’s address
space root. If there is a valid, writable capability slot, the source capability
is copied to it. If there is no source capability, a void capability is used.

4.3. IPC 29

The target capability slot’s address translator and policy are preserved. If
the capability slot address does not resolve to a capability slot, or, the ca-
pability slot is not writable, the capability address in the target message is
overwritten with ADDR VOID.

If there are more capability slot addresses then there are capability ad-
dresses, each of the remaining capability slot addresses is overwritten with
ADDR VOID.

• The data is byte copied from the source to the destination.

• If the target messenger is set to activate its associated thread on receive,
this is scheduled. Likewise, if the source messenger is set to activate its
associated thread on delivery, this is scheduled.

4.3 IPC

IPC consists of three phases: the receive phase, the send phase and the return
phase. All three phases are optional. Each phase is executed after the previous
phase has completed. If a phase does not complete successfully, the phase is
aborted and the remaining phases are not executed.

The IPC interface has the following signature:

error t
ipc (uintptr t flags,

cap t recv activity, cap t recv messenger, cap t recv buf,
cap t recv inline cap,
cap t send activity, cap t target messenger,
cap t send messenger, cap t send buf,
uintptr t send inline word1, uintptr t send inline word2,
cap t send inline cap)

The flags parameter selects which phases are executes and controls their execu-
tion. It has the following format:

031

∼(15) R N A T S I C S n a t s i W(2) c r

The receive flags are:

R - receive phase The IPC includes a receive phase.

30 CHAPTER 4. MESSENGERS AND IPC

N - non-blocking The receive phase is non-blocking.

A - activate On message receipt, the receiving messenger activates its associated
thread.

T - set thread Associate the receiving messenger with the calling thread.

S - set address space root Set the receiving messenger’s address space root to
the caller’s address space root.

I - receive inline The receiving messenger should receive the message inline.

C - inline capability Ignored if I is not set. The inline message includes a capa-
bility slot at recv inline cap.

The send flags are:

S - send phase The IPC includes a send phase.

n - non-blocking The send phase is non-blocking.

a - activate On message delivery, the receiving messenger activates its associated
thread.

t - set thread Associate the sending messenger with the calling thread.

s - set address space root Set the sending messenger’s address space root to the
caller’s address space root.

i - send inline The sending messenger should receive the message inline.

W - inline words Ignored if i is not set. The number of inline words to transfer.
Valid values are 0, 1 and 2.

c - inline capability Ignored if i is not set. The number of inline capabilities to
transfer. Valid values are 0 and 1.

The return flags are:

r - return phase The IPC includes a return phase.

The remaining parameters are described below. The capability addresses are re-
solved in the context of the caller’s address space.

4.3. IPC 31

4.3.1 Receive Phase

The receive phase proceeds as follows:

• recv messenger is looked up. If it does not designate a messenger or the
designation is not strong, the IPC is aborted and EINVAL is returned.

• If the message is not inline and recv buf is not ADDR VOID, the messen-
ger’s message buffer capability slot is set to the capability designated by
recv buf.

• If the set associated thread flag is set, the messenger’s thread capability slot
is set to a capability designating the caller’s thread object.

• If the set address space root flag is set, the messenger’s address space root
capability slot is set to the calling thread’s address space root. The thread’s
address space root’s address translator and policy are copied.

• If one or more messengers are blocked on recv messenger trying to delivery
a message, the messenger which has blocked longest is selected and its
payload is transferred to recv messenger. See section 4.2.2 for details.

• If there are no messengers blocked on recv messenger trying to delivery a
message and the non-blocking flag is set, EWOULDBLOCK is returned.
Otherwise, recv messenger is unblocked.

4.3.2 Send Phase

The send phase proceeds as follows:

• send messenger is looked up. If it does not designate a messenger or the
designation is not strong, the IPC is aborted and EINVAL is returned.

• If the message is not inline and send buf is not ADDR VOID, the messen-
ger’s message buffer capability slot is set to the capability designated by
send buf.

• If the set associated thread flag is set, the messenger’s thread capability slot
is set to a capability designating the caller’s thread object.

• If the set address space root flag is set, the messenger’s address space root
capability slot is set to the calling thread’s address space root. The thread’s
address space root’s address translator and policy are copied.

32 CHAPTER 4. MESSENGERS AND IPC

• target messenger is looked up. If it does not designate a messenger, the IPC
is aborted and EINVAL is returned.

• An attempt to deliver send messenger’s message to target messenger is
made. If target messenger is blocked and delivery is non-blocking, delivery
is aborted and ETIMEDOUT is returned. Otherwise, if target messenger is
blocked, send messenger is blocked on it. Otherwise the message is deliv-
ered. See section 4.2.2 for message delivery details.

4.3.3 Return Phase

The return phase proceeds as follows:

• Control is returned to the calling thread to just after the IPC call. Note that
control is not returned by way of an activation.

If the IPC does not include a return phase, then thread blocks until it is next acti-
vated by an event other than a CPU available event.

Chapter 5

Resource Management

5.1 Object Policy

When an object is accessed, if the object is claimed,1 the policy in the designating
object is applied to the object.

The discardability property is a hint that Viengoos may, instead of flushing changes
to disk, simply discard a frame’s content. If a capability has the weak predicate
set, this hint is ignored. If content discarded, the next access to the object will
raise a discarded event. If an activity is discarded, all objects allocated against the
activity are destroyed.

The priority property allows an activity to control the order in which the frames,
which it has claimed, are released. If the content is dirty and has not been marked
as discardable, the content is written to backing store. Otherwise, the frame is
made eligible for immediate reuse.

The lower the numric value of the priority field, the lower the frame’s priority.
Frames are released in priority order. If multiple frames have the same priority,
they are released in a random order unless the priority is 0, in which case, the
frames are released in approximately LRU order.

1Claiming is discussed in ??.

33

34 CHAPTER 5. RESOURCE MANAGEMENT

Chapter 6

Primordial Objects

I. The world is everything that is the case.
I.I The world is the totality of facts, not of things.
I.II The world is determined by the facts, and by these being all the
facts.
I.I2 For the totality of facts determines both what is the case, and also
all that is not the case.

Tractatus Logico-Philosophicus by Ludwig Wittgenstein

This chapter describes the primordial objects implemented by the microkernel.
They include folios, the unit of storage allocation, data and capability pages,
threads, message buffers, end points, and activities. These objects represent the
fundamental building blocks of the system; all other objects are built from com-
positions of these objects.

35

36 CHAPTER 6. PRIMORDIAL OBJECTS

6.1 Objects

All objects are derived from the generic base object object. Each object has a
number (possibly zero) of user-accessible capability slots.

cap copy (addr t principal, addr t object, addr t target,
addr t source address space, addr t source,
uint32 t flags, struct cap properties properties)

Copy the capability in the capability slot source in the address space rooted at
source address space to object’s slot at address target.

By default, preserves source’s subpage specification and target’s guard.

If CAP COPY COPY SUBPAGE is set, then uses the subpage specification in
CAP PROPERTIES. If CAP COPY COPY ADDR TRANS GUARD is set, uses
the guard description in CAP PROPERTIES.

If CAP COPY COPY SOURCE GUARD is set, uses the guard description in
source. Otherwise, preserves the guard in TARGET.

If CAP COPY WEAKEN is set, saves a weakened version of SOURCE in *TAR-
GET (e.g., if SOURCE’s type is cap page, *TARGET’s type is set to cap rpage).

If CAP COPY DISCARDABLE SET is set, then sets the discardable bit based
on the value in PROPERTIES. Otherwise, copies SOURCE’s value.

If CAP COPY PRIORITY SET is set, then sets the priority based on the value in
properties. Otherwise, copies SOURCE’s value.

cap read (addr t, principal, addr t, address space, addr t, cap,
l4 word t, type, struct cap properties, properties)

Returns the public bits of the capability CAP in TYPE and CAP PROPERTIES.

6.2. FOLIOS 37

6.2 Folios

A folio is the unit of backing store allocation. A folio consists of 129 4k pages.
128 may be used to allocate objects and the remainder is a header that describes
the folio itself and the individual objects.

The header holds a

6.2.1 Data Structures

folio priority
031

∼ priority(15) group(15) D

D is the discardability predicate.

031

∼(5) C type(6) version(20)

wait queue next wait queue prev

6.2.2 Methods

6.2.3 Convenience Functions

38 CHAPTER 6. PRIMORDIAL OBJECTS

6.3 Pages

Data pages and capabilities pages.

6.3.1 Methods

6.3.2 Convenience Functions

6.4. THREADS 39

6.4 Threads

6.4.1 Methods

6.4.2 Convenience Functions

40 CHAPTER 6. PRIMORDIAL OBJECTS

6.5 Messengers

6.5.1 Methods

6.5.2 Convenience Functions

6.6. ENDPOINTS 41

6.6 Endpoints

6.6.1 Methods

6.6.2 Convenience Functions

42 CHAPTER 6. PRIMORDIAL OBJECTS

6.7 Activities

An activity is a resource principal.

6.7.1 Methods

6.7.2 Convenience Functions

Chapter 7

Exceptions

Exception handling mechanism.

43

44 CHAPTER 7. EXCEPTIONS

Chapter 8

Resource Management

45

46 CHAPTER 8. RESOURCE MANAGEMENT

Part II

Runtime Environment

47

Part III

Bibliograph

49

Bibliography

[CD94] David R. Cheriton and Kenneth J. Duda. A caching model of op-
erating system kernel functionality. In Proceedings of the 1st Sym-
posium on Operating Systems Design and Implementation (OSDI),
pages 179–193. USENIX Association, November 1994. 1

[FHL+99] Bryan Ford, Mike Hibler, Jay Lepreau, Roland McGrath, and Patrick
Tullmann. Interface and execution models in the fluke kernel. In Op-
erating Systems Design and Implementation, pages 101–115, 1999.
2

[Har88] Norm Hardy. The confused deputy (or why capabilities might have
been invented). Technical report, Key Logic, 1988. 8

[Lie94] Jochen Liedtke. Page table structures for fine-grain virtual memory.
Technical Report 872, German National Research Center for Com-
puter Science (GMD), October 1994. 10

[Mil06] Mark S. Miller. Robust Composition: Towards a Unified Approach to
Access Control and Concurrency Control. PhD thesis, Johns Hopkins
University, May 2006. 2

[PG74] Gerald J. Popek and Robert P. Goldberg. Formal requirements for
virtualizable third generation architectures. Communications of the
ACM, 17(7):412–421, July 1974. 1

[Ros95] Timothy Roscoe. The Structure of a Multi-Service Operating System.
PhD thesis, University of Cambridge, August 1995. 2

[SSF99] Jonathan S. Shapiro, Jonathan M. Smith, and David J. Farber. EROS:
a fast capability system. In Symposium on Operating Systems Prin-
ciples, pages 170–185, 1999. 1

51

52 BIBLIOGRAPHY

[TLFH96] Patrick Tullmann, Jay Lepreau, Bryan Ford, and Mike Hibler. User-
level checkpointing through exportable kernel state. In Proceedings
of the 2nd Symposium on Operating Systems Design and Implemen-
tation (OSDI 96). USENIX Association, 1996. 1

[WCC+74] W. Wulf, E. Cohen, W. Corwin, A. Jones, R. Levin, C. Pierson, and
F. Pollack. HYDRA: The kernel of a multiprocessor operating sys-
tem. Communications of the ACM, 17(6):337–345, June 1974. 1

	Contents
	Introduction
	Overview
	Virtualizable Interfaces
	Object Statelessness

	Future Directions or TODO
	Virtualization

	Outline

	I Viengoos
	Designation
	Capabilities
	Format

	Addressing
	Address Encoding
	Address Translation

	Data Structures
	!addr!
	!addrtrans!
	!objectpolicy!
	!capproperties!
	!cap!

	Threads and Activations
	Thread State
	Address Space Root
	Activity
	Exception Messenger
	User-Thread Control Block

	Activations
	Exceptions
	Methods

	Messengers and IPC
	Messages
	Format
	Canonical Form

	Messengers
	State
	Message Transfer

	IPC
	Receive Phase
	Send Phase
	Return Phase

	Resource Management
	Object Policy

	Primordial Objects
	Objects
	Folios
	Data Structures
	Methods
	Convenience Functions

	Pages
	Methods
	Convenience Functions

	Threads
	Methods
	Convenience Functions

	Messengers
	Methods
	Convenience Functions

	Endpoints
	Methods
	Convenience Functions

	Activities
	Methods
	Convenience Functions

	Exceptions
	Resource Management

	II Runtime Environment
	III Bibliograph
	Bibliography

