/* Disk allocation routines Copyright (C) 1993, 94, 95, 96, 98 Free Software Foundation, Inc. This file is part of the GNU Hurd. The GNU Hurd is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. The GNU Hurd is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with the GNU Hurd; see the file COPYING. If not, write to the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */ /* Modified from UCB by Michael I. Bushnell. */ /* * Copyright (c) 1982, 1986, 1989, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)ffs_alloc.c 8.8 (Berkeley) 2/21/94 */ #include "ufs.h" #include <stdio.h> #include <string.h> /* These don't work *at all* here; don't even try setting them. */ #undef DIAGNOSTIC #undef QUOTA extern u_long nextgennumber; spin_lock_t alloclock = SPIN_LOCK_INITIALIZER; /* Forward declarations */ static u_long ffs_hashalloc (struct node *, int, long, int, u_long (*)(struct node *, int, daddr_t, int)); static u_long ffs_alloccg (struct node *, int, daddr_t, int); static daddr_t ffs_fragextend (struct node *, int, long, int, int); static ino_t ffs_dirpref (struct fs *); static u_long ffs_nodealloccg (struct node *, int, daddr_t, int); static daddr_t ffs_alloccgblk (struct fs *, struct cg *, daddr_t); static daddr_t ffs_mapsearch (struct fs *, struct cg *, daddr_t, int); static void ffs_clusteracct (struct fs *, struct cg *, daddr_t, int); /* Sync all allocation information and nod eNP if diskfs_synchronous. */ inline void alloc_sync (struct node *np) { if (diskfs_synchronous) { if (np) diskfs_node_update (np, 1); copy_sblock (); diskfs_set_hypermetadata (1, 0); sync_disk (1); } } /* Byteswap everything in CGP. */ void swab_cg (struct cg *cg) { int i, j; if (swab_long (cg->cg_magic) == CG_MAGIC || cg->cg_magic == CG_MAGIC) { cg->cg_magic = swab_long (cg->cg_magic); cg->cg_time = swab_long (cg->cg_time); cg->cg_cgx = swab_long (cg->cg_cgx); cg->cg_ncyl = swab_short (cg->cg_ncyl); cg->cg_niblk = swab_short (cg->cg_niblk); cg->cg_cs.cs_ndir = swab_long (cg->cg_cs.cs_ndir); cg->cg_cs.cs_nbfree = swab_long (cg->cg_cs.cs_nbfree); cg->cg_cs.cs_nifree = swab_long (cg->cg_cs.cs_nifree); cg->cg_cs.cs_nffree = swab_long (cg->cg_cs.cs_nffree); cg->cg_rotor = swab_long (cg->cg_rotor); cg->cg_irotor = swab_long (cg->cg_irotor); for (i = 0; i < MAXFRAG; i++) cg->cg_frsum[i] = swab_long (cg->cg_frsum[i]); cg->cg_btotoff = swab_long (cg->cg_btotoff); cg->cg_boff = swab_long (cg->cg_boff); cg->cg_iusedoff = swab_long (cg->cg_iusedoff); cg->cg_freeoff = swab_long (cg->cg_freeoff); cg->cg_nextfreeoff = swab_long (cg->cg_nextfreeoff); cg->cg_clustersumoff = swab_long (cg->cg_clustersumoff); cg->cg_clusteroff = swab_long (cg->cg_clusteroff); cg->cg_nclusterblks = swab_long (cg->cg_nclusterblks); /* blktot map */ for (i = 0; i < cg->cg_ncyl; i++) cg_blktot(cg)[i] = swab_long (cg_blktot(cg)[i]); /* blks map */ for (i = 0; i < cg->cg_ncyl; i++) for (j = 0; j < sblock->fs_nrpos; j++) cg_blks(sblock, cg, i)[j] = swab_short (cg_blks (sblock, cg, i)[j]); for (i = 0; i < sblock->fs_contigsumsize; i++) cg_clustersum(cg)[i] = swab_long (cg_clustersum(cg)[i]); /* inosused, blksfree, and cg_clustersfree are char arrays */ } else { /* Old format cylinder group... */ struct ocg *ocg = (struct ocg *) cg; if (swab_long (ocg->cg_magic) != CG_MAGIC && ocg->cg_magic != CG_MAGIC) return; ocg->cg_time = swab_long (ocg->cg_time); ocg->cg_cgx = swab_long (ocg->cg_cgx); ocg->cg_ncyl = swab_short (ocg->cg_ncyl); ocg->cg_niblk = swab_short (ocg->cg_niblk); ocg->cg_ndblk = swab_long (ocg->cg_ndblk); ocg->cg_cs.cs_ndir = swab_long (ocg->cg_cs.cs_ndir); ocg->cg_cs.cs_nbfree = swab_long (ocg->cg_cs.cs_nbfree); ocg->cg_cs.cs_nifree = swab_long (ocg->cg_cs.cs_nifree); ocg->cg_cs.cs_nffree = swab_long (ocg->cg_cs.cs_nffree); ocg->cg_rotor = swab_long (ocg->cg_rotor); ocg->cg_frotor = swab_long (ocg->cg_frotor); ocg->cg_irotor = swab_long (ocg->cg_irotor); for (i = 0; i < 8; i++) ocg->cg_frsum[i] = swab_long (ocg->cg_frsum[i]); for (i = 0; i < 32; i++) ocg->cg_btot[i] = swab_long (ocg->cg_btot[i]); for (i = 0; i < 32; i++) for (j = 0; j < 8; j++) ocg->cg_b[i][j] = swab_short (ocg->cg_b[i][j]); ocg->cg_magic = swab_long (ocg->cg_magic); } } /* Read cylinder group indexed CG. Set *CGPP to point at it. Return 1 if caller should call release_cgp when we're done with it; otherwise zero. */ int read_cg (int cg, struct cg **cgpp) { struct cg *diskcg = cg_locate (cg); if (swab_disk) { *cgpp = malloc (sblock->fs_cgsize); bcopy (diskcg, *cgpp, sblock->fs_cgsize); swab_cg (*cgpp); return 1; } else { *cgpp = diskcg; return 0; } } /* Caller of read_cg is done with cg; write it back to disk (swapping it along the way) and free the memory allocated in read_cg. */ void release_cg (struct cg *cgp) { int cgx = cgp->cg_cgx; swab_cg (cgp); bcopy (cgp, cg_locate (cgx), sblock->fs_cgsize); free (cgp); } /* * Allocate a block in the file system. * * The size of the requested block is given, which must be some * multiple of fs_fsize and <= fs_bsize. * A preference may be optionally specified. If a preference is given * the following hierarchy is used to allocate a block: * 1) allocate the requested block. * 2) allocate a rotationally optimal block in the same cylinder. * 3) allocate a block in the same cylinder group. * 4) quadradically rehash into other cylinder groups, until an * available block is located. * If no block preference is given the following heirarchy is used * to allocate a block: * 1) allocate a block in the cylinder group that contains the * inode for the file. * 2) quadradically rehash into other cylinder groups, until an * available block is located. */ error_t ffs_alloc(register struct node *np, daddr_t lbn, daddr_t bpref, int size, daddr_t *bnp, struct protid *cred) { register struct fs *fs; daddr_t bno; int cg; *bnp = 0; fs = sblock; #ifdef DIAGNOSTIC if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) { printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n", ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt); panic("ffs_alloc: bad size"); } assert (cred); #endif /* DIAGNOSTIC */ spin_lock (&alloclock); if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0) goto nospace; if (cred && !idvec_contains (cred->user->uids, 0) && freespace(fs, fs->fs_minfree) <= 0) goto nospace; #ifdef QUOTA if (error = chkdq(ip, (long)btodb(size), cred, 0)) return (error); #endif if (bpref >= fs->fs_size) bpref = 0; if (bpref == 0) cg = ino_to_cg(fs, np->dn->number); else cg = dtog(fs, bpref); bno = (daddr_t)ffs_hashalloc(np, cg, (long)bpref, size, (u_long (*)())ffs_alloccg); if (bno > 0) { spin_unlock (&alloclock); np->dn_stat.st_blocks += btodb(size); np->dn_set_ctime = 1; np->dn_set_mtime = 1; *bnp = bno; alloc_sync (np); return (0); } #ifdef QUOTA /* * Restore user's disk quota because allocation failed. */ (void) chkdq(ip, (long)-btodb(size), cred, FORCE); #endif nospace: spin_unlock (&alloclock); printf ("file system full"); /* ffs_fserr(fs, cred->cr_uid, "file system full"); */ /* uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt); */ return (ENOSPC); } /* * Reallocate a fragment to a bigger size * * The number and size of the old block is given, and a preference * and new size is also specified. The allocator attempts to extend * the original block. Failing that, the regular block allocator is * invoked to get an appropriate block. */ error_t ffs_realloccg(register struct node *np, daddr_t lbprev, volatile daddr_t bpref, int osize, int nsize, daddr_t *pbn, struct protid *cred) { register struct fs *fs; int cg, error; volatile int request; daddr_t bprev, bno; *pbn = 0; fs = sblock; #ifdef DIAGNOSTIC if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 || (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) { printf( "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n", ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt); panic("ffs_realloccg: bad size"); } if (cred == NOCRED) panic("ffs_realloccg: missing credential\n"); #endif /* DIAGNOSTIC */ spin_lock (&alloclock); if (!idvec_contains (cred->user->uids, 0) && freespace(fs, fs->fs_minfree) <= 0) goto nospace; error = diskfs_catch_exception (); if (error) return error; bprev = read_disk_entry ((dino (np->dn->number))->di_db[lbprev]); diskfs_end_catch_exception (); assert ("old block not allocated" && bprev); #if 0 /* Not needed in GNU Hurd ufs */ /* * Allocate the extra space in the buffer. */ if (error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp)) { brelse(bp); return (error); } #ifdef QUOTA if (error = chkdq(ip, (long)btodb(nsize - osize), cred, 0)) { brelse(bp); return (error); } #endif #endif /* 0 */ /* * Check for extension in the existing location. */ cg = dtog(fs, bprev); bno = ffs_fragextend(np, cg, (long)bprev, osize, nsize); if (bno) { assert (bno == bprev); spin_unlock (&alloclock); np->dn_stat.st_blocks += btodb(nsize - osize); np->dn_set_ctime = 1; np->dn_set_mtime = 1; *pbn = bno; #if 0 /* Not done this way in GNU Hurd ufs. */ allocbuf(bp, nsize); bp->b_flags |= B_DONE; bzero((char *)bp->b_data + osize, (u_int)nsize - osize); *bpp = bp; #endif alloc_sync (np); return (0); } /* * Allocate a new disk location. */ if (bpref >= fs->fs_size) bpref = 0; switch ((int)fs->fs_optim) { case FS_OPTSPACE: /* * Allocate an exact sized fragment. Although this makes * best use of space, we will waste time relocating it if * the file continues to grow. If the fragmentation is * less than half of the minimum free reserve, we choose * to begin optimizing for time. */ request = nsize; if (fs->fs_minfree < 5 || fs->fs_cstotal.cs_nffree > fs->fs_dsize * fs->fs_minfree / (2 * 100)) break; printf ("%s: optimization changed from SPACE to TIME\n", fs->fs_fsmnt); fs->fs_optim = FS_OPTTIME; break; case FS_OPTTIME: /* * At this point we have discovered a file that is trying to * grow a small fragment to a larger fragment. To save time, * we allocate a full sized block, then free the unused portion. * If the file continues to grow, the `ffs_fragextend' call * above will be able to grow it in place without further * copying. If aberrant programs cause disk fragmentation to * grow within 2% of the free reserve, we choose to begin * optimizing for space. */ request = fs->fs_bsize; if (fs->fs_cstotal.cs_nffree < fs->fs_dsize * (fs->fs_minfree - 2) / 100) break; printf ("%s: optimization changed from TIME to SPACE\n", fs->fs_fsmnt); fs->fs_optim = FS_OPTSPACE; break; default: assert (0); /* NOTREACHED */ } bno = (daddr_t)ffs_hashalloc(np, cg, (long)bpref, request, (u_long (*)())ffs_alloccg); if (bno > 0) { #if 0 /* Not necessary in GNU Hurd ufs */ bp->b_blkno = fsbtodb(fs, bno); (void) vnode_pager_uncache(ITOV(ip)); #endif /* Commented out here for Hurd; we don't want to free this until we've saved the old contents. Callers are responsible for freeing the block when they are done with it. */ /* ffs_blkfree(np, bprev, (long)osize); */ if (nsize < request) ffs_blkfree(np, bno + numfrags(fs, nsize), (long)(request - nsize)); spin_unlock (&alloclock); np->dn_stat.st_blocks += btodb(nsize - osize); np->dn_set_mtime = 1; np->dn_set_ctime = 1; *pbn = bno; #if 0 /* Not done this way in GNU Hurd ufs */ allocbuf(bp, nsize); bp->b_flags |= B_DONE; bzero((char *)bp->b_data + osize, (u_int)nsize - osize); *bpp = bp; #endif /* 0 */ alloc_sync (np); return (0); } #ifdef QUOTA /* * Restore user's disk quota because allocation failed. */ (void) chkdq(ip, (long)-btodb(nsize - osize), cred, FORCE); #endif #if 0 /* Not necesarry in GNU Hurd ufs */ brelse(bp); #endif nospace: /* * no space available */ spin_unlock (&alloclock); printf ("file system full"); /* ffs_fserr(fs, cred->cr_uid, "file system full"); */ /* uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt); */ return (ENOSPC); } #if 0 /* Not used (yet?) in GNU Hurd ufs */ /* * Reallocate a sequence of blocks into a contiguous sequence of blocks. * * The vnode and an array of buffer pointers for a range of sequential * logical blocks to be made contiguous is given. The allocator attempts * to find a range of sequential blocks starting as close as possible to * an fs_rotdelay offset from the end of the allocation for the logical * block immediately preceeding the current range. If successful, the * physical block numbers in the buffer pointers and in the inode are * changed to reflect the new allocation. If unsuccessful, the allocation * is left unchanged. The success in doing the reallocation is returned. * Note that the error return is not reflected back to the user. Rather * the previous block allocation will be used. */ #include <sys/sysctl.h> int doasyncfree = 1; struct ctldebug debug14 = { "doasyncfree", &doasyncfree }; int ffs_reallocblks(ap) struct vop_reallocblks_args /* { struct vnode *a_vp; struct cluster_save *a_buflist; } */ *ap; { struct fs *fs; struct inode *ip; struct vnode *vp; struct buf *sbp, *ebp; daddr_t *bap, *sbap, *ebap; struct cluster_save *buflist; daddr_t start_lbn, end_lbn, soff, eoff, newblk, blkno; struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp; int i, len, start_lvl, end_lvl, pref, ssize; vp = ap->a_vp; ip = VTOI(vp); fs = ip->i_fs; if (fs->fs_contigsumsize <= 0) return (ENOSPC); buflist = ap->a_buflist; len = buflist->bs_nchildren; start_lbn = buflist->bs_children[0]->b_lblkno; end_lbn = start_lbn + len - 1; #ifdef DIAGNOSTIC for (i = 1; i < len; i++) if (buflist->bs_children[i]->b_lblkno != start_lbn + i) panic("ffs_reallocblks: non-cluster"); #endif /* * If the latest allocation is in a new cylinder group, assume that * the filesystem has decided to move and do not force it back to * the previous cylinder group. */ if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) != dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno))) return (ENOSPC); if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) || ufs_getlbns(vp, end_lbn, end_ap, &end_lvl)) return (ENOSPC); /* * Get the starting offset and block map for the first block. */ if (start_lvl == 0) { sbap = &ip->i_db[0]; soff = start_lbn; } else { idp = &start_ap[start_lvl - 1]; if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) { brelse(sbp); return (ENOSPC); } sbap = (daddr_t *)sbp->b_data; soff = idp->in_off; } /* * Find the preferred location for the cluster. */ pref = ffs_blkpref(ip, start_lbn, soff, sbap); /* * If the block range spans two block maps, get the second map. */ if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) { ssize = len; } else { #ifdef DIAGNOSTIC if (start_ap[start_lvl-1].in_lbn == idp->in_lbn) panic("ffs_reallocblk: start == end"); #endif ssize = len - (idp->in_off + 1); if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp)) goto fail; ebap = (daddr_t *)ebp->b_data; } /* * Search the block map looking for an allocation of the desired size. */ if ((newblk = (daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref, len, (u_long (*)())ffs_clusteralloc)) == 0) goto fail; /* * We have found a new contiguous block. * * First we have to replace the old block pointers with the new * block pointers in the inode and indirect blocks associated * with the file. */ blkno = newblk; for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) { if (i == ssize) bap = ebap; #ifdef DIAGNOSTIC if (buflist->bs_children[i]->b_blkno != fsbtodb(fs, *bap)) panic("ffs_reallocblks: alloc mismatch"); #endif *bap++ = blkno; } /* * Next we must write out the modified inode and indirect blocks. * For strict correctness, the writes should be synchronous since * the old block values may have been written to disk. In practise * they are almost never written, but if we are concerned about * strict correctness, the `doasyncfree' flag should be set to zero. * * The test on `doasyncfree' should be changed to test a flag * that shows whether the associated buffers and inodes have * been written. The flag should be set when the cluster is * started and cleared whenever the buffer or inode is flushed. * We can then check below to see if it is set, and do the * synchronous write only when it has been cleared. */ if (sbap != &ip->i_db[0]) { if (doasyncfree) bdwrite(sbp); else bwrite(sbp); } else { ip->i_flag |= IN_CHANGE | IN_UPDATE; if (!doasyncfree) VOP_UPDATE(vp, &time, &time, MNT_WAIT); } if (ssize < len) if (doasyncfree) bdwrite(ebp); else bwrite(ebp); /* * Last, free the old blocks and assign the new blocks to the buffers. */ for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) { ffs_blkfree(ip, dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize); buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno); } return (0); fail: if (ssize < len) brelse(ebp); if (sbap != &ip->i_db[0]) brelse(sbp); return (ENOSPC); } #endif /* 0 */ /* * Allocate an inode in the file system. * * If allocating a directory, use ffs_dirpref to select the inode. * If allocating in a directory, the following hierarchy is followed: * 1) allocate the preferred inode. * 2) allocate an inode in the same cylinder group. * 3) quadradically rehash into other cylinder groups, until an * available inode is located. * If no inode preference is given the following heirarchy is used * to allocate an inode: * 1) allocate an inode in cylinder group 0. * 2) quadradically rehash into other cylinder groups, until an * available inode is located. */ /* This is now the diskfs_alloc_node callback from the diskfs library (described in <hurd/diskfs.h>). It used to be ffs_valloc in BSD. */ error_t diskfs_alloc_node (struct node *dir, mode_t mode, struct node **npp) { register struct fs *fs; struct node *np; ino_t ino, ipref; int cg, error; int sex; fs = sblock; spin_lock (&alloclock); if (fs->fs_cstotal.cs_nifree == 0) { spin_unlock (&alloclock); goto noinodes; } if (S_ISDIR (mode)) ipref = ffs_dirpref(fs); else ipref = dir->dn->number; if (ipref >= fs->fs_ncg * fs->fs_ipg) ipref = 0; cg = ino_to_cg(fs, ipref); ino = (ino_t)ffs_hashalloc(dir, cg, (long)ipref, mode, ffs_nodealloccg); spin_unlock (&alloclock); if (ino == 0) goto noinodes; error = diskfs_cached_lookup (ino, &np); assert ("duplicate allocation" && !np->dn_stat.st_mode); assert (! (np->dn_stat.st_mode & S_IPTRANS)); if (np->dn_stat.st_blocks) { printf("free inode %d had %ld blocks\n", ino, np->dn_stat.st_blocks); np->dn_stat.st_blocks = 0; np->dn_set_ctime = 1; } np->dn_stat.st_flags = 0; /* * Set up a new generation number for this inode. */ spin_lock (&gennumberlock); sex = diskfs_mtime->seconds; if (++nextgennumber < (u_long)sex) nextgennumber = sex; np->dn_stat.st_gen = nextgennumber; spin_unlock (&gennumberlock); *npp = np; alloc_sync (np); return (0); noinodes: printf ("out of inodes"); /* ffs_fserr(fs, ap->a_cred->cr_uid, "out of inodes"); */ /* uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);*/ return (ENOSPC); } /* * Find a cylinder to place a directory. * * The policy implemented by this algorithm is to select from * among those cylinder groups with above the average number of * free inodes, the one with the smallest number of directories. */ static ino_t ffs_dirpref(register struct fs *fs) { int cg, minndir, mincg, avgifree; avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg; minndir = fs->fs_ipg; mincg = 0; for (cg = 0; cg < fs->fs_ncg; cg++) if (csum[cg].cs_ndir < minndir && csum[cg].cs_nifree >= avgifree) { mincg = cg; minndir = csum[cg].cs_ndir; } return ((ino_t)(fs->fs_ipg * mincg)); } /* * Select the desired position for the next block in a file. The file is * logically divided into sections. The first section is composed of the * direct blocks. Each additional section contains fs_maxbpg blocks. * * If no blocks have been allocated in the first section, the policy is to * request a block in the same cylinder group as the inode that describes * the file. If no blocks have been allocated in any other section, the * policy is to place the section in a cylinder group with a greater than * average number of free blocks. An appropriate cylinder group is found * by using a rotor that sweeps the cylinder groups. When a new group of * blocks is needed, the sweep begins in the cylinder group following the * cylinder group from which the previous allocation was made. The sweep * continues until a cylinder group with greater than the average number * of free blocks is found. If the allocation is for the first block in an * indirect block, the information on the previous allocation is unavailable; * here a best guess is made based upon the logical block number being * allocated. * * If a section is already partially allocated, the policy is to * contiguously allocate fs_maxcontig blocks. The end of one of these * contiguous blocks and the beginning of the next is physically separated * so that the disk head will be in transit between them for at least * fs_rotdelay milliseconds. This is to allow time for the processor to * schedule another I/O transfer. */ daddr_t ffs_blkpref(struct node *np, daddr_t lbn, int indx, daddr_t *bap) { register struct fs *fs; register int cg; int avgbfree, startcg; daddr_t nextblk; fs = sblock; spin_lock (&alloclock); if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) { if (lbn < NDADDR) { cg = ino_to_cg(fs, np->dn->number); spin_unlock (&alloclock); return (fs->fs_fpg * cg + fs->fs_frag); } /* * Find a cylinder with greater than average number of * unused data blocks. */ if (indx == 0 || bap[indx - 1] == 0) startcg = (ino_to_cg(fs, np->dn->number) + lbn / fs->fs_maxbpg); else startcg = dtog(fs, read_disk_entry (bap[indx - 1])) + 1; startcg %= fs->fs_ncg; avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; for (cg = startcg; cg < fs->fs_ncg; cg++) if (csum[cg].cs_nbfree >= avgbfree) { fs->fs_cgrotor = cg; spin_unlock (&alloclock); return (fs->fs_fpg * cg + fs->fs_frag); } for (cg = 0; cg <= startcg; cg++) if (csum[cg].cs_nbfree >= avgbfree) { fs->fs_cgrotor = cg; spin_unlock (&alloclock); return (fs->fs_fpg * cg + fs->fs_frag); } spin_unlock (&alloclock); return 0; } spin_unlock (&alloclock); /* * One or more previous blocks have been laid out. If less * than fs_maxcontig previous blocks are contiguous, the * next block is requested contiguously, otherwise it is * requested rotationally delayed by fs_rotdelay milliseconds. */ nextblk = read_disk_entry (bap[indx - 1]) + fs->fs_frag; if (indx < fs->fs_maxcontig || (read_disk_entry (bap[indx - fs->fs_maxcontig]) + blkstofrags(fs, fs->fs_maxcontig) != nextblk)) { return (nextblk); } if (fs->fs_rotdelay != 0) /* * Here we convert ms of delay to frags as: * (frags) = (ms) * (rev/sec) * (sect/rev) / * ((sect/frag) * (ms/sec)) * then round up to the next block. */ nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect / (NSPF(fs) * 1000), fs->fs_frag); return (nextblk); } /* * Implement the cylinder overflow algorithm. * * The policy implemented by this algorithm is: * 1) allocate the block in its requested cylinder group. * 2) quadradically rehash on the cylinder group number. * 3) brute force search for a free block. */ /*VARARGS5*/ static u_long ffs_hashalloc(struct node *np, int cg, long pref, int size, /* size for data blocks, mode for inodes */ u_long (*allocator)()) { register struct fs *fs; long result; int i, icg = cg; fs = sblock; /* * 1: preferred cylinder group */ result = (*allocator)(np, cg, pref, size); if (result) return (result); /* * 2: quadratic rehash */ for (i = 1; i < fs->fs_ncg; i *= 2) { cg += i; if (cg >= fs->fs_ncg) cg -= fs->fs_ncg; result = (*allocator)(np, cg, 0, size); if (result) return (result); } /* * 3: brute force search * Note that we start at i == 2, since 0 was checked initially, * and 1 is always checked in the quadratic rehash. */ cg = (icg + 2) % fs->fs_ncg; for (i = 2; i < fs->fs_ncg; i++) { result = (*allocator)(np, cg, 0, size); if (result) return (result); cg++; if (cg == fs->fs_ncg) cg = 0; } return 0; } /* * Determine whether a fragment can be extended. * * Check to see if the necessary fragments are available, and * if they are, allocate them. */ static daddr_t ffs_fragextend(struct node *np, int cg, long bprev, int osize, int nsize) { register struct fs *fs; struct cg *cgp; long bno; int frags, bbase; int i; int releasecg; fs = sblock; if (csum[cg].cs_nffree < numfrags(fs, nsize - osize)) return 0; frags = numfrags(fs, nsize); bbase = fragnum(fs, bprev); if (bbase > fragnum(fs, (bprev + frags - 1))) { /* cannot extend across a block boundary */ return 0; } #if 0 /* Wrong for GNU Hurd ufs */ error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize, NOCRED, &bp); if (error) { brelse(bp); return (NULL); } cgp = (struct cg *)bp->b_data; #else releasecg = read_cg (cg, &cgp); #endif if (!cg_chkmagic(cgp)) { /* brelse(bp); */ if (releasecg) release_cg (cgp); return 0; } cgp->cg_time = diskfs_mtime->seconds; bno = dtogd(fs, bprev); for (i = numfrags(fs, osize); i < frags; i++) if (isclr(cg_blksfree(cgp), bno + i)) { /* brelse(bp); */ if (releasecg) release_cg (cgp); return 0; } /* * the current fragment can be extended * deduct the count on fragment being extended into * increase the count on the remaining fragment (if any) * allocate the extended piece */ for (i = frags; i < fs->fs_frag - bbase; i++) if (isclr(cg_blksfree(cgp), bno + i)) break; cgp->cg_frsum[i - numfrags(fs, osize)]--; if (i != frags) cgp->cg_frsum[i - frags]++; for (i = numfrags(fs, osize); i < frags; i++) { clrbit(cg_blksfree(cgp), bno + i); cgp->cg_cs.cs_nffree--; fs->fs_cstotal.cs_nffree--; csum[cg].cs_nffree--; } if (releasecg) release_cg (cgp); record_poke (cgp, sblock->fs_cgsize); csum_dirty = 1; sblock_dirty = 1; fs->fs_fmod = 1; /* bdwrite(bp); */ return (bprev); } /* * Determine whether a block can be allocated. * * Check to see if a block of the appropriate size is available, * and if it is, allocate it. */ static u_long ffs_alloccg(struct node *np, int cg, daddr_t bpref, int size) { register struct fs *fs; struct cg *cgp; register int i; int bno, frags, allocsiz; int releasecg; fs = sblock; if (csum[cg].cs_nbfree == 0 && size == fs->fs_bsize) return 0; #if 0 /* Not this way in GNU Hurd ufs */ error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize, NOCRED, &bp); if (error) { brelse(bp); return (NULL); } cgp = (struct cg *)bp->b_data; #else releasecg = read_cg (cg, &cgp); #endif if (!cg_chkmagic(cgp) || (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) { /* brelse(bp); */ if (releasecg) release_cg (cgp); return 0; } cgp->cg_time = diskfs_mtime->seconds; if (size == fs->fs_bsize) { bno = ffs_alloccgblk(fs, cgp, bpref); /* bdwrite(bp); */ if (releasecg) release_cg (cgp); return (bno); } /* * check to see if any fragments are already available * allocsiz is the size which will be allocated, hacking * it down to a smaller size if necessary */ frags = numfrags(fs, size); for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++) if (cgp->cg_frsum[allocsiz] != 0) break; if (allocsiz == fs->fs_frag) { /* * no fragments were available, so a block will be * allocated, and hacked up */ if (cgp->cg_cs.cs_nbfree == 0) { /* brelse(bp); */ if (releasecg) release_cg (cgp); return 0; } bno = ffs_alloccgblk(fs, cgp, bpref); bpref = dtogd(fs, bno); for (i = frags; i < fs->fs_frag; i++) setbit(cg_blksfree(cgp), bpref + i); i = fs->fs_frag - frags; cgp->cg_cs.cs_nffree += i; fs->fs_cstotal.cs_nffree += i; csum[cg].cs_nffree += i; fs->fs_fmod = 1; cgp->cg_frsum[i]++; if (releasecg) release_cg (cgp); record_poke (cgp, sblock->fs_cgsize); csum_dirty = 1; sblock_dirty = 1; /* bdwrite(bp); */ return (bno); } bno = ffs_mapsearch(fs, cgp, bpref, allocsiz); if (bno < 0) { /* brelse(bp); */ if (releasecg) release_cg (cgp); return 0; } for (i = 0; i < frags; i++) clrbit(cg_blksfree(cgp), bno + i); cgp->cg_cs.cs_nffree -= frags; fs->fs_cstotal.cs_nffree -= frags; csum[cg].cs_nffree -= frags; fs->fs_fmod = 1; cgp->cg_frsum[allocsiz]--; if (frags != allocsiz) cgp->cg_frsum[allocsiz - frags]++; if (releasecg) release_cg (cgp); record_poke (cgp, sblock->fs_cgsize); csum_dirty = 1; sblock_dirty = 1; /* bdwrite(bp); */ return (cg * fs->fs_fpg + bno); } /* * Allocate a block in a cylinder group. * * This algorithm implements the following policy: * 1) allocate the requested block. * 2) allocate a rotationally optimal block in the same cylinder. * 3) allocate the next available block on the block rotor for the * specified cylinder group. * Note that this routine only allocates fs_bsize blocks; these * blocks may be fragmented by the routine that allocates them. */ static daddr_t ffs_alloccgblk(register struct fs *fs, register struct cg *cgp, daddr_t bpref) { daddr_t bno, blkno; int cylno, pos, delta; short *cylbp; register int i; if (bpref == 0 || dtog(fs, bpref) != cgp->cg_cgx) { bpref = cgp->cg_rotor; goto norot; } bpref = blknum(fs, bpref); bpref = dtogd(fs, bpref); /* * if the requested block is available, use it */ if (ffs_isblock(fs, cg_blksfree(cgp), fragstoblks(fs, bpref))) { bno = bpref; goto gotit; } /* * check for a block available on the same cylinder */ cylno = cbtocylno(fs, bpref); if (cg_blktot(cgp)[cylno] == 0) goto norot; if (fs->fs_cpc == 0) { /* * Block layout information is not available. * Leaving bpref unchanged means we take the * next available free block following the one * we just allocated. Hopefully this will at * least hit a track cache on drives of unknown * geometry (e.g. SCSI). */ goto norot; } /* * check the summary information to see if a block is * available in the requested cylinder starting at the * requested rotational position and proceeding around. */ cylbp = cg_blks(fs, cgp, cylno); pos = cbtorpos(fs, bpref); for (i = pos; i < fs->fs_nrpos; i++) if (cylbp[i] > 0) break; if (i == fs->fs_nrpos) for (i = 0; i < pos; i++) if (cylbp[i] > 0) break; if (cylbp[i] > 0) { /* * found a rotational position, now find the actual * block. A panic if none is actually there. */ pos = cylno % fs->fs_cpc; bno = (cylno - pos) * fs->fs_spc / NSPB(fs); assert (fs_postbl(fs, pos)[i] != -1); for (i = fs_postbl(fs, pos)[i];; ) { if (ffs_isblock(fs, cg_blksfree(cgp), bno + i)) { bno = blkstofrags(fs, (bno + i)); goto gotit; } delta = fs_rotbl(fs)[i]; if (delta <= 0 || delta + i > fragstoblks(fs, fs->fs_fpg)) break; i += delta; } printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt); assert (0); } norot: /* * no blocks in the requested cylinder, so take next * available one in this cylinder group. */ bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag); if (bno < 0) return 0; cgp->cg_rotor = bno; gotit: blkno = fragstoblks(fs, bno); ffs_clrblock(fs, cg_blksfree(cgp), (long)blkno); ffs_clusteracct(fs, cgp, blkno, -1); cgp->cg_cs.cs_nbfree--; fs->fs_cstotal.cs_nbfree--; csum[cgp->cg_cgx].cs_nbfree--; cylno = cbtocylno(fs, bno); cg_blks(fs, cgp, cylno)[cbtorpos(fs, bno)]--; cg_blktot(cgp)[cylno]--; fs->fs_fmod = 1; record_poke (cgp, sblock->fs_cgsize); csum_dirty = 1; sblock_dirty = 1; return (cgp->cg_cgx * fs->fs_fpg + bno); } #if 0 /* Not needed in GNU Hurd ufs (yet?) */ /* * Determine whether a cluster can be allocated. * * We do not currently check for optimal rotational layout if there * are multiple choices in the same cylinder group. Instead we just * take the first one that we find following bpref. */ static daddr_t ffs_clusteralloc(ip, cg, bpref, len) struct inode *ip; int cg; daddr_t bpref; int len; { register struct fs *fs; register struct cg *cgp; struct buf *bp; int i, run, bno, bit, map; u_char *mapp; fs = ip->i_fs; if (fs->fs_cs(fs, cg).cs_nbfree < len) return (NULL); if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize, NOCRED, &bp)) goto fail; cgp = (struct cg *)bp->b_data; if (!cg_chkmagic(cgp)) goto fail; /* * Check to see if a cluster of the needed size (or bigger) is * available in this cylinder group. */ for (i = len; i <= fs->fs_contigsumsize; i++) if (cg_clustersum(cgp)[i] > 0) break; if (i > fs->fs_contigsumsize) goto fail; /* * Search the cluster map to find a big enough cluster. * We take the first one that we find, even if it is larger * than we need as we prefer to get one close to the previous * block allocation. We do not search before the current * preference point as we do not want to allocate a block * that is allocated before the previous one (as we will * then have to wait for another pass of the elevator * algorithm before it will be read). We prefer to fail and * be recalled to try an allocation in the next cylinder group. */ if (dtog(fs, bpref) != cg) bpref = 0; else bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref))); mapp = &cg_clustersfree(cgp)[bpref / NBBY]; map = *mapp++; bit = 1 << (bpref % NBBY); for (run = 0, i = bpref; i < cgp->cg_nclusterblks; i++) { if ((map & bit) == 0) { run = 0; } else { run++; if (run == len) break; } if ((i & (NBBY - 1)) != (NBBY - 1)) { bit <<= 1; } else { map = *mapp++; bit = 1; } } if (i == cgp->cg_nclusterblks) goto fail; /* * Allocate the cluster that we have found. */ bno = cg * fs->fs_fpg + blkstofrags(fs, i - run + 1); len = blkstofrags(fs, len); for (i = 0; i < len; i += fs->fs_frag) if (ffs_alloccgblk(fs, cgp, bno + i) != bno + i) panic("ffs_clusteralloc: lost block"); brelse(bp); return (bno); fail: brelse(bp); return (0); } #endif /* * Determine whether an inode can be allocated. * * Check to see if an inode is available, and if it is, * allocate it using the following policy: * 1) allocate the requested inode. * 2) allocate the next available inode after the requested * inode in the specified cylinder group. */ static u_long ffs_nodealloccg(struct node *np, int cg, daddr_t ipref, int mode) { register struct fs *fs; struct cg *cgp; int start, len, loc, map, i; int releasecg; fs = sblock; if (csum[cg].cs_nifree == 0) return 0; #if 0 /* Not this way in GNU Hurd ufs */ error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize, NOCRED, &bp); if (error) { brelse(bp); return (NULL); } cgp = (struct cg *)bp->b_data; #else releasecg = read_cg (cg, &cgp); #endif if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) { /* brelse(bp); */ if (releasecg) release_cg (cgp); return 0; } cgp->cg_time = diskfs_mtime->seconds; if (ipref) { ipref %= fs->fs_ipg; if (isclr(cg_inosused(cgp), ipref)) goto gotit; } start = cgp->cg_irotor / NBBY; len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY); loc = skpc(0xff, len, &cg_inosused(cgp)[start]); if (loc == 0) { len = start + 1; start = 0; loc = skpc(0xff, len, &cg_inosused(cgp)[0]); assert (loc != 0); } i = start + len - loc; map = cg_inosused(cgp)[i]; ipref = i * NBBY; for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) { if ((map & i) == 0) { cgp->cg_irotor = ipref; goto gotit; } } assert (0); /* NOTREACHED */ gotit: setbit(cg_inosused(cgp), ipref); cgp->cg_cs.cs_nifree--; fs->fs_cstotal.cs_nifree--; csum[cg].cs_nifree--; fs->fs_fmod = 1; if ((mode & IFMT) == IFDIR) { cgp->cg_cs.cs_ndir++; fs->fs_cstotal.cs_ndir++; csum[cg].cs_ndir++; } if (releasecg) release_cg (cgp); record_poke (cgp, sblock->fs_cgsize); csum_dirty = 1; sblock_dirty = 1; /* bdwrite(bp); */ return (cg * fs->fs_ipg + ipref); } /* * Free a block or fragment. * * The specified block or fragment is placed back in the * free map. If a fragment is deallocated, a possible * block reassembly is checked. */ void ffs_blkfree(register struct node *np, daddr_t bno, long size) { register struct fs *fs; struct cg *cgp; daddr_t blkno; int i, cg, blk, frags, bbase; int releasecg; fs = sblock; assert ((u_int)size <= fs->fs_bsize && !fragoff (fs, size)); cg = dtog(fs, bno); if ((u_int)bno >= fs->fs_size) { printf("bad block %ld, ino %d\n", bno, np->dn->number); /* ffs_fserr(fs, ip->i_uid, "bad block"); */ return; } #if 0 /* Not this way in GNU Hurd ufs */ error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize, NOCRED, &bp); if (error) { brelse(bp); return; } cgp = (struct cg *)bp->b_data; #else releasecg = read_cg (cg, &cgp); #endif if (!cg_chkmagic(cgp)) { /* brelse(bp); */ if (releasecg) release_cg (cgp); return; } cgp->cg_time = diskfs_mtime->seconds; bno = dtogd(fs, bno); if (size == fs->fs_bsize) { blkno = fragstoblks(fs, bno); assert (!ffs_isblock(fs, cg_blksfree (cgp), blkno)); ffs_setblock(fs, cg_blksfree(cgp), blkno); ffs_clusteracct(fs, cgp, blkno, 1); cgp->cg_cs.cs_nbfree++; fs->fs_cstotal.cs_nbfree++; csum[cg].cs_nbfree++; i = cbtocylno(fs, bno); cg_blks(fs, cgp, i)[cbtorpos(fs, bno)]++; cg_blktot(cgp)[i]++; } else { bbase = bno - fragnum(fs, bno); /* * decrement the counts associated with the old frags */ blk = blkmap(fs, cg_blksfree(cgp), bbase); ffs_fragacct(fs, blk, cgp->cg_frsum, -1); /* * deallocate the fragment */ frags = numfrags(fs, size); for (i = 0; i < frags; i++) { assert (!isset (cg_blksfree(cgp), bno + i)); setbit(cg_blksfree(cgp), bno + i); } cgp->cg_cs.cs_nffree += i; fs->fs_cstotal.cs_nffree += i; csum[cg].cs_nffree += i; /* * add back in counts associated with the new frags */ blk = blkmap(fs, cg_blksfree(cgp), bbase); ffs_fragacct(fs, blk, cgp->cg_frsum, 1); /* * if a complete block has been reassembled, account for it */ blkno = fragstoblks(fs, bbase); if (ffs_isblock(fs, cg_blksfree(cgp), blkno)) { cgp->cg_cs.cs_nffree -= fs->fs_frag; fs->fs_cstotal.cs_nffree -= fs->fs_frag; csum[cg].cs_nffree -= fs->fs_frag; ffs_clusteracct(fs, cgp, blkno, 1); cgp->cg_cs.cs_nbfree++; fs->fs_cstotal.cs_nbfree++; csum[cg].cs_nbfree++; i = cbtocylno(fs, bbase); cg_blks(fs, cgp, i)[cbtorpos(fs, bbase)]++; cg_blktot(cgp)[i]++; } } if (releasecg) release_cg (cgp); record_poke (cgp, sblock->fs_cgsize); csum_dirty = 1; sblock_dirty = 1; fs->fs_fmod = 1; alloc_sync (np); /* bdwrite(bp); */ } /* * Free an inode. * * The specified inode is placed back in the free map. */ /* Implement diskfs call back diskfs_free_node (described in <hurd/diskfs.h>. This was called ffs_vfree in BSD. */ void diskfs_free_node (struct node *np, mode_t mode) { register struct fs *fs; struct cg *cgp; ino_t ino = np->dn->number; int cg; int releasecg; fs = sblock; assert (ino < fs->fs_ipg * fs->fs_ncg); cg = ino_to_cg(fs, ino); #if 0 /* Not this way in GNU Hurd ufs */ error = bread(pip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize, NOCRED, &bp); if (error) { brelse(bp); return (0); } cgp = (struct cg *)bp->b_data; #else releasecg = read_cg (cg, &cgp); #endif if (!cg_chkmagic(cgp)) { /* brelse(bp); */ if (releasecg) release_cg (cgp); return; } cgp->cg_time = diskfs_mtime->seconds; ino %= fs->fs_ipg; if (isclr(cg_inosused(cgp), ino)) { /* printf("dev = 0x%x, ino = %d, fs = %s\n", pip->i_dev, ino, fs->fs_fsmnt); */ assert (diskfs_readonly); } clrbit(cg_inosused(cgp), ino); if (ino < cgp->cg_irotor) cgp->cg_irotor = ino; cgp->cg_cs.cs_nifree++; fs->fs_cstotal.cs_nifree++; csum[cg].cs_nifree++; if ((mode & IFMT) == IFDIR) { cgp->cg_cs.cs_ndir--; fs->fs_cstotal.cs_ndir--; csum[cg].cs_ndir--; } if (releasecg) release_cg (cgp); record_poke (cgp, sblock->fs_cgsize); csum_dirty = 1; sblock_dirty = 1; fs->fs_fmod = 1; alloc_sync (np); /* bdwrite(bp); */ } /* * Find a block of the specified size in the specified cylinder group. * * It is a panic if a request is made to find a block if none are * available. */ static daddr_t ffs_mapsearch(register struct fs *fs, register struct cg *cgp, daddr_t bpref, int allocsiz) { daddr_t bno; int start, len, loc, i; int blk, field, subfield, pos; /* * find the fragment by searching through the free block * map for an appropriate bit pattern */ if (bpref) start = dtogd(fs, bpref) / NBBY; else start = cgp->cg_frotor / NBBY; len = howmany(fs->fs_fpg, NBBY) - start; loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp)[start], (u_char *)fragtbl[fs->fs_frag], (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); if (loc == 0) { len = start + 1; start = 0; loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp)[0], (u_char *)fragtbl[fs->fs_frag], (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); assert (loc); } bno = (start + len - loc) * NBBY; cgp->cg_frotor = bno; /* * found the byte in the map * sift through the bits to find the selected frag */ for (i = bno + NBBY; bno < i; bno += fs->fs_frag) { blk = blkmap(fs, cg_blksfree(cgp), bno); blk <<= 1; field = around[allocsiz]; subfield = inside[allocsiz]; for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) { if ((blk & field) == subfield) return (bno + pos); field <<= 1; subfield <<= 1; } } assert (0); return (-1); } /* * Update the cluster map because of an allocation or free. * * Cnt == 1 means free; cnt == -1 means allocating. */ static void ffs_clusteracct(struct fs *fs, struct cg *cgp, daddr_t blkno, int cnt) { long *sump; u_char *freemapp, *mapp; int i, start, end, forw, back, map, bit; if (fs->fs_contigsumsize <= 0) return; freemapp = cg_clustersfree(cgp); sump = cg_clustersum(cgp); /* * Allocate or clear the actual block. */ if (cnt > 0) setbit(freemapp, blkno); else clrbit(freemapp, blkno); /* * Find the size of the cluster going forward. */ start = blkno + 1; end = start + fs->fs_contigsumsize; if (end >= cgp->cg_nclusterblks) end = cgp->cg_nclusterblks; mapp = &freemapp[start / NBBY]; map = *mapp++; bit = 1 << (start % NBBY); for (i = start; i < end; i++) { if ((map & bit) == 0) break; if ((i & (NBBY - 1)) != (NBBY - 1)) { bit <<= 1; } else { map = *mapp++; bit = 1; } } forw = i - start; /* * Find the size of the cluster going backward. */ start = blkno - 1; end = start - fs->fs_contigsumsize; if (end < 0) end = -1; mapp = &freemapp[start / NBBY]; map = *mapp--; bit = 1 << (start % NBBY); for (i = start; i > end; i--) { if ((map & bit) == 0) break; if ((i & (NBBY - 1)) != 0) { bit >>= 1; } else { map = *mapp--; bit = 1 << (NBBY - 1); } } back = start - i; /* * Account for old cluster and the possibly new forward and * back clusters. */ i = back + forw + 1; if (i > fs->fs_contigsumsize) i = fs->fs_contigsumsize; sump[i] += cnt; if (back > 0) sump[back] -= cnt; if (forw > 0) sump[forw] -= cnt; } #if 0 /* * Fserr prints the name of a file system with an error diagnostic. * * The form of the error message is: * fs: error message */ static void ffs_fserr(fs, uid, cp) struct fs *fs; u_int uid; char *cp; { log(LOG_ERR, "uid %d on %s: %s\n", uid, fs->fs_fsmnt, cp); } #endif