From 8a6d48c0542876eb3acfc0970c0ab7872db08d5f Mon Sep 17 00:00:00 2001 From: Zheng Da Date: Sun, 6 Dec 2009 05:26:23 +0100 Subject: check in the original version of dde linux26. --- libdde_linux26/contrib/include/linux/mm.h | 1323 +++++++++++++++++++++++++++++ 1 file changed, 1323 insertions(+) create mode 100644 libdde_linux26/contrib/include/linux/mm.h (limited to 'libdde_linux26/contrib/include/linux/mm.h') diff --git a/libdde_linux26/contrib/include/linux/mm.h b/libdde_linux26/contrib/include/linux/mm.h new file mode 100644 index 00000000..065cdf8c --- /dev/null +++ b/libdde_linux26/contrib/include/linux/mm.h @@ -0,0 +1,1323 @@ +#ifndef _LINUX_MM_H +#define _LINUX_MM_H + +#include + +#ifdef __KERNEL__ + +#include +#include +#include +#include +#include +#include +#include +#include + +struct mempolicy; +struct anon_vma; +struct file_ra_state; +struct user_struct; +struct writeback_control; + +#ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */ +extern unsigned long max_mapnr; +#endif + +extern unsigned long num_physpages; +extern void * high_memory; +extern int page_cluster; + +#ifdef CONFIG_SYSCTL +extern int sysctl_legacy_va_layout; +#else +#define sysctl_legacy_va_layout 0 +#endif + +extern unsigned long mmap_min_addr; + +#include +#include +#include + +#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) + +/* to align the pointer to the (next) page boundary */ +#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) + +/* + * Linux kernel virtual memory manager primitives. + * The idea being to have a "virtual" mm in the same way + * we have a virtual fs - giving a cleaner interface to the + * mm details, and allowing different kinds of memory mappings + * (from shared memory to executable loading to arbitrary + * mmap() functions). + */ + +extern struct kmem_cache *vm_area_cachep; + +#ifndef CONFIG_MMU +extern struct rb_root nommu_region_tree; +extern struct rw_semaphore nommu_region_sem; + +extern unsigned int kobjsize(const void *objp); +#endif + +/* + * vm_flags in vm_area_struct, see mm_types.h. + */ +#define VM_READ 0x00000001 /* currently active flags */ +#define VM_WRITE 0x00000002 +#define VM_EXEC 0x00000004 +#define VM_SHARED 0x00000008 + +/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ +#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ +#define VM_MAYWRITE 0x00000020 +#define VM_MAYEXEC 0x00000040 +#define VM_MAYSHARE 0x00000080 + +#define VM_GROWSDOWN 0x00000100 /* general info on the segment */ +#define VM_GROWSUP 0x00000200 +#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ +#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ + +#define VM_EXECUTABLE 0x00001000 +#define VM_LOCKED 0x00002000 +#define VM_IO 0x00004000 /* Memory mapped I/O or similar */ + + /* Used by sys_madvise() */ +#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ +#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ + +#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ +#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ +#define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */ +#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ +#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ +#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ +#define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */ +#define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */ +#define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */ +#define VM_ALWAYSDUMP 0x04000000 /* Always include in core dumps */ + +#define VM_CAN_NONLINEAR 0x08000000 /* Has ->fault & does nonlinear pages */ +#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ +#define VM_SAO 0x20000000 /* Strong Access Ordering (powerpc) */ + +#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ +#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS +#endif + +#ifdef CONFIG_STACK_GROWSUP +#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) +#else +#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) +#endif + +#define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ) +#define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK +#define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK)) +#define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ) +#define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ) + +/* + * special vmas that are non-mergable, non-mlock()able + */ +#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP) + +/* + * mapping from the currently active vm_flags protection bits (the + * low four bits) to a page protection mask.. + */ +extern pgprot_t protection_map[16]; + +#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ +#define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */ + +/* + * This interface is used by x86 PAT code to identify a pfn mapping that is + * linear over entire vma. This is to optimize PAT code that deals with + * marking the physical region with a particular prot. This is not for generic + * mm use. Note also that this check will not work if the pfn mapping is + * linear for a vma starting at physical address 0. In which case PAT code + * falls back to slow path of reserving physical range page by page. + */ +static inline int is_linear_pfn_mapping(struct vm_area_struct *vma) +{ + return ((vma->vm_flags & VM_PFNMAP) && vma->vm_pgoff); +} + +static inline int is_pfn_mapping(struct vm_area_struct *vma) +{ + return (vma->vm_flags & VM_PFNMAP); +} + +/* + * vm_fault is filled by the the pagefault handler and passed to the vma's + * ->fault function. The vma's ->fault is responsible for returning a bitmask + * of VM_FAULT_xxx flags that give details about how the fault was handled. + * + * pgoff should be used in favour of virtual_address, if possible. If pgoff + * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear + * mapping support. + */ +struct vm_fault { + unsigned int flags; /* FAULT_FLAG_xxx flags */ + pgoff_t pgoff; /* Logical page offset based on vma */ + void __user *virtual_address; /* Faulting virtual address */ + + struct page *page; /* ->fault handlers should return a + * page here, unless VM_FAULT_NOPAGE + * is set (which is also implied by + * VM_FAULT_ERROR). + */ +}; + +/* + * These are the virtual MM functions - opening of an area, closing and + * unmapping it (needed to keep files on disk up-to-date etc), pointer + * to the functions called when a no-page or a wp-page exception occurs. + */ +struct vm_operations_struct { + void (*open)(struct vm_area_struct * area); + void (*close)(struct vm_area_struct * area); + int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf); + + /* notification that a previously read-only page is about to become + * writable, if an error is returned it will cause a SIGBUS */ + int (*page_mkwrite)(struct vm_area_struct *vma, struct page *page); + + /* called by access_process_vm when get_user_pages() fails, typically + * for use by special VMAs that can switch between memory and hardware + */ + int (*access)(struct vm_area_struct *vma, unsigned long addr, + void *buf, int len, int write); +#ifdef CONFIG_NUMA + /* + * set_policy() op must add a reference to any non-NULL @new mempolicy + * to hold the policy upon return. Caller should pass NULL @new to + * remove a policy and fall back to surrounding context--i.e. do not + * install a MPOL_DEFAULT policy, nor the task or system default + * mempolicy. + */ + int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); + + /* + * get_policy() op must add reference [mpol_get()] to any policy at + * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure + * in mm/mempolicy.c will do this automatically. + * get_policy() must NOT add a ref if the policy at (vma,addr) is not + * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. + * If no [shared/vma] mempolicy exists at the addr, get_policy() op + * must return NULL--i.e., do not "fallback" to task or system default + * policy. + */ + struct mempolicy *(*get_policy)(struct vm_area_struct *vma, + unsigned long addr); + int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from, + const nodemask_t *to, unsigned long flags); +#endif +}; + +struct mmu_gather; +struct inode; + +#define page_private(page) ((page)->private) +#define set_page_private(page, v) ((page)->private = (v)) + +/* + * FIXME: take this include out, include page-flags.h in + * files which need it (119 of them) + */ +#include + +/* + * Methods to modify the page usage count. + * + * What counts for a page usage: + * - cache mapping (page->mapping) + * - private data (page->private) + * - page mapped in a task's page tables, each mapping + * is counted separately + * + * Also, many kernel routines increase the page count before a critical + * routine so they can be sure the page doesn't go away from under them. + */ + +/* + * Drop a ref, return true if the refcount fell to zero (the page has no users) + */ +static inline int put_page_testzero(struct page *page) +{ + VM_BUG_ON(atomic_read(&page->_count) == 0); + return atomic_dec_and_test(&page->_count); +} + +/* + * Try to grab a ref unless the page has a refcount of zero, return false if + * that is the case. + */ +static inline int get_page_unless_zero(struct page *page) +{ + return atomic_inc_not_zero(&page->_count); +} + +/* Support for virtually mapped pages */ +struct page *vmalloc_to_page(const void *addr); +unsigned long vmalloc_to_pfn(const void *addr); + +/* + * Determine if an address is within the vmalloc range + * + * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there + * is no special casing required. + */ +static inline int is_vmalloc_addr(const void *x) +{ +#ifdef CONFIG_MMU + unsigned long addr = (unsigned long)x; + + return addr >= VMALLOC_START && addr < VMALLOC_END; +#else + return 0; +#endif +} + +static inline struct page *compound_head(struct page *page) +{ + if (unlikely(PageTail(page))) + return page->first_page; + return page; +} + +static inline int page_count(struct page *page) +{ + return atomic_read(&compound_head(page)->_count); +} + +static inline void get_page(struct page *page) +{ + page = compound_head(page); + VM_BUG_ON(atomic_read(&page->_count) == 0); + atomic_inc(&page->_count); +} + +static inline struct page *virt_to_head_page(const void *x) +{ + struct page *page = virt_to_page(x); + return compound_head(page); +} + +/* + * Setup the page count before being freed into the page allocator for + * the first time (boot or memory hotplug) + */ +static inline void init_page_count(struct page *page) +{ + atomic_set(&page->_count, 1); +} + +void put_page(struct page *page); +void put_pages_list(struct list_head *pages); + +void split_page(struct page *page, unsigned int order); + +/* + * Compound pages have a destructor function. Provide a + * prototype for that function and accessor functions. + * These are _only_ valid on the head of a PG_compound page. + */ +typedef void compound_page_dtor(struct page *); + +static inline void set_compound_page_dtor(struct page *page, + compound_page_dtor *dtor) +{ + page[1].lru.next = (void *)dtor; +} + +static inline compound_page_dtor *get_compound_page_dtor(struct page *page) +{ + return (compound_page_dtor *)page[1].lru.next; +} + +static inline int compound_order(struct page *page) +{ + if (!PageHead(page)) + return 0; + return (unsigned long)page[1].lru.prev; +} + +static inline void set_compound_order(struct page *page, unsigned long order) +{ + page[1].lru.prev = (void *)order; +} + +/* + * Multiple processes may "see" the same page. E.g. for untouched + * mappings of /dev/null, all processes see the same page full of + * zeroes, and text pages of executables and shared libraries have + * only one copy in memory, at most, normally. + * + * For the non-reserved pages, page_count(page) denotes a reference count. + * page_count() == 0 means the page is free. page->lru is then used for + * freelist management in the buddy allocator. + * page_count() > 0 means the page has been allocated. + * + * Pages are allocated by the slab allocator in order to provide memory + * to kmalloc and kmem_cache_alloc. In this case, the management of the + * page, and the fields in 'struct page' are the responsibility of mm/slab.c + * unless a particular usage is carefully commented. (the responsibility of + * freeing the kmalloc memory is the caller's, of course). + * + * A page may be used by anyone else who does a __get_free_page(). + * In this case, page_count still tracks the references, and should only + * be used through the normal accessor functions. The top bits of page->flags + * and page->virtual store page management information, but all other fields + * are unused and could be used privately, carefully. The management of this + * page is the responsibility of the one who allocated it, and those who have + * subsequently been given references to it. + * + * The other pages (we may call them "pagecache pages") are completely + * managed by the Linux memory manager: I/O, buffers, swapping etc. + * The following discussion applies only to them. + * + * A pagecache page contains an opaque `private' member, which belongs to the + * page's address_space. Usually, this is the address of a circular list of + * the page's disk buffers. PG_private must be set to tell the VM to call + * into the filesystem to release these pages. + * + * A page may belong to an inode's memory mapping. In this case, page->mapping + * is the pointer to the inode, and page->index is the file offset of the page, + * in units of PAGE_CACHE_SIZE. + * + * If pagecache pages are not associated with an inode, they are said to be + * anonymous pages. These may become associated with the swapcache, and in that + * case PG_swapcache is set, and page->private is an offset into the swapcache. + * + * In either case (swapcache or inode backed), the pagecache itself holds one + * reference to the page. Setting PG_private should also increment the + * refcount. The each user mapping also has a reference to the page. + * + * The pagecache pages are stored in a per-mapping radix tree, which is + * rooted at mapping->page_tree, and indexed by offset. + * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space + * lists, we instead now tag pages as dirty/writeback in the radix tree. + * + * All pagecache pages may be subject to I/O: + * - inode pages may need to be read from disk, + * - inode pages which have been modified and are MAP_SHARED may need + * to be written back to the inode on disk, + * - anonymous pages (including MAP_PRIVATE file mappings) which have been + * modified may need to be swapped out to swap space and (later) to be read + * back into memory. + */ + +/* + * The zone field is never updated after free_area_init_core() + * sets it, so none of the operations on it need to be atomic. + */ + + +/* + * page->flags layout: + * + * There are three possibilities for how page->flags get + * laid out. The first is for the normal case, without + * sparsemem. The second is for sparsemem when there is + * plenty of space for node and section. The last is when + * we have run out of space and have to fall back to an + * alternate (slower) way of determining the node. + * + * No sparsemem or sparsemem vmemmap: | NODE | ZONE | ... | FLAGS | + * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS | + * classic sparse no space for node: | SECTION | ZONE | ... | FLAGS | + */ +#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) +#define SECTIONS_WIDTH SECTIONS_SHIFT +#else +#define SECTIONS_WIDTH 0 +#endif + +#define ZONES_WIDTH ZONES_SHIFT + +#if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS +#define NODES_WIDTH NODES_SHIFT +#else +#ifdef CONFIG_SPARSEMEM_VMEMMAP +#error "Vmemmap: No space for nodes field in page flags" +#endif +#define NODES_WIDTH 0 +#endif + +/* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */ +#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) +#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) +#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) + +/* + * We are going to use the flags for the page to node mapping if its in + * there. This includes the case where there is no node, so it is implicit. + */ +#if !(NODES_WIDTH > 0 || NODES_SHIFT == 0) +#define NODE_NOT_IN_PAGE_FLAGS +#endif + +#ifndef PFN_SECTION_SHIFT +#define PFN_SECTION_SHIFT 0 +#endif + +/* + * Define the bit shifts to access each section. For non-existant + * sections we define the shift as 0; that plus a 0 mask ensures + * the compiler will optimise away reference to them. + */ +#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) +#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) +#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) + +/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allcator */ +#ifdef NODE_NOT_IN_PAGEFLAGS +#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) +#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ + SECTIONS_PGOFF : ZONES_PGOFF) +#else +#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) +#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ + NODES_PGOFF : ZONES_PGOFF) +#endif + +#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) + +#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS +#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS +#endif + +#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) +#define NODES_MASK ((1UL << NODES_WIDTH) - 1) +#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) +#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) + +static inline enum zone_type page_zonenum(struct page *page) +{ + return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; +} + +/* + * The identification function is only used by the buddy allocator for + * determining if two pages could be buddies. We are not really + * identifying a zone since we could be using a the section number + * id if we have not node id available in page flags. + * We guarantee only that it will return the same value for two + * combinable pages in a zone. + */ +static inline int page_zone_id(struct page *page) +{ + return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; +} + +static inline int zone_to_nid(struct zone *zone) +{ +#ifdef CONFIG_NUMA + return zone->node; +#else + return 0; +#endif +} + +#ifdef NODE_NOT_IN_PAGE_FLAGS +extern int page_to_nid(struct page *page); +#else +static inline int page_to_nid(struct page *page) +{ + return (page->flags >> NODES_PGSHIFT) & NODES_MASK; +} +#endif + +static inline struct zone *page_zone(struct page *page) +{ + return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; +} + +#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) +static inline unsigned long page_to_section(struct page *page) +{ + return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; +} +#endif + +static inline void set_page_zone(struct page *page, enum zone_type zone) +{ + page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); + page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; +} + +static inline void set_page_node(struct page *page, unsigned long node) +{ + page->flags &= ~(NODES_MASK << NODES_PGSHIFT); + page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; +} + +static inline void set_page_section(struct page *page, unsigned long section) +{ + page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); + page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; +} + +static inline void set_page_links(struct page *page, enum zone_type zone, + unsigned long node, unsigned long pfn) +{ + set_page_zone(page, zone); + set_page_node(page, node); + set_page_section(page, pfn_to_section_nr(pfn)); +} + +/* + * If a hint addr is less than mmap_min_addr change hint to be as + * low as possible but still greater than mmap_min_addr + */ +static inline unsigned long round_hint_to_min(unsigned long hint) +{ +#ifdef CONFIG_SECURITY + hint &= PAGE_MASK; + if (((void *)hint != NULL) && + (hint < mmap_min_addr)) + return PAGE_ALIGN(mmap_min_addr); +#endif + return hint; +} + +/* + * Some inline functions in vmstat.h depend on page_zone() + */ +#include + +static __always_inline void *lowmem_page_address(struct page *page) +{ + return __va(page_to_pfn(page) << PAGE_SHIFT); +} + +#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) +#define HASHED_PAGE_VIRTUAL +#endif + +#if defined(WANT_PAGE_VIRTUAL) +#define page_address(page) ((page)->virtual) +#define set_page_address(page, address) \ + do { \ + (page)->virtual = (address); \ + } while(0) +#define page_address_init() do { } while(0) +#endif + +#if defined(HASHED_PAGE_VIRTUAL) +void *page_address(struct page *page); +void set_page_address(struct page *page, void *virtual); +void page_address_init(void); +#endif + +#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) +#define page_address(page) lowmem_page_address(page) +#define set_page_address(page, address) do { } while(0) +#define page_address_init() do { } while(0) +#endif + +/* + * On an anonymous page mapped into a user virtual memory area, + * page->mapping points to its anon_vma, not to a struct address_space; + * with the PAGE_MAPPING_ANON bit set to distinguish it. + * + * Please note that, confusingly, "page_mapping" refers to the inode + * address_space which maps the page from disk; whereas "page_mapped" + * refers to user virtual address space into which the page is mapped. + */ +#define PAGE_MAPPING_ANON 1 + +extern struct address_space swapper_space; +static inline struct address_space *page_mapping(struct page *page) +{ + struct address_space *mapping = page->mapping; + + VM_BUG_ON(PageSlab(page)); +#ifdef CONFIG_SWAP + if (unlikely(PageSwapCache(page))) + mapping = &swapper_space; + else +#endif + if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON)) + mapping = NULL; + return mapping; +} + +static inline int PageAnon(struct page *page) +{ + return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0; +} + +/* + * Return the pagecache index of the passed page. Regular pagecache pages + * use ->index whereas swapcache pages use ->private + */ +static inline pgoff_t page_index(struct page *page) +{ + if (unlikely(PageSwapCache(page))) + return page_private(page); + return page->index; +} + +/* + * The atomic page->_mapcount, like _count, starts from -1: + * so that transitions both from it and to it can be tracked, + * using atomic_inc_and_test and atomic_add_negative(-1). + */ +static inline void reset_page_mapcount(struct page *page) +{ + atomic_set(&(page)->_mapcount, -1); +} + +static inline int page_mapcount(struct page *page) +{ + return atomic_read(&(page)->_mapcount) + 1; +} + +/* + * Return true if this page is mapped into pagetables. + */ +static inline int page_mapped(struct page *page) +{ + return atomic_read(&(page)->_mapcount) >= 0; +} + +/* + * Different kinds of faults, as returned by handle_mm_fault(). + * Used to decide whether a process gets delivered SIGBUS or + * just gets major/minor fault counters bumped up. + */ + +#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */ + +#define VM_FAULT_OOM 0x0001 +#define VM_FAULT_SIGBUS 0x0002 +#define VM_FAULT_MAJOR 0x0004 +#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */ + +#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */ +#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */ + +#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS) + +/* + * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. + */ +extern void pagefault_out_of_memory(void); + +#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) + +extern void show_free_areas(void); + +#ifdef CONFIG_SHMEM +extern int shmem_lock(struct file *file, int lock, struct user_struct *user); +#else +static inline int shmem_lock(struct file *file, int lock, + struct user_struct *user) +{ + return 0; +} +#endif +struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags); + +int shmem_zero_setup(struct vm_area_struct *); + +#ifndef CONFIG_MMU +extern unsigned long shmem_get_unmapped_area(struct file *file, + unsigned long addr, + unsigned long len, + unsigned long pgoff, + unsigned long flags); +#endif + +extern int can_do_mlock(void); +extern int user_shm_lock(size_t, struct user_struct *); +extern void user_shm_unlock(size_t, struct user_struct *); + +/* + * Parameter block passed down to zap_pte_range in exceptional cases. + */ +struct zap_details { + struct vm_area_struct *nonlinear_vma; /* Check page->index if set */ + struct address_space *check_mapping; /* Check page->mapping if set */ + pgoff_t first_index; /* Lowest page->index to unmap */ + pgoff_t last_index; /* Highest page->index to unmap */ + spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */ + unsigned long truncate_count; /* Compare vm_truncate_count */ +}; + +struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, + pte_t pte); + +int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, + unsigned long size); +unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, + unsigned long size, struct zap_details *); +unsigned long unmap_vmas(struct mmu_gather **tlb, + struct vm_area_struct *start_vma, unsigned long start_addr, + unsigned long end_addr, unsigned long *nr_accounted, + struct zap_details *); + +/** + * mm_walk - callbacks for walk_page_range + * @pgd_entry: if set, called for each non-empty PGD (top-level) entry + * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry + * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry + * @pte_entry: if set, called for each non-empty PTE (4th-level) entry + * @pte_hole: if set, called for each hole at all levels + * + * (see walk_page_range for more details) + */ +struct mm_walk { + int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *); + int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *); + int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *); + int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *); + int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *); + struct mm_struct *mm; + void *private; +}; + +int walk_page_range(unsigned long addr, unsigned long end, + struct mm_walk *walk); +void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, + unsigned long end, unsigned long floor, unsigned long ceiling); +int copy_page_range(struct mm_struct *dst, struct mm_struct *src, + struct vm_area_struct *vma); +void unmap_mapping_range(struct address_space *mapping, + loff_t const holebegin, loff_t const holelen, int even_cows); +int follow_phys(struct vm_area_struct *vma, unsigned long address, + unsigned int flags, unsigned long *prot, resource_size_t *phys); +int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, + void *buf, int len, int write); + +static inline void unmap_shared_mapping_range(struct address_space *mapping, + loff_t const holebegin, loff_t const holelen) +{ + unmap_mapping_range(mapping, holebegin, holelen, 0); +} + +extern int vmtruncate(struct inode * inode, loff_t offset); +extern int vmtruncate_range(struct inode * inode, loff_t offset, loff_t end); + +#ifdef CONFIG_MMU +extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, + unsigned long address, int write_access); +#else +static inline int handle_mm_fault(struct mm_struct *mm, + struct vm_area_struct *vma, unsigned long address, + int write_access) +{ + /* should never happen if there's no MMU */ + BUG(); + return VM_FAULT_SIGBUS; +} +#endif + +extern int make_pages_present(unsigned long addr, unsigned long end); +extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write); + +int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start, + int len, int write, int force, struct page **pages, struct vm_area_struct **vmas); + +extern int try_to_release_page(struct page * page, gfp_t gfp_mask); +extern void do_invalidatepage(struct page *page, unsigned long offset); + +int __set_page_dirty_nobuffers(struct page *page); +int __set_page_dirty_no_writeback(struct page *page); +int redirty_page_for_writepage(struct writeback_control *wbc, + struct page *page); +int set_page_dirty(struct page *page); +int set_page_dirty_lock(struct page *page); +int clear_page_dirty_for_io(struct page *page); + +extern unsigned long move_page_tables(struct vm_area_struct *vma, + unsigned long old_addr, struct vm_area_struct *new_vma, + unsigned long new_addr, unsigned long len); +extern unsigned long do_mremap(unsigned long addr, + unsigned long old_len, unsigned long new_len, + unsigned long flags, unsigned long new_addr); +extern int mprotect_fixup(struct vm_area_struct *vma, + struct vm_area_struct **pprev, unsigned long start, + unsigned long end, unsigned long newflags); + +/* + * get_user_pages_fast provides equivalent functionality to get_user_pages, + * operating on current and current->mm (force=0 and doesn't return any vmas). + * + * get_user_pages_fast may take mmap_sem and page tables, so no assumptions + * can be made about locking. get_user_pages_fast is to be implemented in a + * way that is advantageous (vs get_user_pages()) when the user memory area is + * already faulted in and present in ptes. However if the pages have to be + * faulted in, it may turn out to be slightly slower). + */ +int get_user_pages_fast(unsigned long start, int nr_pages, int write, + struct page **pages); + +/* + * A callback you can register to apply pressure to ageable caches. + * + * 'shrink' is passed a count 'nr_to_scan' and a 'gfpmask'. It should + * look through the least-recently-used 'nr_to_scan' entries and + * attempt to free them up. It should return the number of objects + * which remain in the cache. If it returns -1, it means it cannot do + * any scanning at this time (eg. there is a risk of deadlock). + * + * The 'gfpmask' refers to the allocation we are currently trying to + * fulfil. + * + * Note that 'shrink' will be passed nr_to_scan == 0 when the VM is + * querying the cache size, so a fastpath for that case is appropriate. + */ +struct shrinker { + int (*shrink)(int nr_to_scan, gfp_t gfp_mask); + int seeks; /* seeks to recreate an obj */ + + /* These are for internal use */ + struct list_head list; + long nr; /* objs pending delete */ +}; +#define DEFAULT_SEEKS 2 /* A good number if you don't know better. */ +extern void register_shrinker(struct shrinker *); +extern void unregister_shrinker(struct shrinker *); + +int vma_wants_writenotify(struct vm_area_struct *vma); + +extern pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl); + +#ifdef __PAGETABLE_PUD_FOLDED +static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, + unsigned long address) +{ + return 0; +} +#else +int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); +#endif + +#ifdef __PAGETABLE_PMD_FOLDED +static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, + unsigned long address) +{ + return 0; +} +#else +int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); +#endif + +int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address); +int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); + +/* + * The following ifdef needed to get the 4level-fixup.h header to work. + * Remove it when 4level-fixup.h has been removed. + */ +#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) +static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) +{ + return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))? + NULL: pud_offset(pgd, address); +} + +static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) +{ + return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? + NULL: pmd_offset(pud, address); +} +#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ + +#if USE_SPLIT_PTLOCKS +/* + * We tuck a spinlock to guard each pagetable page into its struct page, + * at page->private, with BUILD_BUG_ON to make sure that this will not + * overflow into the next struct page (as it might with DEBUG_SPINLOCK). + * When freeing, reset page->mapping so free_pages_check won't complain. + */ +#define __pte_lockptr(page) &((page)->ptl) +#define pte_lock_init(_page) do { \ + spin_lock_init(__pte_lockptr(_page)); \ +} while (0) +#define pte_lock_deinit(page) ((page)->mapping = NULL) +#define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));}) +#else /* !USE_SPLIT_PTLOCKS */ +/* + * We use mm->page_table_lock to guard all pagetable pages of the mm. + */ +#define pte_lock_init(page) do {} while (0) +#define pte_lock_deinit(page) do {} while (0) +#define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;}) +#endif /* USE_SPLIT_PTLOCKS */ + +static inline void pgtable_page_ctor(struct page *page) +{ + pte_lock_init(page); + inc_zone_page_state(page, NR_PAGETABLE); +} + +static inline void pgtable_page_dtor(struct page *page) +{ + pte_lock_deinit(page); + dec_zone_page_state(page, NR_PAGETABLE); +} + +#define pte_offset_map_lock(mm, pmd, address, ptlp) \ +({ \ + spinlock_t *__ptl = pte_lockptr(mm, pmd); \ + pte_t *__pte = pte_offset_map(pmd, address); \ + *(ptlp) = __ptl; \ + spin_lock(__ptl); \ + __pte; \ +}) + +#define pte_unmap_unlock(pte, ptl) do { \ + spin_unlock(ptl); \ + pte_unmap(pte); \ +} while (0) + +#define pte_alloc_map(mm, pmd, address) \ + ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \ + NULL: pte_offset_map(pmd, address)) + +#define pte_alloc_map_lock(mm, pmd, address, ptlp) \ + ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \ + NULL: pte_offset_map_lock(mm, pmd, address, ptlp)) + +#define pte_alloc_kernel(pmd, address) \ + ((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ + NULL: pte_offset_kernel(pmd, address)) + +extern void free_area_init(unsigned long * zones_size); +extern void free_area_init_node(int nid, unsigned long * zones_size, + unsigned long zone_start_pfn, unsigned long *zholes_size); +#ifdef CONFIG_ARCH_POPULATES_NODE_MAP +/* + * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its + * zones, allocate the backing mem_map and account for memory holes in a more + * architecture independent manner. This is a substitute for creating the + * zone_sizes[] and zholes_size[] arrays and passing them to + * free_area_init_node() + * + * An architecture is expected to register range of page frames backed by + * physical memory with add_active_range() before calling + * free_area_init_nodes() passing in the PFN each zone ends at. At a basic + * usage, an architecture is expected to do something like + * + * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, + * max_highmem_pfn}; + * for_each_valid_physical_page_range() + * add_active_range(node_id, start_pfn, end_pfn) + * free_area_init_nodes(max_zone_pfns); + * + * If the architecture guarantees that there are no holes in the ranges + * registered with add_active_range(), free_bootmem_active_regions() + * will call free_bootmem_node() for each registered physical page range. + * Similarly sparse_memory_present_with_active_regions() calls + * memory_present() for each range when SPARSEMEM is enabled. + * + * See mm/page_alloc.c for more information on each function exposed by + * CONFIG_ARCH_POPULATES_NODE_MAP + */ +extern void free_area_init_nodes(unsigned long *max_zone_pfn); +extern void add_active_range(unsigned int nid, unsigned long start_pfn, + unsigned long end_pfn); +extern void remove_active_range(unsigned int nid, unsigned long start_pfn, + unsigned long end_pfn); +extern void push_node_boundaries(unsigned int nid, unsigned long start_pfn, + unsigned long end_pfn); +extern void remove_all_active_ranges(void); +extern unsigned long absent_pages_in_range(unsigned long start_pfn, + unsigned long end_pfn); +extern void get_pfn_range_for_nid(unsigned int nid, + unsigned long *start_pfn, unsigned long *end_pfn); +extern unsigned long find_min_pfn_with_active_regions(void); +extern void free_bootmem_with_active_regions(int nid, + unsigned long max_low_pfn); +typedef int (*work_fn_t)(unsigned long, unsigned long, void *); +extern void work_with_active_regions(int nid, work_fn_t work_fn, void *data); +extern void sparse_memory_present_with_active_regions(int nid); +#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ + +#if !defined(CONFIG_ARCH_POPULATES_NODE_MAP) && \ + !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) +static inline int __early_pfn_to_nid(unsigned long pfn) +{ + return 0; +} +#else +/* please see mm/page_alloc.c */ +extern int __meminit early_pfn_to_nid(unsigned long pfn); +#ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID +/* there is a per-arch backend function. */ +extern int __meminit __early_pfn_to_nid(unsigned long pfn); +#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ +#endif + +extern void set_dma_reserve(unsigned long new_dma_reserve); +extern void memmap_init_zone(unsigned long, int, unsigned long, + unsigned long, enum memmap_context); +extern void setup_per_zone_pages_min(void); +extern void mem_init(void); +extern void __init mmap_init(void); +extern void show_mem(void); +extern void si_meminfo(struct sysinfo * val); +extern void si_meminfo_node(struct sysinfo *val, int nid); +extern int after_bootmem; + +#ifdef CONFIG_NUMA +extern void setup_per_cpu_pageset(void); +#else +static inline void setup_per_cpu_pageset(void) {} +#endif + +/* nommu.c */ +extern atomic_t mmap_pages_allocated; + +/* prio_tree.c */ +void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old); +void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *); +void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *); +struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma, + struct prio_tree_iter *iter); + +#define vma_prio_tree_foreach(vma, iter, root, begin, end) \ + for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \ + (vma = vma_prio_tree_next(vma, iter)); ) + +static inline void vma_nonlinear_insert(struct vm_area_struct *vma, + struct list_head *list) +{ + vma->shared.vm_set.parent = NULL; + list_add_tail(&vma->shared.vm_set.list, list); +} + +/* mmap.c */ +extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); +extern void vma_adjust(struct vm_area_struct *vma, unsigned long start, + unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert); +extern struct vm_area_struct *vma_merge(struct mm_struct *, + struct vm_area_struct *prev, unsigned long addr, unsigned long end, + unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, + struct mempolicy *); +extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); +extern int split_vma(struct mm_struct *, + struct vm_area_struct *, unsigned long addr, int new_below); +extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); +extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, + struct rb_node **, struct rb_node *); +extern void unlink_file_vma(struct vm_area_struct *); +extern struct vm_area_struct *copy_vma(struct vm_area_struct **, + unsigned long addr, unsigned long len, pgoff_t pgoff); +extern void exit_mmap(struct mm_struct *); + +extern int mm_take_all_locks(struct mm_struct *mm); +extern void mm_drop_all_locks(struct mm_struct *mm); + +#ifdef CONFIG_PROC_FS +/* From fs/proc/base.c. callers must _not_ hold the mm's exe_file_lock */ +extern void added_exe_file_vma(struct mm_struct *mm); +extern void removed_exe_file_vma(struct mm_struct *mm); +#else +static inline void added_exe_file_vma(struct mm_struct *mm) +{} + +static inline void removed_exe_file_vma(struct mm_struct *mm) +{} +#endif /* CONFIG_PROC_FS */ + +extern int may_expand_vm(struct mm_struct *mm, unsigned long npages); +extern int install_special_mapping(struct mm_struct *mm, + unsigned long addr, unsigned long len, + unsigned long flags, struct page **pages); + +extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); + +extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, + unsigned long len, unsigned long prot, + unsigned long flag, unsigned long pgoff); +extern unsigned long mmap_region(struct file *file, unsigned long addr, + unsigned long len, unsigned long flags, + unsigned int vm_flags, unsigned long pgoff); + +static inline unsigned long do_mmap(struct file *file, unsigned long addr, + unsigned long len, unsigned long prot, + unsigned long flag, unsigned long offset) +{ + unsigned long ret = -EINVAL; + if ((offset + PAGE_ALIGN(len)) < offset) + goto out; + if (!(offset & ~PAGE_MASK)) + ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT); +out: + return ret; +} + +extern int do_munmap(struct mm_struct *, unsigned long, size_t); + +extern unsigned long do_brk(unsigned long, unsigned long); + +/* filemap.c */ +extern unsigned long page_unuse(struct page *); +extern void truncate_inode_pages(struct address_space *, loff_t); +extern void truncate_inode_pages_range(struct address_space *, + loff_t lstart, loff_t lend); + +/* generic vm_area_ops exported for stackable file systems */ +extern int filemap_fault(struct vm_area_struct *, struct vm_fault *); + +/* mm/page-writeback.c */ +int write_one_page(struct page *page, int wait); +void task_dirty_inc(struct task_struct *tsk); + +/* readahead.c */ +#define VM_MAX_READAHEAD 128 /* kbytes */ +#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ + +int do_page_cache_readahead(struct address_space *mapping, struct file *filp, + pgoff_t offset, unsigned long nr_to_read); +int force_page_cache_readahead(struct address_space *mapping, struct file *filp, + pgoff_t offset, unsigned long nr_to_read); + +void page_cache_sync_readahead(struct address_space *mapping, + struct file_ra_state *ra, + struct file *filp, + pgoff_t offset, + unsigned long size); + +void page_cache_async_readahead(struct address_space *mapping, + struct file_ra_state *ra, + struct file *filp, + struct page *pg, + pgoff_t offset, + unsigned long size); + +unsigned long max_sane_readahead(unsigned long nr); + +/* Do stack extension */ +extern int expand_stack(struct vm_area_struct *vma, unsigned long address); +#ifdef CONFIG_IA64 +extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); +#endif +extern int expand_stack_downwards(struct vm_area_struct *vma, + unsigned long address); + +/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ +extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); +extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, + struct vm_area_struct **pprev); + +/* Look up the first VMA which intersects the interval start_addr..end_addr-1, + NULL if none. Assume start_addr < end_addr. */ +static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) +{ + struct vm_area_struct * vma = find_vma(mm,start_addr); + + if (vma && end_addr <= vma->vm_start) + vma = NULL; + return vma; +} + +static inline unsigned long vma_pages(struct vm_area_struct *vma) +{ + return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; +} + +pgprot_t vm_get_page_prot(unsigned long vm_flags); +struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); +int remap_pfn_range(struct vm_area_struct *, unsigned long addr, + unsigned long pfn, unsigned long size, pgprot_t); +int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); +int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, + unsigned long pfn); +int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, + unsigned long pfn); + +struct page *follow_page(struct vm_area_struct *, unsigned long address, + unsigned int foll_flags); +#define FOLL_WRITE 0x01 /* check pte is writable */ +#define FOLL_TOUCH 0x02 /* mark page accessed */ +#define FOLL_GET 0x04 /* do get_page on page */ +#define FOLL_ANON 0x08 /* give ZERO_PAGE if no pgtable */ + +typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr, + void *data); +extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, + unsigned long size, pte_fn_t fn, void *data); + +#ifdef CONFIG_PROC_FS +void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long); +#else +static inline void vm_stat_account(struct mm_struct *mm, + unsigned long flags, struct file *file, long pages) +{ +} +#endif /* CONFIG_PROC_FS */ + +#ifdef CONFIG_DEBUG_PAGEALLOC +extern int debug_pagealloc_enabled; + +extern void kernel_map_pages(struct page *page, int numpages, int enable); + +static inline void enable_debug_pagealloc(void) +{ + debug_pagealloc_enabled = 1; +} +#ifdef CONFIG_HIBERNATION +extern bool kernel_page_present(struct page *page); +#endif /* CONFIG_HIBERNATION */ +#else +static inline void +kernel_map_pages(struct page *page, int numpages, int enable) {} +static inline void enable_debug_pagealloc(void) +{ +} +#ifdef CONFIG_HIBERNATION +static inline bool kernel_page_present(struct page *page) { return true; } +#endif /* CONFIG_HIBERNATION */ +#endif + +extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk); +#ifdef __HAVE_ARCH_GATE_AREA +int in_gate_area_no_task(unsigned long addr); +int in_gate_area(struct task_struct *task, unsigned long addr); +#else +int in_gate_area_no_task(unsigned long addr); +#define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);}) +#endif /* __HAVE_ARCH_GATE_AREA */ + +int drop_caches_sysctl_handler(struct ctl_table *, int, struct file *, + void __user *, size_t *, loff_t *); +unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask, + unsigned long lru_pages); + +#ifndef CONFIG_MMU +#define randomize_va_space 0 +#else +extern int randomize_va_space; +#endif + +const char * arch_vma_name(struct vm_area_struct *vma); +void print_vma_addr(char *prefix, unsigned long rip); + +struct page *sparse_mem_map_populate(unsigned long pnum, int nid); +pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); +pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node); +pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); +pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); +void *vmemmap_alloc_block(unsigned long size, int node); +void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); +int vmemmap_populate_basepages(struct page *start_page, + unsigned long pages, int node); +int vmemmap_populate(struct page *start_page, unsigned long pages, int node); +void vmemmap_populate_print_last(void); + +extern void *alloc_locked_buffer(size_t size); +extern void free_locked_buffer(void *buffer, size_t size); +extern void release_locked_buffer(void *buffer, size_t size); +#endif /* __KERNEL__ */ +#endif /* _LINUX_MM_H */ -- cgit v1.2.3