/* * Linux memory allocation. * * Copyright (C) 1996 The University of Utah and the Computer Systems * Laboratory at the University of Utah (CSL) * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. * * Author: Shantanu Goel, University of Utah CSL * */ #include #include #include #include #include "mach_U.h" #include #include #include "util.h" #include "vm_param.h" #include "ddekit/panic.h" #define debug ddekit_debug extern int printf (const char *, ...); /* Amount of memory to reserve for Linux memory allocator. We reserve 64K chunks to stay within DMA limits. Increase MEM_CHUNKS if the kernel is running out of memory. */ #define MEM_CHUNK_SIZE (64 * 1024) #define MEM_CHUNKS 30 #define MEM_CHUNKS_TOTAL (MEM_CHUNKS + 5) /* round up the size at alignment of page size. */ #define ROUND_UP(size) ((size) + __vm_page_size - 1) & (~(__vm_page_size - 1)) /* Mininum amount that linux_kmalloc will allocate. */ #define MIN_ALLOC 12 #ifndef NBPW #define NBPW 32 #endif /* Memory block header. */ struct blkhdr { unsigned short free; /* 1 if block is free */ unsigned short size; /* size of block */ }; /* This structure heads a page allocated by linux_kmalloc. */ struct pagehdr { unsigned size; /* size (multiple of PAGE_SIZE) */ struct pagehdr *next; /* next header in list */ }; /* This structure describes a memory chunk. */ struct chunkhdr { vm_address_t start; /* start address */ vm_address_t pstart; /* start physical address */ vm_address_t end; /* end address */ unsigned long bitmap; /* busy/free bitmap of pages */ }; static unsigned long __get_free_pages (unsigned long order, int dma); static void free_pages (unsigned long addr, unsigned long order); static struct mutex mem_lock = MUTEX_INITIALIZER; /* Chunks from which pages are allocated. * The extra slots are used to hold the huge chunks (> MEM_CHUNKS_SIZE) * which are allocated by the user. */ static struct chunkhdr pages_free[MEM_CHUNKS_TOTAL]; /* Memory list maintained by linux_kmalloc. */ static struct pagehdr *memlist; static mach_port_t priv_host; /* Some statistics. */ int num_block_coalesce = 0; int num_page_collect = 0; int linux_mem_avail; int virt_to_phys (vm_address_t addr) { int i; for (i = 0; i < MEM_CHUNKS_TOTAL; i++) { if (pages_free[i].start <= addr && pages_free[i].end > addr) return addr - pages_free[i].start + pages_free[i].pstart; } debug ("an address not in any chunks."); return -1; } int phys_to_virt (vm_address_t addr) { #define CHUNK_SIZE(chunk) ((chunk)->end - (chunk)->start) int i; for (i = 0; i < MEM_CHUNKS_TOTAL; i++) { if (pages_free[i].pstart <= addr && pages_free[i].pstart + CHUNK_SIZE (pages_free + i) > addr) return addr - pages_free[i].pstart + pages_free[i].start; } debug ("an address not in any chunks."); return -1; } /* Initialize the Linux memory allocator. */ void linux_kmem_init () { int i, j; error_t err; err = get_privileged_ports (&priv_host, NULL); if (err) error (2, err, "get_privileged_ports"); for (i = 0; i < MEM_CHUNKS; i++) { error_t err; /* Allocate memory. */ err = vm_dma_buff_alloc (priv_host, mach_task_self (), MEM_CHUNK_SIZE, &pages_free[i].start, &pages_free[i].pstart); if (err) abort (); assert (pages_free[i].start); pages_free[i].end = pages_free[i].start + MEM_CHUNK_SIZE; assert (pages_free[i].pstart + MEM_CHUNK_SIZE <= 16 * 1024 * 1024); /* Initialize free page bitmap. */ pages_free[i].bitmap = 0; j = MEM_CHUNK_SIZE >> PAGE_SHIFT; while (--j >= 0) pages_free[i].bitmap |= 1 << j; } /* Initialize the space for extra slots. */ memset (pages_free + i, 0, sizeof (pages_free[0]) * (MEM_CHUNKS_TOTAL - MEM_CHUNKS)); linux_mem_avail = (MEM_CHUNKS * MEM_CHUNK_SIZE) >> PAGE_SHIFT; } /* Return the number by which the page size should be shifted such that the resulting value is >= SIZE. */ static unsigned long get_page_order (int size) { unsigned long order; for (order = 0; (PAGE_SIZE << order) < size; order++) ; return order; } #ifdef LINUX_DEV_DEBUG static void check_page_list (int line) { unsigned size; struct pagehdr *ph; struct blkhdr *bh; for (ph = memlist; ph; ph = ph->next) { if ((int) ph & PAGE_MASK) panic ("%s:%d: page header not aligned", __FILE__, line); size = 0; bh = (struct blkhdr *) (ph + 1); while (bh < (struct blkhdr *) ((void *) ph + ph->size)) { size += bh->size + sizeof (struct blkhdr); bh = (void *) (bh + 1) + bh->size; } if (size + sizeof (struct pagehdr) != ph->size) panic ("%s:%d: memory list destroyed", __FILE__, line); } } #else #define check_page_list(line) #endif /* Merge adjacent free blocks in the memory list. */ static void coalesce_blocks () { struct pagehdr *ph; struct blkhdr *bh, *bhp, *ebh; num_block_coalesce++; for (ph = memlist; ph; ph = ph->next) { bh = (struct blkhdr *) (ph + 1); ebh = (struct blkhdr *) ((void *) ph + ph->size); while (1) { /* Skip busy blocks. */ while (bh < ebh && !bh->free) bh = (struct blkhdr *) ((void *) (bh + 1) + bh->size); if (bh == ebh) break; /* Merge adjacent free blocks. */ while (1) { bhp = (struct blkhdr *) ((void *) (bh + 1) + bh->size); if (bhp == ebh) { bh = bhp; break; } if (!bhp->free) { bh = (struct blkhdr *) ((void *) (bhp + 1) + bhp->size); break; } bh->size += bhp->size + sizeof (struct blkhdr); } } } } /* Allocate SIZE bytes of memory. The PRIORITY parameter specifies various flags such as DMA, atomicity, etc. It is not used by Mach. */ void * linux_kmalloc (unsigned int size, int priority) { int order, coalesced = 0; struct pagehdr *ph; struct blkhdr *bh, *new_bh; if (size < MIN_ALLOC) size = MIN_ALLOC; else size = (size + sizeof (int) - 1) & ~(sizeof (int) - 1); mutex_lock (&mem_lock); if (size > (MEM_CHUNK_SIZE - sizeof (struct pagehdr) - sizeof (struct blkhdr))) { error_t err; int i; /* Find an extra slot. */ for (i = MEM_CHUNKS; i < MEM_CHUNKS_TOTAL; i++) if (pages_free[i].end == 0) break; // TODO use a dynamically allocated memory to // record directly allocated large memory. assert (i < MEM_CHUNKS_TOTAL); size = ROUND_UP (size); err = vm_dma_buff_alloc (priv_host, mach_task_self (), size, &pages_free[i].start, &pages_free[i].pstart); if (!err) pages_free[i].end = pages_free[i].start + size; mutex_unlock (&mem_lock); fprintf (stderr, "allocate %d bytes at (virt: %x, phys: %x), slot %d\n", size, pages_free[i].start, pages_free[i].pstart, i); return err ? NULL : (void *) pages_free[i].start; } again: check_page_list (__LINE__); /* Walk the page list and find the first free block with size greater than or equal to the one required. */ for (ph = memlist; ph; ph = ph->next) { bh = (struct blkhdr *) (ph + 1); while (bh < (struct blkhdr *) ((void *) ph + ph->size)) { if (bh->free && bh->size >= size) { bh->free = 0; if (bh->size - size >= MIN_ALLOC + sizeof (struct blkhdr)) { /* Split the current block and create a new free block. */ new_bh = (void *) (bh + 1) + size; new_bh->free = 1; new_bh->size = bh->size - size - sizeof (struct blkhdr); bh->size = size; } check_page_list (__LINE__); mutex_unlock (&mem_lock); return bh + 1; } bh = (void *) (bh + 1) + bh->size; } } check_page_list (__LINE__); /* Allocation failed; coalesce free blocks and try again. */ if (!coalesced) { coalesce_blocks (); coalesced = 1; goto again; } /* Allocate more pages. */ order = get_page_order (size + sizeof (struct pagehdr) + sizeof (struct blkhdr)); ph = (struct pagehdr *) __get_free_pages (order, ~0UL); if (!ph) { mutex_unlock (&mem_lock); return NULL; } ph->size = PAGE_SIZE << order; ph->next = memlist; memlist = ph; bh = (struct blkhdr *) (ph + 1); bh->free = 0; bh->size = ph->size - sizeof (struct pagehdr) - sizeof (struct blkhdr); if (bh->size - size >= MIN_ALLOC + sizeof (struct blkhdr)) { new_bh = (void *) (bh + 1) + size; new_bh->free = 1; new_bh->size = bh->size - size - sizeof (struct blkhdr); bh->size = size; } check_page_list (__LINE__); mutex_unlock (&mem_lock); return bh + 1; } /* Free memory P previously allocated by linux_kmalloc. */ void linux_kfree (void *p) { struct blkhdr *bh; struct pagehdr *ph; int i; assert (((int) p & (sizeof (int) - 1)) == 0); mutex_lock (&mem_lock); for (i = MEM_CHUNKS; i < MEM_CHUNKS_TOTAL; i++) { if ((vm_address_t) p == pages_free[i].start) { // TODO I think the page cannot be deallocated. vm_deallocate (mach_task_self (), (vm_address_t) p, pages_free[i].end - pages_free[i].start); memset (pages_free + i, 0, sizeof (pages_free[i])); mutex_unlock (&mem_lock); return; } } check_page_list (__LINE__); for (ph = memlist; ph; ph = ph->next) if (p >= (void *) ph && p < (void *) ph + ph->size) break; assert (ph); bh = (struct blkhdr *) p - 1; assert (!bh->free); assert (bh->size >= MIN_ALLOC); assert ((bh->size & (sizeof (int) - 1)) == 0); bh->free = 1; check_page_list (__LINE__); mutex_unlock (&mem_lock); } /* Free any pages that are not in use. Called by __get_free_pages when pages are running low. */ static void collect_kmalloc_pages () { struct blkhdr *bh; struct pagehdr *ph, **prev_ph; check_page_list (__LINE__); coalesce_blocks (); check_page_list (__LINE__); ph = memlist; prev_ph = &memlist; while (ph) { bh = (struct blkhdr *) (ph + 1); if (bh->free && (void *) (bh + 1) + bh->size == (void *) ph + ph->size) { *prev_ph = ph->next; free_pages ((unsigned long) ph, get_page_order (ph->size)); ph = *prev_ph; } else { prev_ph = &ph->next; ph = ph->next; } } check_page_list (__LINE__); } /* Allocate ORDER + 1 number of physically contiguous pages. PRIORITY and DMA are not used in Mach. NOTE: mem_lock has been held. XXX: This needs to be dynamic. To do that we need to make the Mach page manipulation routines interrupt safe and they must provide machine dependant hooks. */ unsigned long __get_free_pages (unsigned long order, int dma) { int i, pages_collected = 0; unsigned bits, off, j, len; assert ((PAGE_SIZE << order) <= MEM_CHUNK_SIZE); /* Construct bitmap of contiguous pages. */ bits = 0; j = 0; len = 0; while (len < (PAGE_SIZE << order)) { bits |= 1 << j++; len += PAGE_SIZE; } again: /* Search each chunk for the required number of contiguous pages. */ for (i = 0; i < MEM_CHUNKS; i++) { off = 0; j = bits; while (MEM_CHUNK_SIZE - off >= (PAGE_SIZE << order)) { if ((pages_free[i].bitmap & j) == j) { pages_free[i].bitmap &= ~j; linux_mem_avail -= order + 1; return pages_free[i].start + off; } j <<= 1; off += PAGE_SIZE; } } /* Allocation failed; collect kmalloc and buffer pages and try again. */ if (!pages_collected) { num_page_collect++; collect_kmalloc_pages (); pages_collected = 1; goto again; } printf ("%s:%d: __get_free_pages: ran out of pages\n", __FILE__, __LINE__); return 0; } /* Free ORDER + 1 number of physically contiguous pages starting at address ADDR. */ void free_pages (unsigned long addr, unsigned long order) { int i; unsigned bits, len, j; assert ((addr & PAGE_MASK) == 0); for (i = 0; i < MEM_CHUNKS; i++) if (addr >= pages_free[i].start && addr < pages_free[i].end) break; assert (i < MEM_CHUNKS); /* Contruct bitmap of contiguous pages. */ len = 0; j = 0; bits = 0; while (len < (PAGE_SIZE << order)) { bits |= 1 << j++; len += PAGE_SIZE; } bits <<= (addr - pages_free[i].start) >> PAGE_SHIFT; mutex_lock (&mem_lock); assert ((pages_free[i].bitmap & bits) == 0); pages_free[i].bitmap |= bits; linux_mem_avail += order + 1; mutex_unlock (&mem_lock); }