summaryrefslogtreecommitdiff
path: root/fatfs/fat.c
blob: 4eb4b063ee6ac0ea1323e10e6a2926f277295152 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
/* fat.c - Support for FAT filesystems.
   Copyright (C) 2002, 2003 Free Software Foundation, Inc.
   Written by Marcus Brinkmann.

   This file is part of the GNU Hurd.

   The GNU Hurd is free software; you can redistribute it and/or modify it
   under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2, or (at your option)
   any later version.

   The GNU Hurd is distributed in the hope that it will be useful, but
   WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111, USA. */

#include <string.h>
#include <error.h>
#include <limits.h>
#include <errno.h>
#include <assert.h>
#include <ctype.h>
#include <time.h>

#include <hurd/store.h>
#include <hurd/diskfs.h>

#include "fatfs.h"

/* Unprocessed superblock.  */
struct boot_sector *sblock;

/* Processed sblock info.  */
fat_t fat_type;
size_t bytes_per_sector;
size_t log2_bytes_per_sector;
size_t sectors_per_cluster;
size_t bytes_per_cluster;
unsigned int log2_bytes_per_cluster;
size_t sectors_per_fat;
size_t total_sectors;
size_t nr_of_root_dir_sectors;
size_t first_root_dir_byte;
size_t first_data_sector;
vm_offset_t first_data_byte;
size_t first_fat_sector;
cluster_t nr_of_clusters;

/* Hold this lock while converting times using gmtime.  */
spin_lock_t epoch_to_time_lock = SPIN_LOCK_INITIALIZER;

/* Hold this lock while allocating a new cluster in the FAT.  */
spin_lock_t allocate_free_cluster_lock = SPIN_LOCK_INITIALIZER;

/* Where to look for the next free cluster. This is meant to avoid
   searching through a nearly full file system from the beginning at
   every request.  It would be better to use the field of the same
   name in the fs_info block. 2 is the first data cluster in any
   FAT.  */
cluster_t next_free_cluster = 2;


/* Read the superblock.  */
void
fat_read_sblock (void)
{
  int read;

  sblock = malloc (sizeof (struct boot_sector));
  store_read (store, 0, sizeof (struct boot_sector), (void **) &sblock, &read);

  if (read_word(sblock->id) != BOOT_SECTOR_ID)
    error (1, 0, "Could not find valid superblock");

  /* Parse some important bits of the superblock.  */

  bytes_per_sector = read_word (sblock->bytes_per_sector);
  switch (bytes_per_sector)
    {
    case 512:
      log2_bytes_per_sector = 9;
      break;
      
    case 1024:
      log2_bytes_per_sector = 10;
      break;
	
    case 2048:
      log2_bytes_per_sector = 11;
      break;
      
    case 4096:
      log2_bytes_per_sector = 12;
      break;
      
    default:
      error (1, 0, "Invalid number of bytes per sector");
    };

  sectors_per_cluster = sblock->sectors_per_cluster;
  if (sectors_per_cluster != 1 && sectors_per_cluster != 2
      && sectors_per_cluster != 4 && sectors_per_cluster != 8
      && sectors_per_cluster != 16 && sectors_per_cluster != 32
      && sectors_per_cluster != 64 && sectors_per_cluster != 128)
    error (1, 0, "Invalid number of sectors per cluster");

  bytes_per_cluster = sectors_per_cluster << log2_bytes_per_sector;
  switch (bytes_per_cluster)
    {
    case 512:
      log2_bytes_per_cluster = 9;
      break;
      
    case 1024:
      log2_bytes_per_cluster = 10;
      break;
      
    case 2048:
      log2_bytes_per_cluster = 11;
      break;
      
    case 4096:
      log2_bytes_per_cluster = 12;
      break;
      
    case 8192:
      log2_bytes_per_cluster = 13;
      break;
      
    case 16384:
      log2_bytes_per_cluster = 14;
      break;

    case 32768:
      log2_bytes_per_cluster = 15;
      break;
      
    default:
      error (1, 0, "Invalid number of bytes per cluster");
    };
  
  total_sectors = read_word (sblock->total_sectors_16)
    ?: read_word (sblock->total_sectors_32);
  if (total_sectors * bytes_per_sector > store->size)
    error (1, 0, "Store is smaller then implied by metadata");
  if (total_sectors == 0)
    error (1, 0, "Number of total sectors is zero");

  if (bytes_per_sector & (store->block_size - 1))
    error (1, 0, "Block size of filesystem is not
          " a multiple of the block size of the store");

  if (read_word (sblock->reserved_sectors) == 0)
    error (1, 0, "Number of reserved sectors is zero");
  if (sblock->nr_of_fat_tables == 0)
    error (1, 0, "Number of FATs is zero");

  sectors_per_fat = read_word (sblock->sectors_per_fat_16)
    ?: read_word (sblock->compat.fat32.sectors_per_fat_32);
  if (sectors_per_fat == 0)
    error (1, 0, "Number of sectors per fat is zero");

  nr_of_root_dir_sectors = ((read_word (sblock->nr_of_root_dirents) *
			    FAT_DIR_REC_LEN) - 1) / bytes_per_sector + 1;

  first_root_dir_byte = (read_word (sblock->reserved_sectors)
    + (sblock->nr_of_fat_tables * sectors_per_fat)) << log2_bytes_per_sector;
  first_data_sector = (first_root_dir_byte >> log2_bytes_per_sector)
    + nr_of_root_dir_sectors;
  first_data_byte = first_data_sector << log2_bytes_per_sector;

  nr_of_clusters = (total_sectors - first_data_sector) / sectors_per_cluster;

  if (nr_of_clusters < FAT12_MAX_NR_OF_CLUSTERS)
    fat_type = FAT12;
  else
    {
      if (nr_of_clusters < FAT16_MAX_NR_OF_CLUSTERS)
	fat_type = FAT16;
      else
	fat_type = FAT32;
    }
  
  if (fat_type == FAT32 && read_word (sblock->compat.fat32.fs_version) != 0)
    error (1, 0, "Incompatible file system version");

  first_fat_sector = 0;
  if (fat_type == FAT32 && read_word (sblock->compat.fat32.extension_flags) & 1<<7)
    {
      first_fat_sector = (read_word (sblock->compat.fat32.extension_flags) & 0x0f);
      if (first_fat_sector > sblock->nr_of_fat_tables)
	error (1, 0, "Active FAT table does not exist");
      first_fat_sector *= sectors_per_fat;
    }
  first_fat_sector += read_word (sblock->reserved_sectors);
}


/* Write NEXT_CLUSTER in the FAT at position CLUSTER.
   You must call this from inside diskfs_catch_exception.
   Returns 0 (always succeeds).  */
error_t
fat_write_next_cluster(cluster_t cluster, cluster_t next_cluster)
{
  loff_t fat_entry_offset;
  cluster_t data;

  /* First data cluster is cluster 2.  */
  assert (cluster >= 2 && cluster < nr_of_clusters + 2); 

  switch (fat_type)
    {
    case FAT12:
      if (next_cluster == FAT_BAD_CLUSTER)
	next_cluster = FAT12_BAD_CLUSTER;
      else if (next_cluster == FAT_EOC)
	next_cluster = FAT12_EOC;

      fat_entry_offset = (cluster * 3) / 2;
      data = read_word (fat_image + fat_entry_offset);
      if (cluster & 1)
	data = (data & 0xf) | ((next_cluster & 0xfff) << 4);
      else
	data = (data & 0xf000) | (next_cluster & 0xfff);

      write_word (fat_image + fat_entry_offset, data);
      break;

    case FAT16:
      if (next_cluster == FAT_BAD_CLUSTER)
	next_cluster = FAT16_BAD_CLUSTER;
      else if (next_cluster == FAT_EOC)
	next_cluster = FAT16_EOC;

      fat_entry_offset = cluster * 2;
      write_word (fat_image + fat_entry_offset, next_cluster);
      break;

    case FAT32:
    default:                             /* To silence gcc warning.  */
      if (next_cluster == FAT_BAD_CLUSTER)
	next_cluster = FAT32_BAD_CLUSTER;
      else if (next_cluster == FAT_EOC)
	next_cluster = FAT32_EOC;

      fat_entry_offset = cluster * 4;
      write_dword (fat_image + fat_entry_offset, next_cluster & 0x0fffffff);
    }

  return 0;
}

/* Read the FAT entry at position CLUSTER into NEXT_CLUSTER.
   You must call this from inside diskfs_catch_exception.
   Returns 0 (always succeeds).  */
error_t
fat_get_next_cluster(cluster_t cluster, cluster_t *next_cluster)
{
  loff_t fat_entry_offset;

  /* First data cluster is cluster 2.  */
  assert (cluster >= 2 && cluster < nr_of_clusters + 2); 

  switch (fat_type)
    {
    case FAT12:
      fat_entry_offset = (cluster * 3) / 2;
      *next_cluster = read_word (fat_image + fat_entry_offset);
      if (cluster & 1)
	*next_cluster = *next_cluster >> 4;
      else
	*next_cluster &= 0xfff;

      if (*next_cluster == FAT12_BAD_CLUSTER)
	*next_cluster = FAT_BAD_CLUSTER;
      else if (*next_cluster >= FAT12_EOC)
	*next_cluster = FAT_EOC;
      break;

    case FAT16:
      fat_entry_offset = cluster * 2;
      *next_cluster = read_word (fat_image + fat_entry_offset);
      if (*next_cluster == FAT16_BAD_CLUSTER)
	*next_cluster = FAT_BAD_CLUSTER;
      else if (*next_cluster >= FAT16_EOC)
	*next_cluster = FAT_EOC;
      break;

    case FAT32:
    default:                             /* To silence gcc warning.  */
      fat_entry_offset = cluster * 4;
      *next_cluster = read_dword (fat_image + fat_entry_offset);
      *next_cluster &= 0x0fffffff;
      if (*next_cluster == FAT32_BAD_CLUSTER)
	*next_cluster = FAT_BAD_CLUSTER;
      else if (*next_cluster >= FAT32_EOC)
	*next_cluster = FAT_EOC;
    }

  return 0;
}

/* Allocate a new cluster, write CONTENT into the FAT at this new
   clusters position.  At success, 0 is returned and CLUSTER contains
   the cluster number allocated.  Otherwise, ENOSPC is returned if the
   filesystem is full.
   You must call this from inside diskfs_catch_exception.  */
error_t
fat_allocate_cluster (cluster_t content, cluster_t *cluster)
{
  error_t err = 0;
  cluster_t old_next_free_cluster;
  int wrapped = 0;
  cluster_t found_cluster = FAT_FREE_CLUSTER;

  assert (content != FAT_FREE_CLUSTER);

  spin_lock (&allocate_free_cluster_lock);
  old_next_free_cluster = next_free_cluster;

  /* Loop over all clusters, starting from next_free_cluster and
     wrapping if reaching the end of the FAT, until we either find an
     unallocated cluster, or we have to give up because all clusters
     are allocated.  */
  do
    {
      cluster_t next_free_content;

      fat_get_next_cluster (next_free_cluster, &next_free_content);

      if (next_free_content == FAT_FREE_CLUSTER)
	found_cluster = next_free_cluster;

      if (++next_free_cluster == nr_of_clusters + 2)
	{
	  next_free_cluster = 2;
	  wrapped = 1;
	}
    }
  while (found_cluster == FAT_FREE_CLUSTER
	 && !(wrapped && next_free_cluster == old_next_free_cluster));

  if (found_cluster != FAT_FREE_CLUSTER)
    {
      *cluster = found_cluster;
      fat_write_next_cluster(found_cluster, content);
    }
  else 
    err = ENOSPC;

  spin_unlock(&allocate_free_cluster_lock);
  return err;
}

/* Extend the cluster chain to maximum size or new_last_cluster,
   whatever is less. If we reach the end of the file, and CREATE is
   true, allocate new blocks until there is either no space on the
   device or new_last_cluster are allocated.  (new_last_cluster: 0 is
   the first cluster of the file).  */
error_t
fat_extend_chain (struct node *node, cluster_t new_last_cluster, int create)
{
  error_t err = 0;
  struct disknode *dn = node->dn;
  struct cluster_chain *table;
  int offs;
  cluster_t left, prev_cluster, cluster;

  error_t allocate_new_table(struct cluster_chain **table)
    {
      struct cluster_chain *t;

      t = *table;
      *table = malloc (sizeof (struct cluster_chain));
      if (!*table)
	return ENOMEM;
      (*table)->next = 0;
      if (t)
	dn->last = t->next = *table;
      else
	dn->last = dn->first = *table;
      return 0;
    }
	  
  spin_lock(&dn->chain_extension_lock);
  
  /* If we already have what we need, or we have all clusters that are
     available without allocating new ones, go out.  */
  if (new_last_cluster < dn->length_of_chain
      || (!create && dn->chain_complete))
    return 0;

  left = new_last_cluster + 1 - dn->length_of_chain;

  table = dn->last;
  if (table)
    {
      offs = (dn->length_of_chain - 1) & (CLUSTERS_PER_TABLE - 1);
      prev_cluster = table->cluster[offs];
    }
  else
    {
      offs = CLUSTERS_PER_TABLE - 1;
      prev_cluster = FAT_FREE_CLUSTER;
    }

   while (left)
     {
       if (dn->chain_complete)
	 {
	   err = fat_allocate_cluster(FAT_EOC, &cluster);
	   if (err)
	     break;
	   if (prev_cluster)
	     fat_write_next_cluster(prev_cluster, cluster);
	   else
	     /* XXX: Also write this to dirent structure!  */
	     dn->start_cluster = cluster;
	 }
       else
	 {
	   if (prev_cluster != FAT_FREE_CLUSTER)
	     err = fat_get_next_cluster(prev_cluster, &cluster);
	   else
	     cluster = dn->start_cluster;
	   if (cluster == FAT_EOC || cluster == FAT_FREE_CLUSTER)
	     {
	       dn->chain_complete = 1;
	       if (create)
		 continue;
	       else
		 break;
	     }
	 }
       prev_cluster = cluster;
       offs++;
       if (offs == CLUSTERS_PER_TABLE)
	 {
	   offs = 0;
	   err = allocate_new_table(&table);
	   if (err)
	     break;
	 }
       table->cluster[offs] = cluster;
       dn->length_of_chain++;
       left--;
     }

   if (dn->length_of_chain << log2_bytes_per_cluster > node->allocsize)
     node->allocsize = dn->length_of_chain << log2_bytes_per_cluster;

   spin_unlock(&dn->chain_extension_lock);
   return err;
}
   
/* Returns in DISK_CLUSTER the disk cluster corresponding to cluster
   CLUSTER in NODE.  If there is no such cluster yet, but CREATE is
   true, then it is created, otherwise EINVAL is returned.  */
error_t
fat_getcluster (struct node *node, cluster_t cluster, int create,
		cluster_t *disk_cluster)
{
  error_t err = 0;
  cluster_t chains_to_go = cluster >> LOG2_CLUSTERS_PER_TABLE;
  cluster_t offs = cluster & (CLUSTERS_PER_TABLE - 1);
  struct cluster_chain *chain;

  if (cluster >= node->dn->length_of_chain)
    {
      err = fat_extend_chain (node, cluster, create);
      if (err)
	return err;
      if (cluster >= node->dn->length_of_chain)
	{
	  assert (!create);
	  return EINVAL;
	}
    }
  chain = node->dn->first;
  while (chains_to_go--)
    {
      assert (chain);
      chain = chain->next;
    }
  assert (chain);
  *disk_cluster = chain->cluster[offs];
  return 0;
}

void
fat_truncate_node (struct node *node, cluster_t clusters_to_keep)
{
  struct cluster_chain *next;
  cluster_t count;
  cluster_t offs;
  cluster_t pos;

  /* The root dir of a FAT12/16 fs is of fixed size, while the root
     dir of a FAT32 fs must never decease to exist.  */
  assert (! (((fat_type == FAT12 || fat_type == FAT16) && node == diskfs_root_node)
	     || (fat_type == FAT32 && node == diskfs_root_node && clusters_to_keep == 0)));

  /* Expand the cluster chain, because we have to know the complete tail.  */
  fat_extend_chain (node, FAT_EOC, 0);
  if (clusters_to_keep == node->dn->length_of_chain)
    return;
  assert (clusters_to_keep < node->dn->length_of_chain);

  /* Truncation happens here.  */
  next = node->dn->first;
  if (clusters_to_keep == 0)
    {
      /* Deallocate the complete file.  */
      node->dn->start_cluster = 0;
      pos = count = offs = 0;
    }
  else
    {
      count = (clusters_to_keep - 1) >> LOG2_CLUSTERS_PER_TABLE;
      offs = (clusters_to_keep - 1) & (CLUSTERS_PER_TABLE - 1);
      while (count-- > 0)
	{
	  assert (next);
	  next = next->next;
	}
      assert (next);
      fat_write_next_cluster (next->cluster[offs++], FAT_EOC);
      pos = clusters_to_keep;
    }

  /* Purge dangling clusters. If we die here, scandisk will have to
     clean up the remains.  */
  while (pos < node->dn->length_of_chain)
    {
      if (offs == CLUSTERS_PER_TABLE)
	{
	  offs = 0;
	  next = next->next;
	  assert(next);
	}
      fat_write_next_cluster(next->cluster[offs++], 0);
      pos++;
    }
 
  /* Free now unused tables.  (Could be done in one run with the above.)  */
  next = node->dn->first;
  if (clusters_to_keep != 0)
    {
      count = (clusters_to_keep - 1) >> LOG2_CLUSTERS_PER_TABLE;
      offs = (clusters_to_keep - 1) & (CLUSTERS_PER_TABLE - 1);
      while (count-- > 0)
	{
	  assert (next);
	  next = next->next;
	}
      assert (next);
      next = next->next;
    }
  while (next)
    {
      struct cluster_chain *next_next = next->next;
      free (next);
      next = next_next;
    }
}


/* Count the number of free clusters in the FAT.  */
int
fat_get_freespace (void)
{
  int free_clusters = 0;
  cluster_t curr_cluster;
  cluster_t next_cluster;
  error_t err;

  err = diskfs_catch_exception ();
  if (!err)
    {
      /* First cluster is the 3rd entry in the FAT table.  */
      for (curr_cluster = 2; curr_cluster < nr_of_clusters + 2;
	   curr_cluster++)
	{
	  fat_get_next_cluster (curr_cluster, &next_cluster);
	  if (next_cluster == FAT_FREE_CLUSTER)
	    free_clusters++;
	}
    }
  diskfs_end_catch_exception ();

  return free_clusters;
}


/* FILE must be a buffer with 13 characters.  */
void fat_to_unix_filename(const char *name, char *file)
{
  int npos;
  int fpos = 0;
  int ext = 0;

  for (npos = 0; npos < 11; npos++)
    {
      if (name[npos] == ' ')
	{
	  if (ext)
	    {
	      break;
	    }
	  else
	    {
	      file[fpos] = '.';
	      fpos++;
	      ext = 1;
	      while (npos < 7 && name[npos+1] == ' ') npos++;
	    }
	}
      else
	{
	  file[fpos] = name[npos];
	  fpos++;
	  if (npos == 7)
	    {
	      file[fpos] = '.';
	      fpos++;
	      ext = 1;
	    }
	}
    }
  if (ext && file[fpos-1] == '.')
    file[fpos-1] = '\0';
  else
    file[fpos] = '\0';
}

void
fat_from_unix_filename(char *fn, const char *un, int ul)
{
  int fp = 0;
  int up = 0;
  int ext = 0;

  while (fp < 11)
    {
      if (up == ul)
	{
	  /* We parsed the complete unix filename.  */
	  while (fp < 11)
	    fn[fp++] = ' ';
	}
      else
	{
	  if (!ext)
	    {
	      if (un[up] == '.')
		{
		  while (fp < 8)
		    fn[fp++] = ' ';
		  ext = 1;
		  un++;
		}
	      else if (fp == 8)
		{
		  while (un[up++] != '.' && up < ul);
		  ext = 1;
		}
	      else
		  fn[fp++] = toupper(un[ul++]);
	    }
	  else
	    {
	      if (un[up] == '.')
		{
		  while (fp < 11)
		    fn[fp++] = ' ';
		}
	      else
		fn[fp++] = toupper(un[up++]);
	    }
	}
    }
}


/* Return Epoch-based time from a MSDOS time/date pair.  */
void
fat_to_epoch (char *date, char *time, struct timespec *ts)
{
  struct tm tm;

  /* Date format:
     Bits 0-4: Day of month (1-31).
     Bits 5-8: Month of year (1-12).
     Bits 9-15: Count of years from 1980 (0-127).

     Time format:
     Bits 0-4: 2-second count (0-29).
     Bits 5-10: Minutes (0-59).
     Bits 11-15: Hours (0-23).
  */

  tm.tm_year = (read_word (date) >> 9) + 80;
  tm.tm_mon = ((read_word (date) & 0x1ff) >> 5) - 1;
  tm.tm_mday = read_word (date) & 0x1f;
  tm.tm_hour = (read_word (time) >> 11);
  tm.tm_min = (read_word (time) & 0x7ff) >> 5;
  tm.tm_sec = read_word (time) & 0x1f;
  tm.tm_isdst = 0;

  ts->tv_sec = timegm (&tm);
  ts->tv_nsec = 0;
}

/* Return MSDOS time/date pair from Epoch-based time.  */
void
fat_from_epoch (char *date, char *time, time_t *tp)
{
  struct tm *tm;

  spin_lock(&epoch_to_time_lock);
  tm = gmtime (tp);

  /* Date format:
     Bits 0-4: Day of month (1-31).
     Bits 5-8: Month of year (1-12).
     Bits 9-15: Count of years from 1980 (0-127).

     Time format:
     Bits 0-4: 2-second count (0-29).
     Bits 5-10: Minutes (0-59).
     Bits 11-15: Hours (0-23).
  */

  write_word(date, tm->tm_mday | ((tm->tm_mon + 1) << 5)
	     | ((tm->tm_year - 80) << 9));
  write_word(time, (tm->tm_hour << 11) | (tm->tm_min << 5)
	     | (tm->tm_sec >> 1));
  spin_unlock(&epoch_to_time_lock);
}