1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
|
/* Disk allocation routines
Copyright (C) 1993, 1994 Free Software Foundation
This file is part of the GNU Hurd.
The GNU Hurd is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
The GNU Hurd is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with the GNU Hurd; see the file COPYING. If not, write to
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
/* Modified from UCB by Michael I. Bushnell. */
/*
* Copyright (c) 1982, 1986, 1989 Regents of the University of California.
* All rights reserved.
*
* Redistribution is only permitted until one year after the first shipment
* of 4.4BSD by the Regents. Otherwise, redistribution and use in source and
* binary forms are permitted provided that: (1) source distributions retain
* this entire copyright notice and comment, and (2) distributions including
* binaries display the following acknowledgement: This product includes
* software developed by the University of California, Berkeley and its
* contributors'' in the documentation or other materials provided with the
* distribution and in all advertising materials mentioning features or use
* of this software. Neither the name of the University nor the names of
* its contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
* THIS SOFTWARE IS PROVIDED AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
* @(#)ufs_alloc.c 7.20 (Berkeley) 6/28/90
*/
#include "ufs.h"
#include "fs.h"
#include "dinode.h"
#include <stdio.h>
static u_long alloccg (int, daddr_t, int);
static u_long ialloccg (int, daddr_t, int);
static u_long hashalloc (int, long, int, u_long(*)(int, daddr_t, int));
static daddr_t fragextend (int, long, int, int);
static daddr_t alloccgblk (struct cg *, daddr_t);
static daddr_t mapsearch (struct cg *, daddr_t, int);
static ino_t dirpref ();
/* These are in tables.c. */
extern int inside[], around[];
extern unsigned char *fragtbl[];
static spin_lock_t alloclock = SPIN_LOCK_INITIALIZER;
/*
* Allocate a block in the file system.
*
* The size of the requested block is given, which must be some
* multiple of fs_fsize and <= fs_bsize.
* A preference may be optionally specified. If a preference is given
* the following hierarchy is used to allocate a block:
* 1) allocate the requested block.
* 2) allocate a rotationally optimal block in the same cylinder.
* 3) allocate a block in the same cylinder group.
* 4) quadradically rehash into other cylinder groups, until an
* available block is located.
* If no block preference is given the following heirarchy is used
* to allocate a block:
* 1) allocate a block in the cylinder group that contains the
* inode for the file.
* 2) quadradically rehash into other cylinder groups, until an
* available block is located.
*/
error_t
alloc(struct node *np,
daddr_t lbn,
daddr_t bpref,
int size,
daddr_t *bnp,
struct protid *cred)
{
int cg;
daddr_t bno;
*bnp = 0;
assert ("Alloc of bad sized block" && (unsigned) size <= sblock->fs_bsize
&& !fragoff(size) && size != 0);
spin_lock (&alloclock);
if (size == sblock->fs_bsize && sblock->fs_cstotal.cs_nbfree == 0)
goto nospace;
if (cred && !diskfs_isuid (0, cred) && freespace(sblock->fs_minfree) <= 0)
goto nospace;
if (bpref >= sblock->fs_size)
bpref = 0;
if (bpref == 0)
cg = itog(np->dn->number);
else
cg = dtog(bpref);
bno = (daddr_t)hashalloc(cg, (long)bpref, size, alloccg);
spin_unlock (&alloclock);
if (bno > 0)
{
np->dn_stat.st_blocks += btodb(size);
np->dn_set_mtime = 1;
np->dn_set_ctime = 1;
*bnp = bno;
return 0;
}
nospace:
spin_unlock (&alloclock);
printf("file system full\n");
return (ENOSPC);
}
/*
* Reallocate a fragment to a bigger size
*
* The number and size of the old block is given, and a preference
* and new size is also specified. The allocator attempts to extend
* the original block. Failing that, the regular block allocator is
* invoked to get an appropriate block.
*/
error_t
realloccg(struct node *np,
daddr_t lbprev,
volatile daddr_t bpref,
int osize,
int nsize,
daddr_t *pbn,
struct protid *cred)
{
volatile int cg, request;
daddr_t bprev, bno;
error_t error;
*pbn = 0;
assert ("bad old size" && (unsigned) osize <= sblock->fs_bsize
&& !fragoff (osize) && osize != 0 );
assert ("bad new size" && (unsigned) nsize <= sblock->fs_bsize
&& !fragoff (nsize) && nsize != 0);
spin_lock (&alloclock);
if (cred && !diskfs_isuid (0, cred) && freespace(sblock->fs_minfree) <= 0)
{
spin_unlock (&alloclock);
goto nospace;
}
if (error = diskfs_catch_exception ())
return error;
bprev = dinodes[np->dn->number].di_db[lbprev];
diskfs_end_catch_exception ();
assert ("old block not allocated" && bprev);
/*
* Check for extension in the existing location.
*/
cg = dtog(bprev);
if (bno = fragextend(cg, (long)bprev, osize, nsize))
{
spin_unlock (&alloclock);
assert ("fragextend behaved incorrectly" && bprev == bno);
np->dn_stat.st_blocks += btodb(nsize - osize);
np->dn_set_mtime = 1;
np->dn_set_ctime = 1;
*pbn = bno;
return (0);
}
/*
* Allocate a new disk location.
*/
if (bpref >= sblock->fs_size)
bpref = 0;
switch ((int)sblock->fs_optim)
{
case FS_OPTSPACE:
/*
* Allocate an exact sized fragment. Although this makes
* best use of space, we will waste time relocating it if
* the file continues to grow. If the fragmentation is
* less than half of the minimum free reserve, we choose
* to begin optimizing for time.
*/
request = nsize;
if (sblock->fs_minfree < 5 ||
sblock->fs_cstotal.cs_nffree >
sblock->fs_dsize * sblock->fs_minfree / (2 * 100))
break;
printf("optimization changed from SPACE to TIME\n");
sblock->fs_optim = FS_OPTTIME;
break;
case FS_OPTTIME:
/*
* At this point we have discovered a file that is trying
* to grow a small fragment to a larger fragment. To save
* time, we allocate a full sized block, then free the
* unused portion. If the file continues to grow, the
* `fragextend' call above will be able to grow it in place
* without further copying. If aberrant programs cause
* disk fragmentation to grow within 2% of the free reserve,
* we choose to begin optimizing for space.
*/
request = sblock->fs_bsize;
if (sblock->fs_cstotal.cs_nffree <
sblock->fs_dsize * (sblock->fs_minfree - 2) / 100)
break;
printf("%s: optimization changed from TIME to SPACE\n",
sblock->fs_fsmnt);
sblock->fs_optim = FS_OPTSPACE;
break;
default:
assert ("filesystem opitimazation bad value" && 0);
}
bno = (daddr_t)hashalloc(cg, (long)bpref, request,
(u_long (*)())alloccg);
spin_unlock (&alloclock);
if (bno > 0)
{
blkfree(bprev, (off_t)osize);
if (nsize < request)
blkfree(bno + numfrags(nsize), (off_t)(request - nsize));
np->dn_stat.st_blocks += btodb (nsize - osize);
np->dn_set_mtime = 1;
np->dn_set_ctime = 1;
*pbn = bno;
return (0);
}
nospace:
/*
* no space available
*/
printf("file system full\n");
return (ENOSPC);
}
/* Implement the diskfs_alloc_node callback from the diskfs library.
See <hurd/diskfs.h> for the interface description. */
error_t
diskfs_alloc_node(struct node *dir,
mode_t mode,
struct node **npp)
{
int ino;
struct node *np;
int cg;
error_t error;
int ipref;
if (S_ISDIR (mode))
ipref = dirpref ();
else
ipref = dir->dn->number;
*npp = 0;
spin_lock (&alloclock);
if (sblock->fs_cstotal.cs_nifree == 0)
{
spin_unlock (&alloclock);
goto noinodes;
}
if (ipref >= sblock->fs_ncg * sblock->fs_ipg)
ipref = 0;
cg = itog(ipref);
ino = (int)hashalloc(cg, (long)ipref, mode, ialloccg);
spin_unlock (&alloclock);
if (ino == 0)
goto noinodes;
if (error = iget(ino, &np))
return error;
*npp = np;
assert ("duplicate allocation" && !np->dn_stat.st_mode);
if (np->dn_stat.st_blocks)
{
printf("free inode %d had %d blocks\n", ino, np->dn_stat.st_blocks);
np->dn_stat.st_blocks = 0;
np->dn_set_ctime = 1;
}
/*
* Set up a new generation number for this inode.
*/
spin_lock (&gennumberlock);
if (++nextgennumber < (u_long)diskfs_mtime->seconds)
nextgennumber = diskfs_mtime->seconds;
np->dn_stat.st_gen = nextgennumber;
spin_unlock (&gennumberlock);
return (0);
noinodes:
printf("out of inodes\n");
return (ENOSPC);
}
/*
* Find a cylinder to place a directory.
*
* The policy implemented by this algorithm is to select from
* among those cylinder groups with above the average number of
* free inodes, the one with the smallest number of directories.
*/
static ino_t
dirpref()
{
int cg, minndir, mincg, avgifree;
spin_lock (&alloclock);
avgifree = sblock->fs_cstotal.cs_nifree / sblock->fs_ncg;
minndir = sblock->fs_ipg;
mincg = 0;
for (cg = 0; cg < sblock->fs_ncg; cg++)
if (csum[cg].cs_ndir < minndir && csum[cg].cs_nifree >= avgifree)
{
mincg = cg;
minndir = csum[cg].cs_ndir;
}
spin_unlock (&alloclock);
return ((int)(sblock->fs_ipg * mincg));
}
/*
* Select the desired position for the next block in a file. The file is
* logically divided into sections. The first section is composed of the
* direct blocks. Each additional section contains fs_maxbpg blocks.
*
* If no blocks have been allocated in the first section, the policy is to
* request a block in the same cylinder group as the inode that describes
* the file. If no blocks have been allocated in any other section, the
* policy is to place the section in a cylinder group with a greater than
* average number of free blocks. An appropriate cylinder group is found
* by using a rotor that sweeps the cylinder groups. When a new group of
* blocks is needed, the sweep begins in the cylinder group following the
* cylinder group from which the previous allocation was made. The sweep
* continues until a cylinder group with greater than the average number
* of free blocks is found. If the allocation is for the first block in an
* indirect block, the information on the previous allocation is unavailable;
* here a best guess is made based upon the logical block number being
* allocated.
*
* If a section is already partially allocated, the policy is to
* contiguously allocate fs_maxcontig blocks. The end of one of these
* contiguous blocks and the beginning of the next is physically separated
* so that the disk head will be in transit between them for at least
* fs_rotdelay milliseconds. This is to allow time for the processor to
* schedule another I/O transfer.
*/
daddr_t
blkpref(struct node *np,
daddr_t lbn,
int indx,
daddr_t *bap)
{
int cg;
int avgbfree, startcg;
daddr_t nextblk;
spin_lock (&alloclock);
if (indx % sblock->fs_maxbpg == 0 || bap[indx - 1] == 0)
{
if (lbn < NDADDR)
{
spin_unlock (&alloclock);
cg = itog(np->dn->number);
return (sblock->fs_fpg * cg + sblock->fs_frag);
}
/*
* Find a cylinder with greater than average number of
* unused data blocks.
*/
if (indx == 0 || bap[indx - 1] == 0)
startcg = itog(np->dn->number) + lbn / sblock->fs_maxbpg;
else
startcg = dtog(bap[indx - 1]) + 1;
startcg %= sblock->fs_ncg;
avgbfree = sblock->fs_cstotal.cs_nbfree / sblock->fs_ncg;
for (cg = startcg; cg < sblock->fs_ncg; cg++)
if (csum[cg].cs_nbfree >= avgbfree)
{
spin_unlock (&alloclock);
sblock->fs_cgrotor = cg;
return (sblock->fs_fpg * cg + sblock->fs_frag);
}
for (cg = 0; cg <= startcg; cg++)
if (csum[cg].cs_nbfree >= avgbfree)
{
spin_unlock (&alloclock);
sblock->fs_cgrotor = cg;
return (sblock->fs_fpg * cg + sblock->fs_frag);
}
spin_unlock (&alloclock);
return 0;
}
spin_unlock (&alloclock);
/*
* One or more previous blocks have been laid out. If less
* than fs_maxcontig previous blocks are contiguous, the
* next block is requested contiguously, otherwise it is
* requested rotationally delayed by fs_rotdelay milliseconds.
*/
nextblk = bap[indx - 1] + sblock->fs_frag;
if (indx > sblock->fs_maxcontig &&
bap[indx - sblock->fs_maxcontig] + blkstofrags(sblock->fs_maxcontig)
!= nextblk)
return (nextblk);
if (sblock->fs_rotdelay != 0)
/*
* Here we convert ms of delay to frags as:
* (frags) = (ms) * (rev/sec) * (sect/rev) /
* ((sect/frag) * (ms/sec))
* then round up to the next block.
*/
nextblk += roundup(sblock->fs_rotdelay * sblock->fs_rps
* sblock->fs_nsect / (NSPF * 1000), sblock->fs_frag);
return (nextblk);
}
/*
* Implement the cylinder overflow algorithm.
*
* The policy implemented by this algorithm is:
* 1) allocate the block in its requested cylinder group.
* 2) quadradically rehash on the cylinder group number.
* 3) brute force search for a free block.
*/
/*VARARGS5*/
static u_long
hashalloc(int cg,
long pref,
int size, /* size for data blocks, mode for inodes */
u_long (*allocator)(int, daddr_t, int))
{
long result;
int i, icg = cg;
/*
* 1: preferred cylinder group
*/
result = (*allocator)(cg, pref, size);
if (result)
return (result);
/*
* 2: quadratic rehash
*/
for (i = 1; i < sblock->fs_ncg; i *= 2)
{
cg += i;
if (cg >= sblock->fs_ncg)
cg -= sblock->fs_ncg;
result = (*allocator)(cg, 0, size);
if (result)
return (result);
}
/*
* 3: brute force search
* Note that we start at i == 2, since 0 was checked initially,
* and 1 is always checked in the quadratic rehash.
*/
cg = (icg + 2) % sblock->fs_ncg;
for (i = 2; i < sblock->fs_ncg; i++)
{
result = (*allocator)(cg, 0, size);
if (result)
return (result);
cg++;
if (cg == sblock->fs_ncg)
cg = 0;
}
return 0;
}
/*
* Determine whether a fragment can be extended.
*
* Check to see if the necessary fragments are available, and
* if they are, allocate them.
*/
static daddr_t
fragextend(int cg,
long bprev,
int osize,
int nsize)
{
struct cg *cgp;
long bno;
int frags, bbase;
int i;
if (csum[cg].cs_nffree < numfrags(nsize - osize))
return 0;
frags = numfrags(nsize);
bbase = fragnum(bprev);
if (bbase > fragnum((bprev + frags - 1)))
/* cannot extend across a block boundary */
return 0;
cgp = (struct cg *) (cgs + sblock->fs_bsize * cg);
if (diskfs_catch_exception ())
return 0; /* bogus, but that's what BSD does... */
if (!cg_chkmagic(cgp))
{
printf ("Cylinder group %d bad magic number: %ld/%ld\n",
cg, cgp->cg_magic, ((struct ocg *)(cgp))->cg_magic);
diskfs_end_catch_exception ();
return 0;
}
cgp->cg_time = diskfs_mtime->seconds;
bno = dtogd(bprev);
for (i = numfrags(osize); i < frags; i++)
if (isclr(cg_blksfree(cgp), bno + i))
{
diskfs_end_catch_exception ();
return 0;
}
/*
* the current fragment can be extended
* deduct the count on fragment being extended into
* increase the count on the remaining fragment (if any)
* allocate the extended piece
*/
for (i = frags; i < sblock->fs_frag - bbase; i++)
if (isclr(cg_blksfree(cgp), bno + i))
break;
cgp->cg_frsum[i - numfrags(osize)]--;
if (i != frags)
cgp->cg_frsum[i - frags]++;
for (i = numfrags(osize); i < frags; i++)
{
clrbit(cg_blksfree(cgp), bno + i);
cgp->cg_cs.cs_nffree--;
sblock->fs_cstotal.cs_nffree--;
csum[cg].cs_nffree--;
}
diskfs_end_catch_exception ();
return (bprev);
}
/*
* Determine whether a block can be allocated.
*
* Check to see if a block of the apprpriate size is available,
* and if it is, allocate it.
*/
static u_long
alloccg(int cg,
volatile daddr_t bpref,
int size)
{
struct cg *cgp;
int i;
int bno, frags, allocsiz;
if (csum[cg].cs_nbfree == 0 && size == sblock->fs_bsize)
return 0;
cgp = (struct cg *) (cgs + sblock->fs_bsize * cg);
if (diskfs_catch_exception ())
return 0;
if (!cg_chkmagic(cgp) ||
(cgp->cg_cs.cs_nbfree == 0 && size == sblock->fs_bsize))
{
printf ("Cylinder group %d bad magic number: %ld/%ld\n",
cg, cgp->cg_magic, ((struct ocg *)(cgp))->cg_magic);
diskfs_end_catch_exception ();
return 0;
}
cgp->cg_time = diskfs_mtime->seconds;
if (size == sblock->fs_bsize)
{
bno = alloccgblk(cgp, bpref);
diskfs_end_catch_exception ();
return (u_long) (bno);
}
/*
* check to see if any fragments are already available
* allocsiz is the size which will be allocated, hacking
* it down to a smaller size if necessary
*/
frags = numfrags(size);
for (allocsiz = frags; allocsiz < sblock->fs_frag; allocsiz++)
if (cgp->cg_frsum[allocsiz] != 0)
break;
if (allocsiz == sblock->fs_frag)
{
/*
* no fragments were available, so a block will be
* allocated, and hacked up
*/
if (cgp->cg_cs.cs_nbfree == 0)
{
diskfs_end_catch_exception ();
return 0;
}
bno = alloccgblk(cgp, bpref);
bpref = dtogd(bno);
for (i = frags; i < sblock->fs_frag; i++)
setbit(cg_blksfree(cgp), bpref + i);
i = sblock->fs_frag - frags;
cgp->cg_cs.cs_nffree += i;
sblock->fs_cstotal.cs_nffree += i;
csum[cg].cs_nffree += i;
cgp->cg_frsum[i]++;
return (u_long)(bno);
}
bno = mapsearch(cgp, bpref, allocsiz);
if (bno < 0)
{
diskfs_end_catch_exception ();
return 0;
}
for (i = 0; i < frags; i++)
clrbit(cg_blksfree(cgp), bno + i);
cgp->cg_cs.cs_nffree -= frags;
sblock->fs_cstotal.cs_nffree -= frags;
csum[cg].cs_nffree -= frags;
cgp->cg_frsum[allocsiz]--;
if (frags != allocsiz)
cgp->cg_frsum[allocsiz - frags]++;
diskfs_end_catch_exception ();
return (u_long) (cg * sblock->fs_fpg + bno);
}
/*
* Allocate a block in a cylinder group.
*
* This algorithm implements the following policy:
* 1) allocate the requested block.
* 2) allocate a rotationally optimal block in the same cylinder.
* 3) allocate the next available block on the block rotor for the
* specified cylinder group.
* Note that this routine only allocates fs_bsize blocks; these
* blocks may be fragmented by the routine that allocates them.
*/
static daddr_t
alloccgblk(struct cg *cgp,
volatile daddr_t bpref)
{
daddr_t bno;
int cylno, pos, delta;
short *cylbp;
int i;
daddr_t ret;
if (diskfs_catch_exception ())
return 0;
if (bpref == 0)
{
bpref = cgp->cg_rotor;
goto norot;
}
bpref = blknum(bpref);
bpref = dtogd(bpref);
/*
* if the requested block is available, use it
*/
if (isblock(cg_blksfree(cgp), fragstoblks(bpref)))
{
bno = bpref;
goto gotit;
}
/*
* check for a block available on the same cylinder
*/
cylno = cbtocylno(bpref);
if (cg_blktot(cgp)[cylno] == 0)
goto norot;
if (sblock->fs_cpc == 0)
{
/*
* block layout info is not available, so just have
* to take any block in this cylinder.
*/
bpref = howmany(sblock->fs_spc * cylno, NSPF);
goto norot;
}
/*
* check the summary information to see if a block is
* available in the requested cylinder starting at the
* requested rotational position and proceeding around.
*/
cylbp = cg_blks(cgp, cylno);
pos = cbtorpos(bpref);
for (i = pos; i < sblock->fs_nrpos; i++)
if (cylbp[i] > 0)
break;
if (i == sblock->fs_nrpos)
for (i = 0; i < pos; i++)
if (cylbp[i] > 0)
break;
if (cylbp[i] > 0)
{
/*
* found a rotational position, now find the actual
* block. A panic if none is actually there.
*/
pos = cylno % sblock->fs_cpc;
bno = (cylno - pos) * sblock->fs_spc / NSPB;
assert ("postbl table bad" &&fs_postbl(pos)[i] != -1);
for (i = fs_postbl(pos)[i];; )
{
if (isblock(cg_blksfree(cgp), bno + i))
{
bno = blkstofrags(bno + i);
goto gotit;
}
delta = fs_rotbl[i];
if (delta <= 0 ||
delta + i > fragstoblks(sblock->fs_fpg))
break;
i += delta;
}
assert ("Inconsistent rotbl table" && 0);
}
norot:
/*
* no blocks in the requested cylinder, so take next
* available one in this cylinder group.
*/
bno = mapsearch(cgp, bpref, (int)sblock->fs_frag);
if (bno < 0)
{
diskfs_end_catch_exception ();
return 0;
}
cgp->cg_rotor = bno;
gotit:
clrblock(cg_blksfree(cgp), (long)fragstoblks(bno));
cgp->cg_cs.cs_nbfree--;
sblock->fs_cstotal.cs_nbfree--;
csum[cgp->cg_cgx].cs_nbfree--;
cylno = cbtocylno(bno);
cg_blks(cgp, cylno)[cbtorpos(bno)]--;
cg_blktot(cgp)[cylno]--;
ret = cgp->cg_cgx * sblock->fs_fpg + bno;
diskfs_end_catch_exception ();
return ret;
}
/*
* Determine whether an inode can be allocated.
*
* Check to see if an inode is available, and if it is,
* allocate it using the following policy:
* 1) allocate the requested inode.
* 2) allocate the next available inode after the requested
* inode in the specified cylinder group.
*/
static u_long
ialloccg(int cg,
volatile daddr_t ipref,
int modein)
{
struct cg *cgp;
int start, len, loc, map, i;
mode_t mode = (mode_t) modein;
if (csum[cg].cs_nifree == 0)
return 0;
cgp = (struct cg *)(cgs + sblock->fs_bsize * cg);
if (diskfs_catch_exception ())
return 0;
if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0)
{
printf ("Cylinder group %d bad magic number: %ld/%ld\n",
cg, cgp->cg_magic, ((struct ocg *)(cgp))->cg_magic);
diskfs_end_catch_exception ();
return 0;
}
cgp->cg_time = diskfs_mtime->seconds;
if (ipref)
{
ipref %= sblock->fs_ipg;
if (isclr(cg_inosused(cgp), ipref))
goto gotit;
}
start = cgp->cg_irotor / NBBY;
len = howmany(sblock->fs_ipg - cgp->cg_irotor, NBBY);
loc = skpc(0xff, len, (u_char *) &cg_inosused(cgp)[start]);
if (loc == 0)
{
len = start + 1;
start = 0;
loc = skpc(0xff, len, (u_char *) &cg_inosused(cgp)[0]);
assert ("inconsistent cg_inosused table" && loc);
}
i = start + len - loc;
map = cg_inosused(cgp)[i];
ipref = i * NBBY;
for (i = 1; i < (1 << NBBY); i <<= 1, ipref++)
{
if ((map & i) == 0)
{
cgp->cg_irotor = ipref;
goto gotit;
}
}
assert ("inconsistent cg_inosused table" && 0);
gotit:
setbit(cg_inosused(cgp), ipref);
cgp->cg_cs.cs_nifree--;
sblock->fs_cstotal.cs_nifree--;
csum[cg].cs_nifree--;
if ((mode & IFMT) == IFDIR)
{
cgp->cg_cs.cs_ndir++;
sblock->fs_cstotal.cs_ndir++;
csum[cg].cs_ndir++;
}
diskfs_end_catch_exception ();
return (u_long)(cg * sblock->fs_ipg + ipref);
}
/*
* Free a block or fragment.
*
* The specified block or fragment is placed back in the
* free map. If a fragment is deallocated, a possible
* block reassembly is checked.
*/
void
blkfree(volatile daddr_t bno,
int size)
{
struct cg *cgp;
int cg, blk, frags, bbase;
int i;
assert ("free of bad sized block" &&(unsigned) size <= sblock->fs_bsize
&& !fragoff (size) && size != 0);
cg = dtog(bno);
if ((unsigned)bno >= sblock->fs_size)
{
printf("bad block %ld\n", bno);
return;
}
cgp = (struct cg *)(cgs + sblock->fs_bsize * cg);
spin_lock (&alloclock);
if (diskfs_catch_exception ())
{
spin_unlock (&alloclock);
return;
}
if (!cg_chkmagic(cgp))
{
spin_unlock (&alloclock);
printf ("Cylinder group %d bad magic number: %ld/%ld\n",
cg, cgp->cg_magic, ((struct ocg *)(cgp))->cg_magic);
diskfs_end_catch_exception ();
return;
}
cgp->cg_time = diskfs_mtime->seconds;
bno = dtogd(bno);
if (size == sblock->fs_bsize)
{
assert ("inconsistent cg_blskfree table"
&& !isblock (cg_blksfree (cgp), fragstoblks (bno)));
setblock(cg_blksfree(cgp), fragstoblks(bno));
cgp->cg_cs.cs_nbfree++;
sblock->fs_cstotal.cs_nbfree++;
csum[cg].cs_nbfree++;
i = cbtocylno(bno);
cg_blks(cgp, i)[cbtorpos(bno)]++;
cg_blktot(cgp)[i]++;
}
else
{
bbase = bno - fragnum(bno);
/*
* decrement the counts associated with the old frags
*/
blk = blkmap(cg_blksfree(cgp), bbase);
fragacct(blk, cgp->cg_frsum, -1);
/*
* deallocate the fragment
*/
frags = numfrags(size);
for (i = 0; i < frags; i++)
{
assert ("inconsistent cg_blksfree table"
&& !isset (cg_blksfree (cgp), bno + i));
setbit(cg_blksfree(cgp), bno + i);
}
cgp->cg_cs.cs_nffree += i;
sblock->fs_cstotal.cs_nffree += i;
csum[cg].cs_nffree += i;
/*
* add back in counts associated with the new frags
*/
blk = blkmap(cg_blksfree(cgp), bbase);
fragacct(blk, cgp->cg_frsum, 1);
/*
* if a complete block has been reassembled, account for it
*/
if (isblock(cg_blksfree(cgp), (daddr_t)fragstoblks(bbase)))
{
cgp->cg_cs.cs_nffree -= sblock->fs_frag;
sblock->fs_cstotal.cs_nffree -= sblock->fs_frag;
csum[cg].cs_nffree -= sblock->fs_frag;
cgp->cg_cs.cs_nbfree++;
sblock->fs_cstotal.cs_nbfree++;
csum[cg].cs_nbfree++;
i = cbtocylno(bbase);
cg_blks(cgp, i)[cbtorpos(bbase)]++;
cg_blktot(cgp)[i]++;
}
}
spin_unlock (&alloclock);
diskfs_end_catch_exception ();
}
/*
* Free an inode.
*
* The specified inode is placed back in the free map.
*/
void
diskfs_free_node(struct node *np, mode_t mode)
{
struct cg *cgp;
int cg;
volatile int ino = np->dn->number;
assert ("invalid inode number" && ino < sblock->fs_ipg * sblock->fs_ncg);
cg = itog(ino);
cgp = (struct cg *)(cgs + sblock->fs_bsize * cg);
spin_lock (&alloclock);
if (diskfs_catch_exception ())
{
spin_unlock (&alloclock);
return;
}
if (!cg_chkmagic(cgp))
{
spin_unlock (&alloclock);
printf ("Cylinder group %d bad magic number: %ld/%ld\n",
cg, cgp->cg_magic, ((struct ocg *)(cgp))->cg_magic);
diskfs_end_catch_exception ();
return;
}
cgp->cg_time = diskfs_mtime->seconds;
ino %= sblock->fs_ipg;
assert ("inconsistent cg_inosused table" && !isclr (cg_inosused (cgp), ino));
clrbit(cg_inosused(cgp), ino);
if (ino < cgp->cg_irotor)
cgp->cg_irotor = ino;
cgp->cg_cs.cs_nifree++;
sblock->fs_cstotal.cs_nifree++;
csum[cg].cs_nifree++;
if ((mode & IFMT) == IFDIR)
{
cgp->cg_cs.cs_ndir--;
sblock->fs_cstotal.cs_ndir--;
csum[cg].cs_ndir--;
}
spin_unlock (&alloclock);
diskfs_end_catch_exception ();
}
/*
* Find a block of the specified size in the specified cylinder group.
*
* It is a panic if a request is made to find a block if none are
* available.
*/
/* This routine expects to be called from inside a diskfs_catch_exception */
static daddr_t
mapsearch(struct cg *cgp,
daddr_t bpref,
int allocsiz)
{
daddr_t bno;
int start, len, loc, i;
int blk, field, subfield, pos;
/*
* find the fragment by searching through the free block
* map for an appropriate bit pattern
*/
if (bpref)
start = dtogd(bpref) / NBBY;
else
start = cgp->cg_frotor / NBBY;
len = howmany(sblock->fs_fpg, NBBY) - start;
loc = scanc((unsigned)len, (u_char *)&cg_blksfree(cgp)[start],
(u_char *)fragtbl[sblock->fs_frag],
(u_char)(1 << (allocsiz - 1 + (sblock->fs_frag % NBBY))));
if (loc == 0)
{
len = start + 1;
start = 0;
loc = scanc((unsigned)len, (u_char *)&cg_blksfree(cgp)[0],
(u_char *)fragtbl[sblock->fs_frag],
(u_char)(1 << (allocsiz - 1 + (sblock->fs_frag % NBBY))));
assert ("incosistent cg_blksfree table" && loc);
}
bno = (start + len - loc) * NBBY;
cgp->cg_frotor = bno;
/*
* found the byte in the map
* sift through the bits to find the selected frag
*/
for (i = bno + NBBY; bno < i; bno += sblock->fs_frag)
{
blk = blkmap(cg_blksfree(cgp), bno);
blk <<= 1;
field = around[allocsiz];
subfield = inside[allocsiz];
for (pos = 0; pos <= sblock->fs_frag - allocsiz; pos++)
{
if ((blk & field) == subfield)
return (bno + pos);
field <<= 1;
subfield <<= 1;
}
}
assert ("inconsistent cg_blksfree table" && 0);
}
|