1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
|
/* ihash.c - Integer-keyed hash table functions.
Copyright (C) 1993-1997, 2001, 2003, 2004, 2006, 2014, 2015
Free Software Foundation, Inc.
Written by Michael I. Bushnell.
Revised by Miles Bader <miles@gnu.org>.
Revised by Marcus Brinkmann <marcus@gnu.org>.
This file is part of the GNU Hurd.
The GNU Hurd is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
The GNU Hurd is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with the GNU Hurd; see the file COPYING. If not, write to
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
#if HAVE_CONFIG_H
#include <config.h>
#endif
#include <errno.h>
#include <stdlib.h>
#include <stdint.h>
#include <assert.h>
#include "ihash.h"
/* This function is used to hash the key. */
static inline hurd_ihash_key_t
hash (hurd_ihash_t ht, hurd_ihash_key_t k)
{
return ht->fct_hash ? ht->fct_hash ((const void *) k) : k;
}
/* This function is used to compare the key. Returns true if A is
equal to B. */
static inline int
compare (hurd_ihash_t ht, hurd_ihash_key_t a, hurd_ihash_key_t b)
{
return
ht->fct_cmp ? (a && ht->fct_cmp ((const void *) a, (const void *) b))
: a == b;
}
/* Return 1 if the slot with the index IDX in the hash table HT is
empty, and 0 otherwise. */
static inline int
index_empty (hurd_ihash_t ht, unsigned int idx)
{
return ! hurd_ihash_value_valid (ht->items[idx].value);
}
/* Return 1 if the index IDX in the hash table HT is occupied by the
element with the key KEY. */
static inline int
index_valid (hurd_ihash_t ht, unsigned int idx, hurd_ihash_key_t key)
{
return !index_empty (ht, idx) && compare (ht, ht->items[idx].key, key);
}
/* Given a hash table HT, and a key KEY, find the index in the table
of that key. You must subsequently check with index_valid() if the
returned index is valid. */
static inline int
find_index (hurd_ihash_t ht, hurd_ihash_key_t key)
{
unsigned int idx;
unsigned int up_idx;
unsigned int first_deleted = 0;
int first_deleted_set = 0;
unsigned int mask = ht->size - 1;
idx = hash (ht, key) & mask;
up_idx = idx;
do
{
if (ht->items[up_idx].value == _HURD_IHASH_EMPTY)
return first_deleted_set ? first_deleted : up_idx;
if (compare (ht, ht->items[up_idx].key, key))
return up_idx;
if (! first_deleted_set
&& ht->items[up_idx].value == _HURD_IHASH_DELETED)
first_deleted = up_idx, first_deleted_set = 1;
up_idx = (up_idx + 1) & mask;
}
while (up_idx != idx);
/* If we end up here, the item could not be found. Return the index
of the first deleted item, as this is the position where we can
insert an item with the given key once we established that it is
not in the table. */
return first_deleted;
}
/* Remove the entry pointed to by the location pointer LOCP from the
hashtable HT. LOCP is the location pointer of which the address
was provided to hurd_ihash_add(). */
static inline void
locp_remove (hurd_ihash_t ht, hurd_ihash_locp_t locp)
{
struct _hurd_ihash_item *item = (struct _hurd_ihash_item *) locp;
if (ht->cleanup)
(*ht->cleanup) (item->value, ht->cleanup_data);
item->value = _HURD_IHASH_DELETED;
item->key = 0;
ht->nr_items--;
}
/* Construction and destruction of hash tables. */
/* Initialize the hash table at address HT. */
void
hurd_ihash_init (hurd_ihash_t ht, intptr_t locp_offs)
{
ht->nr_items = 0;
ht->size = 0;
ht->locp_offset = locp_offs;
ht->max_load = HURD_IHASH_MAX_LOAD_DEFAULT;
ht->cleanup = 0;
ht->fct_hash = NULL;
ht->fct_cmp = NULL;
ht->nr_free = 0;
}
/* Destroy the hash table at address HT. This first removes all
elements which are still in the hash table, and calling the cleanup
function for them (if any). */
void
hurd_ihash_destroy (hurd_ihash_t ht)
{
if (ht->cleanup)
{
hurd_ihash_cleanup_t cleanup = ht->cleanup;
void *cleanup_data = ht->cleanup_data;
HURD_IHASH_ITERATE (ht, value)
(*cleanup) (value, cleanup_data);
}
if (ht->size > 0)
free (ht->items);
}
/* Create a hash table, initialize it and return it in HT. If a
memory allocation error occurs, ENOMEM is returned, otherwise 0. */
error_t
hurd_ihash_create (hurd_ihash_t *ht, intptr_t locp_offs)
{
*ht = malloc (sizeof (struct hurd_ihash));
if (*ht == NULL)
return ENOMEM;
hurd_ihash_init (*ht, locp_offs);
return 0;
}
/* Destroy the hash table HT and release the memory allocated for it
by hurd_ihash_create(). */
void
hurd_ihash_free (hurd_ihash_t ht)
{
hurd_ihash_destroy (ht);
free (ht);
}
/* Set the cleanup function for the hash table HT to CLEANUP. The
second argument to CLEANUP will be CLEANUP_DATA on every
invocation. */
void
hurd_ihash_set_cleanup (hurd_ihash_t ht, hurd_ihash_cleanup_t cleanup,
void *cleanup_data)
{
ht->cleanup = cleanup;
ht->cleanup_data = cleanup_data;
}
/* Use the generalized key interface. Must be called before any item
is inserted into the table. */
void
hurd_ihash_set_gki (hurd_ihash_t ht,
hurd_ihash_fct_hash_t fct_hash,
hurd_ihash_fct_cmp_t fct_cmp)
{
assert (ht->size == 0 || !"called after insertion");
assert (fct_hash);
assert (fct_cmp);
ht->fct_hash = fct_hash;
ht->fct_cmp = fct_cmp;
}
/* Set the maximum load factor in binary percent to MAX_LOAD, which
should be between 64 and 128. The default is
HURD_IHASH_MAX_LOAD_DEFAULT. New elements are only added to the
hash table while the number of hashed elements is that much binary
percent of the total size of the hash table. If more elements are
added, the hash table is first expanded and reorganized. A
MAX_LOAD of 128 will always fill the whole table before enlarging
it, but note that this will increase the cost of operations
significantly when the table is almost full.
If the value is set to a smaller value than the current load
factor, the next reorganization will happen when a new item is
added to the hash table. */
void
hurd_ihash_set_max_load (hurd_ihash_t ht, unsigned int max_load)
{
ht->max_load = max_load;
}
/* Helper function for hurd_ihash_add. Return 1 if the item was
added, and 0 if it could not be added because no empty slot was
found. The arguments are identical to hurd_ihash_add.
We are using open address hashing. As the hash function we use the
division method with linear probe. */
static inline int
add_one (hurd_ihash_t ht, hurd_ihash_key_t key, hurd_ihash_value_t value)
{
unsigned int idx;
idx = find_index (ht, key);
/* Remove the old entry for this key if necessary. */
if (index_valid (ht, idx, key))
locp_remove (ht, &ht->items[idx].value);
if (index_empty (ht, idx))
{
ht->nr_items++;
if (ht->items[idx].value == _HURD_IHASH_EMPTY)
{
assert (ht->nr_free > 0);
ht->nr_free--;
}
ht->items[idx].value = value;
ht->items[idx].key = key;
if (ht->locp_offset != HURD_IHASH_NO_LOCP)
*((hurd_ihash_locp_t *) (((char *) value) + ht->locp_offset))
= &ht->items[idx].value;
return 1;
}
return 0;
}
/* Add VALUE to the hash table HT under the key KEY at LOCP. If there
already is an item under this key, call the cleanup function (if
any) for it before overriding the value. This function is faster
than hurd_ihash_add.
If LOCP is NULL, fall back to hurd_ihash_add. Otherwise, LOCP must
be valid and may either be obtained from hurd_ihash_locp_find, or
from an item that is currently in the hash table. If an item is
replaced, KEY must match the key of the previous item.
If a memory allocation error occurs, ENOMEM is returned, otherwise
0. */
error_t
hurd_ihash_locp_add (hurd_ihash_t ht, hurd_ihash_locp_t locp,
hurd_ihash_key_t key, hurd_ihash_value_t value)
{
struct _hurd_ihash_item *item = (struct _hurd_ihash_item *) locp;
/* In case of complications, fall back to hurd_ihash_add. */
if (ht->size == 0
|| item == NULL
|| item->value == _HURD_IHASH_DELETED
|| ! compare (ht, item->key, key)
|| hurd_ihash_get_effective_load (ht) > ht->max_load)
return hurd_ihash_add (ht, key, value);
if (item->value == _HURD_IHASH_EMPTY)
{
item->key = key;
ht->nr_items += 1;
assert (ht->nr_free > 0);
ht->nr_free -= 1;
}
else
{
assert (compare (ht, item->key, key));
if (ht->cleanup)
(*ht->cleanup) (locp, ht->cleanup_data);
}
item->value = value;
if (ht->locp_offset != HURD_IHASH_NO_LOCP)
*((hurd_ihash_locp_t *) (((char *) value) + ht->locp_offset))
= locp;
return 0;
}
/* Add ITEM to the hash table HT under the key KEY. If there already
is an item under this key, call the cleanup function (if any) for
it before overriding the value. If a memory allocation error
occurs, ENOMEM is returned, otherwise 0. */
error_t
hurd_ihash_add (hurd_ihash_t ht, hurd_ihash_key_t key, hurd_ihash_value_t item)
{
struct hurd_ihash old_ht = *ht;
int was_added;
int fatal = 0; /* bail out on allocation errors */
unsigned int i;
if (ht->size)
{
/* Only fill the hash table up to its maximum load factor. */
if (hurd_ihash_get_effective_load (ht) <= ht->max_load)
add_one:
if (add_one (ht, key, item))
return 0;
}
/* If the load exceeds the configured maximal load, then the hash
table is too small, and we have to increase it. Otherwise we
merely rehash the table to get rid of the tombstones. */
ht->nr_items = 0;
if (ht->size == 0)
ht->size = HURD_IHASH_MIN_SIZE;
else if (hurd_ihash_get_load (&old_ht) > ht->max_load)
ht->size <<= 1;
ht->nr_free = ht->size;
/* calloc() will initialize all values to _HURD_IHASH_EMPTY implicitly. */
ht->items = calloc (ht->size, sizeof (struct _hurd_ihash_item));
if (ht->items == NULL)
{
*ht = old_ht;
if (fatal || ht->size == 0)
return ENOMEM;
/* We prefer performance degradation over failure. Therefore,
we add the item even though we are above the load factor. If
the table is full, this will fail. We set the fatal flag to
avoid looping. */
fatal = 1;
goto add_one;
}
/* We have to rehash the old entries. */
for (i = 0; i < old_ht.size; i++)
if (!index_empty (&old_ht, i))
{
was_added = add_one (ht, old_ht.items[i].key, old_ht.items[i].value);
assert (was_added);
}
/* Finally add the new element! */
was_added = add_one (ht, key, item);
assert (was_added);
if (old_ht.size > 0)
free (old_ht.items);
return 0;
}
/* Find and return the item in the hash table HT with key KEY, or NULL
if it doesn't exist. */
hurd_ihash_value_t
hurd_ihash_find (hurd_ihash_t ht, hurd_ihash_key_t key)
{
if (ht->size == 0)
return NULL;
else
{
int idx = find_index (ht, key);
return index_valid (ht, idx, key) ? ht->items[idx].value : NULL;
}
}
/* Find and return the item in the hash table HT with key KEY, or NULL
if it doesn't exist. If it is not found, this function may still
return a location in SLOT.
If the lookup is successful, the returned location can be used with
hurd_ihash_locp_add to update the item, and with
hurd_ihash_locp_remove to remove it.
If the lookup is not successful, the returned location can be used
with hurd_ihash_locp_add to add the item.
Note that returned location is only valid until the next insertion
or deletion. */
hurd_ihash_value_t
hurd_ihash_locp_find (hurd_ihash_t ht,
hurd_ihash_key_t key,
hurd_ihash_locp_t *slot)
{
int idx;
if (ht->size == 0)
{
*slot = NULL;
return NULL;
}
idx = find_index (ht, key);
*slot = &ht->items[idx].value;
return index_valid (ht, idx, key) ? ht->items[idx].value : NULL;
}
/* Remove the entry with the key KEY from the hash table HT. If such
an entry was found and removed, 1 is returned, otherwise 0. */
int
hurd_ihash_remove (hurd_ihash_t ht, hurd_ihash_key_t key)
{
if (ht->size != 0)
{
int idx = find_index (ht, key);
if (index_valid (ht, idx, key))
{
locp_remove (ht, &ht->items[idx].value);
return 1;
}
}
return 0;
}
/* Remove the entry pointed to by the location pointer LOCP from the
hashtable HT. LOCP is the location pointer of which the address
was provided to hurd_ihash_add(). This call is faster than
hurd_ihash_remove(). */
void
hurd_ihash_locp_remove (hurd_ihash_t ht, hurd_ihash_locp_t locp)
{
locp_remove (ht, locp);
}
|