/* Inode management routines Copyright (C) 1994 Free Software Foundation This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include "ufs.h" #include "dinode.h" #include "fs.h" #include #include #include #define INOHSZ 512 #if ((INOHSZ&(INOHSZ-1)) == 0) #define INOHASH(ino) ((ino)&(INOHSZ-1)) #else #define INOHASH(ino) (((unsigned)(ino))%INOHSZ) #endif static struct node *nodehash[INOHSZ]; static error_t read_disknode (struct node *np); spin_lock_t gennumberlock = SPIN_LOCK_INITIALIZER; /* Initialize the inode hash table. */ void inode_init () { int n; for (n = 0; n < INOHSZ; n++) nodehash[n] = 0; mutex_init (&dinmaplock); mutex_init (&sinmaplock); } /* Fetch inode INUM, set *NPP to the node structure; gain one user reference and lock the node. */ error_t iget (ino_t inum, struct node **npp) { struct disknode *dn; struct node *np; error_t err; spin_lock (&diskfs_node_refcnt_lock); for (np = nodehash[INOHASH(inum)]; np; np = np->dn->hnext) { if (np->dn->number != inum) continue; np->references++; spin_unlock (&diskfs_node_refcnt_lock); mutex_lock (&np->lock); *npp = np; return 0; } dn = malloc (sizeof (struct disknode)); dn->number = inum; dn->dirents = 0; rwlock_init (&dn->allocptrlock); dn->fileinfo = 0; np = diskfs_make_node (dn); mutex_lock (&np->lock); dn->hnext = nodehash[INOHASH(inum)]; if (dn->hnext) dn->hnext->dn->hprevp = &dn->hnext; dn->hprevp = &nodehash[INOHASH(inum)]; nodehash[INOHASH(inum)] = np; spin_unlock (&diskfs_node_refcnt_lock); err = read_disknode (np); if (lblkno (sblock, np->dn_stat.st_size) < NDADDR) np->allocsize = fragroundup (sblock, np->dn_stat.st_size); else np->allocsize = blkroundup (sblock, np->dn_stat.st_size); if (!diskfs_readonly && !np->dn_stat.st_gen) { spin_lock (&gennumberlock); if (++nextgennumber < diskfs_mtime->seconds) nextgennumber = diskfs_mtime->seconds; np->dn_stat.st_gen = nextgennumber; spin_unlock (&gennumberlock); np->dn_set_ctime = 1; } if (err) return err; else { *npp = np; return 0; } } /* Lookup node INUM (which must have a reference already) and return it without allocating any new references. */ struct node * ifind (ino_t inum) { struct node *np; spin_lock (&diskfs_node_refcnt_lock); for (np = nodehash[INOHASH(inum)]; np; np = np->dn->hnext) { if (np->dn->number != inum) continue; assert (np->references); spin_unlock (&diskfs_node_refcnt_lock); return np; } assert (0); } /* The last reference to a node has gone away; drop it from the hash table and clean all state in the dn structure. */ void diskfs_node_norefs (struct node *np) { *np->dn->hprevp = np->dn->hnext; if (np->dn->hnext) np->dn->hnext->dn->hprevp = np->dn->hprevp; if (np->dn->dirents) free (np->dn->dirents); assert (!np->dn->fileinfo); free (np->dn); free (np); } /* The last hard reference to a node has gone away; arrange to have all the weak references dropped that can be. */ void diskfs_try_dropping_softrefs (struct node *np) { drop_pager_softrefs (np); } /* The last hard reference to a node has gone away. */ void diskfs_lost_hardrefs (struct node *np) { /* Check and see if there is a pager which has only one reference (ours). If so, then drop that reference, breaking the cycle. The complexity in this routine is all due to this cycle. */ if (np->dn->fileinfo) { spin_lock (&_libports_portrefcntlock); if (np->fileinfo->p->pi.refcnt == 1) { struct pager *p; /* The only way to get a new reference to the pager in this state is to call diskfs_get_filemap; this can't happen as long as we hold NP locked. So we can safely unlock _libports_portrefcntlock for the following call. */ spin_unlock (&_libports_portrefcntlock); /* Right now the node is locked with no hard refs; this is an anomolous situation. Before messing with the reference count on the file pager, we have to give ourselves a reference back so that we are really allowed to hold the lock. Then we can do the unreference. */ p = np->fileinfo->p; np->fileinfo = 0; diskfs_nref (np); pager_unreference (p); assert (np->references == 1 && np->light_references == 0); /* This will do the real deallocate. Whew. */ diskfs_nput (np); } else spin_unlock (&_libports_portrefcntlock); } } /* A new hard reference to a node has been created; it's now OK to have unused weak references. */ void diskfs_new_hardrefs (struct node *np) { allow_pager_softrefs (np); } /* Read stat information out of the dinode. */ static error_t read_disknode (struct node *np) { struct stat *st = &np->dn_stat; struct dinode *di = dino (np->dn->number); error_t err; volatile long long pid = getpid (); err = diskfs_catch_exception (); if (err) return err; np->istranslated = !! di->translator; st->st_fstype = FSTYPE_UFS; st->st_fsid = pid; st->st_ino = np->dn->number; st->st_gen = di->di_gen; st->st_rdev = di->di_rdev; st->st_mode = di->di_model | (di->di_modeh << 16); st->st_nlink = di->di_nlink; st->st_size = di->di_size; #ifdef notyet st->st_atimespec = di->di_atime; st->st_mtimespec = di->di_mtime; st->st_ctimespec = di->di_ctime; #else st->st_atime = di->di_atime.ts_sec; st->st_atime_usec = di->di_atime.ts_nsec / 1000; st->st_mtime = di->di_mtime.ts_sec; st->st_mtime_usec = di->di_mtime.ts_nsec / 1000; st->st_ctime = di->di_ctime.ts_sec; st->st_ctime_usec = di->di_ctime.ts_nsec / 1000; #endif st->st_blksize = sblock->fs_bsize; st->st_blocks = di->di_blocks; st->st_flags = di->di_flags; if (sblock->fs_inodefmt < FS_44INODEFMT) { st->st_uid = di->di_ouid; st->st_gid = di->di_ogid; st->st_author = 0; } else { st->st_uid = di->di_uid; st->st_gid = di->di_gid; st->st_author = di->di_author; if (st->st_author == -1) st->st_author = st->st_uid; } diskfs_end_catch_exception (); if (!S_ISBLK (st->st_mode) && !S_ISCHR (st->st_mode)) st->st_rdev = 0; return 0; } static void write_node (struct node *np) { struct stat *st = &np->dn_stat; struct dinode *di = dino (np->dn->number); error_t err; assert (!np->dn_set_ctime && !np->dn_set_atime && !np->dn_set_mtime); if (np->dn_stat_dirty) { assert (!diskfs_readonly); err = diskfs_catch_exception (); if (err) return; di->di_gen = st->st_gen; if (S_ISBLK (st->st_mode) || S_ISCHR (st->st_mode)) di->di_rdev = st->st_rdev; /* We happen to know that the stat mode bits are the same as the ufs mode bits. */ if (compat_mode == COMPAT_GNU) { di->di_model = st->st_mode & 0xffff; di->di_modeh = (st->st_mode >> 16) & 0xffff; } else { di->di_model = st->st_mode & 0xffff; di->di_modeh = 0; } if (compat_mode != COMPAT_BSD42) { di->di_uid = st->st_uid; di->di_gid = st->st_gid; } if (sblock->fs_inodefmt < FS_44INODEFMT) { di->di_ouid = st->st_uid & 0xffff; di->di_ogid = st->st_gid & 0xffff; } else if (compat_mode == COMPAT_GNU) di->di_author = st->st_author; di->di_nlink = st->st_nlink; di->di_size = st->st_size; #ifdef notyet di->di_atime = st->st_atimespec; di->di_mtime = st->st_mtimespec; di->di_ctime = st->st_ctimespec; #else di->di_atime.ts_sec = st->st_atime; di->di_atime.ts_nsec = st->st_atime_usec * 1000; di->di_mtime.ts_sec = st->st_mtime; di->di_mtime.ts_nsec = st->st_mtime_usec * 1000; di->di_ctime.ts_sec = st->st_ctime; di->di_ctime.ts_nsec = st->st_ctime_usec * 1000; #endif di->di_blocks = st->st_blocks; di->di_flags = st->st_flags; diskfs_end_catch_exception (); np->dn_stat_dirty = 0; } } /* See if we should create a symlink by writing it directly into the block pointer array. Returning EINVAL tells diskfs to do it the usual way. */ static error_t create_symlink_hook (struct node *np, char *target) { int len = strlen (target); error_t err; if (!direct_symlink_extension) return EINVAL; assert (compat_mode != COMPAT_BSD42); if (len >= sblock->fs_maxsymlinklen) return EINVAL; err = diskfs_catch_exception (); if (err) return err; bcopy (target, (dino (np->dn->number))->di_shortlink, len); np->dn_stat.st_size = len; np->dn_set_ctime = 1; np->dn_set_mtime = 1; diskfs_end_catch_exception (); return 0; } error_t (*diskfs_create_symlink_hook)(struct node *, char *) = create_symlink_hook; /* Check if this symlink is stored directly in the block pointer array. Returning EINVAL tells diskfs to do it the usual way. */ static error_t read_symlink_hook (struct node *np, char *buf) { error_t err; if (!direct_symlink_extension || np->dn_stat.st_size >= sblock->fs_maxsymlinklen) return EINVAL; err = diskfs_catch_exception (); if (err) return err; bcopy ((dino (np->dn->number))->di_shortlink, buf, np->dn_stat.st_size); np->dn_set_atime = 1; diskfs_end_catch_exception (); return 0; } error_t (*diskfs_read_symlink_hook)(struct node *, char *) = read_symlink_hook; /* Write all active disknodes into the dinode pager. */ void write_all_disknodes () { int n; struct node *np; spin_lock (&diskfs_node_refcnt_lock); for (n = 0; n < INOHSZ; n++) for (np = nodehash[n]; np; np = np->dn->hnext) { diskfs_set_node_times (np); write_node (np); } spin_unlock (&diskfs_node_refcnt_lock); } void diskfs_write_disknode (struct node *np, int wait) { write_node (np); sync_dinode (np->dn->number, wait); } /* Implement the diskfs_set_statfs callback from the diskfs library; see for the interface description. */ error_t diskfs_set_statfs (struct fsys_statfsbuf *st) { st->fsys_stb_type = FSTYPE_UFS; st->fsys_stb_bsize = sblock->fs_bsize; st->fsys_stb_fsize = sblock->fs_fsize; st->fsys_stb_blocks = sblock->fs_dsize; st->fsys_stb_bfree = (sblock->fs_cstotal.cs_nbfree * sblock->fs_frag + sblock->fs_cstotal.cs_nffree); st->fsys_stb_bavail = ((sblock->fs_dsize * (100 - sblock->fs_minfree) / 100) - (sblock->fs_dsize - st->fsys_stb_bfree)); st->fsys_stb_files = sblock->fs_ncg * sblock->fs_ipg - 2; /* not 0 or 1 */ st->fsys_stb_ffree = sblock->fs_cstotal.cs_nifree; st->fsys_stb_fsid = getpid (); return 0; } /* Implement the diskfs_set_translator callback from the diskfs library; see for the interface description. */ error_t diskfs_set_translator (struct node *np, char *name, u_int namelen, struct protid *cred) { daddr_t blkno; error_t err; char buf[sblock->fs_bsize]; if (compat_mode != COMPAT_GNU) return EOPNOTSUPP; if (namelen + sizeof (u_int) > sblock->fs_bsize) return ENAMETOOLONG; err = diskfs_catch_exception (); if (err) return err; blkno = (dino (np->dn->number))->di_trans; if (namelen && !blkno) { /* Allocate block for translator */ err = ffs_alloc (np, 0, 0, sblock->fs_bsize, &blkno, cred); if (err) { diskfs_end_catch_exception (); return err; } (dino (np->dn->number))->di_trans = blkno; np->dn_set_ctime = 1; } else if (!namelen && blkno) { /* Clear block for translator going away. */ ffs_blkfree (np, blkno, sblock->fs_bsize); (dino (np->dn->number))->di_trans = 0; np->istranslated = 0; np->dn_set_ctime = 1; } if (namelen) { bcopy (&namelen, buf, sizeof (u_int)); bcopy (name, buf + sizeof (u_int), namelen); bcopy (buf, fsaddr (sblock, blkno), sblock->fs_bsize); sync_disk_blocks (blkno, sblock->fs_bsize, 1); np->istranslated = 1; np->dn_set_ctime = 1; } diskfs_end_catch_exception (); return err; } /* Implement the diskfs_get_translator callback from the diskfs library. See for the interface description. */ error_t diskfs_get_translator (struct node *np, char **namep, u_int *namelen) { error_t err; daddr_t blkno; char *buf; u_int datalen; err = diskfs_catch_exception (); if (err) return err; blkno = (dino (np->dn->number))->di_trans; assert (blkno); bcopy (fsaddr (sblock, blkno), buf, sblock->fs_bsize); diskfs_end_catch_exception (); datalen = *(u_int *)buf; if (datalen > *namelen) vm_allocate (mach_task_self (), (vm_address_t *) namep, datalen, 1); bcopy (buf + sizeof (u_int), *namep, datalen); *namelen = datalen; return 0; } /* Called when all hard ports have gone away. */ void diskfs_shutdown_soft_ports () { /* Should initiate termination of internally held pager ports (the only things that should be soft) XXX */ }